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Zusammenfassung

Eine Herausforderung für leichtgläubige und skeptische Akzeptanz in Abstrakter
Argumentation ist die potenziell exponentielle Zahl durch eine Semantik bestimm-
ter Extensionen, was die leichtgläubige Akzeptanz zu vieler Argumente oder die
skeptische Akzeptanz zu weniger Argumente ermöglicht. In dieser Arbeit werden
Methoden zur Verfeinerung des Akzeptanzproblems durch Auswahl bestimmter
Extensionen auf Grundlage von Regeln aus der Wahltheorie untersucht.

Abstract

A challenge for credulous and sceptical acceptance in Abstract Argumentation is the
potentially exponential number of extensions yielded by an extension-based seman-
tics, allowing too many arguments to be credulously accepted, or too few arguments
to be sceptically accepted. In this thesis, methods to refine acceptance by selecting
extensions based on rules from Voting Theory are explored.
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1 Introduction

Abstract Argumentation has proven to provide a powerful formalism to model ar-
gumentation processes, with many applications such as in multi-agent systems and
logic programming [ABG+17]. An abstract argumentation framework (AF) consists
only of a set of arguments and a binary attack relation on this set, such that the
structure of the arguments is not considered [Dun95]. Extension-based semantics
determine sets of arguments which, by some measure, can be accepted together and
form a coherent point of view. Credulous and sceptical acceptance are two funda-
mental approaches to determine the overall acceptance of an argument with respect
to one such semantics [KMV15]. However, these approaches pose two extremes,
such that in practical applications, it can occur that too many arguments are cred-
ulously accepted or too few arguments are sceptically accepted. An alternative ap-
proach inspired by Voting Theory [BCE+16] mitigates this issue by selecting only, by
some criterion, the best extensions for consideration in overall acceptance, thus po-
tentially decreasing the number of credulously accepted arguments and potentially
increasing the number of sceptically accepted arguments. In this thesis, the refine-
ment to an acceptance in between credulous and sceptical acceptance by selecting
extensions will be studied.

To determine which extensions are selected, Konieczny et al. [KMV15] have pro-
posed pairwise comparison using the Copeland rule with one of four criteria, which
selects the extensions that compare best among all extensions. However, the appli-
cation of this rule might not be adequate in cases where the goal is to select the
least objectionable extensions. Therefore, the application of the Simpson rule is pro-
posed, which selects the extensions that compare best to each extension. For each
semantics, this gives rise to a new semantics, called a selection semantics.

A well-established method to classify semantics are principle-based systems, such
that a semantics satisfies a principle iff its set of extensions always meets certain
requirements [BG07, vDTV18]. This enables the selection of semantics for practi-
cal use cases by the principles they satisfy. While extension selection might help
control the number of accepted arguments, the resulting selection semantics does
not necessarily inherit the principles satisfied by the underlying semantics. This is
problematic because desired guarantees to the structure of the set of extensions, and
consequently to the set of accepted arguments, are lost. Inheritance will be studied
for the classical semantics as proposed by Dung [Dun95], the two proposed selec-
tion rules, and the four proposed comparison criteria in this thesis. Results show
that principles are often not inherited by the introduced selection semantics except
in trivial cases, such that many counterexamples will be presented.

The remainder of this thesis is organized as follows:

• Section 2 introduces core notions of an abstract argumentation framework and
extension-based semantics.

• Section 3 explains pairwise comparison criteria and presents the Copeland-
based extensions semantics.
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• Section 4 introduces score functions and the Simpson rule, leading to the Simpson-
based extensions semantics.

• Section 5 investigates acceptance-consistency and shows how its relation with
the maintenance of non-emptiness.

• Section 6 examines the inheritance of principles from the underlying semantics
by the refined semantics.

• Section 7 discusses remaining problems and mitigation techniques.

• Section 8 summarises and reflects on our main findings.

• Section 9 concludes with final remarks and directions for future research.

2 Formal Argumentation

Formal Argumentation is a field of Artificial Intelligence which seeks to formalise
human argumentation processes that have originally been studied as argumentation
theory in philosophy [BGGT18]. This enables the implementation of these processes
in computers, with numerous practical applications including in e-governance and
multi-agent systems [ABG+17].

A model that considers only the relations between arguments and not their inter-
nal structure was introduced by Dung in 1995 [Dun95] and has since been subject of
extensive research. Dung proposes the notion of an abstract argumentation framework.

Definition 2.1 (Abstract argumentation framework). An abstract argumentation frame-
work (AF) is a pair (A, ω→) of a finite set of arguments A and a binary relation, ω→ ↑
A↓A, on A, called an attack relation.

Remark 2.1. For an AF (A, ω→) with arguments a, b ↔ A, we denote (a, b) ↔ ω→ also by
a ω→ b, say that a attacks b, and call (a, b) an attack from a (or any set of arguments
S ↑ A where a ↔ S) to b (or any set of arguments S → ↑ A where b ↔ S →). For the
negation, we write a ↗ω→ b. The symbol of a binary relation will be used accordingly
also in general.

This formalism can be used to model n-person games like the stable marriage
problem as well as logic programming [Dun95]. In the following, we will see a
practical example for the negotiation of ingredients in a recipe.

Example 2.1 (Smoothie AF). A real-world scenario in which three wishes for the ingredi-
ents of a smoothie are expressed, can be modelled as an AF F = (A, ω→) where

A = {“Apple”, “Fruit”, “Vegetable”}

and

ω→ = {“Apple”, “Fruit”}↓ {“Vegetable”} ↘ {“Vegetable”}↓ {“Apple”, “Fruit”},
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such that there exist (symmetric) attacks between any two wishes iff they cannot describe
the same ingredient. An apple is a fruit, therefore there exists no attack between “Apple”
and “Fruit”. On the other hand, no ingredient except for “Vegetable” itself qualifies as a
vegetable, therefore there exist attacks between “Vegetable” and the other ingredients.

For the purposes of this thesis, the restricton to finite AFs is necessary in order to
allow for quantitative comparisons between sets of arguments. Moreover, this is a
common restriction in research and can be considered a natural restriction in prac-
tical use cases. This restriction enables us to visualise AFs, especially our example,
by directed graphs as can be seen in Figure 1.

“Apple” “Fruit”

“Vegetable”

Figure 1: An AF for the primary ingredient of a smoothie

There exist many methods to extract information from an AF, called semantics. An
important class of semantics are the extension-based semantics. An extension-based
semantics determines sets of arguments that can be accepted together by some mea-
sure and form a coherent point of view, called extensions [Dun95]. As extension-
based semantics are most relevant for this thesis, we consider a semantics to be
extension-based unless stated otherwise.

Definition 2.2 (Power set). The power set of a set S is denoted by 2S = {S→ ↑ S}.

Definition 2.3 (Extension-based semantics). An (extension-based) semantics is a func-
tion ε on the set of all AFs, such that for all AFs F = (A, ω→), it holds for the set of
extensions, ε(F ), that

ε(F ) ↑ 2A.

Dung [Dun95] has proposed several semantics which include the preferred, stable,
complete, and grounded semantics.

Remark 2.2. For an AF F = (A, ω→) and semantics ε, iff a set of arguments E ↑ A is
contained in the set of extensions ε(F ), e. g. of the preferred semantics, we also refer
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to it by the name of the semantics. In this example, E can be referred to as preferred
(in F ) or a preferred extension (of F ). For a semantics ε in general, we say that E is
a ε-extension (of F ). As this and the following notions defined in this thesis depend
on some given objects, omissions will be made for better readability where there is
no ambiguity. Possible omissions are indicated by parantheses.

The semantics proposed by Dung are based on three central notions, which are
those of a conflict-free set of arguments, an acceptable argument with respect to a set of
arguments, and an admissible set of arguments.

Definition 2.4 (Conflict-freeness, acceptability, and admissibility). For an AF F =
(A, ω→) and set of arguments S ↑ A, conflict-freeness, acceptability, and admissibility
are defined as follows:

• S is conflict-free (in F ) iff there exist no a, b ↔ S such that a ω→ b.

• a ↔ A is acceptable with respect to S (in F ) iff for all b ↔ A where b ω→ a, there
exists c ↔ S such that c ω→ a.

• S is admissible (in F ) iff S is conflict-free and all a ↔ S are acceptable with
respect to S .

The complete, preferred, stable, and grounded semantics are then defined such
that a set of arguments is contained in a set of extensions iff it meets certain require-
ments.

Definition 2.5 (Minimal/maximal and least/greatest element). For a set S, binary
relation R, and element x ↔ S, the minimal/maximal and least/greatest element is de-
fined as follows:

• Element x is minimal with respect to R (among S) iff there exists no element y ↔ S

such that y R x, and x ↗R y or y ↗R x. Respectively, we say that x is maximal
with respect to R (among S) iff the former holds in reverse.

• Element x is the least with respect to R (among S) iff for all y ↔ S, it holds that
x R y. Respectively, we say that x is the greatest with respect to R (among S) iff
the former holds in reverse.

Definition 2.6 (Complete, preferred, stable, and grounded semantics). For an AF
F = (A, ω→) and set of arguments E ↑ A, the complete, preferred, stable, and grounded
semantics are defined as follows:

• E is complete (in F ) (or E ↔ Co(F )) iff E is admissible and for all a ↔ A that are
acceptable with respect to E , it holds that a ↔ E .

• E is preferred (in F ) (or E ↔ Pr(F )) iff E is admissible and maximal with respect
to set inclusion among the sets of admissible arguments. Every preferred ex-
tension is also complete. There exists at least one preferred extension.
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• E is stable (in F ) (or E ↔ St(F )) iff E is conflict-free and for all b ↔ A \ E , there
exists a ↔ E such that a ω→ b. Every stable extension is also preferred.

• E is grounded (in F ) (or E ↔ Gr(F )) iff E is minimal (or the least) with respect
to set inclusion among the complete extensions. The grounded extension is
unique.

To determine the overall acceptance of an argument under an extension-based
semantics, there are two fundamental approaches which are credulous acceptance and
sceptical acceptance [KMV15].

Definition 2.7 (Credulous and sceptical acceptance). For an AF F = (A, ω→), seman-
tics ε, and argument a ↔ A, credulous and sceptical acceptance are defined as follows:

• Argument a is credulously ε-accepted (from F ) (or credulously accepted (with re-
spect to ε(F ))) iff it is contained in at least one ε-extension. The set of credu-
lously ε-accepted arguments is denoted by Crω(F ).

• Argument a is sceptically ε-accepted (from F ) (or sceptically accepted (with re-
spect to ε(F ))) iff it is contained in every ε-extension. The set of sceptically
ε-accepted arguments is denoted by Scω(F ).

A problem in connection with these approaches is that the number of extensions
can be exponential, possibly allowing too many arguments to be credulously ac-
cepted or too few arguments to be sceptically accepted [KMV15]. Ulbricht and Bau-
mann [UB19] point out that the latter case can occur due to inconsistencies in the
knowledge base of an agent. Besides the repair of these inconsistencies as described
by Ulbricht and Baumann, one could select only certain extensions with a suitable
criterion in order to mitigate this issue, decreasing the number of inconsistencies
and thus potentially increasing the number of sceptically accepted arguments. A
suitable criterion could be one which prefers extensions that are less prone to incon-
sistencies or more likely to be correct than others.

Example 2.2 (Extension selection). Consider the following example with the AF shown
by Figure 1 for Example 2.1. We have two stable extensions: E1 = {“Apple”, “Fruit”} and
E2 = {“Vegetable”}. In a larger AF with wishes for a multitude of ingredients, credulous
acceptance would not be a reasonable approach to select ingredients for a smoothie, as this
could lead to the acceptance of too many ingredients. As E1 ≃ E2 = ⇐, no argument is
sceptically accepted. However, it is necessary to select some ingredient, even if that means
neglecting some wishes. In this case, it can be seen as desirable to consider only the larger
extension E1 for credulous or sceptical acceptance [KMV15], as to fullfill the most wishes.
Then, arguments “Apple” and “Fruit” are credulously and sceptically accepted.

For this reason, alternative approaches are researched as shown in Section 3. The
refinement of this acceptance problem to an acceptance in between credulous and
sceptical acceptance is subject of this thesis.
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3 Pairwise comparison of extensions

Konieczny et al. [KMV15] have proposed pairwise comparison of extensions by cer-
tain criteria which give rise to pairwise comparison relations on the set of extensions
of an AF, which will be used in extension selection.

Definition 3.1 (Pairwise comparison criterion and relation). For an AF F and se-
mantics ε, a (pairwise) comparison criterion ϑ gives rise to a binary relation

⇒F
ω,ε ↑ ε(F )↓ ε(F )

on ε(F ), called a (pairwise) comparison relation.

As sets of extensions shall be selected and yielded for every AF, a function to
realise this is a semantics. Hence, a fitting notion is that of a selection semantics, a
semantics which yields a subset of extensions for each AF.

Definition 3.2 (Selection semantics). A selection semantics (with respect to a semantics
ε and comparison criterion ϑ), SELω,ε , is a semantics, such that for all AFs F , it holds
that

SELω,ε(F ) ↑ ε(F ).

Konieczny et al. [KMV15] have proposed that extensions for an AF are then se-
lected based on the Copeland rule from voting theory [BCE+16].

Definition 3.3 (argmax). For a finite set S and integer-valued function f on a subset
S
→ ↑ S, if S→ is non-empty, we denote by

argmax
x↑S

f(x) =
{
y ↔ S

→ ∣∣ f(y) = max
z↑S→

f(z)
}

the set of arguments in S
→ for which f is maximal. If S→ is empty, there exists no maxi-

mum and we set argmaxx↑S f(x) = ⊋.

Definition 3.4 (Copeland score function). For an AF F , semantics ε, comparison cri-
terion ϑ, and extension E ↔ ε(F ), the Copeland score function (with respect to semantics
ε and comparison criterion ϑ), CopelandFω,ε , is defined by

CopelandFω,ε(E) = |
{
E → ↔ ε(F )

∣∣ E ⇒F
ω,ε E →} | ⇑ |

{
E →→ ↔ ε(F )

∣∣ E →→ ⇒F
ω,ε E

}
| .

Definition 3.5 (Copeland-based extensions semantics). For a Copeland score func-
tion CopelandFω,ε , the Copeland-based extensions (CBE) semantics (with respect to seman-
tics ε and comparison criterion ϑ), CBEω,ε , is a selection semantics and defined by

CBEω,ε(F ) = argmax
E↑ω(F )

CopelandFω,ε(E).
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Informally, this function selects the extensions that compare best among all exten-
sions. It considers for every extension the number of extensions that are stronger or
weaker with respect to the employed comparison criterion, and selects the exten-
sions with the maximal difference of these “wins” and “losses”.

Konieczny et al. [KMV15] have pointed out that, as a subset of extensions is se-
lected, any argument credulously accepted with respect to CBEω,ε(F ) is also cred-
ulously accepted with respect to ε(F ), and any argument sceptically accepted with
respect to ε(F ) is also sceptically accepted with respect to CBEω,ε(F ). This poten-
tially decreases the number of credulously accepted arguments and potentially increases
the number of sceptically accepted arguments. In fact, this acceptance-consistency will be
achieved by any selection semantics provided that at least one extension is selected
from any non-empty set of extensions. Therefore, maintaining non-emptiness is iden-
tified to be a desirable property of a selection semantics.

Definition 3.6 (Maintenance of non-emptiness). A selection semantics SELω,ε main-
tains non-emptiness iff for all AFs F such that ε(F ) is non-empty, SELω,ε(F ) is non-
empty.

Definition 3.7 (Acceptance-consistency). A selection semantics SELω,ε is acceptance-
consistent iff for all AFs F , it holds that

CrSELω,ε (F ) ↑ Crω(F ) and Scω(F ) ↑ ScSELω,ε (F ).

Lemma 3.1 (Acceptance-consistency of SELω,ε). Any selection semantics that maintains
non-emptiness is acceptance-consistent.

Proof. Let F be an AF and SELω,ε a selection semantics that maintains non-emptiness.
Acceptance-consistency will be shown in two steps, for either requirement:

1. For any credulously SELω,ε-accepted argument a, there exists a selected exten-
sion E ↔ SELω,ε(F ) such that a ↔ E . As SELω,ε is a selection semantics, E is a
ε-extension. Therefore, a is credulously ε-accepted.

2. If ε(F ) is empty, we have ε(F ) = SELω,ε(F ) as SELω,ε is a selection seman-
tics, such that we are done. If ε(F ) is non-empty, it follows from the main-
tenance of non-emptiness that SELω,ε(F ) is non-empty, such that there exists
a selected extension E ↔ SELω,ε(F ). As SELω,ε is a selection semantics, any
SELω,ε-extension is a ε-extension, especially E . Any sceptically ε-accepted
argument a is contained in all ε-extensions, especially E . Therefore, a is scep-
tically SELω,ε-accepted.

Proposition 3.1 (Maintenance of non-emptiness by CBEω,ε). All Copeland-based ex-
tensions semantics maintain non-emptiness.

7



Proof. Let CBEω,ε be a Copeland-based extensions semantics. If ε(F ) is empty, we
have ε(F ) = CBEω,ε(F ) as CBEω,ε is a selection semantics, such that we are done.
The corresponding Simpson score function is defined on ε(F ) as for all extensions
E ↔ ε(F ), either set in its definition exists. Therefore, if ε(F ) is non-empty, a max-
imal Copeland score exists as ε(F ) is finite, such that at least one extension is se-
lected.

Corollary 3.1 (Acceptance-consistency of CBEω,ε). All Copeland-based extensions se-
mantics are acceptance-consistent.

Proof. Follows from Proposition 3.1 in connection with Lemma 3.1.

For pairwise comparison, Konieczny et al. [KMV15] have proposed the compari-
son criteria nonatt, strdef , delarg, and delatt.

Definition 3.8 (Strong defence). For an AF F = (A, ω→), sets of arguments S, S→ ↑ A,
and argument a ↔ A, we say that a is strongly defended from S by S → (in F ) iff for every
attack b ω→ a from S , there exists an argument c ↔ S → \ {a}, such that c ω→ b and c is
strongly defended from S by S → \ {a}.

Definition 3.9 (Restriction). The restriction of a binary relation R to a set S is denoted
by R↭S = R ≃ (S ↓ S).

Definition 3.10 (Comparison relations for nonatt, strdef , delarg, and delatt). For an
AF F , semantics ε, and extensions E , E → ↔ ε(F ), the comparison relations for compari-
son criteria nonatt, strdef , delarg, and delarg are defined as follows:

• E ⇒F
ω,nonatt E → iff the number of arguments in E not attacked by an argument

in E → is greater than or equal to that of arguments in E → not attacked by an
argument in E .

• E ⇒F
ω,strdef E → iff the number of arguments in E strongly defended from E → by

E is greater than or equal to that of arguments in E → strongly defended from E
by E →.

• E ⇒F
ω,delarg E → iff the cardinality of any largest subset S of E such that E is an

extension of AF (E↘E →
, ω→↭E↓E →) after deleting all attacks from S to E → is greater

than or equal to the cardinality of any largest subset S → of E → such that E → is an
extension of AF (E ↘ E →

, ω→↭E↓E →) after deleting all attacks from S → to E .

• E ⇒F
ω,delatt E → iff the maximal number of attacks from E to E → that can be deleted

such that E is an extension of AF (E ↘ E →
, ω→↭E↓E →) is greater than or equal to

that of attacks from E → to E that can be deleted such that E → is an extension of
AF (E ↘ E →

, ω→↭E↓E →).
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We can see that the relations for comparison criteria nonatt and strdef are always
total (and thus reflexive) as the numbers of unattacked and strongly defended ar-
guments always exist. However, strdef is found to be an inadequate comparison
criterion for semantics based on admissibility such as the semantics proposed by
Dung [Dun95], as its comparison relations coincide with those for nonatt.

Proposition 3.2 (Equality of ⇒F
ω,nonatt and ⇒F

ω,strdef ). For all semantics ε such that for
all AFs F , ε(F ) is a set of admissible sets of arguments, comparison relations ⇒F

ω,nonatt and
⇒F

ω,strdef are equal.

Proof. Let F = (A, ω→) be an AF and ε a semantics such that for all AFs F
→, it holds

that ε(F ) is a set of admissible sets of arguments, with extensions E , E → ↔ ε(F )
where a1 ↔ E . The equality will be shown in two steps, for either direction:

1. If a1 is not attacked by E →, it is trivially strongly defended from E → by E .

2. Let a1 be strongly defended from E → by E . If a1 is trivially strongly defended,
it is not attacked by E →. If a1 is not trivially strongly defended, there exist an
attack b1 ω→ a1 from E → and an argument c1 ↔ E , such that c1 ω→ b1 and c1 is
strongly defended from E → by E \ {a1}. We can continue this recursion with
c1 = a2 and so on, until we encounter the first trivially strongly defended
argument an, as E is finite such that the empty set would eventually strongly
defend an argument c|E|↔1 = a|E|. Then, in contradiction to the admissibility
of E →, an attacks E → as it defends an↔1, but is not attacked by E →.

Therefore, it follows that ⇒F
ω,nonatt = ⇒F

ω,strdef .

Despite this negative result for the effectiveness of comparison criterion strdef
with semantics based on admissibility, we will continue to consider this comparison
criterion as it could be used for semantics that are not based on admissibility. On
the other hand, the relations for comparison criteria delarg and delatt require the
existence of extensions in AFs derived from a reduced AF of any two extensions,
which is generally not guaranteed as will be shown in the following.

Definition 3.11 (Totality and reflexivity). Let R ↑ S↓S be a binary relation on a set
S. Totality and reflexivity are defined as follows:

• R is total iff for all x, y ↔ S, it holds that (x, y) ↔ R or (y, x) ↔ R.

• R is reflexive iff for all x ↔ S, it holds that (x, x) ↔ R. Totality implies reflexivity.

Proposition 3.3 (Totality and reflexivity of ⇒F
ω,nonatt and ⇒F

ω,strdef ). All comparison
relations ⇒F

ω,nonatt and ⇒F
ω,strdef are total and reflexive.

Proof. The numbers of unattacked and strongly defended arguments exist for any
sets of arguments in an AF.
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Proposition 3.4 (Totality and reflexivity of ⇒F
ω,delarg and ⇒F

ω,delatt). There exist compar-
ison relations ⇒F

ω,delarg and ⇒F
ω,delatt that are neither total nor reflexive.

Proof. Let F = (A, ω→) = ({a, b},⊋) be an AF and ε a semantics such that ε(F ) =
{{a}} and for all other AFs F

→ ↗= F , it holds that ε(F ) = ⊋. Then, the reduced
AF for extensions E , E → ↔ ε(F ) according to comparison criteria delarg and delatt,
Fr = (E ↘E →

, ω→↭E↓E →) = ({a},⊋), has no extensions as Fr ↗= F , and no attacks can be
deleted. It follows for comparison relations ⇒F

ω,delarg and ⇒F
ω,delatt, that E ⫅̸F

ω,delarg E →

and E ⫅̸F
ω,delatt E →, such that ⇒F

ω,delarg,⇒F
ω,delatt= ⊋. Therefore, either comparison

relation is neither total nor reflexive.

While the observation that a comparison relation is not necessarily total or reflex-
ive is interesting by itself, so as to see what extensions are comparable, these prop-
erties seem to have no further implications for the Copeland-based extensions se-
mantics. However, in the following section we will see that acceptance-consistency
can depend on them for other selection semantics.

Example 3.1 (Copeland-based extensions semantics). Consider the following example
for CBEPr,nonatt. In the AF shown by Figure 2, we have three preferred extensions: E1 =
{A,E}, E2 = {B,E}, and E3 = {F}. Each extension is assigned a Copeland score which is
iteratively calculated as follows, initially being 0. We can determine the selected extensions
by counting for every two extensions E , E → the number of arguments in E left unattacked by
arguments in E → and vice versa. If the number of these arguments in E is greater than or
equal to that in E →, we add 1 to the Copeland score of E . If the number of these arguments in
E → is greater than or equal to that in E , we add ⇑1 to the Copeland score of E . We can ignore
cases of equality (especially if E = E →) as these are cancelled out, adding 0 to the Copeland
score.

In E1, argument 5 is not attacked by an argument in E2 and vice versa, such that we ignore
this case. Argument 1 in E1 is not attacked by the argument in E3, however the argument
in E3 is attacked by argument 5 in E1, such that we add 1 to the Copeland score of E1. This
results in a Copeland score of 1 for E1.

In E2, we again ignore the equality with E1. Both arguments in E2 are attacked by the
argument in E3 and the argument in E3 is attacked by argument 5 in E2, such that we ignore
this case. This results in a Copeland score of 0 for E2.

The argument in E3 is attacked by argument 5 in E1, however argument 1 in E1 is not
attacked by the argument in E3, such that we add ⇑1 to the Copeland score of E3. The
argument in E3 is attacked by both arguments in E2 and both arguments in E2 are attacked
by the argument in E3, such that we ignore this case. This results in a Copeland score of ⇑1
for E3.

The extensions with the maximal Copeland score of 1 are now selected. Therefore, E1 is
selected.

10



A

CB D

E F

Figure 2: An AF with three preferred extensions

4 Scores and the Simpson rule

This thesis will contribute two concepts to the state of research, which are the no-
tion of a pairwise comparison score function and the application of the Simpson rule on
pairwise comparison for extension selection as outlined in Section 3. A pairwise
comparison score function is an integer-valued binary partial function on the set of
extensions of an AF, that is used as a means to determine not only whether an exten-
sion is stronger or weaker than another with respect to some comparison criterion,
but rather a score of how much stronger or weaker it is. The comparison of scores is
equivalent to the corresponding comparison relation.

Definition 4.1 (Pairwise comparison score function). For an AF F , semantics ε, and
comparison criterion ϑ, a (pairwise) comparison score function is an integer-valued
function, scoreFω,ε , on a subset of pairs of extensions E ↑ ε(F ) ↓ ε(F ), such that
for all E , E → ↔ ε(F ) and its corresponding comparison relation, ⇒F

ω,ε , it holds that

{E , E →}↓ {E , E →} ↑ E and scoreFω,ε(E , E →) ⇒ scoreFω,ε(E →
, E) iff E ⇒F

ω,ε E →.

This is a necessary step to transfer principles from Voting Theory to extension se-
lection and enable the application of more differentiating selection rules, especially
the Simpson rule. Different selection rules can be considered more or less adequate
depending on the context of their application. While the Copeland rule accounts for
the strength of an extension among all extensions, the Simpson rule accounts for its
greatest weakness compared to another extension.

4.1 Introduction of scores

The comparison relations for criteria nonatt, strdef , delarg, and delatt do not yield
enough information to enable the application of more differentiating rules than the
Copeland rule [BCE+16], in the sense that no “strength” is considered for the rela-
tion of any two extensions. To solve this problem, we introduce comparison score

11



functions for these criteria, and base their definitions on the definitions of the corre-
sponding comparison relations by considering the values used in the definitions.

Definition 4.2 (Set of attacks). For an AF F = (A, ω→) and sets of arguments S,S → ↑
A, we denote by

ω→(S,S →) = ω→≃ (S ↓ S →)

the set of attacks from S to S →.

Definition 4.3 (Comparison score functions for nonatt, strdef , delarg, and delatt).
For an AF F = (A, ω→), semantics ε, and extensions E , E → ↔ ε(F ), the comparison
score functions for criteria nonatt, strdef , delarg, and delatt are defined as follows:

• scoreFω,nonatt(E , E →) = |
{
a ↔ E

∣∣ a is not attacked by an argument in E →} |
(number of arguments in E not attacked by E →)

• scoreFω,strdef(E , E →) = |
{
a ↔ E

∣∣ a is strongly defended from E → by E
}
|

(number of arguments in E strongly defended from E → by E)

• scoreFω,delarg(E , E →) = max
{
| S ↑ E |

∣∣ E ↔ ε(E ↘ E →
, ω→↭E↓E → \ ω→(S, E →))

}

(maximal number of arguments in E from which attacks to E → can be deleted
such that E is an extension after isolating E and E →)

• scoreFω,delatt(E , E →) = max
{
| ω→→ ↑ ω→(E , E →) |

∣∣ E ↔ ε(E ↘ E →
, ω→↭E↓E → \ ω→→)

}

(maximal number of attacks from E to E → that can be deleted
such that E is an extension after isolating E and E →)

We can see that these functions fulfill the equivalence requirement of a compar-
ison score function, as they represent the values used in the informal descriptions
for their respective comparison relations.

4.2 Selection based on the Simpson Rule

Another rule from Voting Theory which can be used for extension selection via pair-
wise comparison is the Simpson rule [BCE+16].

Definition 4.4 (Simpson score function). For an AF F , semantics ε, comparison cri-
terion ϑ, and extension E ↔ ε(F ), the Simpson score function (with respect to semantics
ε and comparison criterion ϑ), SimpsonFω,ε , is defined by

SimpsonFω,ε(E) = min
E →↑ω(F )

scoreFω,ε(E , E →)⇑ scoreFω,ε(E →
, E).

Definition 4.5 (Simpson-based extensions semantics). For a Simpson score function
SimpsonFω,ε , the Simpson-based extensions (SBE) semantics (with respect to semantics ε

and comparison criterion ϑ), SBEω,ε , is a selection semantics and defined by

SBEω,ε(F ) = argmax
E↑ω(F )

SimpsonFω,ε(E).

12



Informally, this function selects the extensions that compare best to each extension
or are the least objectionable. It considers for every extension the extension it com-
pares the worst against with respect to criterion ϑ, such that the difference of scores
is minimal, and selects the extensions where this minimum is maximal. Unlike the
Copeland rule, which considers only whether for every two extensions, one exten-
sion is stronger or weaker than the other with respect to ϑ, and selects the exten-
sions with the maximal difference of “wins” and “losses”, the Simpson rule accounts
for the degree to which an extension is stronger or weaker. While the focus of the
Copeland rule can be seen in the overall performance of an extension, the Simpson
rule accounts for the one-on-one performance. In a sense, this property makes the
Simpson rule more sceptical, such that universally well comparing extensions could
be preferred over extensions that compare worse against at least one extension.

In some contexts, the Simpson rule might be the more adequate choice, e. g. in a
debate setting where an agent has to adopt a standpoint, represented as an exten-
sion, without knowing the standpoints of the other parties, which could reflect only
a small portion of extensions. While an extension selected by the Copeland rule is
stronger than many extensions and weaker than few, it is not guaranteed that any
weaker standpoint is adopted by an opposing party. Then, the case of an opponent
adopting a standpoint expressed by an extension that is much stronger than the
extension for our agent’s standpoint is undesirable but possible.

A difference between both rules is that an SBE semantics selects no extension iff
for no two extensions, the difference of scores is defined, whereas a CBE semantics
maintains non-emptiness.

Lemma 4.1 (Emptiness of SBEω,ε(F )). For all AFs F and Simpson-based extensions
semantics SBEω,ε , SBEω,ε(F ) is empty iff comparison relation ⇒F

ω,ε is empty.

Proof. Let F be an AF and SBEω,ε(F ) a selection semantics for comparison relation
⇒F

ω,ε . The equivalence will be shown in two steps, for either direction:

1. If SBEω,ε(F ) is empty, only the empty binary relation exists on this set, such
that ⇒F

ω,ε is empty.

2. If ⇒F
ω,ε is empty, it follows from Definition 4.3 of a comparison score function

that comparison score function scoreFω,ε is undefined on {(E , E →), (E →
, E)} for

any two extensions E , E → ↔ ε(F ), such that the corresponding Simpson score
function is undefined on ε(F ). Therefore, there exists no maximal Simpson
score, such that SBEω,ε(F ) is empty.

Therefore, it follows that SBEω,ε(F ) is empty iff ⇒F
ω,ε is empty.

Corollary 4.1 (Acceptance-consistency of SBEω,ε). There exists a Simpson-based exten-
sions semantics that is not acceptance-consistent.

Proof. Let F be the AF and ε the semantics from the example in the proof for Propo-
sition 3.4, and SBEω,delarg the corresponding Simpson-based extensions semantics.
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Then, comparison relation ⇒F
ω,delarg is empty, such that it follows from Lemma 4.1

that SBEω,delarg(F ) is empty. As we have Scω(F ) = {a} ⫆̸ ScSBEω,delarg(F ) = ⊋,
SBEω,delarg is not acceptance-consistent.

Example 4.1 (Simpson-based extensions semantics). Consider the following example
for SBEPr,nonatt with the AF F shown by Figure 2 from Example 3.1. We have the three
preferred extensions E1 = {A,E}, E2 = {B,E}, and E3 = {F}. Each extension is assigned
a Simpson score which is iteratively calculated as follows, initially being 0. For other criteria,
the Simpson score would initially be undefined and not guaranteed to be defined at the end
of this process, however due to the reflexivity of comparison relation ⇒F

Pr,nonatt as shown by
Proposition 3.3, it is possible to start with 0 here. We can determine the selected extensions
by counting for every two extensions E , E → the number of arguments in E left unattacked
by arguments in E → and vice versa. If the Simpson score of E is undefined or greater than
the difference, we update it with the difference. Because we start with 0, cases of equality
(especially if E = E →) can be ignored as these do not contribute to the Simpson score.

In E1, argument 5 is not attacked by an argument in E2 and vice versa, such that we ignore
this case. Argument 1 in E1 is not attacked by the argument in E3, however the argument in
E3 is attacked by argument 5 in E1, such that we have the difference

scoreFPr,nonatt(E1, E3)⇑ scoreFPr,nonatt(E3, E1) = 1⇑ 0 = 1

and do not update the Simpson score of E1. This results in a Simpson score of 0 for E1.
In E2, we again ignore the equality with E1. Both arguments in E2 are attacked by the

argument in E3 and the argument in E3 is attacked by argument 5 in E2, such that we ignore
this case. This results in a Simpson score of 0 for E2.

The argument in E3 is attacked by argument 5 in E1, however argument 1 in E1 is not
attacked by the argument in E3, such that we have the difference

scoreFPr,nonatt(E3, E1)⇑ scoreFPr,nonatt(E1, E3) = 0⇑ 1 = ⇑1

and update the Simpson score of E3 with ⇑1. The argument in E3 is attacked by both ar-
guments in E2 and both arguments in E2 are attacked by the argument in E3, such that we
ignore this case. This results in a Simpson score of ⇑1 for E3.

The extensions with the maximal Simpson score of 0 are now selected. Therefore, E1 and
E2 are selected, in contrast to the analogue Example 3.1 for the Copeland-based extensions,
where only E1 is selected.

5 Acceptance-consistency

As we have seen in the previous sections, the notions of totality, reflexivity, mainte-
nace of non-emptiness, and acceptance-consistency are interconnected. Acceptance-
consistency can be considered a desirable property of a selection semantics and is
satisfied by all Copeland-based extensions semantics. Totality or reflexivity of all
comparison relations for a semantics and comparison criterion implies the main-
tenance of non-emptiness and thus acceptance-consistency of the corresponding
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Simpson-based extensions semantics, making this a useful criterion to determine
the acceptance-consistency of the remaining selection semantics, especially for the
semantics proposed by Dung [Dun95] and the comparison criteria proposed by
Konieczny et al. [KMV15].

Lemma 5.1 (Acceptance-consistency of SBEω,ε). For all semantics ε and comparison
criteria ϑ such that for all AFs F , comparison relation ⇒F

ω,ε is total or reflexive, Simpson-
based extensions semantics SBEω,ε maintains non-emptiness and is acceptance-consistent.

Proof. Let ε be a semantics and ϑ a comparison criterion such that for all AFs F ,
comparison relation ⇒F

ω,ε is total or reflexive. Let SBEω,ε be the respective Simpson-
based extensions semantics. If ε(F ) is non-empty, it follows from Lemma 4.1 that
SBEω,ε(F ) is non-empty, as ⇒F

ω,ε is total or reflexive and thus non-empty. There-
fore, SBEω,ε maintains non-emptiness, and is acceptance-consistent as follows from
Lemma 3.1.

For comparison criteria nonatt and strdef , Lemma 5.1 delivers an immediate re-
sult for the acceptance-consistency of any corresponding SBE semantics, whereas
for comparison criteria delarg and delarg, a distinction by the underlying semantics
is required.

Corollary 5.1 (Acceptance-consistency of SBEω,nonatt and SBEω,strdef ). For compari-
son criteria nonatt and strdef , all corresponding Simpson-based extensions semantics are
acceptance-consistent.

Proof. Follows from Proposition 3.3 in connection with Lemma 5.1.

5.1 Complete semantics

Proposition 5.1 (Totality of ⇒F
Co,delarg and ⇒F

Co,delatt). There exist comparison relations
⇒F

Co,delarg and ⇒F
Co,delatt that are not total.

Proof. Let F = (A, ω→) be the AF shown by Figure 3. We have complete extensions
E = {A,D} and E → = {B}. The reduced AF according to comparison criteria delarg
and delatt, Fr = (E ↘ E →

, ω→↭E↓E →) = ({A,B,D}, {(A,B), (B,A)}) has a non-empty
grounded extension {D} ⫆̸ E →, such that E → is not complete in Fr and no sets of
attacks can be deleted such that it would be complete. It follows for comparison
relations ⇒F

Co,delarg and ⇒F
Co,delatt that E ⫅̸F

Co,delarg E →
, E → ⫅̸F

Co,delarg E and E ⫅̸F
Co,delatt

E →
, E → ⫅̸F

Co,delatt E .

Proposition 5.2 (Reflexivity of ⇒F
Co,delarg and ⇒F

Co,delatt). All comparison relations
⇒F

Co,delarg and ⇒F
Co,delatt are reflexive.
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Figure 3: An AF with two complete extensions

Complete Reflexive Total
nonatt ✁ ✁
strdef ✁ ✁
delarg ✁ ✂
delatt ✁ ✂

Table 1: Properties of comparison relations for the complete semantics

Proof. Let F = (A, ω→) be an AF. For any extension E ↔ Co(F ), the reduced AF
according to comparison criteria delarg and delatt, Fr = (E ↘ E , ω→↭E↓E →) = (E ,⊋),
has no attacks as E is conflict-free. Then, E is an extension of Fr, such that it follows
for comparison relations ⇒F

Co,delarg and ⇒F
Co,delatt, that E ⇒F

Co,delarg E and E ⇒F
Co,delatt

E .

Corollary 5.2 (Acceptance-consistency of SBECo,delarg and SBECo,delatt). All Simpson-
based extensions semantics SBECo,delarg and SBECo,delatt are acceptance-consistent.

Proof. Follows from Proposition 5.2 in connecton with Lemma 5.1.

5.2 Preferred semantics

Proposition 5.3 (Totality of ⇒F
Pr,delarg). There exists a comparison relation ⇒F

Pr,delarg that
is not total.

Proof. Analogous to the proof for Proposition 5.1, as the extensions are preferred
and the preferred extensions are complete.

Proposition 5.4 (Totality of ⇒F
Pr,delatt). There exists a comparison relation ⇒F

Pr,delatt that
is not total.

Proof. Let F = (A, ω→) be the AF shown by Figure 4. We have preferred extensions
E = {A} and E → = {B,D}. The reduced AF according to comparison criterion
delatt, Fr = (E ↘ E →

, ω→↭E↓E →) = ({A,B,D},⊋), has only the extension E ↘ E →. Then,
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Preferred Reflexive Total
nonatt ✁ ✁
strdef ✁ ✁
delarg ✁ ✂
delatt ✁ ✂

Table 2: Properties of comparison relations for the preferred semantics

there exists no subset of attacks in Fr from E that can be deleted such that E → is
an extension. It follows for comparison relation ⇒F

Pr,delatt, that E ⫅̸F
Pr,delatt E → and

E → ⫅̸F
Pr,delatt E . Therefore, ⇒F

Pr,delatt is not total.

A B C D E

Figure 4: An AF with two preferred extensions

Proposition 5.5 (Reflexivity of ⇒F
Pr,delarg and ⇒F

Pr,delatt). All comparison relations ⇒F
Pr,delarg

and ⇒F
Pr,delatt are reflexive.

Proof. Analogous to the proof for Proposition 5.2, as the extension of the reduced AF
is preferred, and the preferred extensions are conflict-free as well as complete.

Corollary 5.3 (Acceptance-consistency of SBEPr,delarg and SBEPr,delatt). All Simpson-
based extensions semantics SBEPr,delarg and SBEPr,delatt are acceptance-consistent.

Proof. Follows from Proposition 5.5 in connection with Lemma 5.1.

5.3 Stable semantics

Proposition 5.6 (Totality of ⇒F
St,delarg and ⇒F

St,delatt). All comparison relations ⇒F
St,delarg

and ⇒F
St,delatt are total.

Proof. Let F = (A, ω→) be an AF and ⇒F
St,delarg,⇒F

St,delatt comparison relations. Any
stable extensions E , E → of F are extensions of the reduced AF according to compari-
son criteria delarg and delatt, Fr = (E ↘ E →

, ω→↭E↓E →), as all attacks from E to E → and
vice versa are retained, and no attacks are added. It follows that E ⇒F

St,delarg E → or
E → ⇒F

St,delarg E , as for the comparison of either extension to the other, at least all
attacks from the empty subset of arguments can be deleted such that either is an
extension, and E ⇒F

St,delatt E → or E → ⇒F
St,delatt E , as at least the empty set of attacks can
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Stable Reflexive Total
nonatt ✁ ✁
strdef ✁ ✁
delarg ✁ ✂
delatt ✁ ✁

Table 3: Properties of comparison relations for the stable semantics

be deleted such that the either is an extension. Therefore, ⇒F
St,delarg and ⇒F

St,delatt are
total.

Corollary 5.4 (Reflexivity of ⇒F
St,delarg and ⇒F

St,delatt). All comparison relations ⇒F
St,delarg

and ⇒F
St,delatt are reflexive.

Proof. Follows from Proposition 5.6.

Corollary 5.5 (Acceptance-consistency of SBESt,delarg and SBESt,delatt). All Simpson-
based extensions semantics SBESt,delarg and SBESt,delatt are acceptance-consistent.

Proof. Follows from Corollary 5.4 in connection with Lemma 5.1.

5.4 Grounded semantics

Proposition 5.7 (Reflexivity of ⇒F
Gr,delarg and ⇒F

Gr,delatt). All comparison relations ⇒F
Gr,delarg

and ⇒F
Gr,delatt are reflexive.

Proof. Analogous to the proof for Proposition 5.2, as the extension of the reduced AF
is grounded, and the grounded extension is conflict-free as well as complete.

Proposition 5.8 (Totality of ⇒F
Gr,delarg and ⇒F

Gr,delatt). All comparison relations ⇒F
Gr,delarg

and ⇒F
Gr,delatt are total.

Proof. Follows from Proposition 5.7 as the grounded extension is unique.

Corollary 5.6 (Acceptance-consistency of SBEGr,delarg and SBEGr,delatt). All Simpson-
based extensions semantics SBEGr,delarg and SBEGr,delatt are acceptance-consistent.

Proof. Follows from Proposition 5.7 in connection with Lemma 5.1.
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Grounded Reflexive Total
nonatt ✁ ✁
strdef ✁ ✁
delarg ✁ ✁
delatt ✁ ✁

Table 4: Properties of comparison relations for the grounded semantics

5.5 Summary

In this section we have learned that the Copeland- and Simpson-based extensions
semantics induced by the classical semantics by Dung [Dun95] and comparison
criteria proposed by Konieczny et al. [KMV15] are acceptance-consistent. While
acceptance-consistency is desirable, it does not guarantee that a selection semantics
can be considered effective at decreasing the number of credulously accepted argu-
ments and increasing the number of sceptically accepted arguments, it is rather a
necessary condition of effectiveness. As an example, consider from the following
Proposition 6.36 the selection semantics CBESt,nonatt and SBESt,nonatt. Any of two
stable extensions leaves only their intersection unattacked in the other, such that
all extensions compare equally and the selection semantics coincide with the stable
semantics. Where ineffectiveness is not trivial like in this case, determining how
effective a selection semantics is would require a complex analysis, possibly driven
empirically by real-world applications, that is beyond the scope of this thesis. Until
further results are available, it is only possible to assume that extension selection
will be reasonably effective, especially with the comparison criteria proposed by
Konieczny et al. The notion of acceptance-consistency can guide the search for po-
tentially effective selection semantics.

6 Inheritance of principles

A desirable behaviour of a selection semantics is the inheritance of principles satisfied
by the underlying semantics, such that the choice to use a semantics in a certain con-
text based on principles, as suggested by van der Torre and Vesic [vDTV18], is not
affected by the application of the selection semantics.

Definition 6.1 (Inheritance of a principle). A selection semantics SELω,ε inherits a
principle iff it is not satisfied by ε or it is satisfied by SELω,ε .

For some basic principles as introduced by Baroni and Giacomoin [BG07], this
inheritance is independent from the employed selection rule and criterion with the
exception of directionality. These and more principles which can be examined for
inheritance can be found in an overview of such a principle-based system by van der
Torre and Vesic [vDTV18], where the principles relevant for this thesis are defined.
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Definition 6.2 (Principles). For a semantics ε, principles are defined as follows:

• Semantics ε satisfies admissibility iff for all AFs F , all E ↔ ε(F ) are admissible.

• Semantics ε satisfies strong admissibility iff for all AFs F = (A, ω→), E ↔ ε(F ),
and a ↔ E , a is strongly defended from A by E .

• Semantics ε satisfies naivety iff for all AFs F and E ↔ ε(F ), E is maximal with
respect to set inclusion among the conflict-free sets of arguments.

• Semantics ε satisfies indirect conflict-freeness iff for all AFs F , E ↔ ε(F ), and
a, b ↔ E , there exists no path of odd length between a and b in F with respect
to the attack relation.

• Semantics ε satisfies reinstatement iff for all AFs F = (A, ω→), E ↔ ε(F ), and
a ↔ A such that a is acceptable with respect to E , it holds that a ↔ E .

• Semantics ε satisfies weak reinstatement iff for all AFs F = (A, ω→), E ↔ ε(F ),
and a ↔ A such that a is strongly defended from A by E , it holds that a ↔ E .

• Semantics ε satisfies CF-reinstatement iff for all AFs F = (A, ω→), E ↔ ε(F ), and
a ↔ A such that a is acceptable with respect to E and E ↘ {a} is conflict-free, it
holds that a ↔ E .

• Semantics ε satisfies I-maximality iff for all AFs F , E ↔ ε(F ), E is maximal with
respect to set inclusion among ε(F ).

• Semantics ε satisfies allowing abstention iff for all AFs F , E1, E2 ↔ ε(F ), and
a ↔ E2 such that a is attacked by an argument in E1, there exists E3 ↔ ε(F )
such that a /↔ E3 and a is not attacked by an argument in E3.

• Semantics ε satisfies crash resistance iff there exists no AF F
→ = (A→

, ω→→) such
that for all AFs F = (A, ω→) where A≃A→ = ⊋, it holds that ε(A↘A→

, ω→↘ω→→) =
ε(F →).

• Semantics ε satisfies non-interference iff for all AFs F = (A, ω→) and S ↑ A

such that there exists no attack from A \ S to S and vice versa, it holds that
ε(S, ω→↭S) =

{
E ≃ S

∣∣ E ↔ ε(F )
}

.

• Semantics ε satisfies weak directionality iff for all AFs F = (A, ω→) and S ↑ A
such that there exists no attack from A \ S to S , it holds that ε(S, ω→↭S) ⇓{
E ≃ S

∣∣ E ↔ ε(F )
}

.

• Semantics ε satisfies semi-directionality iff for all AFs F = (A, ω→) and S ↑ A
such that there exists no attack from A \ S to S , it holds that ε(S, ω→↭S) ↑{
E ≃ S

∣∣ E ↔ ε(F )
}

.
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• Semantics ε satisfies directionality iff for all AFs F = (A, ω→) and S ↑ A such
that there exists no attack from A\S to S , it holds that ε(S, ω→↭S) =

{
E≃S

∣∣ E ↔
ε(F )

}
. Directionality combines weak directionality and semi-directionality.

• Semantics ε satisfies succinctness iff there exist no AF F = (A, ω→) and (a, b) ↔
ω→ such that for all AFs F

→ = AF [→] where A ↑ A→ and ω→ ↑ ω→→, it holds that
ε(F →) = ε(A→

, ω→→ \ {(a, b)}).

• Semantics ε satisfies tightness iff for all AFs F = (A, ω→), credulously ε-accepted
a ↔ A, and E ↔ ε(F ) where E ↘ {a} /↔ ε(F ), there exists b ↔ E such that there
exists no E → ↔ ε(F ) where a, b ↔ E →.

• Semantics ε satisfies conflict-sensitiveness iff for all AFs F = (A, ω→) and E , E → ↔
ε(F ) where E ↘ E →

/↔ ε(F ), there exist a, b ↔ E ↘ E → such that there exists no
E →→ ↔ ε(F ) where a, b ↔ E →→.

• Semantics ε satisfies com-closure iff for all AFs F = (A, ω→) and non-empty
S ↑ ε(F ) such that for all a, b ↔

⋃
E↑S E , it holds that a, b ↔ E → for some

E → ↔ ε(F ), there exists one and only one E →→ ↔ ε(F ), such that
⋃

E↑S E ↑ E →→ and
E →→ is minimal with respect to set inclusion among the extensions that satisfy
the former.

Other principles pertain to the semantics’ relation to the strong components of the
graph for an AF (SCC-recursiveness) or the change of the set of sceptically accepted
arguments if symmetric attacks are reduced to one-sided attacks (scepticism adequacy
and resolution adequacy) [vDTV18].

We can see that besides admissibility, strong admissibility, reinstatement, weak
reinstatement, CF-reinstatement, and I-maximality, as Konieczny et al. [KMV15]
have pointed out, also naivety and indirect conflict-freeness are always inherited by
a selection semantics.

Remark 6.1 (Trivial inheritance). Any selection semantics inherits admissibility, strong
admissibility, reinstatement, weak reinstatement, CF-reinstatement, and I-maximality.

Proposition 6.1 (Trivial inheritance). Any selection semantics inherits naivety and indi-
rect conflict-freeness.

Proof. Let F be an AF and SELω,ε a selection semantics. As SELω,ε(F ) ↑ ε(F ),
if ε satisfies naivety, SELω,ε(F ) is a subset of conflict-free sets of arguments that
are maximal with respect to set inclusion, such that SELω,ε inherits naivety, and if ε
satisfies indirect conflict-freeness, SELω,ε(F ) is a subset of sets of arguments without
paths of odd length between any two arguments within each extension, such that
SELω,ε inherits indirect conflict-freeness.

The following results show that for the other principles, inheritance is often not
achieved by the introduced selection semantics if the relevant principle is satisfied
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by the underlying semantics. As the relevant comparison criteria are not directly
related to the relevant principles, largely negative results were to be expected and
are to be expected for other comparison criteria and principles if their definitions
do not suggest inheritance. Whereas the definition of more conforming principles
would contradict the goal of guiding the search for fit selection semantics with exist-
ing principles and provide no added value as the search would only be influenced
for the sake of influencing the search, the only reasonable method to achieve more
positive results is to define more conforming, and most importantly meaningful,
comparison criteria.

6.1 Complete semantics

The complete semantics satisfies the following principles which are not trivially in-
herited: allowing abstention, crash resistance, non-interference, weak directionality,
semi-directionality, directionality, and com-closure [vDTV18].

Proposition 6.2 (Inheritance of crash resistance by SELCo,ε). Any selection semantics
SELCo,ε that maintains non-emptiness inherits crash resistance.

Proof. Let F
→ = (A→

, ω→→) be an AF and SELCo,ε a selection semantics that main-
tains non-emptiness. Given a new argument a /↔ A→ and AF F = ({a},⊋), for
AF F

→→ = (A→ ↘ {a}, ω→→ ↘ ⊋) = (A→ ↘ {a}, ω→→), there exists a selected extension
E ↔ SELCo,ε(F →→) as the set of complete extensions is non-empty and SELCo,ε main-
tains non-emptiness. As a is unattacked, it is contained in the grounded extension
Gr(F →→) which is included in complete extension E . Then we have a ↔ E , but a /↔ A→

such that E /↔ SELCo,ε(F →) and thus SELCo,ε(F →→) ↗= SELCo,ε(F →). Therefore, SELCo,ε

satisfies and thus inherits crash resistance.

Corollary 6.1 (Inheritance of crash resistance by CBECo,ε and SBECo,ε). Any Copeland-
based extensions semantics CBECo,ε and Simpson-based extensions semantics SBECo,ε

where ϑ ↔ {nonatt, strdef, delarg, delarg} inherit crash resistance.

Proof. Follows from Propositions 3.1, 3.3, and 5.7 in connection with Lemma 5.1, in
connection with Proposition 6.2.

6.1.1 Copeland-based extensions

Proposition 6.3 (Inheritance of allowing abstention by CBECo,nonatt and CBECo,strdef ).
Copeland-based extensions semantics CBECo,nonatt and CBECo,strdef do not inherit allow-
ing abstention.

Proof. Let F be the AF shown by Figure 5. For Copeland-based extensions semantics
CBECo,nonatt, we have two extensions: E1 = {A} and E2 = {B}. As argument A is
attacked by E2 but there exists no extension which neither contains A nor attacks it,
F does not satisfy the condition set for all AFs by principle allowing abstention. The
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Complete Adm. Reinst. W. reinst. CF-reinst. All. abst. Crash resist.
CBE

nonatt ✁ ✁ ✁ ✁ ✂ ✁
strdef ✁ ✁ ✁ ✁ ✂ ✁
delarg ✁ ✁ ✁ ✁ ✂ ✁
delatt ✁ ✁ ✁ ✁ ✂ ✁

SBE
nonatt ✁ ✁ ✁ ✁ ✂ ✁
strdef ✁ ✁ ✁ ✁ ✂ ✁
delarg ✁ ✁ ✁ ✁ ? ✁
delatt ✁ ✁ ✁ ✁ ? ✁

Table 5: Inheritance of principles satisfied by the complete semantics for complete-
based selection semantics, part 1

Complete Non-int. W. dir. S.-dir. Dir. Com-closure
CBE

nonatt ? ✂ ✂ ✂ ?
strdef ? ✂ ✂ ✂ ?
delarg ✂ ✂ ✂ ✂ ?
delatt ✂ ✂ ✂ ✂ ?

SBE
nonatt ? ? ✂ ✂ ?
strdef ? ? ✂ ✂ ?
delarg ? ✂ ✂ ✂ ✂
delatt ? ✂ ✂ ✂ ✂

Table 6: Inheritance of principles satisfied by the complete semantics for complete-
based selection semantics, part 2
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same holds for CBECo,strdef as follows from Proposition 3.2. Therefore, CBECo,nonatt

and CBECo,strdef do not satisfy and thus not inherit allowing abstention.

A B

Figure 5: An AF with two CBECo,nonatt-extensions

Proposition 6.4 (Inheritance of allowing abstention by CBECo,delarg). Copeland-based
extensions semantics CBECo,delarg does not inherit allowing abstention.

Proof. Let F be the AF shown by Figure 6. For Copeland-based extensions semantics
CBECo,delarg, we have two extensions: E1 = {A,B} and E2 = {B,C}. As argument C
is attacked by E1 but there exists no extension which neither contains C nor attacks
it, F does not satisfy the condition set for all AFs by principle allowing abstention.
Therefore, CBECo,delarg does not satisfy and thus not inherit allowing abstention.

A B

C D

Figure 6: An AF with two CBECo,delarg-extensions

Proposition 6.5 (Inheritance of allowing abstention by CBECo,delatt). Copeland-based
extensions semantics CBECo,delatt does not inherit allowing abstention.

Proof. Let F be the AF shown by Figure 7. For Copeland-based extensions semantics
CBECo,delatt, we have two extensions: E1 = {A,C} and E2 = {A,D}. As argument C
is attacked by E2 but there exists no extension which neither contains C nor attacks
it, F does not satisfy the condition set for all AFs by principle allowing abstention.
Therefore, CBECo,delatt does not satisfy and thus not inherit allowing abstention.

Proposition 6.6 (Inheritance of non-interference by CBECo,delarg). Copeland-based ex-
tensions semantics CBECo,delarg does not inherit non-interference.

Proof. Let F = (A, ω→) be the AF shown by Figure 8. For Copeland-based extensions
semantics CBECo,delarg, we have two extensions: {B,C,D} and {B,D,E}. For S =
{C,E}, there exists no attack from A \ S to S and vice versa. As the restricted
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A B

C D

Figure 7: An AF with two CBECo,delatt-extensions

AF has extensions CBECo,delarg(S, ω→↭S) = {⊋, {C}, {E}} not equal to the original
extensions’ intersections

{
E ≃ S

∣∣ E ↔ CBECo,delarg(F )
}
= {{C}, {E}}, F does not

satisfy the condition set for all AFs by non-interference. Therefore, CBECo,delarg does
not satisfy and thus not inherit non-interference.

A B C

D E

Figure 8: An AF with two CBECo,delarg-extensions

Proposition 6.7 (Inheritance of non-interference by CBECo,delatt). Copeland-based ex-
tensions semantics CBECo,delatt does not inherit non-interference.

Proof. Let F = (A, ω→) be the AF shown by Figure 9. For Copeland-based extensions
semantics CBECo,delatt, we have two extensions: {C,D,E, I} and {D,E, F, I}. For
S = {C,F}, there exists no attack from A \ S to S and vice versa. As the restricted
AF has extensions CBECo,delatt(S, ω→↭S) = {⊋, {C}, {F}} not equal to the original
extensions’ intersections

{
E ≃ S

∣∣ E ↔ CBECo,delatt(F )
}
= {{C}, {F}}, F does not

satisfy the condition set for all AFs by non-interference. Therefore, CBECo,delatt does
not satisfy and thus not inherit non-interference.

Proposition 6.8 (Inheritance of weak directionality by CBECo,nonatt and CBECo,strdef ).
Copeland-based extensions semantics CBECo,nonatt and CBECo,strdef do not inherit weak
directionality.

Proof. Let F = (A, ω→) be the AF shown by Figure 10. For Copeland-based ex-
tensions semantics CBECo,nonatt, we have three extensions: {A,E}, {C,D}, and
{B,C,E}. For S = {A,B,C,D}, there exists no attack from A \ S to S . As the
restricted AF has extensions CBECo,nonatt(S, ω→↭S) = {{C,B}, {C,D}} not including
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A B C

D E F

G

H I

Figure 9: An AF with two CBECo,delatt-extensions

the original extensions’ intersections
{
E≃S

∣∣ E ↔ CBECo,nonatt(F )
}
= {{A}, {C,B}, {C,D}},

F does not satisfy the condition set for all AFs by weak directionality. The same
holds for CBECo,strdef as follows from Proposition 3.2. Therefore, CBECo,nonatt and
CBECo,strdef do not satisfy and thus not inherit weak directionality.

A B

C D E

Figure 10: An AF with three CBECo,nonatt-extensions

Proposition 6.9 (Inheritance of weak directionality by CBECo,delarg). Copeland-based
extensions semantics CBECo,delarg does not inherit weak directionality.

Proof. Let F = (A, ω→) be the AF shown by Figure 11. For Copeland-based exten-
sions semantics CBECo,delarg, we have three extensions: ⊋, {A,B}, and {C,D}. For
S = {A,B,C}, there exists no attack from A \ S to S . As the restricted AF has
extensions CBECo,delarg(S, ω→↭S) = {{A,B}} not including the original extensions’
intersections

{
E ≃ S

∣∣ E ↔ CBECo,delarg(F )
}
= {⊋, {C}, {A,B}}, F does not satisfy

the condition set for all AFs by weak directionality. Therefore, CBECo,delarg does not
satisfy and thus not inherit weak directionality.
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A B

C D

Figure 11: An AF with three CBECo,delarg-extensions

Proposition 6.10 (Inheritance of weak directionality by CBECo,delatt). Copeland-based
extensions semantics CBECo,delatt does not inherit weak directionality.

Proof. Let F = (A, ω→) be the AF shown by Figure 12. For Copeland-based exten-
sions semantics CBECo,delatt, we have three extensions: ⊋, {A,C}, and {B,D,E}.
For S = {A,D,E}, there exists no attack from A \ S to S . As the restricted AF has
extensions CBECo,delatt(S, ω→↭S) = {{D,E}} not including the original extensions’
intersections

{
E ≃ S

∣∣ E ↔ CBECo,delatt(F )
}
= {⊋, {A}, {E,D}}, F does not satisfy

the condition set for all AFs by weak directionality. Therefore, CBECo,delatt does not
satisfy and thus not inherit weak directionality.

A B C

D E

Figure 12: An AF with three CBECo,delatt-extensions

Proposition 6.11 (Inheritance of semi-directionality by CBECo,nonatt and CBECo,strdef ).
Copeland-based extensions semantics CBECo,nonatt and CBECo,strdef do not inherit semi-
directionality.

Proof. Let F = (A, ω→) be the AF shown by Figure 6. For Copeland-based exten-
sions semantics CBECo,nonatt, we have two extensions: {A,B} and {B,C}. For
S = {B,D}, there exists no attack from A \ S to S . As the restricted AF has exten-
sions CBECo,nonatt(S, ω→↭S) = {{B}, {D}} not included in the original extensions’
intersections

{
E ≃ S

∣∣ E ↔ CBECo,nonatt(F )
}
= {{B}}, F does not satisfy the condi-

tion set for all AFs by semi-directionality. The same holds for CBECo,strdef as follows
from Proposition 3.2. Therefore, CBECo,nonatt and CBECo,strdef do not satisfy and
thus not inherit semi-directionality.

Proposition 6.12 (Inheritance of semi-directionality by CBECo,delarg). Copeland-based
extensions semantics CBECo,delarg does not inherit semi-directionality.
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Proof. Let F = (A, ω→) be the AF shown by Figure 13. For Copeland-based exten-
sions semantics CBECo,delarg, we have one extension: {A,C}. For S = {B,C}, there
exists no attack from A\S to S . As the restricted AF has extensions CBECo,delarg(S, ω→↭S) =
{⊋, {B}, {C}} not included in the original extensions’ intersections

{
E ≃ S

∣∣ E ↔
CBECo,delarg(F )

}
= {{C}}, F does not satisfy the condition set for all AFs by semi-

directionality. Therefore, CBECo,delarg does not satisfy and thus not inherit semi-
directionality.

A B C

Figure 13: An AF with one CBECo,delarg-extension

Proposition 6.13 (Inheritance of semi-directionality by CBECo,delatt). Copeland-based
extensions semantics CBECo,delatt does not inherit semi-directionality.

Proof. Let F = (A, ω→) be the AF shown by Figure 14. For Copeland-based exten-
sions semantics CBECo,delatt, we have one extension: {B,C}. For S = {C,D}, there
exists no attack from A\S to S . As the restricted AF has extensions CBECo,delatt(S, ω→↭S) =
{⊋, {C}, {D}} not included in the original extensions’ intersections

{
E ≃ S

∣∣ E ↔
CBECo,delatt(F )

}
= {{C}}, F does not satisfy the condition set for all AFs by semi-

directionality. Therefore, CBECo,delatt does not satisfy and thus not inherit semi-
directionality.

A B

C D

Figure 14: An AF with one CBECo,delatt-extension

6.1.2 Simpson-based extensions

Proposition 6.14 (Inheritance of allowing abstention by SBECo,nonatt and SBECo,strdef ).
Simpson-based extensions semantics SBECo,nonatt and SBECo,strdef do not inherit allowing
abstention.

Proof. Analogous to the proof for Proposition 6.3 as the same extensions are selected.
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Proposition 6.15 (Inheritance of weak directionality by SBECo,delarg). Simpson-based
extensions semantics SBECo,delarg does not inherit weak directionality.

Proof. Let F = (A, ω→) be the AF shown by Figure 15. For Simpson-based exten-
sions semantics SBECo,delarg, we have three extensions: ⊋, {A,D}, and {B,C}. For
S = {A,B,C}, there exists no attack from A \ S to S . As the restricted AF has ex-
tensions SBECo,delarg(S, ω→↭S) = {⊋, {B,C}} not including the original extensions’
intersections

{
E ≃ S

∣∣ E ↔ SBECo,delarg(F )
}
= {⊋, {A}, {B,C}}, F does not satisfy

the condition set for all AFs by weak directionality. Therefore, SBECo,delarg does not
satisfy and thus not inherit weak directionality.

A B

C D

Figure 15: An AF with three SBECo,delarg-extensions

Proposition 6.16 (Inheritance of weak directionality by SBECo,delatt). Simpson-based
extensions semantics SBECo,delatt does not inherit weak directionality.

Proof. Let F = (A, ω→) be the AF shown by Figure 16. For Simpson-based exten-
sions semantics SBECo,delatt, we have three extensions: ⊋, {A,D}, and {B,C,E}.
For S = {B,D,E}, there exists no attack from A \ S to S . As the restricted AF
has extensions SBECo,delatt(S, ω→↭S) = {⊋, {B,E}} not including the original exten-
sions’ intersections

{
E ≃ S

∣∣ E ↔ SBECo,delatt(F )
}
= {⊋, {D}, {B,E}}, F does not

satisfy the condition set for all AFs by weak directionality. Therefore, SBECo,delatt

does not satisfy and thus not inherit weak directionality.

A B

C D E

Figure 16: An AF with three SBECo,delatt-extensions

Proposition 6.17 (Inheritance of semi-directionality by SBECo,nonatt and SBECo,strdef ).
Simpson-based extensions semantics SBECo,nonatt and SBECo,strdef do not inherit semi-
directionality.
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Proof. Let F = (A, ω→) be the AF shown by Figure 17. For Simpson-based extensions
semantics SBECo,nonatt, we have one extension: {B,D,F}. For S = {B,C}, there ex-
ists no attack from A\S to S . As the restricted AF has extensions SBECo,nonatt(S, ω→↭S) =
{{B}, {C}} not included in the original extensions’ intersections

{
E ≃ S

∣∣ E ↔
SBECo,nonatt(F )

}
= {{B}}, F does not satisfy the condition set for all AFs by semi-

directionality. The same holds for SBECo,strdef as follows from Proposition 3.2. There-
fore, SBECo,nonatt and SBECo,strdef do not satisfy and thus not inherit semi-directionality.

A B C

D E F

Figure 17: An AF with one SBECo,nonatt-extension

Proposition 6.18 (Inheritance of semi-directionality by SBECo,delarg). Simpson-based
extensions semantics SBECo,delarg does not inherit semi-directionality.

Proof. Let F = (A, ω→) be the AF shown by Figure 13. For Simpson-based ex-
tensions semantics SBECo,delarg, we have two extensions: ⊋ and {A,C}. For S =
{B,C}, there exists no attack from A \ S to S . As the restricted AF has extensions
SBECo,delarg(S, ω→↭S) = {⊋, {B}, {C}} not included in the original extensions’ inter-
sections

{
E ≃ S

∣∣ E ↔ SBECo,delarg(F )
}
= {⊋, {C}}, F does not satisfy the condition

set for all AFs by semi-directionality. Therefore, SBECo,delarg does not satisfy and
thus not inherit semi-directionality.

Proposition 6.19 (Inheritance of semi-directionality by SBECo,delatt). Simpson-based
extensions semantics SBECo,delatt does not inherit semi-directionality.

Proof. Let F = (A, ω→) be the AF shown by Figure 18. For Simpson-based exten-
sions semantics SBECo,delatt, we have two extensions: ⊋ and {A,D}. For S =
{A,C,D}, there exists no attack from A \ S to S . As the restricted AF has exten-
sions SBECo,delatt(S, ω→↭S) = {⊋, {C}, {A,D}} not included in the original exten-
sions’ intersections

{
E ≃ S

∣∣ E ↔ SBECo,delatt(F )
}
= {⊋, {A,D}}, F does not satisfy

the condition set for all AFs by semi-directionality. Therefore, SBECo,delatt does not
satisfy and thus not inherit semi-directionality.

Proposition 6.20 (Inheritance of com-closure by SBECo,delarg). Simpson-based exten-
sions semantics SBECo,delarg does not inherit com-closure.
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A B

C D

Figure 18: An AF with two SBECo,delatt-extensions

Proof. Let F = (A, ω→) be the AF shown by Figure 19. For Simpson-based exten-
sions semantics SBECo,delarg, we have nine extensions: ⊋, {B}, {C}, {G}, {D,G},
{A,C,G}, {B,D,G}, {C,D,G}, and {C,E, F}. For S = {{C}, {G}} and all a, b ↔⋃

E↑S E , there exists an extension E → ↔ SBECo,delarg(F ) such that a, b ↔ E →. As there
exist two extensions E →→ ↔ {{A,C,G}, {C,D,G}} such that

⋃
E↑S E ↑ E →→ and E →→ is

minimal with respect to set inclusion among the extensions that satisfy the former, F
does not satisfy the condition set for all AFs by com-closure. Therefore, SBECo,delarg

does not satisfy and thus not inherit com-closure.

A B C

D E

F G

Figure 19: An AF with nine SBECo,delarg-extensions

Proposition 6.21 (Inheritance of com-closure by SBECo,delatt). Simpson-based exten-
sions semantics SBECo,delatt does not inherit com-closure.

Proof. Let F = (A, ω→) be the AF shown by Figure 20. For Simpson-based extensions
semantics SBECo,delatt, we have fourteen extensions: {I}, {A, I}, {D, I}, {H, I},
{I,G}, {A,D, I}, {A,F, I}, {A,G, I}, {D,G, I}, {G,H, I}, {A,C,H, I}, {A,D, F, I},
{A,D,G, I}, and {A,C, F,H, I}. For S = {{A, I}, {G, I}, {H, I}} and all a, b ↔⋃

E↑S E , there exists an extension E → ↔ SBECo,delatt(F ) such that a, b ↔ E →. As there
exists no extension E →→ ↔ SBECo,delatt(F ) such that

⋃
E↑S E ↑ E →→, F does not satisfy

the condition set for all AFs by com-closure. Therefore, SBECo,delatt does not satisfy
and thus not inherit com-closure.
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A B C D

E F G H I

Figure 20: An AF with fourteen SBECo,delatt-extensions

6.2 Preferred semantics

The preferred semantics satisfies the following principles which are not trivially in-
herited: crash resistance, non-interference, weak directionality, semi-directionality,
directionality, conflict-sensitiveness, and com-closure [vDTV18].

Lemma 6.1 (Attacks between preferred extensions). For all AFs F with preferred ex-
tensions E , E → ↔ Pr(F ) where E ↗= E →, there exists an attack from E to E →.

Proof. Let F = (A, ω→) be an AF with preferred extensions E , E → ↔ Pr(F ) where
E ↗= E →. As the preferred extensions are maximal with respect to set inclusion among
the admissible sets of arguments, the union E ↘ E → is not preferred such that it is not
admissible. Then, E ↘ E → is not acceptable with respect to itself or is not conflict-free.
As a union of sets that are acceptable with respect to each self, E ↘ E → is acceptable
with respect to itself, such that it is not conflict-free. Then, there exists an attack from
E to E → or from E → to E , and as the extensions are acceptable with respect to each self,
it follows that either attack exists. Therefore, there exists an attack from E to E →.

Proposition 6.22 (Conflict-sensitiveness of preferred-based semantics). Any seman-
tics ε such that for all AFs F , it holds that ε(F ) ↑ Pr(F ), satisfies conflict-sensitiveness.

Proof. Let F = (A, ω→) be an AF and ε a semantics such that for all AFs F
→, it holds

that ε(F →) ↑ Pr(F →). For any two extensions E , E → ↔ ε(F ), if their union E ↘ E → is not
an extension, they are distinct and as they are preferred, it follows from Lemma 6.1
that there exists an attack a ω→ b from E to E → such that a, b ↔ E↘E →. Then, there exists
no extension E →→ ↔ ε(F ) where a, b ↔ ε(F ), as the extensions are preferred and the
preferred extensions are conflict-free. Therefore, ε satisfies conflict-sensitiveness.

Corollary 6.2 (Inheritance of conflict-sensitiveness by CBEPr,ε and SBEPr,ε). Any
Copeland-based extensions semantics CBEPr,ε and Simpson-based extensions semantics
SBEPr,ε inherit conflict-sensitiveness.

Proof. Follows from Definition 3.2 in connection with Proposition 6.22.

Proposition 6.23 (Inheritance of crash resistance by SELPr,ε). Any selection semantics
SELPr,ε that maintains non-emptiness inherits crash resistance.
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Preferred Adm. Reinst. W. reinst. CF-reinst. I-max. Crash resist.
CBE

nonatt ✁ ✁ ✁ ✁ ✁ ✁
strdef ✁ ✁ ✁ ✁ ✁ ✁
delarg ✁ ✁ ✁ ✁ ✁ ✁
delatt ✁ ✁ ✁ ✁ ✁ ✁

SBE
nonatt ✁ ✁ ✁ ✁ ✁ ✁
strdef ✁ ✁ ✁ ✁ ✁ ✁
delarg ✁ ✁ ✁ ✁ ✁ ✁
delatt ✁ ✁ ✁ ✁ ✁ ✁

Table 7: Inheritance of principles satisfied by the preferred semantics for preferred-
based selection semantics, part 1

Proof. Analogous to the proof for Proposition 6.2 as the set of preferred extensions
is non-empty and the preferred extensions are complete.

Corollary 6.3 (Inheritance of crash resistance by CBEPr,ε and SBEPr,ε). Any Copeland-
based extensions semantics CBEPr,ε and Simpson-based extensions semantics SBEPr,ε where
ϑ ↔ {nonatt, strdef, delarg, delarg} inherit crash resistance.

Proof. Follows from Propositions 3.1, 3.3, and 5.7 in connection with Lemma 5.1, in
connection with Proposition 6.23.

Proposition 6.24 (Com-closure of preferred-based semantics). Any semantics ε such
that for all AFs F , it holds that ε(F ) ↑ Pr(F ), satisfies com-closure.

Proof. Let F = (A, ω→) be an AF and ε a semantics such that for all AFs F
→, it holds

that ε(F →) ↑ Pr(F →). As the extensions are preferred, it follows from Lemma 6.1 that
there exists an attack between any two distinct extensions. Then, only non-empty
sets of singular extensions form unions, of each every two arguments are contained
in an extension. As the extensions are preferred and the preferred extensions satisfy
I-maximality which is trivially inherited by ε, for each union, there exists one and
only one extension that contains its arguments, the extension that forms the union.
Therefore, ε satisfies com-closure.

Corollary 6.4 (Inheritance of com-closure by SELPr,ε). Any Copeland-based extensions
semantics CBEPr,ε and Simpson-based extensions semantics SBEPr,ε inherit com-closure.

Proof. Follows from Definition 3.2 in connection with Proposition 6.24.
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Preferred Non-int. W. dir. S.-dir. Dir. Conf.-sens. Com-closure
CBE

nonatt ? ✂ ✂ ✂ ✁ ✁
strdef ? ✂ ✂ ✂ ✁ ✁
delarg ? ✂ ✂ ✂ ✁ ✁
delatt ? ✂ ✂ ✂ ✁ ✁

SBE
nonatt ? ? ✂ ✂ ✁ ✁
strdef ? ? ✂ ✂ ✁ ✁
delarg ? ✂ ✂ ✂ ✁ ✁
delatt ? ✂ ✂ ✂ ✁ ✁

Table 8: Inheritance of principles satisfied by the preferred semantics for preferred-
based selection semantics, part 2

6.2.1 Copeland-based extensions

Proposition 6.25 (Inheritance of weak directionality by CBEPr,nonatt and SBEPr,strdef ).
Copeland-based extensions semantics CBEPr,nonatt and Simpson-based extensions seman-
tics CBEPr,strdef do not inherit weak directionality.

Proof. Let F = (A, ω→) be an AF where

A = {a, b, c, d, e, f, g, h, i, j}

and

ω→ = {(a, b), (a, e), (a, h), (a, j), (b, f), (b, g), (c, e), (c, f), (c, g), (c, h), (c, i), (e, b),
(e, d), (e, f), (e, g), (e, i), (f, d), (g, c), (g, d), (g, i), (g, j), (h, a), (h, b), (h, c), (h, i), (i, d),

(i, f), (i, g), (i, h), (j, a), (j, b), (j, c), (j, e), (j, f), (j, i)}.

For Copeland-based extensions semantics CBEPr,nonatt, we have two extensions:
{a, c, d} and {a, f, g}. For S = {a, b, c, e, f, g, h, i, j}, there exists no attack from A\S
to S . As the restricted AF has extensions CBEPr,nonatt(S, ω→↭S) = {{a, f, g}} not
including the original extensions’ intersections

{
E ≃ S

∣∣ E ↔ CBEPr,nonatt(F )
}

=
{{a, c}, {a, f, g}}, F does not satisfy the condition set for all AFs by weak direction-
ality. The same holds for CBEPr,strdef as follows from Proposition 3.2. Therefore,
CBEPr,nonatt and CBEPr,strdef do not satisfy and thus not inherit weak directional-
ity.

Proposition 6.26 (Inheritance of weak directionality by CBEPr,delarg). Copeland-based
extensions semantics CBEPr,delarg does not inherit weak directionality.
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Proof. Let F = (A, ω→) be the AF shown by Figure 15. For Copeland-based ex-
tensions semantics CBEPr,delarg, we have two extensions: {A,D} and {B,C}. For
S = {A,B,C}, there exists no attack from A \ S to S . As the restricted AF has
extensions CBEPr,delarg(S, ω→↭S) = {{B,C}} not including the original extensions’
intersections

{
E ≃ S

∣∣ E ↔ CBEPr,delarg(F )
}

= {{A}, {B,C}}, F does not satisfy
the condition set for all AFs by weak directionality. Therefore, CBEPr,delarg does not
satisfy and thus not inherit weak directionality.

Proposition 6.27 (Inheritance of weak directionality by CBEPr,delatt). Copeland-based
extensions semantics CBEPr,delatt does not inherit weak directionality.

Proof. Let F = (A, ω→) be the AF shown by Figure 21. For Copeland-based exten-
sions semantics CBEPr,delatt, we have two extensions: {A,D} and {B,C,E}. For
S = {C,D,E}, there exists no attack from A \ S to S . As the restricted AF has
extensions CBEPr,delatt(S, ω→↭S) = {{C,E}} not including the original extensions’
intersections

{
E ≃ S

∣∣ E ↔ CBEPr,delatt(F )
}

= {{D}, {C,E}}, F does not satisfy
the condition set for all AFs by weak directionality. Therefore, CBEPr,delatt does not
satisfy and thus not inherit weak directionality.

A B

C D E

Figure 21: An AF with two CBEPr,delatt-extensions

Proposition 6.28 (Inheritance of semi-directionality by CBEPr,nonatt and CBEPr,strdef ).
Copeland-based extensions semantics CBEPr,nonatt and CBEPr,strdef do not inherit semi-
directionality.

Proof. Let F = (A, ω→) be the AF shown by Figure 22. For Copeland-based ex-
tensions semantics CBEPr,nonatt, we have one extension: {A,C,E}. For S = {C,F},
there exists no attack from A\S to S . As the restricted AF has extensions CBEPr,nonatt(S, ω→↭S) =
{{C}, {F}} not included in the original extensions’ intersections

{
E ≃ S

∣∣ E ↔
CBEPr,nonatt(F )

}
= {{C}}, F does not satisfy the condition set for all AFs by

semi-directionality. The same holds for CBEPr,strdef as follows from Proposition 3.2.
Therefore, CBEPr,nonatt and CBEPr,strdef do not satisfy and thus not inherit semi-
directionality.

Proposition 6.29 (Inheritance of semi-directionality by CBEPr,delarg). Copeland-based
extensions semantics CBEPr,delarg does not inherit semi-directionality.
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A B C

D E F

Figure 22: An AF with one CBEPr,nonatt-extension

Proof. Let F = (A, ω→) be the AF shown by Figure 13. For Copeland-based exten-
sions semantics CBEPr,delarg, we have one extension: {A,C}. For S = {B,C}, there
exists no attack from A\S to S . As the restricted AF has extensions CBEPr,delarg(S, ω→↭S) =
{{B}, {C}} not included in the original extensions’ intersections

{
E ≃ S

∣∣ E ↔
CBEPr,delarg(F )

}
= {{C}}, F does not satisfy the condition set for all AFs by semi-

directionality. Therefore, CBEPr,delarg does not satisfy and thus not inherit semi-
directionality.

Proposition 6.30 (Inheritance of semi-directionality by CBEPr,delatt). Copeland-based
extensions semantics CBEPr,delatt does not inherit semi-directionality.

Proof. Let F = (A, ω→) be the AF shown by Figure 14. For Copeland-based exten-
sions semantics CBEPr,delatt, we have one extension: {B,C}. For S = {C,D}, there
exists no attack from A\S to S . As the restricted AF has extensions CBEPr,delatt(S, ω→↭S) =
{{C}, {D}} not included in the original extensions’ intersections

{
E ≃ S

∣∣ E ↔
CBEPr,delatt(F )

}
= {{C}}, F does not satisfy the condition set for all AFs by semi-

directionality. Therefore, CBEPr,delatt does not satisfy and thus not inherit semi-
directionality.

6.2.2 Simpson-based extensions

Proposition 6.31 (Inheritance of weak directionality by SBEPr,delarg). Simpson-based
extensions semantics SBEPr,delarg does not inherit weak directionality.

Proof. Let F = (A, ω→) be the AF shown by Figure 15. For Simpson-based ex-
tensions semantics SBEPr,delarg, we have two extensions: {A,D} and {B,C}. For
S = {A,B,C}, there exists no attack from A \ S to S . As the restricted AF has
extensions SBEPr,delarg(S, ω→↭S) = {{B,C}} not including the original extensions’
intersections

{
E ≃ S

∣∣ E ↔ SBEPr,delarg(F )
}

= {{A}, {B,C}}, F does not satisfy
the condition set for all AFs by weak directionality. Therefore, SBEPr,delarg does not
satisfy and thus not inherit weak directionality.

Proposition 6.32 (Inheritance of weak directionality by SBEPr,delatt). Simpson-based
extensions semantics SBEPr,delatt does not inherit weak directionality.

Proof. Analogous to the proof for Proposition 6.27 as the same extensions are se-
lected.
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Proposition 6.33 (Inheritance of semi-directionality by SBEPr,nonatt and SBEPr,strdef ).
Simpson-based extensions semantics SBEPr,nonatt and SBEPr,strdef do not inherit semi-
directionality.

Proof. Analogous to the proof for Proposition 6.28 as the same extensions are se-
lected.

Proposition 6.34 (Inheritance of semi-directionality by SBEPr,delarg). Simpson-based
extensions semantics SBEPr,delarg does not inherit semi-directionality.

Proof. Let F = (A, ω→) be the AF shown by Figure 13. For Simpson-based extensions
semantics SBEPr,delarg, we have one extension: {A,C}. For S = {B,C}, there exists
no attack from A\S to S . As the restricted AF has extensions SBEPr,delarg(S, ω→↭S) =
{{B}, {C}} not included in the original extensions’ intersections

{
E ≃ S

∣∣ E ↔
SBEPr,delarg(F )

}
= {{C}}, F does not satisfy the condition set for all AFs by semi-

directionality. Therefore, SBEPr,delarg does not satisfy and thus not inherit semi-
directionality.

Proposition 6.35 (Inheritance of semi-directionality by SBEPr,delatt). Simpson-based
extensions semantics SBEPr,delatt does not inherit semi-directionality.

Proof. Let F = (A, ω→) be the AF shown by Figure 18. For Simpson-based extensions
semantics SBEPr,delatt, we have one extension: {A,D}. For S = {A,C,D}, there ex-
ists no attack from A\S to S . As the restricted AF has extensions SBEPr,delatt(S, ω→↭S) =
{{C}, {A,D}} not included in the original extensions’ intersections

{
E ≃ S

∣∣ E ↔
SBEPr,delatt(F )

}
= {{A,D}}, F does not satisfy the condition set for all AFs by

semi-directionality. Therefore, SBEPr,delatt does not satisfy and thus not inherit
semi-directionality.

6.3 Stable semantics

The stable semantics satisfies the following principles which are not trivially inher-
ited: weak directionality, tightness, conflict-sensitiveness, and com-closure [vDTV18].

Proposition 6.36 (Equality of St to CBESt,ε and SBESt,ε). The stable semantics is equal
to any Copeland-based extensions semantics CBESt,ε and Simpson-based extensions seman-
tics SBESt,ε where ϑ ↔ {nonatt, strdef}.

Proof. Let F be an AF with stable extensions E , E → ↔ St(F ). As a stable extension
attacks all arguments that are not contained in it, the arguments in E not attacked
by E → and vice versa are their intersection E ≃ E →. Then, we have E ⇒F

St,nonatt E → and
E → ⇒F

St,nonatt E . It follows that ⇒F
St= St(F )↓St(F ) such that the stable extensions are

selected by Copeland-based extensions semantics CBESt,nonatt as well as Simpson-
based extensions semantics SBESt,nonatt. The same holds for comparison criterion
strdef as follows from Proposition 3.2. Therefore, it follows that St = CBESt,nonatt =
SBESt,nonatt where ϑ ↔ {nonatt, strdef}.
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Stable Adm. Naivety Reinst. W. reinst. CF-reinst. I-max.
CBE

nonatt ✁ ✁ ✁ ✁ ✁ ✁
strdef ✁ ✁ ✁ ✁ ✁ ✁
delarg ✁ ✁ ✁ ✁ ✁ ✁
delatt ✁ ✁ ✁ ✁ ✁ ✁

SBE
nonatt ✁ ✁ ✁ ✁ ✁ ✁
strdef ✁ ✁ ✁ ✁ ✁ ✁
delarg ✁ ✁ ✁ ✁ ✁ ✁
delatt ✁ ✁ ✁ ✁ ✁ ✁

Table 9: Inheritance of principles satisfied by the stable semantics for stable-based
selection semantics, part 1

Corollary 6.5 (Inheritance by CBESt,ε and SBESt,ε). Any Copeland-based extensions se-
mantics CBESt,ε and Simpson-based extensions semantics SBESt,ε where ϑ ↔ {nonatt, strdef}
inherit all principles.

Proof. Follows from Proposition 6.36.

Corollary 6.6 (Inheritance of conflict-sensitiveness by CBESt,ε and SBESt,ε). Any
Copeland-based extensions semantics CBESt,ε and Simpson-based extensions semantics
SBESt,ε inherit conflict-sensitiveness.

Proof. Follows from Definition 3.2 in connection with Proposition 6.22 as the stable
extensions are preferred.

Corollary 6.7 (Inheritance of com-closure by CBESt,ε and SBESt,ε). Any Copeland-
based extensions semantics CBESt,ε and Simpson-based extensions semantics SBESt,ε in-
herit com-closure.

Proof. Follows from Definition 3.2 in connection with Proposition 6.24 as the stable
extensions are preferred.

6.3.1 Copeland-based extensions

Proposition 6.37 (Inheritance of weak directionality by CBESt,delarg). Copeland-based
extensions semantics CBESt,delarg does not inherit weak directionality.

Proof. Let F = (A, ω→) be the AF shown by Figure 23. For Copeland-based ex-
tensions semantics CBESt,delarg, we have two extensions: {A,C} and {B,D}. For
S = {A,B,C}, there exists no attack from A \ S to S . As the restricted AF has
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Stable W. dir. Tightness Conf.-sens. Com-closure
CBE

nonatt ✁ ✁ ✁ ✁
strdef ✁ ✁ ✁ ✁
delarg ✂ ✁ ✁ ✁
delatt ✂ ✁ ✁ ✁

SBE
nonatt ✁ ✁ ✁ ✁
strdef ✁ ✁ ✁ ✁
delarg ✂ ✁ ✁ ✁
delatt ✂ ✁ ✁ ✁

Table 10: Inheritance of principles satisfied by the stable semantics for stable-based
selection semantics, part 2

extensions CBESt,delarg(S, ω→↭S) = {{A,C}} not including the original extensions’
intersections

{
E ≃ S

∣∣ E ↔ CBESt,delarg(F )
}

= {{B}, {A,C}}, F does not satisfy
the condition set for all AFs by weak directionality. Therefore, CBESt,delarg does not
satisfy and thus not inherit weak directionality.

A B C D

Figure 23: An AF with two CBESt,delarg-extensions

Proposition 6.38 (Inheritance of weak directionality by CBESt,delatt). Copeland-based
extensions semantics CBESt,delatt does not inherit weak directionality.

Proof. Analogous to the proof for Proposition 6.27 as the same extensions are se-
lected.

6.3.2 Simpson-based extensions

Proposition 6.39 (Inheritance of weak directionality by SBESt,delarg). Simpson-based
extensions semantics SBESt,delarg does not inherit weak directionality.

Proof. Analogous to the proof for Proposition 6.37 as the same extensions are se-
lected.

Proposition 6.40 (Inheritance of weak directionality by SBESt,delatt). Simpson-based
extensions semantics SBESt,delatt does not inherit weak directionality.
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Grounded Adm. Str. adm. Reinst. W. reinst. CF-reinst. I-max.
CBE

nonatt ✁ ✁ ✁ ✁ ✁ ✁
strdef ✁ ✁ ✁ ✁ ✁ ✁
delarg ✁ ✁ ✁ ✁ ✁ ✁
delatt ✁ ✁ ✁ ✁ ✁ ✁

SBE
nonatt ✁ ✁ ✁ ✁ ✁ ✁
strdef ✁ ✁ ✁ ✁ ✁ ✁
delarg ✁ ✁ ✁ ✁ ✁ ✁
delatt ✁ ✁ ✁ ✁ ✁ ✁

Table 11: Inheritance of principles satisfied by the grounded semantics for
grounded-based selection semantics, part 1

Proof. Analogous to the proof for Proposition 6.27 as the same extensions are se-
lected.

6.4 Grounded semantics

An exception to the largely negative results before are the selection semantics based
on the grounded semantics, which are equal to the grounded semantics as the intro-
duced selection rules select at least one extension: the unique grounded extension.

Corollary 6.8 (Inheritance by CBEGr,ε and SBEGr,ε→). Any Copeland-based extensions
semantics CBEGr,ε and Simpson-based extensions semantics SBEGr,ε→ where ϑ→ ↔ {nonatt,
strdef, delarg, delarg} inherit all principles.

Proof. Follows from Propositions 3.1, 3.3, and 5.7 in connection with Lemma 5.1.

7 Refined acceptance

In the previous sections, we have seen several selection semantics, either Copeland-
based or Simpson-based extensions semantics, each of which refines a given seman-
tics by selecting extensions and reducing the number of extensions yielded. For the
classical semantics and comparison criteria, these selection semantics are acceptance-
consistent, thereby ensuring the refined semantics do not contradict the credulous
and sceptical acceptance from the extensions of the underlying semantics. How-
ever, two problems remain:
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Grounded All. abst. Crash resist. Non-int. W. dir. S.-dir. Dir.
CBE

nonatt ✁ ✁ ✁ ✁ ✁ ✁
strdef ✁ ✁ ✁ ✁ ✁ ✁
delarg ✁ ✁ ✁ ✁ ✁ ✁
delatt ✁ ✁ ✁ ✁ ✁ ✁

SBE
nonatt ✁ ✁ ✁ ✁ ✁ ✁
strdef ✁ ✁ ✁ ✁ ✁ ✁
delarg ✁ ✁ ✁ ✁ ✁ ✁
delatt ✁ ✁ ✁ ✁ ✁ ✁

Table 12: Inheritance of principles satisfied by the grounded semantics for
grounded-based selection semantics, part 2

Grounded Tightness Conf.-sens. Com-closure
CBE

nonatt ✁ ✁ ✁
strdef ✁ ✁ ✁
delarg ✁ ✁ ✁
delatt ✁ ✁ ✁

SBE
nonatt ✁ ✁ ✁
strdef ✁ ✁ ✁
delarg ✁ ✁ ✁
delatt ✁ ✁ ✁

Table 13: Inheritance of principles satisfied by the grounded semantics for
grounded-based selection semantics, part 3
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1. Ineffective selection. Even if a selection semantics potentially refines the under-
lying semantics, it can be practically ineffective for some or all AFs. In particular,
the selection semantics may be either

• deficiently selective, selecting too few extensions (e. g. in the trivial case of
the equality shown by Proposition 6.36), or

• overly selective, selecting too many extensions.

It may not always be possible to find a practically effective selection semantics
among those that have been introduced in this thesis, rendering the refinement
unsatisfactory.

2. Loss of principles. As shown in Section 6, some principles (e. g. directionality
and non-interference) are often not inherited by a selection semantics unless
in trivial cases.

In this section, we address the first problem by combining selection semantics, de-
riving new methods to refine acceptance. We then outline techniques to mitigate the
second problem of principle loss.

7.1 Ineffective selection

One of three straightforward solutions to the problem of ineffective selection is a
serial selection approach. This approach requires the concept of a selection specifier,
which encapsulates the method by which extensions are selected. It abstracts the
selection method from a fixed underlying semantics, enabling the application to
any semantics.

Definition 7.1 (Selection specifier). For a comparison criterion ϑ, selection specifier ϖ
is a function on the set of all semantics, such that for any semantics ε, the value

ϖ(ε) = SELω,ε

is a selection semantics with respect to ε and comparison criterion ϑ.

Example 7.1 (Selection specifier). From a selection specifier ϖ such that ϖ(Co) = CBECo,nonatt

is a Copeland-based extensions semantics, we receive for any semantics ε the Copeland-based
extensions semantics

ϖ(ε) = CBEω,nonatt.

A serial selection semantics provides a way to deal with deficiently selective seman-
tics, by applying selection semantics in sequence. Each step uses a selection specifier
to reduce the set of extensions further, potentially counteracting deficiencies.
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Definition 7.2 (Serial selection semantics). For a semantics ε and tuple ! = (ϖ1, . . . ,

ϖn) of n selection specifiers, the serial selection semantics (SSS) (with respect to seman-
tics ε and selection specifiers !), SSS!ω , is a selection semantics and defined by

SSS!ω = ϖn ⇔ · · · ⇔ ϖ1 ⇔ ε

where ⇔ denotes function composition. The final specification step ϖn(· · · ) deter-
mines the semantics and comparison criterion with respect to which SSS!ω is a selec-
tion semantics.

Example 7.2 (Serial selection semantics). Let F be an AF, ε a semantics, and ! =
(ϖ1,ϖ2) a tuple of selection specifiers such that ϖ1(ε) = CBEω,nonatt and ϖ2(ε) = SBEω,delarg.
Then, we receive serial selection semantics

SSS!ω = ϖ2 ⇔ ϖ1 ⇔ ε
= ϖ2 ⇔ CBEω,nonatt

= SBECBEω,nonatt,delarg,

which is defined recursively with selection semantics such that we have (ϖ2 ⇔ ϖ1 ⇔ ε)
(
F
)
↑

(ϖ1 ⇔ ε)
(
F
)
↑ ε(F ), potentially reducing the number of extensions.

Another way to combine ineffective selection semantics is to select the intersec-
tion or union of their extensions, applying them in parallel. This helps address the
scenario where some semantics are deficiently selective or overly selective selective,
respectively.

An intersection-based semantics (IBS) provides a method to deal with deficiently se-
lective semantics by selecting ubiquitous extensions of selection semantics.

Definition 7.3 (Intersection-based semantics). For an AF F , semantics ε and tuple
” = (SEL1

ω,ε1 , . . . , SEL
n
ω,εn) of n selection semantics, the intersection-based semantics

(with respect to semantics ε and selection semantics ”), IBS”ω , is a semantics and defined
by

IBS”ω(F ) =
n⋂

i=1

SELi
ω,εi(F ).

Remark 7.1. An argument is sceptically accepted iff it is contained in every extension
(Definition 2.7). Analogously, an intersection-based semantics selects an extension
iff it yielded by every considered selection semantics.

Example 7.3 (Intersection-based semantics). Let F be an AF, ε a semantics, and ” =
(SEL1

ω,ε1 , SEL
2
ε2) a tuple of selection semantics, such that ε(F ) = {E1, E2, E3}, SEL1

ω,ε1(F ) =

{E1, E2}, and SEL2
ω,ε2(F ) = {E2, E3}. Then, we receive intersection-based semantics

IBS”ω = SEL1
ω,ε1(F ) ≃ SEL2

ω,ε2(F )

= {E1, E2} ≃ {E2, E3}
= {E2},
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which is defined with selection semantics such that we have IBS”ω(F ) ↑ SELi
ω,εi(F ) ↑

ε(F ) for 1 ↖ i ↖ 2, reducing the number of extensions.

A union-based semantics (UBS) provides a method to deal with overly selective se-
mantics by selecting all extensions of selection semantics.

Definition 7.4 (Union-based semantics). For an AF F , semantics ε and tuple ” =
(SEL1

ω,ε1 , . . . , SEL
n
ω,εn) of n selection semantics, the union-based semantics (with respect

to semantics ε and selection semantics ”), UBS”ω , is a semantics and defined by

UBS”ω(F ) =
n⋃

i=1

SELi
ω,εi(F ).

Remark 7.2. An argument is credulously accepted iff it is contained in at least one ex-
tension (Definition 2.7). Analogously, a union-based semantics selects an extension
iff it yielded by at least one considered selection semantics.

Example 7.4 (Union-based semantics). Let F be an AF, ε a semantics, and ” = (SEL1
ω,ε1 , SEL

2
ε2)

a tuple of selection semantics, such that ε(F ) = {E1, E2, E3}, SEL1
ω,ε1(F ) = {E1}, and

SEL2
ω,ε2(F ) = {E2}. Then, we receive union-based semantics

UBS”ω = SEL1
ω,ε1(F ) ↘ SEL2

ω,ε2(F )

= {E1} ↘ {E2}
= {E1, E2},

increasing the number of extensions.

Remark 7.3. Notably, IBS and UBS cannot be reduced to a single comparison criterion
such that they are not selection semantics in the sense of Definition 3.2.

Principles satisfied by the underlying selection semantics are not generally inher-
ited by serial selection, intersection-based, or union-based semantics. However, a
property that stands out is the maintenance of non-emptiness and in consequence
acceptance-consistency, which is “inherited” by the union-based semnatics.

Corollary 7.1 (Acceptance-consistency of UBS”ω). Any union-based semantics UBS”ω ,
such that ” = (SEL1

ε1 , . . . , SEL
n
εn) and for all 1 ↖ i ↖ n, SELi

εi maintains non-emptiness,
maintains non-emptiness and is acceptance-consistent.

Proof. Follows from Definition 7.4 in connection with Definition 3.6.

7.2 Loss of principles

Serial selection, intersection-based, and union-based semantics can remedy ineffec-
tive selection, but as other selection semantics, they do not guarantee the inheritance
of principles satisfied by the underlying semantics. Two basic approaches can be
summarised:
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• Principle-aware comparison criteria. One may define a new comparison crite-
rion that penalises pairs of extensions that could violate a desired principle.
This way, the resulting selection semantics is guided to select only conforming
extensions.

• Principle repair. Similar to minimal repairs of inconsistencies in AFs as sug-
gested by Ulbricht and Baumann [UB19], we can minimally modify the set
of selected extensions to repair principle violations. This may require either
adding otherwise unselected extensions or removing selected extensions. Triv-
ially, inheritance can be ensured by adding all unselected extensions in cases
of violation.

A design of these methods depends on the principles that are considered and is
left for future work.

8 Discussion

This thesis has highlighted two central challenges in refining extension-based se-
mantics through selection. First, even though Copeland- and Simpson-based exten-
sions semantics can improve credulous or sceptical acceptance from the underlying
semantics, their effectiveness and acceptance-consistency vary. While Copeland-
based extensions semantics consistently ensure acceptance-consistency, Simpson-
based extensions semantics only do so under total (or reflexive) comparison rela-
tions. Hence, important theoretical guarantees can fail in practice.

Second, principle inheritance is almost always lost after restricting a set of exten-
sions via selection criteria, except in trivial cases such as the grounded semantics
(Corollary 6.8). The counterexamples throughout Section 6 show that many princi-
ples, especially directionality and its weaker forms, are not inherited. However, it
was not always possible to evaluate inheritance of a principle for the Copeland- and
Simpson-based extensions semantics, since there is no established methodology to
search for counterexamples. Consequently, where manual examination did not suf-
fice, counterexamples could sometimes be found by evaluation of random and small
AFs (up to 20 arguments). This automatic search limits the otherwise infinite search
space. Therefore, these inheritance statuses remain unclear, although no other indi-
cators of inheritance could be found. Generally, the literature on extension selection
is sparse, offering limited theoretical basis and as such guidance.

Techniques such as serial selection, intersection-based, and union-based seman-
tics (Section 7) can mitigate ineffective selection scenarios but do not resolve the loss
of principles. Further research into more sophisticated selection methods, or repair
methods that restore desirable properties, could address this gap. Furthermore, it
should be noted that this thesis covers extension selection only in connection with
pairwise comparison. Accounting for more than two extensions in a single compar-
ison operation could prove to be more suitable for complex real-world applications
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and better capture the holistic context used by principles, especially in regard to
inheritance.

In sum, selecting extensions by pairwise comparison remains promising as a way
to balance credulous and sceptical acceptance. Nonetheless, without principle-conforming
comparison criteria or repairs methods, inheritance is typically not given, and thus
further work is needed before extension selection methods can be widely applied in
a principle-based manner.

9 Conclusion

This thesis has investigated the refinement of extension-based semantics by select-
ing subsets of extensions according to rules from voting theory. The results demon-
strate how Copeland- and Simpson-based extensions semantics can satisfy desir-
able properties such as acceptance-consistency under certain conditions, but also
that principle inheritance often fails. Although serial selection, intersection-based,
and union-based semantics (Section 7) can partially address deficiently or overly
selective semantics, these methods neither guarantee inheritance.

Moreover, research on extension selection was found to be sparse, offering limited
theoretical basis. This thesis seeks to fill that gap, offering several formal description
of extension selections that can be studied in further research. In particular, not all
introduced selection semantics could be evaluated for every principle.

Despite these remaining problems, the potential benefits of refinement remain
clear. By restricting the extensions of a semantics to a smaller yet meaningful subset,
it is possible to balance credulous and sceptical acceptance in a direction carefully
controlled by a comparison criterion. Next steps include designing new compari-
son criteria tailored to ensure inheritance of principles, integrating repair methods
for principle violations after selection, and establishing a foundation for real-world
applications, e. g. in regard to computation of selected extensions.

Ultimately, the results here show that refining acceptance by selecting certain ex-
tensions is a promising but still evolving concept. Future work will have to balance
strong theoretical guarantees like principle inheritance with practical considerations
such as computational efficiency and effective implementation in real-world set-
tings, possibly providing a more nuanced framework to choose selection semantics
than the binary principle-based approach.
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