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Zusammenfassung

Die Abschlussarbeit folgt der Implementierung und Evaluation eines Algorithmus
zum Finden einer zulässigen Menge von Argumenten in einem Argumentationssys-
tem. Dieser Algorithmus basiert auf einem Random Walker, der den Argumenten
Label zuordnet. Die Zuordnung ist dabei abhängig vom Pfad, den der Random Wal-
ker zum aktuellen Argument nahm als auch der Elternknoten dieses Arguments.
Zusätzlich beschreibt die Abschlussarbeit einen Vergleich mit anderen Solvern, eine
Analyse von Zeit- und Raumkomplexität und einen Korrektheitsbeweis des Algo-
rithmus.

Abstract

This thesis will follow the implementation and analysis of an algorithm for finding
an admissible set in an argumentation framework. The algorithm is based on a
random walker assigning labels to arguments. The assignment is dependent on the
path the walker took towards its current location as well as the neighborhood of
the current argument. Additionally, the thesis provides a comparison of different
solvers, analyses of space and time complexity and a proof of correctness.
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1 Introduction and motivation

The following sections give a short overview of formal argumentation and continue
with the motivation of this thesis.

1.1 Introduction to formal argumentation

In contrast to currently more popular approaches to artificial intelligence, like arti-
ficial neural networks and various other machine learning methods, formal argu-
mentation tries to explicitly model knowledge. Because if this explicitly encoded
knowledge, formal argumentation belongs to the category of knowledge-based sys-
tems [6]. If explainability is an important requirement, formal argumentation can be
a better choice than systems with implicitly encoded knowledge due to a human’s
ability to better understand the arguments and how they relate to each other [8].

In formal argumentation, one possible knowledge base is called an argumentation
framework. An argumentation framework is a directed graph F = (A,R) where the
vertices A represent the arguments themselves, and the edges R between them por-
tray the relationship of one argument attacking another. Intuitively, Dung describes
the attack mechanism as "[t]he one who has the last word laughs best" [14, p. 1].
This means that a statement can be considered as valid as long as there are no other
arguments attacking it, or all of those arguments can be dismantled by attacks on
themselves.

Argumentation frameworks also have a graphical representation. An edge point-
ing from node a to node b means "argument a attacks argument b". For example, the

a b

c

Figure 1: a attacks b and c.

argumentation frameworkF = (A,R) in figure 1 is made of three nodesA = {a, b, c}
and two directed edges R = {(a, b), (a, c)} using the notation (x, y) ∈ R⇔ x→ y.

From this point of view, one can identify arguments which are acceptable. An
acceptable argument is either not attacked or it is defended against every attack
on itself. A set of acceptable arguments is an admissible set. Thus, an acceptable
argument is one which is not attacked by any unattacked arguments. Based on
this approach one can calculate admissible sets of arguments for an argumentation
framework F which, according to Dung [14], must fulfil two conditions listed in [4,
p. 23]:

1



1. The set is conflict-free. No arguments that are contained in the set attacks
another argument in the set.

2. For every argument within the set that is attacked from the outside, the set
must contain an argument that attacks the attacking argument (i.e. every at-
tacked argument gets defended from within the set).

Taking a look at figure 1, both b and c are attacked by argument a. Therefore, b and c
are not acceptable arguments and an admissible setE ⊆ A does not contain them. In
contrast to that, a does not have any attackers. Hence, a set of admissible arguments
is E = {a}.

Based on the concept of the admissible set, one can calculate the extension of an
argumentation framework. To decide whether a single argument or a set of argu-
ments is acceptable, Dung [14, pp. 2] describes multiple ways of computing sets
of "arguments that are justifiable as a whole" [30, p. 1] (extensions) based on an
understanding of what attributes this group is supposed to have (argumentation
semantics). Examples of such extensions and their semantics are:

• E is a complete extension iff it is an admissible set and every argument de-
fended by the set is contained in the set [4, p. 178].

• E is a preferred extension iff it is the largest possible admissible set in the
argumentation framework [4, p. 183].

• E is a stable extension iff it attacks any argument that does not belong to E
[14, p. 2].

1.2 Motivation

These extensions have to be computed, and there are two common approaches to
do so. One approach is reduction-based [7, pp. 2626] and the other is a direct
implementation [7, p. 2638]. Reduction-based methods try to translate the ar-
gumentation problem into another problem class for which there are already ad-
vanced solvers (e.g. constraint-satisfaction problems CSP). The direct approach cre-
ates an algorithm to solve an argumentation problem under a specific semantics.
Labeling-based approaches are a common implementation. Here, each argument
from A gets a assigned a labeling x ∈ Λ = {in,out,undec} meaning that the
assignee is accepted, rejected or undecided. Labels get assigned via a total func-
tion Lab : A 7→ Λ. Using the expression in(Lab),out(Lab),undec(Lab) ⊆ A
one can express the sets of all arguments labeled in, out or undec. To show
which arguments belong to which labeling, one can also use the notation Lab =
(in(Lab),out(Lab),undec(Lab)). Also, depending on the algorithm, the number
and and kinds of labels can vary.

Such algorithms can be fully deterministic (e.g. enumeration [7, pp. 2638]) or
make use of randomization. [30] introduces such algorithm in the form of stochastic
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local search to find a stable extension. In terms of labels a stable extension is given
if the argumentation framework is labeled such that undec(Lab) = ∅ [30, p. 3].
Similarly, this thesis will try to formulate, implement and analyze an algorithm that
tries to find an admissible set to base an extension on in a given argumentation
framework.
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2 The algorithm

This section starts with an intuitive description of the algorithm, continues a with a
formalization and ends with on an example to apply the algorithm to.

2.1 Algorithm outline

The algorithm’s basic idea for deciding whether an argument a belongs to an ad-
missible set is as follows:

• Input: An argumentation framework F = (A,R) and an initial argument a ∈
A where the first random walker will start.

• Output: An admissible set E ⊆ A with a ∈ E or NO if no such admissible set
was found.

In the beginning, every argument gets labelled undec and the set of random walk-
ers is empty W = ∅. A random walker W0 [22] spawns at the initial argument a ∈ A
which gets labeled Lab(a) = in ∈ Λ. Also, the walker is added to the set of all
random walkers W := W ∪ {W0}. From this point on, the algorithm cycles through
all available random walkers Wi ∈ W , each of which will behave in the following
manner when arriving at or being set to an argument b ∈ A. First, b’s parent nodes
Pb := {p ∈ A | p→ b} have to be considered.

• In case Lab(b) = in, a random walker Wj will be set onto any p ∈ Pb which
is not labeled out. Label these p ∈ Pb out. Terminate the random walker Wi

that currently occupies b which means that the set of random walkers should
be W := (W \ {Wi}) ∪ {Wj} for every newly created Wj .

• If Lab(b) = out and if there is any parent p ∈ Pb such that Lab(p) = in, then
Wi is terminated. Otherwise, Wi moves to a randomly drawn p ∈ Pb by means
of a uniform distribution and labels it in. If there is no parent available, the
walker will also be terminated.

• The case Lab(b) = undec does not have to be considered because everytime
a walker is set onto an argument the argument gets labeled in or out before-
hand as the random walkers moves there or is created.

These steps repeat as long as W contains a random walker. If the set W is empty,
the algorithm will return in(Lab).

Since the random walkers only move in the direction of the parent arguments,
there still remains the problem of how to transmit the label change information to
its child arguments. An argument can either be labeled in or out.

• If an argument gets labeled out, then all of its children will be in dependent
on the children’s other parents also being labeled out.
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• If an argument gets labeled in, then all children will be labeled out with the
condition that all of the child’s parents are labeled in.

If an argument has its label changed, its child arguments will be labeled the oppo-
site label (only considering in and out) and their child arguments will, in turn, be
labeled with the opposite labels of their parents with the same condition that all
other parents need to have the same label as well. This cascade flows along labeling
the arguments alternatingly until the conditions for child labeling are not met or the
cascade encounters a which is not supposed to be relabeled.

2.2 Formal description of the algorithm

In order to better understand the whole algorithm and make parts of it reusable,
it is broken up into four parts. Algorithm 1 describes the main framework of the
overall algorithm. It is easy to overview that it iterates over the random walkers
present in W and behaves differently according to the argument label the walker
is currently placed on. This behavior is characterized in algorithms 2 and 3. Both,
in turn, take advantage of the children labeling algorithm 4, which is encapsulated
independently to be reusable.

Algorithm 1 The algorithm for finding an admissible set from an argumentation
framework F = (A,R) and a starting argument a ∈ A.

1: procedure FINDADMISSIBLESET(F , a)
2: W ← {W0}
3: place W0 onto a
4: Lab(a)← in
5:
6: for Wi ∈W do
7: x← the node Wi is placed on
8:
9: if Lab(x) = in then

10: HANDLEWALKERSETONINARGUMENT(x, Wi) . See algorithm 2.
11:
12: else if Lab(x) = out then
13: HANDLEWALKERSETONOUTARGUMENT(x, Wi) . See algorithm 3.
14:
15: return in(Lab)

2.3 An example

The argumentation framework shown in figure 2 has multiple features to better un-
derstand the algorithm in an example. First, there is a cycle which consists of the
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Algorithm 2 Algorithm that defines the behavior of a walker that is set onto an
argument a labeled in.

1: procedure HANDLEWALKERSETONINARGUMENT(a ∈ A, Wi ∈W )
2: Pa ← {p ∈ A | p→ a}
3:
4: for p ∈ {p ∈ Pa | Lab(p) 6= out} do
5: Lab(p)← out
6: LABELCHILDREN(p, out) . See algorithm 4
7: create a new Wj and place it onto p.
8: W ←W ∪ {Wj}
9:

10: terminate Wi

11: W ←W \ {Wi}

Algorithm 3 Algorithm that defines the behavior of a walker that is set onto an
argument a labeled out.

1: procedure HANDLEWALKERSETONOUTARGUMENT(a ∈ A, Wi ∈W )
2: Pa ← {p ∈ A | p→ a}
3:
4: for p ∈ Pa do
5: if Lab(p) = in then
6: terminate Wi

7: W ←W \ {Wi}
8: return
9:

10: prandom ← randomly select with equal distribution from Pa

11: Lab(prandom)← in
12: LABELCHILDREN(prandom,in) . See algorithm 4.
13: move Wi to prandom
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Algorithm 4 Algorithm for labeling the children of a ∈ Awith the a’s label label ∈
(Λ \ {undec}) and also appropriatly label the following children.

1: procedure LABELCHILDREN(a, label) . Not recursive due to memory limit.
2: Ca ← {c ∈ A | a→ c}
3: toBeLabeledQueue← initialize queue with Ca

4: dispatchingParentsQueue← initialize queue with |Ca| times a
5:
6: while toBeLabeledQueue is not empty do
7: x← dequeue argument from toBeLabeledQueue
8: p← dequeue argument from dispatchingParentsQueue
9:

10: if all of x’s parents have the same label Lab(p) then
11: if Lab(p) = in then
12: Lab(x)← out
13:
14: else if Lab(p) = out then
15: Lab(x)← in

16:
17: Cx ← {c ∈ A | x→ c ∧ Lab(c) = undec}
18: enqueue Cx to toBeLabeledQueue
19: enqueue |Cx| times x to dispatchingParentsQueue

arguments a → b → c → d → a. Another important aspect of the graph are argu-
ments which are only connected to either their children arguments or their parent
arguments. For example, the nodes f and g are only connected to children and the
nodes i and k are connected to the rest of the argumentation framework through h
and j.

The starting state is illustrated in figure 2. The argument a ∈ A was passed as
the start argument into the algorithm which is why the random walker W0 spawns
there. a’s parent arguments e and d are both labeled undec while a is labeled in.
Hence, two random walkers W1,W2 ∈ W are set onto e and d labeling them out
while W0 is terminated. a also has child arguments h and b which must be informed
about a’s label change. Because of that, child arguments and their children alter-
natingly get labeled out and in following their children relationships. None of the
arguments which get labeled out have undec-labeled parents which is why this la-
beling is permitted. h and k get the label out and j as well as i get the label in. The
same happens to b and c which are labeled in and out respectively. The process is
stopped by d since it has f as a parent still labeled undec.

In the next iteration displayed figure 3, the random walker W2 is executed first.
Since the walker is situated on an argument labeled out and the in-labeled argu-
ment c is attacking it, W2 is terminated. Next, W1 is executed again. It has no
in-labeled arguments attacking it, which is why a parent node is randomly chosen.
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a

in

W0

b

undec

c

undec

d

undec

e

undec

f

undec

g

undec

h

undec

i

undec

j

undec

k

undec

Figure 2: State at the start of the algorithm. The current labels are placed below
every argument and the random walker, if present, above.

In this case, W1 moves to argument f and labels it in.
Afterwards, W1 cannot reach any parent arguments and gets terminated, which

causes W to be empty. Finally, the algorithm outputs in(Lab) = {a, c, f, i, j} as an
admissible set.

2.4 Limitations

During unit and integration testing, two major shortcomings of the program become
apparent. It is unable to process graphs where the random walkers enter unlabeled
uneven cycles on the one hand. On the other hand, child labeling can obstruct ran-
dom walkers and lead finding smaller than possible admissible sets.

2.4.1 Uneven cycles

A small example of an argumentation framework with an uneven cycle is shown in
figure 5 to demonstrate how the algorithm does not terminate in case of an uneven
cycle. On the left hand side, one can see the state at the start of the algorithm. The
first random walker is placed onto the start argument a which gets labeled in. This
causes a’s child arguments to be labeled according to algorithm 4 which is why b
gets labeled out and c gets labeled in. In the first iteration, W0 is terminated and
spawns new random walkers onto any parent not labeled out. In this case, the only
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a

in

b

out

c

in

d

out

W2

e

out

W1

f

undec

g

undec

h

out

i

in

j

in

k

out

Figure 3: State at the beginning of the second iteration after W0 was set onto a.

argument that fits the description is b. It is labeled out and the child labeling does
not change anything because a is already labeled in. The state of the graph at this
stage can be seen in figure 5 on the right hand side. The next iteration starts and
according to algorithm 3, the random walker W1 moves to b and labels it in. This
state is displayed in figure 6 on the left hand side. The following state, which can be
found in the same figure on the right hand side, emerges from W1 being terminated
and spawning W2 onto a. Now, one can see that the labeling is in a similar situation
to the on in figure 5 on the right hand side. a does not have a parent labeled in
which is why the walkers will continue to cycle through the graph. That causes the
algorithm to never terminate because at any time a random walker will be present
in W .

This is the case for all uneven cycles because uneven cycles necessitate that two
neighboring arguments are labeled the same if the only labels available are in and
out.

2.4.2 Premature child labeling in even cycles

An example of this happening in the implementation can be found in the prema-
tureChildLabeling test in the integration tests. Figure 7 shows how any walker
being placed in an even cycle, for example on a, causes b and c to be labeled out and
in respectively. This situation can be seen on the left side of graphs shown in figure
7. It follows that W0 spawns a new walker W1 on argument d and labels the argu-
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a

in

b

out

c

in

d

out

e

out

f

in

W1

g

undec

h

out

i

in

j

in

k

out

Figure 4: State at the beginning of iteration 2.

a

in

W0

b

out

c

in

a

in

b

out

c

out

W1

Figure 5: The state at the beginning of the algorithm is displayed on the left side
and the state at the end of the first iteration on the right. It shows how the
algorithm cannot terminate due to two same-labeled arguments always
being placed next to each other.

ment out. In turn, this situation can be observed in figure 7. W1 then terminates
according to algorithm 3 because c is labeled in. Without child labeling, the walker
W1 would have the possibility to visit argument e and thus label it in. Because of
this, e will always be excluded from being part of an admissible set and limits the
possible admissible sets that the algorithm can return.
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a

in

b

in

W1

c

out

a

out

W2

b

in

c

out

Figure 6: The images show the cycling of the algorithm because of an uneven cycle.
The state at the end of iteration three is displayed on the left and the end
of iteration four on the right.

a

in

W0

b

out

c

in

d

undec

e

undec

a

in

b

out

c

in

d

out

W1

e

undec

Figure 7: The left graph shows how the arguments will be labeled once an argument
is placed on a. The right side shows how d will be labeled in the following
iteration of the algorithm.

11



3 Evaluation and analysis

Within this section, the evaluation of the solver is done in comparison to other
solvers. Moreover, it provides analyses of the performance and correctness of the
algorithm. All graphs within this section were created using the Python library
Matplotlib [32, 19], Pandas [23] and NumPy [18].

3.1 Comparison to different solvers

The following sections give an overview of the setup and results of the comparison
to other solvers.

3.1.1 Comparison solver setup

Three other solvers are included in the comparison. The first one is Pyglaf, which
was submitted to ICCMA’19 [1]. It is implemented via "Python and uses Circum-
scriptino" [1, p. 1] which is a SAT solver. This means that the solver reduces the
graph and problem in a way that it can be solved by mapping it to a SAT prob-
lem. Pyglaf supports "[a]ll problems from ICCMA’17" [1, p. 1] and accepts graphs
encoded as TGF as well as APX. In the comparison, Pyglaf is used solving the prob-
lems of whether an argument credulously belongs to a complete extension (DC-CO)
and whether it belongs to a preferred extension (DC-PR). Both can be compared to
a solver meant for solving the same task for admissible sets because every complete
or preferred extension is also an admissible set. This is possible since the definitions
of both extensions are the definitions of an admissible set with additional require-
ments ([14, p. 178] and [4, p. 85]). Hence, every argument that Pyglaf points out as
belonging to a complete or preferred extensions must also belong to an admissible
set.

The next solver is µ-toksia submitted to ICCMA’19 [26]. µ-toksia is able to solve
"all dynamic tasks as well as all classical tasks" [26, p. 2] and accepts TGF and APX
files. Although it is able to solve more problems than DC-CO, only DC-CO is ana-
lyzed. This solver is also implemented by reducing the tasks to SAT problems. Both,
Pyglaf and µ-toksia use Glucose [3] as the core engine for solving SAT problems.

The last solver is Heureka, which was submitted to ICCMA’17 [17]. It is able
to solve problems related to "complete, grounded, preferred and stable" [17, p. 1]
extensions. It is written in C++ and solves problems by "dynamically (re-)order[ing]
the arguments in order to minimize backtracking steps". In the evaluation, it solved
the DC-CO problem.

It is important to keep in mind that performance does not only rely on the imple-
mentation but also the programming language the solver is implemented in. Many
programming languages are inherently faster than others if tested on the same tasks
[28, p. 37]. This means that performance differences in speed may not purely stem
from the difference in the approach to solving the problems.
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The test was executed by using the provided Docker images [24] or packaging a
given solver into a Docker image if none are available online.

From each of the graphs, all argument names were extracted. Each of those ar-
guments were evaluated whether they belong to an admissible set (complete exten-
sion, preferred extension) and the result (either YES, NO or timeout) is recorded.
Additionally to recording the result, the run time length is also saved by wrapping
the Docker entrypoint in the Bash time command. This command provides infor-
mation on how long a program ran in real, user and system time. All statistics to
do with run time length use the real time that the command returns. To prevent
outliers in single runs to dominate the data, every argument in every graph is used
as an input to each solver three times. This way, run time lengths can be averaged
and timeouts which occured in single runs may be mitigated.

The machine all tests are evaluated on has an Intel Core i7-6600U CPU with a
clock speed of 2.60 GHz and four cores as well as 16 Gigabytes of RAM. The oper-
ating system is Ubuntu 20.04. Timeouts are enforced with the Bash timeout com-
mand as well as periodically polling the currently running Docker containers and
terminating every container that reached the timeout limit of five minutes.

3.1.2 Example data setup

Figure 8: The image shows the histogram of the number of arguments (left) and
edges (right) of a graph-argument combinations i.e. how many arguments
there are in a graph of a certain size. Each of these combinations was eval-
uated three times by each solver.

The chosen test cases are the first ICCMA’15 benchmark set1 [31] and the IC-
CMA’17 example instances 2 [16]. Due to severe time restrictions, all instances with

1The download link is placed in the section "Running your solver" on the website https://
argumentationcompetition.org/2015/rules.html.

2The download link can be found in the section "Solver Requirements" on the website https://
argumentationcompetition.org/2017/participation.html.

13

https://argumentationcompetition.org/2015/rules.html
https://argumentationcompetition.org/2015/rules.html
https://argumentationcompetition.org/2017/participation.html
https://argumentationcompetition.org/2017/participation.html


1000 or more arguments were not evaluated. That means that the data set consists of
85 graphs which contain a range of 20 and 202 arguments and between 72 and 8040
edges. The figure 8 shows how the graph sizes in terms of arguments and edges are
distributed.

3.1.3 Results

This section answers the following core questions:

1. Did the solver return different results for the same argument in the same graph
on different runs?

2. Does the solver give correct results when compared to a ground truth?

3. How much time does the solver need on average to solve a problem?

Question 1 is important to ask since the random walker implementation contains
elements where the further progress of the program is determined by random ele-
ments. Specifally, the randomness in this implementation can be found in algorithm
3 in line 10 where the walker moves to random not in-labeled parent argument.
This can cause different runs to result in different outputs. Another reason for dif-
fering outputs over multiple runs might be timeouts.

For the random walk reasoner, 97.3 % of all runs returned the same result. From
the remaining 2.7 % that did not, 2.5 % returned a difference in YES/NO outputs
over different runs and the last 0.2 % were different because of timeouts. Pyglaf’s
outputs are always consistent over all runs. For both problems, DC-CO and DC-PR,
all three runs return the same values. In µ-toksia’s case, 99.6 % of all cases yield
the same output. The other 0.04 % were different due to timeouts. Heureka is in a
similar situation to µ-toksia: 98.9 % of all runs yield the same result. The rest did
not because of timeouts.

For question 2, one has to specify a ground truth first. µ-toksia is chosen to be
the ground truth because the solver "consistently outperformed" all problems of the
main track of ICCMA 2019 [27, p. 803]. Also, this analysis looks at the aggregate
over all three runs which is why all the cases were these runs did not result in the
same outputs have to be handled. As a rule, if the runs do not agree on whether an
argument belongs to an admissible set it results in YES, if any of the three results are
YES, otherwise it is NO.

A good way to display how well a solver performed, taking µ-toksia as ground
truth, are confusion maticres. The matrix for the random walk reasoning solver is
shown in table 1 on the left side. 7.9 % of predictions are false negatives and none
of the predictions are false positives. But overall, the solver performs far worse
than the other solvers. Heureka (table 1, right side) and Pyglaf (DC-CO and DC-PR,
table 2) are both able to keep their mispredictions below 1 %. The only metric in
which this solver performs better is the number of false positives. Heureka (table
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Actual
value

Prediction outcome

YES NO

YES
785

12.2 %
504

7.9 %

NO
0

0.0 %
5122

79.9 %

Actual
value

Prediction outcome

YES NO

YES
1243

19.4 %
46

0.7 %

NO
10

0.0 %
5112

79.9 %

Table 1: The confusion matrices for the random walk reasoning solver on the left
and Heureka on the right. For both, µ-toksia’s results serve as ground truth.

1, right side) mispredicts 10 instances whereas the random walk reasoning solver
mispredicted none.

Question 3 is concerned with how long it takes each solver to decide whether an
argument belongs to an extension or not. Since solvers can have ways to cut short
their run time by finding conditions that make it impossible for an argument to
belong to an extension, only instances should be compared where all solvers agree
on whether the argument belongs to an extension. Therefore, figure 9 shows the run
time lengths for all instances where the solvers agree that the arguments belong to
an admissible set. Similarly, figure 10 shows the lengths where solvers agree that
the arguments do not belong to admissible set. Due to technical difficulty, Heureka
cannot join this comparison because the time command in the image only delivers
the value 0.00 for all but very few instances. Since this is unrealistic, Heureka is
excluded from this comparison.

Both figures show a similar situation: µ-toksia is the fastest solver while Pyglaf’s
median run time length is about 0.05 seconds longer. Pyglaf performs about the
same for both problems DC-CO and DC-PR at a median speed of about 0.1 seconds.
The slowest solver is the random walk reasoning solver. In the YES and the NO case
its median lags behind by about 0.15 to 0.2 seconds.

3.1.4 Evaluation limitations

There are three reasons why this solver comparison has limited informative value:

1. The overall number of example instances is small and those instances which
are included have a relatively low number of arguments and edges them-
selves. The decision to limit the number and size of example instances is made
because of time restrictions.

15



Actual
value

Prediction outcome

YES NO

YES
1289

20.1 %
0

0.0 %

NO
0

0.0 %
5122

79.9 %

Actual
value

Prediction outcome

YES NO

YES
1243

19.4 %
46

0.7 %

NO
0

0.0 %
5112

79.9 %

Table 2: The confusion matrices for the Pyglaf solver solving the problem DC-CO on
the left and Pyglaf solving DC-PR on the right. For both, µ-toksia’s results
serve as ground truth.

2. It is difficult to compare differences in run time length if the algorithms are
implemented in different programming languages due to performance differ-
ences [28, p. 37].

3. Due to the fact that the Bash time command cannot consistently measure run
time length within the Heureka Docker image, it could not be included in the
comparison of run time lengths.

3.2 Analysis of time and space complexity

This section examines time and space complexity of the overall algorithm by analyz-
ing its components. It starts with the analysis of time complexity and later continues
with the space complexity analysis. Here, A denotes the set of arguments contained
in a graph F = (A,R).

To start with the analysis, one should start at the most essential building blocks
of the algorithm. That is, the behavior based on an argument’s label that a walker
currently resides on. But these parts are both also based on algorithm 4, which
is responsible for labeling information about label changes in the direction of the
children. Therefore, the first procedure to be analyzed can be found in algorithm 4.
Here, lines 3 to 4 add constant time c1 + c2 but line 2 promises that all arguments
possibly have to be iterated over in the worst case, which is why it adds |A| to the
run time. For the loop starting in line 6, one has to assume the worst case which
would be that all |A| arguments have to be labeled starting at the argument a. An
example of an instance that represents such a worst case would be a → a1 → a2 →
· · · → a|A|−1 where labeling a would lead to labeling the rest of the graph using the
child labeling algorithm. Lines 7 to 19 lead to the worst case scenario that the loop
will iterate |A| times, each time executing constant time c2 + · · ·+ c8. In the end, the
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Figure 9: Boxplot of run times for cases with all solvers returning YES. Each of the
785 data points is an average of three runs.

algorithm has a run time complexity of O(|A| + c1 + c2 + (c2 + · · · + c8)|A|) which
is equal to O(c1 + c2 + 2(c2 + · · · + c8)|A|). Dropping all constant summands and
factors leads to a run time of O(|A|).

Algorithm 3 describes the behavior of a walker placed on an out-labeled argu-
ment. The expression in line 2 can lead to iterating through all arguments in the
worst case, i.e. |A| times. Also, the loop spanning lines 4 to 8 can maximally it-
erate |A| times. The loop body contains a check for an if-else-statement and there-
fore adds constant time c1 to each of these iterations. Lines 10 to 13 add constant
time statements c2 + c3 + c4 together with the time of the children labeling algo-
rithm. In the end, this means that this sub-algorithm has a worst case run time of
O(|A|+ c1|A|+ c2 + |A|+ c3 + c4) = O(2c1|A|+ c2 + c3 + c4) = O(|A|).

The next algorithm, algorithm 2, handles the walker behavior in case it is placed
on an argument labeled in. As in the algorithm before, the expression in line 2
cycles through all arguments available in A in the worst case scenario. This means
it adds a run time of |A|. Then, there is a loop that spans lines 4 to 8. Lines 5, 7,
and 8 add constant time c1 + c2 + c3 but line 6 calls the children labeling algorithm
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Figure 10: Boxplot of run times for cases with all solvers returning NO, averaged over
three runs for each of the 3668 data points.

with a run time complexity of O(|A|). This means that the loop creates a run time
complexity of |A|(c1 + c2 + c3 + |A|). And again, lines 10 and 11 follow with the
constant time of c4 + c5. This means that this sub-algorithm runs with a time of
O(|A| + |A|(c1 + c2 + c3 + |A|) + c4 + c5) = O(2|A|(c1 + c2 + c3 + |A|) + c4 + c5),
which, by dropping constant summands and factors, leads to an overall run time of
O(|A|2).

With all sub-algorithms already evaluated, the main algorithm 1 can now be ana-
lyzed. Here, the algorithm starts with three terms in constant time c1 + c2 + c3 from
lines 2 to 4. In line 6, a loop starts that first executes another statement which takes
up constant time c4 in line 7. The loop itself could possibly run through all avail-
able walkers which may be placed on all available |A| arguments. In line 6 to 13, a
decision has to be made about whether to handle an argument labeled in or out.
Since the analysis requires considering the worst case scenario, each iteration al-
ways evaluates line 10 since HANDLEWALKERONINARGUMENT, with a complexity
of O(|A|2), performs worse than HANDLEWALKERONOUTARGUMENT, with a com-
plexity of O(|A|). In the end, line 15 adds a constant time of c5. The overall run time
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complexity of the algorithm is therefore O(c1 + · · · + c3|A|(c4 + |A|2) + c4), which,
by dropping all constant summands and constant factors, becomes O(|A||A|2) =
O(|A|3). Hence, the overall run time complexity of the whole algorithm is O(|A|3).

The analysis of space complexity follows the same principle of first analyzing the
most basic building blocks of the overall algorithm 1. Therefore the analysis starts
at algorithm 4. Here, assuming the worst case, line 1 requires memory space of |A|,
if all arguments have to be saved. The following lines 2 and 3 also add a space
complexity of 2|A| because they are dependent on the worst case scenario of line 1.
The loop starting in line 6 can cause the queues to become as large as |A| − 1. The
total space complexity of this procedure isO(|A|+ |A|+ |A|+(|A|−1)) = O(4|A|−1)
yielding O(|A|) by dropping the constants.

Algorithm 3 starts by saving all of the parent arguments Pa of the input argument
a. In the worst case, this term can become as large as the entirety of all argumentsA.
The following loop does not cause occupation of any memory but rather potentially
frees it. Nevertheless, the loop is assumed to not free any memory because of the
worst case assumption. The last lines do not cause occupation of any memory with
the exception the call of the procedure LABELCHILDREN that occupies memory on
the stack as well as on the heap with a complexity of O(|A|). Overall, this procedure
has a space complexity of O(|A|+ |A|) = O(|A|).

The procedure responsible for handling walkers set on an in-labeled argument
is algorithm 2. It occupies memory space of O(|A|) in the second line similar to
terms found at the beginnings of the other procedures. Due to the call to the child
labeling function in the loop from line 4 to 8, it can occupy up to |A||A|c1 because
of the loop iterating |A| times through all arguments in the worst case. Line 10 will
actually free space c2 which results in a space complexity of O(|A|+ |A||A|c1 + c2) =
O(|A|+ c1|A|2 + c2) = O(|A|2).

All functions are merged in algorithm 1 which starts by adding taking constant
space of c1 in line 2. Afterwards, the worst case branch within the loop (line 10) is
repeatedly executed. Since these functions occupy space temporarily and this space
occupation does not compound with every loop iteration, the total space complexity
of the algorithm stays O(c1 + |A|2) = O(|A|2).

3.3 Proof of correctness

In order to understand the section it is important to know that the algorithm may
be started using a start argument aYES ∈ A that is actually part of an admissible set
E ⊆ A, or a start argument aNO ∈ A that is actually not part of of any admissible
set. Futhermore, one has to know that in the actual implementation, it is acceptable
for the core algorithm 1 to return a non-admissible set since the Admissibility-
Checker (see section 4.2.1) filters these proposals for admissibility. Hence, there is
the need to show that if the start argument is assumed to be an element of an admis-
sible set, the algorithm would return a set in(Lab) that is admissible and otherwise,
if start argument aNO is assumed to not take part in any admissible set, then the
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returned in-labeled arguments in(Lab) cannot possibly be admissible. One more
assumption is that the graph F = (A,R) does not contain any cycles with an un-
even number of arguments and therefore does not cause the algorithm to cycle (see
section 2.4.1).

The following paragraph assumes that the start argument aYES is part of an admis-
sible set. If the algorithm terminates at the beginning of the algorithm and outputs
a set in(Lab) = {aYES}, then the algorithm stopped at a point where aYES either
does not have any parents or the child labeling caused an uneven number of child
arguments to be labeled such that aYES’s parents are attacked. Both scenarios are
coherent with aYES ∈ in(Lab) being admissible. If the algorithm does not stop at
this point, W is not empty yet and there are walkers placed on aYES’s parents. These
get labeled out in the next iteration. If any walker terminates being placed on some
of these arguments, it means they must be attacked by an in-labeled argument. If
any walker stopped at this point without meeting this condition, then aYES could
not be part of an admissible set. That cannot be possible because in order for aYES to
be assumed admissible there cannot be any out-labeled parent arguments of aYES
which remain unattacked. Therefore, at this stage, the algorithm would still have
to return a set in(Lab) which is admissible. Now, the walkers which did not ter-
minate would move to one parent argument of aYES’s parent arguments and label
them in. These walkers are in the same situation as aYES was at the beginning of
the algorithm, hence the same logic can be applied: If a walker terminates being
placed on these arguments, it would be in accordance with the assumption because
this means that aYES’s attackers are attacked because the parent arguments of aYES’s
parent argument are now labeled in. Overall that means that if the start argument
aYES is assumend to be part of an admissible set, the algorithm must return a set of
arguments in(Lab) that is necessarily admissible.

The following paragraph assumes that the start argument aNO is not part of any
admissible set. Here, the algorithm cannot possibly stop at the beginning and re-
turn in(Lab) = {aNO} because there needs to be at least one parent attacking the
start argument aNO. This is because the assumption of aNO does not hold if there are
not any parents attacking it. The first walker being set onto the start argument will
spawn walkers on its parent arguments which will be labeled out. If walkers termi-
nate at this point, it would not violate the assumption of aNO not being part of any
admissible set because the set in(Lab) would contain an attacked argument, aNO,
and in(Lab) could not possibly be admissible. If a walker does not terminate, it will
move to the parent argument of aNO’s parent argument. These arguments are labeled
in. At this moment, the walkers are in the same situation as if they were placed on
the start argument aNO. This means that the walker should not be able to terminate
at this point in the algorithm unless this argument is attacked by an argument with
a parent argument. If this were not the case, then aNO’s parent argument would not
be attacked which means that the assumption of aNO not being part of an admissible
set would not hold. From this point on, one can reason the same way on in-labeled
arguments as the reasoning started with the start argument aNO. Therefore, if the

20



algorithm starts with a start argument which is not part of any admissible set, it will
return a in(Lab) which cannot possibly be admissible.
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4 Implementation

The following sections describe how to use the software and how it is built and
tested.

4.1 Usage

The solver implements the interface described in Bistarelli et al. [5, pp. 7] using Java
[2] and that every other solver used in the evaluation used as well. Executing the
JAR file that includes all dependencies will print the author’s name, the program’s
name and its version to the command line. Also, appending --formats to the com-
mand, as in java -jar random-walk-reasoning.jar --formats will yield
all accepted input formats. Currently, the program only accepts TGF files which
is why [tgf] will be printed. Furthermore, the program gives information about
which problems it can solve.

Since the software is developed to find admissible sets and the solver require-
ments do not provide any abbreviation for admissible sets, the interface will use AD
in its place. Therefore, if the program is called using the --problems flag, it will
return the tasks it is able to solve. These are the tasks [DC-AD, SE-AD, EE-AD].
DC-AD will take a graph and an argument name through different parameters and
decide whether the argument is credulously accepted [13, p. 2] with respect to the
admissible sets that the program was able to find in the run. If the argument is
credulously accepted, the program outputs YES, otherwise NO. The task SE-AD will
also require a start argument to be passed into the program via another parameter.
Instead of outputting YES in case of credulous acceptance, it will output the admis-
sible set the start argument was accepted into in the form of [a1, a2, ..., an].
The task EE-AD will return a list of all unique admissible sets that were found while
cycling through all arguments as start arguments. It does not require passing a start
argument as parameter.

The parameter --file takes the path to the file that contains the graph. Cur-
rently, the program can only be applied to TGF files which is why the parameter
-fo is optional. This parameter is used to identify the file type of the file that the
--file path points to.
-a or --start-arg has to be provided in case the problems DC-AD or SE-AD

are to be solved using the -p flag. Internally, passing and argument name through
-a does not only mean that it should be checked for credulous acceptance, but also
that it serves as the starting argument for the algorithm. This guarantees that an
admissible set containing the start argument is not only found by chance, but that
any possible admissible set must contain the start argument. If the algorithm still
returns NO, this argument does not belong to any possible admissible set. The argu-
ment passed through -a has to be included in the graph contained in the --file
graph.

Additionally, the programm provides the --help flag which will output an ex-
planation of all other options to the command line.
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To build the JAR file, the user first has to navigate into the source code root direc-
tory. Then, execute mvn clean package. This will generate a target/ directory
with the artifact java-implementation-1.0.0-jar-with-
dependencies.jar in it. It can then be executed on an example graph that is
included with the source code like this:

java -jar \
target/java-implementation-1.0.0-jar-with-dependencies.jar
-p DC-AD -fo tgf \
--file src/main/resources/expose-example.tgf -a a

Because of the fact that the solver is wrapped in a Docker [24] image, there are
some patterns that have to be taken into consideration when executing the image as
a container. The program reads the graphs as TGF files from hard disk which it is
isolated from when running it within a Docker container. Therefore, the directory
that contains the graph files needs to be mounted onto a directory inside the con-
tainer. In order to do so, the --volume flag has to be used with the path of the host
machine and the path of the container separated by a double colon :. All parame-
ters that would be accepted by the JAR file now need to be appended to the name
of the Docker image to be executed. So, a valid command executing using Docker
might be:

docker run \
--volume $(pwd)/path/to/graphs/directory/:/app/resources \
dominikhillmann/random-walk-reasoning:1.3.0 \
--file /app/resources/graph.tgf -fo tgf -p DC-AD -a a1

The directory /app/resources/ is chosen as an example, but it is important
that the same directory is used in the --file parameter. It is important to know
that the docker run command requires an absolute path on the host system for the
--volume parameter. This can be achieved by prepending the path with $(pwd) in
the Bash shell, for example. The image can be downloaded using the shell command
docker pull dominikhillmann/random-walk-reasoning.

In order to execute the unit tests, one has to use Maven [25]. After navigating into
the root directory of the project, type mvn clean test and the unit tests results
are displayed.

4.2 Architecture

The following sections describe the architecture of the software.

4.2.1 Software architecture

The software tries to follow the hexagonal architecture pattern [15, pp. 19]. This is
due to the fact that this pattern makes it easy to separate domain logic and com-
munication to and from the application and to develop them independently. The
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program is therefore separated into three large packages: domain, application
and adapter. The adapter layer is again divided into inbound and outbound
defines how communication to and from the program works. The adapter layer
classes make use of the actual program logic by using the classes of the applica-
tion layer which encapsulate domain logic into separate use cases. At last, the
domain layer contains all classes related to the actual logic of the program. All of
these make heavy use of the Java library Tweety [29] to provide essential building
blocks like Graphs, Labelings and Arguments.

Figure 113 shows the composition of the package and it consists of the following
classes:

• Walker and RandomWalkerImpl: RandomWalkerImpl as well as its inter-
face Walker do not contain any logic about what path the walker should take.
These classes only exist to indicate the current position in the graph and, if
needed, change it using the method moveTo. To find out which argument it
occupies, the method getOccupiedArgument can be used.

All classes that take advantage of any walkers will use the interface. This
way, any other walker with different behavior to RandomWalkerImpl can be
easily inserted into the program.

• AdmissibilityChecker: The program can start with a --start-arg pa-
rameter that cannot possibly part of an admissible set. In that case, the al-
gorithm encapsulated in SearchOrchestrator will still return a set of ar-
guments labeled in. This is because the start argument has to be necessar-
ily labeled in at the start of the algorithm. Therefore, there needs to be a
manner of checking for actual admissibility of the returned in(Lab) from the
SearchOrchestrator. This happens within the AdmissibleSetFinder
class discussed later.

To check for admissibility, the GraphState and is passed into the constructor
and the currently in-labeled set of arguments can be tested for admissibility
with respect to the state by calling isAdmissible.

• WalkerDecider and its implementations WalkerDeciderOnLabelIn and
WalkerDeciderOnLabelOut: The SearchOrchestrator expects the logic
of the Walker’s behavior to be inserted into its constructor via the WalkerDe-
cider parameters. This way, the core behavior of the program can be tested
independently.

WalkerDecider has to two implementations. The first one is WalkerDe-
ciderOnLabelIn and it realizes what to do with any Walker if it resides on
an in-labeled argument specified in algorithm 2. The second one, WalkerDe-
ciderOnLabelOut, realizes the algorithm specified in algorithm 3. Both

3The tool used to create the graphics is Draw.io, which can be found at https://app.diagrams.
net/.
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WalkerDecider implementations gain access to the graph’s state by pass-
ing it as a parameter to their constructors. The method orchestrate con-
tains the logic about what happens to a specific Walker in the context of the
current state. Changes to the walker itself are applied immediatly using the
walker’s methods like moveTo. Whether or not a new Walker is added to the
list of all is communicated using the returned UpdateCollectors.

• SearchOrchestrator: In the SearchOrchestrator, all domain classes
with the exception of the AdmissibilityChecker come together to imple-
ment the entirity of the domain logic. The SearchOrchestrator requires
the GraphState, an initial argument to perform the initial labeling and the
desired behavior regarding the Walkers through accepting the WalkerDe-
ciders as parameters. The only method of the class, solve, returns a set of
arguments labeled in which will be checked for admissibility in the appli-
cation layer.

• UpdateCollector: This is a helper class that is needed because updates to
the walkers list within SearchOrchestrator have to be concentrated at one
point. The class will collect any Walker to be added to the list or removed
from it by using the methods addLaterAddition and addLaterRemoval
respectively. These additions and removals can then be accessed at a later
point in time. The class is parameterized, so it can be used in different contexts
other than the Walker updates.

• GraphState: This class serves as the central state of the graph, both for the
Graph itself but also for its Labeling. It does not contain any logic about
itself, but provides a convenient interface for all classes that read and write
changes to the labeling. For example, methods like getParentsWithLabel
solves the problem of sorting through arguments based on the label which
would have been implemented in several other classes otherwise. Similarly,
setLabelAndChildrenLabel offers the functionality of changing a label
only in way that everytime a label does get changed, the information auto-
matically flows to the children as described in algorithm 4.

Figure 12 contains the UML class diagram of the application layer. This layer
is the only one that consists of a single class called AdmissibleSetFinder. Ad-
missibleSetFinder represents the use case of a finding an admissible set that
may be be used by any kind of adapter of the adapter layer. Figure 12 shows that
the use cases use both the domain SearchOrchestrator, which bundles the algo-
rithm logic and the AdmissibilityChecker for checking an in-labeled proposal
for actual admissibility. Also, this class provides two ways of searching for admis-
sible sets. First, the method solveForStartArg takes an argument as a starting
argument and returns and Optional of a possibly admissible set which is only
filled if it passed the AdmissibilityChecker tests. Second, there is the solve-
ForAllArgs method which iterates through all arguments of the graph and takes
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each of the graph arguments as the algorithm starting argument. It then outputs all
unique admissible sets found throughout the iteration of all arguments.

The last layer is the adapter layer. It is responsible for communication to and
from the program. This package makes heavy use of the library Picoli [12] to de-
scribe which command line arguments are expected by the compiled program. It
consists of the following classes for the case of inbound data:

• PathToFileConverter is responsible for turning the path passed into the
program via the command line parameters into a file and then reading the
specific lines as Strings and providing these.

• TrivialGraphFormatReader: This class interprets the content of the TGF
file given to it as a list of strings and outputs a Graph instance that fits the
description of the TGF file.

• CommandLineAdapter: The adapter contains everything related to interpret-
ing parameters given over the command line and coordinating all classes in-
tended for converting them into processable instances. Also, this class will
pass the usable instances the use cases of the application and in turn passes
any solution to any of the outbound adapters.

• InvalidTgfFileException is a helper class to easily recognize program
failure due to an invalid TGF file.

There is only one interface in the outbound subpackage along with its implemen-
tation. SolutionWriter exists as an interface so that any other way of writing the
solution can be implemented using it and all classes dependent on a Solution-
Writer do not need to change any of their internals because of it. CommandLi-
neSolutionWriter takes any solutions, formats them and writes it to stdout.

4.2.2 Docker image composition

The Docker image [24] is split into two stages. The first one is the build image
and the second is the regular image. The build image includes Maven [25] and the
Java runtime. Here, the source code is copied into the image and compiled using
familiar Maven commands. The build image can be downloaded using docker
pull maven:3.8.6-amazoncorretto-17:latest.

The second stages uses Amazon Corretto [20] as a base image. It copies the com-
piled JAR file from the builder stage and then provides access to it via the ENTRY-
POINT keyword. This Amazon Corretto image can be downloaded using docker
pull amazoncorretto:17-alpine3.13.

4.3 Unit and integration tests

The unit and integration tests were implemented using JUnit [10], AssertJ [9] and
Mockito [11]. JUnit is a basic unit test framework which can be enhanced by AssertJ
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because it adds better understandable assertions. Mockito is used for mimicing in-
jected objects such that their behavior can be defined in place. Additionally, Mock-
ito enables developers to inspect if and how often mocked methods were called.
Reports about the test coverage can be generated using JaCoCo [21].

The unit tests cover 97 % of the code if measured by instructions and 98 % if mea-
sured by branch coverage. Overall, 61 tests are implemented which are distributed
over 13 test classes. One test is left ignored because it checks for the condition that
causes the algorithm to cycle and not terminate described in section 2.4.1.
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Figure 11: The UML class diagram of the domain classes of the program. This dia-
gram does not offer any information about how it relates to the appli-
cation and adapter layers which will be better shown in later illustra-
tions. The central class is the SearchOrchestrator. It combines infor-
mation about the state of graph and labeling with the behavior definition
of the WalkerDeciders and the Walkers as indicators into a implemen-
tation of the core domain logic as described in algorithm 1.
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Figure 12: The application layer only consists of a single class. To better under-
stand how this class relates to the domain classes, all relevant ones are
included in the image within the domain package.
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Figure 13: This figure shows the UML class diagram of the adapter layer. The
adapter layer is included to better understand how it relates to the the
rest of the program.
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5 Conclusion

The thesis followed the conceptualization, formalization, implementation and eval-
uation of an algorithm that is based on random walkers assigning labels to argu-
ments. It is implemented by three separated layers, which are each responsible for
the domain logic, encapsulating use cases and organizing communication to from
the program. The program continues to have two weaknesses discussed in the the-
sis: It is prone to cycling if the graph contains cycles with an uneven number of
arguments, and even cycles may cause the algorithm to find smaller than possi-
ble admissible sets that the start argument belongs to. The evaluation answered
three questions: Does the solver produce different results between runs based on
the same graphs with the same start argument? How precise does the solver per-
form, if µ-toksia is taken as ground truth? And how fast is the solver able to solve
the instances? The random walk solver does output different results between dif-
ferent runs, which are not due to timeouts and can be traced back to the random
parts of the algorithm. Also, the random walk solver performs the worst if com-
pared to the other solvers on the basis of µ-toksia’s results as ground truth. In the
speed comparison between solvers, the implemented solver also scores the worst.
The evaluation is limited because the solvers did not involve the larger graphs that
would have been available for testing and Heureka’s run time length could not be
measured and therefore compared.

Hence, there remain many possibilities to improve upon the solver in terms of
speed and precision. As far as speed is concerned, one could take advantage of mul-
tithreading, for example for solving the same graph with multiple start arguments
at the same time. Moreover, the graph can be checked for being bipartite before the
core algorithm is applied to a graph in order to prevent the algorithm from entering
cycles with an uneven number of arguments. It is also important to find out what
the conditions are which lead the solver to find many more false negatives when
compared to the other solvers.
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