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Introduction

The k � p-method in combination with the envelope function

approximation is a widely used tool for the near-bandedge

modeling of electronic states in one-dimensional semicon-

ductor nanostructures like Quantum Wells (QW) and Multi

Quantum Wells (MQW). Within the nanostructure the wave

function is represented in terms of envelope functions, which

are eigenfunctions of matrix-valued k � p Schr�odinger oper-

ators with discontinous coeÆcients. The k � p Schr�odinger

operators describe the mixing of the near-bandedge states of

the semiconductor materials. They parameterically depend

on the reduced wave vector kk = (k1; k2) 2 R2.

k � p Schr�odinger operators for d states

Ordinary di�erential operator de�ned on L2([0; L]; C d):
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Piecewise constant d�d matrix-valued functions m,e,V,M,U:

m,e: real, diagonal, same signature

e: spatial variation of the band edges

V, M,U: complex and selfadjoint

Typically d = 4;6;8;14

Eigenvalue distribution
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Eigenvalue spectrum for a

MQW structure consist-

ing of 6 Quantum Wells.

Due to symmetry all eigen-

values are twice degener-

ate, yielding groups of 12

eigenvalues.

Eigenvalue dispersion
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Subband dispersion and

warping (angluar depen-

dence) in a strained single

Quantum Well for di�er-

ent crystallographic direc-

tions in the kk plane.

In both examples an 8�8 k �p Schr�odinger operator has been

used, modeling the mixing of valence and conduction bands

in InGaAsP Quantum Wells.

Eigenvalue Problem

Calculation of eigenvalue dispersions En(kk) and correspond-

ing eigenfunctions Fn(z;kk) of k � p Schr�odinger operators:

Hkk
Fn(z;kk) = En(kk)Fn(z;kk); Fn = (Fn;1; : : : ; Fn;d)

T

� conditions for the persistance of a spectral gap, the band

gap in semiconductors, at kk = 0 for kk 6= 0

� spurious modes (band gap solutions) can appear for k � p

Schr�odinger operators modeling the mixing between con-

duction and valence bands

Results

We have proven general properties of the operator familiy

fHkk
gkk2C 2 [1]. In particular, the spectral properties of fHkk

g

depend analytically on kk. The operators Hk are not self-

adjoint on W�1;2. The restriction Hkk
jL2 for kk 2 R2 is a

selfadjoint operator. However, the operators Hkk
behave in

the L2-context much more irregulary then over W�1;2. In

particular, the domain of Hkk
jL2 usually depends on kk.

In dependence on the data, there is a certain range for kk 6= 0,

where a spectral gap exists [1]. If the interband coupling

between the conduction and valence bands remains weak

enough, spurious solutions don't appear [1]. We introduced a

regularization of the problem, such that the eigenvalue curves

cannot explode in the �nite kk-plane, while asymptotically

preserving the spectral properties of Hkk
jL2.

Code: KPLIB

KPLIB: Template Methods for the numerical handling of

k � p Schr�odinger operators

kpHamiltonOperator

HkAx=EBx

Solver

densitiesspectrum

grid data

kpModel

Chuang 4x4

user code

pdelib

k�pModels: one single conduction band, four valence bands

eight mixed conduction and valence bands

Solver: LAPACK, ARPACK (shift-invert mode)

Based on PDELIB [3].

Discretization

The numerical solution of the eigenvalue problem for the k �p

Schr�odinger operators requires a suitable �nite dimensional

approximation of the problem. This can be done by de�ning

the operators in the sense of forms on �nite dimensional

subspaces of W 1;2([0; L]; C d). We consider a discretization by

piecewise linear �nite elements, leading to matrix eigenvalue

problems:

A(kk) � f(kk) = E(kk)B � f(kk)

with A complex and selfadjoint, B real, symmetric and postive

de�nite.

This �nite element discretization acts as a regularization of

the problem in the sense mentioned above. Thus the eigen-

value curves E(kk) of the matrix family fA(kk)g doesn't ex-

plode in the �nite kk-plane. The family fA(kk)g has asymp-

totically the same spectral properties as Hkk
j
L
2 [1].

Block structure of the matrix A:
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N is the number of grid points.

Questions

� Continuation methods for E(kk) and f(kk)?

� Speci�cally adapted eigenvalue solvers (e.g. point-

blockorientied iterative methods)?
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