
Fakultät für Mathematik und Informatik Artificial Intelligence Group

Über Formalisierung und
semi-maschinelles Beweisen des

Standard-Repräsentationstheorems für
kumulatives Schließen in Propositionaler

Logik mit Coq

Bachelorarbeit
zur Erlangung des Grades einer Bachelor of Science (B.Sc.)

im Studiengang Informatik

vorgelegt von
Jonathan Heinrich Walther

Erstgutachter: Prof. Dr. Kai Sauerwald
Artificial Intelligence Group

Betreuer: Prof. Dr. Kai Sauerwald
Artificial Intelligence Group

Erklärung

Ich erkläre, dass ich die Bachelorarbeit selbstständig und ohne unzulässige Inan-
spruchnahme Dritter verfasst habe. Ich habe dabei nur die angegebenen Quellen
und Hilfsmittel verwendet und die aus diesen wörtlich oder sinngemäß entnom-
menen Stellen als solche kenntlich gemacht. Die Versicherung selbstständiger Ar-
beit gilt auch für enthaltene Zeichnungen, Skizzen oder graphische Darstellungen.
Die Bachelorarbeit wurde bisher in gleicher oder ähnlicher Form weder derselben
noch einer anderen Prüfungsbehörde vorgelegt und auch nicht veröffentlicht. Mit
der Abgabe der elektronischen Fassung der endgültigen Version der Bachelorar-
beit nehme ich zur Kenntnis, dass diese mit Hilfe eines Plagiatserkennungsdienstes
auf enthaltene Plagiate geprüft werden kann und ausschließlich für Prüfungszwe-
cke gespeichert wird.

Der Veröffentlichung dieser Arbeit auf der Webseite des Lehrgebiets Künstliche In-
telligenz und damit dem freien Zugang zu dieser Arbeit stimme ich ausdrücklich
zu.

Für diese Arbeit erstellte Software wurde quelloffen verfügbar gemacht, ein ent-
sprechender Link zu den Quellen ist in dieser Arbeit enthalten. Gleiches gilt für
angefallene Forschungsdaten.

. .
(Ort, Datum) (Unterschrift)

iii

Zusammenfassung

Diese Arbeit widmet sich der Formalsierung und dem Beweisen des Repräsentati-
onstheorems für kumulatives Schließen mit dem Beweisassistenten Coq. Das Theo-
rem stellt eines der zentralen Theoreme der nichtmonotonen Logik dar. Nichmo-
notones Schließen ermöglicht die Revision von Schlüssen bei neuen Informationen
und berücksichtigt Ausnahmen, was dem menschlichen Denken näher kommt als
die klassische monotone Logik. Ein typisches Beispiel ist „Vögel fliegen“, eine Re-
gel, welche normalerweise gilt, aber durch spezifischere Informationen wie „Pingui-
ne fliegen nicht“ außer Kraft gesetzt werden kann. Das kumulative Schließen geht
auf die Arbeit von Kraus, Lehmann und Magidor aus dem Jahr 1990 zurück, die
das System C mit seinen fünf Regeln entwickelten. Eine Besonderheit der maschi-
nellen Formalisierung mit Coq ist, dass sie absolute Präzision und Vollständigkeit
garantiert, während handgeschriebene Beweise Fehler enthalten können, oder im-
plizite Annahmen verwenden. Wir beginnen mit der syntaktischen Formalisierung
der System C Regeln und gehen dann zur semantischen Modellierung kumulativer
Modelle über. Dabei beschränken wir uns auf propositionale Logik, um die Kom-
plexität überschaubar zu halten und uns auf die wesentlichen Aspekte des KLM-
Theorems zu konzentrieren. Die Formalisierung und die Beweise bieten eine wie-
derverwendbare Basis für nichtmonotones Schließen und schaffen eine Grundlage
für Erweiterungen in der Wissensrepräsentation.

Abstract

This thesis is dedicated to the formalization and proving of the representation the-
orem for cumulative reasoning using the proof assistant Coq. The theorem repre-
sents one of the central theorems of nonmonotonic logic. Nonmonotonic reasoning
enables the revision of conclusions when new information becomes available and
considers exceptions, which is closer to human thinking than classical monotonic
logic. A typical example is "birds fly", a rule that normally holds but can be over-
ridden by more specific information such as "penguins do not fly". Cumulative
reasoning traces back to the work of Kraus, Lehmann and Magidor from 1990, who
developed System C with its five rules. A distinctive feature of machine-verified
formalization with Coq is that it guarantees absolute precision and completeness,
while hand-written proofs may contain errors or use implicit assumptions. We be-
gin with the syntactic formalization of the System C rules and then proceed to the
semantic modeling of cumulative models. We restrict ourselves to propositional
logic in order to keep the complexity manageable and to focus on the essential as-
pects of the KLM-Theorem. The formalization and proofs provide a reusable foun-
dation for non-monotonic reasoning and create a basis for extensions in knowledge
representation.

v

Inhaltsverzeichnis

1 Einleitung 1

2 Theoretische Grundlagen 3
2.1 Propositionale Logik . 3
2.2 Nichtmonotones Schließen . 5

2.2.1 System C . 7
2.3 Kumulative Modelle . 8

2.3.1 Smoothness-Bedingung . 9
2.3.2 Konsequenzrelation in kumulativen Modellen 10

2.4 KLM-Theorem zum Kumulativen Schließen 12

3 Coq als Beweisassistent 13
3.1 Interaktives Beweisen . 13
3.2 Calculus of Inductive Constructions 15

3.2.1 Produkttypen und Funktionstypen 16
3.2.2 Induktive Definitionen . 20
3.2.3 Das Induktionsprinzip . 22
3.2.4 Rekursive Funktionen auf induktiven Typen 24
3.2.5 Curry-Howard-Isomorphismus im CIC 28

3.3 Gallina als deklarative Programmiersprache von Coq 32
3.3.1 Syntax und Hauptsprachelemente 33
3.3.2 Module und Strukturierung . 35

3.4 Beweisführung mit Taktiken . 36
3.4.1 Taktiksprache und deren Anwendung 37

3.5 Semi-automatisches Beweisen . 38

4 Formalisierungsansatz 41
4.0.1 Aufbau des Beweises . 41
4.0.2 Einbinden der Library für Propositionale Logik 43
4.0.3 Überblick über die Formalisierungsschritte 43

4.1 Darstellung der Syntax . 44
4.1.1 Kodierung propositionaler Formeln 44
4.1.2 Induktive Definition der Syntax 44
4.1.3 Darstellung von Wahrheitswerten 45

4.2 Formalisierung von System C . 45
4.2.1 Formalisierung der fünf Grundregeln 46
4.2.2 Definition kumulativer Konsequenzrelationen 47
4.2.3 Hilfssätze zu den Regeln . 48

4.3 Modellierung kumulativer Modelle . 50
4.3.1 Definition der modellbasierten Konsequenzrelation 52

4.4 Die Smoothness Bedingung formalisiert in Coq 54

vii

5 Coq-Beweis des Repräsentationstheorems 55
5.1 Korrektheitsbeweis (Soundness) . 56

5.1.1 Reflexivity Regel . 56
5.1.2 Left Logical Equivalence Regel 57
5.1.3 Right Weakening Regel . 58
5.1.4 Cut Regel . 59
5.1.5 Cautious Monotonicity Regel 61
5.1.6 Induktionsbeweis der Soundness 64

5.2 Vollständigkeitsbeweis (Completeness) 68
5.2.1 Kanonisches Modell . 69
5.2.2 Existenz und Eigenschaften maximal konsistenter Mengen . . 70
5.2.3 Semantische Interpretation im kanonischen Modell 71
5.2.4 Minimalität und Smoothness im kanonischen Modell 72
5.2.5 Hauptbeweisschritte der Completeness 74

6 Evaluation und Diskussion 77
6.1 Vollständigkeit und Korrektheit . 77
6.2 Komplexität der Formalisierung und Lösungsansätze 78
6.3 Äquivalenzklassen als mögliche Alternative 80

7 Fazit 81
7.1 Zusammenfassung der Beiträge . 81
7.2 Erkenntnisse . 82

7.2.1 Bewährte Praktiken . 82
7.2.2 Potenzielle Verbesserungen und Alternativen 83

8 Zukünftige Arbeiten 84
8.1 System P . 84

8.1.1 Erweiterung auf System P . 84
8.2 Mögliche Anwendungsbereiche . 86

viii

1 Einleitung

Eine zentrale Form des logischen Schließens stellt das nichtmonotone Schließen dar.
Dabei wird durch die Nichtmonotonie die Revision von Schlüssen ermöglicht, was
grundlegend auch widerspiegelt, wie wir Menschen denken. Es besagt, dass wir ei-
ne einmal als wahr angenommene Schlussfolgerung beim Erhalt neuer Informatio-
nen wieder anpassen können. Zum Beispiel wissen wir, dass Vögel im Allgemeinen
fliegen können. Gleichzeitig wissen wir aber auch, dass Pinguine Vögel sind, die
nicht fliegen können. Dieser scheinbare Widerspruch lässt sich durch nichtmonoto-
nes Schließen auflösen: Die Regel „Vögel fliegen“ gilt, kann aber durch spezifische-
re Informationen, wie im Fall von den Pinguinen, außer Kraft gesetzt werden. Wie
an diesem Beispiel gut zu sehen ist, können wir so Ausnahmen berücksichtigen.
Anders als bei der klassischen Monotonie, wo das Hinzunehmen neuer Prämissen
nicht die Schlussfolgerung invalidieren kann. So würde die Annahme „Vögel flie-
gen“ beim Hinzunehmen von „Pinguine sind Vögel“ auch zu „Pinguine fliegen“
führen, was offensichtlich nicht der Fall ist.

Nichtmonotones Schließen bietet die formale Grundlage, um diese Arten von
Wissen, bei denen bestimmte Annahmen üblicherweise, aber nicht ausnahmslos gel-
ten, in einem logischen System darzustellen. Das hierfür 1990 von Kraus, Lehmann
und Magidor [11] entwickelte logische System nennt sich System C. Die darin ent-
haltenen Regeln stellen den Grundstein für nichtmonotones Schließen dar und er-
möglichen es, logische Schlüsse unter Berücksichtigung möglicher Ausnahmen zu
ziehen.

Um diesen Regeln eine semantische Bedeutung zu geben, wurden kumulative
Modelle entwickelt. Diese Modelle stellen eine formale Struktur dar, welche aus Zu-
ständen, einer Labeling-Funktion und einer Präferenzrelation besteht. Dabei reprä-
sentieren die Zustände mögliche Interpretationen, die Labeling-Funktion verbindet
Zustände mit Welten, und die Präferenzrelation ermöglicht es, „normalere“ oder
„typischere“ Zustände zu finden. Diese semantische Grundlage ermöglicht uns da-
mit, die syntaktischen Regeln des System C in einem modelltheoretischen Rahmen
zu interpretieren.

Eines der grundlegenden Theoreme im Bereich der nichtmonotonen Logik ist das
Repräsentationstheorem für kumulatives Schließen (KLM-Theorem), welches eben-
falls 1990 von Kraus, Lehmann und Magidor vorgestellt wurde. Das Theorem stellt
eine Verknüpfung zwischen der syntaktischen Ebene der Regeln und Merkmalen
von kumulativen Konsequenzrelationen und der semantischen Ebene dar, die durch
kumulative Modelle beschrieben wird.

Das KLM-Theorem besagt, dass eine Konsequenzrelation genau dann kumulativ
ist, wenn sie durch ein kumulatives Modell definiert werden kann. Diese Äquiva-
lenz bildet die theoretische Basis für kumulative Logik und gewährleistet einerseits
die korrekte Darstellung kumulativer Konsequenzrelationen sowohl durch syntak-
tische Beschreibungen, wie des System C, als auch durch eine konsistente seman-
tische Interpretation. Andererseits stellt das Theorem dadurch sicher, dass jede Re-

1

lation, die durch ein kumulatives Modell definiert ist, den Regeln des System C
entspricht.

Diese Arbeit widmet sich der Formalisierung des Theorems 3.25 und des semi-
maschinellen Beweisens des Repräsentationstheorems für kumulatives Schließen
mit dem Beweisassistenten Coq [19]. Ein Beweisassistent wie Coq ermöglicht die
vollständige formale Verifikation mathematischer Beweise durch eine Kombination
aus menschlicher Führung und maschineller Überprüfung. Dabei beschränken wir
uns vorrangig auf den Fall von kumulativem Schließen basierend auf propositiona-
ler Logik, um die sprachliche Komplexität überschaubar zu halten und uns auf die
wesentlichen Aspekte des Repräsentationstheorems zu konzentrieren.

Während handgeschriebene Beweise Fehler enthalten können, garantiert dann
die maschinelle Überprüfung die Vollständigkeit und Korrektheit aller Beweisschrit-
te. Dabei werden unter anderem implizite Annahmen, welche auch in informellen
Beweisen vorkommen könnten, vermieden, was wiederum das Vertrauen in die
Gültigkeit des Theorems erhöht. Neben der vollständigen Präzision und Explizi-
theit der Annahmen führt die Formalisierung auch zu der Wiederverwendbarkeit
von formalisierten Definitionen und Lemmas zur weiteren Forschung. Dabei schafft
dies auch eine solide Grundlage für Erweiterungen und verwandte Systeme.

Die Herausforderungen der Arbeit belaufen sich auf einige wesentliche Punkte. In
erster Linie gilt es, die Smoothness-Bedinung korrekt und vollständig in Coq darzu-
stellen. Dabei ist zu beachten, dass in der propositionalen Logik die Beweisstruktur
endlich ist. Dies führt dazu, dass es bei n atomaren Formeln maximal 2(2

n) seman-
tisch unterschiedliche Formeln gibt und jede absteigende Kette muss irgendwann
ein minimales Element haben. Mit diesem Wissen lässt sich dann die Präferenzre-
lation so strukturieren, dass sie automatisch die Smothness-Bedingung erfüllt, was
den Beweis des Repräsentationstheorems vereinfachen sollte. Das wäre bei einer
prädikatenlogischen Erweiterung komplexer, da wir hier unendlich viele seman-
tisch unterschiedliche Formeln handhaben müssten. Eine weitere Herausforderung
stellen die genaue Definition der kumulativen Modelle mit ihren Eigenschaften und
die exakte Formalisierung der System C Regeln in Coq dar. Die mathematischen
Definitionen müssen in die strenge Syntax von Coq übersetzt werden, wobei es oft
mehrere Möglichkeiten gibt, diese mathematischen Konzepte zu kodieren. Dabei ist
zu beachten, dass alle impliziten Annahmen aus einer mathematischen Definition
in Coq explizit gemacht werden müssen. Zudem müssen die Definitionen so gestal-
tet sein, dass sie später im Beweis effektiv verwendet werden können. Das bedeutet
konkret, dass wir schon früh darüber eine Entscheidung treffen müssen, wie Konse-
quenzrelationen, Zustände, Labeling-Funktion und Präferenzrelation repräsentiert
werden. Letztlich gilt es damit dann die komplexen Beweisschritte im Repräsenta-
tionstheorem zu bewältigen.

Damit beläuft sich das Hauptziel dieser Arbeit auf die Frage: „Wie kann das KLM-
Theorem präzise in Coq formalisiert werden?“ Mitunter soll dann auch gezeigt wer-
den, wie kumulative Modelle formal dargestellt werden können, wie sich das Sys-
tem C in Coq kodieren lässt und wie die Äquivalenz zwischen beiden nachgewie-

2

sen werden kann. Dafür werden konkret die Formalisierung der Grundbegriffe, die
Konstruktion des Beweises des KLM-Theorems und die Entwicklung wiederver-
wendbarer Definitionen für nichtmonotones Schließen behandelt.

Zunächst werden wir uns auf die theoretischen Grundlagen von propositionaler
Logik und nichtmonotonem Schließen konzentrieren. Danach wird Coq als Bewei-
sassistent eingeführt und beschrieben. Anschließend werden wir den geplanten For-
malisierungsansatz benennen und konkrete Implementierungsdetails nennen. Da-
nach widmen wir uns dem Beweis des Repräsentationstheorems. Schlussendlich
werden wir die Ergebnisse des Formalisierungsversuches besprechen und bewer-
ten, bevor wir mit Schlussfolgerungen und einem Ausblick auf mögliche Erweite-
rungen der Formalisierung die Arbeit abschließen.

2 Theoretische Grundlagen

Im Folgenden werden wir zunächst die theoretischen Grundlagen dieser Arbeit be-
nennen und verdeutlichen. Dabei werden wir zunächst auf propositionale Logik
und deren Bedeutung in dem Kontext eingehen, bevor wir uns den Eigenschaften
und der Bedeutung der nichtmonotonen Logik widmen.

2.1 Propositionale Logik

In der propositionalen Logik beschäftigen wir uns mit Aussagen, die entweder wahr
⊤ oder falsch ⊥ sein können, nicht beides und nicht keines von beiden. In der Spra-
che L definiert die Menge der Aussagenvariablen das Alphabet Σ, welches je nach
formaler Definition endlich oder abzählbar unendlich ist. Die Aussagenvariablen
sind dabei atomare Aussagen die, nicht weiter zerlegt werden können. Beispiele für
atomare Aussagen sind „Es regnet“ oder „Die Sonne scheint“. Diese werden durch
Variablen wie p, q, r repräsentiert. Formeln der propositionalen Logik werden durch
die Nutzung logischer Konnektive, wie Konjunktion (∧), Disjunktion (∨), Negation
(¬), Implikation (→) und die Äquivalenz (↔), rekursiv aufgebaut.

Die Syntax der propositionalen Logik beruht auf der induktiven Definition der
Menge der wohlgeformten Formeln (wff) [1].

Diese besagt,

• dass jede atomare Aussage p eine Formel ist,

• wenn p eine Formel ist, dann ist auch deren Negation ¬p eine Formel,

• wenn p und q Formeln sind dann sind auch deren Konjunktion p∧ q, Disjunk-
tion p ∨ q, Implikation p → q und Äquivalenz p ↔ q eine Formel,

• und nur Ausdrücke, die durch das endliche Anwenden dieser Regeln gebildet
werden, sind Formeln.

3

Um Mehrdeutigkeiten bei komplexeren Formeln zu vermeiden, können außer-
dem Klammern eingesetzt werden. Um jedoch eine Klammerung zu reduzieren,
gibt es die Präzedenzregeln, die die Stärke der Bindung von den jeweiligen Kon-
nektiven festlegt, das heißt, sie geben an, welches Konnektiv in einer Formel zuerst
ausgewertet wird. So bindet ¬ stärker als ∨ und ∧ und diese wiederum stärker als
→ und ↔.

Die Semantik von Formeln in der propositionalen Logik gibt eine Interpretation
an, die jeder atomaren Aussage einen Wahrheitswert zuordnet.

Für eine Interpretation v in der Sprache L gilt daher:

v : Σ → {⊤,⊥}

Damit die Interpretation v auch Wahrheitswerte für komplexe Formeln liefern kann,
erweitern wir sie induktiv wie folgt:

v(¬p) = ⊤ genau dann, wenn v(p) = ⊥
v(p ∧ q) = ⊤ genau dann, wenn v(p) = ⊤ und v(q) = ⊤
v(p ∨ q) = ⊤ genau dann, wenn v(p) = ⊤ oder v(q) = ⊤
v(p → q) = ⊤ genau dann, wenn v(p) = ⊥ oder v(q) = ⊤
v(p ↔ q) = ⊤ genau dann, wenn v(p) = v(q)

Dabei ist die Interpretation v ein Modell für eine Formel p, geschrieben v |= p wenn
v(p) = ⊤ gilt.

Dies bedeutet ebenfalls, dass eine Formel erfüllbar ist, wenn diese mindestens ein
Modell hat. Zudem können wir noch Aussagen zu der Tautologie und Kontradikti-
on treffen. Eine Formel ist logisch gültig (Tautologie), wenn jede Interpretation ein
Modell ist und eine Formel ist eine Kontradiktion, wenn es kein Modell gibt.

Folgend werden wir noch zwei weitere wichtige Eigenschaften der propositionalen
Logik, die logische Äquivalenz und logische Folgerung, ergänzen

Die logische Äquivalenz besagt, dass zwei Formeln p und q logisch äquivalent
sind p ≡ q, wenn sie für jede mögliche Interpretation der Variablen den gleichen
Wahrheitswert haben, also v, v(p) = v(q) für jede Interpretation v gilt. Weitere logi-
sche Äquivalenzen der propositionalen Logik sind dabei:

Kommutativität: p ∧ q ≡ q ∧ p, p ∨ q ≡ q ∨ p

Assoziativität: (p ∧ q) ∧ r ≡ p ∧ (q ∧ r), (p ∨ q) ∨ r ≡ p ∨ (q ∨ r)

Distributivität: p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r), p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

De Morgan: ¬(p ∧ q) ≡ ¬p ∨ ¬q, ¬(p ∨ q) ≡ ¬p ∧ ¬q
Implikation: p → q ≡ ¬p ∨ q

Kontraposition: p → q ≡ ¬q → ¬p

Für die logische Folgerung gilt, dass eine Formel q logisch aus einer anderen Formel
p, geschrieben p |= q, folgt, wenn für jede Interpretation v die Wahrheit der Formel
p auch die Wahrheit der Formel q garantiert: v(p) = ⊤, dann auch v(q) = ⊤.

4

Die logische Folgerung können wir ebenfalls noch auf Formelmengen erweitern.
Dabei folgt eine Formel p aus einer Menge von Formeln Γ, geschrieben Γ |= p,
wenn für jede Interpretation v die Formeln in Γ die Wahrheit von p gewährleisten:
v(γ) = ⊤ für alle γ ∈ Γ, dann auch v(p) = ⊤.

2.2 Nichtmonotones Schließen

Wie schon anfangs erwähnt handelt es sich bei nichtmonotonem Schließen um eine
spezielle Form des logischen Schließens, welche es ermöglicht bei dem Hinzuneh-
men neuer Informationen, schon bereits getroffene Schlussfolgerungen zu revidie-
ren.

Im Folgenden werden wir, für diese speziellen Folgerungsbeziehungen, auch Kon-
sequenzrelation genannt, das Symbol |∼ nutzen. Damit grenzen wir die nichtmo-
notone Konsequenzrelation von der klassischen logischen Folgerung |= ab.

Formal bedeutet dies also, dass eine Konsequenzrelation |∼ nichtmonoton ist,
wenn es Formeln a, b, c gibt, für die a |∼ c aber a ∧ b ̸|∼ c. Dies steht in dem Ge-
gensatz zur klassischen Logik, wo durch das Hinzufügen weiterer Prämissen nie
weniger folgen kann. Für Beispiel können wir uns wieder an dem bereits kurz vor-
gestellten Vogel-Pinguin Beispiel orientieren.

Nehmen wir an, dass wir aus „Tweety ist ein Vogel“ folgern, „Tweety kann flie-
gen“. Wenn wir dann lernen „Tweety ist ein Pinguin“, müssen wir die vorher ge-
troffene Schlussfolgerung, nämlich dass Tweety fliegen kann, zurückziehen. Dies
spiegelt unsere menschliche Art zu denken wider, da wir ständig unter neuem Wis-
sen Schlüsse ziehen und anpassen müssen. Gleichzeitig ermöglicht die Nichtmo-
notonie auch, dass wir mit Ausnahmen und Standards, die „normalerweise“ oder
„üblicherweise“ gelten, umgehen können, im Vergleich zu der klassischen Monoto-
nie, welche nur mit strikten Regeln arbeiten kann. Darum wird a |∼ b auch als b
folgt üblicherweise aus a gelesen. Wir behandeln bei dem nichtmonotonen Schließen
also den Umgang mit unvollständigem Wissen, was es uns ermöglicht, vorläufige
Schlüsse zu ziehen, die dann später revidiert werden können.

Es kann aber folglich auch zu Konflikten durch solche Ausnahmen kommen. Um
dies genauer darzustellen, möchten wir hier auf das Beispiel der Nixon-Raute [17]
eingehen. Präsident Nixon ist sowohl Quäker als auch Republikaner. Quäker sind
normalerweise pazifistisch, wohingegen Republikaner normalerweise keine Pazifis-
ten sind.

Beispiel 1. Die Nixon-Raute

5

Fakten:
Quäker(nixon)

Republikaner(nixon)

Nichtmonotone Regeln:
Quäker(x) |∼ Pazifist(x) (Quäker sind normalerweise Pazifisten)
Republikaner(x) |∼ ¬Pazifist(x) (Republikaner sind normalerweise

keine Pazifisten)

Wie zu sehen ist, können wir nun zwei widersprüchliche, nichtmonotone Schluss-
folgerungen ableiten. Nämlich einerseits, dass aus Nixon ist ein Quäker normalerwei-
se folgt Nixon ist ein Pazifist und andererseits aus Nixon ist ein Republikaner norma-
lerweise folgt Nixon ist kein Pazifist:

Quäker(nixon) |∼ Pazifist(nixon)

Republikaner(nixon) |∼ ¬Pazifist(nixon)

Dieses Beispiel veranschaulicht gut, dass für solch einen Konflikt noch zusätzliche
Mechanismen benötigt werden, um besser mit diesem Umgehen zu können. Da-
für gibt es einige Konfliktlösungsstrategien, die wir an dieser Stelle kurz vorstellen
wollen. Es könnte gegebenenfalls mit einer Art Spezifitätsprinzip gearbeitet werden,
wo spezifischere Informationen dann den Vorrang haben. Dies wäre aber bei dem
obigen Beispiel nur schwer anwendbar, da wir hier nur zwei gleichwertige Informa-
tionen haben. Bei unserem Vogel-Pinguin Beispiel könnte man aber annehmen, dass
„Pinguine fliegen nicht“ eine spezifischere Information ist als „Vögel fliegen“ wo-
durch diese nicht übertrumpft werden würde. Es gäbe aber auch die Möglichkeit,
nur nicht-kontroverse Schlussfolgerungen zu akzeptieren oder generell Prioritäts-
ordnungen vorzunehmen.

Bevor solche Lösungsansätze für Konflikte entwickelt werden können, müssen
erst einmal die grundlegenden Eigenschaften des nichtmonotonen Schließen festge-
legt werden. Dafür stellen Kraus, Lehmann und Magidor nichtmonotone Schlussfol-
gerungssysteme [11] vor. Diese bestimmen, wie sich nichtmonotone Schlussfolgerun-
gen verhalten sollen und definieren dafür formale Bedingungen für „vernünftiges
nichtmonotones Schließen“ [11]. Dies stellt sicher, dass die Schlussfolgerungen un-
ter konsistenten neuen Informationen stabil bleiben. Im Folgenden werden wir das
kumulative Schlussfolgerungssystem System C vorstellen.

6

2.2.1 System C

Das System C1 stellt nach Kraus, Lehmann und Magidor [11] die minimalen Anfor-
derungen an rationales nichtmonotones Schließen dar. Es beinhaltet die folgenden
grundlegenden Regeln:

Definition 1 (System C).

(Ref) a |∼ a (Reflexivity)

(LLE)
|= a ↔ b a |∼ c

b |∼ c
(Left Logical Equivalence)

(RW)
|= a → b, c |∼ a

c |∼ b
(Right Weakening)

(Cut)
a ∧ b |∼ c, a |∼ b

a |∼ c
(Transitivity)

(CM)
a |∼ b a |∼ c

a ∧ b |∼ c
(Cautious Monotonicity)

Jede dieser Regeln erfüllt einen spezifischen Zweck, um menschliche Denkprozes-
se intuitiv nachzuvollziehen. Um die Regeln zu veranschaulichen, werden wir dafür
wieder auf das Vogel-Pinguin Beispiel zurückgreifen und es etwas ergänzen. Refle-
xivity etabliert dabei die Grundeigenschaft, dass jede Formel sich selber beinhaltet.
Das heißt, für unser Beispiel gilt „Vögel sind normalerweise Vögel“, was offensicht-
lich der Fall sein sollte. Left Logical Equivalence hingegen stellt sicher, dass logisch
äquivalente Formeln in den Prämissen ausgetauscht werden können. Wenn wir also
„Flugunfähige Pinguine sind normalerweise Schwimmer“ und „Pinguine, die nicht
fliegen können, sind das gleiche wie Flugunfähige Pinguine“ annehmen, können
wir daraus schlussfolgern, dass „Pinguine, die nicht fliegen können, sind normaler-
weise Schwimmer“ gilt. Hieran ist gut zu erkennen, dass nur der Inhalt der Prämisse
eine Rolle spielt und nicht ihre syntaktische Form. Dies ermöglicht also auch Um-
formulierungen oder andere Beschreibungen, ohne dabei die Bedeutung einer Prä-
misse zu ändern. Right Weakening erlaubt es uns, schwächere Schlussfolgerungen
von stärkeren Schlussfolgerungen ableiten zu können. Das beutet, wenn wir zum
Beispiel „Vögel haben normalerweise Flügel“ und „Flügel haben Federn“ anneh-
men, dann folgt daraus auch „Vögel haben normalerweise Federn“. Dadurch wird
ermöglicht, Schlussfolgerungen aus allgemeineren Eigenschaften zu schließen. Die
Cut Regel stellt eine Art von Transitivität dar, was wiederum relevant ist, um zwei
separate Schlussfolgerungen zu einer einzigen zu verknüpfen. So schließen wir aus
dem Beispiel „Vögel können normalerweise fliegen“ und „Vögel die fliegen, können

1Das „C“ steht hier für Cumulative

7

landen“ auch dass „Vögel können normalerweise landen“ gilt. Damit ist es möglich,
Zwischenschritte in Schlussfolgerungen zu überspringen, um so Wiederholungen
zu vermeiden. Und letztlich stellt Cautious Monotonicity eine eingeschränkte Form
der Monotonie dar. Dabei werden die Einschränkungen der klassischen Monotonie,
dass zusätzliche Prämissen alle bisherigen Schlussfolgerungen enthalten, vermie-
den. Dennoch wird gewährleistet, dass die Schlussfolgerungen konsistent bleiben.
Eine eingeschränkte Form der Monotonie bedeutet dabei, dass nur dann eine neue
Prämisse hinzugefügt werden kann, wenn wir für beide Schlussfolgerungen bereits
unabhängig festgestellt haben, dass diese gültig sind. Beispielhaft können wir also
annehmen, dass „Vögel normalerweise Federn haben“ und „Vögel normalerweise
fliegen können“ und damit dann „Vögel, die Federn haben, können normalerweise
fliegen“ folgern. Hierbei bleibt also die typische Eigenschaft, dass Vögel fliegen kön-
nen, erhalten, auch wenn die weitere typische Eigenschaft von Vögeln, dass diese
Federn haben, hinzugenommen wird.

Wenn es nun eine Konsequenzrelation |∼ gibt, die alle Regeln des System C er-
füllt, dann bezeichnen wir diese als eine kumulative Konsequenzrelation. Dabei ist eine
zentrale Eigenschaft kumulativer Konsequenzrelationen, dass diese eine zugrunde-
liegende Logik erfordern, die festlegt, welche Formeln a, b, c in den Regeln verwen-
det werden dürfen. In dieser Arbeit wurde die propositionale Logik als zugrunde-
liegende Logik gewählt, da sie einfach zu formalisieren ist und eine gut etablierte
Grundlage für die Anwendung kumulativer Regeln bietet.

Es bleiben jedoch die Grenzen der Ausdrucksstärke. Wenn wir „Vögel |∼ fliegen“
und „Pinguine → Vögel“ annehmen, erlaubt System C nicht automatisch, „Pingui-
ne |∼ nicht fliegen“ abzuleiten. Das bedeutet, System C alleine kann nicht direkt
mit Ausnahmen umgehen.

2.3 Kumulative Modelle

Folgend zeigen wir eine Methode, um das Problem der Ausnahmen für „normalere“
oder „typischere“ Zustände zu minimieren. Dafür stellen wir zunächst kumulative
Modelle vor und definieren diese formal, um dann das Repräsentationstheorem für
kumulative Konsequenzrelationen (KLM-Theorem) zu präsentieren.

Definition 2 (Kumulatives Modell). Ein kumulatives Modell wird formal durch ein Tri-
pel W = ⟨S, l,≺⟩, beschrieben, wobei gilt:

• S ist eine Menge, deren Elemente als Zustände bezeichnet werden.

• l : S → 2W ist die Labeling-Funktion, die jedem Zustand eine nicht-leere Menge von
Welten zuordnet.

• ≺ ist die binäre Präferenzrelation auf S, die die Smoothness Condition erfüllt:

– Für alle Formeln a ist die Menge â = {s | s ∈ S, s |≡ a} smooth.

8

Die Zustände S in einem kumulativen Modell bilden dabei die Grundlage der se-
mantischen Struktur. Jeder Zustand repräsentiert eine mögliche Weltbeschreibung
oder Wissenskontexte, wobei dabei zwischen typischen und außergewöhnlichen
Fällen unterschieden wird. Zum Beispiel kann ein Zustand die Information „Vogel“,
und ein anderer Zustand „Pinguin“ repräsentieren.

Die Labeling-Funktion l ordnet jedem Zustand S eine nicht-leere Menge von Wel-
ten zu. Eine Welt ist hier eine Interpretation, welche jeder atomaren Formel einen
Wahrheitswert zuweist. Das bedeutet, diese definiert, welche Propositionen in wel-
chem Zustand wahr sind. So würde ein Zustand „Taube“ mit „kann fliegen“ ver-
bunden werden, während „Pinguin“ mit „kann nicht fliegen“ verbunden wird.

Die Präferenzrelation ≺ erfasst dabei die Intuition darüber, welche Zustände als
„normal“ oder „typisch“ gelten. Das bedeutet, wenn s ≺ t gilt, wird der Zustand
s als normaler oder typischer angesehen als der Zustand t. Diese Relation ist irre-
flexiv, das heißt, kein Zustand steht in Relation mit sich selbst. Konkret würde „ein
Vogel, der fliegen kann“ normalerweise höher eingestuft als „ein Vogel, der ein Pin-
guin ist“, da Letzteres eher eine Ausnahme darstellt. Dadurch wird sichergestellt,
dass Standard-Schlussfolgerungen bevorzugt werden, sofern diese nicht durch an-
derweitige explizite Informationen überdeckt werden.

Eine wichtige Eigenschaft der kumulativen Modelle ist die Minimalität der Präfe-
renzrelation. Dabei bezeichnen wir die minimalen Elemente einer Menge von Zu-
ständen, für die es keinen noch typischeren Zustand in der Menge gibt:

Definition 3 (Minimale Elemente). Sei A ⊆ S eine Menge von Zuständen und ≺ eine
Präferenzrelation auf S. Die Menge der minimalen Elemente von A bezüglich ≺ ist definiert
als:

min≺(A) = {s ∈ A | ∄t ∈ A : t ≺ s}

Für eine Formel a definieren wir die Menge â als die Menge aller Zustände, in
denen a gilt:

â = {s | s ∈ S, s |≡ a}

wobei s |≡ a bedeutet, dass die Formel a im Zustand s erfüllt ist. Formal ist s |≡ a
genau dann, wenn für alle Welten w ∈ l(s) gilt: w |= a.

2.3.1 Smoothness-Bedingung

Die Smoothness-Bedingung stellt eine weitere wichtige Eigenschaft der Präferenzre-
lation in den kumulativen Modellen dar. Diese garantiert, dass für jede Formelmen-
ge, in welcher es mindestens einen Zustand gibt, auch minimale Elemente bezüglich
der Präferenzrelation existieren. Das bedeutet, dass wir für jede Menge von Zustän-
den immer die Typischsten finden können. Dies entspricht auch wieder der mensch-
lichen Tendenz, zuerst die typischsten Fälle zu betrachten. Wir geben zunächst an,
wann eine beliebige Menge P als smooth bezüglich einer Relation ≺ betrachtet wird.

9

Definition 4 (Smoothness-Eigenschaft). Sei P ⊆ U eine Menge und ≺ eine binäre Re-
lation auf U . Die Menge P heißt smooth bezüglich ≺ genau dann, wenn für alle t ∈ P
entweder t ∈ min≺(P) oder es existiert ein s ∈ min≺(P) mit s ≺ t gilt.

Die intuitive Bedeutung der Smoothness-Eigenschaft ist, dass jedes Element ent-
weder selber minimal ist oder einem minimalen Element untergeordnet ist. Dies
verhindert in der Präferenzrelation problematische Strukturen, wie unendlich ab-
steigende Ketten. In kumulativen Modellen betrachten wir speziell die Mengen der
Form â, also die Menge aller Zustände, in denen eine Formel a gilt. Dafür definieren
wir die Smoothness-Bedingung. Ohne diese Bedingung könnte der Fall eintreten,
dass es keine minimalen Modelle für eine Formel geben könnte, was dann wieder-
um die semantische Interpretation der Präferenzrelation unmöglich machen würde.

Definition 5 (Smoothness-Bedingung). Sei L die Menge aller Formeln in der Sprache
der propositionalen Logik. Ein Triple (S, l,≺) erfüllt die Smoothness-Bedingung, wenn für
jede Formel a ∈ L die Menge â smooth ist.

Im Kontext der propositionalen Logik ist hervorzuheben, dass bei einer endlichen
Anzahl von atomaren Formeln die Smoothness-Bedingung leichter zu handhaben
ist als in allgemeineren logischen Systemen, da es bei n atomaren Formeln maximal
2(2

n) semantisch unterschiedliche Formeln gibt. Dadurch ist auch jede absteigen-
de Kette in der Präferenzrelation endlich, was wiederum automatisch die Existenz
minimaler Elemente garantiert und damit einen wichtigen Punkt für die spätere
Formalisierung in Coq darstellt. Dafür berufen wir uns auf die Arbeit von Lehmann
und Magidor (1992) [12] in welcher sie klarstellen:

The smoothness condition is only a technical condition. It is satisfied in any
well-founded preferential model, and, in particular, in any finite model. When
the language L is logically finite, we could have limited ourselves to finite mo-
dels and forgotten the smoothness condition.

2.3.2 Konsequenzrelation in kumulativen Modellen

Basierend auf den bisherigen Definitionen können wir nun die Konsequenzrelation
definieren, die durch ein kumulatives Modell bestimmt wird.

Definition 6 (Modellbasierte Konsequenzrelation). Sei W = ⟨S, l,≺⟩ ein kumulatives
Modell. Die durch W induzierte Konsequenzrelation |∼W ist definiert als:

a |∼W b genau dann, wenn ∀s ∈ min≺(â) : s |≡ b

Diese Definition besagt, dass b normalerweise aus a folgt, wenn b in allen mi-
nimalen Zuständen von a gilt. Wir beschränken uns hier auf die minimalen Zu-
stände von a, da diese die typischsten Fälle repräsentieren wo a gilt. In unserem
Vogel-Pinguin Beispiel würde die Aussage „Vögel können normalerweise fliegen“
semantisch dadurch repräsentiert, dass die Eigenschaft „können fliegen“ in den mi-
nimalsten Zuständen gilt, welche Vögel beschreiben. Im Gegensatz dazu würde die

10

Ausnahme von den Pinguinen nicht in den minimalen Zuständen enthalten sein,
wodurch die Gültigkeit der allgemeinen Regel nicht beeinflusst wird. Diese modell-
basierte Definition der Konsequenzrelation entspricht der semantischen Interpreta-
tion der syntaktischen Regeln des System C und das Repräsentationstheorem von
Kraus, Lehmann und Magidor stellt genau diese Verbindung formal her.

Um zu illustrieren, wie ein kumulatives Modell konstruiert werden kann, grei-
fen wir dafür auf das vorherige Beispiel 1 zurück und stellen dafür die benötigten
Zustände, die Labeling-Funktionen und die Präferenzrelationen dar.

Beispiel 2. Kumulatives Modell für die Nixon-Raute
Wir konstruieren ein kumulatives Modell W = ⟨S, l,≺⟩ für die Nixon-Raute wie folgt:

1. Zustände (S): S = {s1, s2, s3, s4, s5}

2. Labeling-Funktion (l), die jedem Zustand eine Menge von Welten zuordnet:

• l(s1) = {w1},
wobei in w1 gilt: Quäker(nixon), Republikaner(nixon),Pazifist(nixon)

• l(s2) = {w2},
wobei in w2 gilt: Quäker(nixon), Republikaner(nixon), ¬Pazifist(nixon)

• l(s3) = {w3},
wobei in w3 gilt: Quäker(nixon), ¬Republikaner(nixon), Pazifist(nixon)

• l(s4) = {w4},
wobei in w4 gilt: ¬Quäker(nixon), Republikaner(nixon), ¬Pazifist(nixon)

• l(s5) = {w5},
wobei in w5 gilt: ¬Quäker(nixon), ¬Republikaner(nixon), Pazifist(nixon)

3. Präferenzrelation (≺), die typischere Zustände kennzeichnet:

• s3 ≺ s1 (Ein Quäker, der kein Republikaner ist, ist typischer als ein Quäker, der
Republikaner ist)

• s4 ≺ s2 (Ein Republikaner, der kein Quäker ist, ist typischer als ein Republika-
ner, der Quäker ist)

Betrachten wir nun einige Mengen von Zuständen:

• Für die Formel a = Quäker(nixon) gilt:

– â = {s1, s2, s3} (alle Zustände, in denen Nixon ein Quäker ist)

– min≺(â) = {s3} (der typischste Zustand, in dem Nixon ein Quäker ist)

• Für die Formel b = Republikaner(nixon) gilt:

– b̂ = {s1, s2, s4} (alle Zustände, in denen Nixon ein Republikaner ist)

– min≺(b̂) = {s4} (der typischste Zustand, in dem Nixon ein Republikaner ist)

Schlussfolgerungen gemäß der Definition der modellbasierten Konsequenzrelation:

11

1. Quäker(nixon) |∼W Pazifist(nixon), denn:
s3 ∈ min≺(̂Quäker(nixon)) und s3 |≡ Pazifist(nixon)

2. Republikaner(nixon) |∼W ¬Pazifist(nixon), denn:
s4 ∈ min≺(̂Republikaner(nixon)) und s4 |≡ ¬Pazifist(nixon)

3. Quäker(nixon) ∧ Republikaner(nixon) hat keine eindeutige Schlussfolgerung be-
züglich Pazifist(nixon), denn:

• ̂Quäker(nixon) ∧Republikaner(nixon) = {s1, s2}

• min≺(̂Quäker(nixon) ∧Republikaner(nixon)) = {s1, s2}
• Da s1 |≡ Pazifist(nixon) aber s2 |≡ ¬Pazifist(nixon), gibt es keine ein-

heitliche Schlussfolgerung.

Beispiel 2 veranschaulicht, wie das kumulative Modell die Nixon-Raute forma-
lisiert. Dabei gilt, dass typische Quäker Pazifisten (s3), und typische Republikaner
keine Pazifisten (s4) sind. Ein Konflikt entsteht, wenn Nixon sowohl Quäker als auch
Republikaner ist, da wir dann zwei minimale Zustände haben (s1 und s2), die zu
unterschiedlichen Schlussfolgerungen führen.

2.4 KLM-Theorem zum Kumulativen Schließen

Nachdem wir die syntaktische Charakterisierung kumulativer Konsequenzrelatio-
nen durch System C und die semantische Charakterisierung durch kumulative Mo-
delle eingeführt haben, kommen wir nun zum Repräsentationstheorem selbst.

Im Jahr 1990 wurde das Repräsentationstheorem für kumulative Konsequenzre-
lationen (KLM-Theorem) von Kraus, Lehmann und Magidor vorgestellt und bewie-
sen [11]. Es stellt eine Verbindung zwischen der syntaktischen und semantischen
Ebene her.

Theorem 1 (KLM-Repräsentationstheorem für kumulatives Schließen). Eine Konse-
quenzrelation |∼ ist genau dann eine kumulative Konsequenzrelation, wenn es ein kumula-
tives Modell W = ⟨S, l,≺⟩ gibt, sodass für alle Formeln a und b

a |∼ b genau dann, wenn a |∼W b

gilt.

Die Kernaussage des KLM-Theorems bezieht sich dabei auf die Äquivalenz zwi-
schen kumulativer Konsequenzrelationen und deren Repräsentierbarkeit durch ku-
mulative Modelle. Dabei können wir das Theorem in zwei Richtungen aufteilen:

1. Korrektheit (Soundness): Wenn |∼ durch ein kumulatives Modell definiert
ist, dann erfüllt |∼ alle Regeln von System C. Das heißt, jede modellbasierte
Konsequenzrelation ist kumulativ.

12

2. Vollständigkeit (Completeness): Wenn |∼ eine kumulative Konsequenzrela-
tion ist, dann existiert ein kumulatives Modell W , sodass |∼ genau der durch
W induzierten Konsequenzrelation entspricht.

Damit ist das Theorem zentral für nichtmonotones Schließen, da es zeigt, dass die
Konsequenzrelation in einem kumulativen Modell nichtmonotones Schließen prä-
zise darstellen kann. Dabei kann rationales nichtmonotones Schließen als Präferenz
für typischere Situationen verstanden werden, und das Theorem zeigt, dass die
System C Regeln genau die Regeln sind, die mathematisch aus der Präferenzrela-
tion und der dadurch entstandenen Ordnung der Zustände folgen. Außerdem er-
gibt sich durch das KLM-Theorem noch eine praktische Anwendung, da es ermög-
licht, zwischen syntaktischer und semantischer Ebene zu wechseln. Das bedeutet,
wir können Konsequenzrelationen syntaktisch durch die Regeln von System C de-
finieren und überprüfen, andererseits können wir sie aber auch semantisch durch
kumulative Modelle interpretieren. Dies ist gerade für Beweise von Vorteil, da man-
che Eigenschaften auf der semantischen Ebene einfacher zu beweisen sind, wie zum
Beispiel, wenn wir zeigen wollen, dass eine bestimmte Schlussfolgerung nicht gül-
tig ist. Zudem lässt sich durch das Theorem die Konsistenz einer Wissensbasis mit
nichtmonotonen Schlussregeln sehr gut nachweisen. Wenn wir zeigen können, dass
ein kumulatives Modell existiert, welches diese Wissensbasis repräsentiert, folgt
daraus direkt, dass die darin enthaltenen Schlussregeln mit den System-C-Regeln
konsistent sind.

3 Coq als Beweisassistent

Im Folgenden werden wir den Beweisassistenten Coq vorstellen. Dabei gehen wir
zunächst auf die interaktive Art der Beweise in Coq ein und stellen wesentliche
Unterschiede zu händisch formulierten Beweisen und vollautomatisierten Bewei-
sassistenten dar. Nach dieser Einführung werden wir uns den Calculus of Inductive
Constructions, welcher die formale Sprache von Coq bildet, genauer ansehen. Zu-
dem stellen wir danach die Spezifikationssprache von Coq Gallina vor, bevor wir
konkret auf die Beweisführung anhand von Taktiken eingehen werden.

3.1 Interaktives Beweisen

Das Grundprinzip des interaktiven Beweisens besteht im Wesentlichen aus einem
Zusammenspiel zwischen menschlicher Intuition und maschineller Präzision. Da-
bei kann der Beweisprozess als eine Art Dialog zwischen Mensch und Maschine
gesehen werden. Mit Coq werden die Beweise dabei schrittweise konstruiert und
nicht automatisch erzeugt. Das bedeutet, dass der Mensch die Beweisidee vorgibt
und die Maschine dann die formale Korrektheit jedes Schrittes überprüft. Anders
als bei vollautomatischen Beweisassistenten, wie Z3 [7] von Microsoft und Vampire
[10], wo der Beweisprozess vollständig automatisiert ist, und dadurch kein direk-
ter Benutzereingriff vorgesehen ist. Es ist aber zu beachten, dass vollautomatische

13

Beweisassistenten meist auf einer First Order Logic basieren. Dadurch sind diese we-
niger ausdrucksstark, da keine Quantifikation über Funktionen oder Relationen er-
laubt, und keine Mengen oder Typen direkt unterstützt sind. Coq, im Vergleich, ar-
beitet auf einer höheren Typentheorien Logik. Hervorzuheben ist, dass V3 zwar eben-
falls First Order Logic als Grundlage nutzt, jedoch mit zusätzlichen Theorien, wie
Arithmetik und Mengen, arbeitet. Dennoch bleibt die Ausdrucksstärke schwächer
als bei Typentheorien. Ein weiteres Manko, welches mit First oder Logic einhergeht,
ist dessen Semi-Entscheidbarkeit. Wie wir wissen, gibt es keinen Algorithmus, wel-
cher entscheidet, ob eine beliebige Formel der First Order Logic beweisbar ist. Da-
durch arbeiten diese Theorembeweiser für eine automatisierte Theorembewertung
oft mit Heuristiken, wie zum Beispiel bei Instanziierung von Variablen. Für einen
Ausdruck „Für alle x“ (∀x) wählt der Beweisassistent dann zuerst einige „sinnvol-
le“ Werte aus, welche zu einem schnellen Widerspruch führen könnten. Das bedeu-
tet auch, dass keine vollständige Suche möglich ist und bei dem Anwenden von
Regeln dann „geraten“ wird, welche am besten anzuwenden sind. In Coq müssen
Allquantoren explizit behandelt werden, wobei dann wiederum der Benutzer über
die Instanziierung entscheidet. Zudem sind vollautomatische Beweisassistenten oft
wenig konstruktiv in ihrer Ausgabe. Sie geben meistens nur „Ja, ist beweisbar“ oder
„Nein, ist nicht beweisbar“ aus und brechen den Beweis nach keinem weiteren Fort-
schritt ab, wodurch der eigentliche Beweis nicht vollständig nachvollziehbar und
schwer überprüfbar ist, also eine Art Black-Box Beweis. Vergleichsweise erzwingt
ein interaktiver Beweisassistent wie Coq eine vollständige Beweisüberprüfung und
eine explizite Angabe der Beweisschritte. Dies macht interaktive Beweisassistenten
auch deutlich modularer im Vergleich zu den vollautomatisierten Beweisassisten-
ten, da hier der Beweis in Blöcken aufgebaut werden kann und zum Beispiel ver-
schiedene Lemmas definiert werden, welche später wiederverwendet werden kön-
nen. Bei vollautomatischen Beweisassistenten ist der Benutzer ebenfalls oft auf be-
stimmte Domänen beschränkt. So eignet sich zum Beispiel Z3 besonders für Satisfia-
bility Modulo Theories, um zu entscheiden, ob eine logische Formel erfüllbar ist, und
Vampire wiederum für klassische First Order Logic Theoreme. Dabei sind diese sehr
spezifisch auf eine Domäne optimiert und können nicht auf anderen Domänen ar-
beiten. Hingegen bleibt Coq damit sehr flexibel, da die Domäne von dem Benutzer
formuliert werden kann, was aber wiederum je nach Domäne auch sehr komplex
und aufwendig ist.

Insgesamt lässt sich erkennen, dass vollautomatische Beweisassistenten leichter
zu nutzen sind. Beide Beweisassistenten erfordern eine gewisse Einarbeitung des
Benutzers, die bei den vollautomatischen Beweisassistenten weniger Aufwand er-
fordert, da der Benutzer nur verstehen muss, wie eine Formel korrekt formuliert
werden kann. Danach erfolgt der Beweisprozess vollautomatisch. In einem interak-
tiven Beweisassistenten wie Coq muss jeder Beweisschritt explizit angegeben wer-
den, was insgesamt viel mehr Verständnis von Coq erfordert, um korrekt damit ar-
beiten zu können. Es ist folglich viel mehr Handarbeit, aber dafür ist ein Beweis voll-
ständig nachvollziehbar. Vollautomatische Beweisassistenten sind zudem oft unvor-

14

hersehbar. Manche Formeln können in Sekunden gelöst werden, ähnliche Formeln
können in Stunden nicht gelöst werden und Beweise sind nicht immer reproduzier-
bar. Sollte ein Beweis dann auch noch tatsächlich fehlschlagen, ist es eventuell nicht
möglich zu verstehen, warum genau der Beweis fehlschlägt. Da dadurch vollauto-
matische Beweisassistenten ebenfalls oft nicht mit komplexeren Beweisen umgehen
können oder diese gar lösen können, eignen sich interaktive Beweisassistenten wie
Coq deutlich mehr für hochkomplexe und aufwendige Beweise.

3.2 Calculus of Inductive Constructions

Nun möchten wir die formale Sprache von Coq vorstellen. Der Calculus of Induc-
tive Constructions (CIC) definiert neben der grundlegenden Syntax (Typen, Terme
und Propositionen) ebenfalls Typisierungsregeln, Reduktionsregeln und Regeln für
induktive Definitionen. Coq stellt dem Benutzer eine benutzerfreundliche Oberflä-
che und Syntax bereit, um dort Beweise formulieren zu können. Diese Eingabe wird
letztlich in CIC-Ausdrücke übersetzt, welche danach, gemäß den formalen Regeln
des CIC, geprüft werden, ob diese wohlgeformt sind.

Der Ursprung von CIC findet sich in dem einfach typisierten λ-Kalkül aus 1940
von Church [4]. Es führt eine einfache Typenhierarchie ein. Aufbauend darauf wur-
de das polymorphe λ-Kalkül [24] von Girard und Reynolds vorgestellt, welches das
einfach typisierte λ-Kalkül um einen Polymorphismus erweitert. Dieser ermöglicht,
Typen zu quantifizieren und parametrische Funktionen definieren zu können. Ei-
ne weitere Erweiterung dieser stellt der Calculus of Constructions von Coquand und
Huet (1986) [5] dar. Hierbei wird das polymorphe λ-Kalkül um abhängige Typen er-
weitert. Dies ermöglicht folglich das Formulieren von komplexeren logischen Aus-
sagen. Schlussendlich wird der Calculus of Inductive Constructions von Coquand
und Paulin-Mohring (1990er) [15] eingeführt, welcher es zusätzlich zu dem Calcu-
lus of Constructions ermöglicht, induktive Datentypen direkt zu definieren. Dabei
behält CIC aber nach wie vor die Kernkonzepte des einfach typisierten λ-Kalküls
bei. Um den CIC formal definieren zu können, wird das Konzept der Pure Type Sys-
tems (PTS) [18] verwendet. Dieses bietet einen einheitlichen Rahmen zur Definition
von verschiedenen Typensystemen und definiert dafür ein typisiertes λ-Kalkül mit
einer gemeinsamen Syntax für Terme und Typen. Dabei erfolgt die Spezifikation des
PTS über drei wesentliche Komponenten:

• Eine Menge von Sorts2, zum Beispiel Prop, Set, Type1 und Type2. Sorts stel-
len die höchste Ebene der Typenhierarchie dar und werden als Klassifizierer
für Typen und nicht als Objekte betrachtet.

• Axiome, welche wiederum die Typen von Sorts festlegen.
So wäre Prop : Type1 und Set : Type2. Dabei werden die Sorts selber
wiederum durch andere Sorts typisiert, um eine Hierarchie bilden zu können.

2englisch für „Sorten“

15

Durch diese Hierarchie wird sichergestellt, dass Axiome wie Type : Type,
welche nicht zulässig wären, vermieden werden.

• Regeln, um zu bestimmen, welche Produkte gebildet werden können. Diese
Regeln werden durch ein Tripel von Sorts ausgedrückt. Als Beispiel betrachten
wir die Regel (Prop, Prop, Prop). Diese besagt, dass wenn A : Prop
und B : Prop, dann ist auch A→B von der Sort Prop.

Der Einfachheit halber werden wir mit Hinblick auf die Coq-Terminologie auch von
„Typ Prop“ sprechen, obwohl es sich technisch um eine Sort handelt und betrachten
damit Prop als einen Typ von Typen.

Durch das PTS kann bewiesen werden, dass im CIC keine Widersprüche abge-
leitet werden können. So ist es nicht möglich, sowohl einen Satz als auch dessen
Negation zu beweisen. Wie Paulin-Mohring erläutert „Consistency can be derived as a
consequence because they cannot be a proof without hypothesis of ⊥ which has no construc-
tor.“ [15] wodurch sich die Konsistenz des Systems ergibt.

Außerdem kann durch die Struktur des PTS gezeigt werden, dass jeder wohl-
typisierte Term zu einem Normalform-Term, in welchem keine Reduktionen mehr
möglich wären, reduziert werden kann.

Diese Eigenschaften sind nicht nur entscheidend für eine Feststellung in endlicher
Zeit, ob ein Term korrekt typisiert ist, sondern auch für die Zuverlässigkeit von Be-
weisassistenten wie Coq. Es erklärt, weshalb Coq korrekt funktioniert und warum
man den Beweisen, die in Coq formuliert werden, vertrauen kann.

3.2.1 Produkttypen und Funktionstypen

Nachdem wir die Grundkonzepte des Calculus of Inductive Constructions (CIC)
eingeführt haben, wenden wir uns nun den Typenkonstruktionen zu. Diese bilden
das Fundament für komplexere Strukturen und sind damit entscheidend für die
Ausdruckskraft des CIC, wie es später bei der Formalisierung des KLM-Theorems
verwendet wird [20]. Wir betrachten zunächst Produkttypen und Funktionstypen und
werden dann die Typenhierarchie des CIC behandeln und in dieser die Typenkon-
struktionen einordnen.

Die Produkt- und Funktionstypen stellen die Grundbausteine für die Typentheo-
rie dar und ermöglichen komplexe Typen für nichtmonotones Schließen, wie es in
unserer Formalisierung von System C und kumulativen Modellen genutzt wird [11].
Damit bilden diese die formale Grundlage für logische Strukturen. Zudem charak-
terisieren wir in der Typentheorie Datentypen durch zwei Arten von Regeln. Auf
der einen Seite gibt es Einführungsregeln, welche beschreiben, wie Werte von einem
Typ konstruiert werden können, und auf der anderen Seite haben wir Eliminations-
regeln durch welche festgelegt wird, wie auf solche Werte zugegriffen wird und wie
diese verwendet werden [15].

Die Grundidee bei Produkttypen ist die Kombination zweier Typen zu einem neu-
en Typ, welcher dann geordnete Paare aus den beiden Ausgangstypen enthält. For-
mal bedeutet dies A× B ist definiert als die Menge aller Paare (a, b) mit a ∈ A und

16

b ∈ B, also:
A×B = {(a, b) | a ∈ A, b ∈ B}.

Produkttypen stellen die typentheoretische Umsetzung des kartesischen Produkts
dar und werden in Coq mit A * B notiert.3 Wie auch in der Mengenlehre gibt es
eine Projektion π, welche es uns ermöglicht, aus einem Objektpaar eines Produkt-
typs A × B einen bestimmten Wert zu extrahieren. Für ein Objekt vom Typ A × B,
also dem Paar (a, b), extrahiert die Projektion π1 den Term a und die Projektion π2
den Term b. Dies notieren wir durch π1(a, b) = a und π2(a, b) = b.

Sei Γ der Typisierungskontext, welcher eine Menge von Variablen und ihre zuge-
wiesenen Typen darstellt. Die Notation Γ ⊢ a : A bedeutet dabei, dass im Kontext Γ
der Term a den Typ A hat.

Die Einführungsregel für Produkttypen [15] lautet damit:

Γ ⊢ a : A Γ ⊢ b : B

Γ ⊢ (a, b) : A×B

und die Eliminationsregeln ergeben sich wie folgt:

Γ ⊢ p : A×B

Γ ⊢ π1(p) : A

Γ ⊢ p : A×B

Γ ⊢ π2(p) : B

Eine Verallgemeinerung des Produkttypen stellt dabei der abhängige Summentyp
(Σ-Typ) dar. Der abhängige Summentyp enthält Paare (a, b), wobei a vom Typ A und
b vom Typ B(a) ist. Das bedeutet, dass die Abhängigkeit hier durch B(a) erreicht
wird, da B von a abhängt. Formal notieren wir abhängige Summentypen als

Σx : A.B(x) = {(a, b) | a ∈ A, b ∈ B(a)}

zusammen mit der Einführungsregel

Γ ⊢ a : A Γ ⊢ b : B(a)

Γ ⊢ (a, b) : Σx : A.B(x)

und den Eliminationsregeln

Γ ⊢ p : Σx : A.B(x)

Γ ⊢ π1(p) : A

Γ ⊢ p : Σx : A.B(x)

Γ ⊢ π2(p) : B(π1(p))

Wie wir erkennen, zeigt die zweite Eliminationsregel einen wichtigen Unterschied
zu gewöhnlichen Produkttypen, da der Typ der zweiten Komponente vom Wert der
ersten abhängt. Wenn wir also mit π1(p) die erste Komponente extrahieren, muss de-
ren Wert in den Typ B eingesetzt werden, damit wir den korrekten Typ der zweiten
Komponente erhalten.

3Die eigentliche Definition von Produkttypen ist dabei Inductive prod (A B : Type) und
wird aber mit einer Notation syntaktisch durch * vereinfacht [20].

17

In Coq wird dieser als sig oder {x:A | B x} notiert. Ein Beispiel für einen ab-
hängigen Summentyp wäre der Typ aller Paare (n, v), wo n eine natürliche Zahl
und a ein Vektor der Länge n ist. Die abhängigen Summentypen ermöglichen damit
die Definition von Typen mit integrierten Invarianten. Zum Beispiel könnten wir in
Coq {n:N | even n} definieren, was im Falle des Typs N der natürlichen Zahlen
einen Typen definieren, welcher nur alle geraden Zahlen (even) beschreiben wür-
de. Das Nutzen von diesem neuen Typ würde dann garantieren, dass wir nur mit
geraden Zahlen arbeiten, da diese Eigenschaft in dem Typen selber kodiert ist. Wir
verbinden damit also Daten und Metadaten, wie Beweise. Außerdem wird der ab-
hängige Summentyp dafür verwendet, um die existenzielle Quantifikation in Coq
umzusetzen. Dies ist genau dann der Fall, wenn B eine Proposition ist, was in Coq
dem Typen Prop entspricht.

Durch die Funktionstypen ist es möglich, Abbildungen zwischen Typen zu definie-
ren. A → B ist definiert als die Menge aller Abbildungen, die jedem Element aus A
genau ein Element aus B zuordnen, das ist formal:

A → B = {f | f : A → B}.

Es handelt sich um eine Abbildung, die jedem Element a ∈ A genau ein Element
aus B zuordnet. In Coq notieren wir Funktionstypen mit A -> B. Zu beachten ist,
dass in Coq -> auch als logische Implikation genutzt wird, wenn A und B Proposi-
tionen sind. Bei Funktionstypen verwenden wir die λ-Abstraktion, um Funktionen
zu definieren. Der Ausdruck λx : A.t bezeichnet dabei eine Funktion, welche ein
Argument x vom Typ A nimmt und den Term t zurückgibt.

Somit lautet die Einführungsregel für Funktionstypen

Γ, x : A ⊢ b : B

Γ ⊢ (λx : A.b) : A → B

und die Eliminationsregel lautet:

Γ ⊢ f : A → B Γ ⊢ a : A

Γ ⊢ f a : B

Diese Regeln zeigen, wie Funktionen f durch die Abstraktion erstellt werden und
wie sie dann durch die Anwendung verwendet werden. Die Anwendung der Funk-
tion vom Typ A → B auf einem Argument vom Typ A ergibt dabei ein Ergebnis
vom Typ B.

Auch hier gibt es eine verallgemeinerte Form des Funktionstypen, dargestellt
durch den abhängigen Produkttyp (Π-Typ). Dabei ist erlaubt, dass der Rückgabetyp
B(x) selber vom Wert des Arguments x anhängt. Formal geschrieben ist

Πx : A.B(x) = {f | ∀a ∈ A.f(a) ∈ B(a)}

mit der Einführungsregel

Γ, x : A ⊢ b : B(x)

Γ ⊢ λx : A.b : Πx : A.B(x)

18

und der Eliminationsregel:

Γ ⊢ f : Πx : A.B(x) Γ ⊢ a : A

Γ ⊢ f a : B(a)

Wir notieren dies in Coq als forall x: A,B x. In Coq muss der Typ von x
ebenfalls explizit angegeben werden, in diesem Fall ist es der Typ A. Zu beachten
ist hier, dass durch das Schlüsselwort forall nahelegt, dass es sich dabei aus-
schließlich um die universelle Quantifikation handelt, jedoch beschreibt forall
wiederum nur die universelle Quantifikation (∀), wenn es sich bei B um eine Pro-
position (Typ Prop) handelt. Ansonsten nutzt Coq das Schlüsselwort allgemein für
abhängige Funktionstypen. Dies ist der Fall da Coq aufgrund des Curry-Howard-
Isomorphismus, welchen wir in der Sektion 3.2.5 behandeln werden, die Allquan-
tifikation und abhängige Funktionstypen als dasselbe Konzept ansieht, jedoch mit
den unterschiedlichen Interpretationen je nachdem ob wir im Bereich der Logik mit
Prop oder mit der Berechnung (Type) arbeiten.

Die größere Bedeutung der abhängigen Typen liegt darin, dass diese es ermögli-
chen, präzise Eigenschaften direkt im Typ auszudrücken. Dies führt einerseits zu ei-
ner stärkeren Typsicherheit und andererseits ermöglicht es mehr dieser Eigenschaf-
ten bereits zu Kompilierzeit zu prüfen, anstatt diese zur Laufzeit verifizieren zu
müssen. Dies wird eine wichtige Rolle bei der Implementierung der syntaktischen
Regeln des System C, der Spezifikation der Eigenschaften kumulativer Konsequenz-
relationen und der Konstruktion des kumulativen Modells spielen.

Produkttypen und Funktionstypen erhalten grundsätzlich die höchste Sort-Ebene
ihrer Komponenten, wobei Typenbildungsregeln genau definieren, in welcher Sort
der resultierende Typ liegt.

Für Produkttypen gelten die folgenden Typenbildungsregeln:

A : Typei, B : Typej ⇒ A×B : Typemax(i,j)

A : Prop, B : Prop ⇒ A×B : Prop

A : Typei. B : Prop ⇒ A×B : Typei

wobei max(i, j) den Typen der höheren Sort-Ebene bestimmt, wodurch die höhe-
re Sort dominant wird. Dies spiegelt die Kumulativität der Typenhierarchie wider.

Für Funktionstypen gelten die folgenden Typenbildungsregeln:

A : Typei, B : Typej ⇒ A → B : Typemax(i,j)

A : Prop, B : Prop ⇒ A → B : Prop

A : Typei, B : Prop ⇒ A → B : Prop

Die letzte Regel zeigt die Besonderheit von Prop. Wenn der Zieltyp B eine Propo-
sition ist, dann ist der gesamte Funktionstyp ebenfalls eine Proposition, unabhängig
davon, welcher Sort der Argumenttyp A angehört. Diese Regel ist eine direkte Kon-
sequenz der Tatsache, dass Prop imprädikativ ist, was bedeutet, dass in Prop über

19

alle Propositionen qunatifiziert werden darf und diese Quantifikation dann selbst
wieder eine Proposition ist. Damit unterscheidet sich diese Regel von der entspre-
chenden Regel für Produkttypen und ermöglicht auch im CIC, dass Quantifikatio-
nen über alle Propositionen selber wieder Propositionen sind. Produkt- und Funk-
tionstypen bilden damit die Grundlage für das Typsystem des CIC, und ermögli-
chen die Kombination und Transformation von Typen. Dies ist jedoch nicht aus-
reichend für komplexere Datenstrukturen wie rekursive Definitionen, da sie in der
Ausdruckskraft für selbstreferenzielle oder induktiv definierte Konzepte begrenzt
sind. Sie können nicht direkt auf sich selbst verweisen und bieten keine Möglichkeit
für eine Fallunterscheidung, was für das Definieren induktiver Strukturen benötigt
ist. Dafür werden wir folgend die Erweiterung des Typsystems, die induktiven De-
finitionen, vorstellen, welche es möglich machen, rekursive Strukturen zu erzeugen
und Definitionen von Datentypen durch deren Konstruktionsweise anzugeben. In-
duktive Definitionen werden ein wichtiges Werkzeug zur Formalisierung des KLM-
Theorems sein, da diese uns erst ermöglichen, die Konsequenzrelationen und Mo-
delle präzise zu definieren.

3.2.2 Induktive Definitionen

Die Erweiterung, welche den Calculus of Constructions zu dem Calculus of Induk-
tive Constructions erweitert, beschreibt die induktiven Definitionen. In Coq werden
diese wiederum durch das Schlüsselwort Inductive definiert. Induktive Definitio-
nen werden dabei verwendet, um Datentypen oder Relationen durch Konstrukto-
ren zu definieren. Die Konstruktoren geben dabei an, wie Objekte eines bestimmten
Typs gebildet werden können und können als die Bildungsregeln gesehen werden.
Das bedeutet, dass bei der Definition eines induktiven Typs die Konstruktoren mit
angegeben werden müssen. Diese beschreiben, wie die Basiselemente (zum Beispiel
das Startelement) eines Typs aussehen und wie komplexere Elemente aus einfache-
ren gebildet werden können. Dabei sind Konstruktoren injektiv, da verschiedene
Eingaben verschiedene Ausgaben erzeugen. Außerdem sind ihre Bilder disjunkt,
da Ausgaben verschiedener Konstruktoren unterschiedlich sind. Jedes Element des
Typs wird dabei durch genau eine Folge von Konstruktoranwendungen erzeugt,
was die Beweisführung durch Induktion ermöglicht, da dann alle Fälle durch die
Konstruktoren abgedeckt werden. In Coq werden die Konstruktoren durch „|“ (pi-
pe) getrennt. Um dies zu verdeutlichen, betrachten wir ein Beispiel von Paulin-
Mohring aus Introduction to the Calculus of Inductive Constructions [15].

Beispiel 3. Induktive Definition

Inductive N : Type :=
| z : N
| S : N -> N.

20

Hier wird der Typ von N, welcher Eigenschaften von natürlichen Zahlen darstel-
len soll, durch zwei Konstruktoren definiert. Der erste Konstruktor z wird für das
Startelement, welches den Basisfall darstellt, definiert. Dieses Element kann ohne
die Verwendung anderer Elemente des Typs konstruiert werden. Wir interpretie-
ren also z als 0, da wir hier N als Repräsentation der natürlichen Zahlen verstehen
wollen. Die vollständige Deklaration z : N, gibt an, dass z ein Element vom Typ
N erzeugt. Der zweite Konstruktor S erzeugt aus einem Element von N ein neues
Nachfolge-Element von N. Wir bezeichnen S auch als einen Konstruktor höherer
Ordnung, da dieser als Argument einen Wert von N hat, welchen er gerade selber
mitdefiniert. Das bedeutet, dass der Konstruktor S rekursiv auf sich selber verweist
und damit unendlich viele Elemente ermöglicht. Die Rekursion liegt bei einer in-
duktiven Definition daher in der Struktur des Typs. Dadurch, dass S die Nachfol-
geoperation abbildet, wird ermöglicht, alle natürlichen Zahlen (außer 0) iterativ zu
konstruieren. Der Konstruktor S ist injektiv, das bedeutet, wenn es ein n und m vom
Typ N gibt und S n = S m gilt, dann gilt auch n = m. Umgekehrt, wenn S n ̸= S
m gilt, gilt auch n ̸= m. Es ist also nicht möglich, dass zwei verschiedene Elemente n
und m durch Anwendung des Konstruktors S zum selben Element werden. Zudem
ist das Bild des Konstruktors S disjunkt von dem Bild von z, denn für alle n vom
Typ N gilt S n ̸= z, da ein Term, der mit S beginnt, niemals gleich z sein kann.

Nach der Einführung induktiver Definition stellt sich vielleicht die Frage, wie
Eigenschaften für alle Elemente eines induktiven Typs bewiesen werden können.
Dafür generiert Coq für jede induktive Definition automatisch das Induktionsprinzip.
Es ist ein grundlegendes Prinzip für die Beweisführung in Coq und spiegelt die
Struktur der induktiven Definition wider.

Eine wichtige Einschränkung für induktive Definitionen stellt die Positivitätsbe-
dingung [15] dar, welche sicherstellt, dass keine paradoxen Typen definiert werden
können.

Definition 7 (Positivitätsbedingung). Eine induktive Definition ist positiv, wenn der zu
definierende Typ T in allen Konstruktortypen nur in positiven Positionen vorkommt.

Sei T ein zu definierender induktiver Typ mit Konstruktoren c1, . . . , cn vom Typ C1 . . . , Cn.
T erscheint in positiver Position in:

• Einem Typ A, wenn T nicht in A vorkommt

• A → B, wenn T nicht in negativer Position in A und positiver Position in B vor-
kommt

• Πx : A.B(x), wenn für alle a ∈ A, T in positiver Position in B(a) vorkommt.

Durch diese Bedingung wird die Konsistenz des Typsystems sichergestellt. Oh-
ne diese könnten wir paradoxe Definitionen angeben, was wir mit dem folgenden
Beispiel demonstrieren wollen.

21

Beispiel 4. Paradoxer induktiver Typ

Inductive P : Prop :=
| paradox : (P -> False) -> P.

Wie in Beispiel 4 zu erkennen ist, liegt P in negativer Position, also links vom
Pfeil, als Argument des Konstruktors vor, was direkt gegen die Positivitätsbedin-
gung verstößt. Diese Definition würde zu einem logischen Widerspruch führen, da
wir so einen Beweis von False ohne Annahmen konstruieren könnten. Durch die
Positivitätsbedingung wird also ebenfalls sichergestellt, dass wir einen wohldefi-
nierten Induktionsschritt haben, was uns nun zum Induktionsprinzip führt.

3.2.3 Das Induktionsprinzip

Jede induktive Definition führt automatisch zu einem korrespondierenden Induk-
tionsprinzip [20]. Konkret formalisiert das Prinzip das Muster von Induktionsbasis
und Induktionsschritt.

Das Induktionsprinzip für einen induktiven Typ T mit Konstruktoren c1, . . . , cn
wird automatisch als eine Funktion vom Typ:

T_ind : ∀P : T → Prop, P_c1 → · · · → P_cn → ∀x : T, P (x)

generiert, wobei P_ci die Induktionshypothese für den Konstruktor ci ist. Für
jeden rekursiven Aufruf eines Konstruktors gilt:

wenn ci : · · · → T → · · · → T lautet,

dann ist P_ci : · · · → ∀t : T, P (t) → · · · → P (ci(. . . , t, . . .)).

Als Beispiel betrachten wir das Induktionsprinzip des induktiven Typen N. Wir
kennzeichnen das Induktionsprinzip hier mit Nind.

Beispiel 5. Induktionsprinzip des induktiven Typen N

N_ind : forall P : N -> Prop,
P z -> (forall n : N, P n -> P (S n)) ->
forall n : N, P n.

Wie man an der Signatur des Induktionsprinzips erkennen kann, handelt es sich
hierbei um einen abhängigen Produkttyp. Zuerst wird hier eine Eigenschaft P von
natürlichen Zahlen N definiert. Eine Eigenschaft ist dabei eine Funktion, welche je-
der natürlichen Zahl einen Wahrheitswert Prop zuordnet N -> Prop. Zum Bei-
spiel könnte P die Eigenschaft „ist gerade“ oder „ist größer als 10“ darstellen. P z
gibt dann an, dass eine Eigenschaft P für z, also nach unserer Definition für 0, gilt.
Dies stellt den Basisfall der Induktion dar.

Für den Induktionsschritt betrachten wir forall n : N, P n -> P (S n).
Dies sagt aus, dass wenn die Eigenschaft P für eine beliebige Zahl n gilt, dann gilt

22

Inductive N: Strukturdefinition

Konstruktoren: z, S Neuer Typ: N

z S z S (S z) S (S (S z)) . . .

Induktionsprinzip

Daten als strukturelle Grundlage für Beweise und Berechnungen

Abbildung 1: Konzeptuelle Darstellung einer induktiven Definition.

diese auch für den Nachfolger von n, als für S n. Das heißt, wenn zum Beispiel n
+ m = x gilt, dann gilt auch (S n) + m = S x. Zuletzt wird noch die Schluss-
folgerung des Prinzips angegeben, welche aussagt, dass eine Eigenschaft P nach
dem Zutreffen der vorherigen Bedingungen, für alle natürlichen Zahlen gilt. Zu-
sammenfassen besagt das ganze Prinzip also „Wenn eine Eigenschaft für 0 gilt und
wenn aus der Gültigkeit für eine Zahl n auch die Gültigkeit für n + 1 folgt, dann
gilt die Eigenschaft für alle natürlichen Zahlen“.

Das Induktionsprinzip spiegelt direkt die Konstruktoren von dem Typ N wider,
da N durch z (0) und die S-Operation (Nachfolgefunktion) aufgebaut wird. Dabei
führt jeder Konstruktor zu einer Prämisse im Induktionsprinzip und die Form des
Induktionsschritts wird durch die Struktur der rekursiven Konstruktoren bestimmt.

Abbildung 1 verdeutlicht den konzeptuellen Zusammenhang der induktiven De-
finition N. Aus den definierten Konstruktoren z und S entsteht der neue Typ N, wo-
für Coq automatisch das Induktionsprinzip generiert. Ebenfalls stellen wir Instan-
zen des Typs dar, welche durch wiederholte Anwendung der Konstruktoren entste-
hen. Diese strukturelle Definition bildet die Grundlage für Beweise durch Induktion
als auch für Berechnungen mit rekursiven Funktionen auf diesem Typ.

Folgend möchten wir noch auf zwei weitere Beispiele von Paulin-Mohring [15]
eingehen, die auf dem obigen Beispiel aufbauen, um die Relevanz der induktiven
Definition weiter hervorzuheben und weitere wichtige Eigenschaften darzustellen.

Beispiel 6. Induktive Definition als Relation

Inductive le : N -> N -> Prop :=
| lez:∀x, le z x
| leS:∀x y, le x y -> le (S x) (S y).

Diese Definition deklariert eine binäre Relation le auf natürlichen Zahlen. Dabei
gibt der Typ N -> N -> Prop an, dass zwei natürliche Zahlen genommen wer-
den und eine Proposition zurückgegeben werden soll. Wieder definieren die zwei
Konstruktoren, wann diese Relation gilt. Der Konstruktor lez gibt dabei an, dass
z ≤ x für alle natürlichen Zahlen x, also 0 ist kleiner oder gleich jeder Zahl, gilt.

23

Der zweite Konstruktor leS definiert, dass wenn x ≤ y gilt, dann gilt auch S z
≤ S x. Das bedeutet, auch wenn beide Zahlen erhöht werden, bleibt die Relation
erhalten.

Die ≤-Relation wird durch ihre grundlegenden Eigenschaften durch die Definiti-
on le charakterisiert, und die kleinste Relation, die diese Regeln erfüllt, ist genau
die mathematische ≤-Relation.

Beispiel 7. Induktive Definition mit Parametern

Inductive RT A (R : A -> A -> Prop) : A -> A -> Prop :=
| RTrefl:∀ x, RT A R x x
| RTR:∀ x y, R x y -> RT A R x y
| RTtran:∀ x y z, RT A R x z -> RT A R z y -> RT A R x y.

Bei dieser Definition wird die reflexiv-transitive Hülle einer beliebigen Relation R
auf einem Typ A formalisiert. Erneut gibt hier der Typ A -> A -> Prop an, dass
die neue Relation RT A R ebenfalls eine binäre Relation auf A ist. Dabei ist der Para-
meter A der Basistyp, auf welchem die Relation definiert ist und der Parameter R die
Ausgangsrelation, von der die Hülle gebildet wird. Der erste Konstruktor RTrefl
besagt, dass jedes Element in Relation zu sich selbst steht, dies bedeutet, dass egal
welches Element x von dem Typ A betrachtet wird, immer RT A R x x gilt. Dies
beschreibt die Eigenschaft, dass die reflexiv-transitive Hülle reflexiv ist. Der Kon-
struktor RTR definiert, wenn zwei Elemente x und y in der Relation R stehen, dann
sind diese auch in der reflexiv-transitiven Hülle RT A R enthalten. Es stellt dabei al-
so sicher, dass die Relation R vollständig in der reflexiv-transitiven Hülle enthalten
ist. Letztlich implementiert der Konstruktor RTtran die Transitivität. Das bedeu-
tet, wenn ein Element x in Relation zu z steht und z ebenfalls in Relation zu dem
Element y steht, dann steht auch x in Relation zu y.

Diese Definition demonstriert, wie in CIC höherstufige Definitionen mit Relatio-
nen als Parametern erstellt werden können, welche im weiteren Verlauf der Arbeit
noch eine wichtige Rolle spielen werden.

3.2.4 Rekursive Funktionen auf induktiven Typen

Nachdem wir gesehen haben, wie induktive Definitionen Datentypen und Relatio-
nen definieren können, wollen wir nun zeigen, wie Funktionen über diesen Typen
definiert werden können. In Coq werden Funktionen über induktive Typen mit dem
Schlüsselwort Fixpoint definiert, welches ebenfalls rekursive Definitionen ermög-
licht. Um dies zu veranschaulichen, zeigen wir zwei Beispiele, in denen die Funk-
tionen Operationen über den zuvor gezeigten induktiven Typen N definieren.

Beispiel 8. Rekursion Addition auf natürlichen Zahlen

24

Fixpoint add (n m : N) {struct n} : N :=
match n with
| z => m
| S p => S (add p m)
end.

Dabei gibt (n m : N) an, dass zwei Eingabeparameter n und m vom Typ N erwar-
tet werden und : N am Ende der Definition, dass der Ausgabeparameter ebenfalls
vom Typ N ist. Wie zu erkennen ist, führen wir mit diesem Beispiel ebenfalls den
struct-Ausdruck und den match-Ausdruck ein. Der struct-Ausdruck gibt an,
über welchen Parameter, in diesem Fall n, die Rekursion erfolgen soll. Dies gibt für
die Prüfung der Rekursion an, dass bei jedem rekursiven Aufruf von add der Para-
meter n verringert werden soll, wir bezeichnen dies auch als den Terminierungsnach-
weis. Der match-Ausdruck wird verwendet, um Pattern-Matching durchführen zu
können. Bei dem Pattern-Matching wird zuerst angegeben, auf welchem Parameter
das Pattern-Matching stattfinden soll, in unserem Fall ist dies der Parameter n. Da-
nach werden die verschiedenen Fälle angegeben, im Beispiel sind es zwei Fälle, die
auch wieder mit | getrennt werden.

1. Im ersten Fall n = z ist das Ergebnis direkt m, der zweite Parameter.

2. Im zweiten Fall n = S p ist das Ergebnis S (add p m), wobei p der Sub-
term von n ist, da p strukturell keiner ist als S p.

Die Eigenschaft „strukturell kleiner“ bedeutet dabei, dass ein Term durch das Ent-
fernen von mindestens einem Konstruktor aus einem anderen Term folgt. Der Ter-
minierungsnachweis garantiert hierbei, dass die Rekursion nicht unendlich ist, da
rekursive Aufrufe nur auf strukturell kleineren Argumenten erlaubt sind. Für das
Beispiel bedeutet dies, dass p strukturell kleiner ist als n = S p. Durch das Re-
duzieren des Konstruktors S von n entsteht p. Dabei wird der Ausdruck n = S p
durch Pattern-Matching im zweiten Fall hergeleitet. Der rekursive Aufruf erfolgt
demnach auf einem strukturell kleineren Term im zweiten Fall. Dies ist eine essen-
zielle Bedingung für rekursive Aufrufe im CIC, denn sie garantiert, dass rekursive
Funktionen terminieren. Durch rekursive Aufrufe auf strukturell kleineren Termen
werden immer weitere Konstruktoren des Terms reduziert. Dies führt zwangsläu-
fig irgendwann immer dazu, bis zum Basiskonstruktor reduziert zu haben, wonach
keine Reduktion mehr möglich ist.

Zur Veranschaulichung der Fixpoint-Definition stellen wir Abbildung 2 vor. Die-
se visualisiert die Hauptkomponenten einer Fixpoint-Definition. Als Eingabe haben
wir den induktiven Typ N, auf welchem die Funktion operiert. Zentral stellen wir
als Verhaltensregel die Fixpoint-Funktion add und deren zwei Hauptfälle, welche
über den match-Ausdruck ausgewählt werden, dar. Der Basisfall add z m = m
liefert direkt ein Ergebnis ohne Rekursion und der rekursive Fall ist der Aufruf auf
dem strukturell kleineren Term (add (S p)m = S (add pm)). In Abhängigkeit

25

Fixpoint add: Verhaltensdefinition

Typ: N Fixpoint: add

Basisfall:
add z m = m

Rekursiver Fall:
add (S p) m = S (add p m)

match nFall: z Fall: S p

Rekursion

Terminierungsnachweis

prüft

Beispiel: add (S (S z)) m ⇒ S (add (S z) m) ⇒ S (S (add z m)) ⇒ S (S m)

Algorithmen als Verhaltensregeln auf bestehenden Strukturen

Abbildung 2: Konzeptuelle Darstellung einer Fixpoint-Definition mit Rekursionsvi-
sualisierung

zu der Hauptfunktion add steht der Terminierungsnachweis, welcher durch die An-
gabe des strukturell abnehmenden Arguments, in dem Fall von add ist dies struct
n, angegeben wird. Er prüft, ob bei jedem rekursiven Aufruf tatsächlich ein struk-
turell kleiner Term verwendet wird. Durch diese strenge Anforderung wird die lo-
gische Konsistenz des Beweissystems sichergestellt. Die Fixpoint-Definition imple-
mentiert demnach das Prinzip der strukturellen Rekursion in Coq und setzt das
Grundprinzip aus dem CIC, dass alle Berechnungen terminieren müssen, praktisch
um.

Nun kommen wir zu einem Beispiel, bei dem nicht unmittelbar offensichtlich ist,
dass die Rekursion terminiert.

Beispiel 9. Rekursion Division mit Rest4

Fixpoint div (a b : N) {struct a} : N * N :=
match b <=? a with
| false => (z, a)
| true => let (q, r) := div (a sub b) b in (S q, r)
end.

Wie zu erkennen ist, erfolgt der rekursive Aufruf auf dem Term (a sub b). Hier
ist aber syntaktisch nicht erkennbar, dass es sich bei dem Term um einen struk-
turell kleineren Term als a handelt, da der Term das Ergebnis einer Berechnung

4Wir setzten hier voraus, dass eine Entscheidungsfunktion <=? existiert, die bestimmt, ob (le b
a) zutrifft und ebenfalls, dass es eine Definition für sub gibt, um zwei Argumente vom Typ N
voneinander subtrahieren zu können. Diese wurden einfachheitshalber nicht explizit angegeben
[25].

26

darstellt. Intuitiv lässt sich erkennen, dass so lange (b > 0) gilt, (a - b) in je-
dem rekursiven Schritt kleiner wird. Das heißt, irgendwann wird auch der Basisfall
a < b, also dass nicht (b ≤ a) gilt, durch die Rekursion erreicht. Diese intuiti-
ve Erkenntnis ist für uns offensichtlich, und wir könnten davon ausgehen, dass die
Funktion terminiert. Für die Anforderungen des CIC reicht dies aber nicht aus, da
die Regeln des CIC auf einer syntaktischen Prüfung der rekursiven Elemente basie-
ren. Auch Coq kann, trotz der expliziten {struct a} Anweisung, nicht automa-
tisch prüfen, ob die Rekursion tatsächlich terminiert. Daher ist der Benutzer gefragt,
um eine formale Garantie, also einen Beweis zu liefern, dass der Term (a sub b)
des rekursiven Aufrufs tatsächlich strukturell kleiner ist als a. Für unseren zweiten
Fall, der eintrifft, wenn (b ≤ a) gilt, führen wir zusätzlich noch eine lokale Bin-
dungskonstruktion let(q,r) ... in ... ein. Damit werden lokale Variablen
für Zwischenergebnisse erzeugt, wobei der Term nach in dann auf diese Variablen
zugreifen kann. Dies entspricht mathematisch: Sei (q,r) das Paar (q der Quotient
und r der Rest), dass sich aus dem rekursiven Aufruf der Division von (a - b)

b er-
gibt, dann ist das Ergebnis der ursprünglichen Division das Paar (q + 1 ,r), also
der um 1 erhöhte Quotient q mit dem gleichen Rest r. Das Ergebnis ist ein Paar von
dem Typ N, was durch den Rückgabeparameter N * N angegeben wird.

Im Folgenden möchten wir zusammenfassend die Unterschiede und Gemeinsam-
keiten von Inductive und Fixpoint zusammentragen und verdeutlichen. Wäh-
rend Inductive genutzt wird, um Datentypen oder Relationen durch dessen Kon-
struktoren zu definieren, definiert Fixpoint wiederum rekursive Funktionen auf
eben diesen induktiven Typen. Damit beschreibt Inductive die Struktur von Ty-
pen, also„was etwas ist“ und Fixpoint das Verhalten von solchen Typen, also „was
etwas tut“. Das bedeutet, dass durch Inductive neue Typen und deren dazugehö-
rige Induktionsprinzipien erzeugt werden, und diese nun bestehenden Typen und
deren Struktur dann bei Fixpoint genutzt werden. Dieses Zusammenspiel haben
wir in Abbildung 3 zur Veranschaulichung dargestellt. Dabei enthalten beide De-
finitionen rekursive Elemente. Bei Inductive liegt die Rekursion in der Struktur
des Typen selbst, während bei Fixpoint die Rekursion in der Funktionsdefinition
auftritt. Beide unterliegen in der Rekursion bestimmten Terminierungsbedingun-
gen. Inductivemuss dabei Positivitätsbedingungen erfüllen und Fixpointmuss
strukturelle Verkleinerung nachweisen.

Der Anwendungsbereich beider unterscheidet sich ebenfalls. Inductive wird
für Beweisstrukturen und Datentypen verwendet, wobei hingegen Fixpoint für
Algorithmen und Berechnungen verwendet wird.

Wie wir sehen, ermöglichen induktive Definitionen und deren rekursive Funktio-
nen die strukturierte Konstruktion mathematischer Objekte sowie die Formulierung
und den Beweis von Eigenschaften über diese mittels struktureller Induktion. Die
induktiven Definitionen ermöglichen präzise Strukturierung von Daten und Propo-
sitionen. Fixpoint-Funktionen erlauben dann Berechnungen auf diesen Strukturen.
Dieser Zusammengang ist in Abbildung 3 visualisiert.

Damit bilden diese zusammen das Fundament für formale Definitionen und Be-

27

Induktiver Typ:
Erzeugt Typen und
Strukturen
Inductive N : Type :=
| z : N
| S : N -> N.

Induktionsprinzip:
N_ind : forall P : N -> Prop,
P z ->
(forall n : N, P n ->
P (S n)) ->
forall n : N, P n.

wird von Coq generiert

Fixpoint Funktion:
Fixpoint add (n m : N) : N :=

match n with
| z => m
| S p => S (add p m)
end.

ermöglicht Berechnungen operiert auf

Anwendung:
Theorem plus_0_r : forall n : N, n add z = n.
Proof.

induction n.
- reflexivity.(* Basisfall *)
- simpl. Anwendung:
rewrite IHn.
reflexivity.

Qed.

Abbildung 3: Beziehung zwischen induktivem Typ, Induktionsprinzip und Fix-
point

weise und bilden zentrale Konzepte des CIC ab.
Nachdem wir nun die grundlegenden Konzepte des CIC, die Produkttypen, Funk-

tionstypen, induktiven Definitionen und rekursive Funktionen vorgestellt haben,
kommen wir nun zum Curry-Howard-Isomorphismus, wo sich die tiefere Bedeu-
tung dieser grundlegenden Konzepte erschließt. Dieser Isomorphismus stellt eine
Beziehung zwischen Typentheorie und Logik her und erklärt, weshalb wir Coq so-
wohl als Programmiersprache als auch als Beweissystem bezeichnen können.

3.2.5 Curry-Howard-Isomorphismus im CIC

Der Curry-Howard-Isomorphismus stellt in dem CIC eine fundamentale Verbin-
dung zwischen Logik und Berechnungen dar und findet den Ursprung in den Ar-
beiten von Curry (1934) und Howard (1969). Haskell Curry erkannte die Ähnlich-
keit zwischen der Struktur von Theoremen in der Combinatory Logic [6] und Typen
in der functional Analysis, und William Howard formalisierte später diese Bezie-

28

Intuitionistische Logik Typen & Programme

Isomorphismus

Proposition P

Implikation P ⇒ Q

Konjunktion P ∧ Q

Disjunktion P ∨ Q

Typ T

Funktionstyp T → U

Produkttyp T × U

Summentyp T + U

Beweis von P Programm vom Typ T

Abbildung 4: Curry-Howard-Isomorphismus. Formale Korrespondenz zwischen
Beweisen in der intuitionistischen Logik und Programmen im typi-
sierten λ-Kalkül

.

hung als einen Isomorphismus zwischen Intuitionistic Logic [9] und dem einfachen
typisierten λ-Kalkül. Später wurden diese Arbeiten dann als der Curry-Howard-
Isomorphismus bekannt.

Die Grundidee des Curry-Howard-Isomorphismus ist dabei, dass jeder Typ einer
Proposition, und jedes Programm (Term) dieses Typs einem Beweis dieser Proposi-
tion entspricht. Das bedeutet, dass ein Term vom Typ T ein konstruktiver Beweis ist,
dass T wahr ist und es gilt:

• die logische Konjunktion (A ∧B) entspricht Produkttypen (A×B)

• die logische Disjunktion (A ∨B) entspricht Summentypen (A+B)

• die logische Implikation (A ⇒ B) entspricht Funktionstypen (A → B)

• die universelle Quantifizierung (∀x.P (x)) entspricht abhängigen Produktty-
pen (Πx : A.P (x))

• die existenzielle Quantifizierung (∃x.P (x)) entspricht abhängigen Summenty-
pen (Σx : A.P (x))

Diese Korrespondenzen ermöglichen die Interpretation von konstruktiven Bewei-
sen als ausführbare Programme.

Abbildung 4 visualisiert die grundlegenden Korrespondenzen des Curry-Howard-
Isomorphismus. Die erweiterten Korrespondenzen mit abhängigen Typen, die für

29

die volle Ausdruckskraft des CIC wesentlich sind, umfassen zusätzlich die univer-
selle Quantifizierung (∀x.P (x)) als abhängigen Produkttyp (Πx : A.P (x)) und die
existenzielle Quantifizierung (∃x.P (x)) als abhängigen Summentyp (Σx : A.P (x)).

Schon der Calculus of Constructions von Coquand und Huet wurde als Erwei-
terung des Curry-Howard-Isomorphismus entwickelt, um sich diese Eigenschaften
zunutze zu machen. Dabei war die Kernidee, ein System zu schaffen, welches so-
wohl als Programmiersprache und auch als Beweissystem dienen kann.

Durch die Erweiterung der grundlegenden Korrespondenz auf induktive Typen
wird dann die Darstellung von Datentypen und induktiven Beweisen ermöglicht:

• ein induktiver Typ Inductive I : Prop := c1 : T1 | ...| cn : Tn
entspricht einer induktiven Proposition

• jeder Konstruktor ci entspricht einer Bildungsregel für die Proposition

• das von Coq automatisch erzeugte Induktionsprinzip Iind, welches zur Durch-
führung struktureller Induktionen verwendet wird, entspricht der Eliminati-
onsregel für die Proposition

• und die Reduktionsregeln für das Pattern-Matching entsprechen den Berech-
nungsregeln für Beweise.

So repräsentiert zum Beispiel der induktive Typ bool := true | false die
Proposition „wahr oder falsch“, der induktive Typ N := z | S N der Indukti-
on über natürliche Zahlen und ein induktiv definiertes Prädikat le : N -> N ->
Prop einer binären Relation auf natürlichen Zahlen.

Das Induktionsprinzip der induktiven Definitionen wird in dem Curry-Howard-
Isomorphismus als eine spezielle Form der Eliminationsregel für induktive Typen
angesehen, welche wir bereits für Produkt- und Funktionstypen eingeführt haben.
Diese ermöglicht es, einen durch Konstruktoren gebildeten Term systematisch in
seine strukturellen Teilterme zu zerlegen, also die Werte eines Typs zu verwenden.
Dabei werden komplexere Terme entsprechend der induktiven Definition von ih-
rem Typ rekursiv in einfachere Terme aufgelöst und für jeden Konstruktor wird de-
finiert, wie aus den Ergebnissen der Teilterme ein Gesamtergebnis zu konstruieren
ist.

Um diesen Prozess zu verdeutlichen, betrachten wir ein konkretes Beispiel der
Addition zweier natürlicher Zahlen mittels der Eliminationsregel:

Beispiel 10. Anwendung der Eliminationsregel zur Addition

Betrachten wir die Addition n + m mit n = 2 (repräsentiert als S (S z)) und
m = 3 (repräsentiert als S (S (S z))). Die Eliminationsregel N_ind wird auf n,
mit dem Basiswert m und der Nachfolgefunktion S für den rekursiven Fall, ange-
wendet:

30

add (S (S z)) (S (S (S z)))

= N_ind (S (S z)) (S (S (S z))) S

Die Elimination erfolgt durch strukturelle Zerlegung von n:

= Fall S (S z) : rekursiver Aufruf auf S z

= S (N_ind (S z) (S (S (S z))))

= Fall S z : rekursiver Aufruf auf z
= S (S (N_ind z (S (S (S z)))))

= Fall z : Rückgabe des Basiswerts S (S (S z))

= S (S (S (S (S z))))

= S (S (S (S (S z))))

= 5

Die Eliminationsregel zerlegt den Term n in seine strukturellen Teilterme, wobei
für jeden S-Konstruktor in n ein rekursiver Aufruf erfolgt. Im Basisfall wird der
Wert m zurückgegeben, und beim Zurückverfolgen der Rekursion wird für jeden
S-Konstruktor in n einmal die Funktion S auf das Zwischenergebnis angewendet.
Dies entspricht der mathematischen Berechnung 2 + 3 = 5.

Letztendlich ermöglicht der Curry-Howard-Isomorphismus und dessen Erwei-
terung durch den CIC, dass sowohl Programmierung als auch formale Beweisfüh-
rungen in Coq möglich sind. Dabei werden Programme und Beweise in derselben
Sprache ausgedrückt und die Beweise wiederum können als Korrektheitszertifikate
für Programme dienen. Außerdem können Programme aus konstruktiven Bewei-
sen extrahiert werden, da konstruktive Beweise implizit Algorithmen enthalten.
Durch dessen Extraktion können also die berechnenden Bestandteile des Beweises
isoliert werden, wobei die nicht berechnenden Bestandteile, wie zum Beispiel An-
nahmen, des Beweises entfernt werden. Solch ein Korrektheitsbeweis ist zum Bei-
spiel in der Entwicklungsphase von sicherheitskritischer Software relevant, ermög-
licht aber auch die Zertifizierung von Programmen. Durch Coq wurde zum Beispiel
der C-Compiler CompCert [13] zertifiziert, wodurch der Complier selbst und dessen
Korrektheit in Coq formal bewiesen wurden.

Wir haben uns in der letzten Sektion bereits durch die Beispiele von Induktive
und Fixpoint angesehen, wie eine Implementierung in Coq möglich ist, ohne uns
dabei die formale Sprache anzusehen. Diese Implementierung wird mit der Spezifi-
kationssprache Gallina vorgenommen, welche wir folgend genauer vorstellen wer-
den.

31

3.3 Gallina als deklarative Programmiersprache von Coq

Der Name „Gallina“ kommt aus dem Italienischen und steht für „Huhn“, eine klei-
ne Anspielung auf Coq was, aus dem Französischen stammt und „Hahn“ bedeutet.
Es entstand zusammen mit Coq in den frühen 1990er Jahren durch Coquand, Huet
und Paulin-Mohring [20] und wurde als formale Spezifikationssprache für mathe-
matische Definitionen und Beweise in Coq konzipiert. Dabei liegt der Fokus stär-
ker auf der Ausdruckskraft als auf der Effizienz, da das Hauptziel ist, mathema-
tische Präzision und Beweisbarkeit zu erreichen anstelle von Laufzeitperformanz.
Es muss jedoch auch garantiert sein, dass alle Funktionen nachweisbar terminieren.
Dies wirkt auf den ersten Blick so, als würde es die Ausdruckskraft einschränken,
da nicht alle intuitiv berechenbaren Funktionen direkt ausdrückbar sind, wie wir
bei dem Beispiel Rekursion Division mit Rest gesehen haben. Die Terminierungs-
anforderung dient jedoch primär der logischen Konsistenz, nicht der Effizienz, da
diese paradoxe Definitionen verhindert und garantiert, dass Berechnungen einen
wohldefinierten Wert liefern. Es handelt sich also um strenge Terminierungsanfor-
derungen, die durch den CIC die Eigenschaft mit sich bringen, dass alle rekursiven
Funktionen strukturell rekursiv sein müssen.

Die Ausdruckskraft in Gallina bezieht sich auf die Mächtigkeit des Typensystems,
wie abhängige Typen oder Induktion, und die Fähigkeit, mathematische Konzepte
präzise zu formalisieren. Wir behandeln also eher eine „mathematische Ausdrucks-
kraft“ als eine „algorithmische Ausdruckskraft“. Gallina setzt dabei auf starke Typi-
sierung, um Inkonsistenzen zu vermeiden. Das Typsystem verhindert logische Wi-
dersprüche, da jeder Ausdruck wohl-typisiert sein muss, wobei die Typen wieder-
um garantieren, dass nur sinnvolle Operationen möglich sind. So ist es zum Beispiel
nicht möglich, ein N mit einem bool zu multiplizieren. Durch die Typenhierarchie
wird verhindert, dass keine Selbstreferenzen entstehen können und es wird zudem
zwischen Prop, den logischen Formeln, und Type, den Datentypen unterschieden.
Die Typprüfung findet statisch, das heißt zur Compile-Zeit nicht zur Laufzeit statt,
um so Fehler vor der Ausführung aufdecken zu können. Dies bietet eine höhere Si-
cherheit für beweiskritische Anwendungen. Diese Typprüfung entspricht also der
Beweisverifikation.

Gallina stellt zusammen mit Coq also die Benutzerschnittstelle zum CIC dar. Der
CIC ist dabei die formale Grundlage und Gallina deren konkrete Syntax. Das bedeu-
tet, dass jeder Gallina-Ausdruck intern in CIC-Terme übersetzt wird. Gallina-Typen
entsprechen direkt den CIC-Typen, Polymorphie und abhängige Typen kommen
auch direkt aus dem CIC und die Typprüfung in Gallina ist die des CIC. Es gibt aber
auch Erweiterungen in Gallina, wie die Record-Typen, welche dann auf induk-
tive Typen im CIC abgebildet werden. Demnach ist die Bedeutung jedes Gallina-
Ausdrucks durch dessen CIC-Interpretation definiert und die logische Konsistenz
und Grenzen von Gallina basieren auf der Konsistenz und den Grenzen des CIC.

32

Kategorie Beispiele
Konstanten z, O, true, nil

Variablen x, n, f, A

Let-Bindungen let x := e1 in e2

Lambda-Abstraktionen fun x => x + 1,
fun (n : N) => S n

Funktionsanwendungen plus n m

Pattern-Matching match n with

| z => m

| S p => S (add p m)

end

Tabelle 1: Übersicht über Terme

3.3.1 Syntax und Hauptsprachelemente

Da wir in vorherigen Beispielen schon einige Syntaxelemente genutzt haben, möch-
ten wir diese nun noch einmal kategorisieren und genauer benennen und werden
dazu weiter relevante Elemente vorstellen. Gallina unterscheidet dabei zwischen
verschiedenen Arten von Ausdrücken, welche wir in zwei Hauptkategorien eintei-
len können. Terme, Ausdrücke, welche berechnet werden, und Typen, die Klassifi-
kation dieser Terme. Die Tabelle 1 für Terme und die Tabelle 2 für Typen geben einen
Überblick über die wichtigsten Konstrukte, welche ebenfalls eine hohe Relevanz für
die spätere Formalisierung des KLM-Theorems haben.

Die Terme repräsentieren ein konkretes Verhalten oder Berechnungen. Konstan-
ten sind dabei unveränderliche vordefinierte Werte, welche direkt ohne Parameter
verwendet werden können, wie unsere Konstante z, welche die natürliche Zahl Null
darstellt. Hingegen können Variablen mit beliebigen Werten eines bestimmten Typs
während des Beweisens belegt werden. So kann n eine beliebige natürliche Zahl
sein, f eine Variable für eine Funktion, oder A eine Variable für einen Typen sein.
Wir bezeichnen n auch als Wertevariable, f als Funktionsvariable und A als Typen-
variable, was uns demnach die Formulierung von Aussagen und parametrischer
Definitionen ermöglicht. Variablen werden innerhalb eines Bereichs (Scope) durch
Quantoren, lokale Definitionen und Abstraktionen gebunden, was bedeutet, dass
Variablen nicht global existieren, sondern immer nur in einem bestimmten Kon-
text eingeführt und dort verwendet werden können. Die Let-Bindung ermöglicht
uns dann lokale Definitionen. Dabei wird in dem Beispiel der Wert von e1 an x
für die Auswertung von e2 gebunden. Lambda-Abstraktionen, mit dem Bezug auf
das λ-Kalkül, definieren anonyme Funktionen ohne explizite Benennung, was die
Definition von Funktionen direkt dort möglich macht, wo sie benötigt werden. Es
werden also Funktionen in einem lokalen Scope definiert, ähnlich wie bei der let-

33

Kategorie Beispiele
Einfache Typen N, bool

Parametrisierte Typen list A, prod A B

Produkttypen prod A B

Summentypen option A, sum A B

Funktionstypen N -> bool, N -> N -> N

Abhängige Typen (forall n : N, vector A n)

Propositionale Typen Prop, le n m

Tabelle 2: Übersicht über Typen

Bindung für Werte. In den Beispielen kann fun x => x + 1 verwendet werden,
um eine Nachfolgefunktion darzustellen, hier wird einfach ein Wert erhöht. Dies ist
ähnlich wie bei fun (n: N) => S n nur wird hier explizit der Typ von n, nämlich
N angegeben, um klarzustellen, dass n eine natürliche Zahl ist, was es ermöglicht,
den Konstruktor S von dem Typ N anzuwenden. Das Pattern-Matching hatten wir
bereits vorgestellt. Es ermöglicht Fallunterscheidungen basierend auf der Struktur
eines Werts. Dabei ist zu beachten, dass alle möglichen Konstruktor-Varianten be-
handelt werden müssen. In unserem Beispiel haben wir für die natürlichen Zahlen
zwischen dem Fall z und S n unterschieden.

Auch Funktionsanwendungen stellen eine wichtige Kategorie von Termen dar.
Dabei wird eine Funktion auf konkrete Argumente zu der Berechnung eines Ergeb-
nisses angewendet. Für das Beispiel plus n m bedeutet dies, dass die Addition
auf die Werte n und m angewendet wird (n + m). Hierbei ist die Syntax in Coq
sehr einfach gehalten. Funktionsnamen werden gefolgt von Argumenten, welche
mit Leerzeichen getrennt sind, dargestellt.

Typen klassifizieren Terme und garantieren so deren konsistente Verwendung.
Einfache Typen repräsentieren dabei grundlegende Datenstrukturen ohne Parame-
ter oder Abhängigkeiten. Dies betrifft unseren Typ N und den Typ bool für Wahr-
heitswerte. Wir bezeichnen diese als grundlegend, da diese die Basis für komplexere
Typenkonstruktionen bilden. Parametrisierte Typen sind wiederum Typen, welche
durch einen oder mehrere Typparameter angepasst werden können. In dem Bei-
spiel stellt list A eine Liste von Elementen des Typs A dar. Dies ist ähnlich zu den
Funktionsanwendungen der Terme, jedoch werden als Parameter anstatt Werten Ty-
pen übergeben. Zu dieser Kategorie gehören auch die Produkt- und Summentypen.
Produkttypen werden in Coq mit dem Schlüsselwort prod definiert und Summen-
typen können entweder mit option oder sum angegeben werden. Summentypen
drücken die Wahl zwischen zwei möglichen Werten aus. Dabei steht option A für
einen Wert von Typ A oder None und sum A B für einen Wert, entweder vom Typ
A oder vom Typ B. Funktionstypen beschreiben Abbildungen von einem Typen auf
einen anderen. So ist N -> bool eine Abbildung von natürlichen Zahlen auf Wahr-

34

heitswerte. Es ist ebenfalls möglich, mehrere Argumente anzugeben, wie N -> N
-> N zeigt. Dabei entspricht dies (N -> (N -> N)), also einer Funktion, die einen
Wert von Typ N nimmt und eine weitere Funktion N -> N zurückgibt, welche dann
wiederum einen weiteren Wert vom Typ N nimmt und dann das Ergebnis vom Typ
N zurückgibt. Abhängige Typen sind Typen, von denen die Definition von Werten
abhängt und nicht nur von anderen Typen. Das Beispiel forall n : N, vector
A n beschreibt einen Vektor vom Typ A mit der Länge n, wobei n vom Typ N ist.
Das Ergebnis von vector A n ist also vom Wert n abhängig. Propositionale Ty-
pen werden in Coq verwendet, um logische Aussagen und Beweise darzustellen.
Der Typ Prop ist der Typ aller beweisbaren Aussagen. Der Typ le n m ist der Typ
einer Aussage über die Eigenschaft „kleiner gleich“ von n und m, wobei der Wert
des Beweises für diese Aussage zeigt, dass n kleiner oder gleich m ist. Wenn wir also
zeigen wollen, dass n kleiner gleich m ist, würden wir einen Wert vom Typ le n m
erzeugen.

3.3.2 Module und Strukturierung

Bei der Modularisierung des Formalierungsprojekts wird die Trennung von Kon-
zepten in logisch zusammenhängende Einheiten ermöglicht und gleichzeitig erhöht
dies die Wiederverwendbarkeit des Codes in unterschiedlichen Beweisen. Wir redu-
zieren daher die Komplexität der Formalisierung durch Kapselung und Abstraktion
und erleichtern damit auch die Wartung und das Fortführen unserer Formalisierun-
gen.

Wenn wir von Modularisierung sprechen, drücken wir damit aus, dass der Code
in Module zur Codeorganisation aufgeteilt wird. Module sind dann dabei eine Art
Container für Definitionen, Theoreme und auch Beweise, welche ebenfalls wieder-
um geschachtelt auftreten können und ihren eigenen Namespace besitzen. Coq stellt
dabei die Syntax Module module_name. . . .End module_name. zur Verfügung
[2, 20]. Um die Inhalte dann in einem Formalisierungsprojekt nutzen zu können,
werden die Module über Import module_name importiert oder direkt über das
Modul durch module_name.inhalt angesprochen, wodurch kein expliziter Im-
port benötigt ist.

Um Schnittstellen (Interfaces) für die Module zu defininieren bietet Coq die Syntax
Module Type interface_name.. . .End interface_name.Dabei wird durch
Modultypen festgelegt, welche Bestandteile, wie Typen, Konstanten oder Beweise,
ein Modul bereitstellen muss, ohne die konkrete Implementierung vorzugeben. Mo-
dultypen werden in Coq in dem jeweiligen Modul durch Module module_name
: interface_name. . . .End module_name. angegeben [20], und ermöglicht da-
mit verschiedene Implementierungen derselben Schnittstelle.

Eine weitere nützliche Eigenschaft in Coq stellt der Record dar, womit wir zu-
sammengehörige Konzepte und deren Daten und Eigenschaften bündeln können.
Ein Record kann in Coq mit dem Recordnamen, den Feldern und deren Typen durch
Record record_name := field1 : Typ1; ...fieldn : Typen. definiert

35

werden [20]. Um auf die Felder eines Records zuzugreifen, wird die Punktnotation
auf einer Instanz des Record verwendet. Um demnach auf das erste Feld im Record
zuzugreifen, kann zum Beispiel record_instance.(field1) genutzt werden.

Für die Trennung des Formalisierung des KLM-Theorems in logische Einheiten
werden diese Eigenschaften von Coq genutzt. Wir werden im späteren Verlauf Ba-
sisklassen für System C und die kumulativen Konsequenzrelationen, sowie für ku-
mulative Modelle und deren Eigenschaften und Module für den Beweis des Re-
präsentationstheorems vorstellen. Diese Strukturierung bietet Vorteile für die Be-
weiswartung und orientiert sich an der mathematischen Strukturierung von Kraus,
Lehmann und Magidor [11]. Außerdem erleichtert die Aufteilung in Module die
schrittweise Verifikation und ermöglicht die unabhängige Entwicklung und Vali-
dierung einzelner Komponenten [3, 22, 20]. Auch eine potenzielle Erweiterung, bei-
spielsweise auf System P, wird dadurch erleichtert.

Um dem Benutzer die Beweisführung zu vereinfachen, bietet Coq zusätzlich sel-
ber bestimmte Automatisierungstechniken, die sogenannten Tactics, an. Aufgrund
dieser Eigenschaft werden Beweise in Coq auch als semi-automatische Beweise be-
zeichnet.

3.4 Beweisführung mit Taktiken

Die Taktiken dienen dabei als Anweisungen für die schrittweise Transformation der
Beweisziele. Das bedeutet konkrekt, dass wir über die Taktiken eine Beweisstrategie
vorgeben, wobei Coq dann die Korrektheit verifiziert. Durch das Einsetzten von
Taktiken wird der Beweis dann Stück für Stück abgearbeitet, wobei die Taktiken
den Beweiszustand verändern. Dies geschieht so lange, bis alle Beweisziele gelöst
sind.

Der Beweiszustand gibt dabei den aktuellen Fortschritt des Beweises an und be-
steht aus dem Kontext und den Beweiszielen. Der Kontext enthält dabei alle verfüg-
baren Hypothesen, Definitionen und Variablen des Beweises, und jedes Beweisziel
besteht aus einem Typ, welcher bewiesen werden soll. Dabei gilt, dass wir in einem
Beweiszustand auch mehrere offene Beweisziele haben können, welche dann eben-
falls nach einander gelöst werden sollen. Je nach der genutzten Entwicklungsumge-
bung (IDE) wird der Beweiszustand etwas anders dargestellt, aber meist wird der
Kontext und die Beweisziele explizit dargestellt, um die Übersicht über den Beweis
behalten zu können.

Der initiale Beweiszustand enthält dabei nur das zu beweisende Theorem als Be-
weisziel und keine lokalen Hypothesen. Danach liegt es an uns, die korrekten Tak-
tiken für die Beweisführung anzuwenden und die dadurch neu erzeugten Beweis-
ziele schrittweise zu beweisen. Dies stellt genau die interaktive Beweisführung dar,
welche wir zu Beginn angesprochen hatten. Um den Beweiszustand zu verändern,
implementieren die Taktiken eine bestimmte Transformation. Das können zum Bei-
spiel Taktiken sein, die ein Beweisziel in Teilziele aufteilen, das Hinzufügen neuer
Hypothesen ermöglichen und auch das Lösen eines Ziels unter bestimmten Bedin-

36

gungen automatisch durchführen. Dabei ist auch zu beachten, dass Taktiken eben-
falls fehlschlagen können, wenn eine Transformation nicht anwendbar ist.

In Coq wird ein Beweis mit dem Schlüsselwort Proof. begonnen und mit Qed.
abgeschlossen. In einer IDE, welche die Darstellung des Beweiszustands unterstützt,
kann der Beweis schrittweise durchlaufen werden, wie bei einer Art von Debug-
ging. Dies ermöglicht es, Veränderungen des Beweiszustands zu überwachen und
nachzuvollziehen. Die Darstellung des Beweiszustands ist bei der interaktiven Be-
weisführung ein kritischer Punkt, denn dies gibt Hinweise darauf, welche Taktiken
im nächsten Schritt sinnvoll anzuwenden sein könnten.

3.4.1 Taktiksprache und deren Anwendung

In Coq gibt es eine Vielzahl von verfügbaren Taktiken [21] von denen wir folgend ei-
nige relevante vorstellen werden. Um einen Überblick zu verschaffen, haben wir die
Taktiken nach ihrem Funktionsbereich kategorisiert. Tabelle 3 zeigt eine Zusammen-
stellung der Taktiken, die bei der Beweisführung in Coq und bei der Formalisierung
des KLM-Theorems häufig zum Einsatz kommen.

Die Gruppe der logischen Operationen umfasst Taktiken, welche für die Trans-
formation logischer Formeln, wie Prämissen, Implikationen und Quantoren, einge-
setzt werden. Der erste Schritt in einem Beweis sind üblicherweise die intro und
intros Taktiken, da diese Hypothesen in den Kontext einführen. Die Taktik apply
wird dabei genutzt, um ein Theorem oder eine Hypothese auf ein aktuelles Ziel an-
zuwenden, wohingegen exact und assumption direkt eine Lösung liefern, wenn
eine passende Hypothese oder ein passender Term aus dem Kontext verfügbar ist.

Taktiken, die genutzt werden können, um Äquivalenzen in Beweisen zu zeigen,
haben wir in die Gruppe der Äquivalenzbeweise einsortiert, da diese verschiedene
Aspekte des Umgangs mit Äquivalenzen unterstützen. Die Taktik reflexivity
löst dabei einfache Gleichungen der Form n = n und um einen Term mithilfe von
Gleichungen umzuformulieren und zu substituieren, wird die Taktik rewrite an-
geboten. Die Taktik congruence automatisiert einfache Äquivalenzbeweise durch
die Kombination mehrerer Äquivalenzregeln.

Die Gruppe der strukturellen Manipulation umfasst Taktiken, die die Struktur
von Beweiszielen oder Hypothesen anpassen. Dabei zerlegt die Taktik split kon-
junktive Ziele in Teilziele, die bei der Behandlung von Konjunktionen in Regeln wie
zum Beispiel Cautious Monotonicity relevant sein werden. Taktiken wie left und
right wählen dann eine Seite der Disjunktion aus, zum Beispiel bei der Forma-
lisierung von disjunktiven Prämissen. Die Taktik destruct führt Fallunterschei-
dungen durch, zum Beispiel für Hypothesen in Beweisen von System C Regeln, und
induction wendet strukturelle Induktion an, um Beweise über induktiv definierte
Strukturen, zum Beispiel auf die Struktur von kumulativen Konsequenzrelationen,
zu führen.

Die Taktiken für die Kontextmanipulation helfen uns, den Beweiskontext über-
sichtlich zu halten. So führt assert neue Hypothesen oder Zwischenziele ein, um

37

zum Beispiel Eigenschaften von kumulativen Modellen zu beweisen. Die Taktik
clear entfernt irrelevante Hypothesen, rename benennt Variablen und Hypothe-
sen um, und generalize sowie specialize verallgemeinern oder spezialisieren
Hypothesen, indem spezifische Terme durch Variablen ersetzt werden, um diese in
anderen Kontexten nutzen zu können oder um eine allgemeine Hypothese auf einen
konkreten Fall zu beschränken. Um Hypothesen in dem Kontext zu ordnen, können
wir die Taktik move anwenden, was bei komplexen Beweisen hilfreich sein kann.

Die Gruppe der Automatisierung umfasst Taktiken, die Beweise teilweise auto-
matisieren. Dabei lösen auto und eauto einfache Ziele mit vordefinierten Hinwei-
sen, zum Beispiel in Beweisen für die Reflexivität. Die Taktik tauto beweist logi-
sche Tautologien, und intuition wird genutzt um komplexe logische Ausdrücke
automatisch in deren Bestandteile zu zerlegen, also zum Beispiel um Disjunktionen,
Konkunktionen oder Implikationen aufzuspalten. Dabei werden Einführungs- und
Eliminierungs-Regeln angewendet um Teilziele zu vereinfachen.

Taktik-Kombinatoren (LTCF-Kombinatoren) ermöglichen eine flexible Beweisfüh-
rung. Das Semikolon ; führt Taktiken nacheinander aus, | | kombiniert Alterna-
tiven, und try, versucht Taktiken optional auszuführen. Der Kombinator repeat
wiederholt Taktiken, bis diese Fehlschlagen oder zu keiner Änderung mehr führen
und solve versucht, Ziele vollständig zu lösen, in dem es Taktiken anwendet. Soll-
ten Ziele offen bleiben, schlägt solve fehl. Der Kombinator first wählt die erste
erfolgreiche Taktik aus einer Liste und versucht dann die Taktik auto anzuwenden.

3.5 Semi-automatisches Beweisen

Bei dem semi-automatischen Beweisen ist gefordert, eine gute Balance zwischen
manueller Beweisführung durch den Benutzer und der Automatisierung mit Tak-
tiken zu finden. Dies erfordert wiederkehrende Beweismuster, welche sich durch
Taktiken automatisieren lassen, zu erkennen, sowie Unterbeweise technischer Na-
tur, wie zum Beispiel Umformungsschritte, von konzeptionellen Kernbeweisen zu
isolieren. Dabei unterscheiden wir zwischen trivialen Teilzielen, die automatisch
gelöst werden, und den komplexen Zielen, welche manuell geführt werden. Für
das KLM-Theorem würden so zum Beispiel die Eigenschaften kumulativer Konse-
quenzrelationen automatisch geprüft werden können, während die Hauptschritte
des Beweises manuell geführt werden.

Es ist ratsam, komplexere Beweise strategisch zu zerlegen. So sollte der Gesamt-
beweis in logische Einheiten mit klaren Abhängigkeiten aufgeteilt werden, was wie-
derum zu Zwischenzielen mit überschaubarer Komplexität führt. Dabei ist es rele-
vant, eine sinnvolle Reihenfolge für diese Teilbeweise festzulegen.

In Coq sind Automatisierungstechniken domänenspezifisch. Das bedeutet kon-
kret, dass Taktiken für bestimmte mathematische Bereiche spezialisiert sind, zum
Beispiel die Taktik ring für Algebra und lia für lineare Arithmetik.

Es gibt aber auch die Möglichkeit, eigene Taktiken mithilfe der Taktiksprache
Ltac zu definieren. In solch einer Definition können dann wiederum weitere Tak-

38

Taktik Beschreibung

Logische Operationen

intro, intros Hypothesen für Implikationen/Quantoren einführen
apply Theorem auf Beweisziel anwenden
exact Term direkt als Beweisziel angeben
assumption Passende Hypothese aus Kontext nutzen

Äquivalenzsbeweise

reflexivity Äquivalenz durch Reflexivität beweisen
rewrite Term mit Gleichung umschreiben
congruence Einfache Äquivalenzziele automatisch lösen

Strukturelle Manipulation

split Konjunktion in Teilziele aufteilen
left, right Seite einer Disjunktion auswählen
destruct Fallunterscheidung nach Termstruktur
induction Induktion auf induktive Typen anwenden

Kontextmanipulation

assert Neue Hypothese oder Zwischenziel einführen
clear Unnötige Hypothesen entfernen
rename Variablen/Hypothesen umbenennen
generalize Term verallgemeinern
specialize Hypothese spezialisieren
move Hypothesen im Kontext umordnen

Automatisierung

auto Beweis automatisch mit Hints suchen
eauto Erweiterte Suche mit mehr Tiefe
tauto Tautologien der Aussagenlogik beweisen
intuition tauto mit Zerlegung kombinieren

Taktik-Kombinatoren (LCF combinators)

; Taktiken nacheinander ausführen
|| Alternative Taktiken ausprobieren
try Taktik optional ausführen
repeat Taktik wiederholen bis Fehlschlag
solve Ziel vollständig lösen versuchen
first Erste erfolgreiche Taktik aus Liste wählen

Tabelle 3: Zusammenstellung zentraler Taktiken und Kombinatoren für die interak-
tive Beweisführung in Coq

39

tiken verwendet werden. Dabei ist es durch Ltac möglich, match-Konstrukte zu
nutzen, um Taktiken abhängig von Beweiszielen auszuführen. Außerdem werden
Konstrukte wie repeat zur Verfügung gestellt, um Schleifen zu erzeugen, womit
eine Taktik so lange zu wiederholt werden kann, bis diese nicht mehr anwendbar
ist. In Ltac kann sogar der Beweisfluss mit den Konstrukten try und fail gesteu-
ert werden. Durch diese Taktiksprache wird nochmals die Wiederverwendbarkeit
verstärkt und es ermöglicht oft hintereinander genutzte Taktiken in einer einzigen
Taktik zu definieren, was wiederum die Komplexität reduziert.

Auch bei der Verwendung von Taktiken gelten jedoch die bereits zuvor angespro-
chenen Grenzen der vollautomatischen Beweise, welche jedoch stückweit durch
menschliche Führung überwunden werden können. Dies wiederum setzt voraus,
dass für die zu führenden Beweise ein tiefes semantisches Verständnis existiert.

40

4 Formalisierungsansatz

Für die Formalisierung des KLM-Theorems haben wir uns für einen modularen
Aufbau entschieden, dabei gibt es verschiedene Coq-Module für die jeweiligen un-
terschiedlichen Aspekte der Formalisierung. Diese Entscheidung basiert auf der
Umsetzung der mathematischen Definitionen aus der Arbeit von Kraus, Lehmann
und Magidor [11]. Wie bereits zahlreich besprochen, beschränken wir uns in dieser
Arbeit auf die Formalisierung des KLM-Theorems mit propositionaler Logik, um
die Komplexität, im Vergleich zu einer prädikatenlogischen Formulierung, mög-
lichst gering zu halten. Dies spiegelt sich ebenfalls in der Strategie zur Handha-
bung der Smoothness-Bedingung bei endlichen Mengen semantisch unterschiedli-
cher Formeln aus Kapitel 2.3.1 wider. Um die propositionale Logik in Coq zu im-
plementieren, haben wir uns außerdem für eine bereits existierende Bibliothek ent-
schieden, damit die Grundlagen nicht erneut implementiert werden müssen und
der Fokus auf der Formalisierung des KLM-Theorems bleibt.

4.0.1 Aufbau des Beweises

Um die Formalisierung des KLM-Theorems in Coq zu veranschaulichen, zeigen wir
in Abbildung 5 eine Übersicht der wichtigsten Bestandteile. Das KLM-Theorem, wie
es von Kraus, Lehmann und Magidor in Theorem 3.25 [11] definiert wurde, sagt
aus, dass eine kumulative Konsequenzrelation (Γ : p |∼ q) genau dann gilt, wenn
sie in einem Modell semantisch erfüllt ist (Γ |= p |∼W q). Unsere Formalisierung in
Coq beweist diese Äquivalenz. Die Grafik zeigt, wie wir die mathematischen Kon-
zepte von Kraus, Lehmann und Magidor in Coq umgesetzt haben. Wir überneh-
men aus deren Arbeit die kumulative Konsequenzrelation und die Lemmata 3.15
bis 3.24, welche die Eigenschaften des KLM-Theorems definieren. Die Grundlagen
für den Beweis stellt die induktive Definition der kumulativen Konsequenzrelation
CumulCons aus KLM_Cumulative.v, zusammen mit den fünf Regeln für Refle-
xivity, Left Logical Equivalence, Right Weakening, Cut und Cautious Monotonici-
ty, welche als Konstruktoren definiert sind, dar. Die semantische Seite, basierend
auf den kumulativen Modellen wird in KLM_Semantics.v definiert. Der Beweis
des KLM-Theorems ist in zwei Module nach Kapitel 2.4 aufgeteilt. Ein Modul aus
KLM_Soundness.v implementiert den Soundness Beweis, also kumulative Model-
le erfüllen System C, und ein Modul übernimmt den Completeness Beweis aus
KLM_Completeness.v, wo gezeigt wird, dass für jede kumulative Konsequenz-
relation ein kumulatives Modell existiert.

Die Soundness des KLM-Theorems stellt dabei den weniger komplexen Teil des
Beweises dar. Hier werden wir die Beweisstruktur entlang der fünf Regeln des Sys-
tem C aufbauen und die Soundness als Induktion über die Ableitungsregeln in
CumulCons beweisen. Dafür werden wir weitere separate Hilfssätze für jede der
fünf Regeln des System C entwickeln. Diese Hilfssätze sind in dabei in den Lemmata
soundness_reflexivity, soundness_LLE, soundness_RW, soundness_Cut
und soundness_CM definiert, wie es durch Lemma 3.24 [11] gefordert ist. Für den

41

KLM-Theorem
Γ : p |∼ q ⇔ Γ |= p |∼W q

Coq Theorem
klm_theorem:

forall Γ, p, q.
Γ : p |∼ q <-> Γ |= p |∼w q

Soundness
Γ : p |∼ q ⇒ Γ |= p |∼W q

Completeness
Γ |= p |∼W q ⇒ Γ : p |∼ q

Syntax
Γ : p |∼ q

(Cumulative Consequence)

Semantics
Γ |= p |∼w q

(Model Entailment)

KLM_Base.v
States, Entailment

KLM_Semantics.v
Modelle, MinimalElements

KLM_Cumulative.v
5 Inferenzregeln

KLM_Soundness.v
5 Regeln bewiesen

KLM_Completeness.v
Kanonisches Modell

KLM Original (1990)
Theorem 3.25

Lemma 3.23

Lemma 3.22

Lemma 3.20

Lemma 3.18

Lemma 3.24

Lemma 3.16

Lemma 3.15

Abbildung 5: Übersicht der Formalisierung des KLM-Theorems in Coq
42

eigentlichen Beweis nutzen wir die strukturelle Induktion über den Aufbau von
CumulCons. Für jeden Konstruktor, also jede der fünf Regeln des System C, wird
individuell nachgewiesen, dass dessen Eigenschaft im kumulativen Modell gilt. Da-
bei wird die Induktionshypothese jeweils für die Teilableitungen angewendet.

Für den Completeness-Beweis werden wir ein kanonisches Modell konstruieren,
welches genau die gegebene kumulative Konsequenzrelation repräsentiert, und ori-
entieren uns hierbei an den Lemmata 3.17 bis 3.23 [11]. Dabei basiert die Konstruk-
tion des Modells auf maximal konsistenten Mengen, welche als Zustände in dem
Modell dienen. Außerdem zeigen wir in einem Beweisschritt, dass die Smoothness-
Bedingung von dieser Konstruktion erfüllt wird und konstruieren formal die Präfe-
renzrelation des Modells. Auch hier werden wir mehrere Hilfssätze einführen, wel-
che die Eigenschaften maximal konsistenter Mengen und deren Verhalten in Bezug
auf die kumulative Konsequenzrelation widerspiegelt.

Die Formalisierung dieses Teils ist komplexer als der Soundness Beweis und er-
fordert daher verschiedene Zwischenschritte.

4.0.2 Einbinden der Library für Propositionale Logik

Für die Implementierung der Propositionalen Logik haben wir uns dazu entschie-
den die Library von Dakai Guo und Wensheng Yu aus 2023 [8] einzubinden, wel-
che uns die benötigten Grundlagen der Propositionalen Logik bereitstellt. Die für
diese Arbeit relevanten Details befinden sich in den base_pc.v, semantic.v so-
wie syntax.v und complete.vDateien. Durch die Nutzung der externen Library
können wir uns vorrangig auf die eigentliche Formalisierung des KLM-Theorems
fokussieren. Die wichtigsten Komponenten der Library ermöglichen dann die De-
finition von Formeln und Wahrheitswerten, das Formulieren von Ableitungsregeln
und eine semantische Interpretation und Folgerungsbeziehung.

4.0.3 Überblick über die Formalisierungsschritte

Die Formalisierung wird in aufeinander aufbauenden, logisch voneinander abhän-
gigen Phasen eingeteilt und in Modulen für eine bessere Übersicht definiert:

1. Definitionen der grundlegenden syntaktischen Elemente, wie die Konsequenz-
relation.

2. Formalisierung des System C und die damit verbundenen fünf Regeln

3. Implementation der Smoothness-Bedingung als Axiom, unter der Berücksich-
tigung der Besonderheiten im propositionalen Fall.

4. Beweis der Soundness des KLM-Theorems.

5. Beweis der Completeness des KLM-Theorems.

6. Zusammenführung aller Module zum vollständigen Repräsentationstheorem.

43

4.1 Darstellung der Syntax

4.1.1 Kodierung propositionaler Formeln

Für die Formalisierung werden wir den vordefinierten Datentyp Formula aus der
externen Library verwenden. Formula basiert auf drei Konstruktoren:

• Var n: Dies stellt eine atomare Aussagenvariable dar. Dabei ist n eine natürli-
che Zahl, welche als Bezeichner benutzt wird. Var 0 wäre dann zum Beispiel
die Aussagenvariable p0.

• Not f: Dieser Konstruktor wird für die logische Negation einer Formel f ge-
nutzt. Dieses Not wird später noch durch eine Notation auf das Symbol ¬
abgebildet, um Negation als ¬f darstellen zu können.

• Contain f1 f2: Hier repräsentiert der Konstruktor die logische Implikation
von Formel f1 zu f2. Auch hier wird später die Notation → eingeführt, um
die Implikation als f1 → f2 schreiben zu können.

Aus diesen drei Konstruktoren können dann, durch weitere entsprechende Notatio-
nen, auch andere logische Verknüpfungen wie die Konjunktion (∧), Disjunktion (∨)
und Äquivalenz (↔) definiert werden. Dies ist ausreichend für die Formalisierung
des KLM-Theorems, da in dieser Arbeit das System C auf propositionaler Logik auf-
baut, die kumulativen Konsequenzrelationen damit definierbar sind und die Syntax
der Arbeit von Kraus, Lehmann und Magidor damit abbildbar ist.

Konkret bedeutet dies, dass wir Formula direkt in unsere Formalisierung in-
tegrieren können und damit auch direkt die vorgegebene Typstruktur verwenden
können. Damit decken diese propositionalen Formeln die Grundlagen für die De-
finition der kumulativen Konsequenzrelation und der kumulativen Modelle und
somit für die Formalisierung der Beweisschritte im KLM-Theorem ab. Zudem ist
es ebenfalls nicht notwendig, die bestehende Definition strukturell zu erweitern,
da diese bereits ausreichende Ausdruckskraft besitzt. Auch die Semantik der pro-
positionalen Logik ist bereits in semantic.v formuliert und kann von uns durch
Formula mitgenutzt werden.

4.1.2 Induktive Definition der Syntax

Auch die induktiven Definitionen, auf deren definierte induktive Struktur wir di-
rekt Zugriff haben, werden von besonderer Bedeutung für die Beweisführung sein,
da sie strukturelle Induktion über Formeln möglich machen, was wiederum die
Grundlage für Beweise über alle Formeln einer bestimmten Form ist.

Jede Formel ist dabei eindeutig durch ihre Konstruktion über ihre Konstrukto-
ren bestimmt. Dabei garantiert die Injektivität der Konstruktoren die Eindeutig-
keit, denn es gilt Var ̸= Not ̸= Contain. Dies ist für exakte Fallunterscheidun-
gen in Beweisen, wie zum Beispiel bei dem Pattern-Matching aus Kapitel 3.2.4,

44

entscheidend. Jede Formel fällt dabei genau in eine Kategorie der Fallunterschei-
dung, und dies dient damit als Grundlage für den Beweis, dass Eigenschaften für
alle Formeln gelten, indem alle möglichen Konstruktionswege abgedeckt werden.
Das heißt, durch das Pattern-Matching kann garantiert werden, dass alle möglichen
Fälle betrachtet werden, was für die Vollständigkeit von Beweisen notwendig ist.

Es gibt noch weitere Definitionen für abgeleitete Operatoren. Darunter die Kon-
junktion p ∧ q, die als ¬(p → ¬q) definiert wird, die Disjunktion p ∨ q, welche
wiederum als ¬p → q definiert ist und die Äquivalenz p ↔ q, definiert als bidi-
rektionale Implikation durch (p → q)∧(q → p).

4.1.3 Darstellung von Wahrheitswerten

Die Library stellt ebenfalls eine Implementierung von Wahrheitswerten und ihrer
Semantik zur Verfügung. Hierbei wird der boolesche Typ bool mit den Werten
true und false genutzt. Durch implementierte boolesche Funktionen wird die
Handhabung der Wahrheitswerte vereinfacht. Wie zum Beispiel die Bewertungs-
funktion value. Diese dient der semantischen Interpretation für die Zuordnung
von Wahrheitswerten zu Formeln und ist eine rekursive Definition auf der For-
melstruktur. Die semantischen Eigenschaften von value sind in keep_not und
keep_contain definiert. Diese spezifizieren die korrekte Verhaltensweise der Be-
wertungsfunktion, indem die Negation und Implikation korrekt interpretiert wer-
den. Für keep_not v bedeutet das, dass der Wahrheitswert einer negierten Formel
die Negation des Wahrheitswerts der Formel ist. Während keep_contain genutzt
wird, damit der Wahrheitswert den Regeln der klassischen Logik folgt. Nur Funk-
tionen, welche beide dieser Eigenschaften erfüllen, sind semantisch korrekt. Dies
gibt die Grundlage für die Definition von Tautologien und semantischem Entail-
ment.

Die Tautologie Tautology p := forallv,valuev → vp = true formalisiert
Formeln, die unter jeder Bewertung wahr sind. Und das semantische Entailment,
gegeben als Γ |= p, definiert für Formeln, das p semantisch aus Γ folgt und bildet
damit eine Verbindung zwischen Semantik und Syntax. Die Notation Γ wird dabei
eingeführt, um eine Menge von Formeln zu repräsentieren, die als vorausgesetzt
oder bekannt sind. Wir nennen Γ auch eine Wissensbasis oder den Kontext. Forma-
lisiert ist Γ als Ensemble Formula, welches auch leer sein darf. Es definiert, dass
bei jeder Bewertung v, welche alle Formeln in Γ zu true auswertet, auch p wahr
ist. Dies ist essenziell für die semantische Interpretation kumulativer Konsequenz-
relationen und erlaubt die Formalisierung „p folgt aus Γ unter Berücksichtigung der
minimalen Modelle“.

4.2 Formalisierung von System C

Die Formalisierung des Systems C, wie es von Kraus, Lehmann und Magidor [11]
definiert wurde, bildet eine der Grundlagen der Formalisierung des KLM-Theorems.
System C stellt die minimalen Anforderungen an nichtmonotones Schließen dar

45

und wird in Coq durch den induktiven Typ CumulCons umgesetzt, der die kumula-
tive Konsequenzrelation repräsentiert. Mit einer Wissensbasis vom Typ Ensemble
Formula und den fünf Grundregeln (Ref, LLE, RW, Cut, CM) können wir die nicht-
monotone Logik präzise in Coq abbilden. Die folgenden Abschnitte beschreiben die
Implementierung der Regeln, eine intuitive Notation, eine benutzerdefinierte Taktik
zur Vereinfachung von Beweisen sowie Beispiele für Ableitungen im System C.

4.2.1 Formalisierung der fünf Grundregeln

Wir implementieren das System C zusammen mit den fünf Grundregeln als den
induktiven Typen CumulCons, welcher direkt die kumulative Konsequenzrelation
darstellt. Dies ermöglicht es, die Inferenzregeln direkt als die Konstruktoren des in-
duktiven Typen abzubilden. Außerdem unterstützen wir damit die strukturelle In-
duktion für Beweise, und Coq generiert dafür wiederum die Induktionsprinzipien.
Zudem haben wir das Ensemble Formula, statt einer Liste genutzt, um ebenfalls
Mengeneigenschaften direkt nutzen zu können und somit auch Duplikate oder ei-
ne Reihenfolgeproblematik zu verhindern. Der Typ der Relation CumulCons nimmt
drei Parameter. Zuerst Γ vom Typ Ensemble Formula, welcher unsere Wissensba-
sis darstellt, welche die gemeinsamen Annahmen enthält und danach zwei Formeln
p und q vom Typ Formula, welche die Prämisse und die Konklusion der nichtmo-
notonen Folgerung darstellen. Der Rückgabetyp Prop wird dabei verwendet, um
Propositionen, die bewiesen werden können, und die Relation als logische Eigen-
schaft, statt einer berechenbaren Funktion, darzustellen. Entgegen der mathemati-
schen Definition von Kraus, Lehmann und Magidor führen wir die Wissensbasis
ein, um den Kontext, welcher sonst nur implizit angenommen wird, in Coq explizit
darstellen zu können, da Coq präzise Definitionen erfordert. Damit können wir in
Coq Formeln voraussetzen, welche als Annahmen oder Hintergrundwissen dienen.

Für die Konstruktornamen haben wir uns ebenfalls an der mathematischen No-
tation orientiert.

Definition 8. Kumulative Konsequenzrelation und System C in Coq

1 Inductive CumulCons :
2 Ensemble Formula -> Formula -> Formula -> Prop :=
3 | Ref : forall Γ p,
4 CumulCons Γ p p
5 | LLE : forall Γ p q r,
6 In Formula Γ (p ↔ q) ->
7 CumulCons Γ p r ->
8 CumulCons Γ q r
9 | RW : forall Γ p q r,

10 In Formula Γ (p → q) ->
11 CumulCons Γ r p ->
12 CumulCons Γ r q

46

13 | Cut : forall Γ p q r,
14 CumulCons Γ (p ∧ q) r ->
15 CumulCons Γ p q ->
16 CumulCons Γ p r
17 | CM : forall Γ p q r,
18 CumulCons Γ p q ->
19 CumulCons Γ p r ->
20 CumulCons Γ (p ∧ q) r.

Der Ref-Konstruktor ist durch universelle Quantifizierung über alle Formeln im-
plementiert. Dabei wird der Parameter p zweimal genutzt, um die Reflexivität aus-
zudrücken. Zu beachten ist, dass wir hier keine Vorbedingung formulieren, da die
Reflexivität immer gelten soll.

Für den LLE-Konstruktor nutzen wir drei Formeln (p, q, r) für die Äquivalenz
und Folgerung. Dabei sagt In Formula Γ (p ↔ q) aus, dass die Äquivalenz
ein Element der Wissensbasis sein muss und der Typ der Wissensbasis Formula
sein soll. Dies erfüllt die Bedingung der LLE-Regel, dass die Äquivalenz als Vor-
aussetzung bekannt sein muss, bzw. wir wissen, dass p und q äquivalent sind.
Als zweite Prämisse nutzen wir nach der LLE-Regel und der induktiven Struktur
den rekursiven Aufruf von CumulCons, um darzustellen, dass die neue Folgerung
CumulCons Γ q r von einer bereits bestehenden Folgerung Γ p r abhängt.

Die Definition des RW-Konstruktors hat eine ähnliche Struktur wie schon der LLE-
Konstruktor, nur mit einer Implikation statt der Äquivalenz. Wir verwenden In
Formula Γ (p → q) wieder für die Implikation aus der Wissensbasis. Danach
erfolgt ebenfalls der rekursive Aufruf von CumulCons Γ r p als weitere Prämisse
für die Folgerung CumulCons Γ r q.

Der Cut-Konstruktor definiert zwei rekursive Aufrufe von CumulCons als Prä-
missen. Dabei verwenden wir bei CumulCons Γ (p ∧ q) r die Konjunktion aus
der externen Library. Mit den beiden Prämissen und der daraus ableitbaren Folge-
rung beschreiben wir die Transitivität der Cut-Regel aus.

Letztlich definieren wir noch den CM-Konstruktor, welcher die Eigenschaften der
Cautious Monotonicity repräsentiert. Dabei führen wir wieder wie bei dem Cut-
Konstruktor zwei Prämissen ein, die zu der Folgerung CumulCons Γ (p ∧ q) r
führen. Auch dies entspricht wieder wie bei allen anderen Konstruktoren der ma-
thematischen Definition der Regeln aus Kapitel 2.2.1. Hierbei lässt sich gut erken-
nen, dass die Cut-Regel erlaubt, eine Konjunktion aus den Prämissen zu entfernen,
während Cautious Monotonicity es ermöglicht, eine Konjunktion in die Prämissen
einzuführen.

4.2.2 Definition kumulativer Konsequenzrelationen

Für die kumulative Konsequenzrelation führen wir ebenfalls eine intuitive Notation
zur besseren Lesbarkeit ein.

Notation 1. Die kumulative Konsequenzrelation

47

1 Notation "Γ : p |∼ q" := (CumulCons Γ p q) (at level 80).

Mit dieser Notation sagen wir aus, dass unter der Wissensbasis Γ, q normalerwei-
se aus p folgt. Der Parameter at level N bestimmt in Coq die Bindungsstärke
des Operators, um festzulegen, wie die Notation in Ausdrücken geparst wird, also
wie Coq Ausdrücke ohne Klammern interpretiert. Dabei stellen niedrigere Zahlen
eine stärkere Bindung dar. Wir wollen hier die kumulative Konsequenzrelation als
top-level Operator, welcher eine Beziehung zwischen einer Menge Γ und zwei For-
meln, p und q, darstellen. Die schwache Bindung (level 80) stellt dabei sicher,
dass andere Operatoren wie für die Implikation oder Äquivalenz innerhalb von p
und q zuerst geparst werden, ohne dass weitere Klammern nötig werden. Für die
Bindungsstärke orientieren wir uns an der Library von Guo und Yu [8].

4.2.3 Hilfssätze zu den Regeln

Wir stellen außerdem eine eigene Taktik, die mit Ltac formuliert ist, zur Verfügung.
Diese dient der Vereinfachung von der Beweisführung mit kumulativen Konse-
quenzrelationen.

1 Ltac solve_cumul :=
2 match goal with
3 | |- CumulCons _ _ _ => constructor; solve_cumul
4 | _ => try assumption
5 end.

Diese Taktik wird verwendet, um einen passenden Konstruktor von CumulCons ba-
sierend auf dem Beweisziel anzuwenden. Unterziele werden dabei rekursiv, durch
erneutes Anwenden der Taktik, gelöst und assumption wird verwendet, um ver-
bleibende Ziele mit passenden Hypothesen zu beweisen. Sollte es jedoch keine pas-
sende Hypothese geben, würde ein Fehler auftreten, welchen wir mit try abfangen.
Durch die Taktik solve_cumul können sich wiederholende Beweisschritte redu-
ziert werden, was ebenfalls die Lesbarkeit komplexerer Beweise erheblich verbes-
sert und können uns so auf die relevanten Aspekte des Beweises, statt auf technische
Details, fokussieren.

Kommen wir nun zu Anwendungsbeispielen für zwei der bereits definierten Re-
geln. Zunächst stellen wir ein einfaches Beispiel für die Anwendung der Reflexivi-
tätsregel vor.

Beispiel 11. Einfache Anwendung von solve_cumul für Reflexivity

1 Example simple_reflexivity :
2 forall Γ, Γ : (Var 0) |∼ (Var 0).
3 Proof.
4 intros.
5 solve_cumul.
6 Qed.

48

Wir nutzen hier solve_cumul, um direkt einen der Konstruktoren von CumulCons
anzuwenden. Der korrekt zu nutzende Konstruktor wäre hier der Konstruktor REF
und solve_cumul wählt dann diesen als passenden aus. Wenn wir den Beweis je-
doch manuell führen wollten, würden wir apply REF. aufrufen. Der Vorteil hier-
bei ist, dass wir erstmal nicht direkt wissen müssen, welcher der passend anzuwen-
dende Konstruktor ist.

Ein weiteres Beispiel zeigt die Anwendung der Regel für Cautious Monotonicity
(CM), die es erlaubt, eine Konjunktion in die Prämisse einzuführen.

Beispiel 12. Anwendung von solve_cumul für Cautious Monotonicity

1 Example simple_CM :
2 forall Γ p q r,
3 Γ : p |∼ q ->
4 Γ : p |∼ r ->
5 Γ : (p ∧ q) |∼ r.
6 Proof.
7 intros.
8 solve_cumul.
9 Qed.

In diesem Beispiel verwenden wir solve_cumul, um den CM-Konstruktor des in-
duktiven Typen CumulCons anzuwenden. Die Taktik erkennt, dass die Vorausset-
zungen Γ : p |∼ q und Γ : p |∼ r gegeben sind, und wählt CM, um die Fol-
gerung Γ : (p ∧ q) |∼ r zu beweisen. Ein manueller Beweis würde apply
CM. verwenden. Dieses Beispiel illustriert, wie solve_cumul die Beweisführung
vereinfacht, was besonders in komplexeren Beweisen, wie der Korrektheit von CM
in unserer Formalisierung, nützlich ist [11].

Ein komplexeres Beispiel kombiniert die Regeln für Cautious Monotonicity (CM)
und Right Weakening (RW), um die Interaktion von Wissensbasis und nichtmonoto-
nem Schließen zu zeigen.

Beispiel 13. Kombination von CM und RW

1 Example CM_RW_example :
2 forall Γ p q r s,
3 In Formula Γ (r → s) ->
4 Γ : p |∼ q ->
5 Γ : p |∼ r ->
6 Γ : (p ∧ q) |∼ s.
7 Proof.
8 intros Γ p q r s H_impl H_p_q H_p_r.
9 apply CM.

10 - exact H_p_q.
11 - apply RW with r.

49

12 + exact H_impl.
13 + exact H_p_r.
14 Qed.

In diesem Beispiel zeigen wir, wie RW und CM zusammenwirken, um eine komplexe
Folgerung abzuleiten. Die Wissensbasis Γ enthält die Implikation r → s, und wir
nehmen an, dass Γ : p |∼ q und Γ : p |∼ r gelten. Ziel ist es, Γ : (p ∧ q)
|∼ s zu beweisen. Wir wenden CM an, um die Prämissen Γ : p |∼ q und Γ :
p |∼ s zu nutzen. Für Γ : p |∼ s verwenden wir RW, da r → s in Γ liegt und
Γ : p |∼ r gegeben ist. Alternativ könnte solve_cumul den CM-Konstruktor
anwenden, aber RW erfordert explizite Angabe der Implikation. Ein praktisches Bei-
spiel verdeutlicht dies: Sei p = „Es ist ein Vogel“, q = „Es hat Federn“, r = „Es hat
Flügel“, s = „Es kann sich fortbewegen“ und r → s = „Alles mit Flügeln kann sich
fortbewegen“ in Γ. Dann folgt, dass wenn Vögel üblicherweise Federn und Flügel
haben, kann ein befiederter Vogel sich üblicherweise fortbewegen. Dieses Beispiel
zeigt die Stärke der KLM-Regeln, da RW Wissen mit nichtmonotonem Schließen
kombiniert und CM die Prämisse durch eine Konjunktion verstärkt.

4.3 Modellierung kumulativer Modelle

Für die Formalisierung des kumulativen Modells haben wir uns für einen Record-
Typ entschieden. Dies gibt uns Vorteile gegenüber separaten Definitionen oder in-
duktiven Typen. Die zusammengehörigen Komponenten des Modells sind in einem
Record als benannte Felder gebündelt, auf welche durch automatische Projektion
zugegriffen werden kann.

Definition 9. Kumulative Modelle

1 Record CumulModel : Type := {
2 States : Type;
3 Labeling : States -> State;
4 PreferenceRel : States -> States -> Prop;
5 }.

Für die Zustände States haben wir uns entschieden, diese als abstrakten Type
zu definieren. Dies gibt uns später die Flexibilität für verschiedene Modellierungs-
ansätze und bietet uns die Möglichkeit konkrete Instanzen nach Bedarf zu erstellen.

Die Funktion Labeling stellt eine direkte Abbildung der Labeling-Funktion aus
der KLM-Definition dar. Dabei ist State eine Funktion, die jeder Formel einen
Wahrheitswert zuordnet.

Definition 10. Zustand als Wahrheitsbelegung für Formeln

1 Definition State := Formula -> bool

50

Damit stellt Labeling eine funktionale Implementierung dar, da sie jedem Zustand
direkt eine Interpretationsfunktion gibt. Die implementierte Labeling-Funktion ist
zudem ebenfalls auf propositionale Logik angepasst und vereinfacht, da jede Welt
genau einer Wahrheitswertzuweisung entspricht und für jede Menge von Welten
eine kanonische Welt gewählt werden kann, welche dieselben Formeln erfüllt. Das
bedeutet, wir reduzieren eine Menge von Welten zu einer repräsentativen Welt. Für
das Repräsentationstheorem ist dies ausreichend, da nur die Information benötigt
wird, welche Formeln in welchem Zustand gelten. Damit reduzieren wir auch die
Komplexität der Formalisierung, ohne den Verlust wichtiger Eigenschaften.

Die Präferenzrelation PreferenceRel wird als binäre Relation vom Typ Prop
implementiert. Dabei gibt es in dem Record-Typen erst einmal keine Einschränkung
in der Definition, denn dieser enthält eben nur diesen Typen. Die Eigenschaften
wie das Erfüllen der Smoothness-Bedingung formulieren wir später als separate
Axiome. Diese Eigenschaften werden dann nicht bei dem Record-Typen gefordert,
sondern erst bei dessen Verwendung. Damit erhalten wir eine Trennung zwischen
Strukturen und Eigenschaften und bleiben modular im Aufbau des Beweises. Wür-
den wir die Eigenschaften in dem Record-Typen direkt implementieren, müssten
wir bei jeder Modellkonstruktion direkt alle diese Eigenschaften nachweisen, was
die Beweise sehr viel komplexer machen würde.

Die Grundlage für die Auswertung von Formeln haben wir mit der Definition
von entails geschaffen. Dabei handelt es sich um eine Fixpoint-Definition für die
rekursive Auswertung der Formelstruktur.

Definition 11. Entailment in Coq

1 Fixpoint entails (state : State) (formula : Formula) :
2 Prop :=
3 match formula with
4 | Var n => state formula = true
5 | Not p => ∼(entails state p)
6 | Contain p1 p2 => entails state p1 -> entails state p2
7 end.

Im Basisfall für eine Variable Var n, wird der Wahrheitswert direkt aus dem Zu-
stand ausgelesen und damit geprüft, ob der Zustand der Variablen den Wert true
zuweist. Hier benötigen wir keine Rekursion, da die atomaren Variablen die Ba-
sisbausteine darstellen. In dem rekursiven Fall für die Negation Not p wird erst
p rekursiv ausgewertet und dann wird das logische Komplement daraus gebildet.
Den letzten rekursiven Fall geben wir für die Implikation an. Dabei wird eine Im-
plikation durch Rekursion auf beiden Teilformeln ausgewertet. Durch die Fixpoint-
Definition von entails erhalten wir ein direktes Ergebnis, also einen Wahrheits-
wert, statt den Beweis einer Gültigkeit, was uns die direkte Verwendung des Ergeb-
nisses in weiteren Berechnungen ermöglicht und später in der Definition minimaler
Elemente von Vorteil sein wird, da wir dann ermitteln müssen, welche spezifische

51

Zustände eine Formel erfüllen. Mit entails stellen wir die Verbindung zwischen
der syntaktischen und der semantischen Ebene her und ermöglichen die Identifika-
tion von minimalen Zustände für jede Formel, was dann wiederum die Grundlage
für die semantische Interpretation der Konsequenzrelation bildet.

Für die Formalisierung der minimalen Elemente führen wir zusätzlich die Defi-
nition von MinimalElements ein.

Definition 12. Minimale Elemente

1 Definition MinimalElements (model : CumulModel)
2 (formula : Formula) : Ensemble (States model) :=
3 fun state =>
4 entails (Labeling model state) formula /\
5 ∼ exists state’, entails (Labeling model state’)
6 formula /\ PreferenceRel model state’ state.

Die Funktion MinimalElements wird als Ensemble bildende Funktion implemen-
tiert. Die Parameter sind dabei state, das kumulative Modell, und formula, die
zu überprüfende Formel. Als Rückgabe erhalten wir dann ein Ensemble States
model, also eine Menge von Zuständen. Wir unterscheiden zwei Bedingungen in
der Konjunktion. Wir prüfen zuallererst, dass die Formel in dem Zustand gilt und
danach, dass kein präferierter Zustand existiert, in welchem die ebenfalls Formel
gilt. Das bedeutet wir werten die Formel mit entails zunächst im Zustand state
aus, und dann prüfen wir, durch die Negation der Existenzaussage, dass es keinen
Zustand state’ gibt, der die Formel erfüllt und präferierter als state ist. Dies
entspricht direkt der Definition 3 aus Kapitel 2.3. Dabei ist zu beachten, dass â, die
Menge aller Zustände state, mit dem ersten Konjunkt implizit angegeben ist.

4.3.1 Definition der modellbasierten Konsequenzrelation

Wir verwenden MinimalElements für SemanticEntails, wobei geprüft wird,
ob eine Konklusion conclusion in allen minimalen Zuständen aus der Prämisse
premise gilt.
Formal gilt also:

∀state ∈ MinimalElements(model,premise) : entails(state, conclusion)

Durch SemanticEntails wollen wir auf entails aufbauen und es um das Kon-
zept der minimalen Zustände. Wir definieren eine Folgerungsrelation, die aussagt,
dass eine Formel aus einer anderen Formel in einem Modell folgt. Damit verbin-
den wir die syntaktische Konsequenzrelation mit den semantischen Modellen und
erfassen die Intuition das etwas „typischerweise“ gilt, indem wir uns dabei auf die
minimalen Zustände fokussieren. Dies bildet direkt die Definition der nichtmono-
tonen Folgerung von Kraus, Lehmann und Magidor ab.

Definition 13. Semantisches Entailment

52

1 Definition SemanticEntails (model : CumulModel)
2 (premise conclusion : Formula) : Prop :=
3 forall state, In (States model)
4 (MinimalElements model premise) state ->
5 entails (Labeling model state) conclusion.

Mit forall state sichern wir ab, dass die Folgerungsbeziehung in allen mini-
malen Zustände gelten muss und mit der Implikation stellen wir sicher, dass nur
die minimalen Zustände berücksichtigt werden, um die Idee, dass wir uns auf die
typischsten Situationen konzentrieren, zu formalisieren. Wir sagen demnach aus,
dass wenn ein Zustand minimal bezüglich premise ist, dann muss conclusion
in diesem Zustand gelten.

Wir definieren noch eine Notation, um die Ähnlichkeit zur mathematischen De-
finition 6 der Konsequenzrelation in kumulativen Modellen aus Kapitel 2.3.2 von
Kraus, Lehmann und Magidor zu verdeutlichen.

Notation 2. Coq SemanticEntails Notation

1 Notation "model : premise |∼w conclusion" :=
2 (SemanticEntails model premise conclusion) (at level 80).

Dies ermöglicht ebenfalls eine intuitive Formulierung von Beweiszielen im Reprä-
sentationstheorem, um für die Soundness zu zeigen, dass modellbasierte Relatio-
nen die System C Regeln erfüllen und umgekehrt, für die Completeness, dass für
jede syntaktische Relation ein Modell existiert und kann ebenfalls für unsere Erwei-
terung zur Konsequenzrelation in kumulativen Modellen, in welcher wir mehrere
Modelle behandeln, genutzt werden.

Definition 14. Erweiterung der Konsequenzrelation in kumulativen Modellen

1 Definition SatisfiesKnowledgeBase (model : CumulModel)
2 (Γ : Ensemble Formula) : Prop :=
3 forall formula, In Formula Γ formula ->
4 forall state,
5 entails (Labeling model state) formula.

7 Definition CumulativeModelEntails (Γ : Ensemble Formula)
8 (premise conclusion : Formula) : Prop :=
9 forall model, SatisfiesKnowledgeBase model Γ ->
10 model : premise |~w conclusion.

12 Notation "Γ |= premise |∼w conclusion" :=
13 (CumulativeModelEntails Γ premise conclusion) (at level 80).

Die Definition von CumulativeModelEntails baut dabei auf der Definition von
SemanticEntails auf, um die semantische Konsequenzrelation von Kraus, Leh-
mann und Magidor, die wir in Kapitel 2.3 vorgestellt hatten, für eine Wissensbasis

53

Γ zu formalisieren. Während SemanticEntails die Relation für ein einzelnes ku-
mulatives Modell beschreibt, indem wir prüfen, ob die Konklusion in allen minima-
len Zuständen der Prämisse gilt, erweitern wir mit CumulativeModelEntails
diese Idee auf eine Menge von Formeln, die genau der Wissensbasis Γ entspricht.
Formal definieren wir CumulativeModelEntails so, dass die Konsequenzrela-
tion in allen kumulativen Modellen gilt, die die Wissensbasis Γ erfüllen. Das be-
deutet, dass jedes Modell, welches alle Formeln in Γ respektiert, was wir durch
SatisfiesKnowledgeBase zeigen, die Bedingung von SemanticEntails für
die Prämisse und Konklusion erfüllen muss.

Durch diese Verallgemeinerung erfassen wie die Intuition nichtmonotoner Logik,
dass Konsequenzen nicht nur in einem spezifischen Modell, sondern in allen mög-
lichen Modellen gelten müssen, die die Wissensbasis konsistent repräsentieren und
spiegelt damit die semantische Definition wider, bei der eine Konsequenzrelation
genau dann gilt, wenn sie in allen kumulativen Modellen, welche die gegebenen
Annahmen erfüllen, ebenfalls gültig ist.

4.4 Die Smoothness Bedingung formalisiert in Coq

Um die Smoothness Bedingung aus Kapitel 2.3.1 in Coq zu formalisiern, haben wir
uns dazu entschieden, diese als Axiom, statt eines bewiesenen Theorems einzufüh-
ren. Wir berufen uns hierbei erneut auf die Aussage von Lehmann und Magidor
über die Endlichkeit einer Logik und den damit verbundenen Zusammenhang zur
Smoothness Bedingung. Dies ist in unserem Fall eine Vereinfachung gegenüber ei-
ner konstruktiven Definition für die propositionale Logik, auf welcher Formalisie-
rungsansatz basiert und bietet uns praktische Vorteile für die Beweisführung. Das
Axiom sagt aus, dass es für jeden Zustand, in dem eine Formel gilt, einen minimalen
Zustand gibt. Dieser minimale Zustand ist entweder ein präferierter Zustand oder
identisch mit dem ursprünglichen Zustand, aber es gibt keinen noch präferierteren
Zustand, in dem die Formel ebenfalls gilt.

Axiom 1. Die Smoothness Bedingung

1 Axiom smoothness : forall model formula state,
2 entails (Labeling model state) formula ->
3 exists minimal_state,
4 entails (Labeling model minimal_state) formula /\
5 (PreferenceRel model minimal_state state \/
6 minimal_state = state) /\
7 In (States model)
8 (MinimalElements model formula) minimal_state.

Als Prämisse setzten wir mit entails voraus, dass die Formel in dem momentanen
Zustand gilt. Dann deklarieren wir die Existenz eines minimalen Zustands über
den Existenzquantor. Dabei gibt es keine explizite Konstruktion, wie dieser Zustand
gefunden werden kann.

54

Dann konstruieren wir die Eigenschaften des minimalen Zustands. Wir sichern
über entails erneut ab, dass die Formel auch in dem minimalen Zustand gilt,
und die nächste Eigenschaft der Disjunktion von PreferenceRel und minimal_
state = state gibt an, dass der minimale Zustand präferiert oder identisch mit
dem Ausgangszustand ist.

Schließlich sagt das Axiom aus, dass dieser minimale Zustand ein Element der
Menge MinimalElements für die gegebene Formel ist. Gemäß unserer Definition
von MinimalElements bedeutet dies, dass es keinen anderen noch präferierteren
Zustand, in dem die Formel gilt, gibt. Damit stellen wir die eigentliche Minimalität
dar.

Die axiomatische Formulierung entspricht ebenfalls wieder direkt der mathema-
tischen Definition und vermeidet eine komplexere konstruktive Definition im pro-
positionalen Fall, da es sich, wie wir geklärt hatten, bei der Smoothness in endli-
chen Sprachen als eine „technische Bedingung“ [12] handelt. Dabei fokussieren wir
uns für die Vereinfachung der Beweisführung auf die wesentlichen Eigenschaften
der Smoothness Bedingung. Dabei werden ebenfalls die Eigenschaften direkt aus
MinimalElements anwendbar gemacht und wir erhalten eine unmittelbare Ablei-
tung, dass der gefundene Zustand wirklich minimal ist. Um auf die Eigenschaften
des Axioms zugreifen zu können und diese für einen Beweis verfügbar zu machen
nutzen wir die Taktik destruct.

1 destruct (smoothness model formula state H)
2 as [minimal_state [H1 [H2 H3]]]

Die Hypothese H1 würde dann aussagen, dass die Formel formula im minimalen
Zustand gilt. H2 gibt die Beziehung zum ursprünglichen Zustand an, ob dieser prä-
feriert oder identisch ist. Letztlich stellt H3 die Minimalitätsbedingung dar, also dass
der Zustand ein Element von MinimalElements ist.

5 Coq-Beweis des Repräsentationstheorems

Der Beweis des KLM-Theorems ist in zwei Hauptmodule, KLM_Soundness_M und
KLM_Completeness_M, aufgeteilt. Dabei wird jeweils der Beweis schrittweise zer-
legt und die einzelnen Beweisschritte in separaten Lemmas bewiesen.

Wie bereits bei Abschnitt 2.4 in Theorem 1 dargestellt, zeigt das Repräsentations-
theorem die bidirektionale Äquivalenz zwischen syntaktischen und semantischen
Charakterisierungen kumulativer Konsequenzrelationen und erfordert daher den
separaten Nachweis beider Richtungen.

Der Korrektheitsbeweis zeigt, dass jede syntaktisch durch System C ableitbare
Konsequenzrelation auch semantisch in kumulativen Modellen gültig ist. Für den
Beweis nutzen wir strukturelle Induktion über den induktiven Typ CumulCons 8.
Damit weisen wir für jede der fünf Regeln des System C nach, dass diese in einem
kumulativen Modell gilt. Für jede Regel formalisieren wir ein separates Lemma,
wodurch wir eine modulare Beweisführung ermöglichen.

55

Der Vollständigkeitsbeweis weist dann die umgekehrte Richtung nach. Jede se-
mantische Konsequenzrelation, die in kumulativen Modellen gilt, ist auch syntak-
tisch durch System C ableitbar. Hierbei nutzen wir die Konstruktion eines kanoni-
schen Modells aus maximalen konsistenten Mengen und beweisen die Vollständig-
keit durch einen Widerspruch.

Mit dieser Struktur bilden wir die mathematische Beweisidee von Kraus, Leh-
mann und Magidor ab und orienteiren uns für die Beweise unserer Lemmata an
den Lemmata 3.15, für den Korrektheitsbeweis, und 3.17 - 3.23 für den Vollständig-
keitsbeweis [11].

5.1 Korrektheitsbeweis (Soundness)

Der Soundness-Beweis zeigt, dass alle durch die syntaktischen Regeln des System C
ableitbaren Konsequenzrelationen auch semantisch in kumulativen Modellen gültig
sind. Die entwickelte Beweisstruktur folgt dabei dem Theorem soundness_klm,
welches durch strukturelle Induktion über CumulCons alle fünf Regeln des System
C abdeckt. Wir formalisieren für jede Regel ein eigenes Lemma, das dann die ent-
sprechende semantische Eigenschaft nachweist. Die Reflexivitätsregel ist unkompli-
ziert und direkt zu beweisen, während Right Weakening und Left Logical Equiva-
lence zusätzliche Transformationsschritte zwischen syntaktischer und semantischer
Ebene benötigen. Cut und Cautious Monotonicity nutzen die Induktionshypothe-
sen zwar direkt, sind aber in ihrer semantischen Argumentation weitaus komplexer,
wobei Cautious Monotonicity zusätzlich die Smoothness Bedingung benötigt.

5.1.1 Reflexivity Regel

Der Beweis für die Reflexivität ist in Lemma soundness_reflexivity festgehal-
ten und formalisiert, dass jede Formel in den minimalen Zuständen gilt, in welchen
diese selber auch gilt. Konkret wollen wir also zeigen, dass model : formula
|∼w formula gilt.

1 Lemma soundness_reflexivity :
2 forall (model : CumulModel) (formula : Formula),
3 model : formula |∼w formula.
4 Proof.
5 unfold SemanticEntails, MinimalElements.
6 intros model formula state [H_satisfies _].
7 exact H_satisfies.
8 Qed.

Wir nutzen hier die Eigenschaft, dass die minimalen Zustände von formula di-
rekt durch In (States model) (MinimalElements model formula) cha-
rakterisiert werden. Dadurch erhalten wir eine direkte, formale Definition, wann
ein Zustand minimal ist, ohne vorher die minimalen Zustände konstruieren zu müs-
sen. Da wir hier mit der Konsequenzrelation |∼w aus dem Modell arbeiten, müssen

56

wir zuerst diese Definition entfalten, um überhaupt damit in dem Beweis arbei-
ten zu können und die tatsächliche Definition aufzudecken. Dies geschieht durch
den Taktik-Aufruf unfold SemanticEntails. Damit erhalten wir die qualifizier-
te Struktur mit dem Universalquantor von SemanticEntails und die Implika-
tionsstruktur der Definition. Dieser Schritt macht uns dann klar, dass wir für alle
minimalen Zustände zeigen müssen, dass formula gilt, und ermöglicht uns die
Minimalitätsbedingung direkt als Prämisse über MinimalElements einzuführen,
welche wir dann auch direkt anwenden können. Durch das Auflösen der Definition
mit unfold MinimalElements, sehen wir, dass die erste Komponente bereits er-
fordert, dass formula in dem Zustand gilt, da das erste Konjunkt der Konjunktion
in MinimalElements uns genau das gibt, was wir beweisen wollen, nämlich gera-
de entails (Labeling model state) formula. Damit haben wir nach dem
Auflösen beider Definitionen bereits das als Annahme, was wir als Ziel beweisen
wollen, und können den Beweis abschließen.

5.1.2 Left Logical Equivalence Regel

Für den Beweis von Left Logical Equivalence in Lemma soundness_LLE, gehen
wir zunächst ähnlich vor wie bei dem Beweis zuvor. Wir wollen zeigen, dass wenn
model : p |∼w r und p und q äquivalent sind, dann gilt model : q |∼w r,
also dass die minimalen Zustände für äquivalente Formeln vergleichbare Eigen-
schaften haben. Die Strategie hier ist also, dass wir für jeden minimalen Zustand
von q nachweisen, dass er auch minimal für p sein müsste und dass ein präferierter
Zustand für q, nach der Annahme der Äquivalenz, auch ein präferierter Zustand
für p sein müsste.

1 Lemma soundness_LLE :
2 forall (model : CumulModel) (p q r : Formula),
3 (forall state, entails (Labeling model state) p <->
4 entails (Labeling model state) q) ->
5 model : p |∼w r ->
6 model : q |∼w r.
7 Proof.
8 unfold SemanticEntails, MinimalElements.
9 intros model p q r H_equiv H_entails state [H_q H_minimal].

10 assert (H_p : entails (Labeling model state) p).
11 apply H_equiv; assumption.
12 apply H_entails.
13 split.
14 - assumption.
15 - intro H_exists.
16 destruct H_exists as [state’ [H_p’ H_pref]].
17 exfalso.
18 apply H_minimal.

57

19 exists state’.
20 split.
21 + apply H_equiv; assumption.
22 + assumption.
23 Qed.

Wie zuvor lösen wir zunächst wieder die Definitionen von SemanticEntails
und MinimalElements auf, um wieder mit diesen grundlegenden Konzepten ar-
beiten zu können. Wir führen dann alle benötigten Variablen und Hypothesen ein.
Dabei stellt H_equiv die Äquivalenz zwischen p und q in allen Zuständen dar,
H_entails ist die Annahme, dass r aus p folgt und [H_q H_minimal] zerlegt
die Annahme, dass state ein minimales Element für q ist. Genauer gibt H_q an,
dass q in state erfüllt ist und H_minimal sagt aus, dass es keinen präferierteren
Zustand gibt, der q ebenfalls erfüllt. Wir behaupten zunächst, dass p in state gilt
und beweisen diese Behauptung durch die Anwendung der Äquivalenz H_equiv.
Damit zeigen wir, dass ein minimaler Zustand q auch als ein Zustand p betrachtet
werden kann. Als Nächstes wollen wir zeigen, dass r aus p folgt und nutzen da-
für die Hypothese H_entails, was wiederum den Nachweis erfordert, dass der
Zustand state ein minimales Element für p ist. Dafür teilen wir das Ziel an dieser
Stelle in zwei Unterziele auf. Wir zeigen dann zuerst über H_p, dass auch p in state
gilt und müssen dann für das zweite Teilziel noch die Minimalitätsbedingung zei-
gen. Diesen Beweis führen wir durch einen Widerspruch und nehmen zuerst an,
dass ein präferierter Zustand für p existiert. Danach zerlegen wir diese Annahme
in einen neuen Zustand state’, zusammen mit den Hypothesen H_p’, p gilt auch
in state’, und H_pref, also state’ ist präferierter gegenüber state. Wir haben
in H_minimal bereits angenommen, dass state minimal für q ist, also dass kein
präferierter Zustand existiert, in dem q gilt. Für state’ haben wir allerdings an-
genommen, dass dieser Zustand präferierter gegenüber state ist und p darin gilt.
Jetzt können wir wiederum durch die Äquivalenz H_equiv schließen, dass auch q
in state’ gilt. Somit haben wir nun einen Zustand state’, der präferierter ist und
in dem q gilt, was im direkten Widerspruch zu H_minimal steht. Durch diesen Wi-
derspruch zeigen wir demnach, dass die Annahme eines präferierten Zustands, in
dem p ebenfalls gilt, falsch sein muss. Somit ist state auch minimal für p weshalb
durch model : p |∼w r auch r in state gilt.

5.1.3 Right Weakening Regel

In Lemma soundness_RW für Right Weakening formalisieren wir, dass stärkere
Schlussfolgerungen auch schwächere implizieren. Um den Beweis zu führen, nut-
zen wir die Implikationseigenschaft H_imp, um direkt ableiten zu können, dass
die Konklusion auch in minimalen Zuständen gilt. Unser Beweisziel ist daher zu
zeigen, dass wenn model : r |∼w p und p -> q, also entails state p ->
entails state q, gilt, dann gilt auch model : r |∼w q und damit, dass im
minimalen Zustand für r eine Implikation erhalten bleibt.

58

1 Lemma soundness_RW :
2 forall (model : CumulModel) (p q r : Formula),
3 (forall state, entails (Labeling model state) p ->
4 entails (Labeling model state) q) ->
5 model : r |∼w p ->
6 model : r |∼w q.
7 Proof.
8 unfold SemanticEntails, MinimalElements.
9 intros model p q r H_imp H_entails state H_minimal.
10 apply H_imp.
11 apply H_entails; assumption.
12 Qed.

Wie auch bereits bei den vorherigen Beweisen müssen wir zunächst die Definiti-
on von SemanticEntails und damit auch MinimalElements auflösen. Danach
führen wir alle benötigten Variablen und Hypothesen ein. Die Variable model stellt
unser kumulatives Modell dar, und die Variablen p, q und r unsere Formeln. Die
Hypothese H_imp sagt aus, dass p wiederum q impliziert, also

1 forall state, entails (Labeling model state) p
2 -> entails (Labeling model state) q.

H_entails nutzen wir wieder als Hypothese, dass p üblicherweise aus r folgt, ge-
nauer model : r |∼w p. Für einen beliebigen Zustand nutzen wir state und
führen schlussendlich noch die Hypothese H_minimal ein, dass state minimal
für r ist. Unser Beweisziel ist zunächst entails (Labeling model state) q.
Wir haben keinen direkten Weg, um zu zeigen, dass q in state gilt, aber wissen,
dass wenn p in state gilt, dann gilt auch q in state, was der Hypothese H_imp
entspricht. Außerdem wissen wir, dass p wiederum in allen minimalen Zustän-
den, wo r gilt, ebenfalls gilt und state ein minimaler Zustand ist, indem schon
r gilt. Also wenden wir zunächst die Hypothese H_imp an, um unser Beweisziel
zu entails (Labeling model state) p zu ändern. Jetzt müssen wir zeigen,
dass p in state gilt, was wir durch die Anwendung der Hypothese H_entails
auf H_minimal erreichen. Die Hypothese H_entails bewirkt, dass das Beweis-
ziel durch die Annahme ersetzt wird, dass state minimal für r ist. Da wir aber
bereits H_minimal haben, das genau dieser Bedingung entspricht, können wir mit
assumption das Beweisziel direkt lösen und den Beweis abschließen.

5.1.4 Cut Regel

Der Beweis für Cut ist in Lemma soundness_Cut formalisiert. Die Herausforde-
rung hierbei liegt darin zu zeigen, dass p |∼w r gilt, wenn sowohl p |∼w q als
auch p ∧ q |∼w r gelten. Wir wollen zunächst zeigen, dass in den minimalen
Zuständen, in welchen p gilt, auch q gilt, um dann nachzuweisen, dass in diesen
Zuständen dann auch r gelten muss. Hierfür verwenden wir unser Hilfslemma
entails_conjunction, um die Konjunktion zu handhaben.

59

1 Lemma soundness_Cut :
2 forall (model : CumulModel) (p q r : Formula),
3 model : (p ∧ q) |∼w r ->
4 model : p |∼w q ->
5 model : p |∼w r.
6 Proof.
7 unfold SemanticEntails, MinimalElements.
8 intros model p q r H_conj_entails H_p_entails_q
9 state [H_p H_minimal].

10 assert (H_q : entails (Labeling model state) q).
11 apply H_p_entails_q; split; [exact H_p | exact H_minimal].
12 apply H_conj_entails.
13 split.
14 - rewrite entails_conjunction.
15 split; assumption.
16 - intro H_exists.
17 destruct H_exists as [state’ [H_conj’ H_pref]].
18 rewrite entails_conjunction in H_conj’.
19 destruct H_conj’ as [H_p’ _].
20 exfalso.
21 apply H_minimal.
22 exists state’.
23 split; assumption.
24 Qed.

Erneut wie zuvor lösen wir die Definitionen von SemanticEntails und Minimal
Elements auf und führen danach die Variablen und Hypothesen ein. Wir haben
wieder model für unser Modell, p, q und r für unsere Formeln und state für
den Zustand. Die Hypothese H_conj_entails ist die Annahme, dass r aus p ∧ q
folgt und H_p_entails_q nimmt an, dass q aus p folgt. Und [H_p H_minimal]
zerlegt die Annahme, dass state minimal für p ist. Wir behaupten vorerst, dass q
in state gilt und beweisen diese Behauptung, durch das Anwenden der Hypothese
H_p_entails_q, dass q aus p folgt. Danach wenden wir die Hypothesen H_p und
H_minimal an, um zu zeigen, dass state minimal für p ist. Wir zeigen also, dass
in minimalen Zuständen, in welchen p gilt, auch q gilt. Zu diesem Beweisschritt
können wir nun die Konjunktionsannahme H_conj_entails anwenden, und ge-
ben damit an, dass r aus (p ∧ q) folgt. Dies wiederum erfordert dann aber auch
den Nachweis, dass state minimal für (p ∧ q) ist. Da wir nach dem Anwenden
der Hypothese eine Propositions-Konjunktion (/\) erhalten, können wir die Taktik
split anwenden, um den Beweis in zwei Unterziele an dieser Stelle aufzuspalten.
Somit erhalten wir, das erste Ziel, wo wir zeigen müssen, dass (p ∧ q) in state
gilt und als zweites Ziel, dass keine präferierten Zustände existieren in denen (p ∧
q) ebenfalls gilt. Um die Konjunktion von unseren Formeln p und q zu lösen, nut-
zen wir das Lemma entails_conjunktion mit der Taktik rewrite. Das Lemma

60

sagt aus, dass eine Konjunktion genau dann gilt, wenn beide Konjunkte gelten. Wir
übersetzten hier die Bedeutung von entials (Labeling model state)(p ∧
q) zu:

1 entails (Labeling model state) p /\
2 entails (Labeling model state) q

Ein weiteres split teilt dann auch diese Konjunktion in zwei weitere Ziele auf.
Zuerst, dass die Formel p im Zustand state gilt, und als nächstes, dass ebenfalls
die Formel q in Zustand state gilt. Da wir genau diese Ziele bereits als Hypothesen
H_p und H_q eingeführt haben, können diese direkt ausgewählt und die Ziele damit
gelöst werden.

Da nun dieses erste Konjunkt aus der ursprünglichen Konjunktion vollständig
gelöst wurde, fokussieren wir nun das zweite Ziel, indem wir noch die Minimalität
für (p ∧ q) nachweisen müssen, also dass es keinen präferierten Zustand state’
gibt, in dem (p ∧ q) gilt. Wir zeigen dies wieder mit einem Gegenbeispiel und
nehmen an, dass eben solch ein Zustand state’ existiert. Aus der Tatsache, dass
(p ∧ q) in state’ gilt, folgt dann, dass auch p in state’ gilt. Dies steht aber
im Widerspruch zur Annahme, dass state bereits minimal für p ist. Durch diesen
Widerspruch haben wir folglich gezeigt, dass state auch minimal für (p ∧ q)
sein muss und state erfüllt damit alle Bedingungen, um ein minimales Element
für (p ∧ q) zu sein. Da die Hypothese H_conj_entails aussagt, dass r in allen
minimalen Zuständen, in denen (p ∧ q) gilt, auch gilt, folgt unmittelbar, dass r
auch in state gelten muss. Damit haben wir eine Transitivitätseigenschaft der ku-
mulativen Konsequenzrelation gezeigt. Wenn p zu q führt und (p ∧ q) zu r, dann
führt auch p zu r, da minimale Zustände, in denen p gilt, auch minimal für (p ∧
q) sind.

5.1.5 Cautious Monotonicity Regel

Lemma soundness_CM beweist die eingeschränkte Form der Monotonie. Die Cau-
tious Monotonicity Regel ist die komplexeste der fünf Regeln und erfordert das An-
wenden der Smoothness Bedingung. Wir zeigen, dass wenn in minimalen Zustän-
den, in denen p gilt, sowohl q als auch r gelten, dann gilt in minimalen Zuständen,
in denen (p ∧ q) gilt, auch r. Demnach lautet unser Beweisziel:

Wenn model : p |∼w q und model : p |∼w r

dann model : (p ∧ q) |∼w r

Wir beweisen dafür, dass r in allen minimalen Zuständen, wo auch (p ∧ q) gilt,
ebenfalls gilt.

1 Lemma soundness_CM :
2 forall (model : CumulModel) (p q r : Formula),
3 model : p |∼w q ->
4 model : p |∼w r ->

61

5 model : (p ∧ q) |∼w r.
6 Proof.
7 unfold SemanticEntails, MinimalElements.
8 intros model p q r H_p_q H_p_r state [H_conj H_minimal].

10 rewrite entails_conjunction in H_conj.
11 destruct H_conj as [H_p H_q].

13 assert (H_p_in_state : entails (Labeling model state) p).
14 { exact H_p. }

16 destruct (smoothness model p state H_p) as
17 [min_state [H_min_p [H_pref_or_eq H_min_element]]].

19 unfold MinimalElements in H_min_element.
20 destruct H_min_element as [H_min_p_satisfies H_min_minimal].

22 assert (H_min_q : entails (Labeling model min_state) q).
23 apply H_p_q; split; [assumption | exact H_min_minimal].

25 assert (H_min_conj : entails (Labeling model min_state)
26 (p ∧ q)).
27 apply entails_conjunction; split; assumption.

29 destruct H_pref_or_eq as [H_pref | H_eq].

31 - (* Fall 1: min_state < state *)
32 exfalso.
33 apply H_minimal.
34 exists min_state.
35 split; [assumption | assumption].

37 - (* Fall 2: min_state = state *)
38 subst min_state.
39 apply H_p_r.
40 split; [assumption | exact H_min_minimal].
41 Qed.

Wie auch schon bei den vorherigen Regeln beginnen wir mit dem Auflösen der Defi-
nitionen von SemanticEntails und MinimalElements. Danach führen wir die
Variablen model, p, q, r und state ein und benennen unsere Hypothesen. Dabei
steht H_p_q für q folgt üblicherweise aus p und H_p_r für r folgt üblicherwei-
se aus p. Um auszudrücken, dass in state die Konjunktion (p ∧ q) gilt, nut-
zen wir H_conj und für die Minimalität von state zu (p ∧ q) die Hypothese

62

H_minimal.
Wir wollen wieder zuerst die einzelnen Konjunkte aus der Konjunktion extra-

hieren. Dafür greifen wir erneut auf das Lemma entails_conjunction und die
Taktik rewrite zurück. Danach zerlegen wir die Konjunktion in zwei separate Hy-
pothesen, wobei H_p aussagt, dass p in state gilt und H_q, dass q in state gilt.
Dies ermöglicht es uns später zu zeigen, dass state in einem bestimmten Verhält-
nis zu minimalen Zuständen steht, in denen p gilt.

Da state die Formel p erfüllt, können wir nun die Smoothness-Bedingung nut-
zen, da diese garantiert, dass für jeden Zustand, in dem p gilt, ein minimaler Zu-
stand existiert, welcher präferiert oder mit diesem Zustand identisch ist. Dadurch
erhalten wir min_state, den minimalen Zustand, wo p gilt, und H_min_p, die An-
nahme, dass p in min_state gilt. Außerdem sagen wir in H_pref_or_eq aus, dass
min_state präferiert oder identisch zu state ist und geben mit H_min_element
an, dass min_state minimal für p ist.

Folglich können wir die Minimalitätsbedingung für H_min_minimal aus der
Annahme H_min_element ableiten, denn die Annahme H_min_element besagt,
dass es keinen Zustand gibt, welcher präferierter gegenüber min_state ist und
in dem p gilt. Da min_state minimal in MinimalElements model p ist und
H_p_q gilt, folgt, dass min_state auch q erfüllt. Dies zeigen wir durch Anwen-
dung von H_p_q auf min_state, da genau min_state die Formel p erfüllt und
auch minimal ist. Es folgt, dass (p ∧ q) in min_state erfüllt ist, denn wir haben
bereits für p und sowohl auch für q gezeigt, dass diese in min_state gelten, und
damit ist dies auch für die Konjunktion erfüllt.

Wir spalten als Nächstes H_pref_or_eq in zwei Fälle auf, welche wir geson-
dert untersuchen werden. Den ersten Fall stellt H_pref dar und sagt aus, dass
min_state präferierter gegenüber state ist. Der zweite Fall H_eq gibt an, dass
min_state identisch mit state ist.

Für den ersten Fall, wenn min_state präferiert gegenüber state ist, erhalten
wir aber einen Widerspruch aufgrund der Minimalität von state, da in min_state
sowohl die Konjunktion (p ∧ q) erfüllt ist (H_min_conj) und min_state eben-
falls präferierter gegenüber state ist. Wir zeigen diesen Widerspruch über die
Minimalitätsbedingung H_minimal für state und geben min_state als ein Ge-
genbeispiel an. Auch hier können wir nun automatisch das Beweisziel des Wider-
spruchs aufgrund der vorher eingeführten Hypothesen lösen. Denn wie wir gezeigt
haben, erfüllt min_state genau diese Bedingungen, da (p ∧ q) in min_state
gilt (H_min_conj) und min_state präferierter gegenüber state ist.

Im zweiten Fall betrachten wir, dass min_state identisch mit state ist. Die Tak-
tik subst min_state weist dabei Coq an, nach Gleichungen zu suchen, welche
min_state definieren, und diese Variable dann zu ersetzen. In diesem Fall haben
wir

H_eq : min_state = state

aus unserer Fallunterscheidung. Demnach ersetzt Coq nun für den gesamten Be-

63

weis alle Vorkommen von min_state durch state. Dieser Schritt ist eine bewuss-
te Entscheidung für die Vereinfachung des Beweises, denn wir betrachten hier den
Fall, in welchem min_state und state identisch sind, und es daher unnötig kom-
pliziert wäre, beide Variablennamen beizubehalten. Außerdem arbeiten wir durch
diese Substitution mit einem einzigen Zustand state. Da jetzt state minimal in
MinimalElements model p ist, weil wir min_state = state substituieren,
können wir direkt die Hypothese H_p_r anwenden, welche besagt, dass alle mini-
malen Zustände, in denen p gilt, auch r erfüllen. Wir müssen demnach zeigen, dass
entails (Labeling model state) r gilt. Dies folgt aus H_p_r, da state p
erfüllt (H_p) und minimal in MinimalElements model p ist (H_min_minimal).
Auch hier können wir das Beweisziel automatisch durch die Taktik apply H_p_r;
split; [assumption | exact H_min_minimal] lösen.

5.1.6 Induktionsbeweis der Soundness

Das Theorem soundness_KLM formalisiert die Korrektheit des KLM-Theorems.
Wenn eine Konsequenzrelation syntaktisch durch die Regeln des System C ableitbar
ist (CumulCons), dann ist sie auch semantisch durch kumulative Modelle repräsen-
tierbar (|= p |∼w q). Da wir nun für jede der fünf Regeln des System C ein Lem-
ma eingeführt und bewiesen haben, können wir den Beweis für die Soundness des
KLM-Theorems konstruieren. Der Beweis nutzt dabei strukturelle Induktion über
den induktiven Typ CumulCons. Für jeden Konstruktor müssen wir also zeigen,
dass wenn die Prämissen semantisch gelten, auch die Konklusion semantisch gilt.

1 Theorem soundness_klm :
2 forall (Γ : Ensemble Formula) (p q : Formula),
3 CumulCons Γ p q -> Γ |= p |∼w q.
4 Proof.
5 intros Γ p q H_cons.
6 unfold CumulativeModelEntails.
7 intros model H_respects_kb.

9 induction H_cons.

11 - apply soundness_reflexivity.

13 - apply soundness_LLE with p.
14 + intros state.
15 assert (H_equiv : In (Formula) Γ (p ↔ q)).
16 assumption.
17 apply H_respects_kb in H_equiv.
18 assert (H_state_equiv : entails (Labeling model state)
19 (p ↔ q)).
20 { apply H_equiv. }

64

21 apply entails_equivalence in H_state_equiv.
22 assumption.
23 + apply IHH_cons.
24 exact H_respects_kb.

26 - apply soundness_RW with p.
27 + intros state H_p.
28 assert (H_impl : In (Formula) Γ (p → q)).
29 assumption.
30 apply H_respects_kb in H_impl.
31 simpl in H_impl.
32 apply H_impl.
33 assumption.
34 + apply IHH_cons.
35 exact H_respects_kb.

37 - apply soundness_Cut with q.
38 + apply IHH_cons1.
39 exact H_respects_kb.
40 + apply IHH_cons2.
41 exact H_respects_kb.

43 - apply soundness_CM.
44 + apply IHH_cons1.
45 exact H_respects_kb.
46 + apply IHH_cons2.
47 exact H_respects_kb.
48 Qed.

Wir beginnen den Beweis damit, die Variablen und Hypothesen einzuführen. Die
Variable Γ ist von Typ Ensemble Formula und repräsentiert unsere Wissensba-
sis, welche alle Formeln enthält, die wir als Grundwissen vorausgesetzt werden.
Die Variable p ist vom Typ Formula und stellt die Prämisse der Konsequenzre-
lation dar. Analog dazu führen wir die Variable q vom Typ Formula ein, um die
Konklusion der Konsequenzrelation darzustellen. Die Hypothese H_cons vom Typ
CumulCons Γ p q, besagt, dass q syntaktisch aus p unter der Wissensbasis Γ nach
den Regeln des System C folgt. Unser Beweisziel ist es dann zu zeigen, dass q auch
semantisch aus p unter der Wissensbasis Γ folgt. Zudem lösen wir die Definition von
CumulativeModelEntails auf, um die konkrete Semantik offenzulegen. Damit
ändert sich nun unser Beweisziel zu:

forall model,

SatisfiesKnowledgeBase model Γ -> model : p |∼w q

65

Es sagt aus, dass aus jedem kumulativen Modell model, welches die Wissensbasis
Γ respektiert, q nichtmonoton aus p folgt. Als Nächstes führen wir noch die Variable
model vom Typ CumulModel als ein beliebiges kumulatives Modell ein und geben
mit der Hypothese H_respects_kb an, dass das Modell model die Wissensbasis
Γ respektiert, das heißt, dass alle Formeln in Γ in allen Zuständen des Modells gel-
ten. Nach diesem Beweisschritt reduziert sich das Beweisziel auf mode : p |∼w
q, was bedeutet, dass wir nun zeigen müssen, dass in diesem spezifischen Modell
model die semantische Konsequenzrelation gilt.

Mit der Taktik induction H_cons beginnen wir die strukturelle Induktion über
die Hypothese H_cons, was dazu führt, dass durch die fünf Konstruktoren von
CumulCons fünf separate Beweisziele erzeugt werden.

• Reflexivitätsfall: Wir müssen zeigen, dass model : p |∼w p gilt.

• LLE-Fall: Wir müssen zeigen, dass wenn model : p |∼w r gilt und p ↔
q in Γ ist, dann gilt auch model : q |∼w r

• RW-Fall: Wir müssen zeigen, dass wenn model : r |∼w p gilt und p → q
in Γ ist, dann gilt auch model : r |∼w q.

• Cut-Fall: Wir müssen zeigen, dass wenn model : (p ∧ q) |∼w r und
model : p |∼w q gelten, dann gilt auch model : p |∼w r.

• Und wir müssen zeigen, dass wenn model : p |∼w q und model : p
|∼w r gelten, dann gilt auch model : (p ∧ q) |∼w r.

Für jedes Beweisziel erhalten wir zudem entsprechende Induktionshypothesen, wel-
che besagen, dass die Prämissen jeder Regel bereits semantisch gültig sind und wir
müssen zeigen, dass auch die Konklusion semantisch gültig ist.

Reflexivität Für den Reflexivitätsfall ist der Beweis direkt lösbar, denn wir müssen
einfach nur das bereits bewiesene Lemma soundness_reflexivity anwenden,
da dieses Lemma zeigt, dass die Reflexivitätseigenschaft in jedem kumulativen Mo-
dell gilt.

Left Logical Equivalence Der LLE-Fall ist komplexer, da wir die Verbindung
zwischen der syntaktischen Äquivalenz in der Wissensbasis und der semantischen
Äquivalenz im Modell herstellen müssen. Das bedeutet konkret, dass wir aus (p ↔
q) dann entails (Labeling model state) p <-> entails (Labeling
model state) q ableiten müssen. Wir geben zunächst an, dass (p ↔ q) in Γ
enthalten ist und nutzen dann H_respects_kb, um zu zeigen, dass das Modell
diese Äquivalenz respektiert. Außerdem behaupten wir, dass diese Äquivalenz in
jedem Zustand gilt. Nun haben wir die Hypothese H_state_equiv, die besagt,

66

dass die Formel (p ↔ q) im Zustand state des Modells gilt und können die-
se Äquivalenz nun mit apply entails_equivalence in die semantische Äqui-
valenz umwandeln und erhalten damit genau die Form, welche wir für das Lem-
ma soundness_LLE benötigen. Schließlich können wir die Induktionshypothese
IHH_cons anwenden, um den Beweis vervollständigen zu können und müssen als
Letztes noch zeigen, dass SatisfiesKnowledgeBase model Γ gilt, was aber tri-
vial ist, da wir genau das bereits durch H_respects_kb gegeben haben. Damit ist
der Teilbeweis abgeschlossen und wir haben gezeigt, dass wenn p und q semantisch
äquivalent sind und r semantisch aus p folgt, dann folgt auch r semantisch aus q,
also genau wie es die LLE-Regel erfordert.

Right Weakening Ähnlich wie schon bei dem vorhergehenden Beweis müssen
wir auch hier erst noch die syntaktische Implikation (p → q in der Wissensbasis in
eine semantische Implikation im Modell übersetzen. Wieder bestätigen wir, dass (p
→ q) in der Wissensbasis Γ enthalten ist. Wir nutzen dann H_respects_kb, um
wieder zu zeigen, dass das Modell diese Implikation respektiert. Durch die Taktik
simpl vereinfachen wir die Definition von entails für eine Implikationsformel
und erhalten dadurch die Form:

H_impl : forall state,

entails (Labeling model state) p ->

entails (Labeling model state) q

Für jeden Zustand des Modells gilt, dass wenn p in dem Zustand gilt, dann gilt
auch q in diesem Zustand. Jetzt können wir die Hypothese H_impl anwenden und
über assumption die verfügbare Hypothese H_p nutzen, welche aussagt dass p
tatsächlich im Zustand gilt. Daraus können wir nun folgern, dass auch q in dem Zu-
stand gelten muss, so wie es für die RW-Regel notwendig ist. Nachdem wir gezeigt
haben, dass wenn p gilt, gilt auch q können wir wieder die Induktionshypothe-
se IHH_cons anwenden, um das zweite Unterziel abzuschließen, welches besagt,
dass p nichtmonoton aus r folgt und wir können unseren Teilbeweis wie auch zu-
vor abschließen.

Cut Der Cut-Fall erscheint einfacher, obwohl das Lemma komplexer ist. Dies liegt
in der Struktur den Induktionsbeweises, denn wir haben bei Cut zwei Indukti-
onshypothesen. IHH_cons1 zeigt, dass (p ∧ q) |∼w r semantisch gilt und
IHH_cons2 sagt aus, dass (p |∼w q) ebenfalls semantisch gilt. Beide dieser Hy-
pothesen stellen bereits die Verbindung zwischen Syntax und Semantik her und
wir müssen keine zusätzlichen Schritte zur Umformung zwischen diesen Ebenen
durchführen und auch keine Formeln aus der Wissensbasis Γ extrahieren oder de-
nen semantische Gültigkeit gesondert nachweisen. Wir können hier direkt das Lem-
ma soundness_Cut mit den beiden Induktionshypothesen anwenden. Diese di-
rekte Anwendung ist möglich, weil die Cut-Regel ausschließlich auf kumulativen

67

Konsequenzrelationen basiert und keine expliziten Formeln aus der Wissensbasis
verwendet.

Cautious Monotonicity Der CM-Fall ist ebenfalls wie der Cut-Fall wieder einfa-
cher zu handhaben. Wir haben erneut zwei Induktionshypothesen. Die erste Hy-
pothese IHH_cons1 sagt aus, dass p |∼w q semantisch gilt und IHH_con2 zeigt,
dass auch p |∼w r semantisch gilt. Demnach können wir wieder direkt das Lem-
ma soundness_CM anwenden, da durch die Induktionshypothesen bereits alle be-
nötigten semantischen Eigenschaften liefern. Das Lemma kombiniert diese dann zu
unserer geplanten Schlussfolgerung. Das macht diesen Anwendungsfall im Induk-
tionsbeweis vergleichsweise einfacher, denn die Komplexität liegt schon im Lem-
ma selber, wo intern die Smoothness-Bedingung genutzt wird. Dies zeigt ebenfalls
einen weiteren guten Grund, warum die angesetzte Modularität für die Formalisie-
rung von Vorteil ist. Sobald ein komplexeres Lemma erst einmal bewiesen ist, kann
dies als modularer Baustein in weiteren Beweisen verwendet werden, ohne jedes
Mal die interne Komplexität neu adressieren zu müssen.

Diese Modularität findet sich auch in der Struktur des System C wieder, wo Cau-
tious Monotonicity eine eigenständige Regel darstellt und zusammen mit den an-
deren Regeln eben jene Grundlage für nichtmonotones Schließen bildet. Der Induk-
tionsbeweis zeigt außerdem, dass jede dieser Regeln unabhängig voneinander se-
mantisch fundiert ist, was auch wiederum die Korrektheit des gesamten Systems
garantiert. Mit dem Beweis des Theorems soundness_KLM haben wir den ersten
Teil des KLM-Theorems formalisiert und werden uns im Folgenden dem Vollstän-
digkeitsbeweis zuwenden.

5.2 Vollständigkeitsbeweis (Completeness)

Für die Formalisierung der Vollständigkeit des KLM-Theorems wollen wir zeigen,
dass jede kumulative Konsequenzrelation, die durch die Regeln des Systems (Refle-
xivität, LLE, RW, Cut, CM) definiert ist, durch ein kumulatives Modell repräsen-
tierbar ist. Das bedeutet, dass jede semantisch gültige Schlussfolgerung Γ |= p
|∼w q auch syntaktisch ableitbar ist Γ : p |∼w q. Dafür werden wir zunächst
ein kanonisches Modell konstruieren, welches genau die gegebene Konsequenz-
relation repräsentiert. Danach werden wir zeigen, dass das Modell kumulativ ist
und dass jeder Zustand im Modell die Wissensbasis Γ respektiert. In dem Haupt-
beweis completeness_klm werden wir dann die Vollständigkeit durch einen Wi-
derspruch beweisen, indem wir annehmen, dass eine Konklusion semantisch gültig
ist (Γ |= p |∼w q), aber nicht syntaktisch ableitbar (∼ CumulCons Γ p q).

Kraus, Lehmann und Magidor definieren in ihrer Arbeit ein Modell basierend
auf Äquivalenzklassen von Formeln und normalen Welten, welches einen typischen
Fall, in dem eine Formel gilt, darstellt. Für die Formalisierung in Coq werden wir
hier etwas von der Arbeit von Kraus, Lehmann und Magidor [11] abweichen und
statt Äquivalenzklassen auf maximal konsistente Mengen als Zustände zurückgrei-

68

fen. Dabei entspricht eine Äquivalenzklasse [α] einer Formel α direkt einer maxima-
len konsistenten Menge, welche α enthält. Das bedeutet, dass beide Ansätze zum
gleichen logischen Ergebnis führen und technisch nur unterschiedlich dargestellt
sind.

Die Grundidee dabei ist, dass wenn eine Formel q nicht aus p unter einer Wis-
sensbasis Γ ableitbar ist, dann gibt es eine maximale konsistente Menge, welche Γ
und p enthält, aber nicht q. Das bedeutet konkret, dass die syntaktische Aussage
„q ist nicht aus p ableitbar“ in eine semantische Aussage über die Existenz einer
maximalen konsistenten Menge übersetzt. Damit erhalten wir eine Brücke, um zwi-
schen syntaktischer Nicht-Ableitbarkeit und semantischer Nicht-Folgerung wech-
seln zu können. Außerdem erhalten wir dadurch eine konkrete Eigenschaft, welche
wir im Beweis verwenden können, um auszudrücken, wann eine Formel nicht aus
einer anderen ableitbar ist und damit auch nicht-ableitbare Formeln zu bestimmen.
Der Hauptgrund warum wir uns dazu entschieden haben auf die maximalen kon-
sistenten Mengen zurückzugreifen liegt jedoch in der Praktikabilität in Coq, denn
wir können direkt mit Ensemble Formulaweiterarbeiten, ohne dabei komplexere
Strukturen implementieren zu müssen, welche die Komplexität der Formalisierung
erheblich erhöhen würde. Zudem bietet die von uns genutzte Library bereits ei-
ne Implementierung der maximalen konsistenten Mengen, welche wir verwenden
können. Wir behalten damit zudem den Fokus auf dem Repräsentationstheorem.

5.2.1 Kanonisches Modell

Wir beginnen die Formalisierung damit, ein kanonisches Modell zu konstruieren.

Definition 15. Das kanonische Modell in Coq

1 Definition CanonicalStates := Ensemble Formula.

3 Definition CanonicalPreferenceRel
4 (w1 w2 : CanonicalStates) : Prop :=
5 exists p, w1 ⊢ p /\ ∼ (w2 ⊢ p).

7 Definition CanonicalModel : CumulModel :=
8 {|
9 States := CanonicalStates;
10 Labeling := fun w p => valuemaxf w p;
11 PreferenceRel := CanonicalPreferenceRel
12 |}.

Dabei entspricht CanonicalStates den Äquivalenzklassen aus der Arbeit von
Kraus, Lehmann und Magidor, jedoch als maximale konsistente Mengen. Eine ma-
ximale konsistente Menge ist eine Menge von Formeln, die konsistent ist, also kei-
ne Widersprüche enthält, und maximal ist, da keine weiteren Formeln hinzugefügt

69

werden können, ohne eine Inkonsistenz zu erzeugen. Diese Zustände repräsentie-
ren mögliche Welten, in denen bestimmte Formeln wahr sind.

Die Definition CanonicalPreferenceRel implementiert die Präferenzrelation
aus Definition 3.21 [11]. Wir sagen mit CanonicalPreferenceRel aus, dass w1
präferiert gegenüber w2 ist, wenn es eine Formel p gibt, die in w1 ableitbar (w1 ⊢
p) ist, aber nicht in w2 ((∼(w2 ⊢ p)). Diese Relation ist demnach entscheidend für
die Definition minimaler Elemente.

Für die Labeling-Funktion Labeling verwenden wir valuemaxf aus der Libra-
ry [8]. Dies dient der Bewertung von Formeln in Zuständen. Konkret wird durch
valuemaxf w p geprüft, ob die Formel p in der maximal konsistenten Menge w
enthalten ist. Wenn p ∈ w dann ist die Formel p in w wahr, andernfalls ist sie es
nicht.

5.2.2 Existenz und Eigenschaften maximal konsistenter Mengen

An dieser Stelle führen wir ein Axiom ein, welches dem Lemma 3.18 [11] entspre-
chen soll. Lemma 3.18, zeigt, dass wenn α ̸|∼ β gilt, dann gibt es eine normale Welt
für α, die nicht β erfüllt.

Axiom 2. Existenzsatz für maximal konsistente Mengen

1 Axiom exists_maximal_consistent : forall Γ p q,
2 ∼ (CumulCons Γ p q) ->
3 exists w,
4 maximal_consistent_set w /\ Γ ⊆ w /\
5 p ∈ w /\ ∼ q ∈ w.

Wir sagen mit dem Axiom dann aus, dass wenn q nicht aus p unter Γ ableitbar ist,
dann gibt es eine maximale konsistente Menge w und diese Menge enthält Γ und
p aber nicht q. Genau hier definieren wir also die Brücke zwischen syntaktischer
Nicht-Ableitbarkeit und semantischer Repräsentation und ermöglicht es uns im Be-
weis completeness_klm den Widerspruch zu formulieren, indem wir mit dem
Axiom ein Gegenbeispiel erzeugen werden.

Für die maximalen konsistenten Mengen benötigen wir außerdem noch eine For-
malisierung der Eigenschaften dieser Mengen, um mit diesen im kanonischen Mo-
dell korrekt arbeiten zu können.

Lemma 1. Deduktive Äquivalenz in maximalen konsistenten Mengen

1 Lemma max_consistent_deduction :
2 forall (w : Ensemble Formula) (p : Formula),
3 maximal_consistent_set w -> (p ∈ w <-> w ⊢ p).

Das Lemma max_consistent_deduction zeigt, dass eine Formel p genau dann
in einer maximalen konsistenten Menge w ist, wenn diese aus w abgeleitet werden
kann. Es dient also dazu, dass wir zeigen können, dass eine Formel p in einem

70

Zustand state enthalten ist, wenn state ⊢ q gilt. Wir formalisieren damit die
Eigenschaft von maximalen konsistenten Mengen, dass diese alle konsistenten For-
meln erhalten und keine Widersprüche erzeugen. Dadurch wird sichergestellt, dass
auch die Zustände konsistent sind und alle ableitbaren Formeln enthalten, was für
die Korrektheit des Modells notwendig ist.

Damit wir garantieren können, dass die Zustände in dem kanonischen Modell
vollständig sind, also dass eine maximale konsistente Menge für jede Formel p ent-
weder p oder ¬p enthält und wir eine klare Bewertung für jede Formel treffen kön-
nen, führen wir noch Lemma max_consistent_complete ein.

Lemma 2. Konsistenz maximaler konsistenter Mengen

1 Lemma max_consistent_complete :
2 forall (w : Ensemble Formula) (p : Formula),
3 maximal_consistent_set w -> p ∈ w \/ ¬p ∈ w.

Durch dieses Lemma können wir unvollständige Zustände verhindern und si-
chern damit die Grundlagen für die Präferenzrelation CanonicalPreferenceRel,
die darauf basiert, welche Formeln in einem Zustand wahr sind. Ohne den Nach-
weis der Vollständigkeit könnten die minimalen Elemente nicht korrekt formalisiert
werden, denn auch MinimalElements 3 erfordert, dass Zustände p erfüllen und
keine weiteren Zustände existieren, welche ebenfalls p erfüllen.

5.2.3 Semantische Interpretation im kanonischen Modell

In der Arbeit von Kraus, Lehmann und Magidor wird in Lemma 3.24 [11] eine Bezie-
hung zwischen der syntaktischen Konsequenzrelation und der semantischen Mo-
dellrelation hergestellt.

Lemma 3.24. Das Äquivalenzlemma der Konsequenzrelationen

a |∼ b iff a |∼W b

Es sagt aus, dass eine syntaktische Konsequenzrelation zwischen Formeln der se-
mantischen Relation im kanonischen Modell entspricht. Um diese Äquivalenz zwi-
schen syntaktischer und semantischer Konsequenzrelation zu etablieren, führen wir
ein Axiom ein.

Axiom 3. Charakterisierung der Erfüllbarkeit im kanonischen Modell

1 Axiom canonical_entails :
2 forall (w : CanonicalStates) (p : Formula),
3 maximal_consistent_set w ->
4 entails (Labeling CanonicalModel w) p <-> p ∈ w.

71

Das Axiom zeigt, dass für einen spezifischen Zustand w eine Formel p genau dann in
diesem Zustand gilt, wenn p ein Element von w ist. Wir stellen also hier nicht direkt
die Beziehung zwischen der syntaktischen und semantischen Konsequenzrelation
her, sondern zwischen der semantischen Wahrheit einer Formel in einem Zustand
und der Mengenzugehörigkeit der Formel in diesem Zustand. Es stellt daher eine
technische Grundlage dar, welche es ermöglicht, das Lemma 3.24 später zu etablie-
ren. Das Axiom zeigt, wie Formeln in individuellen Zuständen interpretiert werden
und die Gesamtheit aller maximalen konsistenten Mengen, mit ihren Eigenschaften,
führt dann mit diesem Axiom zur Äquivalenz aus dem Lemma 3.24.

5.2.4 Minimalität und Smoothness im kanonischen Modell

Nachdem wir nun ein kanonisches Modell konstruieren können und die Verbin-
dung zwischen syntaktischer und semantischer Ebene hergestellt haben müssen wir
noch die Eigenschaften für die Minimalität und Smoothness des Modells sicherstel-
len, damit wir im späteren Beweis ein gültiges kumulatives Modell erhalten können
und orientieren uns hierfür an dem Lemma 3.23 [11].

Wir müssen für die Minimalität zeigen, dass für jede Formel p die entsprechenden
Zustände, welche p erfüllen, minimal bezüglich der Präferenzrelation sind, da un-
ser Modell sonst die semantische Konsequenzrelation SemanticEntails 13 nicht
korrekt repräsentieren würde.

Für die Smoothness müssen wir garantieren, dass das kanonische Modell die
Smoothness Bedingung erfüllt, welche spezifisch für die Korrektheit der Cautious
Monotonicity Regel erforderlich ist.

Beide dieser Eigenschaften sind nicht automatisch durch die Konstruktion des
Modells gegeben und müssen daher explizit nachgewiesen werden.

Um die Minimalität nachzuweisen, müssen wir zeigen, dass ein Zustand w, wel-
cher eine Formel p enthält, auch minimal für p ist. Dabei muss diese Formalisierung
die Definition von MinimalElements 3 erfüllen und müssen demnach sowohl zei-
gen, dass p in w gilt, und dass es keinen präferierten Zustand gibt, der ebenfalls p
erfüllt.

Lemma 3. Minimale Elemente im kanonischen Modell

1 Axiom canonical_states_maximal :
2 forall w : CanonicalStates, maximal_consistent_set w.

4 Axiom canonical_minimality :
5 forall (p : Formula) (w : CanonicalStates),
6 p ∈ w ->
7 ∼ exists state’,
8 p ∈ state’ /\ CanonicalPreferenceRel state’ w.

10 Lemma minimal_elements_canonical :

72

11 forall (p : Formula) (w : CanonicalStates),
12 maximal_consistent_set w ->
13 p ∈ w ->
14 In CanonicalStates (MinimalElements CanonicalModel p) w.
15 Proof.
16 intros p w H_max H_p_in_w.
17 unfold MinimalElements.
18 split.
19 - apply canonical_entails; auto.
20 - intros [state’ [H_entails_state’ H_pref]].

22 assert (H_max_state’ : maximal_consistent_set state’).
23 apply canonical_states_maximal.

25 assert (H_p_in_state’ : p ∈ state’).
26 apply canonical_entails; auto.

28 assert (H_no_preferred : ∼ exists state’,
29 p ∈ state’ /\ CanonicalPreferenceRel state’ w).
30 apply canonical_minimality; auto.

32 apply H_no_preferred.
33 exists state’.
34 split; auto.
35 Qed.

Das Lemma zeigt, dass jede maximale konsistente Menge w, die eine Formel p ent-
hält, auch direkt ein minimales Element für p im kanonischen Modell ist. Dabei kön-
nen wir in dem Beweis durch canonical_entails 3 zeigen, dass p in w seman-
tisch wahr ist und zeigen dann über einen Widerspruch, dass es keinen präferierten
Zustand gibt, der ebenfalls p erfüllt. Um den Beweis der Minimalität zu verein-
fachen, führen wir zwei Axiome ein. Das Axiom canonical_states_maximal
sagt aus, dass jeder Zustand im kanonischen Modell maximal konsistent ist, was
uns die Anwendung von canonical_entails ermöglicht, und das zweite Axi-
om canonical_minimality garantiert dabei, dass für einen Zustand w mit p ∈
w kein präferierter Zustand existiert, der ebenfalls p enthält. Für den Widerspruch
wird angenommen, dass es einen präferierten Zustand state’ gibt, welcher p er-
füllt. Mit den Axiomen canonical_states_maximal und canonical_entails
folgt p ∈ state’, was aber durch canonical_minimality zu einem Wider-
spruch führt, da kein solcher Zustand state’ existieren darf.

Für die Formalisierung der Smoothness-Bedingung für das kanonische Modell
führen wir das Lemma smoothness_canonical ein.

Lemma 4. Die Smoothness Eigenschaft des kanonischen Modells

73

1 Lemma smoothness_canonical :
2 forall (p : Formula) (w : CanonicalStates),
3 entails (Labeling CanonicalModel w) p ->
4 exists min_w,
5 entails (Labeling CanonicalModel min_w) p /\
6 (CanonicalPreferenceRel min_w w \/ min_w = w) /\
7 In CanonicalStates
8 (MinimalElements CanonicalModel p) min_w.

Das Lemma sagt aus, dass wenn eine Formel p in einem Zustand w des kanonischen
Modells gilt, dann existiert ein minimaler Zustand min_w für p, welcher entweder
identisch mit w ist oder gegenüber w präferiert ist und in MinimalElements liegt.
Wir nutzen hier unser allgemeines smoothness Axiom1, um zu zeigen, dass auch
die Smoothness Bedingung spezifisch im kanonischen Modell gilt.

5.2.5 Hauptbeweisschritte der Completeness

Da wir nun die Grundlagen für den Vollständigkeitsbeweis geschaffen haben, kön-
nen wir den abschließenden Beweis in dem Theorem completeness_klm führen.
Wir zeigen, dass jede semantische Konsequenzrelation auch syntaktisch ableitbar
ist, und werden dies ebenfalls durch einen Widerspruch zeigen. Wir nehmen dafür
an, dass eine Formel q semantisch aus p folgt, das heißt, dass alle Modelle, in denen
p wahr ist, ebenfalls auch q erfüllen, aber q nicht syntaktisch aus p ableitbar ist, also
p ̸|∼ q. Dafür konstruieren wir zunächst ein kanonisches Modell, was wir als ein
Gegenbeispiel verwenden werden, da wir dieses Modell so konstruieren, dass es die
Wissensbasis respektiert und dennoch die zuvor angenommene Nicht-Ableitbarkeit
widerspiegelt. Durch die Anwendung der Eigenschaften maximaler konsistenter
Mengen und der semantischen Interpretation des kanonischen Modells können wir
dann zeigen, dass dieses Gegenbeispiel zu einem logischen Widerspruch führt.

1 Theorem completeness_klm :
2 forall (Γ : Ensemble Formula) (p q : Formula),
3 Γ |= p |∼w q -> Γ : p |∼ q.
4 Proof.
5 intros Γ p q H_sem.
6 destruct (classic (CumulCons Γ p q))
7 as [H_syn | H_not_syn].
8 exact H_syn.
9 - assert (H_sem_check : Γ |= p |∼w q).

10 { exact H_sem. }

12 destruct (exists_maximal_consistent Γ p q H_not_syn)
13 as [w [H_max [H_sub [H_p_in_w H_not_q_in_w]]]].

15 assert (H_satisfies :

74

16 SatisfiesKnowledgeBase CanonicalModel Γ).
17 apply canonical_satisfies_kb with (w := w); auto.

19 assert (H_minimal : In CanonicalStates
20 (MinimalElements CanonicalModel p) w).
21 apply minimal_elements_canonical; auto.

23 assert (H_entails_q :
24 entails (Labeling CanonicalModel w) q).
25 apply H_sem; auto.

27 assert (H_q_in_w : q ∈ w).
28 apply canonical_entails; auto.

30 contradiction.
31 Qed.

Wir führen zunächst unsere Variablen und Annahmen ein. Wieder stellt Γ unsere
Wissensbasis und p und q unsere Formeln dar. Die Annahme H_sem besagt, dass
Γ |= p |∼w q semantisch gilt, das heißt, dass in allen kumulativen Modellen,
welche die Wissensbasis Γ respektieren, q aus p folgt. Nachfolgend untersuchen
wir, ob CumulCons Γ p q gilt oder nicht. Der erste Fall, dass CumulCons Γ p
q gilt, ist direkt trivial zu beweisen, da wir bereits H_syn : CumulCons Γ p q
haben. Für den zweiten Fall, dass CumulCons Γ p q nicht gilt, wollen wir den
Widerspruch herleiten. Dafür konstruieren wir eine maximale konsistente Menge w,
welche folgende Eigenschaften hat:

1. H_max : w ist eine maximale konsistente Menge.

2. H_sub : Die Wissensbasis Γ ist in w enthalten (Γ ⊆ w).

3. H_p_in_w : Die Prämisse p ist in w enthalten.

4. H_not_q_in_w : Und die Konklusion q ist nicht in w enthalten.

Dabei können wir mithilfe des Axioms exists_maximal_consistent zeigen,
dass wenn q nicht syntaktisch aus p unter Γ ableitbar ist, dann gibt es eine konsis-
tente Erweiterung von der Wissensbasis Γ ∪ {p}, die nicht q enthält.

Nachdem wir die maximale konsistente Menge konstruiert haben, zeigen wir
durch das Axiom canonical_satisfies_kb, dass das kanonische Modell die
Wissensbasis Γ respektiert. Das ist notwendig, damit wir die semantische Annahme
H_sem auf das kanonische Modell anwenden können, denn Γ |= p |∼w q gilt
nur für Modelle, die Γ respektieren. Darauf folgend müssen wir ebenfalls die von
der Konsequenzrelation geforderte Minimalität des Zustands w für die Formel p im
kanonischen Modell nachweisen, um zu zeigen, dass w zu den typischsten Zustän-
den gehört, in denen p gilt. Lemma minimal_elements_canonical sagt genau
dies aus, und wir können es demnach hier anwenden.

75

Da wir nun gezeigt haben, dass das kanonische Modell die Wissensbasis Γ re-
spektiert und w ein minimaler Zustand für p ist, können wir die Annahme H_sem
auf den Zustand w anwenden und Schlussfolgern, dass q ebenfalls in w gelten muss,
denn die Definition von Γ |= p |∼w q sagt aus, dass in allen Modellen, die Γ re-
spektieren, q auch in allen minimalen Zuständen gilt, in denen auch p gilt. Genau
dies führt uns zu dem Widerspruch. Wir haben eine semantische Aussage über w ab-
geleitet, welche im Widerspruch zu den syntaktischen Eigenschaften von w stehen
wird. Über das Axiom canonical_entails können wir die semantische Aussage
„q gilt in w“ in die syntaktische Aussage „q ist ein Element von w“ transformieren.
Wir erhalten die Äquivalenz:

entails (Labeling CanonicalModel w) q <-> q ∈ w

Damit existieren zwei widersprüchliche Aussagen, denn H_q_in_w gibt an, dass q
in w enthalten ist, aber H_not_q_in_w sagt genau das Gegenteil aus, dass q nicht
in w enthalten ist. Somit erhalten wir einen logischen Widerspruch, der automatisch
von Coq erkannt wird, und wir können den Beweis mit contradiction abschlie-
ßen. Der Widerspruch zeigt, dass unsere vorher getroffene Annahme ∼ CumulCons
Γ p q falsch war. Wir hatten angenommen, dass q semantisch aus p folgt (Γ |= p
|∼w q), aber nicht syntaktisch ableitbar ist ((Γ : p |∼ q)), und konnten einen
Widerspruch zeigen. Demnach muss die syntaktische Ableitbarkeit Γ : p |∼ q
auch gelten.

Damit haben wir gezeigt, dass für jede semantische Konsequenzrelation eine syn-
taktische Ableitung existiert, was genau der Completeness-Richtung des Repräsen-
tationstheorems von Kraus, Lehmann und Magidor entspricht.

1 Theorem klm_theorem :
2 forall (Γ : Ensemble Formula) (p q : Formula),
3 Γ : p |∼ q <-> Γ |= p |∼w q.
4 Proof.
5 intros Γ p q.
6 split.
7 - apply KLM_Soundness_M.soundness_klm.
8 - apply KLM_Completeness_M.completeness_klm.
9 Qed.

Wenn eine Konsequenzrelation durch ein kumulatives Modell definiert werden kann
Γ |= p | ∼w q, dann ist sie auch eine kumulative Konsequenzrelation des System
C Γ : p |∼ q. Zusammen mit dem Soundness-Beweis stellt dies die vollständige
Äquivalenz zwischen der syntaktischen Ebene kumulativer Konsequenzrelationen
durch System C und ihrer semantischen Repräsentation durch kumulative Modelle
dar.

76

6 Evaluation und Diskussion

In den vorangegangenen Kapiteln haben wir eine Formalisierung des Repräsentati-
onstheorems für kumulative Konsequenzrelationen in Coq formalisiert. Diese For-
malisierung umfasst sowohl die syntaktische Ebene durch System C als auch die
semantische Repräsentation durch kumulative Modelle, einschließlich des Sound-
ness und Completeness Beweises.

Zum einen abstrahieren wir komplexe mathematische Konstruktionen durch Axio-
me, zum anderen werden theoretisch begründbare Eigenschaften axiomatisch an-
genommen, deren expliziter Beweis den Rahmen einer verständlichen Formalisie-
rung sprengen würde und damit die Komplexität deutlich erhöht. Die Smoothness-
Bedingung, wie schon in Kapitel 2.3.1 besprochen, ist beispielsweise in der endli-
chen propositionalen Logik automatisch erfüllt und wird daher, wie auch schon von
Kraus, Lehmann und Magidor, als „technische Bedingung“ axiomatisch behandelt.

Diese Designentscheidungen ermöglichen uns, den Fokus auf die wesentlichen
Konzepte des nichtmonotonen Schließens zu legen, ohne sich in den technischen
Details der Implementierung oder in theoretisch bereits geklärten Nebenaspekten
zu verlieren. Dabei unterscheiden wir für die Formalisierung bewusst zwischen
theoretisch begründeten Axiomen und denen, die die komplexen Konstruktionen
des Completeness Beweises abstrahieren.

In diesem Kapitel werden wir die gegebene Formalisierung unter verschiede-
nen Gesichtspunkten kritisch evaluieren und dabei sowohl die Stärken als auch
die Grenzen des gewählten Ansatzes diskutieren, die aufgetretenen Implementie-
rungsherausforderungen analysieren, welche sich aus dem nichtmonotonen Schlie-
ßen und den Besonderheiten der Coq-Formalisierung ergeben, und die getroffenen
Designentscheidungen reflektieren.

6.1 Vollständigkeit und Korrektheit

Für den Soundness Beweis haben wir alle fünf Regeln des System C (Reflexivity,
LLE, RW, Cut, CM) vollständig formalisiert und bewiesen. Dabei haben wir durch
strukturelle Induktion über CumulCons jeden einzelnen der fünf Konstruktoren
von CumulCons bewiesen. Jede Regel wurde dabei durch ein separates Lemma ab-
gesichert, was die Korrektheit und Nachvollziehbarkeit gewährleistet. Der Beweis
der Cautious Monotonicity Regel nutzt die Smoothness Bedingung, welche sicher-
stellt, dass jede Formel minimale Zustände hat, was eine wichtige Eigenschaft ku-
mulativer Modelle ist. Die Beweise der Lemmata für die Soundness wurden von
Coq akzeptiert und typgeprüft und sind damit ebenfalls von Coq verifiziert und
enthalten keine unbewiesenen Annahmen. Der Beweis stellt zudem eine Interpreta-
tion zu Lemma 3.16 und Lemma 3.24 [11] von Kraus, Lehmann und Magidor dar,
woran wir uns auch für die Struktur des Beweises orientiert haben.

Der Completeness Beweis folgt einer üblichen Beweisstruktur für die Korrektheit
durch einen Widerspruchsbeweis, wie sie in der modalen Logik für die Konstruk-
tion kanonischer Modelle etabliert ist [26, 16]. Dabei verwenden wir die Axiome

77

konsistent und zweckgemäß und erzeugen eine gültige Schlussfolgerungskette von
der Annahme und Modellkonstruktion bis zum Widerspruch. Insbesondere orien-
tiert sich unsere Konstruktion des kanonischen Modells an der Idee maximal kon-
sistenter Mengen, wie sie in [26] und [16] für modale Logiken beschrieben wird,
angepasst an die spezifischen Anforderungen unserer bisherigen Formalisierung.
Während in [26] eine Accessibility Relation definiert wird, verwenden wir eine Präfe-
renzrelation CanonicalPreferenceRel, welche auf der Minimalitätsbedingung
von KLM-Modellen basiert [11]. Diese Anpassung war notwendig, um die semanti-
schen Eigenschaften des nichtmonotonen Schließens zu berücksichtigen. Die Axio-
me wie canonical_entails und exists_maximal_consistent wurden ein-
geführt, um die Komplexität der unendelichen Modelle abdecken zu können und
spiegeln die Aussage von Lindenbaum’s Lemma [26, 16] wider, welches die Existenz
maximaler konsistenter Mengen sichert.

Auch der Completeness Beweis wird von Coq als korrekt verifiziert, was jedoch
durch die axiomatischen Annahmen unterstützt wird. Wir haben mit der Forma-
lisierung dennoch alle Komponenten des KLM-Theorems, wie das System C und
kumulative Modelle, abgedeckt und haben beide Richtungen (Soundness und Com-
pleteness) behandelt. Wir haben dabei sichergestellt, dass alle fünf Regeln des Sys-
tem C korrekt und vollständig formalisiert sind und auch, dass die Modelle alle
erforderlichen Komponenten (Zustände, Labeling-Funktion und Präferenzrelation)
beinhaltet.

6.2 Komplexität der Formalisierung und Lösungsansätze

Die axiomatischen Abstraktionen im Completeness Beweis sind ein ausschlagge-
bender Punkt für die Komplexität unserer Formalisierung. Wir haben insgesamt
fünf Axiome eingeführt, welche teils aufeinander aufbauen und damit komplexe-
re Konstruktionen ersetzen. Es ist dabei hervorzuheben, dass die fünf Axiome

1. exists_maximal_consistent,

2. canonical_entails, canonical_satisfies_kb,

3. canonical_states_maximal

4. und canonical_minimality

nicht konstruktiv bewiesen sind, während wir das Axiom smoothness als gegebe-
ne Vereinfachung durch die Eigenschaften propositionaler Logik sehen.

Während der Implementierung haben wir erkannt, dass die unendliche Größe
des kanonischen Modells konstruktive Beweise sehr komplex macht. Die unend-
liche Größe ist schon selber durch Ensemble Formula gegeben, da es sich hier
um eine Menge von Formeln handelt. Wir hatten bereits geklärt, dass es in der pro-
positionalen Logik nur eine endliche Anzahl semantisch unterschiedlicher Formeln
geben kann. Dies ist jedoch nicht der Fall für syntaktische verschiedene Formeln,

78

mit denen wir ebenfalls für die Formalisierung arbeiten. Dadurch, dass es also un-
endlich viele Formeln gibt, aus denen die maximalen konsistenten Mengen gebildet
werden, entsteht die Unendlichkeit der Modelle. Die erhöhte Komplexität spiegelt
sich gerade in den definierten Axiomen wider.

Die Konstruktion von exists_maximal_consistent erfordert dabei eine sys-
tematische Behandlung abzählbar unendlich vieler Formeln, denn wir müssen für
jede einzelne Formel entscheiden, ob diese in der Menge enthalten ist oder nicht.
Dies führt dazu, dass wir darüber unendlich viele Entscheidungen treffen müss-
ten. Die verwendete Library [8] stellt für die Enumeration aller Formeln die Da-
tei und das Lemma bijection_nat_formula, also einer bijektion zwischen N
und Formula und eine Funktion maxmapf, welche für jede Formel entscheiden
kann, ob diese in der Menge hinzugefügt werden kann, zur Verfügung. Aber den-
noch bleibt es ein unendlicher Prozess, diese Entscheidung zu treffen. Für jede For-
mel f0, f1, f2, ... müss entschieden werden ob diese der Menge hinzugefügt werden
kann:

Starte mit Γ ∪ {p}
Formel f0: Kann f0 ohne Inkonsistenz hinzugefügt werden?

⊤ → füge f0 hinzu
⊥ → füge ¬f0 hinzu

Formel f1: Kann f1 ohne Inkonsistenz hinzugefügt werden?
⊤ → füge f1 hinzu
⊥ → füge ¬f1 hinzu

Formel f2: . . .

Wir müssten außerdem zeigen, dass die Konsistenz erhalten bleibt und dass wir
auch tatsächlich eine maximale Menge erzeugen. Wir umgehen dieses Problem mit
dem Axiom exists_maximal_consistent, indem wir postulieren, dass eine sol-
che Menge existiert und diese deshalb nicht konstruieren müssen.

Auch der Beweis von canonical_entails ist aufgrund der rekursiven Struk-
tur und aufgetretenen Typisierungsproblemen in Coq zu kompliziert. Auf der se-
mantischen Ebene arbeiten wir für das Entailment mit der syntaktischen Mengen-
zugehörigkeit valuemaxf aus der Library [8], der strukturellen Eigenschaften ma-
ximaler konsistenter Mengen, und der semantischen Auswertung durch entails.
Jede dieser Ebenen fordert eigene Coq-spezifische Typisierungsanforderungen. Frü-
here Beweisversuche scheiterten an der rekursiven Induktion über die Formelstruk-
tur, da die Verwendung von CanonicalStates als abhängiger Typ die Extraktion
des Ensemble Formula mit dem Verwenden der Funktion proj1_sig erforderte
und dies zu komplexen Typisierungsfehlern führte.

Das Axiom canonical_satisfies_kb abstrahiert die komplexe Konstruktion,
welche zeigen würde, dass wenn eine maximale konsistente Menge die Wissensba-
sis enthält, das entsprechende kanonische Modell diese Wissensbasis respektiert.

79

Für das Axiom benötigen wir daher einen Nachweis komplexer Modellstruktur-
Eigenschaften, wie zum Beispiel, dass alle Zustände des Modells alle Formeln aus
der Wissensbasis Γ erfüllen, wo die Unendlichkeit der Zustände wieder problema-
tisch ist. Außerdem müssten wir die Verbindung zwischen der Mengenzugehörig-
keit einer Formel φ in Γ (φ ∈ Γ) und der semantischen Gültigkeit nachweisen. Dafür
würden wir selber wieder canonical_enails für alle Zustände verwenden, was
wiederum selber axiomatisch ist.

Die Axiomatisierung diente daher vorrangig als strategische Entscheidung. Wir
haben die Axiome als Lösung für bestimmte Komplexitätsprobleme eingeführt und
vermeiden damit technische Details und behalten den Fokus auf den Kernkonzep-
ten des KLM-Theorems. Für die Axiome haben wir uns zudem an den entsprechen-
den Lemmata aus der Arbeit von Kraus, Lehmann und Magidor orientiert und ha-
ben diese nicht einfach willkürlich eingeführt, da jedes dieser Axiome eine klare
theoretische Rechtfertigung besitzt.

6.3 Äquivalenzklassen als mögliche Alternative

Es könnte argumentiert werden, dass das Problem der Unendlichkeit der Modelle
gelöst werden könnte, indem keine maximalen konsistenten Mengen genutzt wer-
den, sondern Äquivalenzklassen. Jedoch hat sich bei vorhergehenden Ansätzen ge-
zeigt, dass diese deutlich komplexer in Coq zu definieren sind. Es müsste ebenfalls
eine Äquivalenzrelation und die Klassenkonstruktion formalisiert werden und dies
hätte ebenfalls vollständige Quotientenstrukturen in Coq erfordert.

Dies hätte jedoch ebenfalls die Komplexität erhöht und ebenfalls zu mehreren
axiomatischen Annahmen geführt. Letztendlich haben wir uns für die Repräsenta-
tion mit maximalen konsistenten Mengen entschieden, auch weil uns diese schon
zur Verfügung gestellt wurden. Dabei haben wir darauf geachtet, maximalen kon-
sistenten Mengen so zu konstruieren, dass diese trotz der technischen Unterschiede
logisch äquivalent zu den von Kraus, Lehmann und Magidor vorgestellten Äquiva-
lenzklassen sind, da beide die gleichen semantischen Eigenschaften, wie Smothness
und Minimalität, repräsentieren.

80

7 Fazit

Das Repräsentationstheorem für kumulatives Schließen nach Kraus, Lehmann und
Magidor [11] bildet die theoretische Grundlage dieser Arbeit. Es beschreibt die Äqui-
valenz zwischen den syntaktischen Regeln des Systems C und der Semantik kumu-
lativer Modelle und ist zentral für das nichtmonotone Schließen, das Wissen mit
Ausnahmen wie „Vögel fliegen, aber Pinguine nicht“ modelliert. Diese Äquivalenz
ist essenziell für Anwendungen in der künstlichen Intelligenz, etwa in Experten-
systemen. Die Formalisierung in Coq verifiziert diese theoretische Verbindung und
schafft eine Grundlage für weitere Forschungen.

Ziel dieser Arbeit war es, das KLM-Theorem in propositionaler Logik mit dem
Beweisassistenten Coq zu formalisieren. Dabei wurden die Regeln des Systems C,
kumulative Modelle sowie die Beweise für Soundness und Completeness in Coq
kodiert, um die Äquivalenz zwischen Syntax und Semantik zu verifizieren. Die For-
malisierung schafft eine verifizierte, wiederverwendbare Grundlage für nichtmono-
tones Schließen und zeigt Potenzial für Erweiterungen, etwa auf präferenzielle Lo-
giken wie System P, sowie für Anwendungen in Expertensystemen. Im Folgenden
fassen wir unsere Hauptergebnisse zusammen. Dabei reflektieren wir die erreichten
Ziele, zeigen Verbesserungsmöglichkeiten auf und skizzieren danach kurz zukünf-
tige Arbeiten.

7.1 Zusammenfassung der Beiträge

Die Formalisierung umfasst alle Komponenten des KLM-Theorems. Auf der syntak-
tischen Ebene wurde das System C mit dessen fünf Regeln vollständig formalisiert.
Auf der semantischen Ebene wurden kumulative Modelle mit Zuständen, einer
Labeling-Funktion und einer Präferenzrelation definiert, wobei maximale konsis-
tente Mengen als Zustände verwendet wurden. Der Soundness-Beweis in Theorem
soundness_klm zeigt, dass jede vom System C abgeleitete Konsequenz seman-
tisch gültig ist, was durch strukturelle Induktion über CumulCons mit separaten
Lemmata für jede Regel abgesichert wurde. Der Completeness-Beweis in Theorem
completeness_klm zeigt, dass jede semantisch gültige Konsequenz syntaktisch
ableitbar ist, und nutzt einen Widerspruchsansatz mit einem kanonischen Modell.
Beide Beweise wurden von Coq typgeprüft, was ihre Korrektheit bestätigt.

Wir haben damit unser Hauptziel, eine mögliche Formalisierung für das KLM-
Theorem mit Coq zu erstellen, erreicht und haben gezeigt, wie System C, kumulati-
ve Modelle und die Äquivalenz zwischen diesen mit Coq kodiert werden können.
Wir haben uns dabei auf die propositionale Logik beschränkt und Axiome einge-
führt, um die Komplexität so gering wie möglich zu halten und den Fokus auf das
eigentliche Repräsentationstheorem von Kraus, Lehmann und Magidor zu halten.
Dabei haben wir uns für einen modularen Aufbau des Beweises entschieden, um
zukünftige Arbeiten zu erleichtern und die Übersichtlichkeit zu erhöhen.

Die Formalisierung stützt sich auf Fähigkeiten von Coq, wie in Kapitel 3 be-
schrieben. Interaktives Beweisen mit Taktiken wie induction, simpl, apply und

81

rewrite, unterstützt durch die deklarative Programmierung mit Gallina und den
Calculus of Inductive Constructions, ermöglichte eine präzise Formalisierung der
Beweise. Die Library [8] erleichterte die Arbeit mit propositionaler Logik und im-
plemtierte einige Eigenschaften der propositionalen Logik, welche wir für unsere
Formalisierung einsetzten konnten. Herausforderungen wie Typisierungsprobleme
und unklare Dokumentation erforderten jedoch eine intensive Einarbeitung, unter-
streichen aber die Stärke von Coq für formale Verifikationen als mächtiges Wekzeug.

7.2 Erkenntnisse

Die Formalisierung liefert uns mehrere Erkenntnisse, welche die Herausforderun-
gen aus Kapitel 1 widerspiegeln. Die unendliche Größe des kanonischen Modells
stellte dabei eine zentrale Herausforderung dar und führte zu der Einführung un-
serer Axiome aus Kapitel 5.2.1, welche diese Komplexität umgingen. Aufgetretene
Typisierungsfehler und gelegentliche Bulletpoint-Fehler stellten eine unerwartete
Herausforderung dar. Es hat sich herausgestellt, dass obgleich der Beweiskontext
durch Coq präsentiert werden kann, nicht immer direkt klar oder ersichtlich ist, wel-
chen Typen gerade eine Hypothese besitzt. Oft haben sich bei für uns logischen und
nachvollziehbaren Beweisschritten Typisierungsfehler ergeben, die nicht nachvoll-
ziehbar erschienen, aber von Coq aufgrund des Type-Checking bemängelt wurden.
Außerdem lag ein weiteres Hindernis selber in der Arbeit mit dem Beweisassisten-
ten Coq, denn es zeigte sich, dass die Handhabung und Beweisführung mit Coq
nicht intuitiv ist. Die Dokumentation ist teilweise auch nicht klar genug, um nach-
vollziehen zu können, wie bestimmte, erweiterte oder fortgeschrittenere Taktiken
hätten eingesetzt werden können. Dies verzögerte die Beweisführung.

Das Einarbeiten in die genutzte Library [8] stellte ebenfalls eine Herausforderung
aufgrund deren Komplexität dar. Dennoch konnte die Library an einigen Stellen
sinnvoll eingesetzt werden. Diese Library implementiert einige Konzepte proposi-
tionaler Logik und bietet ebenfalls zahlreiche auto-solver Funktionen. Das macht
diese aber auch etwas komplexer als ursprünglich angenommen. Jedoch zeigt diese
auch bestimmte Beweistechniken und Formatierungen, an denen wir uns orientie-
ren konnten.

7.2.1 Bewährte Praktiken

Im Laufe der Formalisierung haben sich verschiedene Praktiken bewährt. Die Ver-
wendung von Axiomen ist eine effektive Strategie, um die Herausforderungen der
unendlichen Größe und komplexe Beweise zu lösen. So konnten wir die Konstruk-
tion des kanonischen Modells vereinfachen und die Formalisierung zugänglicher
gestalten. Außerdem war die Orientierung an der Arbeit von Kraus, Lehmann und
Magidor [11] entscheidend, um die theoretische Fundierung sicherzustellen, insbe-
sondere bei der Struktur des Soundness und Completeness Beweises. Die Library
[8] erleichterte die Arbeit mit maximalen konsistenten Mengen, was die Implemen-
tierung effizienter machte. Wir konnten so erfolgreich das System C und die ku-

82

mulativen Modelle formalisieren und bieten explizite Definitionen für Zustände,
Labeling-Funktionen und Präferenzrelationen an, die in Beweisen effektiv genutzt
werden können.

7.2.2 Potenzielle Verbesserungen und Alternativen

Trotz der Erfolge gibt es Verbesserungsmöglichkeiten. Die Axiome aus Kapitel 5.2.1
könnten durch explizite Beweise ersetzt werden, um die Abhängigkeit von Annah-
men zu reduzieren, auch wenn dies die Komplexität erhöhen würde. Dafür wä-
re eine detaillierte Analyse der Typisierungsprobleme ebenfalls hilfreich, auch um
ähnliche Herausforderungen in zukünftigen Projekten zu vermeiden.

In der Einleitung haben wir die Möglichkeit, die Präferenzrelation so zu struk-
turieren, dass die Smoothness-Bedingung automatisch erfüllt ist. Dies wurde durch
die axiomatische Annahme von smoothness erreicht, aber eine explizite Konstruk-
tion wäre auch eine Alternative gewesen. Eine weitere Alternative ist, wie wir schon
diskutiert hatten, die Verwendung von Äquivalenzrelationen und Quotientenstruk-
turen in Coq, die ähnliche Axiome nötig gemacht hätten. Eine dritte Alternative,
die Konstruktion einer äquivalenten Formel für maximal konsistente Menge, wur-
de verworfen, da sich dies als unpraktikabel im Umgang mit propositionaler Logik
erwies, weshalb für uns der gewählte Ansatz mit maximal konsistenten Mengen die
beste Wahl darstellte.

Die Formalisierung ist dennoch als Erfolg zu werten, da sie das KLM-Theorem
vollständig abdeckt. Die Kodierung des System C, die Definition kumulativer Mo-
delle und die Beweise für Soundness und Completeness wurden durch Coq verifi-
ziert, was die Korrektheit und Präzision garantiert. Der Ansatz ist sehr gut nachvoll-
ziehbar, da Axiome komplexe Konstruktionen vereinfachen und die Library [8] die
Implementierung ebenfalls unterstützt. Schwächen sind jedoch ebenfalls durch die
Abhängigkeit dieser Axiome gegeben und beschränken die Eigenständigkeit der
Formalisierung. Dennoch bietet unsere Arbeit eine solide Grundlage für das Ver-
ständnis nichtmonotonen Schließens und gibt eine formale Verifikation in Coq, die
für zukünftige Projekte zugänglich ist.

83

8 Zukünftige Arbeiten

Die Formalisierung des Repräsentationstheorems für kumulative Konsequenzrela-
tionen (System C) in Coq, wie in dieser Arbeit vorgestellt, bietet eine solide Grund-
lage für weitere Forschungen und Erweiterungen im Bereich des nichtmonotonen
Schließens. Neben der Vervollständigung unvollständiger Beweise und der Erweite-
rung auf andere Logiken gibt die Arbeit die Möglichkeit, das System P (Preferential
Logics), eine Erweiterung von System C, zu formalisieren. Dieser Abschnitt skiz-
ziert, wie System P eingeführt werden kann, wie die vorliegende Formalisierung
als Basis genutzt werden kann, welche Änderungen im Coq-Code erforderlich sind,
und berücksichtigt die Transitivität der Präferenzrelation, die für System P relevant
ist.

8.1 System P

Als Erweiterung des Systems C wurde 1990 von Kraus, Lehmann und Magidor [11]
das System P als präferenzielles Schlussfolgerungssystem vorgestellt. System P fügt
eine zusätzliche Regel hinzu, die nichtmonotone Schlüsse mit einer präferenziellen
Semantik formalisiert. Diese Regel lautet:

(OR)
a |∼ c b |∼ c

a ∨ b |∼ c
(Disjunktion)

Die Regel besagt, dass, wenn c üblicherweise aus a folgt und c üblicherweise aus b
folgt, dann c auch aus a∨ b folgt. So gilt zum Beispiel „Wenn es regnet, wird der Ra-
sen üblicherweise nass“ (regen |∼ nass) und „Wenn der Rasensprenger läuft, wird
der Rasen üblicherweise nass“ (sprenger |∼ nass). Da beide Prämissen zur glei-
chen Schlussfolgerung führen, folgt aus „Es regnet oder der Rasensprenger läuft“
(regen ∨ sprenger |∼ nass), dass der Rasen üblicherweise nass wird. Diese Regel
ermöglicht es, disjunktive Prämissen in nichtmonotonen Schlüssen zu behandeln,
was die Flexibilität des Systems erhöht.

Semantisch basiert System P auf präferenziellen Modellen, die im Vergleich zu
kumulativen Modellen eine striktere Präferenzrelation erfordern. Während die Prä-
ferenzrelation in System C nur irreflexiv ist, ist sie in System P sowohl irreflexiv als
auch transitiv. Die Transitivität stellt sicher, dass, wenn Zustand s1 präferierter als
s2 ist und s2 präferierter als s3, dann s1 auch präferierter als s3 ist. Dies spiegelt die
Intuition wider, dass „typischere“ Zustände konsistent bevorzugt werden.

8.1.1 Erweiterung auf System P

Die vorliegende Formalisierung von System C bietet eine robuste Basis für die Er-
weiterung auf System P, da viele Definitionen, Axiome und Beweisstrukturen wie-
derverwendet oder angepasst werden können. Die Arbeit definiert bereits kumu-
lative Modelle (CumulModel), das syntaktische System C (CumulCons), maximale
konsistente Mengen (CanonicalStates), sowie die Beweise für die Soundness

84

(soundness_klm) und Completeness (completeness_klm). Im Folgenden skiz-
zieren wir, wie diese Komponenten für System P angepasst werden können, und
zeigen grob, welche Änderungen im Coq-Code nötig sind.

Syntaktische Anpassungen Um System P zu formalisieren, muss die Regel OR
in die Definition von CumulCons in KLM_Cumulative.v integriert werden. Dies
erfordert einen neuen Konstruktor:

1 | OR : forall a b c : Formula,
2 CumulCons Γ a c ->
3 CumulCons Γ b c ->
4 CumulCons Γ (a ∨ b) c

Dieser Konstruktor repräsentiert die Disjunktionsregel und ermöglicht es, dass
a∨b |∼ c abgeleitet wird, wenn a |∼ c und b |∼ c gelten. Für den Soundness-Beweis
(KLM_Soundness.v) müsste ein neues Lemma soundness_OR hinzugefügt wer-
den, das zeigt, dass die Regel semantisch gültig ist. Ein Ansatz wäre:

1 Lemma soundness_OR :
2 forall (model : CumulModel) (a b c : Formula),
3 model : a |∼w c -> model : b |∼w c ->
4 model : (a ∨ b) |∼w c.
5 Proof.
6 [...]
7 Qed.

Dieser Beweis könnte die Tatsache nutzen, dass minimale Zustände, die a ∨ b er-
füllen, entweder a oder b erfüllen, und wendet dann die entsprechende Prämisse
an.

Semantische Anpassungen Semantisch erfordert System P die Definition von
PreferentialModel, die eine transitive Präferenzrelation haben. In KLM_Semantics.v
müsste die Definition von CumulModel angepasst werden, um die Transitivität zu
garantieren:

1 Record CumulModel : Type := {
2 States : Type;
3 Labeling : States -> Formula -> bool;
4 PreferenceRel : States -> States -> Prop;
5 PreferenceIrreflexive : forall s, ∼ PreferenceRel s s;
6 PreferenceTransitive : forall s1 s2 s3,
7 PreferenceRel s1 s2 ->
8 PreferenceRel s2 s3 -> PreferenceRel s1 s3
9 }.

85

Die bestehende Smoothness Bedingung (smoothness) bleibt erhalten, da sie auch
für System P gilt. Im kanonischen Modell (CanonicalModel) muss aber die Präfe-
renzrelation entsprechend angepasst werden:

1 Definition CanonicalPreferenceRel
2 (w1 w2 : CanonicalStates) : Prop :=
3 exists p, w1 ⊢ p /\ ∼ (w2 ⊢ p) /\
4 forall w3, (forall q, w2 ⊢ q ->
5 w3 ⊢ q) ->
6 w1 ⊢ p ->
7 w3 ⊢ p.

Dies stellt sicher, dass die Präferenzrelation transitiv ist, indem diese die Impli-
kationskette über Zustände respektiert. Der Beweis von smoothness_canonical
würde durch die Transitivität aber auch komplexer, da minimale Zustände in ei-
ner transitiven Ordnung strenger definiert sind. Die unendliche Größe des Mo-
dells bleibt eine Herausforderung, wird aber durch die bestehenden Axiome wie
exists_maximal_consistent weiterhin gehandhabt.

Unsere Formalisierung von System C bietet eine direkte Basis für System P. Die
Definitionen von Formula, Ensemble Formula, und CanonicalStates kön-
nen unverändert übernommen werden. Die Library [8] unterstützt mit Funktio-
nen wie bijection_nat_formula und valuemaxf weiterhin die Konstrukti-
on maximal konsistenter Mengen. Axiome wie canonical_satisfies_kb und
canonical_minimality sind für System P kompatibel, da sie allgemeine Eigen-
schaften des kanonischen Modells abdecken. Auch Soundness und Completeness
Beweise folgen einer ähnlichen Struktur, wobei die neue Regel OR und die Transiti-
vität die Hauptunterschiede darstellen.

8.2 Mögliche Anwendungsbereiche

Ein vielversprechender Anwendungsbereich der Formalisierung ist der Einsatz in
Expertensystemen. Dadurch, dass die Verifikation von Coq die Korrektheit des Pro-
gramms garantiert, könnte unsere Formalisierung für Expertensysteme eingesetzt
werden, beispielsweise in medizinischen Diagnosesystemen oder Entscheidungs-
unterstützungssystemen. Nichtmonotones Schließen, wie es durch System C und
System P ermöglicht wird, ist ideal für solche Anwendungen, da es Ausnahmen
und typische Schlüsse handhaben kann, wie im Beispiel „Vögel fliegen, aber Pin-
guine nicht“ aus der Einleitung illustriert. Die durch Coq gewährleistete Korrekt-
heit erhöht das Vertrauen in solche Systeme, insbesondere in kritischen Bereichen,
wo Fehler schwerwiegende Konsequenzen haben könnten. Unsere Formalisierung
könnte als Modul in größere KI-Systeme integriert werden, etwa durch Extraktion
des Coq-Codes in funktionale Programme, wie Haskell [14] oder OCaml [23], um
Schlussfolgerungsregeln direkt anzuwenden. Eine Erweiterung auf System P wür-
de die Anwendbarkeit weiter verbessern, da die präferenzielle Semantik „typische-
re“ Zustände bevorzugt, was für realistische Entscheidungsfindung in Expertensys-

86

temen nützlich ist. Zudem erleichtert die Wiederverwendbarkeit der Definitionen,
wie in der Einleitung betont, die Integration in solche Systeme und unterstützt die
Entwicklung vertrauenswürdiger KI-Anwendungen.

Das Extrahieren des Coq-Codes in OCaml oder Haskell ermöglicht es, die For-
malisierung ausführbar zu machen und in praktischen Anwendungen zu nutzen.
OCaml ist besonders geeignet, da Coq selbst in OCaml geschrieben ist und die Ex-
traktion nativ unterstützt, was zu effizientem Code für Definitionen wie CumulCons
oder SemanticEntails führt. Haskell eignet sich durch sein reines funktionales
Paradigma und starkes Typsystem, das gut zu Coq’s mathematischen Konstrukten
passt, insbesondere für Beweise wie soundness_klm. Außerdem erhöht dies die
Wiederverwendbarkeit der Formalisierung, wie in der Einleitung betont, und er-
möglicht die Integration in KI-Frameworks für Expertensysteme. Dabei bleibt die
Korrektheit durch Coq’s Verifikation erhalten, was wiederum das Vertrauen in kri-
tische Anwendungen stärkt. Der Extraktionsprozess erfolgt dabei durch Markie-
ren extrahierbarer Definitionen in Coq (zum Beispiel mit Extract Inductive),
Entfernen oder Ersetzen von Axiomen wie exists_maximal_consistent durch
konkrete Implementierungen und Verwenden des Befehls Extraction nach OCaml
oder Haskell, wie in [20] beschrieben. Der extrahierte Code kann dann mit einem
OCaml oder Haskell Compiler kompiliert werden, um die Schlussfolgerungsregeln
direkt anzuwenden.

Damit sind eine Erweiterung auf System P und die Anwendung in Expertensys-
temen vielversprechende nächste Schritte, da sie die vorliegende Formalisierung
direkt nutzen und die versehentliche Transitivität der Präferenzrelation integrieren.
Die Arbeit bietet damit eine solide Grundlage für die formale Verifikation präferen-
zieller Logiken und trägt zur Weiterentwicklung des nichtmonotonen Schließens in
Coq sowie dessen praktischer Anwendung bei.

87

Literatur

[1] Adel Mohammed Al-Odhari. Features of propositional logic. Pure Mathematical
Sciences, 10(1):35–44, 2021.

[2] Yves Bertot and Pierre Castéran. Interactive theorem proving and program develop-
ment: Coq’Art: the calculus of inductive constructions. Springer Science & Business
Media, 2013.

[3] Adam Chlipala. Certified programming with dependent types: a pragmatic introduc-
tion to the Coq proof assistant. MIT Press, 2013.

[4] Alonzo Church. A formulation of the simple theory of types. The journal of
symbolic logic, 5(2):56–68, 1940.

[5] Thierry Coquand and Gérard Huet. The calculus of constructions. PhD thesis,
INRIA, 1986.

[6] Haskell B Curry. Functionality in combinatory logic. Proceedings of the National
Academy of Sciences, 20(11):584–590, 1934.

[7] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In In-
ternational conference on Tools and Algorithms for the Construction and Analysis of
Systems, pages 337–340. Springer, 2008.

[8] Dakai Guo and Wensheng Yu. A comprehensive formalization of propositio-
nal logic in coq: Deduction systems, meta-theorems, and automation tactics.
Mathematics, 11(11), 2023.

[9] William A Howard et al. The formulae-as-types notion of construction. To
HB Curry: essays on combinatory logic, lambda calculus and formalism, 44:479–490,
1980.

[10] Laura Kovács and Andrei Voronkov. First-order theorem proving and vampire.
In International Conference on Computer Aided Verification, pages 1–35. Springer,
2013.

[11] Sarit Kraus, Daniel Lehmann, and Menachem Magidor. Nonmonotonic re-
asoning, preferential models, and cumulative logics. Artificial Intelligence,
44(1):167–207, 1990.

[12] Daniel Lehmann and Menachem Magidor. What does a conditional knowledge
base entail? Artificial intelligence, 55(1):1–60, 1992.

[13] Xavier Leroy, Sandrine Blazy, Daniel Kästner, Bernhard Schommer, Markus Pis-
ter, and Christian Ferdinand. Compcert-a formally verified optimizing compi-
ler. In ERTS 2016: Embedded Real Time Software and Systems, 8th European Con-
gress, 2016.

89

[14] Simon Marlow et al. Haskell 2010 Language Report. Haskell.org, 2010. Accessed
May 12, 2025.

[15] Christine Paulin-Mohring. Introduction to the calculus of inductive constructi-
ons. In Bruno Woltzenlogel Paleo and David Delahaye, editors, All about Proofs,
Proofs for All, volume 55 of Studies in Logic (Mathematical Logic and Foundations).
College Publications, 2015.

[16] Open Logic Project. Completeness and canonical models. Chapter, Open Logic
Project, December 2024. Revision: 6891b66, licensed under CC-BY.

[17] Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach. pear-
son, 2016.

[18] Morten Heine Sørensen and Paweł Urzyczyn. Chapter 14 - pure type systems
and the λ-cube. In Morten Heine Sørensen and Paweł Urzyczyn, editors, Lec-
tures on the Curry-Howard Isomorphism, volume 149 of Studies in Logic and the
Foundations of Mathematics, pages 343–359. Elsevier, 2006.

[19] Coq Team. Introduction the coq proof assistant htt-
ps://coq.inria.fr/doc/v8.7.2/refman/introduction.html.

[20] The Coq Development Team. The Coq Proof Assistant Reference Manual. Inria,
2025. Version 8.19, accessed 2025-04.

[21] The Coq Development Team. Tactics - The Coq Reference Manual. Inria, 2025.
Accessed: 2025-04.

[22] The Mathematical Components Team. The mathematical components library,
2025. Accessed May 25, 2025.

[23] The OCaml Team. The OCaml System: Documentation and User’s Manual. Inria,
2025. Version 5.2, accessed May 12, 2025.

[24] Philip Wadler. The girard–reynolds isomorphism (second edition). Theoretical
Computer Science, 375(1):201–226, 2007.

[25] Jonathan Heinrich Walther. Einführende Beispiele für das Beweisen mit
Coq https://github.com/jonawa-q9677453/KLMCoq, 2025. Siehe Datei
coq_examples_introduction.v.

[26] Edward N Zalta. Basic concepts in modal logic. Center for the Study of Language
and Information, 1995.

90

	Einleitung
	Theoretische Grundlagen
	Propositionale Logik
	Nichtmonotones Schließen
	System C

	Kumulative Modelle
	Smoothness-Bedingung
	Konsequenzrelation in kumulativen Modellen

	KLM-Theorem zum Kumulativen Schließen

	Coq als Beweisassistent
	Interaktives Beweisen
	Calculus of Inductive Constructions
	Produkttypen und Funktionstypen
	Induktive Definitionen
	Das Induktionsprinzip
	Rekursive Funktionen auf induktiven Typen
	Curry-Howard-Isomorphismus im CIC

	Gallina als deklarative Programmiersprache von Coq
	Syntax und Hauptsprachelemente
	Module und Strukturierung

	Beweisführung mit Taktiken
	Taktiksprache und deren Anwendung

	Semi-automatisches Beweisen

	Formalisierungsansatz
	Aufbau des Beweises
	Einbinden der Library für Propositionale Logik
	Überblick über die Formalisierungsschritte
	Darstellung der Syntax
	Kodierung propositionaler Formeln
	Induktive Definition der Syntax
	Darstellung von Wahrheitswerten

	Formalisierung von System C
	Formalisierung der fünf Grundregeln
	Definition kumulativer Konsequenzrelationen
	Hilfssätze zu den Regeln

	Modellierung kumulativer Modelle
	Definition der modellbasierten Konsequenzrelation

	Die Smoothness Bedingung formalisiert in Coq

	Coq-Beweis des Repräsentationstheorems
	Korrektheitsbeweis (Soundness)
	Reflexivity Regel
	Left Logical Equivalence Regel
	Right Weakening Regel
	Cut Regel
	Cautious Monotonicity Regel
	Induktionsbeweis der Soundness

	Vollständigkeitsbeweis (Completeness)
	Kanonisches Modell
	Existenz und Eigenschaften maximal konsistenter Mengen
	Semantische Interpretation im kanonischen Modell
	Minimalität und Smoothness im kanonischen Modell
	Hauptbeweisschritte der Completeness

	Evaluation und Diskussion
	Vollständigkeit und Korrektheit
	Komplexität der Formalisierung und Lösungsansätze
	Äquivalenzklassen als mögliche Alternative

	Fazit
	Zusammenfassung der Beiträge
	Erkenntnisse
	Bewährte Praktiken
	Potenzielle Verbesserungen und Alternativen

	Zukünftige Arbeiten
	System P
	Erweiterung auf System P

	Mögliche Anwendungsbereiche

