@ FernUniversitat in Hagen e HIE

Fakultit fiir Mathematik und Informatik Artificial Intelligence Group

Uber Formalisierung und
semi-maschinelles Beweisen des
Standard-Reprasentationstheorems fiir
kumulatives SchliefSen in Propositionaler
Logik mit Coq

Bachelorarbeit

zur Erlangung des Grades einer Bachelor of Science (B.Sc.)
im Studiengang Informatik

vorgelegt von
Jonathan Heinrich Walther

Erstgutachter: Prof. Dr. Kai Sauerwald
Artificial Intelligence Group

Betreuer: Prof. Dr. Kai Sauerwald
Artificial Intelligence Group

Erklarung

Ich erkldre, dass ich die Bachelorarbeit selbststindig und ohne unzuldssige Inan-
spruchnahme Dritter verfasst habe. Ich habe dabei nur die angegebenen Quellen
und Hilfsmittel verwendet und die aus diesen wortlich oder sinngeméfs entnom-
menen Stellen als solche kenntlich gemacht. Die Versicherung selbststandiger Ar-
beit gilt auch fiir enthaltene Zeichnungen, Skizzen oder graphische Darstellungen.
Die Bachelorarbeit wurde bisher in gleicher oder dhnlicher Form weder derselben
noch einer anderen Priifungsbehorde vorgelegt und auch nicht veroffentlicht. Mit
der Abgabe der elektronischen Fassung der endgiiltigen Version der Bachelorar-
beit nehme ich zur Kenntnis, dass diese mit Hilfe eines Plagiatserkennungsdienstes
auf enthaltene Plagiate gepriift werden kann und ausschliefslich fiir Priifungszwe-
cke gespeichert wird.

Der Veroffentlichung dieser Arbeit auf der Webseite des Lehrgebiets Kiinstliche In-
telligenz und damit dem freien Zugang zu dieser Arbeit stimme ich ausdriicklich
zu.

Fiir diese Arbeit erstellte Software wurde quelloffen verfiigbar gemacht, ein ent-

sprechender Link zu den Quellen ist in dieser Arbeit enthalten. Gleiches gilt fiir
angefallene Forschungsdaten.

AL 00 28

(Ort, Datum) (Unterschrift)

1ii

Zusammenfassung

Diese Arbeit widmet sich der Formalsierung und dem Beweisen des Reprasentati-
onstheorems fiir kumulatives SchliefSen mit dem Beweisassistenten Coq. Das Theo-
rem stellt eines der zentralen Theoreme der nichtmonotonen Logik dar. Nichmo-
notones Schlieflen ermdglicht die Revision von Schliissen bei neuen Informationen
und berticksichtigt Ausnahmen, was dem menschlichen Denken ndher kommt als
die klassische monotone Logik. Ein typisches Beispiel ist , Vogel fliegen”, eine Re-
gel, welche normalerweise gilt, aber durch spezifischere Informationen wie , Pingui-
ne fliegen nicht” aufier Kraft gesetzt werden kann. Das kumulative Schliefsen geht
auf die Arbeit von Kraus, Lehmann und Magidor aus dem Jahr 1990 zurtick, die
das System C mit seinen fiinf Regeln entwickelten. Eine Besonderheit der maschi-
nellen Formalisierung mit Coq ist, dass sie absolute Prazision und Vollstandigkeit
garantiert, wahrend handgeschriebene Beweise Fehler enthalten konnen, oder im-
plizite Annahmen verwenden. Wir beginnen mit der syntaktischen Formalisierung
der System C Regeln und gehen dann zur semantischen Modellierung kumulativer
Modelle iiber. Dabei beschranken wir uns auf propositionale Logik, um die Kom-
plexitat iiberschaubar zu halten und uns auf die wesentlichen Aspekte des KLM-
Theorems zu konzentrieren. Die Formalisierung und die Beweise bieten eine wie-
derverwendbare Basis fiir nichtmonotones Schlieflen und schaffen eine Grundlage
fiir Erweiterungen in der Wissensreprasentation.

Abstract

This thesis is dedicated to the formalization and proving of the representation the-
orem for cumulative reasoning using the proof assistant Coq. The theorem repre-
sents one of the central theorems of nonmonotonic logic. Nonmonotonic reasoning
enables the revision of conclusions when new information becomes available and
considers exceptions, which is closer to human thinking than classical monotonic
logic. A typical example is "birds fly", a rule that normally holds but can be over-
ridden by more specific information such as "penguins do not fly". Cumulative
reasoning traces back to the work of Kraus, Lehmann and Magidor from 1990, who
developed System C with its five rules. A distinctive feature of machine-verified
formalization with Coq is that it guarantees absolute precision and completeness,
while hand-written proofs may contain errors or use implicit assumptions. We be-
gin with the syntactic formalization of the System C rules and then proceed to the
semantic modeling of cumulative models. We restrict ourselves to propositional
logic in order to keep the complexity manageable and to focus on the essential as-
pects of the KLM-Theorem. The formalization and proofs provide a reusable foun-
dation for non-monotonic reasoning and create a basis for extensions in knowledge
representation.

Inhaltsverzeichnis

[2 Theoretische Grundlagen|
2.1 Propositionale Logik| 0.,

22 NichtmonotonesSchlieRenl.
221 SystemC|.
2.3 Kumulative Modellel

2.3.1 Smoothness-Bedingung|
.32 Konsequenzrelation in kumulativen Modellen|
2.4 KIM-Theorem zum Kumulativen Schliefsen|.

[3 Coq als Beweisassistent|
B.1 InteraktivesBeweisen|.

2 lcul fIn 1V nstructions| L.

.23 Das Induktionsprinzip|. 0L
B.2.4 Rekursive Funktionen auf induktiven Typen|
B.2.5 Curry-Howard-Isomorphismus im CIC|

3.3 Gallina als deklarative Programmiersprache vonCoq
B3.1 Syntax und Hauptsprachelemente]
B.32 Module und Strukturierung|.

3.4 Beweistihrung mit Taktikenf.
B.4.1 Taktiksprache und deren Anwendung|.

mi- matisches Beweisen| 0oL,

{4 Formalisierungsansatz|

4.0.2 Einbinden der Library fiir Propositionale Logik]
4.0.3 Uberblick iiber die Formalisierungsschritte[.
4.1 DarstellungderSyntax|,
4.1.1 Kodierung propositionaler Formeln|
4.1.2 Induktive Definitionder Syntax]
4.1.3 Darstellung von Wahrheitswerten|
4.2 FormalisierungvonSystem C|
4.2.1 Formalisierung der finf Grundregeln]
4.2.2 Definition kumulativer Konsequenzrelationen|
4.2.3 HiltssitzezudenRegeln|.
4.3 odellierung kumulativer Modelle|.

K.3.1 Definition der modellbasierten Konsequenzrelation|
4.4 Die Smoothness Bedingung formalisiertinCoq|.

-—h

—_
N O WO N Ul ww

—_

[Cog-Beweis des Reprasentationstheorems|
5.1 Korrektheitsbeweis (Soundness)|

P.I.1 Reflexivity Regel|
b.12 Left Logical EquivalenceRegell

b.1.3 Right WeakeningRegel
b14 CutRegell,

p.1.5 Cautious Monotonicity Regel

.2.2 Existenz und Eigenschaften maximal konsistenter Mengen| . .
5.2.3 Semantische Interpretation im kanonischen Modell

2.4 imimalitdt und Smoothness im kanonischen
.2.5 Hauptbeweisschritte der Completeness|

loEvaluation und Diskussion|

6.1 Vollstindigkeit und Korrektheit{.
6.2 Komplexitdat der Formalisierung und Losungsansatze|
6.3 Aquivalenzklassen als mogliche Alternative|

7_Fazit
[7.1 Zusammenfassung der Beitrage|o

72 Erkenntnissel
7.2.1 Bewéhrte Praktiken|. oo

[7.2.2 Potenzielle Verbesserungen und Alternativen|

{8 Zukunftige Arbeiten|

[B.1 System |3]

B.1.1 ErweiterungaufSystemP].
(8.2 Mogliche Anwendungsbereiche|.

viii

1 Einleitung

Eine zentrale Form des logischen SchliefSens stellt das nichtmonotone Schliefsen dar.
Dabei wird durch die Nichtmonotonie die Revision von Schliissen ermoglicht, was
grundlegend auch widerspiegelt, wie wir Menschen denken. Es besagt, dass wir ei-
ne einmal als wahr angenommene Schlussfolgerung beim Erhalt neuer Informatio-
nen wieder anpassen konnen. Zum Beispiel wissen wir, dass Vogel im Allgemeinen
fliegen konnen. Gleichzeitig wissen wir aber auch, dass Pinguine Vogel sind, die
nicht fliegen konnen. Dieser scheinbare Widerspruch ldsst sich durch nichtmonoto-
nes Schliefien auflosen: Die Regel ,, Vogel fliegen” gilt, kann aber durch spezifische-
re Informationen, wie im Fall von den Pinguinen, aufier Kraft gesetzt werden. Wie
an diesem Beispiel gut zu sehen ist, konnen wir so Ausnahmen beriicksichtigen.
Anders als bei der klassischen Monotonie, wo das Hinzunehmen neuer Pramissen
nicht die Schlussfolgerung invalidieren kann. So wiirde die Annahme , Vogel flie-
gen” beim Hinzunehmen von ,Pinguine sind Vogel” auch zu ,Pinguine fliegen”
fiihren, was offensichtlich nicht der Fall ist.

Nichtmonotones SchliefSen bietet die formale Grundlage, um diese Arten von
Wissen, bei denen bestimmte Annahmen iiblicherweise, aber nicht ausnahmslos gel-
ten, in einem logischen System darzustellen. Das hierfiir 1990 von Kraus, Lehmann
und Magidor [11] entwickelte logische System nennt sich System C. Die darin ent-
haltenen Regeln stellen den Grundstein fiir nichtmonotones Schlieflen dar und er-
moglichen es, logische Schliisse unter Beriicksichtigung moglicher Ausnahmen zu
ziehen.

Um diesen Regeln eine semantische Bedeutung zu geben, wurden kumulative
Modelle entwickelt. Diese Modelle stellen eine formale Struktur dar, welche aus Zu-
stdnden, einer Labeling-Funktion und einer Prédferenzrelation besteht. Dabei repra-
sentieren die Zustdnde mogliche Interpretationen, die Labeling-Funktion verbindet
Zustande mit Welten, und die Praferenzrelation ermoglicht es, ,normalere” oder
,typischere” Zustdande zu finden. Diese semantische Grundlage ermoglicht uns da-
mit, die syntaktischen Regeln des System C in einem modelltheoretischen Rahmen
zu interpretieren.

Eines der grundlegenden Theoreme im Bereich der nichtmonotonen Logik ist das
Représentationstheorem fiir kumulatives Schlieflen (KLM-Theorem), welches eben-
falls 1990 von Kraus, Lehmann und Magidor vorgestellt wurde. Das Theorem stellt
eine Verkniipfung zwischen der syntaktischen Ebene der Regeln und Merkmalen
von kumulativen Konsequenzrelationen und der semantischen Ebene dar, die durch
kumulative Modelle beschrieben wird.

Das KLM-Theorem besagt, dass eine Konsequenzrelation genau dann kumulativ
ist, wenn sie durch ein kumulatives Modell definiert werden kann. Diese Aquiva-
lenz bildet die theoretische Basis fiir kumulative Logik und gewéhrleistet einerseits
die korrekte Darstellung kumulativer Konsequenzrelationen sowohl durch syntak-
tische Beschreibungen, wie des System C, als auch durch eine konsistente seman-
tische Interpretation. Andererseits stellt das Theorem dadurch sicher, dass jede Re-

lation, die durch ein kumulatives Modell definiert ist, den Regeln des System C
entspricht.

Diese Arbeit widmet sich der Formalisierung des Theorems 3.25 und des semi-
maschinellen Beweisens des Reprasentationstheorems fiir kumulatives Schliefsen
mit dem Beweisassistenten Coq [19]. Ein Beweisassistent wie Coq ermoglicht die
vollstindige formale Verifikation mathematischer Beweise durch eine Kombination
aus menschlicher Fithrung und maschineller Uberpriifung. Dabei beschrinken wir
uns vorrangig auf den Fall von kumulativem Schliefien basierend auf propositiona-
ler Logik, um die sprachliche Komplexitat tiberschaubar zu halten und uns auf die
wesentlichen Aspekte des Reprédsentationstheorems zu konzentrieren.

Wihrend handgeschriebene Beweise Fehler enthalten konnen, garantiert dann
die maschinelle Uberpriifung die Vollstindigkeit und Korrektheit aller Beweisschrit-
te. Dabei werden unter anderem implizite Annahmen, welche auch in informellen
Beweisen vorkommen konnten, vermieden, was wiederum das Vertrauen in die
Giiltigkeit des Theorems erhcht. Neben der vollstindigen Prézision und Explizi-
theit der Annahmen fiihrt die Formalisierung auch zu der Wiederverwendbarkeit
von formalisierten Definitionen und Lemmas zur weiteren Forschung. Dabei schafft
dies auch eine solide Grundlage fiir Erweiterungen und verwandte Systeme.

Die Herausforderungen der Arbeit belaufen sich auf einige wesentliche Punkte. In
erster Linie gilt es, die Smoothness-Bedinung korrekt und vollstindig in Coq darzu-
stellen. Dabei ist zu beachten, dass in der propositionalen Logik die Beweisstruktur
endlich ist. Dies fiihrt dazu, dass es bei n atomaren Formeln maximal 2(2") seman-
tisch unterschiedliche Formeln gibt und jede absteigende Kette muss irgendwann
ein minimales Element haben. Mit diesem Wissen ldsst sich dann die Préferenzre-
lation so strukturieren, dass sie automatisch die Smothness-Bedingung erfiillt, was
den Beweis des Reprisentationstheorems vereinfachen sollte. Das wire bei einer
pradikatenlogischen Erweiterung komplexer, da wir hier unendlich viele seman-
tisch unterschiedliche Formeln handhaben miissten. Eine weitere Herausforderung
stellen die genaue Definition der kumulativen Modelle mit ihren Eigenschaften und
die exakte Formalisierung der System C Regeln in Coq dar. Die mathematischen
Definitionen miissen in die strenge Syntax von Coq tibersetzt werden, wobei es oft
mehrere Moglichkeiten gibt, diese mathematischen Konzepte zu kodieren. Dabei ist
zu beachten, dass alle impliziten Annahmen aus einer mathematischen Definition
in Coq explizit gemacht werden miissen. Zudem miissen die Definitionen so gestal-
tet sein, dass sie spdter im Beweis effektiv verwendet werden konnen. Das bedeutet
konkret, dass wir schon friih dariiber eine Entscheidung treffen miissen, wie Konse-
quenzrelationen, Zustdnde, Labeling-Funktion und Praferenzrelation reprasentiert
werden. Letztlich gilt es damit dann die komplexen Beweisschritte im Reprasenta-
tionstheorem zu bewiltigen.

Damit belduft sich das Hauptziel dieser Arbeit auf die Frage: ,, Wie kann das KLM-
Theorem préazise in Coq formalisiert werden?” Mitunter soll dann auch gezeigt wer-
den, wie kumulative Modelle formal dargestellt werden konnen, wie sich das Sys-
tem C in Coq kodieren lasst und wie die Aquivalenz zwischen beiden nachgewie-

sen werden kann. Dafiir werden konkret die Formalisierung der Grundbegriffe, die
Konstruktion des Beweises des KLM-Theorems und die Entwicklung wiederver-
wendbarer Definitionen fiir nichtmonotones Schlieflen behandelt.

Zundchst werden wir uns auf die theoretischen Grundlagen von propositionaler
Logik und nichtmonotonem Schlieflen konzentrieren. Danach wird Coq als Bewei-
sassistent eingefiihrt und beschrieben. Anschlieflend werden wir den geplanten For-
malisierungsansatz benennen und konkrete Implementierungsdetails nennen. Da-
nach widmen wir uns dem Beweis des Reprasentationstheorems. Schlussendlich
werden wir die Ergebnisse des Formalisierungsversuches besprechen und bewer-
ten, bevor wir mit Schlussfolgerungen und einem Ausblick auf mogliche Erweite-
rungen der Formalisierung die Arbeit abschliefien.

2 Theoretische Grundlagen

Im Folgenden werden wir zunéchst die theoretischen Grundlagen dieser Arbeit be-
nennen und verdeutlichen. Dabei werden wir zundchst auf propositionale Logik
und deren Bedeutung in dem Kontext eingehen, bevor wir uns den Eigenschaften
und der Bedeutung der nichtmonotonen Logik widmen.

2.1 Propositionale Logik

In der propositionalen Logik beschéftigen wir uns mit Aussagen, die entweder wahr
T oder falsch L sein kdnnen, nicht beides und nicht keines von beiden. In der Spra-
che £ definiert die Menge der Aussagenvariablen das Alphabet ¥, welches je nach
formaler Definition endlich oder abzdhlbar unendlich ist. Die Aussagenvariablen
sind dabei atomare Aussagen die, nicht weiter zerlegt werden konnen. Beispiele fiir
atomare Aussagen sind , Es regnet” oder , Die Sonne scheint”. Diese werden durch
Variablen wie p, g, r reprasentiert. Formeln der propositionalen Logik werden durch
die Nutzung logischer Konnektive, wie Konjunktion (A), Disjunktion (V), Negation
(=), Implikation (—) und die Aquivalenz (¢+), rekursiv aufgebaut.

Die Syntax der propositionalen Logik beruht auf der induktiven Definition der
Menge der wohlgeformten Formeln (wff) [1].

Diese besagt,

¢ dass jede atomare Aussage p eine Formel ist,
¢ wenn p eine Formel ist, dann ist auch deren Negation —p eine Formel,

¢ wenn p und g Formeln sind dann sind auch deren Konjunktion p A ¢, Disjunk-
tion p V ¢, Implikation p — ¢ und Aquivalenz p < ¢ eine Formel,

¢ und nur Ausdriicke, die durch das endliche Anwenden dieser Regeln gebildet
werden, sind Formeln.

Um Mehrdeutigkeiten bei komplexeren Formeln zu vermeiden, konnen aufSer-
dem Klammern eingesetzt werden. Um jedoch eine Klammerung zu reduzieren,
gibt es die Prdazedenzregeln, die die Starke der Bindung von den jeweiligen Kon-
nektiven festlegt, das heifit, sie geben an, welches Konnektiv in einer Formel zuerst
ausgewertet wird. So bindet — stiarker als V und A und diese wiederum stirker als
— und .

Die Semantik von Formeln in der propositionalen Logik gibt eine Interpretation
an, die jeder atomaren Aussage einen Wahrheitswert zuordnet.

Fiir eine Interpretation v in der Sprache £ gilt daher:

v:X—={T,L}

Damit die Interpretation v auch Wahrheitswerte fiir komplexe Formeln liefern kann,
erweitern wir sie induktiv wie folgt:

v(—p) = T genau dann, wenn v(p

(p) =T und v(q) =
(

(

) =
v(p A q) = T genau dann, wenn v(p) T
p)=Toderv(q) =T
v(p — ¢) = T genau dann, wenn v(p) = T
) =

v(pV q) = T genau dann, wenn v
1 oder v(q) =

v(q)

Dabei ist die Interpretation v ein Modell fiir eine Formel p, geschrieben v = p wenn
v(p) =T gilt.

Dies bedeutet ebenfalls, dass eine Formel erfiillbar ist, wenn diese mindestens ein
Modell hat. Zudem kénnen wir noch Aussagen zu der Tautologie und Kontradikti-
on treffen. Eine Formel ist logisch giiltig (Tautologie), wenn jede Interpretation ein
Modell ist und eine Formel ist eine Kontradiktion, wenn es kein Modell gibt.

v(p <» q) = T genau dann, wenn v(p

Folgend werden wir noch zwei weitere wichtige Eigenschaften der propositionalen
Logik, die logische Aquivalenz und logische Folgerung, erginzen

Die logische Aquivalenz besagt, dass zwei Formeln p und ¢ logisch dquivalent
sind p = ¢, wenn sie fiir jede mogliche Interpretation der Variablen den gleichen
Wahrheitswert haben, also v, v(p) = v(q) fiir jede Interpretation v gilt. Weitere logi-
sche Aquivalenzen der propositionalen Logik sind dabei:

Kommutativitit: PAG=qADp, pVg=qVDp
Assoziativitit: (pAg) Ar=pA(gAT), (pVgVr=pV(gVr)
Distributivitit: pA(gVvVr)=(pAq V(pAT), pV(gAr)=(pVg A(pVT)

De Morgan: =(pAq) =-pV g, =(pVq)=-pA—q
Implikation: p—qg=-pVgq
Kontraposition: pP—q=-qg—p

Fiir die logische Folgerung gilt, dass eine Formel ¢ logisch aus einer anderen Formel
p, geschrieben p |= g, folgt, wenn fiir jede Interpretation v die Wahrheit der Formel
p auch die Wahrheit der Formel ¢ garantiert: v(p) = T, dann auch v(q) = T.

Die logische Folgerung konnen wir ebenfalls noch auf Formelmengen erweitern.
Dabei folgt eine Formel p aus einer Menge von Formeln I', geschrieben I' = p,
wenn fiir jede Interpretation v die Formeln in I' die Wahrheit von p gewéhrleisten:
v(y) = T furalley € ', dann auch v(p) = T.

2.2 Nichtmonotones SchlieBen

Wie schon anfangs erwdhnt handelt es sich bei nichtmonotonem Schliefsen um eine
spezielle Form des logischen Schliefiens, welche es ermdoglicht bei dem Hinzuneh-
men neuer Informationen, schon bereits getroffene Schlussfolgerungen zu revidie-
ren.

Im Folgenden werden wir, fiir diese speziellen Folgerungsbeziehungen, auch Kon-
sequenzrelation genannt, das Symbol |~ nutzen. Damit grenzen wir die nichtmo-
notone Konsequenzrelation von der klassischen logischen Folgerung = ab.

Formal bedeutet dies also, dass eine Konsequenzrelation |~ nichtmonoton ist,
wenn es Formeln a, b, ¢ gibt, fiir die a |~ caber a Ab £ c. Dies steht in dem Ge-
gensatz zur klassischen Logik, wo durch das Hinzuftigen weiterer Pramissen nie
weniger folgen kann. Fiir Beispiel konnen wir uns wieder an dem bereits kurz vor-
gestellten Vogel-Pinguin Beispiel orientieren.

Nehmen wir an, dass wir aus , Tweety ist ein Vogel” folgern, ,, Tweety kann flie-
gen”. Wenn wir dann lernen , Tweety ist ein Pinguin”, miissen wir die vorher ge-
troffene Schlussfolgerung, namlich dass Tweety fliegen kann, zuriickziehen. Dies
spiegelt unsere menschliche Art zu denken wider, da wir stindig unter neuem Wis-
sen Schliisse ziehen und anpassen miissen. Gleichzeitig ermoglicht die Nichtmo-
notonie auch, dass wir mit Ausnahmen und Standards, die ,normalerweise” oder
,blicherweise” gelten, umgehen konnen, im Vergleich zu der klassischen Monoto-
nie, welche nur mit strikten Regeln arbeiten kann. Darum wird a |~ b auch als b
folgt iiblicherweise aus a gelesen. Wir behandeln bei dem nichtmonotonen SchliefSen
also den Umgang mit unvollstandigem Wissen, was es uns ermoglicht, vorlaufige
Schliisse zu ziehen, die dann spéter revidiert werden konnen.

Es kann aber folglich auch zu Konflikten durch solche Ausnahmen kommen. Um
dies genauer darzustellen, mochten wir hier auf das Beispiel der Nixon-Raute [17]
eingehen. Prasident Nixon ist sowohl Quéker als auch Republikaner. Quéker sind
normalerweise pazifistisch, wohingegen Republikaner normalerweise keine Pazifis-
ten sind.

Beispiel 1. Die Nixon-Raute

Fakten:
Quaiker(nizon)

Republikaner(nizon)

Nichtmonotone Regeln:
Quiker(x) p Pazifist(x) (Quaéker sind normalerweise Pazifisten)
Republikaner(z) |~ —Pazifist(z) (Republikaner sind normalerweise

keine Pazifisten)

Wie zu sehen ist, konnen wir nun zwei widerspriichliche, nichtmonotone Schluss-
folgerungen ableiten. Namlich einerseits, dass aus Nixon ist ein Quiiker normalerwei-
se folgt Nixon ist ein Pazifist und andererseits aus Nixon ist ein Republikaner norma-
lerweise folgt Nixon ist kein Pazifist:

Quaker(nizon) |~ Pazifist(nizon)

Republikaner(nizon) | —Pazifist(nixzon)

Dieses Beispiel veranschaulicht gut, dass fiir solch einen Konflikt noch zusitzliche
Mechanismen benétigt werden, um besser mit diesem Umgehen zu konnen. Da-
fiir gibt es einige Konfliktlosungsstrategien, die wir an dieser Stelle kurz vorstellen
wollen. Es konnte gegebenenfalls mit einer Art Spezifitatsprinzip gearbeitet werden,
wo spezifischere Informationen dann den Vorrang haben. Dies wire aber bei dem
obigen Beispiel nur schwer anwendbar, da wir hier nur zwei gleichwertige Informa-
tionen haben. Bei unserem Vogel-Pinguin Beispiel konnte man aber annehmen, dass
,Pinguine fliegen nicht” eine spezifischere Information ist als , Vogel fliegen” wo-
durch diese nicht tibertrumpft werden wiirde. Es gédbe aber auch die Moglichkeit,
nur nicht-kontroverse Schlussfolgerungen zu akzeptieren oder generell Prioritéts-
ordnungen vorzunehmen.

Bevor solche Losungsansatze fiir Konflikte entwickelt werden konnen, miissen
erst einmal die grundlegenden Eigenschaften des nichtmonotonen Schliefien festge-
legt werden. Dafiir stellen Kraus, Lehmann und Magidor nichtmonotone Schlussfol-
gerungssysteme [11]] vor. Diese bestimmen, wie sich nichtmonotone Schlussfolgerun-
gen verhalten sollen und definieren dafiir formale Bedingungen fiir , verniinftiges
nichtmonotones SchliefSen” [11]. Dies stellt sicher, dass die Schlussfolgerungen un-
ter konsistenten neuen Informationen stabil bleiben. Im Folgenden werden wir das
kumulative Schlussfolgerungssystem System C vorstellen.

2.2.1 System C

Das System (ﬂ stellt nach Kraus, Lehmann und Magidor [11] die minimalen Anfor-
derungen an rationales nichtmonotones SchliefSen dar. Es beinhaltet die folgenden
grundlegenden Regeln:

Definition 1 (System C).

(Ref) a |~ a (Reflexivity)
(LLE) Ea :)va ca e (Left Logical Equivalence)
(RW) Fazb chva (Right Weakening)
chb
(Cut) anbpe afrb (Transitivity)
a e
apob alc . -
(CM) Tanb e (Cautious Monotonicity)

Jede dieser Regeln erfiillt einen spezifischen Zweck, um menschliche Denkprozes-
se intuitiv nachzuvollziehen. Um die Regeln zu veranschaulichen, werden wir dafiir
wieder auf das Vogel-Pinguin Beispiel zuriickgreifen und es etwas ergdnzen. Refle-
xivity etabliert dabei die Grundeigenschaft, dass jede Formel sich selber beinhaltet.
Das heifst, fiir unser Beispiel gilt , Vogel sind normalerweise Vogel”, was offensicht-
lich der Fall sein sollte. Left Logical Equivalence hingegen stellt sicher, dass logisch
dquivalente Formeln in den Pramissen ausgetauscht werden konnen. Wenn wir also
,Flugunfdhige Pinguine sind normalerweise Schwimmer” und , Pinguine, die nicht
fliegen konnen, sind das gleiche wie Flugunfihige Pinguine” annehmen, konnen
wir daraus schlussfolgern, dass , Pinguine, die nicht fliegen kénnen, sind normaler-
weise Schwimmer” gilt. Hieran ist gut zu erkennen, dass nur der Inhalt der Pramisse
eine Rolle spielt und nicht ihre syntaktische Form. Dies ermdglicht also auch Um-
formulierungen oder andere Beschreibungen, ohne dabei die Bedeutung einer Pra-
misse zu dndern. Right Weakening erlaubt es uns, schwichere Schlussfolgerungen
von stdrkeren Schlussfolgerungen ableiten zu konnen. Das beutet, wenn wir zum
Beispiel ,Vogel haben normalerweise Fliigel” und ,Fliigel haben Federn” anneh-
men, dann folgt daraus auch , Vogel haben normalerweise Federn”. Dadurch wird
ermoglicht, Schlussfolgerungen aus allgemeineren Eigenschaften zu schlieflen. Die
Cut Regel stellt eine Art von Transitivitdt dar, was wiederum relevant ist, um zwei
separate Schlussfolgerungen zu einer einzigen zu verkniipfen. So schlieffen wir aus
dem Beispiel ,,Vogel konnen normalerweise fliegen” und , Vogel die fliegen, konnen

Das ,,C“ steht hier fiir Cumulative

landen” auch dass , Vogel konnen normalerweise landen” gilt. Damit ist es moglich,
Zwischenschritte in Schlussfolgerungen zu tiiberspringen, um so Wiederholungen
zu vermeiden. Und letztlich stellt Cautious Monotonicity eine eingeschrankte Form
der Monotonie dar. Dabei werden die Einschrankungen der klassischen Monotonie,
dass zusitzliche Pramissen alle bisherigen Schlussfolgerungen enthalten, vermie-
den. Dennoch wird gewéhrleistet, dass die Schlussfolgerungen konsistent bleiben.
Eine eingeschrankte Form der Monotonie bedeutet dabei, dass nur dann eine neue
Pramisse hinzugefiigt werden kann, wenn wir fiir beide Schlussfolgerungen bereits
unabhéngig festgestellt haben, dass diese giiltig sind. Beispielhaft konnen wir also
annehmen, dass , Vogel normalerweise Federn haben” und ,Vogel normalerweise
fliegen konnen” und damit dann ,Vogel, die Federn haben, konnen normalerweise
fliegen” folgern. Hierbei bleibt also die typische Eigenschaft, dass Vogel fliegen kon-
nen, erhalten, auch wenn die weitere typische Eigenschaft von Vogeln, dass diese
Federn haben, hinzugenommen wird.

Wenn es nun eine Konsequenzrelation |~ gibt, die alle Regeln des System C er-
fullt, dann bezeichnen wir diese als eine kumulative Konsequenzrelation. Dabei ist eine
zentrale Eigenschaft kumulativer Konsequenzrelationen, dass diese eine zugrunde-
liegende Logik erfordern, die festlegt, welche Formeln «, b, ¢ in den Regeln verwen-
det werden diirfen. In dieser Arbeit wurde die propositionale Logik als zugrunde-
liegende Logik gewdhlt, da sie einfach zu formalisieren ist und eine gut etablierte
Grundlage fiir die Anwendung kumulativer Regeln bietet.

Es bleiben jedoch die Grenzen der Ausdrucksstiarke. Wenn wir ,,Vogel |~ fliegen”
und ,Pinguine — Vogel” annehmen, erlaubt System C nicht automatisch, ,Pingui-
ne [~ nicht fliegen” abzuleiten. Das bedeutet, System C alleine kann nicht direkt
mit Ausnahmen umgehen.

2.3 Kumulative Modelle

Folgend zeigen wir eine Methode, um das Problem der Ausnahmen fiir ,normalere”
oder , typischere” Zustande zu minimieren. Dafiir stellen wir zundchst kumulative
Modelle vor und definieren diese formal, um dann das Reprasentationstheorem fiir
kumulative Konsequenzrelationen (KLM-Theorem) zu prasentieren.

Definition 2 (Kumulatives Modell). Ein kumulatives Modell wird formal durch ein Tri-
pel W = (S, 1, <), beschrieben, wobei gilt:

o S ist eine Menge, deren Elemente als Zustinde bezeichnet werden.

o [:S — 2W ist die Labeling-Funktion, die jedem Zustand eine nicht-leere Menge von
Welten zuordnet.

* < ist die biniire Priiferenzrelation auf S, die die Smoothness Condition erfiillt:

— Fiir alle Formeln a ist die Menge & = {s | s € S, s [E a} smooth.

Die Zustdnde S in einem kumulativen Modell bilden dabei die Grundlage der se-
mantischen Struktur. Jeder Zustand représentiert eine mogliche Weltbeschreibung
oder Wissenskontexte, wobei dabei zwischen typischen und auflergewohnlichen
Fallen unterschieden wird. Zum Beispiel kann ein Zustand die Information , Vogel”,
und ein anderer Zustand ,Pinguin” reprédsentieren.

Die Labeling-Funktion [ordnet jedem Zustand S eine nicht-leere Menge von Wel-
ten zu. Eine Welt ist hier eine Interpretation, welche jeder atomaren Formel einen
Wahrheitswert zuweist. Das bedeutet, diese definiert, welche Propositionen in wel-
chem Zustand wahr sind. So wiirde ein Zustand , Taube” mit , kann fliegen” ver-
bunden werden, wihrend , Pinguin” mit , kann nicht fliegen” verbunden wird.

Die Priferenzrelation < erfasst dabei die Intuition dariiber, welche Zustiande als
,normal” oder ,typisch” gelten. Das bedeutet, wenn s < ¢ gilt, wird der Zustand
s als normaler oder typischer angesehen als der Zustand ¢. Diese Relation ist irre-
flexiv, das heifdt, kein Zustand steht in Relation mit sich selbst. Konkret wiirde ,,ein
Vogel, der fliegen kann” normalerweise hoher eingestuft als ,,ein Vogel, der ein Pin-
guin ist”, da Letzteres eher eine Ausnahme darstellt. Dadurch wird sichergestellt,
dass Standard-Schlussfolgerungen bevorzugt werden, sofern diese nicht durch an-
derweitige explizite Informationen tiberdeckt werden.

Eine wichtige Eigenschaft der kumulativen Modelle ist die Minimalitit der Préfe-
renzrelation. Dabei bezeichnen wir die minimalen Elemente einer Menge von Zu-
standen, fiir die es keinen noch typischeren Zustand in der Menge gibt:

Definition 3 (Minimale Elemente). Sei A C S eine Menge von Zustinden und < eine
Priiferenzrelation auf S. Die Menge der minimalen Elemente von A beziiglich < ist definiert
als:

ming(A) ={s€ A|fecA:t=<s}

Fiir eine Formel a definieren wir die Menge & als die Menge aller Zustidnde, in
denen a gilt:
a={s|seS sEa}

wobei s = a bedeutet, dass die Formel a im Zustand s erfiillt ist. Formal ist s E a
genau dann, wenn fiir alle Welten w € [(s) gilt: w = a.

2.3.1 Smoothness-Bedingung

Die Smoothness-Bedingung stellt eine weitere wichtige Eigenschaft der Préaferenzre-
lation in den kumulativen Modellen dar. Diese garantiert, dass fiir jede Formelmen-
ge, in welcher es mindestens einen Zustand gibt, auch minimale Elemente beziiglich
der Priferenzrelation existieren. Das bedeutet, dass wir fiir jede Menge von Zustan-
den immer die Typischsten finden konnen. Dies entspricht auch wieder der mensch-
lichen Tendenz, zuerst die typischsten Fille zu betrachten. Wir geben zunéchst an,
wann eine beliebige Menge P als smooth beziiglich einer Relation < betrachtet wird.

Definition 4 (Smoothness-Eigenschaft). Sei P C U eine Menge und < eine bindire Re-
lation auf U. Die Menge P heifst smooth beziiglich < genau dann, wenn fiir alle t € P
entweder t € min~(P) oder es existiert ein s € min(P) mit s < t gilt.

Die intuitive Bedeutung der Smoothness-Eigenschaft ist, dass jedes Element ent-
weder selber minimal ist oder einem minimalen Element untergeordnet ist. Dies
verhindert in der Praferenzrelation problematische Strukturen, wie unendlich ab-
steigende Ketten. In kumulativen Modellen betrachten wir speziell die Mengen der
Form a, also die Menge aller Zustdnde, in denen eine Formel a gilt. Dafiir definieren
wir die Smoothness-Bedingung. Ohne diese Bedingung konnte der Fall eintreten,
dass es keine minimalen Modelle fiir eine Formel geben konnte, was dann wieder-
um die semantische Interpretation der Priferenzrelation unmdglich machen wiirde.

Definition 5 (Smoothness-Bedingung). Sei L die Menge aller Formeln in der Sprache
der propositionalen Logik. Ein Triple (S, 1, <) erfiillt die Smoothness-Bedingung, wenn fiir
jede Formel a € L die Menge a smooth ist.

Im Kontext der propositionalen Logik ist hervorzuheben, dass bei einer endlichen
Anzahl von atomaren Formeln die Smoothness-Bedingung leichter zu handhaben
ist als in allgemeineren logischen Systemen, da es bei n atomaren Formeln maximal
2(2") semantisch unterschiedliche Formeln gibt. Dadurch ist auch jede absteigen-
de Kette in der Priferenzrelation endlich, was wiederum automatisch die Existenz
minimaler Elemente garantiert und damit einen wichtigen Punkt fiir die spétere
Formalisierung in Coq darstellt. Dafiir berufen wir uns auf die Arbeit von Lehmann
und Magidor (1992) [12] in welcher sie klarstellen:

The smoothness condition is only a technical condition. It is satisfied in any
well-founded preferential model, and, in particular, in any finite model. When
the language L is logically finite, we could have limited ourselves to finite mo-
dels and forgotten the smoothness condition.

2.3.2 Konsequenzrelation in kumulativen Modellen

Basierend auf den bisherigen Definitionen kénnen wir nun die Konsequenzrelation
definieren, die durch ein kumulatives Modell bestimmt wird.

Definition 6 (Modellbasierte Konsequenzrelation). Sei W = (S, 1, <) ein kumulatives
Modell. Die durch VY induzierte Konsequenzrelation |~ ist definiert als:

a oy b genau dann, wenn Vs € min<(a) 1 s Eb

Diese Definition besagt, dass b normalerweise aus a folgt, wenn b in allen mi-
nimalen Zustdnden von a gilt. Wir beschrianken uns hier auf die minimalen Zu-
stinde von a, da diese die typischsten Fille reprasentieren wo a gilt. In unserem
Vogel-Pinguin Beispiel wiirde die Aussage , Vogel konnen normalerweise fliegen”
semantisch dadurch reprasentiert, dass die Eigenschaft ,konnen fliegen” in den mi-
nimalsten Zustdnden gilt, welche Vogel beschreiben. Im Gegensatz dazu wiirde die

10

Ausnahme von den Pinguinen nicht in den minimalen Zustdnden enthalten sein,
wodurch die Giiltigkeit der allgemeinen Regel nicht beeinflusst wird. Diese modell-
basierte Definition der Konsequenzrelation entspricht der semantischen Interpreta-
tion der syntaktischen Regeln des System C und das Représentationstheorem von
Kraus, Lehmann und Magidor stellt genau diese Verbindung formal her.

Um zu illustrieren, wie ein kumulatives Modell konstruiert werden kann, grei-
fen wir dafiir auf das vorherige Beispiel [I| zuriick und stellen dafiir die benotigten
Zustande, die Labeling-Funktionen und die Praferenzrelationen dar.

Beispiel 2. Kumulatives Modell fiir die Nixon-Raute
Wir konstruieren ein kumulatives Modell W = (S, [, <) fiir die Nixon-Raute wie folgt:

1. Zustdnde (S): S = {s1, $2, 83, 54, S5}

2. Labeling-Funktion (1), die jedem Zustand eine Menge von Welten zuordnet:

* I(s1) ={w1},

wobei in wy gilt: Quaker(nizon), Republikaner(nizon),Pazifist(nizon)

* I(s2) = {wa},

wobei in wy gilt: Quiker(nizon), Republikaner(nizon), ~Pazifist(nizon)

* l(s3) = {ws},
wobei in ws gilt: Quiker(nizon), mRepublikaner(nixon), Pazifist(nizon)

* I(s4) = {wa},

wobei in wy gilt: ~Quiker(nizon), Republikaner(nizon), ~Pazifist(nizon)
* U(ss) = {ws},
wobei in ws gilt: ~Quiker(nizon), ~Republikaner(nizon), Pazifist(nizon)
3. Priiferenzrelation (<), die typischere Zustinde kennzeichnet:

* s3 < sy (Ein Quiker, der kein Republikaner ist, ist typischer als ein Quiiker, der
Republikaner ist)

* s4 < sy (Ein Republikaner, der kein Qudker ist, ist typischer als ein Republika-
ner, der Quiiker ist)

Betrachten wir nun einige Mengen von Zustinden:
e Fiir die Formel a = Quaiker(nixon) gilt:
- a = {s1, s2, s3} (alle Zustinde, in denen Nixon ein Qudker ist)
- min<(a) = {ss} (der typischste Zustand, in dem Nixon ein Quiiker ist)

e Fiir die Formel b = Republikaner(nizon) gilt:

— b= {s1, 52,54} (alle Zustiinde, in denen Nixon ein Republikaner ist)

— min<(b) = {s4} (der typischste Zustand, in dem Nixon ein Republikaner ist)

Schlussfolgerungen gemdf$ der Definition der modellbasierten Konsequenzrelation:

11

1. Qudker(nixon) p,, Pazifist(nizon), denn:
sg € min<(Quaker(nizon)) und s3 = Pazifist(nizon)

2. Republikaner(nizon) pv,, —Pazifist(nizon), denn:

s4 € min<(Republikaner(nizon)) und s4 = —~Pazifist(nizon)

3. Quaker(nizon) A Republikaner(nizon) hat keine eindeutige Schlussfolgerung be-
ziiglich Pazi fist(nixon), denn:

* Quaiker(nizon) /\/Rgublikaner(m'xon) = {s1,s2}
e min<(Quiker(nizon) A@ublikaner(m’xon)) = {s1, s2}

* Da sy E Pazifist(nizon) aber sy = —Pazifist(nizon), gibt es keine ein-
heitliche Schlussfolgerung.

Beispiel [2| veranschaulicht, wie das kumulative Modell die Nixon-Raute forma-
lisiert. Dabei gilt, dass typische Quéker Pazifisten (s3), und typische Republikaner
keine Pazifisten (s4) sind. Ein Konflikt entsteht, wenn Nixon sowohl Quéker als auch
Republikaner ist, da wir dann zwei minimale Zustdnde haben (s; und s»), die zu
unterschiedlichen Schlussfolgerungen fiihren.

2.4 KLM-Theorem zum Kumulativen SchlieBen

Nachdem wir die syntaktische Charakterisierung kumulativer Konsequenzrelatio-
nen durch System C und die semantische Charakterisierung durch kumulative Mo-
delle eingefiihrt haben, kommen wir nun zum Représentationstheorem selbst.

Im Jahr 1990 wurde das Représentationstheorem fiir kumulative Konsequenzre-
lationen (KLM-Theorem) von Kraus, Lehmann und Magidor vorgestellt und bewie-
sen [11]. Es stellt eine Verbindung zwischen der syntaktischen und semantischen
Ebene her.

Theorem 1 (KLM-Reprasentationstheorem fiir kumulatives Schliefsen). Eine Konse-
quenzrelation |~ ist genau dann eine kumulative Konsequenzrelation, wenn es ein kumula-
tives Modell W = (S, 1, <) gibt, sodass fiir alle Formeln a und b

a v b genau dann, wenn a vy b
gilt.

Die Kernaussage des KLM-Theorems bezieht sich dabei auf die Aquivalenz zwi-
schen kumulativer Konsequenzrelationen und deren Représentierbarkeit durch ku-
mulative Modelle. Dabei konnen wir das Theorem in zwei Richtungen aufteilen:

1. Korrektheit (Soundness): Wenn |~ durch ein kumulatives Modell definiert
ist, dann erfiillt |~ alle Regeln von System C. Das heifit, jede modellbasierte
Konsequenzrelation ist kumulativ.

12

2. Vollstindigkeit (Completeness): Wenn |~ eine kumulative Konsequenzrela-
tion ist, dann existiert ein kumulatives Modell W, sodass |~ genau der durch
W induzierten Konsequenzrelation entspricht.

Damit ist das Theorem zentral fiir nichtmonotones Schliefsen, da es zeigt, dass die
Konsequenzrelation in einem kumulativen Modell nichtmonotones Schliefen pra-
zise darstellen kann. Dabei kann rationales nichtmonotones Schliefien als Préaferenz
fir typischere Situationen verstanden werden, und das Theorem zeigt, dass die
System C Regeln genau die Regeln sind, die mathematisch aus der Préferenzrela-
tion und der dadurch entstandenen Ordnung der Zustdnde folgen. AufSerdem er-
gibt sich durch das KLM-Theorem noch eine praktische Anwendung, da es ermdg-
licht, zwischen syntaktischer und semantischer Ebene zu wechseln. Das bedeutet,
wir konnen Konsequenzrelationen syntaktisch durch die Regeln von System C de-
finieren und {tiberpriifen, andererseits konnen wir sie aber auch semantisch durch
kumulative Modelle interpretieren. Dies ist gerade fiir Beweise von Vorteil, da man-
che Eigenschaften auf der semantischen Ebene einfacher zu beweisen sind, wie zum
Beispiel, wenn wir zeigen wollen, dass eine bestimmte Schlussfolgerung nicht giil-
tig ist. Zudem lasst sich durch das Theorem die Konsistenz einer Wissensbasis mit
nichtmonotonen Schlussregeln sehr gut nachweisen. Wenn wir zeigen konnen, dass
ein kumulatives Modell existiert, welches diese Wissensbasis représentiert, folgt
daraus direkt, dass die darin enthaltenen Schlussregeln mit den System-C-Regeln
konsistent sind.

3 Coq als Beweisassistent

Im Folgenden werden wir den Beweisassistenten Coq vorstellen. Dabei gehen wir
zundchst auf die interaktive Art der Beweise in Coq ein und stellen wesentliche
Unterschiede zu hidndisch formulierten Beweisen und vollautomatisierten Bewei-
sassistenten dar. Nach dieser Einfithrung werden wir uns den Calculus of Inductive
Constructions, welcher die formale Sprache von Coq bildet, genauer ansehen. Zu-
dem stellen wir danach die Spezifikationssprache von Coq Gallina vor, bevor wir
konkret auf die Beweisfithrung anhand von Taktiken eingehen werden.

3.1 Interaktives Beweisen

Das Grundprinzip des interaktiven Beweisens besteht im Wesentlichen aus einem
Zusammenspiel zwischen menschlicher Intuition und maschineller Prazision. Da-
bei kann der Beweisprozess als eine Art Dialog zwischen Mensch und Maschine
gesehen werden. Mit Coq werden die Beweise dabei schrittweise konstruiert und
nicht automatisch erzeugt. Das bedeutet, dass der Mensch die Beweisidee vorgibt
und die Maschine dann die formale Korrektheit jedes Schrittes iiberpriift. Anders
als bei vollautomatischen Beweisassistenten, wie Z3 [7] von Microsoft und Vampire
[10], wo der Beweisprozess vollstindig automatisiert ist, und dadurch kein direk-
ter Benutzereingriff vorgesehen ist. Es ist aber zu beachten, dass vollautomatische

13

Beweisassistenten meist auf einer First Order Logic basieren. Dadurch sind diese we-
niger ausdrucksstark, da keine Quantifikation tiber Funktionen oder Relationen er-
laubt, und keine Mengen oder Typen direkt unterstiitzt sind. Coq, im Vergleich, ar-
beitet auf einer hoheren Typentheorien Logik. Hervorzuheben ist, dass V3 zwar eben-
falls First Order Logic als Grundlage nutzt, jedoch mit zusatzlichen Theorien, wie
Arithmetik und Mengen, arbeitet. Dennoch bleibt die Ausdrucksstarke schwéacher
als bei Typentheorien. Ein weiteres Manko, welches mit First oder Logic einhergeht,
ist dessen Semi-Entscheidbarkeit. Wie wir wissen, gibt es keinen Algorithmus, wel-
cher entscheidet, ob eine beliebige Formel der First Order Logic beweisbar ist. Da-
durch arbeiten diese Theorembeweiser fiir eine automatisierte Theorembewertung
oft mit Heuristiken, wie zum Beispiel bei Instanziierung von Variablen. Fiir einen
Ausdruck ,Fiir alle x” (Vx) wéahlt der Beweisassistent dann zuerst einige ,sinnvol-
le” Werte aus, welche zu einem schnellen Widerspruch fithren kénnten. Das bedeu-
tet auch, dass keine vollstandige Suche moglich ist und bei dem Anwenden von
Regeln dann ,geraten” wird, welche am besten anzuwenden sind. In Coq miissen
Allquantoren explizit behandelt werden, wobei dann wiederum der Benutzer iiber
die Instanziierung entscheidet. Zudem sind vollautomatische Beweisassistenten oft
wenig konstruktiv in ihrer Ausgabe. Sie geben meistens nur ,Ja, ist beweisbar” oder
,,Nein, ist nicht beweisbar” aus und brechen den Beweis nach keinem weiteren Fort-
schritt ab, wodurch der eigentliche Beweis nicht vollstindig nachvollziehbar und
schwer {iberpriifbar ist, also eine Art Black-Box Beweis. Vergleichsweise erzwingt
ein interaktiver Beweisassistent wie Coq eine vollstandige Beweisiiberpriifung und
eine explizite Angabe der Beweisschritte. Dies macht interaktive Beweisassistenten
auch deutlich modularer im Vergleich zu den vollautomatisierten Beweisassisten-
ten, da hier der Beweis in Blocken aufgebaut werden kann und zum Beispiel ver-
schiedene Lemmas definiert werden, welche spater wiederverwendet werden kon-
nen. Bei vollautomatischen Beweisassistenten ist der Benutzer ebenfalls oft auf be-
stimmte Domé&nen beschrankt. So eignet sich zum Beispiel Z3 besonders fiir Satisfia-
bility Modulo Theories, um zu entscheiden, ob eine logische Formel erfiillbar ist, und
Vampire wiederum fiir klassische First Order Logic Theoreme. Dabei sind diese sehr
spezifisch auf eine Doméne optimiert und kénnen nicht auf anderen Doménen ar-
beiten. Hingegen bleibt Coq damit sehr flexibel, da die Doméne von dem Benutzer
formuliert werden kann, was aber wiederum je nach Domédne auch sehr komplex
und aufwendig ist.

Insgesamt ldsst sich erkennen, dass vollautomatische Beweisassistenten leichter
zu nutzen sind. Beide Beweisassistenten erfordern eine gewisse Einarbeitung des
Benutzers, die bei den vollautomatischen Beweisassistenten weniger Aufwand er-
fordert, da der Benutzer nur verstehen muss, wie eine Formel korrekt formuliert
werden kann. Danach erfolgt der Beweisprozess vollautomatisch. In einem interak-
tiven Beweisassistenten wie Coq muss jeder Beweisschritt explizit angegeben wer-
den, was insgesamt viel mehr Verstandnis von Coq erfordert, um korrekt damit ar-
beiten zu kénnen. Es ist folglich viel mehr Handarbeit, aber dafiir ist ein Beweis voll-
standig nachvollziehbar. Vollautomatische Beweisassistenten sind zudem oft unvor-

14

hersehbar. Manche Formeln kénnen in Sekunden gelost werden, dhnliche Formeln
konnen in Stunden nicht gelost werden und Beweise sind nicht immer reproduzier-
bar. Sollte ein Beweis dann auch noch tatsachlich fehlschlagen, ist es eventuell nicht
moglich zu verstehen, warum genau der Beweis fehlschldgt. Da dadurch vollauto-
matische Beweisassistenten ebenfalls oft nicht mit komplexeren Beweisen umgehen
konnen oder diese gar 16sen konnen, eignen sich interaktive Beweisassistenten wie
Coq deutlich mehr fiir hochkomplexe und aufwendige Beweise.

3.2 Calculus of Inductive Constructions

Nun mochten wir die formale Sprache von Coq vorstellen. Der Calculus of Induc-
tive Constructions (CIC) definiert neben der grundlegenden Syntax (Typen, Terme
und Propositionen) ebenfalls Typisierungsregeln, Reduktionsregeln und Regeln fiir
induktive Definitionen. Coq stellt dem Benutzer eine benutzerfreundliche Oberfla-
che und Syntax bereit, um dort Beweise formulieren zu konnen. Diese Eingabe wird
letztlich in CIC-Ausdriicke tibersetzt, welche danach, gemafi den formalen Regeln
des CIC, gepriift werden, ob diese wohlgeformt sind.

Der Ursprung von CIC findet sich in dem einfach typisierten \-Kalkiil aus 1940
von Church [4]. Es fiihrt eine einfache Typenhierarchie ein. Aufbauend darauf wur-
de das polymorphe A-Kalkiil [24] von Girard und Reynolds vorgestellt, welches das
einfach typisierte A-Kalkiil um einen Polymorphismus erweitert. Dieser ermdglicht,
Typen zu quantifizieren und parametrische Funktionen definieren zu kénnen. Ei-
ne weitere Erweiterung dieser stellt der Calculus of Constructions von Coquand und
Huet (1986) [5] dar. Hierbei wird das polymorphe A-Kalkiil um abhédngige Typen er-
weitert. Dies ermoglicht folglich das Formulieren von komplexeren logischen Aus-
sagen. Schlussendlich wird der Calculus of Inductive Constructions von Coquand
und Paulin-Mohring (1990er) [15] eingefiihrt, welcher es zusédtzlich zu dem Calcu-
lus of Constructions ermdglicht, induktive Datentypen direkt zu definieren. Dabei
behilt CIC aber nach wie vor die Kernkonzepte des einfach typisierten A-Kalkiils
bei. Um den CIC formal definieren zu konnen, wird das Konzept der Pure Type Sys-
tems (PTS) [18] verwendet. Dieses bietet einen einheitlichen Rahmen zur Definition
von verschiedenen Typensystemen und definiert dafiir ein typisiertes A\-Kalkiil mit
einer gemeinsamen Syntax fiir Terme und Typen. Dabei erfolgt die Spezifikation des
PTS iiber drei wesentliche Komponenten:

¢ Eine Menge von Sort zum Beispiel Prop, Set, Type; und Type,. Sorts stel-
len die hochste Ebene der Typenhierarchie dar und werden als Klassifizierer
fiir Typen und nicht als Objekte betrachtet.

¢ Axiome, welche wiederum die Typen von Sorts festlegen.
So wédre Prop : Type; und Set : Types. Dabei werden die Sorts selber
wiederum durch andere Sorts typisiert, um eine Hierarchie bilden zu kénnen.

2englisch fiir ,Sorten”

15

Durch diese Hierarchie wird sichergestellt, dass Axiome wie Type : Type,
welche nicht zuldssig wéren, vermieden werden.

* Regeln, um zu bestimmen, welche Produkte gebildet werden kénnen. Diese
Regeln werden durch ein Tripel von Sorts ausgedriickt. Als Beispiel betrachten
wir die Regel (Prop, Prop, Prop). Diese besagt, dass wenn A : Prop
und B : Prop, dannist auch A—B von der Sort Prop.

Der Einfachheit halber werden wir mit Hinblick auf die Cog-Terminologie auch von
, Typ Prop” sprechen, obwohl es sich technisch um eine Sort handelt und betrachten
damit Prop als einen Typ von Typen.

Durch das PTS kann bewiesen werden, dass im CIC keine Widerspriiche abge-
leitet werden konnen. So ist es nicht moglich, sowohl einen Satz als auch dessen
Negation zu beweisen. Wie Paulin-Mohring erldutert , Consistency can be derived as a
consequence because they cannot be a proof without hypothesis of L which has no constric-
tor.” [15] wodurch sich die Konsistenz des Systems ergibt.

Auflerdem kann durch die Struktur des PTS gezeigt werden, dass jeder wohl-
typisierte Term zu einem Normalform-Term, in welchem keine Reduktionen mehr
moglich wéren, reduziert werden kann.

Diese Eigenschaften sind nicht nur entscheidend fiir eine Feststellung in endlicher
Zeit, ob ein Term korrekt typisiert ist, sondern auch fiir die Zuverlassigkeit von Be-
weisassistenten wie Coq. Es erkldrt, weshalb Coq korrekt funktioniert und warum
man den Beweisen, die in Coq formuliert werden, vertrauen kann.

3.2.1 Produkttypen und Funktionstypen

Nachdem wir die Grundkonzepte des Calculus of Inductive Constructions (CIC)
eingefiihrt haben, wenden wir uns nun den Typenkonstruktionen zu. Diese bilden
das Fundament fiir komplexere Strukturen und sind damit entscheidend fiir die
Ausdruckskraft des CIC, wie es spéter bei der Formalisierung des KLM-Theorems
verwendet wird [20]. Wir betrachten zundchst Produkttypen und Funktionstypen und
werden dann die Typenhierarchie des CIC behandeln und in dieser die Typenkon-
struktionen einordnen.

Die Produkt- und Funktionstypen stellen die Grundbausteine fiir die Typentheo-
rie dar und ermoglichen komplexe Typen fiir nichtmonotones Schlieffen, wie es in
unserer Formalisierung von System C und kumulativen Modellen genutzt wird [11].
Damit bilden diese die formale Grundlage fiir logische Strukturen. Zudem charak-
terisieren wir in der Typentheorie Datentypen durch zwei Arten von Regeln. Auf
der einen Seite gibt es Einfiihrungsregeln, welche beschreiben, wie Werte von einem
Typ konstruiert werden kénnen, und auf der anderen Seite haben wir Eliminations-
regeln durch welche festgelegt wird, wie auf solche Werte zugegriffen wird und wie
diese verwendet werden [15].

Die Grundidee bei Produkttypen ist die Kombination zweier Typen zu einem neu-
en Typ, welcher dann geordnete Paare aus den beiden Ausgangstypen enthalt. For-
mal bedeutet dies A x B ist definiert als die Menge aller Paare (a,b) mita € A und

16

b € B, also:
Ax B={(a,b)|a€c Abe B}.

Produkttypen stellen die typentheoretische Umsetzung des kartesischen Produkts
dar und werden in Coq mit 2 * B notiertﬁ Wie auch in der Mengenlehre gibt es
eine Projektion 7, welche es uns ermdglicht, aus einem Objektpaar eines Produkt-
typs A x B einen bestimmten Wert zu extrahieren. Fiir ein Objekt vom Typ A x B,
also dem Paar (a,b), extrahiert die Projektion 7; den Term a und die Projektion 7
den Term b. Dies notieren wir durch 7;(a,b) = a und m2(a,b) = b.

Sei I' der Typisierungskontext, welcher eine Menge von Variablen und ihre zuge-
wiesenen Typen darstellt. Die Notation I' - a : A bedeutet dabei, dass im Kontext I
der Term a den Typ A hat.

Die Einfiihrungsregel fiir Produkttypen [15] lautet damit:

I'a:A TFHb:B
't (a,b): Ax B

und die Eliminationsregeln ergeben sich wie folgt:

I'Fp:AxB I'tp:Ax B
F'Fm(p): A '+ m(p): B

Eine Verallgemeinerung des Produkttypen stellt dabei der abhingige Summentyp
(2-Typ) dar. Der abhédngige Summentyp enthilt Paare (a, b), wobei a vom Typ A und
b vom Typ B(a) ist. Das bedeutet, dass die Abhédngigkeit hier durch B(a) erreicht
wird, da B von a abhédngt. Formal notieren wir abhéngige Summentypen als

Yx: A.B(z) ={(a,b) |a € A,b € B(a)}
zusammen mit der Einfithrungsregel

Tka:A Trb: Ba)
'k (a,b) : Xz : A.B(z)

und den Eliminationsregeln

I'Fp:Xz: A.B(z) 'Fp:Xz: A.B(z)
F'Fm(p): A ['Fma(p) : B(mi(p))

Wie wir erkennen, zeigt die zweite Eliminationsregel einen wichtigen Unterschied
zu gewohnlichen Produkttypen, da der Typ der zweiten Komponente vom Wert der
ersten abhangt. Wenn wir also mit m; (p) die erste Komponente extrahieren, muss de-
ren Wert in den Typ B eingesetzt werden, damit wir den korrekten Typ der zweiten
Komponente erhalten.

’Die eigentliche Definition von Produkttypen ist dabei Inductive prod (A B : Type) und
wird aber mit einer Notation syntaktisch durch « vereinfacht [20].

17

In Coq wird dieser als sigoder {x:A | B x} notiert. Ein Beispiel fiir einen ab-
hiangigen Summentyp ware der Typ aller Paare (n,v), wo n eine nattirliche Zahl
und a ein Vektor der Lange n ist. Die abhdngigen Summentypen ermoglichen damit
die Definition von Typen mit integrierten Invarianten. Zum Beispiel konnten wir in
Coq {n:N | even n} definieren, was im Falle des Typs N der natiirlichen Zahlen
einen Typen definieren, welcher nur alle geraden Zahlen (even) beschreiben wiir-
de. Das Nutzen von diesem neuen Typ wiirde dann garantieren, dass wir nur mit
geraden Zahlen arbeiten, da diese Eigenschaft in dem Typen selber kodiert ist. Wir
verbinden damit also Daten und Metadaten, wie Beweise. Aufierdem wird der ab-
hingige Summentyp dafiir verwendet, um die existenzielle Quantifikation in Coq
umzusetzen. Dies ist genau dann der Fall, wenn B eine Proposition ist, was in Coq
dem Typen Prop entspricht.

Durch die Funktionstypen ist es moglich, Abbildungen zwischen Typen zu definie-
ren. A — B ist definiert als die Menge aller Abbildungen, die jedem Element aus A
genau ein Element aus B zuordnen, das ist formal:

A—-B={f|f:A— B}

Es handelt sich um eine Abbildung, die jedem Element a € A genau ein Element
aus B zuordnet. In Coq notieren wir Funktionstypen mit A —> B. Zu beachten ist,
dass in Coq —> auch als logische Implikation genutzt wird, wenn A und B Proposi-
tionen sind. Bei Funktionstypen verwenden wir die A-Abstraktion, um Funktionen
zu definieren. Der Ausdruck Az : A.t bezeichnet dabei eine Funktion, welche ein
Argument x vom Typ A nimmt und den Term ¢ zuriickgibt.

Somit lautet die Einfiihrungsregel fiir Funktionstypen

Nx:A+b: B
'(Az:Ab): A— B
und die Eliminationsregel lautet:

'f:A— B I'ka:A
'fa:B

Diese Regeln zeigen, wie Funktionen f durch die Abstraktion erstellt werden und
wie sie dann durch die Anwendung verwendet werden. Die Anwendung der Funk-
tion vom Typ A — B auf einem Argument vom Typ A ergibt dabei ein Ergebnis
vom Typ B.

Auch hier gibt es eine verallgemeinerte Form des Funktionstypen, dargestellt
durch den abhingigen Produkttyp (II-Typ). Dabei ist erlaubt, dass der Riickgabetyp
B(z) selber vom Wert des Arguments = anhédngt. Formal geschrieben ist

Iz : AB(x) ={f|Va€ A.f(a) € B(a)}

mit der Einfiihrungsregel

Fz:AFb: B(x)
'FAx:Ab: 1z : A.B(z)

18

und der Eliminationsregel:

- f:llz: AB(x) T'Fa:A
'+ fa: B(a)

Wir notieren dies in Coq als forall x: A,B x.In Coq muss der Typ von x
ebenfalls explizit angegeben werden, in diesem Fall ist es der Typ A. Zu beachten
ist hier, dass durch das Schliisselwort forall nahelegt, dass es sich dabei aus-
schliefllich um die universelle Quantifikation handelt, jedoch beschreibt forall
wiederum nur die universelle Quantifikation (V), wenn es sich bei B um eine Pro-
position (Typ Prop) handelt. Ansonsten nutzt Coq das Schliisselwort allgemein fiir
abhédngige Funktionstypen. Dies ist der Fall da Coq aufgrund des Curry-Howard-
Isomorphismus, welchen wir in der Sektion behandeln werden, die Allquan-
tifikation und abhéngige Funktionstypen als dasselbe Konzept ansieht, jedoch mit
den unterschiedlichen Interpretationen je nachdem ob wir im Bereich der Logik mit
Prop oder mit der Berechnung (Type) arbeiten.

Die grofsere Bedeutung der abhdngigen Typen liegt darin, dass diese es ermdgli-
chen, prazise Eigenschaften direkt im Typ auszudriicken. Dies fiihrt einerseits zu ei-
ner starkeren Typsicherheit und andererseits ermoglicht es mehr dieser Eigenschaf-
ten bereits zu Kompilierzeit zu priifen, anstatt diese zur Laufzeit verifizieren zu
miissen. Dies wird eine wichtige Rolle bei der Implementierung der syntaktischen
Regeln des System C, der Spezifikation der Eigenschaften kumulativer Konsequenz-
relationen und der Konstruktion des kumulativen Modells spielen.

Produkttypen und Funktionstypen erhalten grundsétzlich die hochste Sort-Ebene
ihrer Komponenten, wobei Typenbildungsregeln genau definieren, in welcher Sort
der resultierende Typ liegt.

Fiir Produkttypen gelten die folgenden Typenbildungsregeln:

A :Type;, B :Type; = A X B :Typemax(ij)
A: Prop, B: Prop = AxB: Prop
A:Type;. B: Prop = A x B:Type;

wobei mazx (i, j) den Typen der hoheren Sort-Ebene bestimmt, wodurch die hohe-
re Sort dominant wird. Dies spiegelt die Kumulativitit der Typenhierarchie wider.
Fiir Funktionstypen gelten die folgenden Typenbildungsregeln:

A:Type;, B:Type; = A= B:Typemax(i,j)
A: Prop, B: Prop = A— B:Prop
A :Type;, B: Prop = A— B:Prop

Die letzte Regel zeigt die Besonderheit von Prop. Wenn der Zieltyp B eine Propo-
sition ist, dann ist der gesamte Funktionstyp ebenfalls eine Proposition, unabhingig
davon, welcher Sort der Argumenttyp A angehort. Diese Regel ist eine direkte Kon-
sequenz der Tatsache, dass Prop impradikativ ist, was bedeutet, dass in Prop iiber

19

alle Propositionen qunatifiziert werden darf und diese Quantifikation dann selbst
wieder eine Proposition ist. Damit unterscheidet sich diese Regel von der entspre-
chenden Regel fiir Produkttypen und ermoglicht auch im CIC, dass Quantifikatio-
nen iiber alle Propositionen selber wieder Propositionen sind. Produkt- und Funk-
tionstypen bilden damit die Grundlage fiir das Typsystem des CIC, und ermogli-
chen die Kombination und Transformation von Typen. Dies ist jedoch nicht aus-
reichend fiir komplexere Datenstrukturen wie rekursive Definitionen, da sie in der
Ausdruckskraft fiir selbstreferenzielle oder induktiv definierte Konzepte begrenzt
sind. Sie konnen nicht direkt auf sich selbst verweisen und bieten keine Moglichkeit
fiir eine Fallunterscheidung, was fiir das Definieren induktiver Strukturen benétigt
ist. Dafiir werden wir folgend die Erweiterung des Typsystems, die induktiven De-
finitionen, vorstellen, welche es moglich machen, rekursive Strukturen zu erzeugen
und Definitionen von Datentypen durch deren Konstruktionsweise anzugeben. In-
duktive Definitionen werden ein wichtiges Werkzeug zur Formalisierung des KLM-
Theorems sein, da diese uns erst ermoglichen, die Konsequenzrelationen und Mo-
delle prézise zu definieren.

3.2.2 Induktive Definitionen

Die Erweiterung, welche den Calculus of Constructions zu dem Calculus of Induk-
tive Constructions erweitert, beschreibt die induktiven Definitionen. In Coq werden
diese wiederum durch das Schliisselwort Induct ive definiert. Induktive Definitio-
nen werden dabei verwendet, um Datentypen oder Relationen durch Konstrukto-
ren zu definieren. Die Konstruktoren geben dabei an, wie Objekte eines bestimmten
Typs gebildet werden konnen und konnen als die Bildungsregeln gesehen werden.
Das bedeutet, dass bei der Definition eines induktiven Typs die Konstruktoren mit
angegeben werden miissen. Diese beschreiben, wie die Basiselemente (zum Beispiel
das Startelement) eines Typs aussehen und wie komplexere Elemente aus einfache-
ren gebildet werden kdnnen. Dabei sind Konstruktoren injektiv, da verschiedene
Eingaben verschiedene Ausgaben erzeugen. Auflerdem sind ihre Bilder disjunkt,
da Ausgaben verschiedener Konstruktoren unterschiedlich sind. Jedes Element des
Typs wird dabei durch genau eine Folge von Konstruktoranwendungen erzeugt,
was die Beweisfithrung durch Induktion ermoglicht, da dann alle Félle durch die
Konstruktoren abgedeckt werden. In Coq werden die Konstruktoren durch ,, | “ (pi-
pe) getrennt. Um dies zu verdeutlichen, betrachten wir ein Beispiel von Paulin-
Mohring aus Introduction to the Calculus of Inductive Constructions [15].

Beispiel 3. Induktive Definition
Inductive N : Type :=

| z « N
| S : N —> N.

20

Hier wird der Typ von N, welcher Eigenschaften von natiirlichen Zahlen darstel-
len soll, durch zwei Konstruktoren definiert. Der erste Konstruktor z wird fiir das
Startelement, welches den Basisfall darstellt, definiert. Dieses Element kann ohne
die Verwendung anderer Elemente des Typs konstruiert werden. Wir interpretie-
ren also z als 0, da wir hier N als Reprasentation der natiirlichen Zahlen verstehen
wollen. Die vollstindige Deklaration z : N, gibt an, dass z ein Element vom Typ
N erzeugt. Der zweite Konstruktor S erzeugt aus einem Element von N ein neues
Nachfolge-Element von N. Wir bezeichnen S auch als einen Konstruktor hoherer
Ordnung, da dieser als Argument einen Wert von N hat, welchen er gerade selber
mitdefiniert. Das bedeutet, dass der Konstruktor S rekursiv auf sich selber verweist
und damit unendlich viele Elemente ermoglicht. Die Rekursion liegt bei einer in-
duktiven Definition daher in der Struktur des Typs. Dadurch, dass S die Nachfol-
geoperation abbildet, wird ermoglicht, alle nattirlichen Zahlen (aufler 0) iterativ zu
konstruieren. Der Konstruktor S ist injektiv, das bedeutet, wenn es ein n und m vom
TypNgibtund S n = S mgilt,dann giltauchn = m. Umgekehrt, wenns n # S
mgilt, giltauchn # m. Esist also nicht moglich, dass zwei verschiedene Elemente n
und m durch Anwendung des Konstruktors S zum selben Element werden. Zudem
ist das Bild des Konstruktors s disjunkt von dem Bild von z, denn fiir alle n vom
TypNgilt S n # z,daein Term, der mit S beginnt, niemals gleich z sein kann.

Nach der Einfithrung induktiver Definition stellt sich vielleicht die Frage, wie
Eigenschaften fiir alle Elemente eines induktiven Typs bewiesen werden konnen.
Dafiir generiert Coq fiir jede induktive Definition automatisch das Induktionsprinzip.
Es ist ein grundlegendes Prinzip fiir die Beweisfithrung in Coq und spiegelt die
Struktur der induktiven Definition wider.

Eine wichtige Einschrankung fiir induktive Definitionen stellt die Positivitiitsbe-
dingung [15] dar, welche sicherstellt, dass keine paradoxen Typen definiert werden
konnen.

Definition 7 (Positivitdtsbedingung). Eine induktive Definition ist positiv, wenn der zu
definierende Typ T in allen Konstruktortypen nur in positiven Positionen vorkommt.

Sei T ein zu definierender induktiver Typ mit Konstruktoren cy, . ..,cpvom Typ Cy ..., Cy,.
T erscheint in positiver Position in:

¢ Einem Typ A, wenn T nicht in A vorkommt

e A — B, wenn T nicht in negativer Position in A und positiver Position in B vor-
kommt

o Ilzx : A.B(x), wenn fiir alle a € A, T in positiver Position in B(a) vorkommt.

Durch diese Bedingung wird die Konsistenz des Typsystems sichergestellt. Oh-
ne diese konnten wir paradoxe Definitionen angeben, was wir mit dem folgenden
Beispiel demonstrieren wollen.

21

Beispiel 4. Paradoxer induktiver Typ

Inductive P : Prop :=
| paradox : (P —-> False) —-> P.

Wie in Beispiel 4| zu erkennen ist, liegt P in negativer Position, also links vom
Pfeil, als Argument des Konstruktors vor, was direkt gegen die Positivitdtsbedin-
gung verstofst. Diese Definition wiirde zu einem logischen Widerspruch fiihren, da
wir so einen Beweis von False ohne Annahmen konstruieren konnten. Durch die
Positivitdtsbedingung wird also ebenfalls sichergestellt, dass wir einen wohldefi-
nierten Induktionsschritt haben, was uns nun zum Induktionsprinzip fiihrt.

3.2.3 Das Induktionsprinzip

Jede induktive Definition fiihrt automatisch zu einem korrespondierenden Induk-
tionsprinzip [20]. Konkret formalisiert das Prinzip das Muster von Induktionsbasis
und Induktionsschritt.

Das Induktionsprinzip fiir einen induktiven Typ 7" mit Konstruktoren cy, ..., ¢,
wird automatisch als eine Funktion vom Typ:

T_ind :VP:T — Prop, P_ci—---— P_c, Vo :T,P(x)

generiert, wobei P_c; die Induktionshypothese fiir den Konstruktor ¢; ist. Fiir
jeden rekursiven Aufruf eines Konstruktors gilt:

wenncg; :---— 1T — --- — T lautet,
dannist P_¢;:--- =Vt :T,P(t) = - — P(ci(...,t,...)).

Als Beispiel betrachten wir das Induktionsprinzip des induktiven Typen N. Wir
kennzeichnen das Induktionsprinzip hier mit N; nq.

Beispiel 5. Induktionsprinzip des induktiven Typen N

N_ind : forall P : N —-> Prop,
P z -> (forall n : N, Pn —> P (S n)) —>
forall n : N, P n.

Wie man an der Signatur des Induktionsprinzips erkennen kann, handelt es sich
hierbei um einen abhédngigen Produkttyp. Zuerst wird hier eine Eigenschaft P von
natiirlichen Zahlen N definiert. Eine Eigenschaft ist dabei eine Funktion, welche je-
der nattirlichen Zahl einen Wahrheitswert Prop zuordnet N —> Prop. Zum Bei-
spiel konnte P die Eigenschaft ,ist gerade” oder , ist grofier als 10 darstellen. P z
gibt dann an, dass eine Eigenschaft P fiir z, also nach unserer Definition fiir 0, gilt.
Dies stellt den Basisfall der Induktion dar.

Fiir den Induktionsschritt betrachten wir forall n : N, P n -> P (S n).
Dies sagt aus, dass wenn die Eigenschaft P fiir eine beliebige Zahl n gilt, dann gilt

22

Inductive N: Strukturdefinition

[Konstruktoren: z, S]—»[Neuer Typ: N]—»[Induktionsprinzip}

z Sz S(Sz) —>S(S(Sz) —> -

Daten als strukturelle Grundlage fiir Beweise und Berechnungen

Abbildung 1: Konzeptuelle Darstellung einer induktiven Definition.

diese auch fiir den Nachfolger von n, als fiir S n. Das heifst, wenn zum Beispiel n
+ m = x gilt, dann gilt auch (S n) + m = S x. Zuletzt wird noch die Schluss-
folgerung des Prinzips angegeben, welche aussagt, dass eine Eigenschaft P nach
dem Zutreffen der vorherigen Bedingungen, fiir alle natiirlichen Zahlen gilt. Zu-
sammenfassen besagt das ganze Prinzip also ,,Wenn eine Eigenschaft fiir 0 gilt und
wenn aus der Giiltigkeit fiir eine Zahl n auch die Giiltigkeit fiir n + 1 folgt, dann
gilt die Eigenschaft fiir alle natiirlichen Zahlen”.

Das Induktionsprinzip spiegelt direkt die Konstruktoren von dem Typ N wider,
da N durch z (0) und die S-Operation (Nachfolgefunktion) aufgebaut wird. Dabei
fiihrt jeder Konstruktor zu einer Pramisse im Induktionsprinzip und die Form des
Induktionsschritts wird durch die Struktur der rekursiven Konstruktoren bestimmt.

Abbildung[l]verdeutlicht den konzeptuellen Zusammenhang der induktiven De-
finition N. Aus den definierten Konstruktoren z und S entsteht der neue Typ N, wo-
fur Coq automatisch das Induktionsprinzip generiert. Ebenfalls stellen wir Instan-
zen des Typs dar, welche durch wiederholte Anwendung der Konstruktoren entste-
hen. Diese strukturelle Definition bildet die Grundlage fiir Beweise durch Induktion
als auch fiir Berechnungen mit rekursiven Funktionen auf diesem Typ.

Folgend mochten wir noch auf zwei weitere Beispiele von Paulin-Mohring [15]
eingehen, die auf dem obigen Beispiel aufbauen, um die Relevanz der induktiven
Definition weiter hervorzuheben und weitere wichtige Eigenschaften darzustellen.

Beispiel 6. Induktive Definition als Relation

Inductive le : N -> N -> Prop :=
| lez:Vx, le z x
| leS:Vx y, le x y —> le (S x) (S vy).

Diese Definition deklariert eine bindre Relation 1e auf natiirlichen Zahlen. Dabei
gibt der Typ N -> N -> Prop an, dass zwei natiirliche Zahlen genommen wer-
den und eine Proposition zuriickgegeben werden soll. Wieder definieren die zwei
Konstruktoren, wann diese Relation gilt. Der Konstruktor lez gibt dabei an, dass
z < x fir alle nattirlichen Zahlen x, also 0 ist kleiner oder gleich jeder Zahl, gilt.

23

Der zweite Konstruktor 1eS definiert, dass wenn x < vy gilt, dann gilt auch S =z
< 8§ x. Das bedeutet, auch wenn beide Zahlen erhoht werden, bleibt die Relation
erhalten.

Die <-Relation wird durch ihre grundlegenden Eigenschaften durch die Definiti-
on le charakterisiert, und die kleinste Relation, die diese Regeln erfiillt, ist genau
die mathematische <-Relation.

Beispiel 7. Induktive Definition mit Parametern

Inductive RT A (R : A -=> A —-> Prop) : A -> A -> Prop :=

| RTrefl:V x, RT A R x x

| RTR:V x y, Rxy -—> RT AR XYy

| RTtran:V x y z, RT AR Xx z > RTARzvy —>RTARKXYy.

Bei dieser Definition wird die reflexiv-transitive Hiille einer beliebigen Relation R
auf einem Typ A formalisiert. Erneut gibt hier der Typ A -> A -> Prop an, dass
die neue Relation RT A R ebenfalls eine binidre Relation auf A ist. Dabei ist der Para-
meter A der Basistyp, auf welchem die Relation definiert ist und der Parameter R die
Ausgangsrelation, von der die Hiille gebildet wird. Der erste Konstruktor RTref1l
besagt, dass jedes Element in Relation zu sich selbst steht, dies bedeutet, dass egal
welches Element x von dem Typ A betrachtet wird, immer RT A R x x gilt. Dies
beschreibt die Eigenschaft, dass die reflexiv-transitive Hiille reflexiv ist. Der Kon-
struktor RTR definiert, wenn zwei Elemente x und vy in der Relation R stehen, dann
sind diese auch in der reflexiv-transitiven Hiille RT A R enthalten. Es stellt dabei al-
so sicher, dass die Relation R vollstindig in der reflexiv-transitiven Hiille enthalten
ist. Letztlich implementiert der Konstruktor RTt ran die Transitivitdat. Das bedeu-
tet, wenn ein Element x in Relation zu z steht und z ebenfalls in Relation zu dem
Element y steht, dann steht auch x in Relation zu y.

Diese Definition demonstriert, wie in CIC hoherstufige Definitionen mit Relatio-
nen als Parametern erstellt werden konnen, welche im weiteren Verlauf der Arbeit
noch eine wichtige Rolle spielen werden.

3.2.4 Rekursive Funktionen auf induktiven Typen

Nachdem wir gesehen haben, wie induktive Definitionen Datentypen und Relatio-
nen definieren konnen, wollen wir nun zeigen, wie Funktionen tiber diesen Typen
definiert werden konnen. In Coq werden Funktionen tiber induktive Typen mit dem
Schliisselwort Fixpoint definiert, welches ebenfalls rekursive Definitionen ermog-
licht. Um dies zu veranschaulichen, zeigen wir zwei Beispiele, in denen die Funk-
tionen Operationen iiber den zuvor gezeigten induktiven Typen N definieren.

Beispiel 8. Rekursion Addition auf natiirlichen Zahlen

24

Fixpoint add (n m : N) {struct n} : N :=
match n with

| z =>m
| S p => S (add p m)
end.

Dabei gibt (n m : N) an, dass zwei Eingabeparameter n und m vom Typ N erwar-
tet werden und : N am Ende der Definition, dass der Ausgabeparameter ebenfalls
vom Typ N ist. Wie zu erkennen ist, fithren wir mit diesem Beispiel ebenfalls den
struct-Ausdruck und den match-Ausdruck ein. Der st ruct-Ausdruck gibt an,
tiber welchen Parameter, in diesem Fall n, die Rekursion erfolgen soll. Dies gibt fiir
die Priifung der Rekursion an, dass bei jedem rekursiven Aufruf von add der Para-
meter n verringert werden soll, wir bezeichnen dies auch als den Terminierungsnach-
weis. Der match-Ausdruck wird verwendet, um Pattern-Matching durchfithren zu
konnen. Bei dem Pattern-Matching wird zuerst angegeben, auf welchem Parameter
das Pattern-Matching stattfinden soll, in unserem Fall ist dies der Parameter n. Da-
nach werden die verschiedenen Fille angegeben, im Beispiel sind es zwei Fille, die
auch wieder mit | getrennt werden.

1. Imersten Falln = =z ist das Ergebnis direkt m, der zweite Parameter.

2. Im zweiten Fall n = S p ist das Ergebnis S (add p m), wobei p der Sub-
term von n ist, da p strukturell keiner ist als S p.

Die Eigenschaft ,strukturell kleiner” bedeutet dabei, dass ein Term durch das Ent-
fernen von mindestens einem Konstruktor aus einem anderen Term folgt. Der Ter-
minierungsnachweis garantiert hierbei, dass die Rekursion nicht unendlich ist, da
rekursive Aufrufe nur auf strukturell kleineren Argumenten erlaubt sind. Fiir das
Beispiel bedeutet dies, dass p strukturell kleiner ist als n = S p. Durch das Re-
duzieren des Konstruktors S von n entsteht p. Dabei wird der Ausdruckn = S p
durch Pattern-Matching im zweiten Fall hergeleitet. Der rekursive Aufruf erfolgt
demnach auf einem strukturell kleineren Term im zweiten Fall. Dies ist eine essen-
zielle Bedingung fiir rekursive Aufrufe im CIC, denn sie garantiert, dass rekursive
Funktionen terminieren. Durch rekursive Aufrufe auf strukturell kleineren Termen
werden immer weitere Konstruktoren des Terms reduziert. Dies fiihrt zwangslau-
tig irgendwann immer dazu, bis zum Basiskonstruktor reduziert zu haben, wonach
keine Reduktion mehr moglich ist.

Zur Veranschaulichung der Fixpoint-Definition stellen wir Abbildung [2| vor. Die-
se visualisiert die Hauptkomponenten einer Fixpoint-Definition. Als Eingabe haben
wir den induktiven Typ N, auf welchem die Funktion operiert. Zentral stellen wir
als Verhaltensregel die Fixpoint-Funktion add und deren zwei Hauptfille, welche
tiber den match-Ausdruck ausgewdhlt werden, dar. Der Basisfall add z m = m
liefert direkt ein Ergebnis ohne Rekursion und der rekursive Fall ist der Aufruf auf
dem strukturell kleineren Term (add (S p)m = S (add pm)).In Abhédngigkeit

25

Fixpoint add: Verhaltensdefinition

.
Fixpoint 3 add]—»[TerminierungsnaChweis}

prit
Fall: z (matchn | Fall: s p) [P
<

A
Basisfall: Rekursiver Fall:
add z m = m

add (S p) m = S (add p m)}
’Beispiel: add (S(Sz)) m = S (add (Sz) m) = S (S (add zm)) = S (S m)‘

|
Algorithmen als Verhaltensregeln auf bestehenden Strukturen

Rekursion

. J

Abbildung 2: Konzeptuelle Darstellung einer Fixpoint-Definition mit Rekursionsvi-
sualisierung

zu der Hauptfunktion add steht der Terminierungsnachweis, welcher durch die An-
gabe des strukturell abnehmenden Arguments, in dem Fall von add ist dies st ruct
n, angegeben wird. Er priift, ob bei jedem rekursiven Aufruf tatsdchlich ein struk-
turell kleiner Term verwendet wird. Durch diese strenge Anforderung wird die lo-
gische Konsistenz des Beweissystems sichergestellt. Die Fixpoint-Definition imple-
mentiert demnach das Prinzip der strukturellen Rekursion in Coq und setzt das
Grundprinzip aus dem CIC, dass alle Berechnungen terminieren miissen, praktisch
um.

Nun kommen wir zu einem Beispiel, bei dem nicht unmittelbar offensichtlich ist,
dass die Rekursion terminiert.

Beispiel 9. Rekursion Division mit Restﬁ]

Fixpoint div (a b : N) {struct a} : N » N :=
match b <=? a with
| false => (z, a)
| true => let (g, r) := div (a sub b) b in (S g, r)
end.

Wie zu erkennen ist, erfolgt der rekursive Aufruf auf dem Term (a sub b). Hier
ist aber syntaktisch nicht erkennbar, dass es sich bei dem Term um einen struk-
turell kleineren Term als a handelt, da der Term das Ergebnis einer Berechnung

“Wir setzten hier voraus, dass eine Entscheidungsfunktion <=7 existiert, die bestimmt, ob (le b
a) zutrifft und ebenfalls, dass es eine Definition fiir sub gibt, um zwei Argumente vom Typ N
voneinander subtrahieren zu kénnen. Diese wurden einfachheitshalber nicht explizit angegeben
125].

26

darstellt. Intuitiv ldsst sich erkennen, dass so lange (b > 0) gilt, (a - b) in je-
dem rekursiven Schritt kleiner wird. Das heif$t, irgendwann wird auch der Basisfall
a < b, also dass nicht (b < a) gilt, durch die Rekursion erreicht. Diese intuiti-
ve Erkenntnis ist fiir uns offensichtlich, und wir kénnten davon ausgehen, dass die
Funktion terminiert. Fiir die Anforderungen des CIC reicht dies aber nicht aus, da
die Regeln des CIC auf einer syntaktischen Priifung der rekursiven Elemente basie-
ren. Auch Coq kann, trotz der expliziten {struct a} Anweisung, nicht automa-
tisch priifen, ob die Rekursion tatsdchlich terminiert. Daher ist der Benutzer gefragt,
um eine formale Garantie, also einen Beweis zu liefern, dass der Term (a sub b)
des rekursiven Aufrufs tatsdchlich strukturell kleiner ist als a. Fiir unseren zweiten
Fall, der eintrifft, wenn (b < a) gilt, fithren wir zuséatzlich noch eine lokale Bin-
dungskonstruktion let (q,r) ... in ... ein. Damit werden lokale Variablen
fiir Zwischenergebnisse erzeugt, wobei der Term nach in dann auf diese Variablen
zugreifen kann. Dies entspricht mathematisch: Sei (g, r) das Paar (g der Quotient
und r der Rest), dass sich aus dem rekursiven Aufruf der Division von {2—21 er-
gibt, dann ist das Ergebnis der urspriinglichen Division das Paar (g + 1 ,r),also
der um 1 erhdhte Quotient g mit dem gleichen Rest r. Das Ergebnis ist ein Paar von
dem Typ N, was durch den Riickgabeparameter N » N angegeben wird.

Im Folgenden mochten wir zusammenfassend die Unterschiede und Gemeinsam-
keiten von Inductive und Fixpoint zusammentragen und verdeutlichen. Wah-
rend Inductive genutzt wird, um Datentypen oder Relationen durch dessen Kon-
struktoren zu definieren, definiert Fixpoint wiederum rekursive Funktionen auf
eben diesen induktiven Typen. Damit beschreibt Inductive die Struktur von Ty-
pen, also,,was etwas ist” und Fixpoint das Verhalten von solchen Typen, also ,, was
etwas tut”. Das bedeutet, dass durch Inductive neue Typen und deren dazugeho-
rige Induktionsprinzipien erzeugt werden, und diese nun bestehenden Typen und
deren Struktur dann bei Fixpoint genutzt werden. Dieses Zusammenspiel haben
wir in Abbildung (3| zur Veranschaulichung dargestellt. Dabei enthalten beide De-
finitionen rekursive Elemente. Bei Inductive liegt die Rekursion in der Struktur
des Typen selbst, wahrend bei Fixpoint die Rekursion in der Funktionsdefinition
auftritt. Beide unterliegen in der Rekursion bestimmten Terminierungsbedingun-
gen. Inductive muss dabei Positivitdtsbedingungen erfiillen und Fixpoint muss
strukturelle Verkleinerung nachweisen.

Der Anwendungsbereich beider unterscheidet sich ebenfalls. Inductive wird
fiir Beweisstrukturen und Datentypen verwendet, wobei hingegen Fixpoint fiir
Algorithmen und Berechnungen verwendet wird.

Wie wir sehen, ermoglichen induktive Definitionen und deren rekursive Funktio-
nen die strukturierte Konstruktion mathematischer Objekte sowie die Formulierung
und den Beweis von Eigenschaften iiber diese mittels struktureller Induktion. Die
induktiven Definitionen ermdglichen prézise Strukturierung von Daten und Propo-
sitionen. Fixpoint-Funktionen erlauben dann Berechnungen auf diesen Strukturen.
Dieser Zusammengang ist in Abbildung 3| visualisiert.

Damit bilden diese zusammen das Fundament fiir formale Definitionen und Be-

27

Induktiver Typ:
Erzeugt Typen und

Strukturen

Inductive N : Type :
| z : N
| S : N -> N.

J

ermoglicht BerechnungWI:)eriert auf N(ird von Coq generiert

(. . . \ (. . . 0
Fixpoint Funktion: Induktionsprinzip:
Fixpoint add (nm : N) : N := N_ind : forall P : N —-> Prop,
match n with P z —>
| z =>m (forall n : N, P n —>
| S p =>S (add p m) P (S n)) —>
end. forall n : N, P n.
N J N J
s N
Anwendung:

Il
=S

Theorem plus_0O_r : forall n : N, n add z
Proof.
induction n.
- reflexivity. (x Basisfall x)
- simpl. Anwendung:
rewrite IHn.
reflexivity.
Qed.

- J

Abbildung 3: Beziehung zwischen induktivem Typ, Induktionsprinzip und Fix-
point

weise und bilden zentrale Konzepte des CIC ab.

Nachdem wir nun die grundlegenden Konzepte des CIC, die Produkttypen, Funk-
tionstypen, induktiven Definitionen und rekursive Funktionen vorgestellt haben,
kommen wir nun zum Curry-Howard-Isomorphismus, wo sich die tiefere Bedeu-
tung dieser grundlegenden Konzepte erschliefst. Dieser Isomorphismus stellt eine
Beziehung zwischen Typentheorie und Logik her und erklart, weshalb wir Coq so-
wohl als Programmiersprache als auch als Beweissystem bezeichnen konnen.

3.2.5 Curry-Howard-Isomorphismus im CIC

Der Curry-Howard-Isomorphismus stellt in dem CIC eine fundamentale Verbin-
dung zwischen Logik und Berechnungen dar und findet den Ursprung in den Ar-
beiten von Curry (1934) und Howard (1969). Haskell Curry erkannte die Ahnlich-
keit zwischen der Struktur von Theoremen in der Combinatory Logic [6] und Typen
in der functional Analysis, und William Howard formalisierte spdter diese Bezie-

28

Intuitionistische Logik Typen & Programme

~

Typ T }

{ Proposition P

)
~
Y

[Implikation P = @ Funktionstyp ' — U]

Isomorphismus

[Konjunktion P A @ Produkttyp T' x U]

[Disjunktion P V @ Summentyp 7' + U]

/

k*J —
s
) 'SR

-/

[Beweis von P [Programm vom Typ T]

Abbildung 4: Curry-Howard-Isomorphismus. Formale Korrespondenz zwischen
Beweisen in der intuitionistischen Logik und Programmen im typi-
sierten \-Kalkiil

hung als einen Isomorphismus zwischen Intuitionistic Logic [9] und dem einfachen
typisierten A\-Kalkiil. Spater wurden diese Arbeiten dann als der Curry-Howard-
Isomorphismus bekannt.

Die Grundidee des Curry-Howard-Isomorphismus ist dabei, dass jeder Typ einer
Proposition, und jedes Programm (Term) dieses Typs einem Beweis dieser Proposi-
tion entspricht. Das bedeutet, dass ein Term vom Typ T ein konstruktiver Beweis ist,
dass T wahr ist und es gilt:

¢ die logische Konjunktion (A A B) entspricht Produkttypen (A x B)
¢ die logische Disjunktion (A V B) entspricht Summentypen (A + B)
¢ die logische Implikation (A = B) entspricht Funktionstypen (A — B)

e die universelle Quantifizierung (Vz.P(x)) entspricht abhangigen Produktty-
pen (Ilz : A.P(z))

e die existenzielle Quantifizierung (3z.P(x)) entspricht abhdngigen Summenty-
pen (Xz : A.P(x))

Diese Korrespondenzen ermoglichen die Interpretation von konstruktiven Bewei-
sen als ausfiihrbare Programme.

Abbildung[d]visualisiert die grundlegenden Korrespondenzen des Curry-Howard-
Isomorphismus. Die erweiterten Korrespondenzen mit abhangigen Typen, die fiir

29

die volle Ausdruckskraft des CIC wesentlich sind, umfassen zuséitzlich die univer-
selle Quantifizierung (Vx.P(z)) als abhdngigen Produkttyp (Ilz : A.P(x)) und die
existenzielle Quantifizierung (3z.P(xz)) als abhdngigen Summentyp (Xz : A.P(z)).

Schon der Calculus of Constructions von Coquand und Huet wurde als Erwei-
terung des Curry-Howard-Isomorphismus entwickelt, um sich diese Eigenschaften
zunutze zu machen. Dabei war die Kernidee, ein System zu schaffen, welches so-
wohl als Programmiersprache und auch als Beweissystem dienen kann.

Durch die Erweiterung der grundlegenden Korrespondenz auf induktive Typen
wird dann die Darstellung von Datentypen und induktiven Beweisen ermoglicht:

¢ eininduktiver Typ Inductive I : Prop := c; : T1 | ...| cn : Ty
entspricht einer induktiven Proposition

* jeder Konstruktor c; entspricht einer Bildungsregel fiir die Proposition

¢ das von Coq automatisch erzeugte Induktionsprinzip I;.q, welches zur Durch-
fithrung struktureller Induktionen verwendet wird, entspricht der Eliminati-
onsregel fiir die Proposition

¢ und die Reduktionsregeln fiir das Pattern-Matching entsprechen den Berech-
nungsregeln fiir Beweise.

So reprasentiert zum Beispiel der induktive Typ bool := true | false die
Proposition ,, wahr oder falsch”, der induktive Typ N := z | S N der Indukti-
on {iber natiirliche Zahlen und ein induktiv definiertes Pradikat 1e : N -> N ->
Prop einer bindren Relation auf natiirlichen Zahlen.

Das Induktionsprinzip der induktiven Definitionen wird in dem Curry-Howard-
Isomorphismus als eine spezielle Form der Eliminationsregel fiir induktive Typen
angesehen, welche wir bereits fiir Produkt- und Funktionstypen eingefiihrt haben.
Diese ermoglicht es, einen durch Konstruktoren gebildeten Term systematisch in
seine strukturellen Teilterme zu zerlegen, also die Werte eines Typs zu verwenden.
Dabei werden komplexere Terme entsprechend der induktiven Definition von ih-
rem Typ rekursiv in einfachere Terme aufgeldst und fiir jeden Konstruktor wird de-
finiert, wie aus den Ergebnissen der Teilterme ein Gesamtergebnis zu konstruieren
ist.

Um diesen Prozess zu verdeutlichen, betrachten wir ein konkretes Beispiel der
Addition zweier nattirlicher Zahlen mittels der Eliminationsregel:

Beispiel 10. Anwendung der Eliminationsregel zur Addition

Betrachten wir die Addition n + m mit n = 2 (reprédsentiert als S (S z)) und
m = 3 (reprédsentiert als S (S (S z))). Die Eliminationsregel N_ind wird auf n,
mit dem Basiswert m und der Nachfolgefunktion s fiir den rekursiven Fall, ange-
wendet:

30

add (s (s z))(s (S (S z)))
=N_ind(S (S z)) (S (S (S z))) S

Die Elimination erfolgt durch strukturelle Zerlegung von n:

=Fall s (S z) :rekursiver Aufrufauf S z

=S (N_ind (S z) (S (S (S z))))

= Fall s z : rekursiver Aufruf auf z

=S (s(N_indz (S (S (S z)))))

= Fall z : Riickgabe des Basiswerts S (S (S z))
=S(s(s (s (S z))))

=S (5 (5 (5 (S 2))))

=5

Die Eliminationsregel zerlegt den Term n in seine strukturellen Teilterme, wobei
fiir jeden S-Konstruktor in n ein rekursiver Aufruf erfolgt. Im Basisfall wird der
Wert m zuriickgegeben, und beim Zurtickverfolgen der Rekursion wird fiir jeden
S-Konstruktor in n einmal die Funktion S auf das Zwischenergebnis angewendet.
Dies entspricht der mathematischen Berechnung 2 + 3 = 5.

Letztendlich ermoglicht der Curry-Howard-Isomorphismus und dessen Erwei-
terung durch den CIC, dass sowohl Programmierung als auch formale Beweisfiih-
rungen in Coq moglich sind. Dabei werden Programme und Beweise in derselben
Sprache ausgedriickt und die Beweise wiederum konnen als Korrektheitszertifikate
fur Programme dienen. Auflerdem konnen Programme aus konstruktiven Bewei-
sen extrahiert werden, da konstruktive Beweise implizit Algorithmen enthalten.
Durch dessen Extraktion konnen also die berechnenden Bestandteile des Beweises
isoliert werden, wobei die nicht berechnenden Bestandteile, wie zum Beispiel An-
nahmen, des Beweises entfernt werden. Solch ein Korrektheitsbeweis ist zum Bei-
spiel in der Entwicklungsphase von sicherheitskritischer Software relevant, ermdog-
licht aber auch die Zertifizierung von Programmen. Durch Coq wurde zum Beispiel
der C-Compiler CompCert [13] zertifiziert, wodurch der Complier selbst und dessen
Korrektheit in Coq formal bewiesen wurden.

Wir haben uns in der letzten Sektion bereits durch die Beispiele von Induktive
und Fixpoint angesehen, wie eine Implementierung in Coq moglich ist, ohne uns
dabei die formale Sprache anzusehen. Diese Implementierung wird mit der Spezifi-
kationssprache Gallina vorgenommen, welche wir folgend genauer vorstellen wer-
den.

31

3.3 Gallina als deklarative Programmiersprache von Coq

Der Name ,Gallina” kommt aus dem Italienischen und steht fiir ,Huhn”, eine klei-
ne Anspielung auf Coq was, aus dem Franzosischen stammt und ,Hahn” bedeutet.
Es entstand zusammen mit Coq in den frithen 1990er Jahren durch Coquand, Huet
und Paulin-Mohring [20] und wurde als formale Spezifikationssprache fiir mathe-
matische Definitionen und Beweise in Coq konzipiert. Dabei liegt der Fokus stéar-
ker auf der Ausdruckskraft als auf der Effizienz, da das Hauptziel ist, mathema-
tische Prézision und Beweisbarkeit zu erreichen anstelle von Laufzeitperformanz.
Es muss jedoch auch garantiert sein, dass alle Funktionen nachweisbar terminieren.
Dies wirkt auf den ersten Blick so, als wiirde es die Ausdruckskraft einschrianken,
da nicht alle intuitiv berechenbaren Funktionen direkt ausdriickbar sind, wie wir
bei dem Beispiel Rekursion Division mit Rest gesehen haben. Die Terminierungs-
anforderung dient jedoch primér der logischen Konsistenz, nicht der Effizienz, da
diese paradoxe Definitionen verhindert und garantiert, dass Berechnungen einen
wohldefinierten Wert liefern. Es handelt sich also um strenge Terminierungsanfor-
derungen, die durch den CIC die Eigenschaft mit sich bringen, dass alle rekursiven
Funktionen strukturell rekursiv sein miissen.

Die Ausdruckskraft in Gallina bezieht sich auf die Machtigkeit des Typensystems,
wie abhdngige Typen oder Induktion, und die Fahigkeit, mathematische Konzepte
prézise zu formalisieren. Wir behandeln also eher eine ,,mathematische Ausdrucks-
kraft” als eine ,algorithmische Ausdruckskraft”. Gallina setzt dabei auf starke Typi-
sierung, um Inkonsistenzen zu vermeiden. Das Typsystem verhindert logische Wi-
derspriiche, da jeder Ausdruck wohl-typisiert sein muss, wobei die Typen wieder-
um garantieren, dass nur sinnvolle Operationen moglich sind. So ist es zum Beispiel
nicht moglich, ein N mit einem bool zu multiplizieren. Durch die Typenhierarchie
wird verhindert, dass keine Selbstreferenzen entstehen kénnen und es wird zudem
zwischen Prop, den logischen Formeln, und Type, den Datentypen unterschieden.
Die Typpriifung findet statisch, das heifst zur Compile-Zeit nicht zur Laufzeit statt,
um so Fehler vor der Ausfiithrung aufdecken zu konnen. Dies bietet eine hohere Si-
cherheit fiir beweiskritische Anwendungen. Diese Typpriifung entspricht also der
Beweisverifikation.

Gallina stellt zusammen mit Coq also die Benutzerschnittstelle zum CIC dar. Der
CIC ist dabei die formale Grundlage und Gallina deren konkrete Syntax. Das bedeu-
tet, dass jeder Gallina-Ausdruck intern in CIC-Terme iibersetzt wird. Gallina-Typen
entsprechen direkt den CIC-Typen, Polymorphie und abhingige Typen kommen
auch direkt aus dem CIC und die Typpriifung in Gallina ist die des CIC. Es gibt aber
auch Erweiterungen in Gallina, wie die Record-Typen, welche dann auf induk-
tive Typen im CIC abgebildet werden. Demnach ist die Bedeutung jedes Gallina-
Ausdrucks durch dessen CIC-Interpretation definiert und die logische Konsistenz
und Grenzen von Gallina basieren auf der Konsistenz und den Grenzen des CIC.

32

Kategorie Beispiele

Konstanten z, O, true, nil
Variablen %, n, £, A
Let-Bindungen let x := el in e2

Lambda-Abstraktionen fun x => x + 1,
fun (n : N) => S n

Funktionsanwendungen plus n m

Pattern-Matching match n with

| S p =>95 (add p m)

end

Tabelle 1: Ubersicht iiber Terme

3.3.1 Syntax und Hauptsprachelemente

Da wir in vorherigen Beispielen schon einige Syntaxelemente genutzt haben, moch-
ten wir diese nun noch einmal kategorisieren und genauer benennen und werden
dazu weiter relevante Elemente vorstellen. Gallina unterscheidet dabei zwischen
verschiedenen Arten von Ausdriicken, welche wir in zwei Hauptkategorien eintei-
len konnen. Terme, Ausdriicke, welche berechnet werden, und Typen, die Klassifi-
kation dieser Terme. Die Tabelle[T]fiir Terme und die Tabelle 2|fiir Typen geben einen
Uberblick iiber die wichtigsten Konstrukte, welche ebenfalls eine hohe Relevanz fiir
die spétere Formalisierung des KLM-Theorems haben.

Die Terme représentieren ein konkretes Verhalten oder Berechnungen. Konstan-
ten sind dabei unverianderliche vordefinierte Werte, welche direkt ohne Parameter
verwendet werden konnen, wie unsere Konstante z, welche die natiirliche Zahl Null
darstellt. Hingegen konnen Variablen mit beliebigen Werten eines bestimmten Typs
wihrend des Beweisens belegt werden. So kann n eine beliebige natiirliche Zahl
sein, £ eine Variable fiir eine Funktion, oder A eine Variable fiir einen Typen sein.
Wir bezeichnen n auch als Wertevariable, £ als Funktionsvariable und A als Typen-
variable, was uns demnach die Formulierung von Aussagen und parametrischer
Definitionen ermoglicht. Variablen werden innerhalb eines Bereichs (Scope) durch
Quantoren, lokale Definitionen und Abstraktionen gebunden, was bedeutet, dass
Variablen nicht global existieren, sondern immer nur in einem bestimmten Kon-
text eingefiihrt und dort verwendet werden kénnen. Die Let-Bindung ermoglicht
uns dann lokale Definitionen. Dabei wird in dem Beispiel der Wert von el an x
fiir die Auswertung von e2 gebunden. Lambda-Abstraktionen, mit dem Bezug auf
das A-Kalkiil, definieren anonyme Funktionen ohne explizite Benennung, was die
Definition von Funktionen direkt dort moglich macht, wo sie benétigt werden. Es
werden also Funktionen in einem lokalen Scope definiert, dhnlich wie bei der let-

33

Kategorie Beispiele

Einfache Typen N, bool

Parametrisierte Typen 1list A, prod A B
Produkttypen prod A B

Summentypen option A, sum A B
Funktionstypen N -> bool, N -> N -> N
Abhingige Typen (forall n : N, vector A n)

Propositionale Typen Prop, le n m

Tabelle 2: Ubersicht iiber Typen

Bindung fiir Werte. In den Beispielen kann fun x => x + 1 verwendet werden,
um eine Nachfolgefunktion darzustellen, hier wird einfach ein Wert erhoht. Dies ist
dhnlichwiebei fun (n: N) => S nnurwird hier explizit der Typ von n, ndmlich
N angegeben, um klarzustellen, dass n eine natiirliche Zahl ist, was es ermoglicht,
den Konstruktor S von dem Typ N anzuwenden. Das Pattern-Matching hatten wir
bereits vorgestellt. Es ermoglicht Fallunterscheidungen basierend auf der Struktur
eines Werts. Dabei ist zu beachten, dass alle moglichen Konstruktor-Varianten be-
handelt werden miissen. In unserem Beispiel haben wir fiir die natiirlichen Zahlen
zwischen dem Fall z und S n unterschieden.

Auch Funktionsanwendungen stellen eine wichtige Kategorie von Termen dar.
Dabei wird eine Funktion auf konkrete Argumente zu der Berechnung eines Ergeb-
nisses angewendet. Fiir das Beispiel plus n m bedeutet dies, dass die Addition
auf die Werte n und m angewendet wird (n + m). Hierbei ist die Syntax in Coq
sehr einfach gehalten. Funktionsnamen werden gefolgt von Argumenten, welche
mit Leerzeichen getrennt sind, dargestellt.

Typen klassifizieren Terme und garantieren so deren konsistente Verwendung.
Einfache Typen reprasentieren dabei grundlegende Datenstrukturen ohne Parame-
ter oder Abhdngigkeiten. Dies betrifft unseren Typ N und den Typ bool fiir Wahr-
heitswerte. Wir bezeichnen diese als grundlegend, da diese die Basis fiir komplexere
Typenkonstruktionen bilden. Parametrisierte Typen sind wiederum Typen, welche
durch einen oder mehrere Typparameter angepasst werden konnen. In dem Bei-
spiel stellt 1ist A eine Liste von Elementen des Typs A dar. Dies ist dhnlich zu den
Funktionsanwendungen der Terme, jedoch werden als Parameter anstatt Werten Ty-
pen iibergeben. Zu dieser Kategorie gehoren auch die Produkt- und Summentypen.
Produkttypen werden in Coq mit dem Schliisselwort prod definiert und Summen-
typen konnen entweder mit option oder sum angegeben werden. Summentypen
driicken die Wahl zwischen zwei moglichen Werten aus. Dabei steht opt ion A fiir
einen Wert von Typ A oder None und sum A B fiir einen Wert, entweder vom Typ
A oder vom Typ B. Funktionstypen beschreiben Abbildungen von einem Typen auf
einen anderen. SoistN -> bool eine Abbildung von natiirlichen Zahlen auf Wahr-

34

heitswerte. Es ist ebenfalls moglich, mehrere Argumente anzugeben, wie N -> N
—-> N zeigt. Dabei entspricht dies (N -> (N -> N)), also einer Funktion, die einen
Wert von Typ N nimmt und eine weitere Funktion N -> N zuriickgibt, welche dann
wiederum einen weiteren Wert vom Typ N nimmt und dann das Ergebnis vom Typ
N zuriickgibt. Abhidngige Typen sind Typen, von denen die Definition von Werten
abhangt und nicht nur von anderen Typen. Das Beispiel forall n : N, vector
A n beschreibt einen Vektor vom Typ A mit der Lange n, wobei n vom Typ N ist.
Das Ergebnis von vector A n ist also vom Wert n abhingig. Propositionale Ty-
pen werden in Coq verwendet, um logische Aussagen und Beweise darzustellen.
Der Typ Prop ist der Typ aller beweisbaren Aussagen. Der Typ 1e n mist der Typ
einer Aussage tiber die Eigenschaft ,kleiner gleich” von n und m, wobei der Wert
des Beweises fiir diese Aussage zeigt, dass n kleiner oder gleich m ist. Wenn wir also
zeigen wollen, dass n kleiner gleich m ist, wiirden wir einen Wert vom Typ 1e n m
erzeugen.

3.3.2 Module und Strukturierung

Bei der Modularisierung des Formalierungsprojekts wird die Trennung von Kon-
zepten in logisch zusammenhadngende Einheiten ermoglicht und gleichzeitig erhoht
dies die Wiederverwendbarkeit des Codes in unterschiedlichen Beweisen. Wir redu-
zieren daher die Komplexitit der Formalisierung durch Kapselung und Abstraktion
und erleichtern damit auch die Wartung und das Fortfiihren unserer Formalisierun-
gen.

Wenn wir von Modularisierung sprechen, driicken wir damit aus, dass der Code
in Module zur Codeorganisation aufgeteilt wird. Module sind dann dabei eine Art
Container fiir Definitionen, Theoreme und auch Beweise, welche ebenfalls wieder-
um geschachtelt auftreten konnen und ihren eigenen Namespace besitzen. Coq stellt
dabei die Syntax Module module_name. ...End module_name. zur Verfligung
[2, 20]. Um die Inhalte dann in einem Formalisierungsprojekt nutzen zu kénnen,
werden die Module tiber Import module_name importiert oder direkt tiber das
Modul durch module_name.inhalt angesprochen, wodurch kein expliziter Im-
port benotigt ist.

Um Schnittstellen (Interfaces) fiir die Module zu defininieren bietet Coq die Syntax
Module Type interface_name....End interface_name. Dabei wird durch
Modultypen festgelegt, welche Bestandteile, wie Typen, Konstanten oder Beweise,
ein Modul bereitstellen muss, ohne die konkrete Implementierung vorzugeben. Mo-
dultypen werden in Coq in dem jeweiligen Modul durch Module module_name

interface_name. ...End module_name. angegeben [20], und ermoglicht da-
mit verschiedene Implementierungen derselben Schnittstelle.

Eine weitere niitzliche Eigenschaft in Coq stellt der Record dar, womit wir zu-
sammengehorige Konzepte und deren Daten und Eigenschaften biindeln konnen.
Ein Record kann in Coq mit dem Recordnamen, den Feldern und deren Typen durch
Record record_name := field; : Typi; ...field, : Typen. definiert

35

werden [20]. Um auf die Felder eines Records zuzugreifen, wird die Punktnotation
auf einer Instanz des Record verwendet. Um demnach auf das erste Feld im Record
zuzugreifen, kann zum Beispiel record_instance. (field;) genutzt werden.

Fiir die Trennung des Formalisierung des KLM-Theorems in logische Einheiten
werden diese Eigenschaften von Coq genutzt. Wir werden im spateren Verlauf Ba-
sisklassen fiir System C und die kumulativen Konsequenzrelationen, sowie fiir ku-
mulative Modelle und deren Eigenschaften und Module fiir den Beweis des Re-
prasentationstheorems vorstellen. Diese Strukturierung bietet Vorteile fiir die Be-
weiswartung und orientiert sich an der mathematischen Strukturierung von Kraus,
Lehmann und Magidor [11]. AuSerdem erleichtert die Aufteilung in Module die
schrittweise Verifikation und ermoglicht die unabhédngige Entwicklung und Vali-
dierung einzelner Komponenten [3, 122, 20]. Auch eine potenzielle Erweiterung, bei-
spielsweise auf System P, wird dadurch erleichtert.

Um dem Benutzer die Beweisfiihrung zu vereinfachen, bietet Coq zusétzlich sel-
ber bestimmte Automatisierungstechniken, die sogenannten Tactics, an. Aufgrund
dieser Eigenschaft werden Beweise in Coq auch als semi-automatische Beweise be-
zeichnet.

3.4 Beweisfiihrung mit Taktiken

Die Taktiken dienen dabei als Anweisungen fiir die schrittweise Transformation der
Beweisziele. Das bedeutet konkrekt, dass wir tiber die Taktiken eine Beweisstrategie
vorgeben, wobei Coq dann die Korrektheit verifiziert. Durch das Einsetzten von
Taktiken wird der Beweis dann Stiick fiir Stiick abgearbeitet, wobei die Taktiken
den Beweiszustand verdndern. Dies geschieht so lange, bis alle Beweisziele gelost
sind.

Der Beweiszustand gibt dabei den aktuellen Fortschritt des Beweises an und be-
steht aus dem Kontext und den Beweiszielen. Der Kontext enthilt dabei alle verfiig-
baren Hypothesen, Definitionen und Variablen des Beweises, und jedes Beweisziel
besteht aus einem Typ, welcher bewiesen werden soll. Dabei gilt, dass wir in einem
Beweiszustand auch mehrere offene Beweisziele haben kénnen, welche dann eben-
falls nach einander geldst werden sollen. Je nach der genutzten Entwicklungsumge-
bung (IDE) wird der Beweiszustand etwas anders dargestellt, aber meist wird der
Kontext und die Beweisziele explizit dargestellt, um die Ubersicht {iber den Beweis
behalten zu kénnen.

Der initiale Beweiszustand enthélt dabei nur das zu beweisende Theorem als Be-
weisziel und keine lokalen Hypothesen. Danach liegt es an uns, die korrekten Tak-
tiken fiir die Beweisfithrung anzuwenden und die dadurch neu erzeugten Beweis-
ziele schrittweise zu beweisen. Dies stellt genau die interaktive Beweisfiihrung dar,
welche wir zu Beginn angesprochen hatten. Um den Beweiszustand zu verdandern,
implementieren die Taktiken eine bestimmte Transformation. Das konnen zum Bei-
spiel Taktiken sein, die ein Beweisziel in Teilziele aufteilen, das Hinzufligen neuer
Hypothesen erméglichen und auch das Losen eines Ziels unter bestimmten Bedin-

36

gungen automatisch durchfiihren. Dabei ist auch zu beachten, dass Taktiken eben-
falls fehlschlagen konnen, wenn eine Transformation nicht anwendbar ist.

In Coq wird ein Beweis mit dem Schliisselwort Proof . begonnen und mit Qed.
abgeschlossen. In einer IDE, welche die Darstellung des Beweiszustands unterstiitzt,
kann der Beweis schrittweise durchlaufen werden, wie bei einer Art von Debug-
ging. Dies ermdglicht es, Verdanderungen des Beweiszustands zu tiberwachen und
nachzuvollziehen. Die Darstellung des Beweiszustands ist bei der interaktiven Be-
weisfiihrung ein kritischer Punkt, denn dies gibt Hinweise darauf, welche Taktiken
im nichsten Schritt sinnvoll anzuwenden sein konnten.

3.4.1 Taktiksprache und deren Anwendung

In Coq gibt es eine Vielzahl von verfiigbaren Taktiken [21] von denen wir folgend ei-
nige relevante vorstellen werden. Um einen Uberblick zu verschaffen, haben wir die
Taktiken nach ihrem Funktionsbereich kategorisiert. Tabelle[3|zeigt eine Zusammen-
stellung der Taktiken, die bei der Beweisfiihrung in Coq und bei der Formalisierung
des KLM-Theorems hadufig zum Einsatz kommen.

Die Gruppe der logischen Operationen umfasst Taktiken, welche fiir die Trans-
formation logischer Formeln, wie Pramissen, Implikationen und Quantoren, einge-
setzt werden. Der erste Schritt in einem Beweis sind tiblicherweise die intro und
intros Taktiken, da diese Hypothesen in den Kontext einfiihren. Die Taktik apply
wird dabei genutzt, um ein Theorem oder eine Hypothese auf ein aktuelles Ziel an-
zuwenden, wohingegen exact und assumption direkt eine Losung liefern, wenn
eine passende Hypothese oder ein passender Term aus dem Kontext verfiigbar ist.

Taktiken, die genutzt werden kdnnen, um Aquivalenzen in Beweisen zu zeigen,
haben wir in die Gruppe der Aquivalenzbeweise einsortiert, da diese verschiedene
Aspekte des Umgangs mit Aquivalenzen unterstiitzen. Die Taktik reflexivity
16st dabei einfache Gleichungen der Form n = n und um einen Term mithilfe von
Gleichungen umzuformulieren und zu substituieren, wird die Taktik rewrite an-
geboten. Die Taktik congruence automatisiert einfache Aquivalenzbeweise durch
die Kombination mehrerer Aquivalenzregeln.

Die Gruppe der strukturellen Manipulation umfasst Taktiken, die die Struktur
von Beweiszielen oder Hypothesen anpassen. Dabei zerlegt die Taktik split kon-
junktive Ziele in Teilziele, die bei der Behandlung von Konjunktionen in Regeln wie
zum Beispiel Cautious Monotonicity relevant sein werden. Taktiken wie 1left und
right wiahlen dann eine Seite der Disjunktion aus, zum Beispiel bei der Forma-
lisierung von disjunktiven Pramissen. Die Taktik destruct fiihrt Fallunterschei-
dungen durch, zum Beispiel fiir Hypothesen in Beweisen von System C Regeln, und
induction wendet strukturelle Induktion an, um Beweise iiber induktiv definierte
Strukturen, zum Beispiel auf die Struktur von kumulativen Konsequenzrelationen,
zu fiihren.

Die Taktiken fiir die Kontextmanipulation helfen uns, den Beweiskontext iiber-
sichtlich zu halten. So fithrt assert neue Hypothesen oder Zwischenziele ein, um

37

zum Beispiel Eigenschaften von kumulativen Modellen zu beweisen. Die Taktik
clear entfernt irrelevante Hypothesen, rename benennt Variablen und Hypothe-
sen um, und generalize sowie specialize verallgemeinern oder spezialisieren
Hypothesen, indem spezifische Terme durch Variablen ersetzt werden, um diese in
anderen Kontexten nutzen zu konnen oder um eine allgemeine Hypothese auf einen
konkreten Fall zu beschranken. Um Hypothesen in dem Kontext zu ordnen, konnen
wir die Taktik move anwenden, was bei komplexen Beweisen hilfreich sein kann.
Die Gruppe der Automatisierung umfasst Taktiken, die Beweise teilweise auto-
matisieren. Dabei l6sen auto und eauto einfache Ziele mit vordefinierten Hinwei-
sen, zum Beispiel in Beweisen fiir die Reflexivitdt. Die Taktik tauto beweist logi-
sche Tautologien, und intuition wird genutzt um komplexe logische Ausdriicke
automatisch in deren Bestandteile zu zerlegen, also zum Beispiel um Disjunktionen,
Konkunktionen oder Implikationen aufzuspalten. Dabei werden Einfiihrungs- und
Eliminierungs-Regeln angewendet um Teilziele zu vereinfachen.
Taktik-Kombinatoren (LTCF-Kombinatoren) ermoglichen eine flexible Beweisfiih-
rung. Das Semikolon ; fiihrt Taktiken nacheinander aus, | | kombiniert Alterna-
tiven, und try, versucht Taktiken optional auszufiihren. Der Kombinator repeat
wiederholt Taktiken, bis diese Fehlschlagen oder zu keiner Anderung mehr fiihren
und solve versucht, Ziele vollstandig zu 16sen, in dem es Taktiken anwendet. Soll-
ten Ziele offen bleiben, schldgt solve fehl. Der Kombinator first wahlt die erste
erfolgreiche Taktik aus einer Liste und versucht dann die Taktik auto anzuwenden.

3.5 Semi-automatisches Beweisen

Bei dem semi-automatischen Beweisen ist gefordert, eine gute Balance zwischen
manueller Beweisfithrung durch den Benutzer und der Automatisierung mit Tak-
tiken zu finden. Dies erfordert wiederkehrende Beweismuster, welche sich durch
Taktiken automatisieren lassen, zu erkennen, sowie Unterbeweise technischer Na-
tur, wie zum Beispiel Umformungsschritte, von konzeptionellen Kernbeweisen zu
isolieren. Dabei unterscheiden wir zwischen trivialen Teilzielen, die automatisch
gelost werden, und den komplexen Zielen, welche manuell gefiihrt werden. Fiir
das KLM-Theorem wiirden so zum Beispiel die Eigenschaften kumulativer Konse-
quenzrelationen automatisch gepriift werden konnen, wahrend die Hauptschritte
des Beweises manuell gefiihrt werden.

Es ist ratsam, komplexere Beweise strategisch zu zerlegen. So sollte der Gesamt-
beweis in logische Einheiten mit klaren Abhédngigkeiten aufgeteilt werden, was wie-
derum zu Zwischenzielen mit tiberschaubarer Komplexitat fiihrt. Dabei ist es rele-
vant, eine sinnvolle Reihenfolge fiir diese Teilbeweise festzulegen.

In Coq sind Automatisierungstechniken doméanenspezifisch. Das bedeutet kon-
kret, dass Taktiken fiir bestimmte mathematische Bereiche spezialisiert sind, zum
Beispiel die Taktik ring fiir Algebra und lia fiir lineare Arithmetik.

Es gibt aber auch die Moglichkeit, eigene Taktiken mithilfe der Taktiksprache
Ltac zu definieren. In solch einer Definition kénnen dann wiederum weitere Tak-

38

Taktik

Beschreibung

Logische Operationen

intro, intros

Hypothesen fiir Implikationen/Quantoren einfiithren

apply Theorem auf Beweisziel anwenden

exact Term direkt als Beweisziel angeben
assumption Passende Hypothese aus Kontext nutzen
Aquivalenzsbeweise

reflexivity Aquivalenz durch Reflexivitat beweisen
rewrite Term mit Gleichung umschreiben
congruence Einfache Aquivalenzziele automatisch 16sen

Strukturelle Manipulation

split Konjunktion in Teilziele aufteilen

left, right Seite einer Disjunktion auswéhlen
destruct Fallunterscheidung nach Termstruktur
induction Induktion auf induktive Typen anwenden
Kontextmanipulation

assert Neue Hypothese oder Zwischenziel einfiihren
clear Unnotige Hypothesen entfernen

rename Variablen/Hypothesen umbenennen
generalize Term verallgemeinern

specialize Hypothese spezialisieren

move Hypothesen im Kontext umordnen
Automatisierung

auto Beweis automatisch mit Hints suchen
eauto Erweiterte Suche mit mehr Tiefe

tauto Tautologien der Aussagenlogik beweisen
intuition tauto mit Zerlegung kombinieren

Taktik-Kombinatoren (LCF combinators)

14

[
try
repeat
solve
first

Taktiken nacheinander ausfiihren
Alternative Taktiken ausprobieren

Taktik optional ausfiihren

Taktik wiederholen bis Fehlschlag

Ziel vollstandig 16sen versuchen

Erste erfolgreiche Taktik aus Liste wéhlen

Tabelle 3: Zusammenstellung zentraler Taktiken und Kombinatoren fiir die interak-
tive Beweisfithrung in Coq

39

tiken verwendet werden. Dabei ist es durch Ltac moglich, mat ch-Konstrukte zu
nutzen, um Taktiken abhdngig von Beweiszielen auszufiihren. Auflerdem werden
Konstrukte wie repeat zur Verfligung gestellt, um Schleifen zu erzeugen, womit
eine Taktik so lange zu wiederholt werden kann, bis diese nicht mehr anwendbar
ist. In Ltac kann sogar der Beweisfluss mit den Konstrukten try und fail gesteu-
ert werden. Durch diese Taktiksprache wird nochmals die Wiederverwendbarkeit
verstarkt und es ermoglicht oft hintereinander genutzte Taktiken in einer einzigen
Taktik zu definieren, was wiederum die Komplexitit reduziert.

Auch bei der Verwendung von Taktiken gelten jedoch die bereits zuvor angespro-
chenen Grenzen der vollautomatischen Beweise, welche jedoch stiickweit durch
menschliche Fiihrung tiberwunden werden kénnen. Dies wiederum setzt voraus,
dass fiir die zu fithrenden Beweise ein tiefes semantisches Verstdandnis existiert.

40

4 Formalisierungsansatz

Fir die Formalisierung des KLM-Theorems haben wir uns fiir einen modularen
Aufbau entschieden, dabei gibt es verschiedene Cog-Module fiir die jeweiligen un-
terschiedlichen Aspekte der Formalisierung. Diese Entscheidung basiert auf der
Umsetzung der mathematischen Definitionen aus der Arbeit von Kraus, Lehmann
und Magidor [11]. Wie bereits zahlreich besprochen, beschranken wir uns in dieser
Arbeit auf die Formalisierung des KLM-Theorems mit propositionaler Logik, um
die Komplexitidt, im Vergleich zu einer priddikatenlogischen Formulierung, mog-
lichst gering zu halten. Dies spiegelt sich ebenfalls in der Strategie zur Handha-
bung der Smoothness-Bedingung bei endlichen Mengen semantisch unterschiedli-
cher Formeln aus Kapitel wider. Um die propositionale Logik in Coq zu im-
plementieren, haben wir uns aufSerdem fiir eine bereits existierende Bibliothek ent-
schieden, damit die Grundlagen nicht erneut implementiert werden miissen und
der Fokus auf der Formalisierung des KLM-Theorems bleibt.

4.0.1 Aufbau des Beweises

Um die Formalisierung des KLM-Theorems in Coq zu veranschaulichen, zeigen wir
in Abbildungeine Ubersicht der wichtigsten Bestandteile. Das KLM-Theorem, wie
es von Kraus, Lehmann und Magidor in Theorem 3.25 [11] definiert wurde, sagt
aus, dass eine kumulative Konsequenzrelation (I' : p |~ ¢) genau dann gilt, wenn
sie in einem Modell semantisch erfiillt ist (I' = p |~ ¢). Unsere Formalisierung in
Coq beweist diese Aquivalenz. Die Grafik zeigt, wie wir die mathematischen Kon-
zepte von Kraus, Lehmann und Magidor in Coq umgesetzt haben. Wir tiberneh-
men aus deren Arbeit die kumulative Konsequenzrelation und die Lemmata 3.15
bis 3.24, welche die Eigenschaften des KLM-Theorems definieren. Die Grundlagen
fiir den Beweis stellt die induktive Definition der kumulativen Konsequenzrelation
CumulCons aus KLM_Cumulative.v, zusammen mit den fiinf Regeln fiir Refle-
xivity, Left Logical Equivalence, Right Weakening, Cut und Cautious Monotonici-
ty, welche als Konstruktoren definiert sind, dar. Die semantische Seite, basierend
auf den kumulativen Modellen wird in KLM_Semantics.v definiert. Der Beweis
des KLM-Theorem:s ist in zwei Module nach Kapitel 2.4 aufgeteilt. Ein Modul aus
KLM_Soundness . v implementiert den Soundness Beweis, also kumulative Model-
le erfiillen System C, und ein Modul iibernimmt den Completeness Beweis aus
KLM_Completeness.v, wo gezeigt wird, dass fiir jede kumulative Konsequenz-
relation ein kumulatives Modell existiert.

Die Soundness des KLM-Theorems stellt dabei den weniger komplexen Teil des
Beweises dar. Hier werden wir die Beweisstruktur entlang der fiinf Regeln des Sys-
tem C aufbauen und die Soundness als Induktion iiber die Ableitungsregeln in
CumulCons beweisen. Dafiir werden wir weitere separate Hilfssdtze fiir jede der
fiinf Regeln des System C entwickeln. Diese Hilfssdtze sind in dabei in den Lemmata
soundness_reflexivity, soundness_LLE, soundness_RW, soundness_Cut
und soundness_CM definiert, wie es durch Lemma 3.24 [11] gefordert ist. Fiir den

41

FipphgelEp bwg

e

Coq Theorem KLM Original (1990)
klm_theorem: Theorem 3.25
forall T', p, q.
' :pl~vg<>T|=p |~wgqg

\

Soundness Completeness
Iiphrg=TEpbwaql|_ Tl=p%wq=>1“ P gl

KLM-Theorem]

Lemma 3.24

Lemma 3.23

Syntax Semantics
I :pl~q I''I=p I~w g
(Cumulative Consequence) (Model Entailment)

States, Entailment

Lemma 3.20

Modelle, MinimalElements

KLM_Semantics.v]

“““““““““““““ : Lemma 3.16 E Lemma 3.22 | .
KLM_Base.v] : I
Lemma 3.15 | E

Lemma 3.18

KLM Cumulative.wv
5 Inferenzregeln

KLM_Completeness.v
Kanonisches Modell

KLM_Soundness.v
5 Regeln bewiesen

Abbildung 5: Ubersicht der Formalisierung des KLM-Theorems in Coq
42

eigentlichen Beweis nutzen wir die strukturelle Induktion tiber den Aufbau von
CumulCons. Fiir jeden Konstruktor, also jede der fiinf Regeln des System C, wird
individuell nachgewiesen, dass dessen Eigenschaft im kumulativen Modell gilt. Da-
bei wird die Induktionshypothese jeweils fiir die Teilableitungen angewendet.

Fiir den Completeness-Beweis werden wir ein kanonisches Modell konstruieren,
welches genau die gegebene kumulative Konsequenzrelation représentiert, und ori-
entieren uns hierbei an den Lemmata 3.17 bis 3.23 [11]]. Dabei basiert die Konstruk-
tion des Modells auf maximal konsistenten Mengen, welche als Zustdnde in dem
Modell dienen. Aufierdem zeigen wir in einem Beweisschritt, dass die Smoothness-
Bedingung von dieser Konstruktion erfiillt wird und konstruieren formal die Préfe-
renzrelation des Modells. Auch hier werden wir mehrere Hilfssdtze einfiihren, wel-
che die Eigenschaften maximal konsistenter Mengen und deren Verhalten in Bezug
auf die kumulative Konsequenzrelation widerspiegelt.

Die Formalisierung dieses Teils ist komplexer als der Soundness Beweis und er-
fordert daher verschiedene Zwischenschritte.

4.0.2 Einbinden der Library fiir Propositionale Logik

Fiir die Implementierung der Propositionalen Logik haben wir uns dazu entschie-
den die Library von Dakai Guo und Wensheng Yu aus 2023 [8] einzubinden, wel-
che uns die benétigten Grundlagen der Propositionalen Logik bereitstellt. Die fiir
diese Arbeit relevanten Details befinden sich in den base_pc.v, semantic.v so-
wie syntax.vund complete.v Dateien. Durch die Nutzung der externen Library
konnen wir uns vorrangig auf die eigentliche Formalisierung des KLM-Theorems
fokussieren. Die wichtigsten Komponenten der Library erméglichen dann die De-
finition von Formeln und Wahrheitswerten, das Formulieren von Ableitungsregeln
und eine semantische Interpretation und Folgerungsbeziehung.

4.0.3 Uberblick iiber die Formalisierungsschritte

Die Formalisierung wird in aufeinander aufbauenden, logisch voneinander abhan-
gigen Phasen eingeteilt und in Modulen fiir eine bessere Ubersicht definiert:

1. Definitionen der grundlegenden syntaktischen Elemente, wie die Konsequenz-
relation.

2. Formalisierung des System C und die damit verbundenen fiinf Regeln

3. Implementation der Smoothness-Bedingung als Axiom, unter der Berticksich-
tigung der Besonderheiten im propositionalen Fall.

4. Beweis der Soundness des KLM-Theorems.
5. Beweis der Completeness des KLM-Theorems.

6. Zusammenfiihrung aller Module zum vollstandigen Reprasentationstheorem.

43

4.1 Darstellung der Syntax
4.1.1 Kodierung propositionaler Formeiln

Fiir die Formalisierung werden wir den vordefinierten Datentyp Formula aus der
externen Library verwenden. Formula basiert auf drei Konstruktoren:

e Var n:Dies stellt eine atomare Aussagenvariable dar. Dabei ist n eine natiirli-
che Zahl, welche als Bezeichner benutzt wird. Vvar 0 wére dann zum Beispiel
die Aussagenvariable py.

e Not f: Dieser Konstruktor wird fiir die logische Negation einer Formel £ ge-
nutzt. Dieses Not wird spéter noch durch eine Notation auf das Symbol —
abgebildet, um Negation als —f darstellen zu konnen.

* Contain f1 f£2:Hier reprasentiert der Konstruktor die logische Implikation
von Formel £1 zu £2. Auch hier wird spéter die Notation — eingefiihrt, um
die Implikation als f1 — £2 schreiben zu kénnen.

Aus diesen drei Konstruktoren konnen dann, durch weitere entsprechende Notatio-
nen, auch andere logische Verkniipfungen wie die Konjunktion (A), Disjunktion (V)
und Aquivalenz (++) definiert werden. Dies ist ausreichend fiir die Formalisierung
des KLM-Theorems, da in dieser Arbeit das System C auf propositionaler Logik auf-
baut, die kumulativen Konsequenzrelationen damit definierbar sind und die Syntax
der Arbeit von Kraus, Lehmann und Magidor damit abbildbar ist.

Konkret bedeutet dies, dass wir Formula direkt in unsere Formalisierung in-
tegrieren konnen und damit auch direkt die vorgegebene Typstruktur verwenden
konnen. Damit decken diese propositionalen Formeln die Grundlagen fiir die De-
finition der kumulativen Konsequenzrelation und der kumulativen Modelle und
somit fiir die Formalisierung der Beweisschritte im KLM-Theorem ab. Zudem ist
es ebenfalls nicht notwendig, die bestehende Definition strukturell zu erweitern,
da diese bereits ausreichende Ausdruckskraft besitzt. Auch die Semantik der pro-
positionalen Logik ist bereits in semantic.v formuliert und kann von uns durch
Formula mitgenutzt werden.

4.1.2 Induktive Definition der Syntax

Auch die induktiven Definitionen, auf deren definierte induktive Struktur wir di-
rekt Zugriff haben, werden von besonderer Bedeutung fiir die Beweisfiihrung sein,
da sie strukturelle Induktion tiber Formeln moglich machen, was wiederum die
Grundlage fiir Beweise iiber alle Formeln einer bestimmten Form ist.

Jede Formel ist dabei eindeutig durch ihre Konstruktion tiber ihre Konstrukto-
ren bestimmt. Dabei garantiert die Injektivitdt der Konstruktoren die Eindeutig-
keit, denn es gilt var # Not # Contain. Dies ist fiir exakte Fallunterscheidun-
gen in Beweisen, wie zum Beispiel bei dem Pattern-Matching aus Kapitel

44

entscheidend. Jede Formel fdllt dabei genau in eine Kategorie der Fallunterschei-
dung, und dies dient damit als Grundlage fiir den Beweis, dass Eigenschaften fiir
alle Formeln gelten, indem alle moglichen Konstruktionswege abgedeckt werden.
Das heifit, durch das Pattern-Matching kann garantiert werden, dass alle moglichen
Falle betrachtet werden, was fiir die Vollstindigkeit von Beweisen notwendig ist.

Es gibt noch weitere Definitionen fiir abgeleitete Operatoren. Darunter die Kon-
junktionp A g,dieals—(p — —qg) definiert wird, die Disjunktionp Vv g, welche
wiederum als -p — g definiert ist und die Aquivalenz p < q, definiert als bidi-
rektionale Implikation durch (p — g)A (g — p).

4.1.3 Darstellung von Wahrheitswerten

Die Library stellt ebenfalls eine Implementierung von Wahrheitswerten und ihrer
Semantik zur Verfiigung. Hierbei wird der boolesche Typ bool mit den Werten
true und false genutzt. Durch implementierte boolesche Funktionen wird die
Handhabung der Wahrheitswerte vereinfacht. Wie zum Beispiel die Bewertungs-
funktion value. Diese dient der semantischen Interpretation fiir die Zuordnung
von Wahrheitswerten zu Formeln und ist eine rekursive Definition auf der For-
melstruktur. Die semantischen Eigenschaften von value sind in keep_not und
keep_contain definiert. Diese spezifizieren die korrekte Verhaltensweise der Be-
wertungsfunktion, indem die Negation und Implikation korrekt interpretiert wer-
den. Fiir keep_not v bedeutet das, dass der Wahrheitswert einer negierten Formel
die Negation des Wahrheitswerts der Formel ist. Wahrend keep_contain genutzt
wird, damit der Wahrheitswert den Regeln der klassischen Logik folgt. Nur Funk-
tionen, welche beide dieser Eigenschaften erfiillen, sind semantisch korrekt. Dies
gibt die Grundlage fiir die Definition von Tautologien und semantischem Entail-
ment.

Die Tautologie Tautology p := forallv,valuev — vp = true formalisiert
Formeln, die unter jeder Bewertung wahr sind. Und das semantische Entailment,
gegeben als I' = p, definiert fiir Formeln, das p semantisch aus I' folgt und bildet
damit eine Verbindung zwischen Semantik und Syntax. Die Notation I' wird dabei
eingefiihrt, um eine Menge von Formeln zu reprasentieren, die als vorausgesetzt
oder bekannt sind. Wir nennen I' auch eine Wissensbasis oder den Kontext. Forma-
lisiert ist I" als Ensemble Formula, welches auch leer sein darf. Es definiert, dass
bei jeder Bewertung v, welche alle Formeln in I' zu t rue auswertet, auch p wahr
ist. Dies ist essenziell fiir die semantische Interpretation kumulativer Konsequenz-
relationen und erlaubt die Formalisierung ,,p folgt aus I' unter Berticksichtigung der
minimalen Modelle”.

4.2 Formalisierung von System C

Die Formalisierung des Systems C, wie es von Kraus, Lehmann und Magidor [11]
definiert wurde, bildet eine der Grundlagen der Formalisierung des KLM-Theorem:s.
System C stellt die minimalen Anforderungen an nichtmonotones Schliefsen dar

45

0 J o b W N

==
N P O O

und wird in Coq durch den induktiven Typ CumulCons umgesetzt, der die kumula-
tive Konsequenzrelation reprasentiert. Mit einer Wissensbasis vom Typ Ensemble
Formula und den funf Grundregeln (Ref, LLE, RW, Cut, CM) konnen wir die nicht-
monotone Logik prézise in Coq abbilden. Die folgenden Abschnitte beschreiben die
Implementierung der Regeln, eine intuitive Notation, eine benutzerdefinierte Taktik
zur Vereinfachung von Beweisen sowie Beispiele fiir Ableitungen im System C.

4.2.1 Formalisierung der fiinf Grundregeln

Wir implementieren das System C zusammen mit den fiinf Grundregeln als den
induktiven Typen CumulCons, welcher direkt die kumulative Konsequenzrelation
darstellt. Dies ermoglicht es, die Inferenzregeln direkt als die Konstruktoren des in-
duktiven Typen abzubilden. Aufferdem unterstiitzen wir damit die strukturelle In-
duktion fiir Beweise, und Coq generiert dafiir wiederum die Induktionsprinzipien.
Zudem haben wir das Ensemble Formula, statt einer Liste genutzt, um ebenfalls
Mengeneigenschaften direkt nutzen zu konnen und somit auch Duplikate oder ei-
ne Reihenfolgeproblematik zu verhindern. Der Typ der Relation CumulCons nimmt
drei Parameter. ZuerstI' vom Typ Ensemble Formula, welcher unsere Wissensba-
sis darstellt, welche die gemeinsamen Annahmen enthélt und danach zwei Formeln
p und g vom Typ Formula, welche die Pramisse und die Konklusion der nichtmo-
notonen Folgerung darstellen. Der Riickgabetyp Prop wird dabei verwendet, um
Propositionen, die bewiesen werden konnen, und die Relation als logische Eigen-
schaft, statt einer berechenbaren Funktion, darzustellen. Entgegen der mathemati-
schen Definition von Kraus, Lehmann und Magidor fithren wir die Wissensbasis
ein, um den Kontext, welcher sonst nur implizit angenommen wird, in Coq explizit
darstellen zu konnen, da Coq prézise Definitionen erfordert. Damit konnen wir in
Coq Formeln voraussetzen, welche als Annahmen oder Hintergrundwissen dienen.

Fiir die Konstruktornamen haben wir uns ebenfalls an der mathematischen No-
tation orientiert.

Definition 8. Kumulative Konsequenzrelation und System C in Coq

Inductive CumulCons

Ensemble Formula —-> Formula -> Formula —-> Prop :=

| Ref : forall T p,
CumulCons I' p p

| LLE : forall I' p g r,
In Formula I' (p < q) —>
CumulCons I' p r —>
CumulCons I' g r

| RW : forall ' p g r,
In Formula I' (p — q) —>
CumulCons I' r p —>
CumulCons I' r g

46

13
14
15
16
17
18
19
20

| Cut : forall I' p g r,

CumulCons I' (p A q) ¢ —>
CumulCons I' p g —>
CumulCons I' p r

| CM : forall I' p q r,
CumulCons I' p g —>
CumulCons I' p r —>
CumulCons I' (p A q) r.

Der Re f-Konstruktor ist durch universelle Quantifizierung tiber alle Formeln im-
plementiert. Dabei wird der Parameter p zweimal genutzt, um die Reflexivitit aus-
zudriicken. Zu beachten ist, dass wir hier keine Vorbedingung formulieren, da die
Reflexivitdt immer gelten soll.

Fiir den LLE-Konstruktor nutzen wir drei Formeln (p, g, r) fiir die Aquivalenz
und Folgerung. Dabei sagt In Formula I' (p ¢ g) aus, dass die Aquivalenz
ein Element der Wissensbasis sein muss und der Typ der Wissensbasis Formula
sein soll. Dies erfiillt die Bedingung der LLE-Regel, dass die Aquivalenz als Vor-
aussetzung bekannt sein muss, bzw. wir wissen, dass p und g dquivalent sind.
Als zweite Pramisse nutzen wir nach der LLE-Regel und der induktiven Struktur
den rekursiven Aufruf von CumulCons, um darzustellen, dass die neue Folgerung
CumulCons I' g r von einer bereits bestehenden Folgerung I' p r abhéngt.

Die Definition des RwW-Konstruktors hat eine dhnliche Struktur wie schon der LLE-
Konstruktor, nur mit einer Implikation statt der Aquivalenz. Wir verwenden In
Formula I' (p — g) wieder fiir die Implikation aus der Wissensbasis. Danach
erfolgt ebenfalls der rekursive Aufruf von CumulCons I' r p als weitere Pramisse
fur die Folgerung CumulCons I' r q.

Der Cut-Konstruktor definiert zwei rekursive Aufrufe von CumulCons als Pra-
missen. Dabei verwenden wir bei CumulCons I' (p A q) r die Konjunktion aus
der externen Library. Mit den beiden Pramissen und der daraus ableitbaren Folge-
rung beschreiben wir die Transitivitdt der Cut-Regel aus.

Letztlich definieren wir noch den CM-Konstruktor, welcher die Eigenschaften der
Cautious Monotonicity reprasentiert. Dabei fithren wir wieder wie bei dem Cut-
Konstruktor zwei Pramissen ein, die zu der Folgerung CumulCons I' (p A q) r
fithren. Auch dies entspricht wieder wie bei allen anderen Konstruktoren der ma-
thematischen Definition der Regeln aus Kapitel Hierbei ldsst sich gut erken-
nen, dass die Cut-Regel erlaubt, eine Konjunktion aus den Pramissen zu entfernen,
wihrend Cautious Monotonicity es ermoglicht, eine Konjunktion in die Pramissen
einzufiihren.

4.2.2 Definition kumulativer Konsequenzrelationen

Fiir die kumulative Konsequenzrelation fithren wir ebenfalls eine intuitive Notation
zur besseren Lesbarkeit ein.

Notation 1. Die kumulative Konsequenzrelation

47

1

g w N

o U1 W N

Notation "I' : p |~ g" := (CumulCons I' p gq) (at level 80).

Mit dieser Notation sagen wir aus, dass unter der Wissensbasis I', g normalerwei-
se aus p folgt. Der Parameter at level N bestimmt in Coq die Bindungsstarke
des Operators, um festzulegen, wie die Notation in Ausdriicken geparst wird, also
wie Coq Ausdriicke ohne Klammern interpretiert. Dabei stellen niedrigere Zahlen
eine stiarkere Bindung dar. Wir wollen hier die kumulative Konsequenzrelation als
top-level Operator, welcher eine Beziehung zwischen einer Menge I" und zwei For-
meln, p und g, darstellen. Die schwache Bindung (1evel 80) stellt dabei sicher,
dass andere Operatoren wie fiir die Implikation oder Aquivalenz innerhalb von p
und g zuerst geparst werden, ohne dass weitere Klammern nétig werden. Fiir die
Bindungsstéarke orientieren wir uns an der Library von Guo und Yu [§].

4.2.3 Hilfsséatze zu den Regeln

Wir stellen auflerdem eine eigene Taktik, die mit Ltac formuliert ist, zur Verfiigung.
Diese dient der Vereinfachung von der Beweisfithrung mit kumulativen Konse-
quenzrelationen.

Ltac solve_cumul :=
match goal with
| |- CumulCons _ _ _ => constructor; solve_cumul
| _ => try assumption

end.

Diese Taktik wird verwendet, um einen passenden Konstruktor von CumulCons ba-
sierend auf dem Beweisziel anzuwenden. Unterziele werden dabei rekursiv, durch
erneutes Anwenden der Taktik, gelost und assumpt ion wird verwendet, um ver-
bleibende Ziele mit passenden Hypothesen zu beweisen. Sollte es jedoch keine pas-
sende Hypothese geben, wiirde ein Fehler auftreten, welchen wir mit t ry abfangen.
Durch die Taktik solve_cumul konnen sich wiederholende Beweisschritte redu-
ziert werden, was ebenfalls die Lesbarkeit komplexerer Beweise erheblich verbes-
sert und konnen uns so auf die relevanten Aspekte des Beweises, statt auf technische
Details, fokussieren.

Kommen wir nun zu Anwendungsbeispielen fiir zwei der bereits definierten Re-
geln. Zunéchst stellen wir ein einfaches Beispiel fiir die Anwendung der Reflexivi-
tatsregel vor.

Beispiel 11. Einfache Anwendung von solve_cumul fiir Reflexivity

Example simple_reflexivity

forall I'y I' : (vVar 0) |~ (Var 0).
Proof.

intros.

solve_cumul.
Qed.

48

W 00 J o U1 P W N -

P O W 0 J o O b W N -

=

Wir nutzen hier solve_ cumul, um direkt einen der Konstruktoren von CumulCons
anzuwenden. Der korrekt zu nutzende Konstruktor wére hier der Konstruktor REF
und solve_cumul wahlt dann diesen als passenden aus. Wenn wir den Beweis je-
doch manuell fithren wollten, wiirden wir apply REF . aufrufen. Der Vorteil hier-
bei ist, dass wir erstmal nicht direkt wissen miissen, welcher der passend anzuwen-
dende Konstruktor ist.

Ein weiteres Beispiel zeigt die Anwendung der Regel fiir Cautious Monotonicity
(CM), die es erlaubt, eine Konjunktion in die Pradmisse einzufiihren.

Beispiel 12. Anwendung von solve_cumul fiir Cautious Monotonicity

Example simple_CM
forall I' p g r,
':pl~qg-—>
' : pl~1r —>
r: (AN aq I|~r.
Proof.
intros.
solve_cumul.
Qed.

In diesem Beispiel verwenden wir solve_cumul, um den CM-Konstruktor des in-
duktiven Typen CumulCons anzuwenden. Die Taktik erkennt, dass die Vorausset-
zungen' : p |~ gqundI' : p |~ r gegeben sind, und wihlt CM, um die Fol-
gerung I' : (p A q) |~ r zu beweisen. Ein manueller Beweis wiirde apply
CM. verwenden. Dieses Beispiel illustriert, wie solve_cumul die Beweisfithrung
vereinfacht, was besonders in komplexeren Beweisen, wie der Korrektheit von CM
in unserer Formalisierung, niitzlich ist [11].

Ein komplexeres Beispiel kombiniert die Regeln fiir Cautious Monotonicity (CM)
und Right Weakening (RW), um die Interaktion von Wissensbasis und nichtmonoto-
nem SchliefSen zu zeigen.

Beispiel 13. Kombination von CMund RW

Example CM_RW_example
forall ' p g r s,
In Formula I' (r —» s) —>
I':pl~qg—>
I' :p|l~1r —>
': (pANg I~ s.
Proof.
intros I' p g r s H_impl H p_g H_p_r.
apply CM.
- exact H_p_g.
- apply RW with r.

49

12
13
14

g w N

+ exact H_impl.
+ exact H_p_r.
Qed.

In diesem Beispiel zeigen wir, wie RW und CM zusammenwirken, um eine komplexe
Folgerung abzuleiten. Die Wissensbasis I' enthélt die Implikation r — s, und wir
nehmenan,dassI' : p |~ gqundI' : p |~ rgelten. Zielistes,I' : (p A q)
|~ s zu beweisen. Wir wenden CM an, um die Pramissen " : p |~ qund T

p |~ szunutzen Firl' : p |~ sverwendenwirRW,dar — sinI liegtund
I' : p |~ r gegeben ist. Alternativ konnte solve_cumul den CM-Konstruktor
anwenden, aber RW erfordert explizite Angabe der Implikation. Ein praktisches Bei-
spiel verdeutlicht dies: Sei p = ,,Es ist ein Vogel”, g = ,Es hat Federn”, r = ,Es hat
Fliigel”, s =, Es kann sich fortbewegen” und r — s =, Alles mit Fliigeln kann sich
fortbewegen” in I'. Dann folgt, dass wenn Vogel iiblicherweise Federn und Fliigel
haben, kann ein befiederter Vogel sich tiblicherweise fortbewegen. Dieses Beispiel
zeigt die Stiarke der KLM-Regeln, da RW Wissen mit nichtmonotonem Schliefien
kombiniert und CM die Pramisse durch eine Konjunktion verstarkt.

4.3 Modellierung kumulativer Modelle

Fiir die Formalisierung des kumulativen Modells haben wir uns fiir einen Record-
Typ entschieden. Dies gibt uns Vorteile gegeniiber separaten Definitionen oder in-
duktiven Typen. Die zusammengehorigen Komponenten des Modells sind in einem
Record als benannte Felder gebiindelt, auf welche durch automatische Projektion
zugegriffen werden kann.

Definition 9. Kumulative Modelle

Record CumulModel : Type := {
States : Type;
Labeling : States —-> State;
PreferenceRel : States —> States —-> Prop;

Fir die Zustinde States haben wir uns entschieden, diese als abstrakten Type
zu definieren. Dies gibt uns spéter die Flexibilitét fiir verschiedene Modellierungs-
ansitze und bietet uns die Moglichkeit konkrete Instanzen nach Bedarf zu erstellen.

Die Funktion Labeling stellt eine direkte Abbildung der Labeling-Funktion aus
der KLM-Definition dar. Dabei ist State eine Funktion, die jeder Formel einen
Wahrheitswert zuordnet.

Definition 10. Zustand als Wahrheitsbelegung fiir Formeln

Definition State := Formula -> bool

50

<~ o O W N

Damit stellt Labe11ing eine funktionale Implementierung dar, da sie jedem Zustand
direkt eine Interpretationsfunktion gibt. Die implementierte Labeling-Funktion ist
zudem ebenfalls auf propositionale Logik angepasst und vereinfacht, da jede Welt
genau einer Wahrheitswertzuweisung entspricht und fiir jede Menge von Welten
eine kanonische Welt gewahlt werden kann, welche dieselben Formeln erfiillt. Das
bedeutet, wir reduzieren eine Menge von Welten zu einer repréasentativen Welt. Fiir
das Représentationstheorem ist dies ausreichend, da nur die Information benétigt
wird, welche Formeln in welchem Zustand gelten. Damit reduzieren wir auch die
Komplexitidt der Formalisierung, ohne den Verlust wichtiger Eigenschaften.

Die Préferenzrelation PreferenceRel wird als bindre Relation vom Typ Prop
implementiert. Dabei gibt es in dem Record-Typen erst einmal keine Einschrankung
in der Definition, denn dieser enthdlt eben nur diesen Typen. Die Eigenschaften
wie das Erfiillen der Smoothness-Bedingung formulieren wir spéter als separate
Axiome. Diese Eigenschaften werden dann nicht bei dem Record-Typen gefordert,
sondern erst bei dessen Verwendung. Damit erhalten wir eine Trennung zwischen
Strukturen und Eigenschaften und bleiben modular im Aufbau des Beweises. Wiir-
den wir die Figenschaften in dem Record-Typen direkt implementieren, miissten
wir bei jeder Modellkonstruktion direkt alle diese Eigenschaften nachweisen, was
die Beweise sehr viel komplexer machen wiirde.

Die Grundlage fiir die Auswertung von Formeln haben wir mit der Definition
von entails geschaffen. Dabei handelt es sich um eine Fixpoint-Definition fiir die
rekursive Auswertung der Formelstruktur.

Definition 11. Entailment in Coq

Fixpoint entails (state : State) (formula : Formula)
Prop :=
match formula with
| Var n => state formula = true
| Not p => ~(entails state p)
| Contain pl p2 => entails state pl —-> entails state p2
end.

Im Basisfall fiir eine Variable Vvar n, wird der Wahrheitswert direkt aus dem Zu-
stand ausgelesen und damit gepriift, ob der Zustand der Variablen den Wert t rue
zuweist. Hier benotigen wir keine Rekursion, da die atomaren Variablen die Ba-
sisbausteine darstellen. In dem rekursiven Fall fiir die Negation Not p wird erst
p rekursiv ausgewertet und dann wird das logische Komplement daraus gebildet.
Den letzten rekursiven Fall geben wir fiir die Implikation an. Dabei wird eine Im-
plikation durch Rekursion auf beiden Teilformeln ausgewertet. Durch die Fixpoint-
Definition von entails erhalten wir ein direktes Ergebnis, also einen Wahrheits-
wert, statt den Beweis einer Giiltigkeit, was uns die direkte Verwendung des Ergeb-
nisses in weiteren Berechnungen ermoglicht und spéter in der Definition minimaler
Elemente von Vorteil sein wird, da wir dann ermitteln miissen, welche spezifische

51

o U W N

Zustande eine Formel erfiillen. Mit entails stellen wir die Verbindung zwischen
der syntaktischen und der semantischen Ebene her und ermoglichen die Identifika-
tion von minimalen Zustdnde fiir jede Formel, was dann wiederum die Grundlage
fiir die semantische Interpretation der Konsequenzrelation bildet.

Fiir die Formalisierung der minimalen Elemente fithren wir zusétzlich die Defi-
nition von MinimalElements ein.

Definition 12. Minimale Elemente

Definition MinimalElements (model : CumulModel)
(formula : Formula) : Ensemble (States model) :=
fun state =>
entails (Labeling model state) formula /\
~ exists state’, entails (Labeling model state’)
formula /\ PreferenceRel model state’ state.

Die Funktion MinimalElements wird als Ensemble bildende Funktion implemen-
tiert. Die Parameter sind dabei state, das kumulative Modell, und formula, die
zu Uberpriifende Formel. Als Riickgabe erhalten wir dann ein Ensemble States
model, also eine Menge von Zustdnden. Wir unterscheiden zwei Bedingungen in
der Konjunktion. Wir priifen zuallererst, dass die Formel in dem Zustand gilt und
danach, dass kein préferierter Zustand existiert, in welchem die ebenfalls Formel
gilt. Das bedeutet wir werten die Formel mit entails zundchstim Zustand state
aus, und dann priifen wir, durch die Negation der Existenzaussage, dass es keinen
Zustand state’ gibt, der die Formel erfiillt und préferierter als state ist. Dies
entspricht direkt der Definition 3|aus Kapitel Dabei ist zu beachten, dass a, die
Menge aller Zustdnde state, mit dem ersten Konjunkt implizit angegeben ist.

4.3.1 Definition der modellbasierten Konsequenzrelation

Wir verwenden MinimalElements fiir SemanticEntails, wobei gepriift wird,
ob eine Konklusion conclusion in allen minimalen Zustinden aus der Pramisse
premise gilt.

Formal gilt also:

Vstate € MinimalElements(model, premise): entails(state, conclusion)

Durch SemanticEntails wollen wir auf entails aufbauen und es um das Kon-
zept der minimalen Zustiande. Wir definieren eine Folgerungsrelation, die aussagt,
dass eine Formel aus einer anderen Formel in einem Modell folgt. Damit verbin-
den wir die syntaktische Konsequenzrelation mit den semantischen Modellen und
erfassen die Intuition das etwas , typischerweise” gilt, indem wir uns dabei auf die
minimalen Zustdnde fokussieren. Dies bildet direkt die Definition der nichtmono-
tonen Folgerung von Kraus, Lehmann und Magidor ab.

Definition 13. Semantisches Entailment

52

a o w N

g w N

o I

12
13

Definition SemanticEntails (model : CumulModel)
(premise conclusion : Formula) : Prop :=
forall state, In (States model)
(MinimalElements model premise) state —->
entails (Labeling model state) conclusion.

Mit forall state sichern wir ab, dass die Folgerungsbeziehung in allen mini-
malen Zustdnde gelten muss und mit der Implikation stellen wir sicher, dass nur
die minimalen Zustdnde berticksichtigt werden, um die Idee, dass wir uns auf die
typischsten Situationen konzentrieren, zu formalisieren. Wir sagen demnach aus,
dass wenn ein Zustand minimal beziiglich premise ist, dann muss conclusion
in diesem Zustand gelten.

Wir definieren noch eine Notation, um die Ahnlichkeit zur mathematischen De-
finition [6| der Konsequenzrelation in kumulativen Modellen aus Kapitel von
Kraus, Lehmann und Magidor zu verdeutlichen.

Notation 2. Coq SemanticEntails Notation

Notation "model : premise |~w conclusion" :=
(SemanticEntails model premise conclusion) (at level 80).

Dies ermdglicht ebenfalls eine intuitive Formulierung von Beweiszielen im Repra-
sentationstheorem, um fiir die Soundness zu zeigen, dass modellbasierte Relatio-
nen die System C Regeln erfiillen und umgekehrt, fiir die Completeness, dass fiir
jede syntaktische Relation ein Modell existiert und kann ebenfalls fiir unsere Erwei-
terung zur Konsequenzrelation in kumulativen Modellen, in welcher wir mehrere
Modelle behandeln, genutzt werden.

Definition 14. Erweiterung der Konsequenzrelation in kumulativen Modellen

Definition SatisfiesKnowledgeBase (model : CumulModel)
(I' : Ensemble Formula) : Prop :=
forall formula, In Formula I' formula —->
forall state,
entails (Labeling model state) formula.

Definition CumulativeModelEntails (I : Ensemble Formula)
(premise conclusion : Formula) : Prop :=
forall model, SatisfiesKnowledgeBase model I' —>
model : premise |~w conclusion.
Notation "I' |= premise |~w conclusion" :=
(CumulativeModelEntails I' premise conclusion) (at level 80).

Die Definition von CumulativeModelEntails baut dabei auf der Definition von
SemanticEntails auf, um die semantische Konsequenzrelation von Kraus, Leh-
mann und Magidor, die wir in Kapitel 2.3| vorgestellt hatten, fiir eine Wissensbasis

53

O J o U Ww N

I' zu formalisieren. Wahrend SemanticEntails die Relation fiir ein einzelnes ku-
mulatives Modell beschreibt, indem wir priifen, ob die Konklusion in allen minima-
len Zustdanden der Pramisse gilt, erweitern wir mit CumulativeModelEntails
diese Idee auf eine Menge von Formeln, die genau der Wissensbasis I' entspricht.
Formal definieren wir CumulativeModelEntails so, dass die Konsequenzrela-
tion in allen kumulativen Modellen gilt, die die Wissensbasis I'" erfiillen. Das be-
deutet, dass jedes Modell, welches alle Formeln in I' respektiert, was wir durch
SatisfiesKnowledgeBase zeigen, die Bedingung von SemanticEntails fiir
die Pramisse und Konklusion erfiillen muss.

Durch diese Verallgemeinerung erfassen wie die Intuition nichtmonotoner Logik,
dass Konsequenzen nicht nur in einem spezifischen Modell, sondern in allen mog-
lichen Modellen gelten miissen, die die Wissensbasis konsistent reprasentieren und
spiegelt damit die semantische Definition wider, bei der eine Konsequenzrelation
genau dann gilt, wenn sie in allen kumulativen Modellen, welche die gegebenen
Annahmen erfiillen, ebenfalls giiltig ist.

4.4 Die Smoothness Bedingung formalisiert in Coq

Um die Smoothness Bedingung aus Kapitel in Coq zu formalisiern, haben wir
uns dazu entschieden, diese als Axiom, statt eines bewiesenen Theorems einzufiih-
ren. Wir berufen uns hierbei erneut auf die Aussage von Lehmann und Magidor
tiber die Endlichkeit einer Logik und den damit verbundenen Zusammenhang zur
Smoothness Bedingung. Dies ist in unserem Fall eine Vereinfachung gegeniiber ei-
ner konstruktiven Definition fiir die propositionale Logik, auf welcher Formalisie-
rungsansatz basiert und bietet uns praktische Vorteile fiir die Beweisfithrung. Das
Axiom sagt aus, dass es fiir jeden Zustand, in dem eine Formel gilt, einen minimalen
Zustand gibt. Dieser minimale Zustand ist entweder ein préferierter Zustand oder
identisch mit dem urspriinglichen Zustand, aber es gibt keinen noch priferierteren
Zustand, in dem die Formel ebenfalls gilt.

Axiom 1. Die Smoothness Bedingung

Axiom smoothness : forall model formula state,

entails (Labeling model state) formula ->

exists minimal_state,
entails (Labeling model minimal_state) formula /\
(PreferenceRel model minimal_state state \/
minimal_ state = state) /\
In (States model)
(MinimalElements model formula) minimal_state.

Als Pramisse setzten wir mit entails voraus, dass die Formel in dem momentanen
Zustand gilt. Dann deklarieren wir die Existenz eines minimalen Zustands tiiber
den Existenzquantor. Dabei gibt es keine explizite Konstruktion, wie dieser Zustand
gefunden werden kann.

54

Dann konstruieren wir die Eigenschaften des minimalen Zustands. Wir sichern
tiber entails erneut ab, dass die Formel auch in dem minimalen Zustand gilt,
und die nédchste Eigenschaft der Disjunktion von PreferenceRel und minimal_
state = state gibt an, dass der minimale Zustand préferiert oder identisch mit
dem Ausgangszustand ist.

Schliefslich sagt das Axiom aus, dass dieser minimale Zustand ein Element der
Menge MinimalElements fiir die gegebene Formel ist. Gemafs unserer Definition
von MinimalElements bedeutet dies, dass es keinen anderen noch préferierteren
Zustand, in dem die Formel gilt, gibt. Damit stellen wir die eigentliche Minimalitét
dar.

Die axiomatische Formulierung entspricht ebenfalls wieder direkt der mathema-
tischen Definition und vermeidet eine komplexere konstruktive Definition im pro-
positionalen Fall, da es sich, wie wir gekldrt hatten, bei der Smoothness in endli-
chen Sprachen als eine , technische Bedingung” [12] handelt. Dabei fokussieren wir
uns fiir die Vereinfachung der Beweisfiihrung auf die wesentlichen Eigenschaften
der Smoothness Bedingung. Dabei werden ebenfalls die Eigenschaften direkt aus
MinimalElements anwendbar gemacht und wir erhalten eine unmittelbare Ablei-
tung, dass der gefundene Zustand wirklich minimal ist. Um auf die Eigenschaften
des Axioms zugreifen zu konnen und diese fiir einen Beweis verfiigbar zu machen
nutzen wir die Taktik destruct.

destruct (smoothness model formula state H)
as [minimal_state [H1 [H2 H3]]]

Die Hypothese H1 wiirde dann aussagen, dass die Formel formula im minimalen
Zustand gilt. H2 gibt die Beziehung zum urspriinglichen Zustand an, ob dieser pra-
feriert oder identisch ist. Letztlich stellt H3 die Minimalitdtsbedingung dar, also dass
der Zustand ein Element von MinimalElements ist.

5 Coqg-Beweis des Reprasentationstheorems

Der Beweis des KLM-Theorems ist in zwei Hauptmodule, KLM_Soundness_Mund
KLM_Completeness_M, aufgeteilt. Dabei wird jeweils der Beweis schrittweise zer-
legt und die einzelnen Beweisschritte in separaten Lemmas bewiesen.

Wie bereits bei Abschnitt[2.4]in Theorem [I| dargestellt, zeigt das Repréasentations-
theorem die bidirektionale Aquivalenz zwischen syntaktischen und semantischen
Charakterisierungen kumulativer Konsequenzrelationen und erfordert daher den
separaten Nachweis beider Richtungen.

Der Korrektheitsbeweis zeigt, dass jede syntaktisch durch System C ableitbare
Konsequenzrelation auch semantisch in kumulativen Modellen giiltig ist. Fiir den
Beweis nutzen wir strukturelle Induktion iiber den induktiven Typ CumulCons
Damit weisen wir fiir jede der fiinf Regeln des System C nach, dass diese in einem
kumulativen Modell gilt. Fiir jede Regel formalisieren wir ein separates Lemma,
wodurch wir eine modulare Beweisfithrung erméglichen.

55

O J o U W N

Der Vollstindigkeitsbeweis weist dann die umgekehrte Richtung nach. Jede se-
mantische Konsequenzrelation, die in kumulativen Modellen gilt, ist auch syntak-
tisch durch System C ableitbar. Hierbei nutzen wir die Konstruktion eines kanoni-
schen Modells aus maximalen konsistenten Mengen und beweisen die Vollstandig-
keit durch einen Widerspruch.

Mit dieser Struktur bilden wir die mathematische Beweisidee von Kraus, Leh-
mann und Magidor ab und orienteiren uns fiir die Beweise unserer Lemmata an
den Lemmata 3.15, fiir den Korrektheitsbeweis, und 3.17 - 3.23 fiir den Vollstandig-
keitsbeweis [11]].

5.1 Korrektheitsbeweis (Soundness)

Der Soundness-Beweis zeigt, dass alle durch die syntaktischen Regeln des System C
ableitbaren Konsequenzrelationen auch semantisch in kumulativen Modellen giiltig
sind. Die entwickelte Beweisstruktur folgt dabei dem Theorem soundness_k1m,
welches durch strukturelle Induktion tiber CumulCons alle fiinf Regeln des System
C abdeckt. Wir formalisieren fiir jede Regel ein eigenes Lemma, das dann die ent-
sprechende semantische Eigenschaft nachweist. Die Reflexivitédtsregel ist unkompli-
ziert und direkt zu beweisen, wahrend Right Weakening und Left Logical Equiva-
lence zusitzliche Transformationsschritte zwischen syntaktischer und semantischer
Ebene benétigen. Cut und Cautious Monotonicity nutzen die Induktionshypothe-
sen zwar direkt, sind aber in ihrer semantischen Argumentation weitaus komplexer,
wobei Cautious Monotonicity zusétzlich die Smoothness Bedingung benotigt.

5.1.1 Reflexivity Regel

Der Beweis fiir die Reflexivitat ist in Lemma soundness_reflexivity festgehal-
ten und formalisiert, dass jede Formel in den minimalen Zustdanden gilt, in welchen
diese selber auch gilt. Konkret wollen wir also zeigen, dass model : formula
|~w formula gilt.

Lemma soundness_reflexivity
forall (model : CumulModel) (formula : Formula),
model : formula |~w formula.
Proof.
unfold SemanticEntails, MinimalElements.
intros model formula state [H_satisfies _].
exact H_satisfies.
Qed.

Wir nutzen hier die Eigenschaft, dass die minimalen Zustdnde von formula di-
rekt durch In (States model) (MinimalElements model formula) cha-
rakterisiert werden. Dadurch erhalten wir eine direkte, formale Definition, wann
ein Zustand minimal ist, ohne vorher die minimalen Zustinde konstruieren zu miis-
sen. Da wir hier mit der Konsequenzrelation | ~w aus dem Modell arbeiten, miissen

56

o J o U w N

e e e e e
W J oUW N O W

wir zuerst diese Definition entfalten, um tiberhaupt damit in dem Beweis arbei-
ten zu konnen und die tatsdchliche Definition aufzudecken. Dies geschieht durch
den Taktik-Aufruf unfold SemanticEntails.Damiterhalten wir die qualifizier-
te Struktur mit dem Universalquantor von SemanticEntails und die Implika-
tionsstruktur der Definition. Dieser Schritt macht uns dann klar, dass wir fiir alle
minimalen Zustdnde zeigen miissen, dass formula gilt, und ermdoglicht uns die
Minimalitdtsbedingung direkt als Pramisse iiber MinimalElements einzufiihren,
welche wir dann auch direkt anwenden kdnnen. Durch das Auflosen der Definition
mitunfold MinimalElements, sehen wir, dass die erste Komponente bereits er-
fordert, dass formula in dem Zustand gilt, da das erste Konjunkt der Konjunktion
inMinimalElements uns genau das gibt, was wir beweisen wollen, nimlich gera-
de entails (Labeling model state) formula.Damithaben wir nach dem
Auflosen beider Definitionen bereits das als Annahme, was wir als Ziel beweisen
wollen, und konnen den Beweis abschlief3en.

5.1.2 Left Logical Equivalence Regel

Fiir den Beweis von Left Logical Equivalence in Lemma soundness_LLE, gehen
wir zunéchst dhnlich vor wie bei dem Beweis zuvor. Wir wollen zeigen, dass wenn
model : p |~w r und p und g dquivalent sind, dann gilt model : g |~w =,
also dass die minimalen Zustinde fiir 4quivalente Formeln vergleichbare Eigen-
schaften haben. Die Strategie hier ist also, dass wir fiir jeden minimalen Zustand
von g nachweisen, dass er auch minimal fiir p sein miisste und dass ein préferierter
Zustand fir g, nach der Annahme der Aquivalenz, auch ein préferierter Zustand
fiir p sein miisste.

Lemma soundness_LLE
forall (model : CumulModel) (p g r : Formula),
(forall state, entails (Labeling model state) p <->
entails (Labeling model state) qg) ->
model : p |~w r —>
model : g |~w r.
Proof.
unfold SemanticEntails, MinimalElements.
intros model p g r H_equiv H_entails state [H_g H minimal].
assert (H_p : entails (Labeling model state) p).
apply H_equiv; assumption.
apply H_entails.
split.
— assumption.
— intro H_exists.
destruct H_exists as [state’ [H_p’ H_pref]].
exfalso.
apply H_minimal.

57

19
20
21
22
23

exists state’.
split.
+ apply H_equiv; assumption.
+ assumption.
Qed.

Wie zuvor l6sen wir zundchst wieder die Definitionen von SemanticEntails
und MinimalElements auf, um wieder mit diesen grundlegenden Konzepten ar-
beiten zu konnen. Wir fithren dann alle benétigten Variablen und Hypothesen ein.
Dabei stellt H_equiv die Aquivalenz zwischen p und g in allen Zustinden dar,
H_entails ist die Annahme, dass r aus p folgt und [H_g H_minimal] zerlegt
die Annahme, dass state ein minimales Element fiir g ist. Genauer gibt H_qg an,
dass g in state erfiillt ist und H_minimal sagt aus, dass es keinen préferierteren
Zustand gibt, der g ebenfalls erfiillt. Wir behaupten zunichst, dass p in state gilt
und beweisen diese Behauptung durch die Anwendung der Aquivalenz H_equiv.
Damit zeigen wir, dass ein minimaler Zustand g auch als ein Zustand p betrachtet
werden kann. Als Nachstes wollen wir zeigen, dass r aus p folgt und nutzen da-
fiir die Hypothese H_entails, was wiederum den Nachweis erfordert, dass der
Zustand state ein minimales Element fiir p ist. Dafiir teilen wir das Ziel an dieser
Stelle in zwei Unterziele auf. Wir zeigen dann zuerst tiber H_p, dassauchpinstate
gilt und miissen dann fiir das zweite Teilziel noch die Minimalitdtsbedingung zei-
gen. Diesen Beweis fiihren wir durch einen Widerspruch und nehmen zuerst an,
dass ein préferierter Zustand fiir p existiert. Danach zerlegen wir diese Annahme
in einen neuen Zustand state’, zusammen mit den Hypothesen H_p’, p gilt auch
in state’,und H_pref, also state’ ist praferierter gegeniiber st ate. Wir haben
in H_minimal bereits angenommen, dass state minimal fiir g ist, also dass kein
préferierter Zustand existiert, in dem g gilt. Fiir state’ haben wir allerdings an-
genommen, dass dieser Zustand praferierter gegeniiber state ist und p darin gilt.
Jetzt konnen wir wiederum durch die Aquivalenz H_equiv schlieflen, dass auch g
in state’ gilt. Somit haben wir nun einen Zustand state’, der préferierter ist und
in dem q gilt, was im direkten Widerspruch zu H_minimal steht. Durch diesen Wi-
derspruch zeigen wir demnach, dass die Annahme eines priferierten Zustands, in
dem p ebenfalls gilt, falsch sein muss. Somit ist st ate auch minimal fiir p weshalb
durchmodel : p |~w rauchrinstate gilt.

5.1.3 Right Weakening Regel

In Lemma soundness_RW fiir Right Weakening formalisieren wir, dass stdrkere
Schlussfolgerungen auch schwichere implizieren. Um den Beweis zu fiihren, nut-
zen wir die Implikationseigenschaft H_imp, um direkt ableiten zu konnen, dass
die Konklusion auch in minimalen Zustidnden gilt. Unser Beweisziel ist daher zu
zeigen, dass wennmodel : r |[~w pundp -> g,alsoentails state p ->
entails state g, gilt, dann gilt auch model : r |~w g und damit, dass im
minimalen Zustand fiir r eine Implikation erhalten bleibt.

58

O J o U w N

e e
N P O W

Lemma soundness_RW
forall (model : CumulModel) (p g r : Formula),
(forall state, entails (Labeling model state) p —>
entails (Labeling model state) q) —->

model : r |[~w p —>
model : r |~w g.
Proof.

unfold SemanticEntails, MinimalElements.
intros model p g r H_imp H_entails state H_minimal.
apply H_imp.
apply H_entails; assumption.
Qed.

Wie auch bereits bei den vorherigen Beweisen miissen wir zunédchst die Definiti-
onvon SemanticEntails und damit auch MinimalElements aufldsen. Danach
fithren wir alle bendétigten Variablen und Hypothesen ein. Die Variable model stellt
unser kumulatives Modell dar, und die Variablen p, g und r unsere Formeln. Die
Hypothese H_imp sagt aus, dass p wiederum g impliziert, also

forall state, entails (Labeling model state) p
—-> entails (Labeling model state) (.

H_entails nutzen wir wieder als Hypothese, dass p tiblicherweise aus r folgt, ge-
nauer model : r |~w p. Fiir einen beliebigen Zustand nutzen wir state und
fithren schlussendlich noch die Hypothese H_minimal ein, dass state minimal
furr r ist. Unser Beweisziel ist zundchst entails (Labeling model state) q.
Wir haben keinen direkten Weg, um zu zeigen, dass g in state gilt, aber wissen,
dass wenn p in state gilt, dann gilt auch g in state, was der Hypothese H_imp
entspricht. Auflerdem wissen wir, dass p wiederum in allen minimalen Zustan-
den, wo r gilt, ebenfalls gilt und state ein minimaler Zustand ist, indem schon
r gilt. Also wenden wir zundchst die Hypothese H_imp an, um unser Beweisziel
zuentails (Labeling model state) p zudndern. Jetzt miissen wir zeigen,
dass p in state gilt, was wir durch die Anwendung der Hypothese H_entails
auf H_minimal erreichen. Die Hypothese H_entails bewirkt, dass das Beweis-
ziel durch die Annahme ersetzt wird, dass state minimal fiir r ist. Da wir aber
bereits H_minimal haben, das genau dieser Bedingung entspricht, konnen wir mit
assumption das Beweisziel direkt 16sen und den Beweis abschlie3en.

5.1.4 Cut Regel

Der Beweis fiir Cut ist in Lemma soundness_Cut formalisiert. Die Herausforde-
rung hierbei liegt darin zu zeigen, dass p v, r gilt, wenn sowohl p |, g als
auchp A g pv, r gelten. Wir wollen zunichst zeigen, dass in den minimalen
Zustdnden, in welchen p gilt, auch g gilt, um dann nachzuweisen, dass in diesen
Zustinden dann auch r gelten muss. Hierfiir verwenden wir unser Hilfslemma
entails_conjunction, um die Konjunktion zu handhaben.

59

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Lemma soundness_Cut
forall (model : CumulModel) (p g r : Formula),

model : (p A gq) |~w r —>
model : p |~w g —>
model : p |~w r.

Proof.

unfold SemanticEntails, MinimalElements.
intros model p g r H_conj_entails H_p_entails_g
state [H_p H_minimal].
assert (H_gq : entails (Labeling model state) q).
apply H_p_entails_g; split; [exact H_p | exact H minimal].
apply H_conj_entails.
split.
- rewrite entails_conjunction.
split; assumption.
— intro H_exists.
destruct H_exists as [state’ [H_conj’ H_pref]].
rewrite entails_conjunction in H_conij’.
destruct H_conj’ as [H_p’ _].
exfalso.
apply H_minimal.
exists state’.
split; assumption.
Qed.

Erneut wie zuvor l6sen wir die Definitionen von SemanticEntails und Minimal
Elements auf und fithren danach die Variablen und Hypothesen ein. Wir haben
wieder model fiir unser Modell, p, g und r fiir unsere Formeln und state fiir
den Zustand. Die Hypothese H_conj_entailsistdie Annahme,dassrausp A g
folgtund H_p_entails_gnimmt an, dass g aus p folgt. Und [H_p H_minimal]
zerlegt die Annahme, dass st ate minimal fiir p ist. Wir behaupten vorerst, dass g
in state gilt und beweisen diese Behauptung, durch das Anwenden der Hypothese
H_p_entails_g, dass g aus p folgt. Danach wenden wir die Hypothesen H_p und
H_minimal an, um zu zeigen, dass state minimal fiir p ist. Wir zeigen also, dass
in minimalen Zustdnden, in welchen p gilt, auch g gilt. Zu diesem Beweisschritt
konnen wir nun die Konjunktionsannahme H_conj_entails anwenden, und ge-
ben damit an, dass r aus (p A qg) folgt. Dies wiederum erfordert dann aber auch
den Nachweis, dass state minimal fiir (p A q) ist. Da wir nach dem Anwenden
der Hypothese eine Propositions-Konjunktion (/\) erhalten, konnen wir die Taktik
split anwenden, um den Beweis in zwei Unterziele an dieser Stelle aufzuspalten.
Somit erhalten wir, das erste Ziel, wo wir zeigen miissen, dass (p A q) in state
gilt und als zweites Ziel, dass keine préferierten Zustdnde existieren in denen (p A
q) ebenfalls gilt. Um die Konjunktion von unseren Formeln p und g zu lésen, nut-
zen wir das Lemma entails_conjunktion mit der Taktik rewrite. Das Lemma

60

Sw N

sagt aus, dass eine Konjunktion genau dann gilt, wenn beide Konjunkte gelten. Wir
tibersetzten hier die Bedeutung von entials (Labeling model state) (p A
q) zu:

entails (Labeling model state) p /\
entails (Labeling model state) g

Ein weiteres split teilt dann auch diese Konjunktion in zwei weitere Ziele auf.
Zuerst, dass die Formel p im Zustand state gilt, und als nichstes, dass ebenfalls
die Formel g in Zustand state gilt. Da wir genau diese Ziele bereits als Hypothesen
H_p und H_g eingefiihrt haben, konnen diese direkt ausgewihlt und die Ziele damit
gelost werden.

Da nun dieses erste Konjunkt aus der urspriinglichen Konjunktion vollstandig
gelost wurde, fokussieren wir nun das zweite Ziel, indem wir noch die Minimalitat
fiir (p A g) nachweisen miissen, also dass es keinen praferierten Zustand state’
gibt, in dem (p A q) gilt. Wir zeigen dies wieder mit einem Gegenbeispiel und
nehmen an, dass eben solch ein Zustand state’ existiert. Aus der Tatsache, dass
(p A q) in state’ gilt, folgt dann, dass auch p in state’ gilt. Dies steht aber
im Widerspruch zur Annahme, dass state bereits minimal fiir p ist. Durch diesen
Widerspruch haben wir folglich gezeigt, dass state auch minimal fiir (p A q)
sein muss und state erfiillt damit alle Bedingungen, um ein minimales Element
fir (o A qg) zusein. Da die Hypothese H_conj_entails aussagt, dass r in allen
minimalen Zustdnden, in denen (p A q) gilt, auch gilt, folgt unmittelbar, dass r
auch in state gelten muss. Damit haben wir eine Transitivitatseigenschaft der ku-
mulativen Konsequenzrelation gezeigt. Wenn p zu g fithrtund (p A g) zu r, dann
fithrt auch p zu r, da minimale Zustdnde, in denen p gilt, auch minimal fiir (p A
q) sind.

5.1.5 Cautious Monotonicity Regel

Lemma soundness_CM beweist die eingeschrankte Form der Monotonie. Die Cau-
tious Monotonicity Regel ist die komplexeste der fiinf Regeln und erfordert das An-
wenden der Smoothness Bedingung. Wir zeigen, dass wenn in minimalen Zustan-
den, in denen p gilt, sowohl g als auch r gelten, dann gilt in minimalen Zustdnden,
indenen (p A q) gilt, auch r. Demnach lautet unser Beweisziel:

Wenn model : p |~w g und model : p |~w r

dann model : (p A q) |~w r

Wir beweisen dafiir, dass r in allen minimalen Zustanden, wo auch (p A q) gilt,
ebenfalls gilt.

Lemma soundness_CM
forall (model : CumulModel) (p g r : Formula),
model : p |~w g —>
model : p |~w r —>

61

5 model : (p A q) |~w r.

6 Proof.

7 unfold SemanticEntails, MinimalElements.

8 intros model p g r H_p_g H_p_r state [H_conj H_minimall].

10 rewrite entails_conjunction in H_conj.

11 destruct H_conj as [H_p H_g].

13 assert (H_p_in_state : entails (Labeling model state) p).
14 { exact H_p. }

16 destruct (smoothness model p state H_p) as

17 [min_state [H_min_p [H_pref_or_eq H_min_element]]].

19 unfold MinimalElements in H_min_element.

20 destruct H_min_element as [H_min_p_satisfies H_min_minimal].
22 assert (H_min_g : entails (Labeling model min_state) q).
23 apply H_p_g; split; [assumption | exact H_min _minimal].
25 assert (H_min_conj : entails (Labeling model min_state)
26 (p A a)).

27 apply entails_conjunction; split; assumption.

29 destruct H_pref or _eq as [H_pref | H_eq].

31 — (» Fall 1: min_state < state)

32 exfalso.

33 apply H minimal.

34 exists min_state.

35 split; [assumption | assumption].

37 — (+# Fall 2: min_state = state =«*)

38 subst min_state.

39 apply H_ p_r.

40 split; [assumption | exact H_min minimal].
41 Qed.

Wie auch schon bei den vorherigen Regeln beginnen wir mit dem Auflésen der Defi-
nitionen von SemanticEntails und MinimalElements. Danach fithren wir die
Variablen model, p, g, r und state ein und benennen unsere Hypothesen. Dabei
steht H_p_qg fiir g folgt tiblicherweise aus p und H_p_r fiir r folgt tiblicherwei-
se aus p. Um auszudriicken, dass in state die Konjunktion (p A q) gilt, nut-
zen wir H_conj und fiir die Minimalitdt von state zu (p A q) die Hypothese

62

H minimal.

Wir wollen wieder zuerst die einzelnen Konjunkte aus der Konjunktion extra-
hieren. Dafiir greifen wir erneut auf das Lemma entails_conjunction und die
Taktik rewrite zuriick. Danach zerlegen wir die Konjunktion in zwei separate Hy-
pothesen, wobei H_p aussagt, dass p in state gilt und H_g, dass g in state gilt.
Dies ermoglicht es uns spéter zu zeigen, dass state in einem bestimmten Verhalt-
nis zu minimalen Zustdnden steht, in denen p gilt.

Da state die Formel p erfiillt, konnen wir nun die Smoothness-Bedingung nut-
zen, da diese garantiert, dass fiir jeden Zustand, in dem p gilt, ein minimaler Zu-
stand existiert, welcher préferiert oder mit diesem Zustand identisch ist. Dadurch
erhalten wirmin_state, den minimalen Zustand, wo p gilt, und H_min_p, die An-
nahme, dasspinmin_state gilt. Aufferdem sagen wirin H_pref_or_eqaus, dass
min_state préferiert oder identisch zu state istund geben mit H_min_element
an, dass min_state minimal fiir p ist.

Folglich konnen wir die Minimalitdtsbedingung fiir H_min_minimal aus der
Annahme H_min_element ableiten, denn die Annahme H_min_element besagt,
dass es keinen Zustand gibt, welcher préferierter gegeniiber min_state ist und
in dem p gilt. Da min_state minimal in MinimalElements model p ist und
H_p_q gilt, folgt, dass min_state auch g erfiillt. Dies zeigen wir durch Anwen-
dung von H_p_g auf min_state, da genau min_state die Formel p erfiillt und
auch minimal ist. Es folgt, dass (p A g) inmin_state erfiillt ist, denn wir haben
bereits fiir p und sowohl auch fiir g gezeigt, dass diese in min_state gelten, und
damit ist dies auch fiir die Konjunktion erfiillt.

Wir spalten als Néachstes H_pref_or_eq in zwei Fille auf, welche wir geson-
dert untersuchen werden. Den ersten Fall stellt H_pref dar und sagt aus, dass
min_state préferierter gegeniiber state ist. Der zweite Fall H_eq gibt an, dass
min_state identisch mit state ist.

Fiir den ersten Fall, wenn min_state préferiert gegeniiber state ist, erhalten
wir aber einen Widerspruch aufgrund der Minimalitit von state,dainmin_state
sowohl die Konjunktion (p A q) erfiilltist (H_min_conj)und min_state eben-
falls préferierter gegeniiber state ist. Wir zeigen diesen Widerspruch iiber die
Minimalitdtsbedingung H_minimal fiir state und geben min_state als ein Ge-
genbeispiel an. Auch hier konnen wir nun automatisch das Beweisziel des Wider-
spruchs aufgrund der vorher eingefiihrten Hypothesen l6sen. Denn wie wir gezeigt
haben, erfiillt min_state genau diese Bedingungen, da (p A g) inmin_state
gilt (H_min_conj)und min_state préiferierter gegeniiber state ist.

Im zweiten Fall betrachten wir, dass min_state identisch mit st at e ist. Die Tak-
tik subst min_state weist dabei Coq an, nach Gleichungen zu suchen, welche
min_state definieren, und diese Variable dann zu ersetzen. In diesem Fall haben
wir

H eqg : min_state = state

aus unserer Fallunterscheidung. Demnach ersetzt Coq nun fiir den gesamten Be-

63

N o U W N

11

13
14
15
16
17
18
19
20

weis alle Vorkommen von min_state durch state. Dieser Schritt ist eine bewuss-
te Entscheidung fiir die Vereinfachung des Beweises, denn wir betrachten hier den
Fall, in welchem min_state und state identisch sind, und es daher unnétig kom-
pliziert wére, beide Variablennamen beizubehalten. Aufierdem arbeiten wir durch
diese Substitution mit einem einzigen Zustand state. Da jetzt state minimal in
MinimalElements model p ist, weil wir min_state = state substituieren,
konnen wir direkt die Hypothese H_p_r anwenden, welche besagt, dass alle mini-
malen Zustidnde, in denen p gilt, auch r erfiillen. Wir miissen demnach zeigen, dass
entails (Labeling model state) r gilt. Dies folgtaus H_p_r, da state p
erfiillt (H_p) und minimal inMinimalElements model pist(H_min_minimal).
Auch hier konnen wir das Beweisziel automatisch durch die Taktik apply H_p_r;
split; [assumption | exact H_min_minimal] losen.

5.1.6 Induktionsbeweis der Soundness

Das Theorem soundness_KLM formalisiert die Korrektheit des KLM-Theorem:s.
Wenn eine Konsequenzrelation syntaktisch durch die Regeln des System C ableitbar
ist (CumulCons), dann ist sie auch semantisch durch kumulative Modelle reprédsen-
tierbar (|= p |~w q).Dawirnun fiir jede der fiinf Regeln des System C ein Lem-
ma eingefiihrt und bewiesen haben, kénnen wir den Beweis fiir die Soundness des
KLM-Theorems konstruieren. Der Beweis nutzt dabei strukturelle Induktion {iber
den induktiven Typ CumulCons. Fiir jeden Konstruktor miissen wir also zeigen,
dass wenn die Pramissen semantisch gelten, auch die Konklusion semantisch gilt.

Theorem soundness_klm
forall (I' : Ensemble Formula) (p g : Formula),
CumulCons I''p g > T |=p |~w g.
Proof.
intros I' p g H_cons.
unfold CumulativeModelEntails.
intros model H_respects_kb.

induction H_cons.
- apply soundness_reflexivity.

- apply soundness_LLE with p.
+ intros state.
assert (H_equiv : In (Formula) I' (p < q)).
assumption.
apply H_respects_kb in H_equiv.
assert (H_state_equiv : entails (Labeling model state)
(p < q)).
{ apply H_equiv. }

64

21
22
23
24

26
27
28
29
30
31
32
33
34
35

37
38
39
40
41

43
44
45
46
47
48

+

apply entails_equivalence in H_state_equiv.

assumption.
apply IHH_cons.
exact H_respects_kb.

- apply soundness_RW with p.

+

intros state H_p.

assert (H_impl : In (Formula) I' (p — q)).
assumption.

apply H_respects_kb in H_impl.

simpl in H impl.

apply H_impl.

assumption.

apply IHH_cons.

exact H_respects_kb.

- apply soundness_Cut with q.

+

apply IHH consl.
exact H_respects_kb.
apply IHH cons2.
exact H_respects_kb.

- apply soundness_CM.

Qed.

+

apply IHH_consl.
exact H_respects_kb.
apply IHH_ cons2.
exact H_respects_kb.

Wir beginnen den Beweis damit, die Variablen und Hypothesen einzufiihren. Die
Variable I' ist von Typ Ensemble Formula und reprdsentiert unsere Wissensba-
sis, welche alle Formeln enthilt, die wir als Grundwissen vorausgesetzt werden.
Die Variable p ist vom Typ Formula und stellt die Pramisse der Konsequenzre-
lation dar. Analog dazu fiihren wir die Variable g vom Typ Formula ein, um die
Konklusion der Konsequenzrelation darzustellen. Die Hypothese H_cons vom Typ
CumulCons I' p g, besagt, dass g syntaktisch aus p unter der Wissensbasis I' nach
den Regeln des System C folgt. Unser Beweisziel ist es dann zu zeigen, dass g auch
semantisch aus p unter der Wissensbasis I folgt. Zudem losen wir die Definition von
CumulativeModelEntails auf, um die konkrete Semantik offenzulegen. Damit
dndert sich nun unser Beweisziel zu:

forall model,

SatisfiesKnowledgeBase model I' —> model

P

|~w g

65

Es sagt aus, dass aus jedem kumulativen Modell mode 1, welches die Wissensbasis
I" respektiert, g nichtmonoton aus p folgt. Als Nachstes fithren wir noch die Variable
model vom Typ CumulModel als ein beliebiges kumulatives Modell ein und geben
mit der Hypothese H_respects_kb an, dass das Modell model die Wissensbasis
I" respektiert, das heifdt, dass alle Formeln in I" in allen Zustdnden des Modells gel-
ten. Nach diesem Beweisschritt reduziert sich das Beweisziel auf mode : p |~w
g, was bedeutet, dass wir nun zeigen miissen, dass in diesem spezifischen Modell
model die semantische Konsequenzrelation gilt.

Mit der Taktik induction H_cons beginnen wir die strukturelle Induktion tiber
die Hypothese H_cons, was dazu fiihrt, dass durch die fiinf Konstruktoren von
CumulCons fiinf separate Beweisziele erzeugt werden.

* Reflexivitdtsfall: Wir miissen zeigen, dassmodel : p |~w p gilt.

¢ LLE-Fall: Wir miissen zeigen, dass wenn model : p |[~w r giltund p <
g in I" ist, dann gilt auch model : g |~w r

¢ RW-Fall: Wir miissen zeigen, dass wennmodel : r |~w pgiltundp — g
in I' ist, dann gilt auchmodel : r |~w q.

¢ Cut-Fall: Wir miissen zeigen, dass wennmodel : (p A q) |[~w rund
model : p |~w ggelten, dann giltauchmodel : p |~w r.

* Und wir miissen zeigen, dass wenn model : p |~w g und model : p
|~w r gelten, dann gilt auchmodel : (p A q) |~w r.

Fiir jedes Beweisziel erhalten wir zudem entsprechende Induktionshypothesen, wel-
che besagen, dass die Pramissen jeder Regel bereits semantisch giiltig sind und wir
miissen zeigen, dass auch die Konklusion semantisch giiltig ist.

Reflexivitat Fiir den Reflexivititsfall ist der Beweis direkt l1osbar, denn wir miissen
einfach nur das bereits bewiesene Lemma soundness_reflexivity anwenden,

da dieses Lemma zeigt, dass die Reflexivitdtseigenschaft in jedem kumulativen Mo-
dell gilt.

Left Logical Equivalence Der LLE-Fall ist komplexer, da wir die Verbindung
zwischen der syntaktischen Aquivalenz in der Wissensbasis und der semantischen
Aquivalenz im Modell herstellen miissen. Das bedeutet konkret, dass wir aus (p <
g) dann entails (Labeling model state) p <-> entails (Labeling
model state) g ableiten miissen. Wir geben zunéchst an, dass (p < g) in T
enthalten ist und nutzen dann H_respects_kb, um zu zeigen, dass das Modell
diese Aquivalenz respektiert. Auerdem behaupten wir, dass diese Aquivalenz in
jedem Zustand gilt. Nun haben wir die Hypothese H_state_equiv, die besagt,

66

dass die Formel (p < g) im Zustand state des Modells gilt und kénnen die-
se Aquivalenz nun mit apply entails_equivalence in die semantische Aqui-
valenz umwandeln und erhalten damit genau die Form, welche wir fiir das Lem-
ma soundness_LLE benotigen. Schliefilich konnen wir die Induktionshypothese
IHH_cons anwenden, um den Beweis vervollstandigen zu konnen und miissen als
Letztes noch zeigen, dass SatisfiesKnowledgeBase model T gilt, was aber tri-
vial ist, da wir genau das bereits durch H_respects_kb gegeben haben. Damit ist
der Teilbeweis abgeschlossen und wir haben gezeigt, dass wenn p und g semantisch
dquivalent sind und r semantisch aus p folgt, dann folgt auch r semantisch aus g,
also genau wie es die LLE-Regel erfordert.

Right Weakening Ahnlich wie schon bei dem vorhergehenden Beweis miissen
wir auch hier erst noch die syntaktische Implikation (p — gin der Wissensbasis in
eine semantische Implikation im Modell tibersetzen. Wieder bestétigen wir, dass (p
—) in der Wissensbasis I" enthalten ist. Wir nutzen dann H_respects_kb, um
wieder zu zeigen, dass das Modell diese Implikation respektiert. Durch die Taktik
simpl vereinfachen wir die Definition von entails fiir eine Implikationsformel
und erhalten dadurch die Form:

H impl : forall state,
entails (Labeling model state) p —>
entails (Labeling model state) g

Fiir jeden Zustand des Modells gilt, dass wenn p in dem Zustand gilt, dann gilt
auch g in diesem Zustand. Jetzt konnen wir die Hypothese H_impl anwenden und
tiber assumption die verfiigbare Hypothese H_p nutzen, welche aussagt dass p
tatsachlich im Zustand gilt. Daraus konnen wir nun folgern, dass auch g in dem Zu-
stand gelten muss, so wie es fiir die RW-Regel notwendig ist. Nachdem wir gezeigt
haben, dass wenn p gilt, gilt auch g konnen wir wieder die Induktionshypothe-
se IHH_cons anwenden, um das zweite Unterziel abzuschliefien, welches besagt,
dass p nichtmonoton aus r folgt und wir konnen unseren Teilbeweis wie auch zu-
vor abschliefien.

Cut Der Cut-Fall erscheint einfacher, obwohl das Lemma komplexer ist. Dies liegt
in der Struktur den Induktionsbeweises, denn wir haben bei Cut zwei Indukti-
onshypothesen. THH_consl zeigt, dass (p A g) [~w r semantisch gilt und
IHH_cons?2 sagtaus, dass (p |~w g) ebenfalls semantisch gilt. Beide dieser Hy-
pothesen stellen bereits die Verbindung zwischen Syntax und Semantik her und
wir miissen keine zusédtzlichen Schritte zur Umformung zwischen diesen Ebenen
durchfiihren und auch keine Formeln aus der Wissensbasis I" extrahieren oder de-
nen semantische Giiltigkeit gesondert nachweisen. Wir kénnen hier direkt das Lem-
ma soundness_Cut mit den beiden Induktionshypothesen anwenden. Diese di-
rekte Anwendung ist moglich, weil die Cut-Regel ausschliefSlich auf kumulativen

67

Konsequenzrelationen basiert und keine expliziten Formeln aus der Wissensbasis
verwendet.

Cautious Monotonicity Der CM-Fall ist ebenfalls wie der Cut-Fall wieder einfa-
cher zu handhaben. Wir haben erneut zwei Induktionshypothesen. Die erste Hy-
pothese THH_cons1 sagtaus,dassp |~w gsemantisch gilt und THH_con2 zeigt,
dass auchp |~w r semantisch gilt. Demnach kénnen wir wieder direkt das Lem-
ma soundness_CM anwenden, da durch die Induktionshypothesen bereits alle be-
notigten semantischen Eigenschaften liefern. Das Lemma kombiniert diese dann zu
unserer geplanten Schlussfolgerung. Das macht diesen Anwendungsfall im Induk-
tionsbeweis vergleichsweise einfacher, denn die Komplexitit liegt schon im Lem-
ma selber, wo intern die Smoothness-Bedingung genutzt wird. Dies zeigt ebenfalls
einen weiteren guten Grund, warum die angesetzte Modularitat fiir die Formalisie-
rung von Vorteil ist. Sobald ein komplexeres Lemma erst einmal bewiesen ist, kann
dies als modularer Baustein in weiteren Beweisen verwendet werden, ohne jedes
Mal die interne Komplexitidt neu adressieren zu miissen.

Diese Modularitét findet sich auch in der Struktur des System C wieder, wo Cau-
tious Monotonicity eine eigenstiandige Regel darstellt und zusammen mit den an-
deren Regeln eben jene Grundlage fiir nichtmonotones Schliefien bildet. Der Induk-
tionsbeweis zeigt aufserdem, dass jede dieser Regeln unabhédngig voneinander se-
mantisch fundiert ist, was auch wiederum die Korrektheit des gesamten Systems
garantiert. Mit dem Beweis des Theorems soundness_KLM haben wir den ersten
Teil des KLM-Theorems formalisiert und werden uns im Folgenden dem Vollstan-
digkeitsbeweis zuwenden.

5.2 Volistandigkeitsbeweis (Completeness)

Fiir die Formalisierung der Vollstindigkeit des KLM-Theorems wollen wir zeigen,
dass jede kumulative Konsequenzrelation, die durch die Regeln des Systems (Refle-
xivitdt, LLE, RW, Cut, CM) definiert ist, durch ein kumulatives Modell reprédsen-
tierbar ist. Das bedeutet, dass jede semantisch giiltige Schlussfolgerung I' |= p
| ~w g auch syntaktisch ableitbar ist I' : p |~w qg. Daftir werden wir zundchst
ein kanonisches Modell konstruieren, welches genau die gegebene Konsequenz-
relation reprasentiert. Danach werden wir zeigen, dass das Modell kumulativ ist
und dass jeder Zustand im Modell die Wissensbasis I' respektiert. In dem Haupt-
beweis completeness_k1lm werden wir dann die Vollstindigkeit durch einen Wi-
derspruch beweisen, indem wir annehmen, dass eine Konklusion semantisch giiltig
ist(I' |= p |~w q),aber nicht syntaktisch ableitbar (~ CumulCons I p q).
Kraus, Lehmann und Magidor definieren in ihrer Arbeit ein Modell basierend
auf Aquivalenzklassen von Formeln und normalen Welten, welches einen typischen
Fall, in dem eine Formel gilt, darstellt. Fiir die Formalisierung in Coq werden wir
hier etwas von der Arbeit von Kraus, Lehmann und Magidor [11] abweichen und
statt Aquivalenzklassen auf maximal konsistente Mengen als Zustidnde zuriickgrei-

68

10
11
12

fen. Dabei entspricht eine Aquivalenzklasse [a] einer Formel o direkt einer maxima-
len konsistenten Menge, welche « enthilt. Das bedeutet, dass beide Ansédtze zum
gleichen logischen Ergebnis fithren und technisch nur unterschiedlich dargestellt
sind.

Die Grundidee dabei ist, dass wenn eine Formel g nicht aus p unter einer Wis-
sensbasis I" ableitbar ist, dann gibt es eine maximale konsistente Menge, welche I
und p enthilt, aber nicht g. Das bedeutet konkret, dass die syntaktische Aussage
,qd ist nicht aus p ableitbar” in eine semantische Aussage iiber die Existenz einer
maximalen konsistenten Menge tibersetzt. Damit erhalten wir eine Briicke, um zwi-
schen syntaktischer Nicht-Ableitbarkeit und semantischer Nicht-Folgerung wech-
seln zu konnen. Aufierdem erhalten wir dadurch eine konkrete Eigenschaft, welche
wir im Beweis verwenden konnen, um auszudriicken, wann eine Formel nicht aus
einer anderen ableitbar ist und damit auch nicht-ableitbare Formeln zu bestimmen.
Der Hauptgrund warum wir uns dazu entschieden haben auf die maximalen kon-
sistenten Mengen zuriickzugreifen liegt jedoch in der Praktikabilitdt in Coq, denn
wir konnen direkt mit Ensemble Formula weiterarbeiten, ohne dabei komplexere
Strukturen implementieren zu miissen, welche die Komplexitdt der Formalisierung
erheblich erhohen wiirde. Zudem bietet die von uns genutzte Library bereits ei-
ne Implementierung der maximalen konsistenten Mengen, welche wir verwenden
konnen. Wir behalten damit zudem den Fokus auf dem Reprasentationstheorem.

5.2.1 Kanonisches Modell

Wir beginnen die Formalisierung damit, ein kanonisches Modell zu konstruieren.

Definition 15. Das kanonische Modell in Coq

Definition CanonicalStates := Ensemble Formula.

Definition CanonicalPreferenceRel
(wl w2 : CanonicalStates) : Prop :=
exists p, wl Fp /\ ~ (w2 F p).

Definition CanonicalModel : CumulModel :=
{1
States := CanonicalStates;
Labeling := fun w p => valuemaxf w p;
PreferenceRel := CanonicalPreferenceRel

I}

Dabei entspricht CanonicalStates den Aquivalenzklassen aus der Arbeit von
Kraus, Lehmann und Magidor, jedoch als maximale konsistente Mengen. Eine ma-
ximale konsistente Menge ist eine Menge von Formeln, die konsistent ist, also kei-
ne Widerspriiche enthélt, und maximal ist, da keine weiteren Formeln hinzugefiigt

69

g w N

werden konnen, ohne eine Inkonsistenz zu erzeugen. Diese Zustdnde reprasentie-
ren mogliche Welten, in denen bestimmte Formeln wahr sind.

Die Definition CanonicalPreferenceRel implementiert die Praferenzrelation
aus Definition 3.21 [11]. Wir sagen mit CanonicalPreferenceRel aus, dass wl
préferiert gegentiiber w2 ist, wenn es eine Formel p gibt, die in w1 ableitbar (w1 +
p) ist, aber nicht in w2 ((~ (w2 F p)). Diese Relation ist demnach entscheidend fiir
die Definition minimaler Elemente.

Fiir die Labeling-Funktion Labeling verwenden wir valuemaxf aus der Libra-
ry [8]. Dies dient der Bewertung von Formeln in Zustanden. Konkret wird durch
valuemaxf w p gepriift, ob die Formel p in der maximal konsistenten Menge w
enthalten ist. Wenn p € w dann ist die Formel p in w wahr, andernfalls ist sie es
nicht.

5.2.2 Existenz und Eigenschaften maximal konsistenter Mengen

An dieser Stelle fithren wir ein Axiom ein, welches dem Lemma 3.18 [11] entspre-
chen soll. Lemma 3.18, zeigt, dass wenn « [f gilt, dann gibt es eine normale Welt
fiir o, die nicht (3 erfiillt.

Axiom 2. Existenzsatz fiir maximal konsistente Mengen

Axiom exists_maximal_consistent : forall T p g,
~ (CumulCons I' p q) —->
exists w,
maximal consistent_set w /\ IT' C w /\
peEw/\ ~qgE€Ew.

Wir sagen mit dem Axiom dann aus, dass wenn g nicht aus p unter I' ableitbar ist,
dann gibt es eine maximale konsistente Menge w und diese Menge enthélt I' und
p aber nicht g. Genau hier definieren wir also die Briicke zwischen syntaktischer
Nicht-Ableitbarkeit und semantischer Reprasentation und erméglicht es uns im Be-
weis completeness_klm den Widerspruch zu formulieren, indem wir mit dem
Axiom ein Gegenbeispiel erzeugen werden.

Fiir die maximalen konsistenten Mengen benétigen wir aufierdem noch eine For-
malisierung der Eigenschaften dieser Mengen, um mit diesen im kanonischen Mo-
dell korrekt arbeiten zu konnen.

Lemma 1. Deduktive Aquivalenz in maximalen konsistenten Mengen

Lemma max_consistent deduction
forall (w : Ensemble Formula) (p : Formula),
maximal_consistent_set w -> (p € w <> w I p).

Das Lemmamax_consistent_deduction zeigt, dass eine Formel p genau dann
in einer maximalen konsistenten Menge w ist, wenn diese aus w abgeleitet werden
kann. Es dient also dazu, dass wir zeigen konnen, dass eine Formel p in einem

70

s N

Zustand state enthalten ist, wenn state F g gilt. Wir formalisieren damit die
Eigenschaft von maximalen konsistenten Mengen, dass diese alle konsistenten For-
meln erhalten und keine Widerspriiche erzeugen. Dadurch wird sichergestellt, dass
auch die Zustiande konsistent sind und alle ableitbaren Formeln enthalten, was fiir
die Korrektheit des Modells notwendig ist.

Damit wir garantieren konnen, dass die Zustinde in dem kanonischen Modell
vollstandig sind, also dass eine maximale konsistente Menge fiir jede Formel p ent-
weder p oder —p enthélt und wir eine klare Bewertung fiir jede Formel treffen kon-
nen, fithren wir noch Lemma max_consistent_complete ein.

Lemma 2. Konsistenz maximaler konsistenter Mengen

Lemma max_consistent_complete
forall (w : Ensemble Formula) (p : Formula),
maximal_consistent_set w —=> p € w \/ —p € w.

Durch dieses Lemma koénnen wir unvollstandige Zustidnde verhindern und si-
chern damit die Grundlagen fiir die Praferenzrelation CanonicalPreferenceRel,
die darauf basiert, welche Formeln in einem Zustand wahr sind. Ohne den Nach-
weis der Vollstandigkeit konnten die minimalen Elemente nicht korrekt formalisiert
werden, denn auch MinimalElements [3| erfordert, dass Zustdnde p erfiillen und
keine weiteren Zustinde existieren, welche ebenfalls p erfiillen.

5.2.3 Semantische Interpretation im kanonischen Modell

In der Arbeit von Kraus, Lehmann und Magidor wird in Lemma 3.24 [11] eine Bezie-
hung zwischen der syntaktischen Konsequenzrelation und der semantischen Mo-
dellrelation hergestellt.

Lemma 3.24. Das Aquivalenzlemma der Konsequenzrelationen

a b biffa bow b

Es sagt aus, dass eine syntaktische Konsequenzrelation zwischen Formeln der se-
mantischen Relation im kanonischen Modell entspricht. Um diese Aquivalenz zwi-
schen syntaktischer und semantischer Konsequenzrelation zu etablieren, fithren wir
ein Axiom ein.

Axiom 3. Charakterisierung der Erfiillbarkeit im kanonischen Modell
Axiom canonical_entails
forall (w : CanonicalStates) (p : Formula),

maximal consistent_set w —>
entails (Labeling CanonicalModel w) p <-> p € w.

71

N

O I o U1 b

10

Das Axiom zeigt, dass fiir einen spezifischen Zustand w eine Formel p genau dann in
diesem Zustand gilt, wenn p ein Element von w ist. Wir stellen also hier nicht direkt
die Beziehung zwischen der syntaktischen und semantischen Konsequenzrelation
her, sondern zwischen der semantischen Wahrheit einer Formel in einem Zustand
und der Mengenzugehorigkeit der Formel in diesem Zustand. Es stellt daher eine
technische Grundlage dar, welche es ermdglicht, das Lemma 3.24 spiter zu etablie-
ren. Das Axiom zeigt, wie Formeln in individuellen Zustdanden interpretiert werden
und die Gesamtheit aller maximalen konsistenten Mengen, mit ihren Eigenschaften,
fiihrt dann mit diesem Axiom zur Aquivalenz aus dem Lemma 3.24.

5.2.4 Minimalitat und Smoothness im kanonischen Modell

Nachdem wir nun ein kanonisches Modell konstruieren kénnen und die Verbin-
dung zwischen syntaktischer und semantischer Ebene hergestellt haben miissen wir
noch die Eigenschaften fiir die Minimalitdt und Smoothness des Modells sicherstel-
len, damit wir im spéteren Beweis ein giiltiges kumulatives Modell erhalten konnen
und orientieren uns hierfiir an dem Lemma 3.23 [11]].

Wir miissen fiir die Minimalitdt zeigen, dass fiir jede Formel p die entsprechenden
Zustande, welche p erfiillen, minimal beziiglich der Praferenzrelation sind, da un-
ser Modell sonst die semantische Konsequenzrelation Semant icEntails|13|nicht
korrekt repréasentieren wiirde.

Fiir die Smoothness miissen wir garantieren, dass das kanonische Modell die
Smoothness Bedingung erfiillt, welche spezifisch fiir die Korrektheit der Cautious
Monotonicity Regel erforderlich ist.

Beide dieser Eigenschaften sind nicht automatisch durch die Konstruktion des
Modells gegeben und miissen daher explizit nachgewiesen werden.

Um die Minimalitdt nachzuweisen, miissen wir zeigen, dass ein Zustand w, wel-
cher eine Formel p enthilt, auch minimal fiir p ist. Dabei muss diese Formalisierung
die Definition von MinimalElement s[Blerfiillen und miissen demnach sowohl zei-
gen, dass p in w gilt, und dass es keinen préferierten Zustand gibt, der ebenfalls p
erfillt.

Lemma 3. Minimale Elemente im kanonischen Modell

Axiom canonical_states_maximal
forall w : CanonicalStates, maximal_consistent_set w.

Axiom canonical_minimality
forall (p : Formula) (w : CanonicalStates),
p e w —>
~ exists state’,
p € state’ /\ CanonicalPreferenceRel state’ w.

Lemma minimal_elements_canonical

72

11
12
13
14
15
16
17
18
19
20

22
23

25
26

28
29
30

32
33
34
35

forall (p : Formula) (w : CanonicalStates),
maximal_ consistent_set w —->
p € w —>
In CanonicalStates (MinimalElements CanonicalModel p) w.
Proof.
intros p w H_max H_p_in_w.
unfold MinimalElements.
split.
— apply canonical_entails; auto.
- intros [state’ [H_entails_state’ H_pref]].

assert (H_max_state’ : maximal consistent set state’).
apply canonical_states_maximal.

assert (H_p_in_state’ : p € state’).
apply canonical_entails; auto.

assert (H_no_preferred : ~ exists state’,
p € state’ /\ CanonicalPreferenceRel state’ w).
apply canonical_minimality; auto.

apply H_no_preferred.
exists state’.
split; auto.

Qed.

Das Lemma zeigt, dass jede maximale konsistente Menge w, die eine Formel p ent-
hilt, auch direkt ein minimales Element fiir p im kanonischen Modell ist. Dabei kon-
nen wir in dem Beweis durch canonical_entails [3|zeigen, dass p in w seman-
tisch wahr ist und zeigen dann tiber einen Widerspruch, dass es keinen préferierten
Zustand gibt, der ebenfalls p erfiillt. Um den Beweis der Minimalitdt zu verein-
fachen, fithren wir zwei Axiome ein. Das Axiom canonical_states_maximal
sagt aus, dass jeder Zustand im kanonischen Modell maximal konsistent ist, was
uns die Anwendung von canonical_entails ermoglicht, und das zweite Axi-
om canonical_minimality garantiert dabei, dass fiir einen Zustand w mitp €
w kein préferierter Zustand existiert, der ebenfalls p enthélt. Fiir den Widerspruch
wird angenommen, dass es einen préferierten Zustand state’ gibt, welcher p er-
fullt. Mit den Axiomen canonical states_maximal und canonical entails
folgt p € state’, was aber durch canonical _minimality zu einem Wider-
spruch fiihrt, da kein solcher Zustand state’ existieren darf.

Fiir die Formalisierung der Smoothness-Bedingung fiir das kanonische Modell
fihren wir das Lemma smoothness_canonical ein.

Lemma 4. Die Smoothness Eigenschaft des kanonischen Modells

73

1
2
3
4
5
6
7
8

O W O J o U b W N

[uy

12
13

15

Lemma smoothness_canonical
forall (p : Formula) (w : CanonicalStates),

entails (Labeling CanonicalModel w) p —>

exists min_w,
entails (Labeling CanonicalModel min_w) p /\
(CanonicalPreferenceRel min_w w \/ min_w = w) /\
In CanonicalStates

(MinimalElements CanonicalModel p) min_w.

Das Lemma sagt aus, dass wenn eine Formel p in einem Zustand w des kanonischen
Modells gilt, dann existiert ein minimaler Zustand min_w fiir p, welcher entweder
identisch mit w ist oder gegeniiber w préferiert ist und in MinimalElements liegt.
Wir nutzen hier unser allgemeines smoothness Axiom[I} um zu zeigen, dass auch
die Smoothness Bedingung spezifisch im kanonischen Modell gilt.

5.2.5 Hauptbeweisschritte der Completeness

Da wir nun die Grundlagen fiir den Vollstandigkeitsbeweis geschaffen haben, kon-
nen wir den abschlieSenden Beweis in dem Theorem completeness_k1lm fithren.
Wir zeigen, dass jede semantische Konsequenzrelation auch syntaktisch ableitbar
ist, und werden dies ebenfalls durch einen Widerspruch zeigen. Wir nehmen dafiir
an, dass eine Formel g semantisch aus p folgt, das heifst, dass alle Modelle, in denen
p wahr ist, ebenfalls auch g erfiillen, aber g nicht syntaktisch aus p ableitbar ist, also
p [~ g. Dafiir konstruieren wir zundchst ein kanonisches Modell, was wir als ein
Gegenbeispiel verwenden werden, da wir dieses Modell so konstruieren, dass es die
Wissensbasis respektiert und dennoch die zuvor angenommene Nicht-Ableitbarkeit
widerspiegelt. Durch die Anwendung der Eigenschaften maximaler konsistenter
Mengen und der semantischen Interpretation des kanonischen Modells kénnen wir
dann zeigen, dass dieses Gegenbeispiel zu einem logischen Widerspruch fiihrt.

Theorem completeness_klm
forall (I' : Ensemble Formula) (p g : Formula),
'i=p I~wqg->I2:p |~ q.
Proof.
intros I' p g H_sem.
destruct (classic (CumulCons I' p q))
as [H_syn | H_not_syn].
exact H_syn.
- assert (H_sem_check : I' |=p |~w Q).
{ exact H_sem. }

destruct (exists_maximal_consistent I' p g H_not_syn)
as [w [H_max [H_sub [H_p_in_w H_not_qg in_w]]]].

assert (H_satisfies

74

16
17

19
20
21

23
24
25

27
28

30
31

SatisfiesKnowledgeBase CanonicalModel I').
apply canonical_satisfies_kb with (w := w); auto.
assert (H_minimal : In CanonicalStates
(MinimalElements CanonicalModel p) w).

apply minimal_elements_canonical; auto.
assert (H_entails_qg
entails (Labeling CanonicalModel w) q).
apply H_sem; auto.
assert (H_g in_.w : g € w).
apply canonical_entails; auto.
contradiction.

Qed.

Wir fiihren zunichst unsere Variablen und Annahmen ein. Wieder stellt I unsere
Wissensbasis und p und g unsere Formeln dar. Die Annahme H_sem besagt, dass
I' |= p |~w g semantisch gilt, das heifdt, dass in allen kumulativen Modellen,
welche die Wissensbasis I' respektieren, g aus p folgt. Nachfolgend untersuchen
wir, ob CumulCons I' p g gilt oder nicht. Der erste Fall, dass CumulCons I' p
q gilt, ist direkt trivial zu beweisen, da wir bereits H_syn : CumulCons I' p g
haben. Fiir den zweiten Fall, dass CumulCons I' p g nicht gilt, wollen wir den
Widerspruch herleiten. Dafiir konstruieren wir eine maximale konsistente Menge w,
welche folgende Eigenschaften hat:

1. H_max : w ist eine maximale konsistente Menge.
2. H_sub : Die Wissensbasis I" ist in w enthalten (I" C w).
3. H_p_in_w: Die Pramisse p ist in w enthalten.

4. H_not_g_in_w: Und die Konklusion g ist nicht in w enthalten.

Dabei konnen wir mithilfe des Axioms exists_maximal_consistent zeigen,
dass wenn g nicht syntaktisch aus p unter I" ableitbar ist, dann gibt es eine konsis-
tente Erweiterung von der Wissensbasis I' U {p}, die nicht g enth<.

Nachdem wir die maximale konsistente Menge konstruiert haben, zeigen wir
durch das Axiom canonical_ satisfies_kb, dass das kanonische Modell die
Wissensbasis I respektiert. Das ist notwendig, damit wir die semantische Annahme
H_sem auf das kanonische Modell anwenden koénnen, denn I' |= p |~w g gilt
nur fiir Modelle, die I' respektieren. Darauf folgend miissen wir ebenfalls die von
der Konsequenzrelation geforderte Minimalitdt des Zustands w fiir die Formel p im
kanonischen Modell nachweisen, um zu zeigen, dass w zu den typischsten Zustan-
den gehort, in denen p gilt. Lemma minimal_elements_canonical sagt genau
dies aus, und wir konnen es demnach hier anwenden.

75

OW 00 J o U b W N -

Da wir nun gezeigt haben, dass das kanonische Modell die Wissensbasis I" re-
spektiert und w ein minimaler Zustand fiir p ist, konnen wir die Annahme H_sem
auf den Zustand w anwenden und Schlussfolgern, dass g ebenfalls in w gelten muss,
denn die Definition vonI' |= p |~w gsagtaus, dass in allen Modellen, die I" re-
spektieren, g auch in allen minimalen Zustdnden gilt, in denen auch p gilt. Genau
dies fithrt uns zu dem Widerspruch. Wir haben eine semantische Aussage tiber w ab-
geleitet, welche im Widerspruch zu den syntaktischen Eigenschaften von w stehen
wird. Uber das Axiom canonical_entails konnen wir die semantische Aussage
,d gilt in w” in die syntaktische Aussage , g ist ein Element von w” transformieren.
Wir erhalten die Aquivalenz:

entails (Labeling CanonicalModel w) g <-> q € w

Damit existieren zwei widerspriichliche Aussagen, denn H_g_in_w gibt an, dass g
in w enthalten ist, aber H_not_g_in_w sagt genau das Gegenteil aus, dass g nicht
in w enthalten ist. Somit erhalten wir einen logischen Widerspruch, der automatisch
von Coq erkannt wird, und wir kénnen den Beweis mit contradiction abschlie-
8en. Der Widerspruch zeigt, dass unsere vorher getroffene Annahme ~ CumulCons
I' p gfalsch war. Wir hatten angenommen, dass g semantisch aus p folgt (I' |= p
| ~w q), aber nicht syntaktisch ableitbarist ((I' : p |~ g)), und konnten einen
Widerspruch zeigen. Demnach muss die syntaktische Ableitbarkeit I' : p |~ g
auch gelten.

Damit haben wir gezeigt, dass fiir jede semantische Konsequenzrelation eine syn-
taktische Ableitung existiert, was genau der Completeness-Richtung des Représen-
tationstheorems von Kraus, Lehmann und Magidor entspricht.

Theorem klm_theorem

forall (I' : Ensemble Formula) (p g : Formula),

' :pl~g<>T|=p [~ q.

Proof.

intros I' p g.

split.

- apply KLM_Soundness_M.soundness_klm.

- apply KLM_Completeness_M.completeness_klm.
Qed.

Wenn eine Konsequenzrelation durch ein kumulatives Modell definiert werden kann
I' |= p | ~w g, dannistsie auch eine kumulative Konsequenzrelation des System
CI : p |~ g. Zusammen mit dem Soundness-Beweis stellt dies die vollstindige
Aquivalenz zwischen der syntaktischen Ebene kumulativer Konsequenzrelationen
durch System C und ihrer semantischen Reprasentation durch kumulative Modelle
dar.

76

6 Evaluation und Diskussion

In den vorangegangenen Kapiteln haben wir eine Formalisierung des Reprasentati-
onstheorems fiir kumulative Konsequenzrelationen in Coq formalisiert. Diese For-
malisierung umfasst sowohl die syntaktische Ebene durch System C als auch die
semantische Reprasentation durch kumulative Modelle, einschliefdlich des Sound-
ness und Completeness Beweises.

Zum einen abstrahieren wir komplexe mathematische Konstruktionen durch Axio-
me, zum anderen werden theoretisch begriindbare Eigenschaften axiomatisch an-
genommen, deren expliziter Beweis den Rahmen einer verstandlichen Formalisie-
rung sprengen wiirde und damit die Komplexitdt deutlich erhoht. Die Smoothness-
Bedingung, wie schon in Kapitel besprochen, ist beispielsweise in der endli-
chen propositionalen Logik automatisch erfiillt und wird daher, wie auch schon von
Kraus, Lehmann und Magidor, als , technische Bedingung” axiomatisch behandelt.

Diese Designentscheidungen ermoglichen uns, den Fokus auf die wesentlichen
Konzepte des nichtmonotonen Schliefiens zu legen, ohne sich in den technischen
Details der Implementierung oder in theoretisch bereits gekldarten Nebenaspekten
zu verlieren. Dabei unterscheiden wir fiir die Formalisierung bewusst zwischen
theoretisch begriindeten Axiomen und denen, die die komplexen Konstruktionen
des Completeness Beweises abstrahieren.

In diesem Kapitel werden wir die gegebene Formalisierung unter verschiede-
nen Gesichtspunkten kritisch evaluieren und dabei sowohl die Stirken als auch
die Grenzen des gewdhlten Ansatzes diskutieren, die aufgetretenen Implementie-
rungsherausforderungen analysieren, welche sich aus dem nichtmonotonen Schlie-
en und den Besonderheiten der Cog-Formalisierung ergeben, und die getroffenen
Designentscheidungen reflektieren.

6.1 Vollstandigkeit und Korrektheit

Fiir den Soundness Beweis haben wir alle fiinf Regeln des System C (Reflexivity,
LLE, RW, Cut, CM) vollstindig formalisiert und bewiesen. Dabei haben wir durch
strukturelle Induktion tiber CumulCons jeden einzelnen der fiinf Konstruktoren
von CumulCons bewiesen. Jede Regel wurde dabei durch ein separates Lemma ab-
gesichert, was die Korrektheit und Nachvollziehbarkeit gewihrleistet. Der Beweis
der Cautious Monotonicity Regel nutzt die Smoothness Bedingung, welche sicher-
stellt, dass jede Formel minimale Zustdnde hat, was eine wichtige Eigenschaft ku-
mulativer Modelle ist. Die Beweise der Lemmata fiir die Soundness wurden von
Coq akzeptiert und typgepriift und sind damit ebenfalls von Coq verifiziert und
enthalten keine unbewiesenen Annahmen. Der Beweis stellt zudem eine Interpreta-
tion zu Lemma 3.16 und Lemma 3.24 [11] von Kraus, Lehmann und Magidor dar,
woran wir uns auch fiir die Struktur des Beweises orientiert haben.

Der Completeness Beweis folgt einer tiblichen Beweisstruktur fiir die Korrektheit
durch einen Widerspruchsbeweis, wie sie in der modalen Logik fiir die Konstruk-
tion kanonischer Modelle etabliert ist [26) [16]. Dabei verwenden wir die Axiome

77

konsistent und zweckgemafs und erzeugen eine giiltige Schlussfolgerungskette von
der Annahme und Modellkonstruktion bis zum Widerspruch. Insbesondere orien-
tiert sich unsere Konstruktion des kanonischen Modells an der Idee maximal kon-
sistenter Mengen, wie sie in [26] und [16] fiir modale Logiken beschrieben wird,
angepasst an die spezifischen Anforderungen unserer bisherigen Formalisierung.
Wihrend in [26] eine Accessibility Relation definiert wird, verwenden wir eine Préfe-
renzrelation CanonicalPreferenceRel, welche auf der Minimalitdtsbedingung
von KLM-Modellen basiert [11]. Diese Anpassung war notwendig, um die semanti-
schen Eigenschaften des nichtmonotonen Schliefiens zu berticksichtigen. Die Axio-
me wie canonical_entails und exists_maximal consistent wurden ein-
gefiihrt, um die Komplexitdt der unendelichen Modelle abdecken zu kénnen und
spiegeln die Aussage von Lindenbaum’s Lemma [26)}, [16] wider, welches die Existenz
maximaler konsistenter Mengen sichert.

Auch der Completeness Beweis wird von Coq als korrekt verifiziert, was jedoch
durch die axiomatischen Annahmen unterstiitzt wird. Wir haben mit der Forma-
lisierung dennoch alle Komponenten des KLM-Theorems, wie das System C und
kumulative Modelle, abgedeckt und haben beide Richtungen (Soundness und Com-
pleteness) behandelt. Wir haben dabei sichergestellt, dass alle fiinf Regeln des Sys-
tem C korrekt und vollstindig formalisiert sind und auch, dass die Modelle alle
erforderlichen Komponenten (Zustinde, Labeling-Funktion und Praferenzrelation)
beinhaltet.

6.2 Komplexitat der Formalisierung und Losungsansatze

Die axiomatischen Abstraktionen im Completeness Beweis sind ein ausschlagge-
bender Punkt fiir die Komplexitdt unserer Formalisierung. Wir haben insgesamt
funf Axiome eingefiihrt, welche teils aufeinander aufbauen und damit komplexe-
re Konstruktionen ersetzen. Es ist dabei hervorzuheben, dass die fiinf Axiome

1. exists_maximal_consistent,

2. canonical _entails, canonical satisfies_kb,
3. canonical states_maximal

4. und canonical_minimality

nicht konstruktiv bewiesen sind, wahrend wir das Axiom smoothness als gegebe-
ne Vereinfachung durch die Eigenschaften propositionaler Logik sehen.

Wiéhrend der Implementierung haben wir erkannt, dass die unendliche Grofe
des kanonischen Modells konstruktive Beweise sehr komplex macht. Die unend-
liche Grofie ist schon selber durch Ensemble Formula gegeben, da es sich hier
um eine Menge von Formeln handelt. Wir hatten bereits geklart, dass es in der pro-
positionalen Logik nur eine endliche Anzahl semantisch unterschiedlicher Formeln
geben kann. Dies ist jedoch nicht der Fall fiir syntaktische verschiedene Formeln,

78

mit denen wir ebenfalls fiir die Formalisierung arbeiten. Dadurch, dass es also un-
endlich viele Formeln gibt, aus denen die maximalen konsistenten Mengen gebildet
werden, entsteht die Unendlichkeit der Modelle. Die erhohte Komplexitat spiegelt
sich gerade in den definierten Axiomen wider.

Die Konstruktion von exists_maximal_consistent erfordert dabei eine sys-
tematische Behandlung abzédhlbar unendlich vieler Formeln, denn wir miissen fiir
jede einzelne Formel entscheiden, ob diese in der Menge enthalten ist oder nicht.
Dies fiihrt dazu, dass wir dariiber unendlich viele Entscheidungen treffen miiss-
ten. Die verwendete Library [8] stellt fiir die Enumeration aller Formeln die Da-
tei und das Lemma bijection_nat_formula, also einer bijektion zwischen N
und Formula und eine Funktion maxmapf, welche fiir jede Formel entscheiden
kann, ob diese in der Menge hinzugefiigt werden kann, zur Verfiigung. Aber den-
noch bleibt es ein unendlicher Prozess, diese Entscheidung zu treffen. Fiir jede For-
mel fo, f1, f2, ... miiss entschieden werden ob diese der Menge hinzugefiigt werden
kann:

Starte mit I' U {p}

Formel fo: Kann fp ohne Inkonsistenz hinzugefiigt werden?
T — fiige fo hinzu
1 — fiige = fo hinzu

Formel fi: Kann f; ohne Inkonsistenz hinzugefiigt werden?
T — fiige f1 hinzu
1 — fige = f1 hinzu

Formel fo: ...

Wir miissten auflerdem zeigen, dass die Konsistenz erhalten bleibt und dass wir
auch tatsdchlich eine maximale Menge erzeugen. Wir umgehen dieses Problem mit
dem Axiom exists_maximal_consistent,indem wir postulieren, dass eine sol-
che Menge existiert und diese deshalb nicht konstruieren miissen.

Auch der Beweis von canonical_entails ist aufgrund der rekursiven Struk-
tur und aufgetretenen Typisierungsproblemen in Coq zu kompliziert. Auf der se-
mantischen Ebene arbeiten wir fiir das Entailment mit der syntaktischen Mengen-
zugehorigkeit valuemaxf aus der Library [8], der strukturellen Eigenschaften ma-
ximaler konsistenter Mengen, und der semantischen Auswertung durch entails.
Jede dieser Ebenen fordert eigene Cog-spezifische Typisierungsanforderungen. Frii-
here Beweisversuche scheiterten an der rekursiven Induktion tiber die Formelstruk-
tur, da die Verwendung von CanonicalStates als abhdngiger Typ die Extraktion
desEnsemble Formula mitdem Verwenden der Funktion proj1_sig erforderte
und dies zu komplexen Typisierungsfehlern fiihrte.

Das Axiom canonical_satisfies_kb abstrahiert die komplexe Konstruktion,
welche zeigen wiirde, dass wenn eine maximale konsistente Menge die Wissensba-
sis enthélt, das entsprechende kanonische Modell diese Wissensbasis respektiert.

79

Fiir das Axiom benétigen wir daher einen Nachweis komplexer Modellstruktur-
Eigenschaften, wie zum Beispiel, dass alle Zustdnde des Modells alle Formeln aus
der Wissensbasis I erfiillen, wo die Unendlichkeit der Zustinde wieder problema-
tisch ist. AufSerdem miissten wir die Verbindung zwischen der Mengenzugehorig-
keit einer Formel ¢ inI" (¢ € I') und der semantischen Giiltigkeit nachweisen. Dafiir
wiirden wir selber wieder canonical_enails fiir alle Zustdnde verwenden, was
wiederum selber axiomatisch ist.

Die Axiomatisierung diente daher vorrangig als strategische Entscheidung. Wir
haben die Axiome als Losung fiir bestimmte Komplexitdtsprobleme eingefiihrt und
vermeiden damit technische Details und behalten den Fokus auf den Kernkonzep-
ten des KLM-Theorems. Fiir die Axiome haben wir uns zudem an den entsprechen-
den Lemmata aus der Arbeit von Kraus, Lehmann und Magidor orientiert und ha-
ben diese nicht einfach willkiirlich eingefiihrt, da jedes dieser Axiome eine klare
theoretische Rechtfertigung besitzt.

6.3 Aquivalenzklassen als mégliche Alternative

Es konnte argumentiert werden, dass das Problem der Unendlichkeit der Modelle
gelost werden konnte, indem keine maximalen konsistenten Mengen genutzt wer-
den, sondern Aquivalenzklassen. Jedoch hat sich bei vorhergehenden Ansitzen ge-
zeigt, dass diese deutlich komplexer in Coq zu definieren sind. Es miisste ebenfalls
eine Aquivalenzrelation und die Klassenkonstruktion formalisiert werden und dies
hitte ebenfalls vollstandige Quotientenstrukturen in Coq erfordert.

Dies hitte jedoch ebenfalls die Komplexitdt erhoht und ebenfalls zu mehreren
axiomatischen Annahmen gefiihrt. Letztendlich haben wir uns fiir die Représenta-
tion mit maximalen konsistenten Mengen entschieden, auch weil uns diese schon
zur Verfligung gestellt wurden. Dabei haben wir darauf geachtet, maximalen kon-
sistenten Mengen so zu konstruieren, dass diese trotz der technischen Unterschiede
logisch dquivalent zu den von Kraus, Lehmann und Magidor vorgestellten Aquiva-
lenzklassen sind, da beide die gleichen semantischen Eigenschaften, wie Smothness
und Minimalitat, reprdsentieren.

80

7 Fazit

Das Reprasentationstheorem fiir kumulatives Schlieflen nach Kraus, Lehmann und
Magidor [11] bildet die theoretische Grundlage dieser Arbeit. Es beschreibt die Aqui-
valenz zwischen den syntaktischen Regeln des Systems C und der Semantik kumu-
lativer Modelle und ist zentral fiir das nichtmonotone Schlieflen, das Wissen mit
Ausnahmen wie ,Vogel fliegen, aber Pinguine nicht” modelliert. Diese Aquivalenz
ist essenziell fiir Anwendungen in der kiinstlichen Intelligenz, etwa in Experten-
systemen. Die Formalisierung in Coq verifiziert diese theoretische Verbindung und
schafft eine Grundlage fiir weitere Forschungen.

Ziel dieser Arbeit war es, das KLM-Theorem in propositionaler Logik mit dem
Beweisassistenten Coq zu formalisieren. Dabei wurden die Regeln des Systems C,
kumulative Modelle sowie die Beweise fiir Soundness und Completeness in Coq
kodiert, um die Aquivalenz zwischen Syntax und Semantik zu verifizieren. Die For-
malisierung schafft eine verifizierte, wiederverwendbare Grundlage fiir nichtmono-
tones Schlieflen und zeigt Potenzial fiir Erweiterungen, etwa auf préferenzielle Lo-
giken wie System P, sowie fiir Anwendungen in Expertensystemen. Im Folgenden
fassen wir unsere Hauptergebnisse zusammen. Dabei reflektieren wir die erreichten
Ziele, zeigen Verbesserungsmoglichkeiten auf und skizzieren danach kurz zukiinf-
tige Arbeiten.

7.1 Zusammenfassung der Beitrage

Die Formalisierung umfasst alle Komponenten des KLM-Theorems. Auf der syntak-
tischen Ebene wurde das System C mit dessen fiinf Regeln vollstandig formalisiert.
Auf der semantischen Ebene wurden kumulative Modelle mit Zustdnden, einer
Labeling-Funktion und einer Praferenzrelation definiert, wobei maximale konsis-
tente Mengen als Zustande verwendet wurden. Der Soundness-Beweis in Theorem
soundness_k1lm zeigt, dass jede vom System C abgeleitete Konsequenz seman-
tisch giiltig ist, was durch strukturelle Induktion {iber CumulCons mit separaten
Lemmata fiir jede Regel abgesichert wurde. Der Completeness-Beweis in Theorem
completeness_klm zeigt, dass jede semantisch giiltige Konsequenz syntaktisch
ableitbar ist, und nutzt einen Widerspruchsansatz mit einem kanonischen Modell.
Beide Beweise wurden von Coq typgepriift, was ihre Korrektheit bestétigt.

Wir haben damit unser Hauptziel, eine mogliche Formalisierung fiir das KLM-
Theorem mit Coq zu erstellen, erreicht und haben gezeigt, wie System C, kumulati-
ve Modelle und die Aquivalenz zwischen diesen mit Coq kodiert werden konnen.
Wir haben uns dabei auf die propositionale Logik beschrankt und Axiome einge-
fithrt, um die Komplexitdt so gering wie moglich zu halten und den Fokus auf das
eigentliche Représentationstheorem von Kraus, Lehmann und Magidor zu halten.
Dabei haben wir uns fiir einen modularen Aufbau des Beweises entschieden, um
zukiinftige Arbeiten zu erleichtern und die Ubersichtlichkeit zu erhohen.

Die Formalisierung stiitzt sich auf Fahigkeiten von Coq, wie in Kapitel 3| be-
schrieben. Interaktives Beweisen mit Taktiken wie induction, simpl, apply und

81

rewrite, unterstiitzt durch die deklarative Programmierung mit Gallina und den
Calculus of Inductive Constructions, ermoglichte eine prazise Formalisierung der
Beweise. Die Library [8] erleichterte die Arbeit mit propositionaler Logik und im-
plemtierte einige Eigenschaften der propositionalen Logik, welche wir fiir unsere
Formalisierung einsetzten konnten. Herausforderungen wie Typisierungsprobleme
und unklare Dokumentation erforderten jedoch eine intensive Einarbeitung, unter-
streichen aber die Starke von Coq fiir formale Verifikationen als machtiges Wekzeug.

7.2 Erkenntnisse

Die Formalisierung liefert uns mehrere Erkenntnisse, welche die Herausforderun-
gen aus Kapitel [I| widerspiegeln. Die unendliche Grofie des kanonischen Modells
stellte dabei eine zentrale Herausforderung dar und fiihrte zu der Einfiihrung un-
serer Axiome aus Kapitel welche diese Komplexitit umgingen. Aufgetretene
Typisierungsfehler und gelegentliche Bulletpoint-Fehler stellten eine unerwartete
Herausforderung dar. Es hat sich herausgestellt, dass obgleich der Beweiskontext
durch Coq prasentiert werden kann, nicht immer direkt klar oder ersichtlich ist, wel-
chen Typen gerade eine Hypothese besitzt. Oft haben sich bei fiir uns logischen und
nachvollziehbaren Beweisschritten Typisierungsfehler ergeben, die nicht nachvoll-
ziehbar erschienen, aber von Coq aufgrund des Type-Checking beméngelt wurden.
Auflerdem lag ein weiteres Hindernis selber in der Arbeit mit dem Beweisassisten-
ten Coq, denn es zeigte sich, dass die Handhabung und Beweisfithrung mit Coq
nicht intuitiv ist. Die Dokumentation ist teilweise auch nicht klar genug, um nach-
vollziehen zu koénnen, wie bestimmte, erweiterte oder fortgeschrittenere Taktiken
hitten eingesetzt werden konnen. Dies verzogerte die Beweisfithrung.

Das Einarbeiten in die genutzte Library [8] stellte ebenfalls eine Herausforderung
aufgrund deren Komplexitdt dar. Dennoch konnte die Library an einigen Stellen
sinnvoll eingesetzt werden. Diese Library implementiert einige Konzepte proposi-
tionaler Logik und bietet ebenfalls zahlreiche auto-solver Funktionen. Das macht
diese aber auch etwas komplexer als urspriinglich angenommen. Jedoch zeigt diese
auch bestimmte Beweistechniken und Formatierungen, an denen wir uns orientie-
ren konnten.

7.2.1 Bewahrte Praktiken

Im Laufe der Formalisierung haben sich verschiedene Praktiken bewihrt. Die Ver-
wendung von Axiomen ist eine effektive Strategie, um die Herausforderungen der
unendlichen Grofse und komplexe Beweise zu 16sen. So konnten wir die Konstruk-
tion des kanonischen Modells vereinfachen und die Formalisierung zuganglicher
gestalten. Auflerdem war die Orientierung an der Arbeit von Kraus, Lehmann und
Magidor [11] entscheidend, um die theoretische Fundierung sicherzustellen, insbe-
sondere bei der Struktur des Soundness und Completeness Beweises. Die Library
[8] erleichterte die Arbeit mit maximalen konsistenten Mengen, was die Implemen-
tierung effizienter machte. Wir konnten so erfolgreich das System C und die ku-

82

mulativen Modelle formalisieren und bieten explizite Definitionen fiir Zustdnde,
Labeling-Funktionen und Préferenzrelationen an, die in Beweisen effektiv genutzt
werden konnen.

7.2.2 Potenzielle Verbesserungen und Alternativen

Trotz der Erfolge gibt es Verbesserungsmoglichkeiten. Die Axiome aus Kapitel[5.2.1]
konnten durch explizite Beweise ersetzt werden, um die Abhédngigkeit von Annah-
men zu reduzieren, auch wenn dies die Komplexitdt erhohen wiirde. Dafiir wa-
re eine detaillierte Analyse der Typisierungsprobleme ebenfalls hilfreich, auch um
dhnliche Herausforderungen in zukiinftigen Projekten zu vermeiden.

In der Einleitung haben wir die Moglichkeit, die Praferenzrelation so zu struk-
turieren, dass die Smoothness-Bedingung automatisch erfiillt ist. Dies wurde durch
die axiomatische Annahme von smoothness erreicht, aber eine explizite Konstruk-
tion wére auch eine Alternative gewesen. Eine weitere Alternative ist, wie wir schon
diskutiert hatten, die Verwendung von Aquivalenzrelationen und Quotientenstruk-
turen in Coq, die dhnliche Axiome notig gemacht hdtten. Eine dritte Alternative,
die Konstruktion einer dquivalenten Formel fiir maximal konsistente Menge, wur-
de verworfen, da sich dies als unpraktikabel im Umgang mit propositionaler Logik
erwies, weshalb fiir uns der gewdhlte Ansatz mit maximal konsistenten Mengen die
beste Wahl darstellte.

Die Formalisierung ist dennoch als Erfolg zu werten, da sie das KLM-Theorem
vollstindig abdeckt. Die Kodierung des System C, die Definition kumulativer Mo-
delle und die Beweise fiir Soundness und Completeness wurden durch Coq verifi-
ziert, was die Korrektheit und Prédzision garantiert. Der Ansatz ist sehr gut nachvoll-
ziehbar, da Axiome komplexe Konstruktionen vereinfachen und die Library [8] die
Implementierung ebenfalls unterstiitzt. Schwichen sind jedoch ebenfalls durch die
Abhéngigkeit dieser Axiome gegeben und beschranken die Eigenstdndigkeit der
Formalisierung. Dennoch bietet unsere Arbeit eine solide Grundlage fiir das Ver-
stdandnis nichtmonotonen Schlieflens und gibt eine formale Verifikation in Coq, die
fiir zukiinftige Projekte zugéanglich ist.

83

8 Zukunftige Arbeiten

Die Formalisierung des Reprasentationstheorems fiir kumulative Konsequenzrela-
tionen (System C) in Coq, wie in dieser Arbeit vorgestellt, bietet eine solide Grund-
lage fiir weitere Forschungen und Erweiterungen im Bereich des nichtmonotonen
Schliefsens. Neben der Vervollstindigung unvollstindiger Beweise und der Erweite-
rung auf andere Logiken gibt die Arbeit die Moglichkeit, das System P (Preferential
Logics), eine Erweiterung von System C, zu formalisieren. Dieser Abschnitt skiz-
ziert, wie System P eingefiihrt werden kann, wie die vorliegende Formalisierung
als Basis genutzt werden kann, welche Anderungen im Coq-Code erforderlich sind,
und berticksichtigt die Transitivitdt der Praferenzrelation, die fiir System P relevant
ist.

8.1 System P

Als Erweiterung des Systems C wurde 1990 von Kraus, Lehmann und Magidor [11]
das System P als praferenzielles Schlussfolgerungssystem vorgestellt. System P fiigt
eine zusatzliche Regel hinzu, die nichtmonotone Schliisse mit einer praferenziellen
Semantik formalisiert. Diese Regel lautet:

(OR) alyc bl

avb e (Disjunktion)

Die Regel besagt, dass, wenn c iiblicherweise aus a folgt und c iiblicherweise aus b
folgt, dann c auch aus a V b folgt. So gilt zum Beispiel ,Wenn es regnet, wird der Ra-
sen iiblicherweise nass” (regen |~ nass) und ,Wenn der Rasensprenger lauft, wird
der Rasen tiblicherweise nass” (sprenger |~ nass). Da beide Pramissen zur glei-
chen Schlussfolgerung fiihren, folgt aus ,Es regnet oder der Rasensprenger lauft”
(regen V sprenger |~ nass), dass der Rasen tiblicherweise nass wird. Diese Regel
ermoglicht es, disjunktive Pramissen in nichtmonotonen Schliissen zu behandeln,
was die Flexibilitdt des Systems erhoht.

Semantisch basiert System P auf priferenziellen Modellen, die im Vergleich zu
kumulativen Modellen eine striktere Praferenzrelation erfordern. Wahrend die Pra-
ferenzrelation in System C nur irreflexiv ist, ist sie in System P sowohl irreflexiv als
auch transitiv. Die Transitivitat stellt sicher, dass, wenn Zustand s; préferierter als
so ist und sy préferierter als s3, dann s; auch préferierter als s3 ist. Dies spiegelt die
Intuition wider, dass ,typischere” Zustdande konsistent bevorzugt werden.

8.1.1 Erweiterung auf System P

Die vorliegende Formalisierung von System C bietet eine robuste Basis fiir die Er-
weiterung auf System P, da viele Definitionen, Axiome und Beweisstrukturen wie-
derverwendet oder angepasst werden konnen. Die Arbeit definiert bereits kumu-
lative Modelle (CumulModel), das syntaktische System C (CumulCons), maximale
konsistente Mengen (CanonicalStates), sowie die Beweise fiir die Soundness

84

B N

~ o U W N

W 00 J o U1 > W DN -

(soundness_k1m) und Completeness (completeness_k1lm). Im Folgenden skiz-
zieren wir, wie diese Komponenten fiir System P angepasst werden konnen, und
zeigen grob, welche Anderungen im Cog-Code nétig sind.

Syntaktische Anpassungen Um System P zu formalisieren, muss die Regel OR
in die Definition von CumulCons in KLM_Cumulative.v integriert werden. Dies
erfordert einen neuen Konstruktor:

| OR : forall a b ¢ : Formula,
CumulCons I' a ¢ —>
CumulCons I' b ¢ —>
CumulCons I' (a V b) c

Dieser Konstruktor reprasentiert die Disjunktionsregel und ermoglicht es, dass
aVb |~ cabgeleitet wird, wenna |~ cund b |~ cgelten. Fiir den Soundness-Beweis
(KLM_Soundness.v) miisste ein neues Lemma soundness_OR hinzugefiigt wer-
den, das zeigt, dass die Regel semantisch giiltig ist. Ein Ansatz wire:

Lemma soundness_OR

forall (model : CumulModel) (a b ¢ : Formula),
model : a |~w ¢ -> model : b |~w c —>
model : (a V b) |~w c.
Proof.
[...]
Qed.

Dieser Beweis konnte die Tatsache nutzen, dass minimale Zustiande, die a V b er-
fullen, entweder a oder b erfiillen, und wendet dann die entsprechende Pramisse
an.

Semantische Anpassungen Semantisch erfordert System P die Definition von
PreferentialModel, die eine transitive Praferenzrelation haben. In KLM_Semantics.v
miisste die Definition von CumulModel angepasst werden, um die Transitivitit zu
garantieren:

Record CumulModel : Type := {
States : Type;
Labeling : States -> Formula -> bool;

PreferenceRel : States —> States —-> Prop;
Preferencelrreflexive : forall s, ~ PreferenceRel s s;
PreferenceTransitive : forall sl s2 s3,

PreferenceRel sl s2 ->
PreferenceRel s2 s3 —> PreferenceRel sl s3

85

1
2
3
4
5
6
5

Die bestehende Smoothness Bedingung (smoothness) bleibt erhalten, da sie auch
fiir System P gilt. Im kanonischen Modell (CanonicalModel) muss aber die Préfe-
renzrelation entsprechend angepasst werden:

Definition CanonicalPreferenceRel

(wl w2 : CanonicalStates) : Prop :=
exists p, wl F p /\ ~ (w2 F p) /\
forall w3, (forall g, w2 + g —>

w3 F q) —>
wl Fp -—>
w3 F p.

Dies stellt sicher, dass die Prédferenzrelation transitiv ist, indem diese die Impli-
kationskette tiber Zustdande respektiert. Der Beweis von smoothness_canonical
wiirde durch die Transitivitdt aber auch komplexer, da minimale Zustdnde in ei-
ner transitiven Ordnung strenger definiert sind. Die unendliche Grofie des Mo-
dells bleibt eine Herausforderung, wird aber durch die bestehenden Axiome wie
exists_maximal_consistent weiterhin gehandhabt.

Unsere Formalisierung von System C bietet eine direkte Basis fiir System P. Die
Definitionen von Formula, Ensemble Formula, und CanonicalStates kon-
nen unverdndert tibernommen werden. Die Library [8] unterstiitzt mit Funktio-
nen wie bijection_nat_formula und valuemaxf weiterhin die Konstrukti-
on maximal konsistenter Mengen. Axiome wie canonical_satisfies_kb und
canonical_minimality sind fiir System P kompatibel, da sie allgemeine Eigen-
schaften des kanonischen Modells abdecken. Auch Soundness und Completeness
Beweise folgen einer dhnlichen Struktur, wobei die neue Regel OR und die Transiti-
vitdt die Hauptunterschiede darstellen.

8.2 Mogliche Anwendungsbereiche

Ein vielversprechender Anwendungsbereich der Formalisierung ist der Einsatz in
Expertensystemen. Dadurch, dass die Verifikation von Coq die Korrektheit des Pro-
gramms garantiert, konnte unsere Formalisierung fiir Expertensysteme eingesetzt
werden, beispielsweise in medizinischen Diagnosesystemen oder Entscheidungs-
unterstiitzungssystemen. Nichtmonotones Schliefien, wie es durch System C und
System P ermoglicht wird, ist ideal fiir solche Anwendungen, da es Ausnahmen
und typische Schliisse handhaben kann, wie im Beispiel ,Vogel fliegen, aber Pin-
guine nicht” aus der Einleitung illustriert. Die durch Coq gewihrleistete Korrekt-
heit erhoht das Vertrauen in solche Systeme, insbesondere in kritischen Bereichen,
wo Fehler schwerwiegende Konsequenzen haben konnten. Unsere Formalisierung
konnte als Modul in grofiere KI-Systeme integriert werden, etwa durch Extraktion
des Cog-Codes in funktionale Programme, wie Haskell [14] oder OCaml [23], um
Schlussfolgerungsregeln direkt anzuwenden. Eine Erweiterung auf System P wiir-
de die Anwendbarkeit weiter verbessern, da die priferenzielle Semantik ,typische-
re” Zustande bevorzugt, was fiir realistische Entscheidungsfindung in Expertensys-

86

temen niitzlich ist. Zudem erleichtert die Wiederverwendbarkeit der Definitionen,
wie in der Einleitung betont, die Integration in solche Systeme und unterstiitzt die
Entwicklung vertrauenswiirdiger KI-Anwendungen.

Das Extrahieren des Cog-Codes in OCaml oder Haskell ermdoglicht es, die For-
malisierung ausfithrbar zu machen und in praktischen Anwendungen zu nutzen.
OCaml ist besonders geeignet, da Coq selbst in OCaml geschrieben ist und die Ex-
traktion nativ unterstiitzt, was zu effizientem Code fiir Definitionen wie CumulCons
oder SemanticEntails fithrt. Haskell eignet sich durch sein reines funktionales
Paradigma und starkes Typsystem, das gut zu Coq’s mathematischen Konstrukten
passt, insbesondere fiir Beweise wie soundness_k1m. Auflerdem erhoht dies die
Wiederverwendbarkeit der Formalisierung, wie in der Einleitung betont, und er-
moglicht die Integration in KI-Frameworks fiir Expertensysteme. Dabei bleibt die
Korrektheit durch Coq’s Verifikation erhalten, was wiederum das Vertrauen in kri-
tische Anwendungen stiarkt. Der Extraktionsprozess erfolgt dabei durch Markie-
ren extrahierbarer Definitionen in Coq (zum Beispiel mit Extract Inductive),
Entfernen oder Ersetzen von Axiomen wie exists_maximal_consistent durch
konkrete Implementierungen und Verwenden des Befehls Ext ract ionnach OCaml
oder Haskell, wie in [20] beschrieben. Der extrahierte Code kann dann mit einem
OCaml oder Haskell Compiler kompiliert werden, um die Schlussfolgerungsregeln
direkt anzuwenden.

Damit sind eine Erweiterung auf System P und die Anwendung in Expertensys-
temen vielversprechende néchste Schritte, da sie die vorliegende Formalisierung
direkt nutzen und die versehentliche Transitivitdt der Praferenzrelation integrieren.
Die Arbeit bietet damit eine solide Grundlage fiir die formale Verifikation priferen-
zieller Logiken und tragt zur Weiterentwicklung des nichtmonotonen Schlieflens in
Coq sowie dessen praktischer Anwendung bei.

87

Literatur

[1] Adel Mohammed Al-Odhari. Features of propositional logic. Pure Mathematical
Sciences, 10(1):35-44, 2021.

[2] Yves Bertot and Pierre Castéran. Interactive theorem proving and program develop-
ment: Coq’Art: the calculus of inductive constructions. Springer Science & Business
Media, 2013.

[3] Adam Chlipala. Certified programming with dependent types: a pragmatic introduc-
tion to the Coq proof assistant. MIT Press, 2013.

[4] Alonzo Church. A formulation of the simple theory of types. The journal of
symbolic logic, 5(2):56-68, 1940.

[5] Thierry Coquand and Gérard Huet. The calculus of constructions. PhD thesis,
INRIA, 1986.

[6] Haskell B Curry. Functionality in combinatory logic. Proceedings of the National
Academy of Sciences, 20(11):584-590, 1934.

[7] Leonardo De Moura and Nikolaj Bjerner. Z3: An efficient smt solver. In In-
ternational conference on Tools and Algorithms for the Construction and Analysis of
Systems, pages 337-340. Springer, 2008.

[8] Dakai Guo and Wensheng Yu. A comprehensive formalization of propositio-
nal logic in coq: Deduction systems, meta-theorems, and automation tactics.
Mathematics, 11(11), 2023.

[9] William A Howard et al. The formulae-as-types notion of construction. To
HB Curry: essays on combinatory logic, lambda calculus and formalism, 44:479-490,
1980.

[10] Laura Kovacs and Andrei Voronkov. First-order theorem proving and vampire.
In International Conference on Computer Aided Verification, pages 1-35. Springer,
2013.

[11] Sarit Kraus, Daniel Lehmann, and Menachem Magidor. Nonmonotonic re-
asoning, preferential models, and cumulative logics. Artificial Intelligence,
44(1):167-207, 1990.

[12] Daniel Lehmann and Menachem Magidor. What does a conditional knowledge
base entail? Artificial intelligence, 55(1):1-60, 1992.

[13] Xavier Leroy, Sandrine Blazy, Daniel Kadstner, Bernhard Schommer, Markus Pis-
ter, and Christian Ferdinand. Compcert-a formally verified optimizing compi-
ler. In ERTS 2016: Embedded Real Time Software and Systems, 8th European Con-
gress, 2016.

89

[14] Simon Marlow et al. Haskell 2010 Language Report. Haskell.org, 2010. Accessed
May 12, 2025.

[15] Christine Paulin-Mohring. Introduction to the calculus of inductive constructi-
ons. In Bruno Woltzenlogel Paleo and David Delahaye, editors, All about Proofs,
Proofs for All, volume 55 of Studies in Logic (Mathematical Logic and Foundations).
College Publications, 2015.

[16] Open Logic Project. Completeness and canonical models. Chapter, Open Logic
Project, December 2024. Revision: 6891b66, licensed under CC-BY.

[17] Stuart] Russell and Peter Norvig. Artificial intelligence: a modern approach. pear-
son, 2016.

[18] Morten Heine Serensen and Pawet Urzyczyn. Chapter 14 - pure type systems
and the A-cube. In Morten Heine Serensen and Pawet Urzyczyn, editors, Lec-
tures on the Curry-Howard Isomorphism, volume 149 of Studies in Logic and the
Foundations of Mathematics, pages 343-359. Elsevier, 2006.

[19] Coq Team. Introduction the coq proof assistant htt-
ps://coq.inria.fr/doc/v8.7.2 /refman/introduction.html.

[20] The Coq Development Team. The Coq Proof Assistant Reference Manual. Inria,
2025. Version 8.19, accessed 2025-04.

[21] The Coq Development Team. Tactics - The Coq Reference Manual. Inria, 2025.
Accessed: 2025-04.

[22] The Mathematical Components Team. The mathematical components library,
2025. Accessed May 25, 2025.

[23] The OCaml Team. The OCaml System: Documentation and User’s Manual. Inria,
2025. Version 5.2, accessed May 12, 2025.

[24] Philip Wadler. The girard-reynolds isomorphism (second edition). Theoretical
Computer Science, 375(1):201-226, 2007.

[25] Jonathan Heinrich Walther. Einfiihrende Beispiele fiir das Beweisen mit
Coq https://github.com/jonawa-q9677453/KLMCoq, 2025. Siehe Datei
cog_examples_introduction.v.

[26] Edward N Zalta. Basic concepts in modal logic. Center for the Study of Language
and Information, 1995.

90

	Einleitung
	Theoretische Grundlagen
	Propositionale Logik
	Nichtmonotones Schließen
	System C

	Kumulative Modelle
	Smoothness-Bedingung
	Konsequenzrelation in kumulativen Modellen

	KLM-Theorem zum Kumulativen Schließen

	Coq als Beweisassistent
	Interaktives Beweisen
	Calculus of Inductive Constructions
	Produkttypen und Funktionstypen
	Induktive Definitionen
	Das Induktionsprinzip
	Rekursive Funktionen auf induktiven Typen
	Curry-Howard-Isomorphismus im CIC

	Gallina als deklarative Programmiersprache von Coq
	Syntax und Hauptsprachelemente
	Module und Strukturierung

	Beweisführung mit Taktiken
	Taktiksprache und deren Anwendung

	Semi-automatisches Beweisen

	Formalisierungsansatz
	Aufbau des Beweises
	Einbinden der Library für Propositionale Logik
	Überblick über die Formalisierungsschritte
	Darstellung der Syntax
	Kodierung propositionaler Formeln
	Induktive Definition der Syntax
	Darstellung von Wahrheitswerten

	Formalisierung von System C
	Formalisierung der fünf Grundregeln
	Definition kumulativer Konsequenzrelationen
	Hilfssätze zu den Regeln

	Modellierung kumulativer Modelle
	Definition der modellbasierten Konsequenzrelation

	Die Smoothness Bedingung formalisiert in Coq

	Coq-Beweis des Repräsentationstheorems
	Korrektheitsbeweis (Soundness)
	Reflexivity Regel
	Left Logical Equivalence Regel
	Right Weakening Regel
	Cut Regel
	Cautious Monotonicity Regel
	Induktionsbeweis der Soundness

	Vollständigkeitsbeweis (Completeness)
	Kanonisches Modell
	Existenz und Eigenschaften maximal konsistenter Mengen
	Semantische Interpretation im kanonischen Modell
	Minimalität und Smoothness im kanonischen Modell
	Hauptbeweisschritte der Completeness

	Evaluation und Diskussion
	Vollständigkeit und Korrektheit
	Komplexität der Formalisierung und Lösungsansätze
	Äquivalenzklassen als mögliche Alternative

	Fazit
	Zusammenfassung der Beiträge
	Erkenntnisse
	Bewährte Praktiken
	Potenzielle Verbesserungen und Alternativen

	Zukünftige Arbeiten
	System P
	Erweiterung auf System P

	Mögliche Anwendungsbereiche

