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Abstract

We present a new bidiagonalization technique which is competitive with the standard

bidiagonalization method and analyse the numerical accuracy of such technique. We show

that, for some matrices, our algorithm produces singular values with low relative errors.

1 Introduction

In [10] we proposed a new algorithm for reducing a rectangular matrix A to bidiagonal form

from where the singular values of A can be computed iteratively using the classical method due

to Golub and Kahan or any of the alternative algorithms given in [6], [9] and [12]. In [13] we

presented results of numerical tests carried out on a CRAY Y-MP EL and compared the speed

of our code (in Fortran77) to the speed of: the CRAY's library module for SVD, the NAG's

routine where R-bidiagonalization as proposed in [4] is implemented, and the LAPACK's routine;

these results have shown that our algorithm is very competitive in terms of performance and we

claimed that it is a serious alternative for computing the singular values of large matrices.

However, at the time we had not fully understood the behaviour of our method for matrices with

very small singular values, more precisely we were not able to explain the errors in the smallest

singular values of almost rank de�cient matrices. We have done signi�cant progress in this matter

since we have identi�ed the cause of such errors and know how to improve the original method

in order to produce accurate small singular values. Furthermore, we found that for matrices

A = DX where D is diagonal and X is well conditioned, our bidiagonalization scheme, just like

the one-sided Jacobi algorithm, produces singular values with low relative errors.

2 A new bidiagonalization method

Our bidiagonalization strategy consists of two stages. In the �rst one (dubbed \triorthogona-

lization") we perform n� 2 Householder transformations

Ar := Ar�1Hr; r = 1; � � � ; n� 2 (1)

where A0 represents the initial m-by-n matrix A. The basic idea is to select the appropriate

Householder matrices Hr in (1) such that the resulting rectangular matrix An�2 is \triorthogo-

nal", i.e. the columns ai of An�2 satisfy

aT
i
aj = 0 for ji� jj > 1 (2)

Noting that (2) is equivalent to say that the n-by-n symmetric matrix AT

n�2An�2 is tri-

diagonal, we conclude that to produce in (1) a rectangular \triorthogonal" matrix, we just need

to use the Householder matrices that, if applied on both sides of the symmetric matrix ATA;
would produce a similar tridiagonal form T in the well-known reduction

T := Hn�2 � � �H1

�
ATA

�
H1 � � �Hn�2 = (AH1 � � �Hn�2)

T
(AH1 � � �Hn�2) (3)
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In the rth step, the computation of the Householder matrix Hr requires only the n� r last
elements of the rth column of AT

r�1Ar�1; since we do not have this product explicitly formed,

we just need to compute the n� r dot products with the appropriate columns of Ar�1.

The second stage of our algorithm is a variant of the modi�ed Gram-Schmidt orthogo-

nalization method (MGS ) and produces an upper bidiagonal matrix B in the decomposition

An�2 = QB, where Q is orthogonal. Such decomposition requires only O(mn) flops since

the property (2) holds. In the following we will refer to the procedure that implements this

decomposition as TRIMGS.

3 Accuracy of the singular values of An�2

Since the reduction of the initial matrix to \triorthogonal" form involves n � 2 Householder

transformations, we can expect the process to be numerically stable. In fact, we have, with �
being the machine precision,

Theorem 1 The \triorthogonalization" algorithm is backward stable, i.e. for the computed \tri-

orthogonal" matrix eAn�2 := A eH1
eH2 � � � eHn�2; we have

eAn�2 = (A+E)H1H2 � � �Hn�2; with kEk2 = (n� 2):O(�): kAk2 (4)

Proof. To prove this result, we simply need to adapt the proof given in [14], p. 124, for a

sequence of orthogonal transformations applied to both sides of A

From (4) we conclude, using a well-kown perturbation theorem, that the singular values e�i
of the \triorthogonal" matrix eAn�2 are close to the singular values �i of A; in the sense that

j�i � e�ij � (n� 2):O(�): kAk2 (5)

holds for i = 1; � � � ; n. This is a satisfactory error bound for large singular values (those near

kAk2) since most of the computed digits of e�i will coincide with the correct ones. However, such

bound is not so good for singular values much smaller than kAk2 which may exhibit very large

relative errors. It is known that the one-sided Jacobi method can compute all singular values to

high relative accuracy for matrices A = DX , where D is diagonal and X is well-conditioned (see

[14], pp.250-251). The relative errors in the singular values b�i of the matrix bG obtained from A
with post-multiplication of m successive Givens rotations, satisfy the following bound

j�i � b�ij
�i

� O(m")�2(X) (6)

Interestingly, the proof of this result can be adapted to our \triorthogonalization" method, since

it can be shown that such proof, given in [14], can be extended to any one-sided orthogonal

transformation. Therefore, the bound (6) holds, with m = n � 2, for the singular values of the

\triorthogonal" matrix eAn�2.

4 Loss of orthogonality and errors

In practice, we have experienced that very small singular values of the bidiagonal form produced

with our method, let us call it ORTHOGSVD, may exhibit large absolute errors. Is this because

we are using MGS that is known to produce a matrix which may be far from orthogonal in the

case of ill-conditioned matrices? Since Bj�orck has shown [8] that MGS produces a triangular

matrix which is numerically as good as that from the Householder QR factorization,we conclude

that the singular values of the triangular matrix are close to those of the initial matrix. How-

ever, our procedure TRIMGS builds an upper bidiagonal form, assuming that a complete QR

decomposition would produce a triangular matrix R with negligible elements rij ; for j > i + 1.

Unfortunately, we can not guarantee this, in general, since for ill-conditioned matrices there
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may appear large jrij j above the bidiagonal form; for instance, for the \triorthogonal" matrix

obtained from the Hilbert matrix of order n = 11; the last four columns of R are given in Table

1:

� � � �2:7493e� 17 4:4252e� 18 �5:9938e� 18 1:1687e� 17

� � � �7:3356e� 17 1:3068e� 17 �1:8988e� 17 3:7100e� 17

� � � 2:9805e� 16 �5:3282e� 17 7:8085e� 17 �1:5086e� 16

� � � 1:3420e� 15 �2:3995e� 16 3:5153e� 16 �6:7919e� 16

� � � �6:7391e� 15 1:2050e� 15 �1:7654e� 15 3:4108e� 15

� � � 3:8096e� 14 �6:8119e� 15 9:9794e� 15 �1:9281e� 14

� � � �4:0374e� 08 4:3893e� 14 �6:4303e� 14 1:2424e� 13

5:3952e� 09 7:4512e� 10 �4:8120e� 13 9:2972e� 13

8:3168e� 11 �2:8831e� 12 �8:3296e� 12

3:0252e� 13 7:2449e� 13

8:8244e� 15

Table 1: Last four columns of R produced by the MGS method applied to the \triorthogonal"

matrix obtained from the Hilbert matrix of order n = 11.

We notice that there are elements above the upper bidiagonal form of absolute value as large

as 10�12 and 10�13, therefore errors of this size may a�ect the singular values of the bidiagonal

form produced with TRIMGS. This actually happens since the two smallest singular values

computed with ORTHOGSVD are 5:7089e� 013 and 8:4136e� 012 whereas the correct values,

with �ve signi�cant digits, are 3:3932e� 015 and 7:8071e� 013:

The problem is that two columns, say a
(1)
i

and a
(1)
j
, of An�2 may be far from orthogonal,

even if a
(1)T

i
a
(1)

j
� �, when at least one of the norms jja(1)

i
jj or jja(1)

j
jj is very small; in other

words, An�2 is truly \triorthogonal", to working precision, only if the quantities

c
(1)

ij
:=

a
(1)T

i
a
(1)
j

jja(1)
i
jj jja(1)

j
jj

(7)

are close to the machine precision �, for j > i+ 1.

We have investigated how large values jc(1)
ij
j introduce important errors in the bidiagonal

form produced with TRIMGS. For the elements r1j of the �rst row of R we have

r1j := jja(1)
j
jj:c(1)1j ; j = 2; :::; n (8)

Therefore, jr1j j can be much smaller than jc(1)1j j provided jja
(1)

j
jj is small, i.e. loss of orthogonality

of the columns a
(1)
j
, j > 2; relatively to the �rst column a

(1)
1 , is harmless to the accuracy of the

computed R since such loss of accuracy occurs gradually with decreasing jja(1)
j
jj. For this reason,

we expect to have in all cases

jr1j j � kAk �, j = 3; :::; n (9)

Representing by a
(j)
i

the ith column of the matrix under transformation, after making it

orthogonal to qj�1, we have proved that, for each j = 3; � � � ; n

jrij j t jri�1;j j
jja(i�1)

i
jj

jja(i)
i
jj

; i = 2; � � � ; j � 2 (10)

This gives an estimate of the growth of the size of the elements r2;j ; � � � rj�2;j in the jth
column of R , starting with r1j : In practical tests, we found this estimate to be quite accurate.
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5 Reorthogonalization of columns

From the analysis carried out in the previous section, it becomes clear that for the bidiagonal

form produced with TRIMGS to have accurate singular values, the elements rij have to be

negligible, for j = 3; � � � ; n and i = 1; � � � ; j � 2: This will happen if An�2 is \triorthogonal"

to working precision and in some cases this may require reorthogonalization of the columns of

An�2; i.e. we apply the same procedure twice, the �rst time to produce An�2 and the second

time to improve the \triorthogonality" of this matrix.

Having completed this procedure with the Hilbert matrix of order n = 11; the MGS method

applied to the resulting \triorthogonal" matrix produces an upper triangular matrix whose last

four columns are given in Table 2:

� � � �5:9847e� 025 8:3919e� 027 4:3511e� 030 �6:2775e� 029

� � � �1:2327e� 024 1:5856e� 026 1:6832e� 028 �1:6234e� 028

� � � �2:8172e� 024 7:6665e� 026 �8:9748e� 028 2:4253e� 028

� � � �7:6227e� 024 �6:5261e� 026 �4:6777e� 027 1:1409e� 027

� � � 4:5097e� 023 �2:8395e� 025 2:4386e� 026 �5:8864e� 027

� � � �2:4042e� 022 1:3565e� 024 �1:3398e� 025 3:4580e� 026

� � � 4:0374e� 008 �8:7048e� 024 8:7033e� 025 �2:1923e� 025

5:3952e� 009 7:4513e� 010 6:5099e� 024 �1:6409e� 024

8:3159e� 011 �8:8968e� 012 1:4707e� 023

7:8320e� 013 5:6476e� 014

3:4089e� 015

Table 2: Last four columns of R produced by the MGS method applied to the triorthogonal

matrix (with reorthogonalization) obtained from the Hilbert matrix of order n = 11.

These values are to be compared with those given in Table 1 and show that the elements rij
above the bidiagonal form are negligible. Therefore, we expect the bidiagonal form computed

with the procedure TRIMGS to be accurate (in fact, its elements coincide with those of the

corresponding diagonals of R up to the machine precisison).

Of course, the use of reorthogonalization doubles the arithmetic complexity of the process of

producing a \triorthogonal" matrix. We have not devised so far an efective sheme to implement

selective reorthogonalization in this procedure. It must be stressed out that not all ill-conditioned

matrices require the use of reorthogonalization. In the next section we give some examples of

such matrices.

6 Numerical results

In this section we discuss the numerical results obtained with our procedure in the case of selected

matrices.

� Lauchli matrices

A Lauchli matrix is a (n+ 1)� n matrix of the type

L(n; �) =

2
66666664

1 1 1 � � � 1

�
�

�
. . .

�

3
77777775

The singular values of L(n; �) are �1 = � , of multiplicity n� 1, and �2 =
p
n+ �2. For small

values of �, L(n; �) is ill-conditioned, therefore we are interested in testing ORTHOGSVD for
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matrices of this type. We found that, in most cases, the method produces singular values with

very low relative errors, even for very small values �. For instance, with � =
p
� almost all

singular values exhibit a relative error of the order of magnitude of �; although for certain sizes

n; one of the singular values is a�ected by a larger relative error. In Table 3, the maximum

relative error produced with ORTHOGSVD is shown for some values n: With � = �; again all

but one of the singular values have relative errors close to � but one singular value exhibits a

very large relative error, even for small sizes n: For instance, for n = 7; we get one singular value
equal to 5:4390e� 016 which has not a single signi�cant digit correct, since � t 2:2204e� 016.

The gain in accuracy due to the use of reorthogonalization is dramatic in the case of � = �; as
it can be appreciated in Table 4. From Table 3, we can also conclude that ORTHOGSVD with

reorthogonalization is more accurate than the procedure svd of Matlab (for � = � the relative

errors of the singular values produced with svd are essentially the same as for � =
p
�).

n 50 100 200 300 400 500

(a) 5.5e-16 2.4e-15 4.9e-14 8.2e-15 3.9e-13 2.2e-13

max
j�i�e�ij

�i
(b) 8.8e-16 1.5e-15 1.8e-15 1.8e-15 2.8e-15 2.7e-15

(c) 4.2e-15 7.4e-15 2.0e-14 5.9e-14 6.3e-14 1.4e-13

Table 3: Maximum relative error in the singular values of L(n;
p
�), computed with

ORTHOGSV D, with (a) and without reorthogonalization (b) and with the function svd of

Matlab (c).

n 50 100 200 300 400 500

max
j�i�e�ij

�i
(a) 5.5e-16 4.0e+00 2.0e+01 7.6e+00 5.8e+01 4.3e+01

(b) 8.8e-16 1.2e-15 1.7e-15 2.2e-15 2.1e-15 2.7e-15

Table 4: Maximum relative error in the singular values of L(n; �), computed with ORTHOGSVD,

without (a) and with reorthogonalization (b).

6.1 Random matrices produced with RANDSVD

The Matlab's function randsvd [7] generates a random matrix with pre-assigned singular values.

Used in the form A = randsvd(n; k; 1), it produces a square matrix of order n, with a single

singular value equal to one and n � 1 singular values equal to 1=k: In Table 5 the maximum

absolute error in the smallest n � 1 singular values of matrices of this type, produced with

k = 107; is given (with k = 1015; we obtained similar absolute errors).

n 50 100 200 300 400 500

max
2�i�n

j�i � e�ij (a) 5.5e-17 4.4e-17 4.3e-17 4.1e-17 4.2e-17 4.2e-17

(b) 5.5e-17 5.9e-17 6.8e-17 5.3e-17 5.5e-17 8.9e-17

Table 5: Maximum absolute error in the smallest n�1 singular values of A = randsvd(n; 107; 1),
computed with ORTHOGSVD, without reorthogonalization (a), and with the function svd of

Matlab (b).

6.2 A=DX

Finally, we consider the example used in [14], pp. 252-253, to illustrate the hability of the one-

sided Jacobi algorithm to compute the singular values of A with small relative errors, according

to (6), when A = DX , where D is diagonal and X is well-conditioned. The matrix

G �

2
664
� 1 1 1

� � 0 0

� 0 � 0

� 0 0 �

3
775
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with � = 10�20; has the singular values (to at least 16 digits)
p
3,
p
3�, �, �: As shown by

Demmel, the classical reduction to bidiagonal form produces a matrix whose three smallest

singular values are very inaccurate approximations of the true values. In constrast, the one-

sided Jacobi method produces accurate singular values. We now show, that in the case of this

matrix our method also produces very accurate singular values. A straightforward Matlab's

implementation of our method applied to matrix G produces a matrix B which has the following

singular values (computed with MAPLE using 30 decimal digits arithmetic)

�1 = 1: 732 050 807 568 877 270 145 585

�2 = 1: 732 050 807 568 877 316 909 308� 10�20

�3 = 9: 999 999 999 999 996 710 898 576� 10�21

�4 = 9: 999 999 999 999 995 289 101 424� 10�21

which coincide with
p
3,
p
3�, �, �, respectively, to at least 16 decimal digits.
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