
Faculty of Mathematics and Computer Science Artificial Intelligence Group

Towards Computing Optimal Solutions
for Belief Base Contraction

Master’s Thesis
in partial fulfillment of the requirements for

the degree of Master of Science (M.Sc.)
in Praktische Informatik

submitted by
Sebastian Mueller

First examiner: Dr. Jandson Santos Ribeiro Santos
Artificial Intelligence Group

Advisor: Prof. Dr. Matthias Thimm
Artificial Intelligence Group

Statement

Ich erkläre, dass ich die Masterarbeit selbstständig und ohne unzulässige Inan-
spruchnahme Dritter verfasst habe. Ich habe dabei nur die angegebenen Quellen
und Hilfsmittel verwendet und die aus diesen wörtlich oder sinngemäß entnomme-
nen Stellen als solche kenntlich gemacht. Die Versicherung selbstständiger Arbeit
gilt auch für enthaltene Zeichnungen, Skizzen oder graphische Darstellungen.
Die Arbeit wurde bisher in gleicher oder ähnlicher Form weder derselben noch
einer anderen Prüfungsbehörde vorgelegt und auch nicht veröffentlicht. Mit der
Abgabe der elektronischen Fassung der endgültigen Version der Arbeit nehme ich
zur Kenntnis, dass diese mit Hilfe eines Plagiatserkennungsdienstes auf enthaltene
Plagiate geprüft werden kann und ausschließlich für Prüfungszwecke gespeichert
wird.

Yes No

I agree to have this thesis published in the library. □ □

I agree to have this thesis published on the webpage of
the artificial intelligence group. □ □

The thesis text is available under a Creative Commons
License (CC BY-SA 4.0). □ □

The source code is available under a GNU General Public
License (GPLv3). □ □

The collected data is available under a Creative Commons
License (CC BY-SA 4.0). □ □

. .
(Place, Date) (Signature)

iii

Abstract

The domain of belief change examines how a rational agent can adjust its beliefs
when new and potentially contradictory information arises. To address inconsisten-
cies in belief systems, there are two main approaches: computing minimal incon-
sistent subsets, called kernels, and computing maximal consistent subsets, called
residuals. The search for these kernels and residuals plays an important role in in-
corporating new information while maintaining basic beliefs. Several belief change
algorithms for computing kernels and residues have been proposed in the literature.
These computed kernels and residuals can be used to span a search tree that con-
tains all potential solutions for belief base contraction and make them consistent. A
major challenge remains to find the optimal solution out of all possible solutions.

In this paper, an innovative approach is presented that builds on established rank-
based methods but complements them with a unique strategy for weight computa-
tion. Rather than relying solely on ranks, this approach assigns specific values to
formulas within a belief base, including values based on inconsistency measures.
These values not only enable the ranking of possible solutions to determine the op-
timal solution, but also facilitate the implementation of a branch-and-bound strat-
egy used to explore the search tree more efficiently. The branch-and-bound imple-
mentation in this thesis includes three different pruning approaches that enable the
computation of an optimal solution that yields the maximum value, the minimum
value, or a combination of both, using different measures for the maximum and
minimum values.

Consequently, this work provides an implementation that finds optimal solutions
for both maximality and minimality problems. A maximality problem seeks to
maximize a given value within the belief base, while a minimality problem aims
to minimize a given value. Our approach shows significant advances over exist-
ing algorithms, offering an average time saving of 50% in computing kernels and
finding optimal solutions in less than half the time required by conventional meth-
ods. The implemented branch-and-bound algorithm outperforms known strategies
by efficiently pruning the search space and utilizing innovative techniques such as
divide-and-conquer and sliding window methods. This work establishes a robust
framework for belief base contraction and shows outstanding performance in both
maximization and minimization problem solving scenarios.

v

Contents

1. Introduction 1
1.1. Objectives . 2
1.2. Contributions . 3
1.3. Structure . 5

2. Background 6
2.1. Formal Preliminaries . 6
2.2. AGM Theory . 7
2.3. Belief Change . 8
2.4. Belief Base Theory . 9

2.4.1. Base Contraction . 11
2.4.2. Base Contraction Postulates . 11
2.4.3. Base Partial Meet Contraction 13
2.4.4. Base Kernel Contraction . 14

3. Related Work 16
3.1. Boolean Satisfiability Solving (SAT) . 16
3.2. Algorithms for Belief Change . 17
3.3. Expand and Shrink . 19
3.4. Hitting set tree . 22
3.5. Branch-and-Bound Algorithms . 25

4. Systems approach and strategies 27
4.1. Weight assignment . 27
4.2. Known rank-based approaches . 27
4.3. Assignment strategies . 28

4.3.1. Cardinality . 28
4.3.2. Random Value . 29
4.3.3. Inconsistency Value . 30

4.4. Branch-and-Bound Framework . 33
4.4.1. Theoretical Background . 34
4.4.2. Phases of B&B Algorithm . 34

4.5. Search strategies . 37
4.5.1. Breadth-First Search . 37
4.5.2. Depth-First Search . 38
4.5.3. Hybrid Search . 39
4.5.4. Priority-Based Search . 40

4.6. Boundary Management and Pruning 41
4.6.1. Upper Pruner . 42
4.6.2. Lower Pruner . 43
4.6.3. Best Pruner . 45

vii

5. Implementation 49
5.1. Application Architecture . 49
5.2. Verification Model . 53

5.2.1. Preprocessing . 53
5.2.2. Baseline Collection . 53
5.2.3. Value Determination . 54

5.3. Computation Model . 54
5.3.1. Initialization . 54
5.3.2. Kernel Processing . 54
5.3.3. Generation of Hitting Set Tree 55
5.3.4. Logging . 55

5.4. Advanced Expand Shrink Algorithm 56
5.4.1. Advanced Finding Kernel Algorithm 57
5.4.2. Expand phase with sliding window 58
5.4.3. Expand phase with divide-and-conquer 60
5.4.4. Shrink phase with sliding window 61
5.4.5. Shrink phase with divide-and-conquer 62

5.5. Finding Remainder Algorithm . 64
5.6. Hitting Set Tree Algorithm . 64

5.6.1. Priority-Based Search Algorithm 65
5.6.2. BFS, DFS, and HYS . 68

5.7. Branching Implementation . 70
5.8. Pruner Implementation . 71

5.8.1. Base Pruner . 71
5.8.2. Upper Pruner . 72
5.8.3. Lower Pruner . 73
5.8.4. Best Pruner . 74

5.9. Strategy combinations . 76

6. Evaluation 78
6.1. Hardware Setup . 78
6.2. Knowledge Bases . 78
6.3. Branch-and-Bound performance . 81

6.3.1. Computing Optimal Solutions - Verification 81
6.3.2. Comparative Performance Analysis 83

6.4. Advanced Find Kernel and Remainder Algorithm 88
6.4.1. Computing Remainder Value 89
6.4.2. Search Strategy Comparison 91

7. Conclusion 94

A. Annex 101
A.1. UML - Advanced Expand Shrink Algorithm Implementation 101
A.2. UML - Seach Strategy Implementation 102

viii

A.3. UML - Pruner Implementation . 103
A.4. Example Hitting Set Tree with Assigned Weights 104

ix

List of Figures

1. HS-tree for the conflict set B′ . 24
2. Color coded HS-tree for the conflict set B′ 25
3. Phases of the Branch-and-Bound Algorithm 36
4. Comparison of different search strategies using random measures . . 38
5. Exemplary Search Tree with Best Pruner 45
6. Exemplary Search Tree with Best Pruner 47
7. Application architecture . 52
8. Application strategy combinations . 76
9. Number of timeouts per knowledge base 80
10. Performance of all pruners without optimal solution constraint . . . 84
11. Performance of all pruners with optimal solution constraint 84
12. Lower pruner performance for found optimal solutions 85
13. Upper pruner performance for found optimal solutions 86
14. Best pruner performance for found optimal solutions 86
15. Number of kernels of baseline and inconsistency approach 87
16. Relative time difference between baseline and inconsistency approach 87
17. Comparison of execution time for computing kernels strategies . . . 88
18. Detailed comparison of divide-and-conquer for sliding window size 5 89
19. Detailed comparison of divide-and-conquer or sliding window size 10 89
20. Comparison of execution time for computing hitting sets with and

without remainder value . 90
21. Execution time comparison of remainder computation 90
22. Number of pruned branches in remainder computation 90
23. Comparison of optimal solutions found with remainder computation 91
24. Execution time of lower pruner with all search strategies 92
25. Execution time of upper pruner with all search strategies 92
26. Execution time of best pruner with all search strategies 92
27. Comparison of optimal solutions found with remainder computation 92
28. Class implementation of kernel finding strategy 101
29. Class implementation of the search strategy 102
30. Class implementation of the Pruners 103
31. Exemplary HST with edge elements and all three assigned weights . 104

List of Tables

1. Related Work . 20
2. Input Parameters . 49
3. Recursive Steps of the divide-and-conquer Algorithm 64
4. Overview of the sets of computed knowledge bases. 79
5. Overview of evaluated hitting sets . 80

xi

6. Overview of the sets of knowledge bases and the instances where the
optimal solution was found . 82

7. Overview of the relative performance of the algorithm in finding the
optimal solution . 83

8. Mean Execution Times for Different divide-and-conquer and sliding
window Combinations . 89

List of Algorithms

1. Algorithm expand shrink with Kernel-black-box 21
2. Find Kernel Algorithm . 57
3. Expand with sliding window . 59
4. Expand with divide-and-conquer . 60
5. Shrink with sliding window . 61
6. Shrink with divide-and-conquer . 62
7. Find Remainder Algorithm . 65
8. Priority Search (PBS) . 66
9. Breadth-First Search (BFS) . 68
10. Depth-First Search (DFS) . 69
11. Hybrid Search (HYS) . 70
12. Brancher Pseudoalgorithm . 70
13. Base Pruner Pseudoalgorithm . 72
14. Upper Pruner Implementation . 73
15. Lower Pruner Implementation . 74
16. Best Pruner Implementation . 75

xii

1. Introduction

In the area of artificial intelligence, often abbreviated as "AI", a belief system consti-
tutes a meticulously organized representation of an agent’s convictions, viewpoints,
accumulated knowledge, and underlying presumptions concerning the world. This
construct serves as a mechanism for encoding and managing an agent’s compre-
hension of its operational environment, encompassing its own capabilities and con-
straints. In essence, a belief system provides the bedrock upon which decision-
making, logical reasoning, and interactions pivot within a multitude of AI appli-
cations.

An agent’s epistemic state, as articulated in the work of Gardenfors [Gä88], char-
acterizes the assortment of beliefs held by that agent at any given juncture, offering
an abstract representation of its cognitive condition. Numerous techniques exist
to model this epistemic state. One prevalent methodology involves representing it
either as a belief set or a belief base. A belief set comprises propositions that are
logically consistent with one another, as a belief set is inherently logically closed,
while a belief base encompasses arbitrary sets of propositions.

Embedded within a model of the epistemic state, an agent may harbor diverse
epistemic attitudes toward each constituent proposition. For instance, within a
probabilistic framework, an agent may accept or reject a proposition with a specific
probability. Such acceptances or rejections precipitate changes in the agent’s beliefs,
thereby engendering an altered epistemic state. This process of belief alteration is
formalized as a function that produces a novel epistemic state predicated on both
the input and the current epistemic state [Rib13].

Example 1. A formidable challenge in the domain of belief change lies in an agent’s
imperative to determine which belief to relinquish when confronted with novel in-
formation that contradicts its existing beliefs. For instance, consider a database fea-
turing the ensuing pieces of information:

α: Every ball hit over the fence is a homerun.

β: The most recent hit sailed over the fence.

γ: The most recent hit traveled a distance of 416 feet.

δ: The fence at Coors Field measures 415 feet.

If this database is coupled with an agent capable of executing logical inferences,
the following factual inference can be drawn from the information α to δ:

ϵ: The most recent hit was a homerun.

However, suppose that the last hit turns out to be a fly-out, flagrantly contra-
dicting the established belief ϵ. Consequently, it becomes imperative to introduce
the fact ¬ϵ, that is, the negation of ϵ, into the database. However, doing so would

1

render the database inherently inconsistent. To restore consistency, certain beliefs
from the original database must be retracted. However, it is unwise to jettison all
beliefs indiscriminately, as this would entail an unnecessary forfeiture of valuable
information. Thus, a decision must be made regarding whether to retract α, β, γ, or
δ.

The crux of the problem in belief change is that pure logical considerations alone
do not offer guidance on which beliefs to relinquish; such determinations necessi-
tate additional means. What further complicates matters is that beliefs contained
within a database have logical implications. Hence, when withdrawing a belief, one
must also make judicious choices regarding which of its consequences to retain and
which to discard. For instance, if the decision is made to abandon α in the afore-
mentioned scenario, α carries with it logical entailments, including the following
two propositions:

α′: Every ball hit over the fence, with the exception of the most recent hit, is con-
sidered a homerun.

α′′: Every ball hit over the fence is a homerun, except at Coors Field.

It is evident that these propositions should not persist in the revised database.
Hence, the ability to methodically modify a belief base is crucial in resolving these
intricate challenges.

In the realm of belief base modification, finding kernels and remainders plays
a pivotal role in accommodating new information while preserving foundational
beliefs. This paper presents a novel approach that builds upon Dixon’s [Dix94] rank-
based methodology but introduces a distinct perspective centered on value-based
systems.

1.1. Objectives

The objectives of this thesis are laid out in several phases. First, there is the im-
plementation of known algorithms for finding kernels and remainders, drawing on
the work of Resina et al. [RRW14]. Next, we have the weight assignment. Rather
than relying solely on ranks, the approach in this paper assigns specific values to
each formula within a belief base, enabling the computation of kernel and remain-
der values to identify optimal solutions. Furthermore, this approach computes a
hitting set tree using the computed kernels. During the spanning set tree, the as-
signed values can be used to implement a Branch-and-Bound strategy to efficiently
find the optimal solution, saving computing resources and time. Therefore, the first
research question can be formulated as follows:

Research Question 1: How effective are the algorithms for identifying kernels in handling
belief changes according to Ribeiro [Rib13] and how can the algo-
rithm be improve

2

To answer this question, we will begin by implementing the algorithms proposed
by Ribeiro [Rib13] for finding kernels and remainders. We will then conduct a series
of tests to evaluate the accuracy and efficiency of these algorithms. To improve the
algorithms proposed by Ribeiro [Rib13], we will implement several strategies such
as sliding window and divide and conquer, as proposed by [CW15].

Research Question 2: What is the impact of different weight assignment strategies on the
computation of kernels in a belief base?

This question will be addressed by developing and implementing three phases of
weight assignment strategies: uniform weight assignment, random weight assign-
ment, and inconsistency measures according to Niskanen et al. [NKTJ23]. Each
strategy will be applied to the belief base, and the resulting kernels will be com-
puted. We will compare the outcomes in terms of cardinality, computational effi-
ciency, and the degree of inconsistency. Statistical analysis will be conducted to de-
termine which weight assignment strategy yields the most optimal and consistent
results.

Research Question 3: How does the incorporation of a Branch-and-Bound strategy influ-
ence the efficiency and outcome of the hitting set tree algorithm?

To explore this question, we will develop a hitting set tree algorithm that uses ker-
nels identified in the initial steps. We will then integrate a Branch-and-Bound strat-
egy using the weight assignment techniques. By comparing the performance of the
hitting set tree algorithm with and without the Branch-and-Bound strategy, we will
assess the improvements in computational efficiency and accuracy. Detailed per-
formance metrics will be collected and a comparative analysis will be performed to
highlight the benefits and limitations of using the Branch-and-Bound strategy.

Research Question 4: What are the key differences and patterns observed when generat-
ing hitting set trees with uniform versus random weight assign-
ment strategies?

This question will be investigated by systematically computing hitting set trees us-
ing both uniform and random weight assignment strategies. We will analyze the
results to discern any significant differences in the structure, size, and computa-
tional requirements of the generated hitting-set trees. Patterns and trends will be
identified to understand how different weight assignment strategies impact the de-
velopment and efficiency of the hitting set trees. The findings will be documented,
and their implications for optimizing belief base computations will be discussed.

1.2. Contributions

This thesis aims to address the challenges posed by the advancements and improve-
ments introduced to the field of belief base contraction and algorithm optimization.
The original contributions of this thesis are:

3

• The enhancement of known algorithms designed for computing kernels and
remainders [Rib13], by incorporating a sliding window technique and a di-
vide and conquer strategy, as proposed by [CW15]. These enhancements have
significantly increased the algorithm’s efficiency and accuracy, enabling it to
handle larger and more complex belief bases with improved performance.

• The development of an algorithm for the assignment of values within belief
bases. This was achieved through three distinct approaches:

– Cardinality: Each element was assigned a value of 1, facilitating the com-
putation of the cardinality of kernels.

– Random Assignment: Values were randomly assigned to each element,
providing a varied approach to weight assignment that supports robust
experimentation and analysis.

– Inconsistency Weight Assignment: An advanced algorithm was imple-
mented to assign an random measure to each element, based on the work
of Kuhlmann et al. [KGLT23]. This approach quantifies the degree of
inconsistency associated with each formula, providing a deeper under-
standing of the belief base dynamics.

• The development of an advanced hitting-set (HS) tree algorithm designed to
generate a comprehensive HS-tree using various search strategies. This in-
cludes a hybrid search that dynamically switches between depth-first and
breadth-first searches, as well as a priority-based search that prioritizes
branches based on their assigned values. By utilizing the identified kernels
to construct the tree, this algorithm offers a structured and efficient approach
to managing belief base modifications. The implementation of this sophisti-
cated HS-tree algorithm provides a robust foundation for further analysis and
optimization in belief base processing, enhancing the ability to handle com-
plex and dynamic belief systems effectively.

• The integration of a Branch-and-Bound strategy into the hitting-set tree algo-
rithm. This strategy leverages the assigned values to intelligently navigate the
search space, selectively exploring the most promising branches and thereby
enhancing the efficiency and effectiveness of the algorithm. The Branch-and-
Bound strategy has been shown to significantly reduce computational over-
head and improve the speed of finding optimal solutions.

• The implementation of an algorithm designed to find the optimal solution for
the contraction of the belief base. This algorithm builds on previous contribu-
tions, using improved kernel and remainder computation, weight assignment
strategies, and the optimized hitting-set tree algorithm. The result is a power-
ful and efficient tool for the contraction of the belief base that provides optimal
solutions with improved accuracy and reduced computational requirements.

4

1.3. Structure

The thesis is structured into several chapters. Section 1 presents the introduction,
followed by Section 2, which lays out the theoretical foundation of belief base theory,
belief base contraction, hitting set trees, and advanced stratagies. Section 3 cover
related work found in the current literature, which will be analyzed and discussed.
Section 4 provides an overview of the approach of this thesis and the fundamentals
of the Branch-and-Bound Framework. In Section 5 we describe the implementation
of our system and improvements, which will be evaluated in Section 6. Finally, in
Section 7, we present our conclusions and findings and provide an outlook on future
work.

5

2. Background

The purpose of this chapter is to present the fundamental concepts of belief change
and the corresponding belief change operators. Additionally, we will discuss the
algorithms and strategies used to identify kernel and remainder sets in belief bases.
This chapter starts with formal preliminaries and then introduces the AGM theory,
providing the foundational knowledge required to understand the subsequent dis-
cussions on belief change methodologies and processes.

2.1. Formal Preliminaries

In the rest of this thesis, we will utilize the following definitions and concepts, be-
ginning with the definition of a (propositional) atom.

An atom is a basic proposition that can either be true or false and does not contain
any logical connectives. Atoms are represented by lower case Latin letters or by
capital Latin letters followed by an Arabic number. For example:

p: The sky is blue.
q: It is raining.

The truth values true and false in propositional logic are sometimes denoted by 1
and 0, respectively. A signature is a finite set of atoms.

A propositional formula is constructed from atoms using the following logical con-
nectives:

• ¬ (negation)

• ∧ (conjunction)

• ∨ (disjunction)

• → (implication)

• ←→ (equivalence)

Given a specific truth assignment to the atoms in a formula, the formula can be
either true or false. Propositional formulas are denoted by lower case Greek letters,
as follows:

α: p
β: ¬p ∨ q

A literal is an atom or the negation of an atom.
The set of all atoms occurring in a given propositional formula α, i.e., its signature,

is denoted by Var(α).
A propositional logic language L on a set of atoms σ, denoted as Lσ, consists of the

set of all propositional formulas that can be formed from the signature σ.

6

An interpretation M that makes a formula α true is called a model of α, denoted
by M |= α. The set of all models of α is expressed by Mod(α).

For the remainder of this thesis, we will use the following concepts of entailment
and satisfiability in propositional logic.

Definition 1. The expression α |= β states that β is an entailment of α, meaning
that every interpretation (assignment of truth values to variables) that makes α true
also makes β true. This can be expressed as Mod(α) ⊆ Mod(β). Similarly, a set
of formulas B entails a formula α (denoted as B |= α) if every interpretation that
makes all formulas in B true also makes α true.

A set of formulas B is satisfiable if there exists an interpretation that makes all the
formulas in B true. Conversely, it is unsatisfiable if no such interpretation exists.

Definition 2. Let B be a belief set or belief theory in a propositional logic language L
and let the consequence operator Cn() be defined as: Cn(X) = {α ∈ L | X |= α}.
Then A is a deductively closed set of beliefs if A = Cn(A).

A belief is represented by a propositional formula, and an arbitrary set of beliefs,
also known as a belief base, is considered to be the logical conjunction of its mem-
bers.

2.2. AGM Theory

The starting point of belief change was the landmark paper from 1985 by Alchur-
rón, Gärdenfors and Makinson [AGM85]. With their work, the authors have cre-
ated a basis for the investigation of changes in belief states and databases [FH11],
commonly known as the AGM theory. The AGM theory provides a formal frame-
work for examining changes in epistemic states, which are depicted as logically
closed sets of sentences. These sets of sentences, embodying an agent’s epistemic
state, are termed belief sets. Assuming agents operate within a certain logic ⟨L , Cn⟩
that adheres to the AGM assumptions, these belief sets are collections of sentences
that remain consistent under logical implication. In other words, given the logic
framework ⟨L , Cn⟩, a belief set K fulfills the condition K = Cn(K), or equivalently,
K ∈ KL .

The AGM theory contemplates three distinct epistemic attitudes toward a
sentence. For a given belief set K of an agent, the sentence α can be:

accepted: if α ∈ K.
rejected: if α /∈ K and K ∪ {α} is inconsistent.
indeterminate: if α /∈ K and K ∪ {α} remains consistent.

Given a belief setKwithin the logic ⟨L , Cn⟩, the symbols K+α, K−α, andK∗α
signify the belief set resulting from an expansion by α, a contraction by α, and a
revision by α, respectively, as explained in more detail as follows.

7

Expansion is the simplest of those operations and can be achieved using the fol-
lowing formula:

K + α = Cn(K ∪ {α})

Revision entails the steadfast acceptance of a sentence α. In addition to ensuring
the acceptance of the input (α ∈ K∗α) and the coherence of the resulting set of beliefs
(K ∗ α is consistent), revision must also ensure that the alteration is carried out in
a manner that is as minimal as possible. Unlike expansion, revision is significantly
more intricate due to its incorporation of ”extra-logical” elements.

Contraction involves eliminating a sentence α from the belief set K. In addition to
ensuring that the input becomes indeterminate in the updated belief set (α /∈ K−α),
contraction should also ensure that K − α remains a valid belief set and that the
modification is conducted with a degree of minimalism. The process of contraction
is further influenced by non-strictly logical considerations.

Example 2. In a time when the geocentric model, with Earth at the center of the
universe, dominated astronomy, Nicolaus Copernicus proposed the revolutionary
heliocentric model, placing the Sun at the center. Despite resistance from the scien-
tific community, Copernicus recognized the need for a paradigm shift in cosmology.
This shift required more than logical criteria; it demanded a fundamental reassess-
ment of established beliefs. The resulting Copernican Revolution transformed our
understanding of the universe, illustrating the complexity of belief revision and the
broader scope of scientific discovery.

Yet, the process of choosing which beliefs to discard during this revision cannot
be guided solely by logical criteria. Consequently, revision must be characterized
through a collection of rationality postulates, distinct from the way expansion was
defined. In this context, revision is established by adhering to a set of principles
that govern rational updating of beliefs. The postulates that govern this process are
described in Section 2.3.2.

2.3. Belief Change

An epistemic input can cause a belief change to be processed as an operation. An
input can trigger the following three operations [Rib13].

expansion: makes the agent accept a new sentence.
revision: makes the agent accept a new sentence in a consistent manner.
contraction: makes the agent abandon the belief in a sentence.

Expansion, as already mentioned, represents a straightforward operation involv-
ing the acceptance of a sentence α. In contrast, revision demands consistent accep-
tance of the sentence α, even when it conflicts with the existing belief baseK. This is
done under the condition that the revised belief base maintains coherence and thor-
oughness concerning logical implications. On the other hand, contraction entails
the systematic removal of the previously held sentence α from the belief baseK. The

8

challenge in contraction lies in determining which accompanying sentences should
be rejected along with α to ensure that the resulting belief base remains closed con-
cerning logical consequences.

Among these three operations, expansion is uniquely determined. However, in
contrast, both contraction and revision are guided by sets of postulates [AGM85]. In
these operations, certain axioms — fundamental principles that form the basis of the
logical system — might be discarded, leading to occasional situations where only
a solitary plausible choice emerges. Nonetheless, this introduces one of the most
distinct elements of the AGM theory: the rationality postulates. These postulates,
which will be explored in the upcoming sections, play a pivotal role in shaping the
theory’s foundation.

The study of belief revision focuses on understanding how an agent’s epistemic
state dynamically evolves, specifically how its attitudes toward elements in the
model change due to an external trigger known as epistemic input. For our pur-
poses, we are primarily concerned with the effect of this input on the agent’s epis-
temic state.

Transitioning from belief sets to belief bases offers a more nuanced and flexible
approach to epistemic reasoning. While belief sets provide a foundational under-
standing of an agent’s epistemic state, belief bases add an extra dimension of com-
plexity and adaptability.

Belief bases, in essence, represent a broader perspective on how an agent’s beliefs
are structured and managed. Unlike belief sets, which are defined as logically closed
sets of sentences, belief bases encompass arbitrary collections of sentences without
the stringent requirement of logical closure. This flexibility allows belief bases to
capture a wider range of epistemic states, accommodating situations where beliefs
might not adhere to strict logical consistency.

The transition from belief sets to belief bases acknowledges that in real-world
scenarios, an agent’s beliefs may encompass a diverse array of statements, some
of which might not be immediately subject to logical closure. By transitioning to
belief bases, we allow for a more nuanced understanding of belief dynamics, where
epistemic attitudes can encompass a broader spectrum of acceptance, rejection, or
indeterminacy, without the requirement that all logical consequences of the beliefs
are included.

Building on the foundations of belief sets, the introduction of belief bases en-
hances our understanding of belief revision and the rationality postulates that guide
it. This approach introduces a new set of principles and considerations for ma-
nipulating and transforming belief bases, providing a more detailed framework for
studying belief dynamics.

2.4. Belief Base Theory

Belief base theory studies the dynamics of epistemic states represented as arbitrary
sets of sentences B. It studies a belief system that admits four types of epistemic

9

attitudes with respect to a sentence α:

reject: α is not consistent with B.
explictly accept: α ∈ B.
implicitly accept: α ∈ Cn(B), but α /∈ B,
undetermined: α consistent with B and α /∈ Cn(B).

If α ∈ Cn(B), we will simply say that α is accepted, i.e., α is accepted if it is
implicitly or explicitly accepted.

Belief base theory encompasses the same three fundamental modes of belief
change as AGM theory: expansion, revision, and contraction. In the context of ex-
pansion, a statement α transitions to an accepted state, defined simply as B + α =
B ∪ {α}. Just as in AGM theory, the processes of contraction and revision are rigor-
ously articulated through a set of rationality postulates.

However, it’s worth noting that terminology in the realm of belief systems can
be nuanced. Some scholars, like Refenes [Ref91], employ the term belief base to de-
scribe a finite representation of a belief set. Our perspective diverges from Refenes’
approach and aligns with authors such as Fuhrmann, Hansson, and Wassermann
[Fuh96, Han99, Was99]. In the paradigm advocated by this second group of schol-
ars, belief bases represent a distinct belief system. Within this framework, the
agent’s explicit beliefs are demarcated from those that emerge solely as conse-
quences of these explicit convictions.

To illustrate the distinction between the belief set and belief base approaches, con-
sider the following example:

Example 3. Extending our exploration of belief revision in Copernicus’s paradigm-
shifting work, imagine Copernicus firmly believes in the heliocentric model (α) as
the cornerstone of his cosmological theory. He also holds another belief (β) about
predictable planetary positions based on this model. In his worldview, these beliefs
culminate in the central tenet α↔ β, signifying their intrinsic connection. However,
as Copernicus continues his observations, he discovers a discrepancy (¬β) contra-
dicting his predictions. He faces a dilemma: whether to retain both α and α↔ β or
reassess his beliefs in light of this empirical contradiction.

In the belief set approach, Copernicus confronts a critical decision. Both α and
α ↔ β are elements within his belief set, and he cannot reconcile the empirical
evidence of ¬β with these existing beliefs. He recognizes that maintaining both α
and α ↔ β simultaneously is untenable, and a choice must be made. However, the
removal of α ↔ β does not occur automatically; it hinges on a deliberate selection
mechanism.

Contrastingly, within the belief base approach, the situation is more streamlined.
The sentence α ↔ β is derived from the other beliefs, primarily α and β. When
Copernicus acknowledges the empirical anomaly (¬β), the logical structure of belief
bases ensures that α ↔ β is automatically removed. This immediate revision is
guided by the inherent dynamics of belief bases, simplifying the process of belief

10

management in the face of empirical evidence.
Both approaches offer distinct advantages. In the belief set approach, equivalent

epistemic states are treated uniformly, abstracting away from the syntactic form of
beliefs. Conversely, the belief base approach offers greater expressiveness and holds
heightened computational intrigue.

2.4.1. Base Contraction

This section introduces the concept of contraction using a set of rationality princi-
ples known as AGM postulates for contraction. Subsequently, we will explore spe-
cific approaches to contraction known as the ”partial meet contraction” and ”kernel
contraction” operation. Both the aforementioned postulates and the construction
of partial meet were initially put forth in the seminal work by Alchourrón et at.
[AGM85], wherein Hansson introduced kernel contraction [Han94]. Additionally,
this section will encompass the representation theorem that establishes the connec-
tion between the construction and the postulates, as presented in the same sources.

2.4.2. Base Contraction Postulates

When an agent begins to question the validity of some of its beliefs, it embarks on
a process known as contraction, which essentially corresponds to the act of open-
mindedness.

Consider the following example to illustrate this concept:

Example 4. Imagine a seasoned physicist who has dedicated years to a particular
theory of particle physics, firmly convinced that it provides the most accurate de-
scription of the universe’s fundamental building blocks. However, at a scientific
conference, the physicist encounters a new, intriguing theory proposed by a young
researcher. This theory challenges some of the core tenets of the physicist’s long-
standing beliefs. Instead of dismissing it outright, the physicist decides to exercise
open-mindedness. They engage in the process of contraction, temporarily setting
aside their deep-seated convictions in favor of exploring the new theory with an
unbiased perspective. This act of contraction allows the physicist to consider alter-
native viewpoints, fostering a spirit of scientific inquiry and discovery. It exempli-
fies the essence of open-mindedness within the realm of scientific exploration.

Belief base contraction is an operation within a belief base B that renders a
sentence α indeterminate. In essence, an agent, who initially accepts (implicitly or
explicitly) the sentence α, should, after contraction, hold no definitive stance on α.
Additionally, it is preferable that the modification to the agent’s belief base remains
as minimal as possible. Fermé and Hansson [FH18] have delineated the postulates
that a contracted belief base B must adhere to, and these postulates are as follows:

(success) If α /∈ Cn(∅) then α /∈ Cn(B − α)

11

The success postulate ensures that if contracting α from B, then the contracted
belief base B′ should be consistent and α should become undetermined.

(inclusion) B − α ⊆ B

Inclusion means that when contracting α from B, the resulting base B − α
should always be a subset of B. In other words, you should never end up believing
fewer things than you did before the contraction. This postulate ensures that your
belief contraction does not lead to losing beliefs but rather refines or narrows down
your beliefs while staying within the scope of what you originally believed.

(relevance) If β ∈ B and β /∈ B − α, then there is a B′ such that
B − α ⊆ B′ ⊆ B and α /∈ Cn(B′), but α ∈ Cn(B′ ∪ {β})

The relevance postulate means that if you keep believing something while re-
moving another belief, there should be a way to do it in a way that does not make
the removed belief immediately true again. But when you add back the original
belief, the removed belief should become true once more. This postulate ensures
that your beliefs are consistent and that the removal or contraction of beliefs is done
in a way that maintains logical coherence.

(uniformity) If p ∈ Cn(B′) if and only if q ∈ Cn(A′) for all subsets A′ of A,
then A− p = A− q.

If two beliefs (p and q) have the same logical consequences in all possible
subsets of your beliefs (B′ of B), then when you remove or contract either p or q
you should end up with the same remaining set of beliefs (A− p = A− q). In other
words, if the consequences of p and q are consistently the same in all situations,
then removing either of them should lead to the same final set of beliefs.

(core-retainment) If β ∈ B and β /∈ B − α, then there is a B′ such that
B′ ⊆ B and α /∈ Cn(B′), but α ∈ Cn(B′ ∪ {β})

If you believe something (β) and that belief persists even after you have re-
moved or contracted another belief (α), then there must be a way to retain your
original beliefs (B′) such that α is not logically implied by your retained beliefs, but
adding back β to your retained beliefs makes α logically implied again. In simpler
terms, it means that if you keep believing something while removing another belief,
there should be a way to do it so that the removed belief does not immediately
become true again. But when you add back the original belief, the removed belief
should become true once more.

Example 5. Suppose we have a belief base represented by the following set of propo-
sitional formulas:

B = {p ∧ q,¬r, s ∨ t}
Now, let’s consider applying the aforementioned postulates to this belief base. A

12

possible contraction that satisfies all postulates is:

B′ = {p ∧ q, s ∨ t}

• Success: Here, ¬r has been removed, and the belief base remains consistent.

• Inclusion: In this case, the belief base B′ is a proper subset of B.

• Relevance: Here, we have removed ¬r because it was not relevant to the re-
maining formulas.

• Uniformity: In this case, the formula ¬r is the same in all contexts, so we
removed it from B′

• Core-retainment: In this case, the core beliefs are p ∧ q and s ∨ t, so we must
retain them in B′. The core-retainment postulate ensures that the core beliefs
remain unchanged during contraction.

Consequently, we can effectively characterize belief base contraction with just
four postulates: success, inclusion, uniformity, and a minimality criterion, which
can be either relevance or core-retainment. Each potential minimality criterion
aligns with one of the constructions presented in the subsequent sections. Specif-
ically, the former corresponds to partial meet contraction, while the latter aligns
with kernel contraction.

2.4.3. Base Partial Meet Contraction

The first kind of contraction operation that will be present in this section is known
as partial meet contraction and was originally presented in [AGM85]. This construc-
tion is based in the concept of remainder set, that is a set of maximal subsets (of a
given set) that fails to imply a given sentence.

Definition 3. Let B be a set of sentences and α a sentence. The set B⊥α (B remain-
der α) is the set of sets such that X ∈ B⊥α if and only if:

a) X ⊆ B

b) X ⊬ α

c) For all X ′ such that X ⊂ X ′ ⊆ B, X ′ ⊬ α.

B⊥α is called the remainder set of B by α, and its elements are the remainders of
B by α. From the definition of B⊥α, it follows that:

• B⊥α = {B} if and only if B ⊬ α.

• B⊥α = ∅ if and only if ⊢ α.

13

The first statement means that the set of remainders of B by α, denoted as B⊥α,
contains only one element, which is the set B itself, if and only if B is not logically
consistent with α. In other words, if adding α to B does not result in a consistent
set (B ⊬ α), then the remainder set B⊥α will consist of just the original set B. This
implies that adding α does not change the inconsistency of B. The second statement
means that the set of remainders of B by α, denoted as B⊥α, is empty (contains no
elements) if and only if α is logically provable (derivable) from B. In other words,
if α can be derived from B(⊢ α), then there are no remainders of B by α; adding α
does not leave any sentences in B. Conversely, if B⊥α is empty, it means that α can
be logically derived from B.

The partial meet contraction is obtained by intersecting some elements of the re-
mainder set. The choice of those elements is performed by a selection function.

Definition 4. Let B be a set of sentences. A selection function for B is a function γ
such that, for all sentences α:

a) If B⊥α ̸= ∅, then γ(B⊥α) is a non-empty subset of B⊥α.

b) If B⊥α = ∅, then γ(B⊥α) = {B}.

A partial meet contraction is obtained by intersecting the elements chosen by the
selection function.

Definition 5. Let B be a set of sentences and γ a selection function for B. The
partial meet contraction on B that is generated by γ is the operation −γ such that
for all sentences α:

B −γ α =
⋂

γ(B⊥α).

An operator − on B is a partial meet contraction if and only if there is a selection
function γ for B such that for all sentences α: B − α = B −γ α.

2.4.4. Base Kernel Contraction

The partial meet contraction operators on a set B are founded upon the selection of
maximal subsets of B that do not entail α. An alternative approach involves con-
structing a contraction operator based on the selection of elements within B that do
entail α and then discarding them during the contraction of B by α. This alternative
approach was introduced by Hansson in [Han94], resulting in a new contraction
operator known as kernel contraction. Kernel contraction can be viewed as a gen-
eralization of the safe contraction initially defined by Alchourrón and Makinson in
[AM85].

Kernel contraction relies on the selection of sentences within a set B that actively
contribute to the entailment of α, and how this selection is employed during the
contraction by α. Formally:

Definition 6. Let B be a belief base, i.e., B ⊆ L, and let α ∈ L. The set B⊥⊥α is a set
such that X ∈ B⊥⊥α if and only if:

14

a) X ⊆ B.

b) α ∈ Cn(X).

c) if X ′ ⊂ X , then α /∈ Cn(X ′).

B⊥⊥α is called the kernel set of B with respect to α and its elements are the α-
kernels of B.

To contract a belief from α from a set B one must give up sentences in each α-
kernel, otherwise α would continue being implied by B. The so-called incision
function selects the beliefs to be discarded.

Definition 7. Let B be a set of sentences. An incision function σ for B is a function
such that for all sentences α:

a) σ(B⊥⊥α) ⊆
⋃
(B⊥⊥α).

b) If ∅ ≠ X ∈ B⊥⊥α, then X ∩ σ(B⊥⊥α) ̸= ∅.

Definition 8. Let σ be an incision function for a belief base B. The kernel contraction
operation −σ is formally defined as:

B −σ α = B \ σ(B ⊥⊥ α)

Example 6. Let B = {p, p ∨ q, p ↔ q, r}. Suppose that we intend to contract B by
p ∧ q. The elements of the kernel set of B with respect to p ∧ q are the minimal
subsets of B that imply p ∧ q. Hence B⊥⊥(p ∧ q) = {{p, p ↔ q}, {p ∨ q, p ↔ q}}. An
incision function must choose at least one sentence from each element of B⊥⊥(p∧ q).
An example of an incision function is σ(B⊥⊥(p ∧ q)) = {p ∨ q, p ↔ q}. In this case,
B − σ(p ∧ q) = B \ {p ∨ q, p↔ q} = {p, r}.

In summary, belief base theory provides a comprehensive framework for under-
standing the dynamics of belief change, encompassing expansion, revision, and
contraction. This framework helps differentiate between explicitly and implicitly
accepted beliefs, as well as those that are rejected or undetermined. The theories
and examples discussed illustrate the complexities and nuances of managing belief
systems. In the related work section, we will explore various algorithms developed
for belief base contraction. These algorithms, along with their methodologies and
implications, will be analyzed and discussed in detail.

15

3. Related Work

This chapter reviews the literature relevant to this thesis, categorizing and present-
ing key research contributions.

3.1. Boolean Satisfiability Solving (SAT)

A SAT solver is a tool designed to solve instances of the NP-complete Boolean sat-
isfiability problem [BHV21]. The Boolean satisfiability problem involves determining
whether there exists a truth assignment to the variables in a propositional formula
(a model) that makes the formula true. Most SAT solvers not only determine the sat-
isfiability of a formula but also provide a possible solution, i.e., a model, if the for-
mula is satisfiable. A common input format for SAT solvers is the DIMACS format,
where variables are represented by consecutive natural numbers and the formula is
in Conjunctive Normal Form (CNF).

Definition 9. Let a propositional formula in Conjunctive Normal Form (CNF) be a
conjunction of one or more disjunctions, where the disjunctions’ disjuncts are liter-
als. These disjunctions are commonly referred to as clauses. We denote the set of
clauses of a CNF formula β by C(β).

Every propositional formula can be converted to CNF. The naive approach in-
volves repeatedly applying Boolean transformation rules to the initial non-CNF for-
mula until a CNF formula is obtained. Although this method is guaranteed to work,
it can result in an exponential increase in the number of clauses. Therefore, more ef-
ficient methods have been proposed in the literature. One such method is the Tseitin
transformation [Tse83], which produces a CNF formula that is equisatisfiable with
the initial formula, with only a linear increase in the number of clauses (proportional
to the size of the original formula). The Tseitin transformation introduces new aux-
iliary variables, which become part of the resulting CNF formula. The number of
these new variables is also linear relative to the size of the original formula.

In each clause of the formula, the logical connective ∧ between literals is omitted,
and a ’0’ is appended to the end to mark the end of the clause. Typically, each line
contains one clause, while ’-’ marks a negation. Comment lines start with a ’c’. There
is a problem line at the beginning of each DIMACS instance that has the following
form:
p cnf <variables> <clauses> where <variables> is the number of dis-

tinct variables (i.e., the highest variable) in the encoding, and <clauses> is the
total number of clauses.

Example 7. Let B be a belief base with the following set of formulas:

B = {A0 ∨ ¬A1, A1 ∨A2,¬A0 ∨ ¬A2}

The DIMACS instance of B can be generated by using the Tseitin transformation as
follows:

16

p cnf 6 12
-4 1 -2 0
4 -1 0
4 2 0
-5 2 3 0
5 -2 0
5 -3 0
-6 -1 -3 0
6 1 0
6 3 0
4 0
5 0
6 0

This SAT instance has three auxiliary variables and is satisfiable with the model
{−1,−2, 3, 4, 5, 6}.

In this thesis, we use a SAT solver to determine whether B |= α by applying the
contrapositive approach: B does not entail α if there exists an interpretation that
makes all clauses in B true while making α false. This is equivalent to checking if
B ∪ ¬α is satisfiable. If B ∪ ¬α is satisfiable, there exists an interpretation where B
is true and α is false, indicating that B does not entail α.

We utilize a SAT solver, such as MiniSat, to determine the satisfiability of a set of
clauses. By inputting B ∪ ¬α into the SAT solver, we can check for the existence
of an interpretation where B is true and α is false. If the SAT solver finds B ∪ ¬α
unsatisfiable, it means no such interpretation exists, and thus B |= α.

To verify whether B |= α, the SAT solver is invoked with B ∪ ¬α to check its
satisfiability. The results from the SAT solver can be interpreted as follows:

• If B ∪ ¬α is unsatisfiable, then B entails α.

• If B ∪ ¬α is satisfiable, then B does not entail α.

3.2. Algorithms for Belief Change

This section covers a comprehensive overview of various references is provided that
have implemented algorithms for finding a kernel or remainder set in belief bases
or belief sets.

Table 1 presents various references and their methodologies to compute both the
kernel and remainder in belief revision. Several strategies have been employed over
the years, each with its own characteristics and approaches. The following shall give
a short overview of the strategies used to compute a kernel or remainder set.

17

1. Maxichoice:

The Maxichoice strategy emphasizes the identification of the largest possible
consistent subset of the belief base. This approach, by focusing on maximal
consistent sets, ensures that as much of the original information as possible is
retained while integrating new, potentially conflicting data.

2. Minimal cuts:

This strategy operates by determining the smallest subsets of the belief base
that, when removed, restore consistency with the new information. By focus-
ing on minimal alterations to the belief base, it strives to disturb the original
set of beliefs as little as possible.

3. Hitting set tree:

A hitting set tree, first introduced by [Rei87], is a systematic way to explore all
minimal inconsistent subsets (MIS) of the belief base. For every MIS, a hitting
set identifies at least one belief from it to be removed to restore consistency.
The tree structure allows for an organized traversal of all possible hitting sets,
ensuring a comprehensive exploration.

4. sliding window: This approach involves examining the belief base using a
“window” of a fixed size that slides across it. Within each window, the method
checks for inconsistencies and revises beliefs as needed. By doing so, it can ef-
ficiently handle large belief bases by focusing on smaller, manageable sections
at a time.

5. divide-and-conquer:

Drawing inspiration from the classic algorithmic paradigm, this strategy
breaks the belief base into smaller parts, resolves inconsistencies in each, and
then merges the results. This modular approach can offer improved efficiency
and scalability, especially for large and complex belief bases.

6. Expand and Shrink:

Beginning by expanding the belief base with the new information, any con-
tradictions are then addressed by subsequently “shrinking” the belief set, re-
moving beliefs that contribute to inconsistencies.

7. Binary Search:

Employing a binary search mechanism, this strategy repeatedly divides the
belief base into two halves, determining which half contains the inconsistency
and then further narrowing down until the source of contradiction is isolated.

These algorithms employ different strategies, as shown in Table 1, and logic
frameworks to tackle the problem of identifying kernels and remainders in formal

18

contexts. Table 1 summarizes the related work of implementations, highlighting
various strategies and logic frameworks used by different authors.

Table 1 lists a range of references along with the year of publication, the strategies
they used (such as described above), and the type of logic framework employed
(FOL, DL, OWL, CPL).

• FOL (First-Order Logic): A formal logical system used in mathematics, philos-
ophy, linguistics, and computer science. It provides a framework for defining
logical relations among objects and is used for reasoning about the properties
of these objects.

• DL (Description Logic): A family of formal knowledge representation lan-
guages designed for representing knowledge about the world and reasoning
about it. DLs are used in artificial intelligence to describe the concepts and
relationships within a domain and are the basis for ontology languages such
as OWL.

• OWL (Web Ontology Language): A language designed for use by applica-
tions that need to process the content of information instead of just presenting
information to humans. It is used for representing rich and complex knowl-
edge about things, groups of things, and relations between things.

• CPL (Classical Propositional Logic): A type of logic where formulas repre-
sent propositions that can either be true or false. It is used in various areas of
computer science and mathematics for problem-solving and logical reasoning.

Table 1 clearly shows the variety of methods and frameworks used by different
researchers over the years to address the problem of belief base contraction. Each
dot in the table indicates the use of a specific strategy or logic framework in the
corresponding reference.

Each strategy has its own advantages and is tailored to specific types of problems
or belief bases. The choice of strategy depends on the nature of the belief base, the
context of the revision, and the desired outcomes.

3.3. Expand and Shrink

A major objective of this thesis will be focused on algorithms for finding kernels, for
example Algorithm 1 as introduced by Ribeiro [Rib13].

This algorithm, called "Expand-shrink with Kernel-black-box", uses the strat-
egy of expanding and shrinking strategy as explained above. This algorithm is a
straightforward example for an expand and shrink algorithm because both phases,
the expand and shrink phase is done iteratively, meaning element by element. The
expand and shrink phases can be altered by using one of the strategies included
in Table 1, like sliding window or divide-and-conquer, as proposed by Cobe and
Wassermann [CW15] for remainder sets.

19

Strategy Logic

Reference Year K
er

ne
l

R
em

ai
nd

er

M
ax

ic
ho

ic
e

M
in

im
al

cu
ts

H
it

ti
ng

tr
ee

se
t

sl
id

in
g

w
in

do
w

di
vi

de
-a

nd
-c

on
qu

er

Ex
pa

nd
/S

hr
in

k

Bi
na

ry
se

ar
ch

Lo
gi

c
Fr

am
ew

or
k

[DW93] 1993 • • FOL
[Dix94] 1994 • • • FOL
[Jun01] 2001 • • N/A
[Kal06] 2006 • • • • OWL, DL

[KPHS07] 2007 • • • • • OWL, DL
[QHH+08] 2008 • • DL
[SQJH08] 2008 • • • • OWL, DL
[JQH09] 2009 • • • DL
[Moo10] 2010 • • • • • DL
[Hor11] 2011 • • • • • DL
[Rib13] 2013 • • • • CPL

[RRW14] 2014 • • • • DL
[CW15] 2015 • • • • OWL
[JBQ19] 2019 • • DL
[Gui20] 2020 • • • • DL

Table 1: Related work of Implementations

Algorithm 1 takes a belief base B and a sentence α and computes an α-
Kernel of B. The algorithm consists of two phases. The expand phase
in the function Expand-shrink() and the shrink phase in the procedure
Kernel-black-box().

The algorithm processes the input as follows:
In line 3 B′ is initialized as an empty set. In lines 4 and 5 a loop is called which

adds each element β from B to B′, if B′ entails α until B′ is equal to B. This is a very
simple expand technique that checks each element of B, namely each β, separately.
In line 6 the algorithm checks if B′ entails α. In lines 7 and 8 the algorithm proceeds
with the shrink phase by calling the "Kernel-black-box" procedure with B′ and α as
arguments.

The procedure in line 9 aims to find a subset of B′ which entails α. In line 11 the
procedure checks for each β in B′, if A1 is entailed by B′ \ {β}. If so, β is removed
from B′ (line 12 and 13).

Algorithm 1 from Ribeiro [Rib13] will be explained using the following exemplary

20

Algorithm 1: Algorithm expand shrink with Kernel-black-box
Input: B,α
Output: Result of the expand shrink algorithm

1 Function Expand-shrink(B,α):
2 Heuristic to find one element of B ⊥⊥ α
3 B′ ← ∅
4 for β ∈ B do
5 B′ ← B′ ∪ {β}
6 if α ∈ Cn(B′) then
7 Shrink
8 return Kernel-black-box(B′, α)

9 Procedure Kernel-black-box(B,α):
10 Find one element of the kernel B ⊥⊥ α
11 for β ∈ B do
12 if α ∈ Cn(B \ {β}) then
13 B ← B \ {β}

14 return B

belief base.

Example 8. Let B be the set defined as:

B = {A0,

¬A0 ∨A1,

¬A1 ∨A2,

¬A0 ∧ ¬A1,

A1 ∧ ¬A2,
¬A0 ∨ ¬A1}

and let α be defined as:
α = A1

The algorithm:

1. starts with an empty set B′ (line 3).

2. Iterates over the elements of B (line 4).

3. Inserts A0 (line 5) and checks that A1 /∈ Cn(B′) (line 6).

4. Inserts ¬A0 ∨ A1 (line 5) and checks that A1 ∈ Cn(B′) (line 6).

5. Calls the procedure Kernel-black-box with inputs B′ and A1 (line 8).

21

6. Checks that A1 /∈ Cn(B \ {β}) (line 12).

7. Checks that A1 /∈ Cn(B \ {β}) (line 12).

The resulting α-kernel k1 is

k1 = {A0,¬A0 ∨A1}

The α-kernel we have found serves as a starting point for constructing a hitting
set tree, which will enable us to systematically investigate the potential solutions
for a contraction of B. In the subsequent section, we will dive into the concept of
hitting set trees in more detail and discuss how they can be employed to identify the
optimal solution.

3.4. Hitting set tree

In this section we will outline the fundamentals of the hitting set tree as proposed
by Reiter [Rei87]. According to Reiter [Rei87] a hitting set is defined as follows:

Definition 10. A hitting set is some subset of the component set U that contains at
least one element of each conflict set in the given collection of conflict sets. More
formally, a set H ⊆

⋃
S∈C S is a hitting set for C if and only if H ∩ S ̸= ∅ for every

S ∈ C. H is a minimal hitting set for C if and only if there is no proper subset of H
which is also a hitting set for C.

Reiter first introduced the system of a hitting set tree, which is defined as follows:

Definition 11. Reiter’s algorithm constructs a Hitting-set tree (HS-tree) for the col-
lection of conflict sets B. This tree is a set of nodes v and edges E. Each node v ∈ V
has a label v.label ∈ C, i.e., v.label is a conflict set and each edge e ∈ E has a label
e.label where e.label ∈

⋃
S∈C S, i.e., e.label is an element of some S ∈ C. A function

P (v), the path function, returns the set of edge labels on the path from the root node
to a node ν.

The construction of an HS-tree T is carried out in a breadth-first fashion, according
to the following rules:

• Firstly, a root node vroot for T is generated. vroot is labelled with an arbitrary
conflict set S ∈ C.

• If a node v is labelled by a set S ∈ C then for each ϕ ∈ S a successor node vϕ is
attached to v via an edge eϕ labelled with ϕ.

• Each successor node vϕ is then labelled with a set S′ ∈ C such that S′∩P (vϕ) =
∅. If no such S′ exists, vϕ is labelled with a ‘✓‘ . A node labeled by ‘✓‘ indicates
a terminating node (leaf) vleaf which has no successors.

22

We will now use the belief base B from Example 8 and kernels k computed by
Algorithm 1 to span a hitting set tree HST . Referring back to Example 8 , we have
already computed a kernel k1 that will be used as the root node. As this kernel k1
has two sets, there are two branches that can be expanded. To find a successor node
we have to call Algorithm 1 with the set

B \ {A0}

for the first branch and with the set

B \ {¬A0 ∨A1}

for the second branch.
Pursuing with the algorithm, the resulting kernels, that are the successor nodes of

k1 are as follows:

k2 = {A1 ∧ ¬A2}
k3 = {A0,¬A0 ∧ ¬A1}

The kernel k2 is a singleton set, therefore it only has one successor node. Whereas
kernel k3 itself has again two successor nodes. The following nodes that are com-
puted by calling Algorithm 1 again are as follows:

k4 = {A1 ∧ ¬A2}
k5 = {A1 ∧ ¬A2}

Both kernels k4 and k5 are singleton sets, therefore each of them has only one suc-
cessor node. For a detailed execution of Algorithm 1 reference is made to Example
8.

An example illustrating the construction of an HS-tree T based on the previous
example is given in Figure 1.

23

A0

A1 ∧ ¬ A2

¬ A0 ∨ A1

A0

A1 ∧ ¬ A2

¬ A0 ∧ A1

A1 ∧ ¬ A2

k1 = {A0 , ¬ A0 ∨ A1 }

k2 = {A1 ∧ ¬ A2}

✓

k3 = {A0 , ¬ A0 ∧ ¬ A1}

k4 = {A1 ∧ ¬ A2 }

✓

k5 = {A1 ∧ ¬ A2 }

✓

Figure 1: HS-tree for the conflict set B′

Each set P (v) such that v is labeled with ‘✓’ is a hitting set HS for B′. Therefore,
the collection C of all hitting sets HSi for B′ (paths P (v)), found in T , contains all
hitting sets HSi for B′ [Rei87].

The collection C(B) of all hitting sets HSi of B are as follows:

C(B) = { {A1 ∧ ¬A2, A0} ,

{A1 ∧ ¬A2, A0,¬A0 ∨A1} ,

{A1 ∧ ¬A2,¬A0 ∧A1,¬A0 ∨A1} }

As illustrated in Figure 2, each set of the collection C refers to a Path P (v) from a
leaf node vleaf to the root node vroot. In Figure 2 the color coding shown above was
applied to each hitting set HSi.

The collection of hitting sets derived from the collection C serves as a crucial step
toward contracting the inconsistent belief base B into a consistent state. Each set
within C represents a potential solution for restoring consistency by retracting cer-
tain elements β from B.

The resulting HS-tree can be analyzed by determining the tree depth, the number
of kernels and the number of branches. We can see that the HS-tree shown in Figure
2 has a tree depth = 3, the number of kernels = 5, and the number of branches = 7

The number of branches always corporates to the number of elements of each α-
kernel, so we can see that for belief bases B with a higher complexity and α-kernels
with a higher number of elements β, the tree can become bigger and more complex.
In Example 8 we saw that the Algorithm 1 calls a SAT-solver in every iteration to
check whether α is entailed by B′.

24

Figure 2: Color coded HS-tree for the conflict set B′

It is important to note that in this thesis, we compute a hitting set tree without
determining minimal hitting sets, as we are going to obtain an optimal solution
based on values calculated from assigned weights of the elements of a hitting set.
According to Reiter [Rei87] a minimal hitting set can be defined as follows:

Definition 12. Suppose C is a collection of sets. A hitting set for C is a set H ⊆⋃
S∈C S such that H ∩ S ̸= ∅ for each S ∈ C. A hitting set for C is minimal if and

only if no proper subset of it is a hitting set for C. A minimal hitting set in the HS-
tree corresponds to a set P (v) for a terminating node v such that there is no other
terminating node v’ in the HS-tree where P (v’) ⊂ P (v).

In the previous example, it is evident that the first hitting set HS1 = {A1 ∧
¬A2, A0} from the collection C(B) is a subset of the second hitting set HS2 =
{A1 ∧ ¬A2, A0,¬A0 ∨ A1}, such that P (vHS1) ⊂ P (vHS1). In the remainder of
this thesis, we will use a combination of a value of the paths P (vHSi and the car-
dinality of the hitting sets HSi to obtain the optimal sulution. We will demonstrate
why determining the minimal hitting sets is redundant when the optimal solution
is identified by a combination of the value of the path and the cardinality.

3.5. Branch-and-Bound Algorithms

The Branch-and-Bound (B&B) strategy is a fundamental methodology for solving
NP-hard optimization problems. First proposed by Land and Doig [LD60], B&B is
better understood as a family of algorithms sharing a core procedure. This proce-
dure implicitly enumerates all possible solutions by storing partial solutions (sub-
problems) in a tree structure. Unexplored nodes generate children by partitioning
the solution space into smaller regions (branching), and rules prune regions that are
suboptimal (bounding). Once the entire tree is explored, the best solution can be

25

returned. While Lawler and Wood [LW66] provided an early overview, more recent
advances in the field of B&B were compiled by Morrison et al. [MJSS16].

In a most recent work Bläsius et al. [BFSW23] present a sophisticated B&B algo-
rithm for solving the NP-hard hitting set problem, which seeks a minimal subset of
a universe that intersects each set in a given collection. The algorithm leverages var-
ious lower bounds on solution size, such as the max-degree, sum-degree, efficiency,
packing, and sum-over-packing bounds, along with data reduction rules. Unlike
the approach of this thesis, Bläsius et al. focus on finding minimal hitting sets, not
hitting sets with a maximal value. The use of lower bounds in the algorithm is to
improve the efficiency of the B&B process by pruning branches that cannot lead to
a smaller hitting set, thus helping to find the minimal hitting set more quickly.

Unlike the approach of this thesis, Bläsius et al. [BFSW23] do not focus on com-
puting optimal solutions based on a maximum value of the hitting sets. As we
will discuss in the following sections, solving a maximality problem using a hitting
set tree within a B&B framework is exceptionally challenging. The difficulty lies
in accurately estimating the potential value of unexplored subproblems, which is
crucial for effective branch pruning. Consequently, known B&B algorithms strug-
gle to prune any branches effectively, leading to the expansion of the entire search
space when attempting to find an optimal solution with the maximum value. In
the next section, we will formally describe the approach and strategies developed
in this thesis, setting the stage for the detailed explanation of the implementation of
the application developed as part of this research.

26

4. Systems approach and strategies

This chapter addresses the various components of the system that form the foun-
dation of this thesis. First, we outline the necessary requirements for computing an
optimal solution for belief base contraction. Following this, we present the system
model built upon these requirements and derive the approach to achieve the goal of
finding an optimal solution.

4.1. Weight assignment

In this section, the requirements for our weight assignment approach will be out-
lined. In order to do this, we will present related work that dealt with the challenges
of ranking belief bases and elements of a belief base.

In the case of the previous Example 8 , any of the hitting sets within C could feasi-
bly be applied to contract B and alleviate the inconsistency. However, the decision
process for selecting the most suitable set from C calls for additional criteria or mech-
anisms to inform such a choice, ensuring an optimal outcome for belief contraction.
Therefore, a major challenge of this thesis is to develop a weight assignment heuris-
tic that assigns a value to each formula of the belief base B. This work has devel-
oped three different weight assignment methodologies that will be described in the
following.

4.2. Known rank-based approaches

There has been research done in the area of ontology ranking [PSLP03, DPF+05],
and on ranking individual axioms of an ontology [Kal06] or ranking a formula in a
belief set [DW93, Dix94].

Among all references, the approach proposed by Dixon [DW93, Dix94] stands out
due to its unique approach of computing a rank for a formula within the belief set to
efficiently compute a belief change operation. In 1993, Dixon, in collaboration with
Wobcke, introduced a rank-based approach for belief change algorithms of belief
bases, as documented in [DW93]. This method paved the way for subsequent de-
velopments in the field. Notably, in 1994, Dixon further expanded on this approach
in [Dix94].

Dixon’s rank-based approach utilized a unique system of ranks to achieve mini-
mal changes in the entrenchment ordering of formulas within belief bases. The cen-
tral idea was to identify kernels that produced the least disruption to the existing
entrenchment structure. By doing so, Dixon aimed to find solutions that preserved
the foundational beliefs while accommodating new information.

While numerous methodologies for calculating hitting sets and constructing hit-
ting set trees are documented in the literature, there remains a gap in the develop-
ment of a comprehensive framework that effectively aids in identifying the optimal
solution for revisions in belief systems.

27

4.3. Assignment strategies

Contrary to Dixon’s method, the proposed value-based system for identifying an
optimal solution unfolds across three stages, each contributing a distinct aspect to
the solution-finding process.

At the heart of this system lies a fundamental concept: the assignment of weights
w to each constituent element β within the dataset of the belief base B. Subsequent
to the computation of kernels and the hitting set tree, each hitting set HS is accorded
a specific value ν. This is achieved through the summation of weights w correspond-
ing to the individual elements β residing in the path P (v) from one leaf node vleaf to
the root node vroot.

Definition 13. Each β ∈ B will be assigned a weight w, the value ν for each hitting
set HS ∈ C(B) is the sum of these weights w, wherein w(β) denotes the weight w
of element β and ν(HS) denotes the value ν of hitting set HS.

For the weight assignment, three different approaches were developed. The first
approach is called the cardinality measure, the optimal solution will be calculated by
the number of elements of the hitting set HSi. In the second approach, the optimal
solution will be calculated by the sum of the assigned random measures. In the
third approach, the optimal solution will be calculated by the sum of the assigned
inconsistency measures and the cardinality of the hitting set HSi. For each approach
we define a separate value νx as follows:

Definition 14. Let νx(HSi) be the value that is calculated by the sum of the assigned
weights wi of the elements βi of a HSi. Let νc(HSi) be the cardinality value, calcu-
lated by the sum of the assigned cardinality weights wc(βi) of each element βi of
the hitting set HSi. Further, let νr(HSi) be the random value, calculated by the sum
of the assigned random weights wr(βi) of each element βi of the hitting set HSi

and let νIc(HSi) be the inconsistency value, calculated by the sum of the assigned
inconsistency weights wIc(βi) of each element βi of the hitting set HSi.

For the remainder of this thesis, we will denote the belief bases B and the hitting
sets HSi with its elements βi and the assigned weights wx by βwx

i , such that a belief
base B with elements β1 to βi and assigned inconsistency weights wI will be denoted
as follows:

B = {βwx
1 , βwx

2 , βwx
3 , ..., βwx

i }

Each of the above-mentioned approaches will be described in the remainder of
this section.

4.3.1. Cardinality

The first weight assignment approach is characterized by the assignment of a uni-
fied value - specifically, the value of one - to each element within the belief base.

28

This simplistic yet crucial step sets the foundation by enabling the calculation of the
cardinality of kernels and remainders. The cardinality approach allows for either
assigning every element of the belief base B a weight w of 1 or simply counting the
number of elements in a hitting set.

In this thesis, instead of assigning every element of B a weight w of 1, we count
the number of elements β in the hitting set HS to obtain the cardinality of the latter.
The value ν of the hitting set HS using the cardinality approach can be defined as
follows:

Definition 15. For each hitting set HSi in the collection C(B), the value νc(HSi) is
defined as the cardinality of HSi, i.e., νc(HSi) = |HSi|.

Example 9. Consider the belief base B from Example 8. The values νc(HSi) of the
hitting sets HSi of the collection C(B) can be obtained as shown below:

C(B) = |{A1 ∧ ¬A2, A0}| → νc(HS1) = |HS1| = 2
|{A1 ∧ ¬A2, A0,¬A0 ∨A1}| → νc(HS2) = |HS2| = 3
|{A1 ∧ ¬A2,¬A0 ∧A1,¬A0 ∨A1}| → νc(HS3) = |HS3| = 3

In the cardinality approach, the first hitting set HS in the collection C, namely
{A1 ∧ ¬A2, A0}, can be determined as an optimal solution since this set only has
two elements. This means that contracting B by this hitting set HS1 (B \HS1) could
lead to a lower loss of information, compared to B \HS2 or B \HS3.

4.3.2. Random Value

Progressing to the next weight assignment approach, a layer of randomness is intro-
duced, where each element β of the belief base B is assigned a random measure r
represented by a numeric value. This strategy aims to explore various potential con-
figurations of the belief base B by evaluating the elements β in a stochastic manner.
Random measures help identify patterns or solutions that may not be immediately
apparent, facilitating the discovery of an optimal solution by assessing how differ-
ent combinations of elements contribute to the overall random value νr(HS) of the
hitting set HS.

In this thesis, the random approach is defined by assigning a unique random
measure r in the range between one and the number of elements β in the belief base
B, leading to 1 ≤ r ≤ |B|. This helps to set a lower and upper limit that does not
deviate too much, making this approach comparable to the inconsistency measure
approach (see ??). We will see that the computed inconsistency measures of the
knowledge bases we used in this thesis do not deviate much or by a high number
between the elements of the belief base B (also see [KT21]). Each random measure r
is assigned only once, ensuring uniqueness and achieving better deviation of results.

Definition 16. For each element βi ∈ B, obtain a unique positive random measure
r(i) from r(i) ∈ R+, where i is the number of the element βi, such that r(i) is ran-
domly selected within the range from 1 to |B|, where |B| is the cardinality of the

29

belief base B. Each random weight wr(βi) corresponds to one of the unique positive
random measures r(i), i.e. wr(βi) = r(i). The random value νr(HSi) is then defined
as the sum of the random weights wr(βi), i.e.,

νr(HSi) =

|HSi|∑
i=1

wr(βi)

Example 10. Consider the belief base B from Example 8 with the following unique
random measures r(i): r(1) = 4, r(2) = 2, r(3) = 1, r(4) = 6, r(5) = 3, r(6) =
5. Applying the random measures r(i) to the belief base B leads to the following
elements βi with its assigned random weights wr(βi):

B = {(A0)4, (¬A0 ∨A1)2, (¬A1 ∨A2)1, (¬A0 ∧ ¬A1)6, (A1 ∧ ¬A2)3, (¬A0 ∨ ¬A1)5}

With the assigned random weights wr, the random value νr of a hitting set HS will
be calculated by summing the weights wr(βi) of all elements βi in the hitting sets
HSi, which leads to the following values νr(HSi):

C(B) = {(A1 ∧ ¬A2)3, (A0)4} → νr(HS1) = 7
{(A1 ∧ ¬A2)3, (A0)4, (¬A0 ∨A1)2} → νr(HS2) = 9
{(A1 ∧ ¬A2)3, (¬A0 ∧A1)6, (¬A0 ∨A1)2} → νr(HS3) = 11

The optimal solution set can be found depending on the definition criteria of the
optimal solution. If we define the optimal solution to meet a maximality criterion,
such that νr has to be maximal, meaning that there is no HSj in the collection C(B)
for which νr(HSj) > νr(HSi), then the hitting set HSi with the highest random
value νr is determined as the optimal solution. In this case, the third hitting set
HS3 in the collection C(B), namely {(A1 ∧ ¬A2)3, (¬A0 ∧ A1)6, (¬A0 ∨ A1)2}, can
be determined as the optimal solution since it has the highest random value, as
νr(HS1) < νr(HS2) < νr(HS3).

In contrast, if the optimal solution is defined to meet a minimality criterion, such
that νr has to be minimal, meaning that there is no HSj in the collection C(B) for
which νr(HSj) < νr(HSi), then the hitting set HSi with the lowest random value
νr is determined as the optimal solution. In this case, the first hitting set HS1 in
the collection C(B), namely {(A1∧¬A2)3, (A0)4}, can be determined as the optimal
solution since it has the lowest random value, as νr(HS1) < νr(HS2) < νr(HS3).

4.3.3. Inconsistency Value

In the third stage, a nuanced approach is adopted through the integration of an
inconsistency measure I . This measure assigns a distinct inconsistency measure
I(βi) to every element β within the belief base B, enhancing the value-based frame-
work. Utilizing these inconsistency measures I(βi), a refined and precise computa-
tion of the optimal solution is achieved, ensuring alignment with the inconsistency

30

attributes of kernels and remainders. The goal is to identify the hitting set HSi that
contributes the most to the inconsistency of the belief base B.

Inconsistency measurement is a well-explored field of research with a variety of
applications. Generally, an inconsistency measure I is a function I : K → R∞

≥0

[Thi19]. The intuition behind such inconsistency measures I is that a higher value
indicates a more severe inconsistency than a lower one. The minimal value 0 repre-
sents the absence of inconsistency, i.e., consistency.

The downside of computing inconsistency measures I is that they are gener-
ally considered computationally hard [TW19]. However, some research has been
conducted in the field of computing contension-based inconsistency measures Ic
[GH11, KT21, KGLT23, NKTJ23].

A contension-based inconsistency measure Ic quantifies the degree of inconsis-
tency within a belief base B or knowledge base by evaluating the conflicts among its
elements βi. This approach is grounded in logical frameworks and systematically
identifies and measures the extent of contradictory information. The contension-
based inconsistency measure Ic can be defined as follows [NKTJ23]:

Definition 17. Let τ3 : Var → {T, F,B} be a three-valued assignment following
Priest’s three-valued logic [Pri79], where T and F correspond to the classical truth
values true and false, respectively, and B corresponds to a third, paradoxical truth
value, denoted both. The truth order ≺ is defined via F ≺ B ≺ T . An assignment
τ3 is extended to arbitrary formulas via:

τ3(φ1 ∧ φ2) = min
≺

(τ3(φ1), τ3(φ2)),

τ3(φ1 ∨ φ2) = max
≺

(τ3(φ1), τ3(φ2)),

τ3(¬T) = F, τ3(¬F) = T, τ3(¬B) = B.

An assignment τ3 satisfies a formula φ, denoted by τ3 |=3 φ, if either τ3(φ) = T or
τ3(φ) = B.

The contension-based inconsistency measure [GH11] Ic : K→ R∞
≥0 is defined as:

Ic(K) = min{|τ−1
3 (B)| | τ3 |=3 K}.

In other words, the contension-based inconsistency measure Ic is the smallest
number of atoms x ∈ At(K) that need to be set to B to render K consistent under
Priest’s three-valued logic.

In this thesis, we used the contension-based inconsistency measure Ic as it pro-
vided the best and fastest results in the SAT-solver implementation by Niskanen et
al. [NKTJ23], which we used to compute the inconsistency measure I . The inconsis-
tency weight wI assignment can be defined as follows:

Definition 18. For each element βi ∈ B, assign an inconsistency measure I to an
inconsistency weight wI , where I ∈ R+. The inconsistency value νI(HSi) of a hitting
set HSi is defined as:

νI(HSi) =
∑

βi∈HSi

wI(βi).

31

To obtain the inconsistency weight wI(βi) for each element βi in the belief base
B, we calculate the initial inconsistency measure I(B) for the entire belief base B
using the SAT solver mentioned. Then, for each element βi in the belief base B, the
inconsistency measure I(B \ βi) will be calculated, representing the inconsistency
measure after removing a specific element βi. The difference between the initial
inconsistency measure I(B) and the calculated inconsistency measure I(B \ βi) is
computed to determine the impact of each element βi on the overall inconsistency.
The calculation can be defined as follows:

Definition 19. For each element βi ∈ B, the inconsistency weight wI(βi) will be
calculated by subtracting the Contension Inconsistency Measure Ic(B \ βi) of B \ βi
from the initial Contension Inconsistency Measure Ic(B) of B. The contension-based
inconsistency weight wIc is defined as:

wIc(βi) = Ic(B)− Ic(B \ βi)

In summary, this method systematically evaluates the contribution of each ele-
ment β in the belief base B to the overall inconsistency, providing a detailed under-
standing of the dynamics of inconsistency within B.

Example 11. Given the previous Example 8, the initial contension Inconsistency
Measure Ic(B) = 2 and the calculated contension-based inconsistency weights
wIc(βi) of the elements βi of B are as follows: wIc(β1) = 1, wIc(β2) = 0, wIc(β3) = 0,
wIc(β4) = 1, wIc(β5) = 1, wIc(β6) = 0. The belief base B with its assigned inconsis-
tency weights wIc(βi) can be visualized as follows:

B = {(A0)1, (¬A0 ∨A1)0, (¬A1 ∨A2)0, (¬A0 ∧ ¬A1)1, (A1 ∧ ¬A2)1, (¬A0 ∨ ¬A1)0}

Given the inconsistency weights wIc(βi) assigned to the belief base B, the value
νIc(HSi) of the hitting set HSi is calculated by summing the weights wIc(βi) of all
elements βi in the hitting set HSi, which leads to the following values:

C(B) = {(A1 ∧ ¬A2)1, (A0)1} → νIc(HS1) = 2
{(A1 ∧ ¬A2)1, (A0)1, (¬A0 ∨A1)0} → νIc(HS2) = 2
{(A1 ∧ ¬A2)1, (¬A0 ∧A1)1, (¬A0 ∨A1)0} → νIc(HS3) = 2

In the inconsistency approach, Example 11 provides the same inconsistency val-
ues νIc(HSi) for all hitting sets HSi. Therefore, each hitting set HSi can be deter-
mined as an optimal solution. As can be seen from the inconsistency weight assign-
ments, this approach is highly dependent on the inconsistency measure I . In Section
4.6.3 we will show an approach that uses the inconsistency values νIc(HSi) with the
cardinality of the hitting sets HSi to find the optimal solution.

In the literature, various methods are proposed to calculate the random measure
of an element in a belief base, such as using the Shapley value [HK10]. Although
we considered and implemented the Shapley value calculation, it involves forming
coalitions of all elements in the belief base B, which makes it extremely time- and

32

resource-intensive. Consequently, we have left this approach for further investiga-
tion and future work.

To illustrate the dependency on the inconsistency measure I , we have calculated
the inconsistency weights wI(βi) using the so-called problematic inconsistency mea-
sure Ip as proposed by Grant and Hunter [GH11] using the implementaion to com-
pute the problematic inconsistency measure Ip from Niskanen et al. [NKTJ23]. The
problematic inconsistency measure Ip computes the union of all minimal inconsis-
tent subsets. It contains all formulae in B that are part of at least one inconsistency.
Using the problematic inconsistency measure Ip leads to the following problematic-
based inconsistency weights wIp(βi) and values v(HS1):

Example 12. Consider the belief base B from Example 8 comprise the following
elements β and problematic-based inconsistency weights wIp(βi):

B = {(A0)1, (¬A0 ∨A1)0, (¬A1 ∨A2)0, (¬A0 ∧ ¬A1)1, (A1 ∧ ¬A2)1, (¬A0 ∨ ¬A1)0}

with an initial inconsistency measure Ip(B) = 6.

C(B) = {(A1 ∧ ¬A2)2, (A0)3} → νIp(HS1) = 5
{(A1 ∧ ¬A2)2, (A0)3, (¬A0 ∨A1)1} → νIp(HS2) = 6
{(A1 ∧ ¬A2)2, (¬A0 ∧A1)1, (¬A0 ∨A1)1} → νIp(HS3) = 3

In this example, the second hitting set HS2 in the collection C(B), namely {(A1 ∧
¬A2)2, (A0)3, (¬A0 ∨ A1)1}, can be determined as an optimal solution since this set
has the highest value ν based on the sum of the problematic-based inconsistency
weights wIp(β) of its elements β.

In Example 10, we can determine the second hitting set HS2 as the optimal solu-
tion, even though this hitting set is not a minimal hitting set. As previously men-
tioned, the approach of this thesis is to assign weights wi to the elements of the belief
base B and to find an optimal solution based on the value νx of the hitting sets. The
advantage of this approach is that the weights wx can be used to implement a B&B
strategy that updates its boundary in dependence on a computed hitting set. We
assume that with the B&B strategy, we do not have to compute all hitting sets, be-
cause this strategy allows us to prune all branches as soon as the optimal solution
is found, making the determination of minimal hitting sets unnecessary. The B&B
strategy and the underlying logic will be explained in the next section.

4.4. Branch-and-Bound Framework

The weight assignment described in the previous Section 4.1 allows us to implement
a B&B strategy that can be used when constructing the hitting set tree to limit the
search space and find the optimal solution faster. In this section, we will describe
the B&B approach and search strategies used to span the tree. We will see that
developing or utilizing an improved search strategy can be beneficial for setting the
boundary and pruning branches more efficiently.

33

4.4.1. Theoretical Background

As we have briefly described in Section 3.5, the B&B framework is a fundamental
methodology for solving NP-hard optimization problems that was defined by Mor-
rison et al. [MJSS16] as follows:

Definition 20. Let P = (H, g) be an optimization problem, where C is the collection
of hitting sets HS, and g : H → R is the objective function. The goal is to find an
optimal hitting set HS∗ ∈ argminHS∈H g(HS). To solve P , the B&B algorithm iter-
atively builds a hitting set tree HST composed of subproblems, which are subsets
of the hitting set HS. Let ĤS ∈ H be a feasible hitting set, known as the possible
solution, which can be globally stored.

After a B&B algorithm found a possible solution ĤS, it proceeds with the next
iteration and selects a new subproblem S ⊆ H from a list L of unexplored subprob-
lems. If a possible solution ĤS

′ ∈ S is found with a better value ν(ĤS) than ĤS (i.e.,
g(ĤS

′
) < g(ĤS)), the possible solution ĤS is updated. If it can be proven that no

hitting set in S has a better value ν(ĤS) than ĤS (i.e., ∀HS ∈ S, g(HS) ≥ g(ĤS)),
the subproblem S is pruned and considered terminal. Otherwise, child subproblems
are generated by partitioning S into an exhaustive (but not necessarily mutually ex-
clusive) set of subproblems S1, S2, . . . , Sr, which are then inserted into HST .

The process continues until no unexplored subproblems remain in L. The
best possible solution ĤS is then returned. Since subproblems are only pruned
if they contain no solution better than ĤS, it must be the case that ĤS ∈
argminHS∈H g(HS), meaning that the last found solution can be determined as the
optimal solution.

In this thesis, we defined the objective function g in different ways, depending on
the formulation of the optimal solution. In the cardinality approach the objective
function g was set to g → ν(HS). In the random and inconsistency approach, the
objective function was set to g → ν(B)− ν(HS), where ν(B) represents the value of
the belief base B. Both approaches will be explained in the following sections.

4.4.2. Phases of B&B Algorithm

According to [MJSS16], three components significantly impact B&B performance:
the search strategy (order of exploring subproblems), the branching strategy (how
the solution space is partitioned), and the pruning rules (rules to prevent exploring
suboptimal regions). The search strategies used in this thesis will be described in
the following Section 4.5.

The research of this thesis focused on improving these components to enhance
B&B performance. This section surveys modern advances in B&B theory, especially
concerning hitting set trees. Additionally, it highlights three research directions:

1. Developing new search strategies for finding optimal solutions faster,

2. Analyzing and innovating branching/kernel computing strategies,

34

3. Creating rules for pruning branches and boundary management.

The branching strategy used in a hitting set tree HST depends on the computa-
tion of the kernels ki. In our approach, we branch the hitting set tree HST based on
the number of elements in a kernel k, as described in Section 3.3. The pruning rules
will be covered in the subsequent sections and in the description of the implemen-
tation in Section 5.

In any B&B algorithm, there are two crucial phases. The first is the search phase,
where the algorithm has not yet found an optimal solution ĤS. The second phase
is the verification phase, where a potential solution is considered optimal, but there
are still unexplored subproblems that have not been pruned. It’s important to note
that a potential solution cannot be confirmed as optimal until all subproblems have
been explored or specific criteria are met that establish the solution’s optimality. For
example, a solution can be deemed optimal if it reaches a minimum value, even
if higher values may exist in the unexplored search space. This definition of opti-
mality could be outlined as: meeting a minimum value in the minimum amount
of time. Thus, the potential solution can be marked as optimal. Furthermore, the
transition from the search phase to the verification phase is only known upon the
algorithm’s termination. In this thesis, we verify the optimal solution found by our
B&B algorithm by comparing it to the optimal solution obtained without using B&B
or any pruning strategies. When no B&B strategy is used, the optimal solution is
determined by comparing the values ν of all found hitting sets.

The three key components of B&B algorithms, namely search strategy, branching
strategy, and pruning rules, each play distinct roles in these phases. Figure Fig. 3
illustrates the transition from the search phase to the verification phase, highlighting
the role of search strategy, branching strategy, and pruning rules.

The choice of search strategy primarily affects the search phase of the B&B algo-
rithm. During this phase, the algorithm actively explores subproblems to find an
optimal solution. For instance, if pruning rules depend on the value of a possible
solution (e.g., comparing the upper bound to the hitting set value), the search strat-
egy must eventually explore the same set of subproblems once an optimal solution
is identified.

While the search strategy is crucial during the initial search for the optimal solu-
tion, its significance diminishes once the solution is found. In our approach, after
identifying an optimal solution HS∗ with our B&B algorithm, we run the algorithm
without B&B to explore all subproblems. Notably, the B&B algorithm could verify
its result in the same run by saving pruned branches in a queue and exploring this
queue of unexplored subproblems once the optimal solution is found. However, we
chose to separate these runs for a clearer distinction and because we needed to run
the algorithm without B&B for performance evaluation. As previously mentioned,
the search strategy does not impact the algorithm’s performance when all subprob-
lems must be explored. Therefore, we did not implement different search strategies
for our verification.

Pruning rules often target the verification phase, especially when objective-based

35

Figure 3: Phases of the Branch-and-Bound Algorithm

bounding is used. These bounds can be weak before finding an optimal (or near-
optimal) solution, making early pruning ineffective if the possible solution’s objec-
tive value is poor. However, pruning rules can also contribute to the search phase,
where the pruning rules could incorporate the tree level or number of branches.

The branching strategy impacts both phases significantly. During the search
phase, it guides the algorithm towards optimal solutions. In the verification phase,
it helps limit branching decisions, preventing unnecessary work to find the optimal
solution.

Improving B&B performance during the search phase is crucial for two reasons.
First, if the algorithm terminates without finding an optimal solution (e.g., no hit-
ting set meets the requirements), it can still return a potential solution, which can be
verified afterwards. This is particularly useful in scenarios where no weight assign-
ment was done, and therefore, no pruning occurs.

Secondly, identifying an optimal solution early in the search phase significantly
reduces the size of the search tree and the time required to find the optimal solution,
as further nodes with bounds greater or lower than the optimal solution do not

36

need to be explored. This rationale underpins Dechter and Pearl’s [DP85] finding
that best-first search (priority) explores the fewest subproblems compared to other
search strategies. We will verify this in Section 6, where we compare the mentioned
search algorithms in terms of execution time and the number of pruned branches.

However, recent literature contains relatively few studies examining the impacts
of search and branching strategies on the performance of B&B algorithms. Instead,
most research focuses on pruning rules, which are particularly beneficial during
the verification phase. Consequently, the development of more advanced search
strategies, branching strategies and a framework for efficient pruning are identified
as two critical research directions of this thesis. In the next section, we will explore
the implemented search strategies as illustrated in Figure 3.

4.5. Search strategies

In B&B algorithms, search strategies play a critical role in determining the order
in which subproblems are explored. These strategies significantly impact the effi-
ciency of the algorithm by influencing the pruning process and the path to the op-
timal solution. Here, we discuss four search strategies: Breadth-First Search (BFS),
Depth-First Search (DFS), Hybrid Search (HYS) and Priority-Based Search (PBS), in-
cluding their strengths and weaknesses. Figure 4 illustrates a small search tree and
the order in which nodes are explored under different search strategies. The (blue)
elements of B indicate the edges with their respective weight. The numbers outside
the nodes on the left side indicate exploration order. To provide a concrete exam-
ple, we assume the following belief base B comprise the following elements and
inconsistency weights wi:

B = {(A0)1, (¬A0 ∨A1)4, (¬A1 ∨A2)0, (¬A0 ∧ ¬A1)1, (A1 ∧ ¬A2)1, (¬A0 ∨ ¬A1)0}

4.5.1. Breadth-First Search

Breadth-First Search (BFS) explores all subproblems at the current depth before
moving to the next level. This strategy uses a queue to manage unexplored sub-
problems, ensuring that the shallowest nodes are explored first. BFS is particularly
effective in finding solutions close to the root of the tree and works well with unbal-
anced trees.

However, BFS has high memory requirements because it needs to store all sub-
problems at each level of the tree. This makes it less practical for B&B algorithms
where memory efficiency is crucial. BFS is rarely used in B&B contexts except in
specific scenarios, such as when dominance relations can prune subproblems effec-
tively or when a good heuristic solution is available early on.

Additionally, the B&B implementation in this thesis updates the boundary only
when a leaf node, representing a potential solution, is found. When using BFS, this

37

(a) Breath-First Search (b) Depth-First Search

(c) Hybrid Search (d) Priority-Based Search

Figure 4: Comparison of different search strategies using random measures

can result in a delayed boundary update, leading to the expansion of many unnec-
essary branches. These branches might have been pruned earlier if the boundary
had been updated sooner.

4.5.2. Depth-First Search

Depth-First Search (DFS) is a strategy that explores as far down a branch of the
search tree as possible before backtracking. This method can be implemented by
maintaining a stack of unexplored subproblems. At each step, the algorithm selects
the subproblem at the top of the stack, explores it, and then pushes its children onto
the stack. This means the next subproblem explored is always the most recently
generated one.

One significant advantage of DFS is its low memory requirement. Since it only
needs to store the current path from the root to the current node and the indices of
the last explored children, it avoids the need to keep the entire list of unexplored
subproblems in memory. This can be particularly beneficial when the search space

38

is vast.
However, DFS can encounter issues such as thrashing and inefficiency in unbal-

anced trees. Thrashing occurs when different regions of the search space fail for sim-
ilar reasons, causing the algorithm to waste time. In unbalanced trees, DFS might
explore many long, unproductive paths before finding an optimal solution.

While the strategy of quickly expanding to every leaf node can be beneficial for
updating the boundary once a leaf is found, it can also result in a significant number
of unnecessary expanded branches in the case of an unbalanced tree.

4.5.3. Hybrid Search

A hybrid search (HYS) strategy combines elements of both Depth-First Search (DFS)
and Breadth-First Search (BFS) to leverage the advantages of both methods. This ap-
proach begins with DFS to quickly reach a leaf node and potentially find a possible
solution early, to set a boundary that can be used in the pruning logic when expand-
ing the following branches. Once a leaf node is reached, the strategy switches to BFS
to systematically explore the remaining subproblems level by level.

The hybrid strategy starts with DFS, which is implemented by maintaining a stack
of unexplored subproblems. The algorithm repeatedly selects the subproblem at the
top of the stack, explores it, and pushes its children onto the stack. This continues
until a leaf node is found. The main benefit of starting with DFS is to quickly find a
possible solution by exploring a path down to a leaf node, resulting in a fast update
of the boundary.

Once a leaf node is reached and an initial solution is found, the strategy switches
to BFS to explore the remaining subproblems more systematically. This phase in-
volves maintaining a queue of unexplored subproblems. The algorithm then ex-
plores all subproblems at the current depth level before moving to the next level.
The advantages of switching to BFS include:

• Systematic Exploration: BFS ensures that all subproblems at the same depth
are explored before deeper levels (except the first found leaf via DFS), which
can help in finding the optimal solution more efficiently in an unbalanced tree.

• Better Pruning Opportunities: By exploring level by level, BFS can make bet-
ter use of pruning rules, especially when compared against the current best
solution found during the DFS phase.

• Avoiding Deep Unproductive Paths: BFS prevents the algorithm from getting
stuck in long, unproductive paths that might occur with DFS alone.

By combining the depth-first and breadth-first approaches, this hybrid strategy
aims to balance early solution discovery with systematic exploration, optimizing
both memory usage and search efficiency.

39

4.5.4. Priority-Based Search

In this thesis, a Priority-Based Search (PBS) strategy was developed, which imple-
ments a Best-First Search approach. The PBS strategy selects the next subproblem
according to a path value from a node to the root, calculated as the sum of the
assigned weights w of the elements β along the branches. The path value can be
defined as follows:

Definition 21. Let S be the set of all paths P from the root node vroot of the hitting
set tree HST to any node v. The associated weight of an element βi is denoted w as
w(βi). The path value, denoted as ν(P) is defined as the sum of the weights w of all
elements along the path P :

ν(P) =
∑
βi∈P

w(βi)

where βi are the elements in the path P and w(βi) is the weight of the element βi.

The priority-based search strategy uses this path value ν(P) to prioritize nodes
that appear most promising for further exploration. This prioritization ensures that
nodes appearing most promising are explored first. As a result, the PBS strategy
allows for efficient exploration of the search space, often identifying good solutions
earlier in the search process.

The PBS strategy operates by using a heap data structure, where the path values
ν(P) serve as keys. This enables the algorithm to always expand the subproblem
with the highest priority first. By prioritizing branches based on their path value
ν(P), PBS can effectively direct the search towards more promising regions of the
search space, improving the chances of finding an optimal solution quickly.

One of the primary advantages of the PBS strategy is its ability to dynamically
prioritize branches, thus not being confined to one specific branch of the tree. This
flexibility allows the algorithm to adaptively explore different areas of the search
space based on the highest values serving as the best estimates of their potential,
leading to more efficient pruning of suboptimal branches. The advantages of the
PBS include:

• Early Detection of Good Solutions: By focusing on the most promising
branches first, PBS often identifies high-quality solutions early in the search
process, which can be used to update the boundary and prune less promising
branches.

• Adaptive Exploration: PBS dynamically adjusts its focus based on the current
state of the search, allowing it to efficiently navigate through the search space
and avoid spending excessive time on less promising areas.

• Efficient Use of Resources: Using a heap to manage subproblems ensures
that the algorithm operates efficiently, both in terms of time and memory. The

40

priority-based selection helps in reducing the number of subproblems that
need to be explored.

• Improved Pruning: By updating the boundary with better solutions found
early, PBS enhances the pruning process, eliminating many suboptimal
branches and reducing the overall search space.

As previously discussed, the search strategy is closely intertwined with bound-
ary management and pruning logic. These elements, which will be detailed in the
following section, facilitate faster exploration of promising subproblems, thereby
enabling more efficient attainment of the optimal solution.

4.6. Boundary Management and Pruning

In the context of B&B algorithms, effective boundary management and pruning are
crucial for optimizing the search process and enhancing algorithm efficiency. A key
strategy involves strategically setting or updating bounds to achieve the desired
goal.

The boundary is calculated by determining the path value ν(P (v)) from the root
vroot to a given node v. In our implementation (see Section 5) we calculate the path
value ν(P (v)) using backtracking from the node v to the root vroot. The path value
ν(P (v)) is a critical metric used to evaluate subproblems. The cumulative path value
ν(P (v)) represents the cost or boundary of the subproblem that can be used to set
an upper bound. The bound is defined as follows:

Definition 22. Let B be the bound that a subproblem at node v in the hitting set
tree needs to meet. This bound can either be an upper bound or a lower bound.
The value of the bound, denoted ν(P (v)), is determined by the sum of the weights
w of the elements along the path P (v) from the root vroot to node v. Whether the
subproblem needs to satisfy or not exceed this bound depends on the specific criteria
defined for upper and lower bounds.

In a B&B algorithm, the boundary acts as a critical threshold or benchmark value
that subproblems must meet or exceed to be considered for further exploration. It
serves as a reference point against which potential solutions are compared, helping
to identify and eliminate subproblems that cannot yield a better solution than the
best one found so far.

The comparison of the subproblems to the boundary depends on the objective
function g that calculates a potential value νP (P (v)) defined as follows:

Definition 23. Let νP be the potential value of a path P (v) for node v. The potential
value νP is calculated as follows:

νP (P (v)) = ν(P (v)) + g(v),

41

where
g(v) =

∑
βi∈B\P (v)

w(βi),

and w(βi) represents the weight of the element βi in the set B.

In other words, the potential value νP is calculated by adding the sum of all
weights w of elements β /∈ P (v) from node v to the root node vroot to the path value
ν(P (v)).

Using our weight assignment approach, which assigns a weight w to every el-
ement β of the belief base B, we can calculate various values to achieve efficient
pruning. This weight assignment also enables the computation of the value of the
belief base B, allowing us to determine maximum values νmax(P (v)) and minimum
values νmin(P (v)) that are complementary. These values are defined as follows:

νmax(P (v)) = ν(P (v)) + ν(B \ P (v))

νmin(P (v)) = ν(B)− ν(P (v))

Both values νmax(P (v)) and νmin(P (v)) can be compared to an upper bound or a
lower bound. Due to their complementary nature, we are able to treat the upper
bound as a lower bound and vice versa. We will also demonstrate that a combined
approach can be beneficial in finding optimal solutions, particularly when using
inconsistency weights wI .

This thesis employs three distinct pruning approaches to efficiently eliminate sub-
optimal subproblems from the search space. These approaches include an upper
pruner, a lower pruner, and a best pruner, all of which will be described in the fol-
lowing sections.

4.6.1. Upper Pruner

The upper pruning employs a lower bound BL, so that we are identifying subprob-
lems in the search space S that do not meet a certain threshold. A lower bound BL
represents the lowest value of the objective function g found so far during the search
and can be applied if the optimal solution includes a minimal criterion, leading to a
minimum threshold to be reached for each possible solution within the search space.
The lower bound BL can be defined as:

Definition 24. A lower bound BL for a problem within the search space S is defined
as the minimum value that any subproblem must not exceed. Formally, for a given
subproblem P ∈ S , if the evaluation of P results in a value greater than BL, then P
and all its subsequent branches can be pruned from the search process.

By setting this lower bound BL, we can prune the search process by eliminating
the computation of any subproblems along branches that do not meet the specified
threshold. This effectively reduces the computational effort by focusing only on

42

branches that have the potential to meet or be lower than the threshold. Initially,
the lower bound BL is set to a value that ensures that all subproblems are explored
until a leaf node vleaf is found. The lower bound BL is updated if a hitting set HS is
found by reaching a leaf node vleaf. The boundary is updated to the potential value
νP (vleaf) of the leaf node νP (vleaf) if it is less than the existing lower bound BL.

Formally, the lower bound BL is updated as follows:

BL =

{
νP (P (v)) if νP (P (v)) ≤ BL
BL otherwise

where ν(P (v)) represents the cumulative path value from the root vroot to node v,
and BL represents the current boundary.

Therefore, the upper pruner prunes all subproblems that exceed the lower bound
BL, leading to finding an optimal solution where ν(P (v)) is minimal. This means
that there is no other ν(P (v′)) < ν(P (v)).

4.6.2. Lower Pruner

This section covers the fundamentals of lower pruning, introducing an upper bound
BU , which identifies subproblems in the search space S that do not meet or exceed a
certain threshold. An upper bound BU represents the highest value of the objective
function g found so far during the search and can be applied if the optimal solution
includes a maximal criterion, leading to a maximum threshold to be reached for
each possible solution within the search space. The upper bound BU can be defined
as:

Definition 25. An upper bound BU for a problem within the search space S is de-
fined as the maximum value that any subproblem must not exceed. Formally, for
a given subproblem P ∈ S, if the evaluation of P results in a value lower than BU ,
then P and all its subsequent branches can be pruned from the search process.

Initially, the upper bound BU is set to a value that ensures that all subproblems
are explored until a leaf node is found. This value can be a maximum value, e.g.,
BU = max(νP (P (v))) or, as part of a straightforward implementation, BU =∞. The
upper bound BU is updated if a hitting set HS is found by reaching a leaf node
vleaf. The upper bound BU is updated to the potential value νP (vleaf) of the leaf node
νP (vleaf) if it is greater than the existing upper bound BU . This can be formalized as
follows:

BU =

{
νP (P (v)) if νP (P (v)) ≥ BU
BU otherwise

where ν(P (v)) represents the cumulative path value ν(P (v)) from the root vroot to
node v, and BU represents the current boundary.

43

Therefore, the lower pruner prunes all subproblems that do not meet the upper
bound BU , leading to finding an optimal solution where ν(P (v)) is minimal. This
means that there is no other ν(P (v′)) < ν(P (v)). The computation of an optimal
solution HS∗ can be very hard, as in the worst case the whole search space has to
be expanded. This is because the lower pruner might prune branches of the tree
that would have contained a subproblem with ν(ĤS′) > ν(ĤS). This is because the
search algorithm has no information about the unexplored subproblems.

This challenge can be faced by a heuristic to compute the possible value of the
subproblems. In this thesis we have implemented a computation of the possible
solution of unexplored subproblems based on a remainder value.

Remainder Value Computation This approach finds a remainder R of an unex-
plored node v′ and computes the potential value νP (P (v′)). As a result a part of
improving the calculation of the potential value νP (P (v)), we have developed a
heuristic to calculate the potential value νP (P (v)) based on the value of a remainder
R of the subproblem. The computation of remainders will be covered in Section 5.
With this approach we are calculating the potential value νP as follows:

νP (P (v)) = ν(B(v))− ν(R),

wherein B(v) represents the dataset at node v, that can be determined by B(v) =
B \ P (v).

The value ν(R) of the remainder represents the value of a hitting set HS of a node
v, since B\R = HS. Figure 5 illustrates an example of this approach, where a hitting
set tree HST is illustrated with a four kernels and an optimal hitting set HS∗ with
value ν(HS∗) = 9.

The HST is search using the Priority-Based Search such that the algorithm finds
the optimal hitting set HS∗ with the first computed leaf node vleaf at node v4. For the
remainder of this example we denote vi as a node with the index i that represents
an order in which the nodes vi are explored. The path P (v4) to node v4 is marked
in green. Now the algorithm continues to search for better solutions, as it has no
information whether the possible solution ĤS is the optimal solution HS∗. When
the search arrives at node v4 with kernel k4 (comprising three elements), the pruner
calculates the objective function g(v) by the sum of the weights w of all elements
β ∈ B \ P (v), therefore g(v7) = 14. As g(v7) > ν(HS∗), the lower pruner decides
not to prune the branch and to expand the children of the node v7.

Now with the remainder value computation, the algorithm first computes a re-
mainder R(v4) of B(v7)\ĤS and find R(B(v7)\ĤS) = {A1∧A2, A2∨¬A1, A0, A1∧
A2}with a remainder value ν(R) = 10. If the algorithm now computes the potential
value νP (P (v7)) = ν(B(v7) \ ν(R7)) = 4, the pruner can prune the branch at node
v7, because the subproblem cannot yield to a better solution, hence ν(ĤS

′
) ≤ ĤS

holds.
With this approach we are eliminating the subproblems that have the biggest re-

mainder R. This approach is at least worth exploring, especially for situations where

44

Figure 5: Exemplary Search Tree with Best Pruner

the elements β of B have even weights w. This heuristic is based on the entailment
check of alpha α for maximal consistent subsets (remainders R) instead of comput-
ing maximal inconsistent subsets (kernels k). We assume that this approach can be
faster than computing the search tree solely based on the computation of kernels,
as Resina et al. [RRW14] showed that computing remainders R can outperform the
computation of kernels k.

It is important to note that this approach only computes one remainder R, al-
though there might be another remainder R′ at node vi. Nonetheless, this approach
adds another layer to the computation of the objective function g(v) that might yield
to a higher number of pruned branches and therefore to less computation time. We
will evaluate this approach in Section 6.4.1. In the next section, we are going to
describe another pruning approach, the best pruner.

4.6.3. Best Pruner

The best pruner approach implements a best bound BB that combines the principles
of the upper bound BU as described in Section 4.6.2 and the lower bound BL as
described in Section 4.6.1. The best pruner differs in two key aspects from the upper
pruner and lower pruner. Firstly, its main contribution is the calculation of a unique
potential value νP that is compared to each bound separately, resulting in a lower
potential value νPL

and an upper potential value νPU
. Secondly, it incorporates a

sequential order of checking both bounds BU and BL.

45

The pruning logic of the best bound BB can be formalized as follows:

BB =

νPL

if νP (P (v)) ≤ BL
νPU

if |P (v)| ≥ BU
BB otherwise

where νPL
represents the cumulative path value from the root vroot to node v, |P (v)|

represents the cardinality of P (v), and BB represents the current best bound.
The best bound BB allows us to find the optimal hitting set HS∗, defined as hav-

ing the highest value ν(HS∗), such that no ν(HS) exceeds ν(HS∗), and the lowest
cardinality |HS∗|, such that no |HS| is smaller than |HS∗|. This approach is particu-
larly beneficial when using inconsistency weights wI , as it includes elements β with
wI = 0. This enables us to find the optimal hitting set HS∗ that maximizes partici-
pation in the inconsistency of the belief base B, while retaining the highest possible
degree of information when repairing the belief base B. Hence, I(B \HS∗) = 0 and
|B \HS∗| is maximal.

The best pruner demonstrates the main benefit of our weight assignment strategy,
especially when using inconsistency weights wI . With the assigned inconsistency
weights wI , we assume that the optimal hitting set HS∗ cannot have a higher incon-
sistency weight wI compared to the sum of all inconsistency weights wI . Therefore,
the following applies:

νI(HS∗) ≤
∑

HSi∈B
νI(HSi)

Although it might be simpler to summarize all weights wI , it is also possible to
use the initial inconsistency measure I(B). This approach allows us to determine the
maximum value of the optimal solution before expanding the search space. It en-
hances computation time, as the best pruner eliminates all subproblems that already
meet BL = I(B). This method provides a valid solution to compute the optimal hit-
ting set HS∗ with the highest value, thus solving a maximality problem in a very
short time.

Figure 6 shows an exemplary tree with five hitting sets HSi. In the tree of Figure
6 we have applied the weight assignment strategy based on inconsistency weights
wI , so that we know that νI(HS∗) = 3. With this information, we are exploring
the search tree and finding two hitting sets at the leaf nodes at the kernels k3 and
k6 with νI(HS) = 2. Knowing that there might be a hitting set HS with a higher
νI(HS), the search continues and finds another hitting set at kernel k9. Knowing
that we have reached the maximal value νmax, the best pruner can now prune all
branches that have a higher cardinality than the hitting set HS at kernel k9. This
allows us to prune the next branch prior to computing kernel k10, which ends the
search. With this approach, we needed to compute nine kernels k to find the optimal
hitting set HS∗, as opposed to computing 14 kernels. In Figure 6, the hitting sets HS
with the highest value ν(HS) are marked with a green checkmark. In this example,

46

the four marked hitting sets all have a value νU (HS) = 3. With the best pruner, we
can navigate the tree along the green path to find the optimal solution HS∗ after
finding two other possible solutions ĤS that might not meet the criteria.

Figure 6: Exemplary Search Tree with Best Pruner

Using an upper bound BU and a lower bound BL in the Branch-and-Bound (B&B)
approach offers several advantages:

• Efficient Pruning: By continually updating the upper bound BU and lower
bound BL with better solutions, the algorithm can prune a larger number
of suboptimal subproblems, thereby reducing the search space and compu-
tational effort.

• Focused Search: The boundaries direct the search towards more promising
regions of the search space, improving the likelihood of finding the optimal
hitting set HS∗ more quickly.

• Memory Optimization: Pruning subproblems early based on the upper
bound BU and lower bound BL reduces the number of subproblems stored
in memory, optimizing resource usage.

47

• Faster Convergence: Updating the boundaries with better solutions found
early in the search helps in pruning more subproblems, leading to faster con-
vergence to the optimal hitting set HS∗.

In summary, the combination of boundary management and pruning rules based
on the potential value νP calculation is integral to the effectiveness of the B&B strat-
egy implemented in this thesis. By dynamically adjusting the boundary and aggres-
sively pruning suboptimal branches, this approach efficiently narrows down the
search space, enhancing both speed and accuracy in finding the optimal hitting set
HS∗.

48

5. Implementation

In this chapter, we provide a thorough description of the implementation details of
our application, including a weight assignment strategy, an advanced belief change
algorithm, and an advanced hitting set tree algorithm with different search strate-
gies. In particular, we describe the application’s architecture, its main algorithm
schemes and a heuristic to find and compute an optimal solution for belief base
contraction.

5.1. Application Architecture

Building on the approach and strategies discussed in Section 4, we present a detailed
system architecture, outlining the necessary components and their interconnections.

Our application for computing a hitting set tree is implemented in Python and
leverages the SAT solver sat4im1 provided by Niskanen et al. [NKTJ23], along with
the MiniSat SAT solver. The installation of the MiniSat SAT solver is a prerequisite
for running the application on any given system. For conducting the Tseitin trans-
formation, we utilize the implementation provided by Niskanen et al. [NKTJ23]
in sat4im/src/core.py. The application’s source code is publicly available on
GitHub2. Links to the download pages of the required solvers can be found in the
repository’s README file.

The application is started with a set of mandatory and optional input parame-
ters. Table 2 provides an overview of these input parameters, where "M" denotes
mandatory parameters and "O" denotes optional parameters.

Parameter Input Description
M {filepath} {’STR’} Path to the dataset file as string
M --vp {1,2,3} Strategy parameter value 1, 2, 3
M --ss {BFS,DFS,HYB,PBS} Search strategy to use
M --alpha {’STR’} A string value for α as string
O --expand {div-conq} or Divide and conquer or

{sw-size} {INT} sliding window with window size
O --shrink {div-conq} or Strategy for shrink

{sw-size} {INT} sliding window with window size
O -res-db Save results to database
O -no-log Disable logging
O -path-db Flag to call file from db

Table 2: Input Parameters

In general, the parameters are designed such that a double dash (--) indicates
a parameter that requires additional input, while a single dash (-) signifies a flag

1https://bitbucket.org/coreo-group/sat4im/src/master/
2https://github.com/SebastianMueller41/Masterthesis

49

https://bitbucket.org/coreo-group/sat4im/src/master/
https://github.com/SebastianMueller41/Masterthesis

that toggles a function on or off. Parameters enclosed in braces require input, which
could be a file path, an integer value or one of the specified options.

The application supports four distinct strategy run modes, specified by the --vp
input:

• 1: Assignment of cardinality weights wc, as detailed in Section 4.3.1.

• 2: Assignment of random weights wr, described in Section 4.3.2.

• 3: Assignment of calculated inconsistency measures wI , as outlined in Section
??.

The mandatory input parameter --ss indicating the search strategy supports the
following four inputs for selecting the search strategy that will be used to span the
hitting set tree:

• BFS: Breadth-First Search, as detailed in Section 4.5.1.

• DFS: Depth-First Search, as detailed in Section 4.5.2.

• HYS: Hybrid Search, as detailed in Section 4.5.3.

• PBS: Priority-Based Search, as detailed in Section 4.5.4..

The mandatory parameter --alpha specifies the element to be checked for entail-
ment. It is important to note that a contradiction can be used as alpha, like --alpha
’(A0&&!A0)’ to force the algorithm to search for minimal inconsistent subsets of
the belief base B. By using the contradiction (A0∧¬A0), the algorithm is compelled
to find kernels, which are minimal subsets of B that lead to a contradiction. This
process continues until a minimal inconsistent subset is identified. The remaining
optional parameters will be described in the subsequent sections.

The optional parameter --pruner activates the computation of the optimal so-
lution using the B&B strategy with optional pruning of suboptimal subproblems
according to the following logic:

• NONE: The whole search space will be explored and the optimal solution re-
trieved.

• UPPER: Searching for the optimal solution with the maximum value ν, while
pruning all subproblems not exceeding a lower bound, as outlined in Section
4.6.1.

• LOWER: Searching for the optimal solution with the minimum value ν, while
pruning all subproblems exceeding an upper bound, as outlined in Section
4.6.2.

50

• BEST: Searching for the optimal solution with the maximum value ν and the
minimum cardinality |HS|, while pruning all subproblems exceeding a lower
bound, once the maximum value ν is reached, as outlined in Section 4.6.3.

Following the explanations above, an example application call could be:

python main.py {file} --vp 3 --alpha '(A0&&!A0)'
--ss PBS --pruner BEST --shrink-sw-size 10 -path-db
--expand-div-conq -no-log

With this call, the application will generate a hitting set tree based on kernels
that do not entail {A0∧¬A0}, also known as α-kernels (--alpha ’(A0&&!A0)’).
The hitting set tree will be expanded using the B&B strategy with the assigned in-
consistency weights (--vp 3). The algorithm will use divide-and-conquer tech-
nique (--expand-div-conq) for the expand phase and a window size of 10
(--shrink-sw-size 10) for the shrink phase. Furthermore, the hitting set tree
will be constructed using the Priority-Based Search (--ss PBS). The application
will retrieve the dataset from the database (-path-db) and not create log files
(-no-log), although it will save critical logging and verification information.

The applications architecture is depicted in Figure 7. This figure illustrates the
complete workflow from loading the datasets to the final output generation. The
application contains two separate models, a computation model that computes an
optimal solution using the B&B algorithm and the advanced kernel finding strate-
gies, and a verification model that computes all hitting sets by expanding the whole
search space of a tree, to obtain the optimal solution that helps verify the result of
the computation model.

In the following paragraphs, we provide a detailed description of the computa-
tion of the weights and the loading of the datasets into the MySQL database, fol-
lowed by the three main steps: Input validation, Kernel processing, and Generation
of the Hitting Set Tree.

51

Figure 7: Application architecture

The setup of the application was carried out in two distinct phases. Phase 1 in-
volved loading the SRS and ARG datasets into a database and calculating and as-
signing weights to the elements of these datasets. Once the datasets were loaded
into the database, the verification model was able to calculate all hitting sets for
verification. Phase 2 encompassed the actual computation of the hitting set tree,
utilizing the datasets and their assigned weights retrieved from the database. The
application outputs an optimal solution that was verified by comparing its values
to the values generated by the verification model.

Weights for the dataset elements are computed based on either a random mea-
sure (see Section 4.3.2) or their inconsistency measures (see Section ??). For the car-
dinality approach (see Section 4.3.1), no weight assignment was performed, as the
cardinality is determined by simply retrieving the length of the hitting sets.

The datasets, along with their associated weights, are first processed and stored in
a MySQL database using the script load.py. This script calculates the weights for
each element and stores both the data and the calculated weights in the database.
This structured storage facilitates efficient retrieval and manipulation of the data
during each run of the application. It also allows for an easy verification of the
computed solution as the computation model can easily obtain the optimal values
and verify its output. Moreover, the MySQL database allows for tracking the re-
sults of the application’s execution by storing computation-based measures for each
dataset and parameter combination. The computation-based measures are further
described in Section 6.

52

In the next sections, we will describe the Verification Model and the Computation
Model as depicted in Figure 7.

5.2. Verification Model

To ensure that a computed possible solution ĤS is the optimal solution HS∗, we
use the Verification Model, which sets a framework for verifying the computed so-
lutions. The Verification Model comprises three phases: preprocessing, baseline
collection, and value determination. Below, we briefly describe the content of these
three phases.

5.2.1. Preprocessing

The preprocessing step sets up the application structure, enabling the execution of
the application and the reproduction of results explained in Section 6.

As illustrated in Figure 7, preprocessing involves setting up the application and
processing the belief bases B stored in the SRS and ARG datasets. This process
includes calculating and assigning weights wx to each element of B and storing
these elements along with their assigned weights. Before storing the weights and
belief bases, the system establishes a connection to the database. As explained in
Section 4.1, the value calculation may involve calling an external SAT solver. The
preprocessing can be initiated by running the Python program load.py, which iter-
ates through every dataset and element, stores them in the database, and calculates
the weights for the random weight assignment (Section 4.3.2) and the inconsistency
weight assignment (Section 4.3.3). For a detailed description of this program, refer
to the annex.

The preprocessing is performed only once to set up the application. After success-
fully executing load.py, the Verification Model proceeds to the baseline collection
phase.

5.2.2. Baseline Collection

In the second phase of the Verification Model, the application calls the kernel pro-
cessing and the generation of the hitting set tree, which will be described later. The
verification includes computing all possible hitting sets, expanding the entire search
space of a hitting set tree HST . This is achieved by storing all found leaf nodes vleaf
with their path values ν(P (v)) and other measures, such as the value of the remain-
ing dataset B(v) or the value of the remaining dataset ν(B(v)) for further calcula-
tions, as described in Section 4.6.2. The baseline collection stores the leaf nodes with
their weights as tuples to keep track of the path values P (v).

Once the baseline collection receives all hitting sets from the generated hitting set
tree HST , the Verification Model continues with the value determination phase.

53

5.2.3. Value Determination

Lastly, the Verification Model determines the values (ν) of the hitting sets for each
value assignment and pruning approach to identify the optimal solution (HS∗).
Given that three different pruning approaches define the optimal solution differ-
ently, the value determination phase calculates all values (ν) and stores them in the
database to ensure that a computed optimal solution can be verified afterwards.

After establishing the application’s foundation by executing the Verification
Model, the computation of optimal solutions with the Computation Model can be-
gin. The Computation Model also consists of three phases, which will be covered in
the following sections.

5.3. Computation Model

The application can be run by executing the Python program main.py. In the fol-
lowing sections, we will briefly describe the three phases of the Computation Model:
Initialization, Kernel Processing, and Generation of the Hitting Set Tree, providing
a comprehensive overview of the entire workflow.

5.3.1. Initialization

The initialization phase initializes the program and includes checking the input for
valid entries. This involves verifying the correct usage of the input parameters
shown in Table 2. Next, the program sets up a connection to the database. In this
thesis, the MySQL database was run on a server, so the connection was established
via an SSH tunnel. After a successful database connection, the initialization phase
loads the belief base from the database and stores it in a data structure (DataSet()).
The exact data structure is detailed in the UML diagrams in the annex.

After completing the initialization, including input validation and database con-
nection, the application proceeds with the computation of kernels using the selected
techniques, depending on the input parameters. This occurs in the next phase, ker-
nel processing, which is described in the following section.

5.3.2. Kernel Processing

As previously mentioned, the application developed in this thesis computes α-
kernels of a given belief base (B). The α-kernels are calculated using a straightfor-
ward approach as described by Ribeiro [Rib13]. It is important to note that α-kernels
can also be computed by first determining a remainder (R), a maximal subset of B
that does not entail α (α /∈ Cn(R ⊆ B)). The remainder can then be subtracted from
B (B \ R) to obtain a minimal subset of B that does entail α (α ∈ Cn(B \ R)), con-
sidered a hitting set HS. The α-kernels can then be computed using the obtained
hitting set by exploring a subset of B that includes all elements from B lying be-
tween two elements being subtracted from B in the shrink phase. This method is

54

not covered in this thesis and left for future work.
A detailed description of the algorithms for computing kernels is provided in

Section 5.4. The computed α-kernel will be used to span a hitting set tree, where the
first kernel serves as the root node. The generation of the hitting set tree is described
in the following section.

5.3.3. Generation of Hitting Set Tree

As described in Section 3.4, each node has as many child nodes as its kernel contains
elements. This means that a kernel with three elements contains three child nodes,
where each element of the kernel is assigned to one of the three branches. The
exploration of the branches depends on the search strategy, explained in Section 4.5.
If the application is called with -ss PBS and -vp 3, the hitting set tree explores
its branches based on the priority of the child nodes, where the child nodes are
prioritized according to the path value obtained by backtracking and adding the
inconsistency weights (wI) of the edge elements (see Section 18). It is important to
note that we assign the weight (wx) of the edges as the node value because, at the
time of branching, the nodes are not yet explored, meaning that the kernels are not
yet computed. This is because the computation of the kernel of the respective node
is done without the element assigned to the edge of the respective node.

Once the priority-based search algorithm determines the next node to be ex-
plored, it backtracks all edges from the node to the root and calls the kernel
computation algorithm with the belief base excluding the backtracked edges (B \
{β1, β2, ..., βi}). A detailed algorithm of the hitting set tree generation will be de-
scribed in accordance with the search strategy algorithms in Section 5.6.

After the hitting set tree has been computed, the application outputs the result
and logs it to the database, if the result logging flag -res-db was set.

5.3.4. Logging

The logging system in the application is designed to capture and record critical
results and metrics during the execution of the application. The key metrics and
events logged during the execution include:

• Execution Time: The total time taken to execute the program.

• Strategy Parameters: The strategy parameters used, such as sp, ss, sliding
window size, and the divide and conquer flag.

• Kernel Information: The number of kernels computed, the branches explored,
the pruned branches and the depth of the hitting set tree.

• Alpha: The specific alpha value used in the computation.

• Optimal Hitting Set: The optimal hitting set computed for the solution with
its value.

55

• Repair and proof: Saving the repaired dataset in CNF format for validation.

In addition to the result logging, that will be stored in the database, if the result
logging flag -res-db is set, the application logs information for debugging pur-
poses to log file, wherein each folder generates its own log-file enabling a separation
of execution information. This is done unless logging is not disabled via -no-log.
This comprehensive logging ensures that all critical events and metrics are recorded
for analysis and future reference.

In addition to the aforementioned logging, the application saves some of its re-
sults in a file ./log/Results.out. These results represent the validation of the re-
sult by validating the computed hitting set with the values generated by the valida-
tion model. Furthermore, the application stores all explored hitting sets along with
their associated values to ensure that the best solution was computed. For further
validation the application generates a repaired dataset file Results/repair.cnf
that include a repaired dataset, which is obtained by subtracting the optimal solu-
tion from B. The repaired dataset is provided in CNF format using the DIMACS
standard for validation purposes.

5.4. Advanced Expand Shrink Algorithm

This section covers the implementation of the kernel finding strategy developed to
compute kernels from a belief base B. The implementation involves a strategy in-
terface that serves as an abstract base class for all kernel finding strategies. It defines
the methods that any concrete strategy class must implement. This design allows
for the easy extension of new strategies without modifying the existing codebase.
The strategy pattern is utilized to encapsulate the different algorithms for finding
kernels within a belief base B. The primary classes involved in this design are
KernelStrategy, ShrinkExpand, and ExpandShrink.

The diagram in Figure 28 illustrates the relationships between the
KernelStrategy interface and its concrete implementations ShrinkExpand
and ExpandShrink. In the diagram, KernelStrategy is the abstract base
class with two concrete subclasses: ExpandShrink and ShrinkExpand.
The find_kernel() method is abstract, which means that any subclass of
KernelStrategy must provide an implementation for this method. This method
is responsible for finding the kernel of a given dataset with respect to a specified
element α.

Each subclass implements the find_kernel() method, and ShrinkExpand
provides additional methods such as find_remainder(), shrink(), expand(),
and divide_and_conquer() to support its strategy. This design allows for flex-
ibility and extensibility in the kernel finding process, enabling the easy addition of
new strategies as needed.

The ExpandShrink class initially expands the dataset by adding elements until
the target element α is entailed, followed by shrinking the dataset to remove redun-
dant elements. The implemented algorithms will be described in Section 5.4.1.

56

The ShrinkExpand class, in contrast, follows a strategy where the dataset is first
shrunk by removing elements until the target element α is no longer entailed. The
dataset is then expanded by reintroducing elements to find a maximal subset that
does not entail α. The implemented algorithms will be described in Section 5.5.

The following section explains the detailed implementation of the kernel finding
algorithm proposed by Ribeiro [Rib13] with the implemented improvements using
a sliding window and a divide-and-conquer technique.

5.4.1. Advanced Finding Kernel Algorithm

In this section, we present an advanced version of Algorithm 1, originally proposed
by Ribeiro [Rib13]. We begin by introducing Algorithm 2, a global and simplified
version of the Find Kernel Algorithm. The subsequent section will elaborate on the
advancements, specifically the expand phase using either the sliding window or
divide-and-conquer methods, and the shrink phase employing similar techniques.

Algorithm 2: Find Kernel Algorithm
Input: B,α
Output: Found α-kernel

1 Function find_kernel(B,α):
2 if α ∈ Cn(B) then
3 return expand(B, α)

4 else
5 return None

6 Procedure expand(B,α):
7 B′ ← ∅
8 for β ∈ B do
9 B′ ← B′ ∪ {β}

10 if α ∈ Cn(B′) then
11 return shrink(B′, α)

12 return B′

13 Procedure shrink(B,α):
14 for β ∈ B do
15 if α ∈ Cn(B \ {β}) then
16 B ← B \ {β}
17 return B

In this section, we present an advanced version of Algorithm 1, originally pro-
posed by Ribeiro [Rib13]. This refined approach includes Algorithm 2, which
is a global and simplified version of the Find Kernel Algorithm. The advance-

57

ments, specifically the expand phase using either the sliding window or divide-
and-conquer methods, and the shrink phase employing similar techniques, will be
detailed in the subsequent section.

In line 2, Algorithm 1 first checks if α is an entailment of the input belief base B.
If it is, the algorithm continues with the expand phase by passing B to expand().
Otherwise, it returns None, which will be handled as an empty kernel.

In the expand phase (lines 6 to 11), the procedure initializes an empty set B′ and
adds elements from B to B′. In this simplified version, elements are added one by
one. However, in the remainder of this thesis, we will demonstrate the use of the
sliding window technique during the expand phase. In line 10, the algorithm checks
if α is an entailment of the expanded belief base B′. If so, the algorithm has found a
set of elements that entail α, and it proceeds to the shrink phase (lines 12 to 19) by
calling the shrink() procedure. To check if α ∈ Cn(B′), we are calling the MiniSat
SAT solver. For an explanation of the logic behind entailment and satisfiability, refer
to Section 3.3.

In the shrink phase (lines 12 to 19), the procedure iterates through each element
β in B. For each element, it checks if α is still an entailment of B without β. If it is,
β is removed from B. The procedure continues this process until no more elements
can be removed without losing the entailment of α. Finally, the reduced set B is
returned as the α-kernel.

Algorithm 2, as the global version of the implementation in this thesis, is very
similar to Algorithm 1, although Algorithm 2 includes an entailment check of α
before the expand phase, ensuring that empty kernels are identified immediately.
This step is crucial because, when spanning a hitting set tree, Algorithm 2 will be
called multiple times without the elements appearing on the edge of the branches
of the tree, resulting in a decreased dataset B.

5.4.2. Expand phase with sliding window

In this section, we will discuss an advanced version of the expand phase using a slid-
ing window technique. According to Table 1, this technique was used by Cobe and
Wassermann [CW15] in the shrink phase of an algorithm for computing remainders.
We will describe the sliding window technique that differs from the implementation
of Cobe and Wassermann [CW15], as presented in Algorithm 3.

In line 2, the procedure initializes an empty set B′. In line 3, the elements of the
input belief base B are assigned to the variable elements. The procedure then
enters a loop (line 4) that iterates from the start index to the length of elements,
incrementing by the size of the sliding window specified by window_size. Within
this loop, the procedure calculates the end of the current window (line 5) to ensure
it does not exceed the bounds of elements. It then extracts the elements within
the current window (line 6) and adds them to B′ (lines 7 to 9). After expanding B′

with the current window of elements, the procedure checks if α is an entailment
of B′ (line 10). If α is entailed by B′, the procedure proceeds to the shrink phase

58

Algorithm 3: Expand with sliding window
Input: B,α,window_size
Output: Expanded dataset B′

1 Procedure expand(B,α,window_size):
2 B′ ← ∅
3 elements← B
4 counter← 0
5 for start← 0 to |elements| by window_size do
6 window_end← min(start + window_size, |elements|)
7 window_elements← elements[start:window_end]
8 for β ∈ window_elements do
9 B′ ← B′ ∪ {β}

10 if α ∈ Cn(B′) then
11 return shrink(B′, α)

12 return B’

by calling the shrink() function with B′ and α as arguments (line 11). If α is not
entailed, the loop continues with the next window of elements until all elements are
processed or α is found to be entailed.

Example 13. Let the belief base B comprise the following elements:

B = {A0,¬A0 ∨A1,¬A1 ∨A2,¬A5 ∧A2, A2,¬A4 ∧ ¬A2,¬A1,¬A0 ∨ ¬A1,¬A3}

With window_size set to 3, Algorithm 3 would iterate over B as follows:

B = { A0,¬A0 ∨A1,¬A1 ∨A2 ,¬A5 ∧A2, A2,¬A4 ∧ ¬A2,¬A1,¬A0 ∨ ¬A1,¬A3}

B = {A0,¬A0 ∨A1,¬A1 ∨A2, ¬A5 ∧A2, A2,¬A4 ∧ ¬A2 ,¬A1,¬A0 ∨ ¬A1,¬A3}

B = {A0,¬A0 ∨A1,¬A1 ∨A2,¬A5 ∧A2, A2,¬A4 ∧ ¬A2, ¬A1,¬A0 ∨ ¬A1,¬A3 }

As the elements of the window are added to B′, the window size is used as the
step size. In contrast, Cobe and Wassermann [CW15] use a step size of 1 for the
sliding window technique in the shrink phase. The sliding window technique can
be applied in various ways for the expand phase. Besides the implementation used
in this thesis, an alternative approach could involve sliding the window over the
elements of B and checking if α is entailed by the elements within the window,
rather than adding the elements of the window and checking the set of added ele-
ments. This alternative approach is a potential subject for future work. Addition-
ally, the sliding window technique could be applied to both the expand and shrink
phases. However, in this thesis, we use the divide-and-conquer approach for the
shrink phase, which will be described in the next section.

59

5.4.3. Expand phase with divide-and-conquer

In this section, we will discuss an advanced version of the expand phase using a di-
vide and conquer technique. According to Table 1, this technique was used by Cobe
and Wassermann [CW15]. The advanced expand phase is illustrated in Algorithm
4.

Algorithm 4: Expand with divide-and-conquer
Input: B,α
Output: Expanded dataset B

1 Function expand_divide_and_conquer(B,α):
2 if |B| ≤ 1 then
3 return expand(B,α)

4 B1, B2← B.split()
5 cn_B1← Cn(B1, α)
6 cn_B2← Cn(B2, α)
7 if ¬cn_B1 and ¬cn_B2 then
8 return expand_divide_and_conquer(B,α)

9 else
10 if cn_B2 then
11 return expand_divide_and_conquer(B2, α)

12 else
13 B ← B1 ∪B2
14 return expand(B,α)

Algorithm 4 describes a divide-and-conquer method for expanding a dataset B
using a given parameter α. The algorithm works as follows:

The main function expand_divide_and_conquer() is defined with inputs B
and α. In line 2, the function checks if the size of B is less than or equal to 1. If
this condition is true, it directly calls the expand() function (line 3) and returns its
result.

In line 4, the function splits B into two subsets, B1 and B2. It then checks whether
α is entailed by B1 and B2 using the Cn() function (lines 5-6).

If α is not entailed by both B1 and B2 (cn_B1 and cn_B2 are both false), the
function recursively calls expand_divide_and_conquer() on the original set B
(line 7).

Otherwise, if α is entailed by B2 (cn_B2 is true), the function recursively calls
expand_divide_and_conquer() on B2 (line 9).

If α is not entailed by B2 (cn_B2 is false), the function combines B1 and B2 into B
and calls the expand() function with B and α, then returns its result (lines 11-12).

This method ensures that the dataset B is expanded using the divide-and-conquer

60

strategy with the given parameter α.
For a detailed analysis of Algorithm 4 we refer to [CW15]. In the next section,

we will briefly describe the implementation of an algorithm to compute a hitting set
from a remainder using Shrink-Expand.

5.4.4. Shrink phase with sliding window

In this section, we will describe the advanced version of the shrink phase using a
sliding window and the advanced expand phase using a divide and conquer tech-
nique as proposed by Cobe and Wassermann in [CW15].

Algorithm 5: Shrink with sliding window
Input: B,α
Output: Shrunk dataset B and removed elements

1 Function shrink(B,α):
2 removed_elements← ∅
3 for start← 0 to |B| do
4 window← B[start:start + window_size]
5 if α ∈ Cn(B \ window) then
6 B \ window
7 removed_elements ∪ window

8 return B,removed_elements

Algorithm 5 shrinks a given dataset B using a sliding window approach while
ensuring that a specified element α remains a consequence of the dataset. The algo-
rithm operates as follows:

In line 1, the main function shrink() is defined with inputs B and α. The func-
tion initializes an empty set removed_elements to keep track of the elements that
are removed from B (line 2).

The algorithm then iterates over the dataset B in windows of size window_size
(line 3). For each window, a subset of elements from B is selected (line 4). The
algorithm checks if α is still entailed by B after removing the elements in the current
window (line 5). If α remains entailed, the elements in the window are removed
from B (line 6), and they are added to the removed_elements set (line 7).

The iteration continues until all elements in B have been processed. Finally,
the function returns the shrunk dataset B and the set of removed elements (line
8). Again, we refer to [CW15]. The next section describes the shrink phase with a
divide-and-conquer strategy.

61

5.4.5. Shrink phase with divide-and-conquer

In this section, we will discuss an advanced version of the shrink phase using a
divide and conquer technique. According to Table 1, this technique was used by
Cobe and Wassermann [CW15] in the expand phase of an algorithm for computing
remainders. We will describe the divide and conquer technique that differs from the
implementation of Cobe and Wassermann [CW15], as presented in Algorithm 6.

Algorithm 6: Shrink with divide-and-conquer
Input: B,α
Output: Reduced dataset

1 Function divide_and_conquer(B,α):
2 if |B| ≤ 1 then
3 return B if Cn(B,α) else {}

4 B1, B2← B.split()
5 cn_B1← Cn(B1, α)
6 cn_B2← Cn(B2, α)
7 if ¬cn_B1 and ¬cn_B2 then
8 return shrink(B,α)

9 if cn_B1 then
10 return divide_and_conquer(B1, α)

11 if cn_B2 then
12 return divide_and_conquer(B2, α)

In line 1, the function divide_and_conquer is defined with inputs B and α. In
line 2, the function checks if the size of B is less than or equal to 1. If true, it returns
B if Cn(B, α) is satisfied; otherwise, it returns an empty dataset (line 3). In line
4, the dataset B is split into two subsets, B1 and B2. The condition α is checked
on both subsets (lines 5 and 6), with the results stored in cn_B1 and cn_B2. In line
7, if neither subset satisfies the condition, the function calls shrink on the original
dataset B and returns the result. If B1 satisfies the condition (line 8), the function
recursively calls itself on B1. Similarly, if B2 satisfies the condition (line 9), the
function recursively calls itself on B2.

It is important to note that Algorithm 6 employs a straightforward approach
where it passes both parts B1 and B2 of B to the shrink() function from Al-
gorithm 1 if neither half entails α. An alternative approach could involve splitting
B into more than two parts and recombining them in various ways to see if any
new combination entails α. While this method can be more computationally expen-
sive, it may be more effective in identifying a valid subset. Another alternative is
to combine parts of the dataset randomly or based on certain heuristics to explore
different combinations of elements that might entail α. These alternative strategies
are potential subjects for future research.

62

Example 14. In this example, we are using the belief base B from Example 13:

B = {A0,¬A0 ∨A1,¬A1 ∨A2,¬A5 ∧A2, A2,¬A4 ∧ ¬A2,¬A1,¬A0 ∨ ¬A1,¬A3}

Consider α = A1. Using the divide-and-conquer technique described in Algorithm
6, the dataset B is split and processed as follows:

In the first iteration, B is split into two halves B11 and B21 (indicating the recur-
sion step by subscripted numbers):

B11 = {A0,¬A0 ∨A1,¬A1 ∨A2,¬A5 ∧A2}
B21 = {A2,¬A4 ∧ ¬A2,¬A1,¬A0 ∨ ¬A1,¬A3}

In the following step, the algorithm checks the entailment of α for both halves
B11 and B21 and assigns the result to the variables cn_B11 and cn_B21:

cn_B11 = Cn(B11, α) = true
cn_B21 = Cn(B21, α) = false

Since B11 entails α, the algorithm recursively calls divide_and_conquer()
with B11 and α as arguments. In the second iteration, B11 is split into two halves
B12 and B22:

B12 = {A0,¬A0 ∨A1}
B22 = {¬A1 ∨A2,¬A5 ∧A2}

Now both halves B12 and B22 are checked for the entailment of α and assigned
to the variables cn_B12 and cn_B22:

cn_B12 = Cn(B12, α) = true
cn_B22 = Cn(B22, α) = false

Since B12 entails α, the algorithm again recursively calls
divide_and_conquer() with B12 and α as arguments. In the third itera-
tion, B12 is split into two halves B13 and B23:

B13 = {A0}
B23 = {¬A0 ∨A1}

Now both halves B13 and B23 are checked for the entailment of α and assigned
to the variables cn_B13 and cn_B23:

cn_B13 = Cn(B13, α) = false
cn_B23 = Cn(B23, α) = false

Since neither half B13 nor B23 entails α, the algorithm combines both halves and
calls the shrink() function with the combined halves B13 and B23.

63

Step Splits B1x Entailment Check

1
B11 = {A0,¬A0 ∨A1,¬A1 ∨A2,¬A5 ∧A2}
B21 = {A2,¬A4 ∧ ¬A2,¬A1,¬A0 ∨ ¬A1,¬A3}

cn_B11 = true
cn_B11 = false

2
B12 = {A0,¬A0 ∨A1}
B22 = {¬A1 ∨A2,¬A5 ∧A2}

cn_B12 = true
cn_B12 = false

3
B13 = {A0}
B23 = {¬A0 ∨A1}

cn_B13 = false
cn_B23 = false

Table 3: Recursive Steps of the divide-and-conquer Algorithm

Thus, the divide-and-conquer technique iteratively splits, processes, and recom-
bines the dataset B to reduce it while checking the entailment of α.

The recursion steps with the respective variables and its assignments are dis-
played in Table 3

In the next section we will breifly describe the implementation of an algorithm to
compute a hitting set value from a remainder using Shrink-Expand as proposed by
Ribeiro [Rib13].

5.5. Finding Remainder Algorithm

In this section, we describe the implementation of an algorithm to compute a re-
mainder that will be used to obtain a value ν(P (v)) using the objective function
describesd in Section 4.6.2.

Algorihtm 7 aims to determine a remainder of the dataset B with respect to
α, meaning to find a subset B′, such that α /∈ B′ ⊆ B. The primary function,
find_remainder, first shrinks the dataset by removing elements that do not af-
fect the entailment of α through the shrink function (line 2). The shrink function
iterates over each element in B, removes it temporarily, and checks if α is still en-
tailed; if it is, the element β is added to a set of removed elements (lines 7 to 10). The
find_remainder procedure then calls the expand function in line 3, which tries
to add back the removed elements one by one, ensuring that α is not entailed in the
process.

For this algorithm we also implemented the sliding window and divide-and-
conquer methods described previously. For a detailed analysis of Algorithm 4 we
refer to [CW15]. The following section details the advanced hitting set algorithm
including the spanning of the tree and the different pruning strategies.

5.6. Hitting Set Tree Algorithm

In this section, we explain the implementation of the hitting set tree algorithm em-
ploying search strategies and pruners to find new kernels and span the hitting set
tree. The search implementation is illustrated in Figure 30.

64

Algorithm 7: Find Remainder Algorithm
Input: B,α
Output: Kernel based on found remainder

1 Function find_remainder(B,α):
2 remainder_dataset, removed_elements← shrink(B,α)
3 return expand(remainder_dataset, removed_elements, α)

4 Procedure shrink(B,α):
5 B′ ← B
6 removed_elements← ∅
7 for β ∈ B′ do
8 if α ∈ Cn(B′ \ {β}) then
9 B′← B′ ∪ {β}

10 removed_elements← {β}

11 return B′, removed_elements

12 Procedure expand(B, removed_elements, α):
13 for β ∈ removed_elements do
14 if α /∈ Cn(B ∪ {β} then
15 B ← B ∪ {β}

16 return B

The hitting set tree algorithm utilizes various search strategies to efficiently ex-
plore the solution space. Each search strategy, including Breadth-First Search (BFS),
Depth-First Search (DFS), Hybrid Search (HYS), and Priority-Based Search (PBS),
offers unique advantages and challenges. The following sections provide a de-
tailed description of each strategy and its implementation. In the following, we will
describe the Priority-Based Search (PBS) in more detail. For the remaining search
strategies (BFS, DFS, HYB) we will focus on the differences in terms of the utilized
data structures.

5.6.1. Priority-Based Search Algorithm

The Priority Search (PBS) algorithm priorities nodes based on a specific criterion,
often related to the kernel’s properties or search depth. The algorithm creates the
initial node, adds it to the priority queue, and processes nodes based on their prior-
ity. The implementation of the PBS is explained in Algorithm 8.

The Priority Search (PBS) algorithm is designed to find the kernel of a given
dataset. The process begins in the find_kernels function (lines 1 to 6),
which initializes a sorted priority queue and creates the root node using the
create_initial_node function (lines 7 to 12). If the root node is not None, the
algorithm proceeds to the priority_search function (line 5).

65

Algorithm 8: Priority Search (PBS)
Input: Dataset B, α, ExpShrink, Brancher, Pruner

1 Function find_kernels(B, α):
2 queue← SortedList()
3 vroot ← create_initial_node(B, α)
4 if vroot ̸= None then
5 return priority_search(vroot)

6 return None

7 Function create_initial_node(B, α):
8 result← ExpShrink.find_kernel(B, α)
9 if result = None then

10 return None

11 vroot ← new(v)
12 return vroot

13 Function priority_search(vroot):
14 queue.add(vroot)
15 while queue ̸= ∅ do
16 element← queue.pop()
17 v ← element
18 if Pruner.should_prune(v) then
19 prune(v)
20 continue

21 if vkernel = ∅ then
22 result← ExpShrink.find_kernel(v.dataset, α)
23 if result ̸= None then
24 v.kernel← result
25 vchildren ← Brancher.expand_children(v)
26 foreach vchild ∈ vchildren do
27 queue.add(vchild)

28 else
29 vleaf ← v
30 Pruner.update_boundary(vleaf)

31 else
32 Brancher.expand_children(v)
33 foreach vchild ∈ vchildren do
34 queue.add(vchild)

66

The create_initial_node function (lines 7 to 12) calls the
ExpShrink.find_kernel method to identify the initial kernel for the dataset. If
no kernel is found, it returns None; otherwise, it creates and returns a new node
with the found kernel.

The core of the algorithm is the priority_search function (lines 13 to 34). This
function manages the priority queue, which starts with the root node (line 14). It
processes each node by popping the highest priority element from the queue (line
16) and checking if it should be pruned using the Pruner.should_prune method
(lines 18 to 20) of the pruner that will be descibed in the following sections.

If the node does not have a kernel (line 21), the algorithm attempts to find one
using ExpShrink.find_kernel (line 22) using the assigned dataset of the node
v. In general we are assingning each node v a dataset that contains all elements
B except the elements of its path P (v). If a kernel is found, it sets the kernel and
expands the node’s children (lines 23 to 27), pushing each child onto the queue
(lines 26 to 27). If no kernel is found, it updates the boundary with the leaf node
(lines 29-30). If the node already has a kernel, it simply expands its children and
adds them to the queue (lines 32 to 34).

In summary, the PBS algorithm systematically searches through the dataset, using
a sorted priority queue that automatically sorts the nodes v to manage a priorization
of the nodes v, and employs strategies to find and expand kernels while pruning
unnecessary nodes.

The process of Priority-Based Search can be summarized as follows:

1. Initialization: Start with the initial node representing the entire problem. Cal-
culate path values of the branches and add the nodes to the priority queue.

2. Exploration: Continuously extract the subproblem with the highest priority
from the sorted queue. If the current subproblem can be expanded, generate
its children, calculate their path value, and add them to the queue.

3. Boundary Update: If a leaf node (complete solution) is found, update the
boundary if this solution is better than the current best. This helps in prun-
ing other subproblems more effectively.

4. Pruning: Evaluate whether to prune a subproblem based on the current
boundary. If the subproblem cannot yield a better solution than the current
best, it is pruned and not further explored.

5. Termination: The process continues until there are no more subproblems to
explore in the queue. The best solution found during the search is returned as
the optimal solution.

By integrating the strengths of the Priority-Based Search and dynamic prioritiza-
tion, the Priority-Based Search strategy developed in this thesis provides an effec-
tive means of navigating large and complex search spaces, making it well-suited for
solving optimization problems within the B&B framework. Nonetheless, we have

67

implemented other search strategies for evaluation. It is especially how the follow-
ing search strategies perform when using an aggressive pruning approach, which
will be described following the search strategy implementation.

5.6.2. BFS, DFS, and HYS

Here we describe the main differences in queuing and node handling for BFS, DFS,
and HYS algorithms compared to PBS.

BFS In BFS, nodes are processed level by level, meaning all nodes at the current
depth are processed before moving to the next depth level. Algorithm 9 shows a
brief implementation of this search strategy.

Algorithm 9: Breadth-First Search (BFS)
Input: Dataset B, α, ExpShrink, Brancher, Pruner
Output: Kernel of the dataset

1 Function bfs(B, α):
2 vroot ← new(v)
3 queue← {vroot}
4 while queue ̸= empty do
5 v ← queue.pop()
6 result← ExpShrink.find_kernel(v.dataset, α)
7 if result ̸= None then
8 v.set_kernel(result)
9 vchildren ← Brancher.expand_children(v)

10 foreach child ∈ vchildren do
11 queue.append(child)

The Breadth-First Search (BFS) algorithm explores nodes level by level. Its
find_kernels function initiates BFS on dataset B with α. The bfs function ini-
tializes an empty queue and finds the initial kernel. If a kernel is found, it creates
a root node vroot, sets it as the tree root, and adds it to the queue. The algorithm
processes nodes level by level, pruning nodes as needed. For each node, it creates a
reduced dataset and a child node for each element in the kernel. If a kernel is found
in the reduced dataset, the child node is added to the queue; otherwise, it is marked
as a leaf. The tree structure is logged at the end. For a detailed implementation the
reader is referred to the code available on GitHub 3.

DFS In DFS, nodes are processed by exploring as far as possible along each branch
before backtracking. A simplified implementation of the DFS is explained in Algo-

3https://github.com/SebastianMueller41/Masterthesis

68

https://github.com/SebastianMueller41/Masterthesis

rithm 10.

Algorithm 10: Depth-First Search (DFS)
Input: Dataset B, α, ExpShrink, Brancher, Pruner
Output: Kernel of the dataset

1 Function dfs(B, α, v):
2 for element ∈ v.kernel do
3 vchild ← new(v)
4 if ExpShrink.find_kernel(v.dataset, α) ̸= None then
5 queue.push(vchild)

6 while queue ̸= empty do
7 vnext ← queue.popBack()
8 dfs(vnext.dataset, α, vnext)

The Depth-First Search (DFS) algorithm explores as far as possible along each
branch before backtracking. The find_kernels function initiates the DFS process
on the dataset B with respect to α and then prints and logs the tree structure. The
dfs function begins by finding the initial kernel if the parent node is None. If a
kernel is found, a root node vroot is created and set as the tree root, and the DFS
function is called recursively with the root’s dataset and the root node. If a parent
node is provided, the algorithm checks if the node should be pruned. If not, it
iterates through each element in the parent’s kernel, creates a reduced dataset, and
calculates the bounding box value. A child node is created for each reduced dataset,
and if a kernel is found, the child node’s kernel is set, and the DFS function is called
recursively on the child node. If no kernel is found, the child node is marked as a
leaf. The tree structure is logged at the end.

HYS The Hybrid Search (HYS) algorithm combines DFS and BFS strategies. Ini-
tially, it performs DFS until the first leaf is found, then switches to BFS. A simplified
implementation of the HYS is explained in Algorithm 11, which basically uses both
implementations from BFS and DFS.

The Hybrid Search (HYS) algorithm combines both depth-first and breadth-first
search strategies. The find_kernels function initiates the process based on
whether the first leaf has been found. If first_leaf_found is True, it logs a
message indicating the switch to BFS, sets the tree of the BFS search to the tree of
the DFS search, and then runs the BFS search to find kernels. Finally, it sets the tree
of the DFS search to the tree of the BFS search to synchronize the tree structures. If
first_leaf_found is False, it runs the DFS search to find kernels and sets the
tree of the DFS search to the current tree.

The following section covers the branching strategy that is responsible for ex-
panding the children of a node.

69

Algorithm 11: Hybrid Search (HYS)
Input: Dataset B, α, Kernel Strategy, Brancher, Pruner
Output: Kernel of the dataset

1 Function find_kernels(B, α):
2 if first_leaf_found then
3 bfs.tree← dfs.tree
4 bfs.find_kernels()
5 dfs.tree← bfs.tree

6 else
7 dfs.find_kernels()
8 tree← dfs.tree

5.7. Branching Implementation

The branching and pruning serve as two phases of the B&B (see 4.4) that together
with the search strategy complete the B&B framework. The following sections cover
the implementation of the brancher and the developed pruners.

The implemented Brancher class is a crucial component of the B&B framework,
responsible for expanding the search tree by generating child nodes from the cur-
rent node. The branching strategy highly depends on the computation of kernels.
For each element of a kernel of a node, one branch will be generated, effectively
spanning hitting set trees.

Algorithm 12: Brancher Pseudoalgorithm
Data: ExpShrink, Dataset
Result: List of child nodes

1 Function expand_children(v):
2 if v.kernel = ∅ or v = vleaf then
3 return []

4 children← []
5 for β in v.kernel do
6 reduced_dataset← v.dataset
7 reduced_dataset.remove(β)
8 vchild ← new(v)
9 ν(P (vchild))← ν(P (v)) + w(β)

10 vchildren.append(vchild)
11 children.append(vchild)

12 return children

The Brancher uses the specified kernel strategy and the dataset. Its primary

70

function, expand_children, is responsible for generating the child nodes of the
current node based on its kernel k. The expand_children method is the core
function of the Brancher. It first checks if the current node’s kernel v.kernel is
None or if the current node v is a leaf vleaf (lines 2 to 3). If either condition is true, it
returns an empty list, indicating no further expansion is possible. For each element
β in the current node’s kernel v.kernel (line 5), the method removes the element β
from the current node’s dataset to create a reduced dataset (lines 6 to 7). It then
calculates the child path value ν(P (vchild)) by adding the weight w of the element
β to the path value ν(P (v)) of the node v (line 9). A new child node (new(v)) is
created with the path value, linking it to the current node v as its parent (line 10).
The newly created child node vchild is then added to the current node’s children
vchildren (line 11). Finally, the method returns the list of generated child nodes (line
19).

When spanning hitting set trees, the branching strategy is heavily dependent on
the computation of kernels k. Each element β in a kernel k of a node v generates
a new branch, expanding the search tree. This systematic expansion ensures that
all potential solutions are explored efficiently, with the tree structure dynamically
adapting based on the kernel computations at each node v.

This branching method, combined with effective kernel computation and pruning
strategies, forms a robust framework for efficiently solving the belief base B contrac-
tion problem, as further evaluated in subsequent sections. Therefore, we will now
describe the implementation of the Pruner.

5.8. Pruner Implementation

In this sections, we present the implementation of three different pruners: the Upper
Pruner, Lower Pruner, and Best Pruner as described in Section 4.6. These pruners
are designed to optimize the search process by eliminating nodes that cannot lead
to a better solution, thereby improving the efficiency of the B&B framework. Fig-
ure 30 illustrates the class implementation of the pruners. All of the implemented
pruners (UPPER, LOWER and BEST) extend a global pruner called BasePruner.
The BasePruner not only serves to handle shared functions of the pruners, but
also the base case where no pruning is selected.

5.8.1. Base Pruner

The Base Pruner provides the foundational structure for all pruners. It includes
methods for calculating potential values νP (P (v)), finding remainders R in datasets,
and computing potential bounds for nodes v. The Base Pruner will be explained in
Algorithm 13

In Algorithm 13 the calculate_subproblem function (lines 1 to 4) calculates
the value ν(P (v)) as the sum of the weights wi of the elements βi in the dataset
of a node v and assigns ν(P (v)) to the node’s sub_value, which it then returns. The
find_remainder_in_dataset function (line 5) returns the remainder R found in

71

Algorithm 13: Base Pruner Pseudoalgorithm
Data: Kernel Strategy, Tree
Result: Subproblem value or boolean for pruning decision

1 Function calculate_subproblem(v):
2 ν(P (v))← sum of elements in v.dataset
3 v.sub_value← ν(P (v))
4 return ν(P (v))

5 Function find_remainder_in_dataset(dataset):
6 return remainder.find_remainder(dataset)

7 Function calculate_potential_bound(v):
8 if remainder_flag then
9 R← find_remainder(v.dataset)

10 if R ̸= ∅ then
11 foreach βi ∈ R do
12 ν(R)← ν(R) + wi(βi)

13 else
14 ν(R)← 0

15 νP (P (v))← ν(P (v))− ν(R)
16 return νP (P (v))

17 Function should_prune(v):
18 return False

the given dataset. The calculate_potential_bound function (lines 7 to 16) cal-
culates the potential value νP (P (v)) of a node v. If the remainder flag is set, it finds
the remainder R of the dataset and summarizes the weights wi of all elements β of
the found remainder R. Next, it subtracts the remainder value ν(R) from the path
value ν(P (v)) to get the potential path value νP (P (v)) (line 15) which is returned
in line 16. If the function does not find a remainder R, the potential path value
νP (P (v)) is simply the path value ν(P (v)) of node v. Finally, the should_prune
function (lines 17 to 18) always returns False, indicating no pruning decision is
made at this stage. This algorithm provides essential functionalities for more spe-
cialized pruners that build upon it, like the upper pruner and lower pruner, that will
be described in the following sections.

5.8.2. Upper Pruner

The Upper Pruner is responsible for pruning subproblems that do not meet or ex-
ceed the lower Bound BL as explained in Section 4.6.1. A simplified implementation
is illustrated in Algorithm 14. The pruner updates the boundary using leaf nodes

72

vleaf and determines whether a node v should be pruned based on its path value
ν(P (v)). As explained in Section 4.6 we are using the complementary path value
νmin(P (v)) = ν(B) − ν(P (v)) to have a consistent implementation for the Upper
Pruner and Lower Pruner, which will be explained in the remainder of this section.

Algorithm 14: Upper Pruner Implementation
Data: Hitting Set Tree
Result: Boolean indicating whether to prune the node

1 Function update_boundary_with_leaf(vleaf):
2 if νmin(P (vleaf)) > tree.lowerBound then
3 tree.lowerBound← νmin(P (vleaf))

4 Function should_prune(v):
5 return νmin(P (v)) ≤ tree.lowerBound

The Algorithm 14 incorporates a update_boundary_with_leaf function
(lines 1 to 3) that is responsible for updating the tree’s lower bound BL when a leaf
node vleaf is encountered. It compares the complementary path value νmin(P (vleaf))
of the leaf node vleaf with the current lower bound BL of the tree, and if the com-
plementary path value νmin(P (vleaf)) is greater, it updates the lower bound BL to
this value. The should_prune function (lines 4 to 5) determines whether a node
v should be pruned by comparing the complementary path value νmin(P (v)) of the
node v with the tree’s lower bound BL. If the complementary path value νmin(P (v))
is less than or equal to the lower bound BL, the function returns True, indicating
that the node v should be pruned. Otherwise, it returns False. This approach en-
sures that the search space is efficiently reduced by eliminating nodes v that cannot
lead to an optimal solution, which is deemed to represent the minimal path value
ν(P (v)).

5.8.3. Lower Pruner

The Lower Pruner class also extends the BasePruner and prunes nodes based on
a upper bound criterion. It updates the upper bound BU using leaf nodes vleaf and
checks if a node v should be pruned by calculating its potential value νP (P (v)) as
described in accordance with the Base Pruner.

The Lower Pruner Algorithm 15 also consists of the two main
functions update_boundary_with_leaf and should_prune. The
update_boundary_with_leaf function (lines 1 to 3) is responsible for up-
dating the tree’s upper bound when a leaf node is encountered. It compares the
subproblem value ν(P (vleaf)) of the leaf node with the current upper bound of the
tree, and if the subproblem value is less than the upper bound, it updates the upper
bound to this value.

The should_prune function (lines 4 to 6) determines whether a node

73

Algorithm 15: Lower Pruner Implementation
Data: Kernel Strategy, Tree
Result: Boolean indicating whether to prune the node

1 Function update_boundary_with_leaf(vleaf):
2 if ν(P (vleaf)) < tree.upperBound then
3 tree.upperBound← ν(P (vleaf))

4 Function should_prune(v):
5 νPP (v))← calculate_potential_bound(v)
6 return νP (P (v)) ≤ tree.upperBound

should be pruned by calculating its potential bound νP (P (v)) using the
calculate_potential_bound method. If the potential bound is less than or
equal to the tree’s upper bound, the function returns True, indicating that the node
should be pruned. Otherwise, it returns False. This method ensures that nodes
which cannot improve the current best solution are effectively pruned from the
search space, thus optimizing the search process.

5.8.4. Best Pruner

The Best Pruner class extends the BasePruner and incorporates both the upper
and lower bound criteria for pruning. It also performs an initial check for poten-
tial duplicate sums to determine if the dataset qualifies for a specialized pruning
approach.

The Best Pruner algorithm is designed to prune nodes v in a search
tree based on both upper bound and lower bound criteria, incorporat-
ing an initial check for potential duplicate sums to determine if this spe-
cialized pruning approach can be applied. Algorithm 16 consists of
three main functions: update_boundary_with_leaf, should_prune, and
has_potential_duplicate_sums. The update_boundary_with_leaf func-
tion (lines 1 to 9) updates the tree’s lower bound BL and upper bound BU when a
leaf node vleaf is encountered. It first calculates the value ν(B) (lines 2 to 3). If the
path value ν(P (vleaf)) of the leaf node equals the value ν(B), it updates the tree’s
lower bound BL to this path value ν(P (v)) and the upper bound BU to the cardinal-
ity of the path P to the node v (|P (v)|) (lines 5 to 6). If the path value ν(P (vleaf)) is
greater than the current lower bound BL, it updates the lower bound BL to the path
value ν(P (v)) (line 9). The should_prune function (lines 10 to 16) determines
whether a node v should be pruned by checking if the tree’s lower bound BL is zero
(line 11) or if the cardinality of the node path |P (v)| is greater than or equal to the
upper bound BU when the maximum is reached (lines 13 to 15). Returns True if the
node should be pruned; otherwise, it compares the node’s path value to the tree’s
lower bound (line 16). The has_potential_duplicate_sums function (lines 17

74

Algorithm 16: Best Pruner Implementation
Data: Kernel Strategy, Tree
Result: Boolean indicating whether to prune the node

1 Function update_boundary_with_leaf(vleaf):
2 foreach βi ∈ B do
3 ν(B)← ν(B) + w(βi)

4 if ν(P (vleaf)) = ν(B) then
5 tree.lowerBound← ν(P (vleaf))
6 tree.upperBound← |P (vleaf)|
7 max_reached← True

8 else if ν(P (vleaf)) > tree.lowerBound then
9 tree.lowerBound← ν(P (vleaf))

10 Function should_prune(v):
11 if tree.lowerBound = 0 then
12 return False

13 if max_reached then
14 ν(P (v))← |P (vleaf)|
15 return ν(P (v)) ≥ tree.upperBound

16 return ν(P (v)) < tree.lowerBound

17 Function has_potential_duplicate_sums():
18 return True if if potential duplicate ν exist, else False

to 18) checks if the dataset contains potential duplicate sums of potential path values
νP (P (v)), returning True if such sums exist. For a detailed implementation of the
initial check, we refer to the GitHub repository. The combination of these functions
ensures efficient pruning by leveraging both lower and upper bound criteria and
optimizing the search process through specialized pruning when applicable.

These pruning methods significantly enhance the efficiency of the B&B frame-
work by systematically eliminating nodes that cannot lead to an optimal solution,
thus concentrating the search on the most promising areas of the search tree. In the
following section, we will discuss the possible combinations of this thesis’ applica-
tion, highlighting various improvements and configurable parameters that can be
set within the code. It is important to note that due to their lack of contribution to
the performance or execution time in finding optimal solutions, certain functions
such as the computation of remainders R or the potential value νP (P (v)) based on
the remainder value ν(R) have not been implemented. Nonetheless, these functions
have been evaluated, as will be detailed in Section 6.

75

5.9. Strategy combinations

In this section, we demonstrated the implementation of the B&B framework, includ-
ing its various phases: searching, branching, and pruning. We have incorporated
several advanced strategies to efficiently compute kernels and remainders, thereby
optimizing the search tree. This thesis presents a modular framework for finding
an optimal solution for belief base B contraction. Specifically, we provided three
different weight assignment approaches, four search strategies, and three pruner
implementations (no pruning excluded). Additionally, we can compute kernels
using the Expand-Shrink algorithm, employing both a sliding window technique
and a divide-and-conquer strategy for both phases, the expand and shrink phase.
Additionally, we are able to compute remainders R using a sliding window and
divide-and-conquer strategy to determine the potential value ν(P (v)). Figure 8 il-
lustrates the different strategy options available in the current application, with the
most promising strategies highlighted in green. These will be validated in the next
section, which covers the evaluation.

Figure 8: Application strategy combinations

It has to be noted that the pruners are related to either a minimization problem or
a maximization problem. Therefore, the results of the lower pruner and the upper
or best pruner shall not be compared with each other. As well known, it is a lot eas-
ier to find the optimal solution HS∗ if it is determined to provide a lowest value, as

76

this approach does not rely on an estimation of unexplored subproblems. It is much
harder to compute an optimal soultion HS∗ that provides the maximal value, as the
algorithm has to calculate a potential value νP (P (v)) without the knowledge of the
subproblem. It can only estimate the potential value νP (P (v)), but it can never be
certain that it reached the maximal value without having searched all subproblems.
Therefore, this thesis provides the sophisticated approach to calculating inconsis-
tency weights wI to find an optimal solution HS∗. This approach is particularly
charming, since in general ν(B) ̸=

∑
βi∈B wI(βi). Although we found some datasets

where this does not apply and ν(B) <
∑

βi∈B wI(βi). This is due to our calculation
of the inconsistency weights wI where we calculate wI(βi) = I(B)−I(B\βi). In this
case there can be instances where two elements βi, βj participate in the same cause
of inconsistency, thereby being assigned same inconsistency weight wI , although
I(B \ {βi, βj}) = I(B \ βi) = I(B \ βj).

Figure 31 visualizes the underlying approach by illustrating an exemplary hitting
set tree with three assigned weights: the cardinality weight wc, the random weight
wr, and the inconsistency weight wI . These weights are displayed on each edge
along with the edge element of the branch (or the subsequent node). At the leaf
nodes, the hitting set values νc, νr, and νI represent the values of the hitting sets.
Depending on the selected search strategy, value assignment strategy, and pruning
strategy, the algorithm determines:

• Leaf node 23: for random weights wr, upper pruning, and all search strategies.

• Leaf node 4: for cardinality weights wc, upper pruning, and all search strate-
gies.

• Leaf node 14: for inconsistency weights wI , lower pruning, and all search
strategies.

The exemplary tree in Figure 31 demonstrates that the determination of optimal
solutions is highly dependent on the branching and searching strategy. The algo-
rithm may decide between two nodes at the same level if they have equal values ν.
In such cases, the algorithm employs the first-in-first-out (FIFO) principle. Different
branching strategies might influence the selection of the optimal weights.

In summary, this section has detailed the comprehensive implementation of our
B&B framework, encompassing weight assignment strategies, belief change algo-
rithms, and advanced hitting set tree algorithms with diverse search strategies. By
integrating these components with efficient branching and pruning methods, we
have constructed a robust system capable of solving complex belief base contrac-
tion problems. The following section will present an evaluation of these implemen-
tations, providing empirical results and analysis to validate the effectiveness and
performance of the proposed approaches.

77

6. Evaluation

This section discusses the evaluation of the proposed system. We begin by pre-
senting the hardware setup and experimental parameters. Next, we examine the
performance of our algorithms, followed by an analysis of the instances where we
were able to find optimal solutions. Finally, we investigate the performance of the
improved approach for calculating the potential value νP (P (v)) from the remainder
value ν(R).

6.1. Hardware Setup

The results were computed on an Ubuntu 20.04.6 LTS system (Linux kernel 5.4.0-
172-generic) with Intel Core Processor (Haswell, no TSX, IBRS) 3.40-GHz CPUs and
32 GB of RAM. To limit the execution time, we used a 1800-second time limit.

6.2. Knowledge Bases

The experimental evaluation of the present B&B algorithm includes both the com-
putation model and the verification model, which verifies if the computed solution
was optimal according to the definition of the optimal hitting set. The computa-
tion model includes several advanced strategies to find the solution faster, as this is
computationally hard.

As benchmarks, we use the datasets ARG and SRS from previous works by
Kuhlmann and Thimm [KT21], also utilized by Niskanen et al. [NKTJ23]. A de-
tailed description of the datasets and the inconsistency measurement algorithm can
be found in [KGLT23]. The datasets include two different categories:

• ARG: This dataset consists of 326 knowledge bases containing individual CNF
clauses of a standard SAT encoding. We set a threshold of 30 formulas for
computing these knowledge bases to prevent excessive timeouts, resulting in
54 knowledge bases. We ran the B&B algorithm for all of these 54 datasets.

• SRS: This dataset consists of 1800 knowledge bases (KBs) that were randomly
generated using SyntacticRandomSampler from TweetyProject4. The knowledge
bases’ sizes range from 5 to 15 formulas with signature size 3, to 50 to 100
formulas with signature size 30, with an average signature size of 16 and 36
formulas. A subset of 555 of these knowledge bases was evaluated.

The datasets comprise finite belief base CNF formulas involving logical opera-
tors such as AND (&&), OR (||), NOT (!), IMPLICATION (→), and EQUIVALENCE
(←→). They include a mix of conjunctive normal form (CNF) and disjunctive normal
form (DNF).

Table 6 shows an overview of the evaluated knowledge bases that were used for
verifying the results of our application.

4https://tweetyproject.org/

78

https://tweetyproject.org/

Dataset Signature size Formulas per knowl. base Knowledge bases
SRS3 3 5 - 15 200
SRS5 5 15 - 25 200
SRS10 10 15 - 25 200
ARG 10 - 30 10 - 30 28

Table 4: Overview of the sets of computed knowledge bases.

As these datasets only include the belief base without any further information, we
needed to compute all hitting sets to verify if the computation model of this thesis’
application found the solution that was deemed to be optimal. We refer to these
runs as the baseline, as we are comparing our Branch-and-Bound (B&B) algorithm
to these results. For the sake of completeness, we attempted to compute all hitting
sets for a dataset with a signature size of 20 and 30 formulas, but this computation
was terminated after 180 hours of runtime.

Therefore, we focused on the SRS dataset with signature sizes 3, 5, and 10. Each
set of knowledge bases with a signature size of 3, 5, and 10 includes 200 knowledge
bases, amounting to 600 knowledge bases in total. From these 600 knowledge bases,
we attempted to compute all hitting sets, successfully retrieving the hitting sets for
the knowledge bases with signature sizes 3 and 5 that do not entail α = (A0∧¬A0).
This approach forces the hitting set tree algorithm to compute all possible hitting
sets, as α itself is a contradiction providing an inconsistency. For the SRS datasets
with signature size 10, we calculated all hitting sets with α = (A0 ∨ A1), as almost
all datasets with a signature size greater than 10 timed out with α = (A0 ∧ ¬A0).

Out of the 54 ARG datasets that include less than 30 lines, we ran the B&B algo-
rithm with α = (arg0 ∧ ¬arg0), although the algorithm does not necessarily need a
valid α, especially if α is a contradiction. We found that 26 of these datasets were
consistent and no dataset timed out when computing the baseline. From the result-
ing 28 knowledge bases, we were able to compute 1,691 hitting sets.

Out of the 400 knowledge bases with signature size 3 or 5, that ran with α =
(A0 ∧ ¬A0), we found that 17 of the datasets are consistent and 149 datasets timed
out, allowing us to compute the hitting sets for 234 of these knowledge bases, which
in total provided 87,983 hitting sets. Out of the 200 knowledge bases with signature
size 10, computed with α = (A0∨A1), 46 knowledge bases timed out, allowing us to
use 154 knowledge bases to compute 33,079 hitting sets for these knowledge bases.

Table 5 shows the total amount of computed knowledge bases and hitting sets
that can be used to verify the instances where our application was able to compute
the optimal solution.

On the one hand, we expect the B&B algorithm to solve more knowledge bases
than the baseline because with the improvements we expect the algorithm to com-
pute an optimal solution before the timeout. On the other hand, we expect the
lower and best pruner to always output the optimal solution, which we will verify
for those knowledge bases that provided all hitting sets as shown in Table 5.

79

Dataset Timeouts # KBs # hitting sets --alpha
SRS3 27 156 14,493 (A0&&!A0)
SRS5 122 78 73,490 (A0&&!A0)
SRS10 46 154 33,079 (A0||A1)
ARG 0 28 1,691 (arg0&&!arg0)

Total 196 416 122,753

Table 5: Overview of evaluated hitting sets

Figure 9 illustrates the number of timeouts and consistent datasets per knowledge
base, showing that for the knowledge bases with signature size 5 over 50% of the
runs timed out.

Figure 9: Number of timeouts per knowledge base

In addition to the consistent datasets, we discovered that for 25 of the knowledge
bases with a signature size of 3 and 17 of the knowledge bases with a signature
size of 5, the sum of the inconsistency weights wI was 0. This means that each
element βi of these knowledge bases had an assigned inconsistency weight wI of 0,
even though the initial inconsistency value νI(B) was greater than 0. This occurs
because none of the formulas in the knowledge base individually participate in the
inconsistency, but rather it is a combination of at least two elements that contributes
to the inconsistency.

For the remainder of the evaluation, we will separate the results into two phases.
In the first phase, we will evaluate the performance of the B&B algorithm, verifying
the instances of computed optimal solution to assess whether the algorithm works
as intended. We will also compare the computation of the B&B algorithm with the
baseline to evaluate the execution time compared to the baseline, where the entire
search space was explored. In the second phase, we will evaluate the advancements
implemented in this thesis, including the advanced kernel find algorithm (see 2), the

80

computation of the remainder value (4.6.2) and the implemented search strategies
(5.6), to understand how these advanced strategies influence the performance of the
B&B algorithm. We will only evaluate these advanced strategies for those baselines
that did not time out to prevent excessive computation.

6.3. Branch-and-Bound performance

In this section we will outline the performance of the B&B performance with regards
to the execution time, the computed kernels, the number of branches and the num-
ber of pruned branches. We expect the execution time to rapidly decrease with a
rising number of pruned branches, as the algorithm does not compute the kernels
for pruned branches leading to less sat solver calls that should improve the overall
performance of the application in terms of the execution time.

Before we evaluate the computation of the optimal solution, we will recall the
definition of the optimal solution for the three implemented pruner.

LOWER The lower pruner computes optimal solutions with a maximal value ν.
Therefore, we are comparing the computed optimal solution of the lower pruner
with the highest value ν with the optimal solution computed by the baseline with
the highest value ν. In the cases where both scores are identical, we assume that the
lower pruner found the optimal solution.

UPPER The upper pruner computes optimal solutions with a minimal value ν.
Therefore, we are comparing the computed optimal solution of the upper pruner
with the lowest value ν with the optimal solution computed by the baseline with
the lowest value ν. In the cases where both scores are identical, we assume that the
upper pruner found the optimal solution.

BEST The best pruner computes optimal solutions with a maximal value ν and
minimal cardinality |HS|. Therefore, to compare the results from the best pruner to
the optimal solution of the baseline, we are comparing the maximal values ν and
find the solution with the lowest cardinality over all results with the maximal value
νmax.

6.3.1. Computing Optimal Solutions - Verification

In this section we will cover all instances where the optimal solution was found. It is
important to include the constraint of the found optimal solution because, as men-
tioned previously, otherwise the pruner with the aggressive pruning approaches
would be deemed as performing the best, but they were not even able to compute
the optimal solution.

We evaluated the calculation of the optimal solution with the aforementioned
pruners with none of the advancements activated mentioned in Section 5.4. Table 6

81

shows how many cases the application was able to find the optimal solution for the
specified knowledge bases. The columns are specified as follows:

• Opt. Max: specifies the cases where HS∗ = max(ν)

• Opt. Min: specifies the cases where HS∗ = min(ν)

• Opt. Best: specifies the cases where HS∗ = max(ν),min(|HS∗|)

• c|r|I: denotes the cardinality (c), random (r), and Inconsistency (I) approach

Dataset KBs Opt. Max # Opt. Min # Opt. Best #
c r I c r I c r I

SRS3 156 60 32 131* 156 156 131* 156 156 131**
SRS5 78 64 66 60 78 78 78 78 78 69**
SRS10 154 61 62 67 154 154 154 154 154 154**
ARG 28 28 28 27* 28 28 28 28 28 27**

Table 6: Overview of the sets of knowledge bases and the instances where the opti-
mal solution was found

In Table 6, we marked the instances of the best pruner with * where it was not
able to compute all an optimal solution due to the sum of the inconsistency weights
wI = 0. This is due to the computation of individual inconsistency weights w that do
not provide an inconsistency measure greater than 0. In this case, the assignment of
the inconsistency weights wI assigns the value 0 to each element of B even though
I(B) > 0. Therefore, the best pruner finds the optimal solution in 100% of the cases,
as we do not count the cases where

∑
βi∈B wI(βi) = 0 applies.

As one can see from the table, the overall performance of the lower pruner is
rather poor. This is because we implemented the lower pruner with a very aggres-
sive pruning approach, where the potential value νP (P (v)) is simply the sum of all
weights w of the remaining dataset B(v) = B \ P (v). This often leads to the prun-
ing of a branch if the first branches of the tree do not contain elements with a high
weight w. This problem could be addressed by rearranging the search tree with a
different root node vroot, where the elements β of the kernel k have higher weights
w. Nonetheless, this aggressive pruning allows a better comparison with the best
pruner, where the pruning decision is rather conservative, as the best pruner does
not prune any branch if the max(ν) was not reached. In the remainder of this sec-
tion, we will show how the aggressive pruning approach performs compared to the
best pruner. We expect that the lower pruner with its aggressive approach at least
outperforms the best pruner in terms of execution time.

Table 7 shows the relative performance of the different approaches and pruners.
As we mentioned earlier, for some instances, the inconsistency approach did not
calculate an inconsistency weight w > 0. We did not compute the optimal solution

82

for these instances, as this would just be the same as the baseline. This issue could be
addressed by calculating different inconsistency weights w, like the Shapley value
(see ??). Since we know that the optimal solution would have been found for the
inconsistency approach when

∑
βi∈B wI = 0, we treated these instances as if the

optimal solution was found.

Dataset KBs Opt. Max % Opt. Min % Opt. Best %
c r I c r I c r I

SRS3 156 38 21 77 100 100 100 100 100 100
SRS5 78 86 85 77 100 100 100 100 100 100
SRS10 154 40 40 44 100 100 100 100 100 100
ARG 28 100 100 100 100 100 100 100 100 100

Table 7: Overview of the relative performance of the algorithm in finding the opti-
mal solution

We see that the best pruner finds the optimal solution in 100% of the cases, even
if the optimal solution is deemed to have the highest value. It is important to note
that this table covers the cases where the entire search space needed to be searched
(worst case). We also tried to use a more aggressive pruning approach that imple-
ments the logic of the upper lower pruner, but this approach only works if the opti-
mal solution is not characterised by the maximum value and minimum cardinality
but solely by the maximum value. Despite this, the best pruner will outperform the
baseline, even with the conservative pruning approach. This will be covered in the
next section.

6.3.2. Comparative Performance Analysis

In this section, we will evaluate the performance of the algorithm and compare the
results to the computed baseline. The baseline is defined as a run where the al-
gorithm did not prune any branches and searched the entire search space of the
hitting set tree. This includes instances that timed out, where we cannot estimate
the real runtime of the instance. Generally, we would not be able to verify that our
approaches computed optimal solutions if the baseline timed out. Nonetheless, in
the previous section we saw that the best and upper pruners do compute optimal
solutions in every instance, such that these two pruners could be evaluated without
further verification. This means that these pruners could be used without the need
to compute all hitting sets beforehand. The lower pruner employs a very aggressive
pruning approach that prunes every branch that might not yield a solution with a
higher value than the current lower bound. Therefore, we will not evaluate the in-
stances of the lower pruner where we could not verify the computed solution to be
optimal.

To show the difference in performance in Figure 10 we are displaying all instances,
regardless of the verification that the optimal solution was found. Opposed to this

83

Figure 11 shows the performance of all instances that found the optimal solution
compared to the baseline. We do see that when the optimal solution was found, the
difference to the baseline decreased.

Figure 10: Performance of all pruners without optimal solution constraint

Figure 11: Performance of all pruners with optimal solution constraint

For a more detailed analysis, we will now evaluate the performance of the ap-
plication for each pruner and weight assignment approach separately. First, we
evaluated the performance of the different weight assignment approaches with the
three pruner settings. It is important to note that we evaluated all three approaches

84

for the lower and upper pruner. With regards to the best pruner, we only compare
the inconsistency approach to the baseline. We did not evaluate the random and
cardinality approach for the best pruner, as these two approaches provide the base-
line results in the worst case scenario, where the whole search space needs to be
unfolded.

The first takeaway is that we see that the performance of the pruning approaches
differ from each other; Figure 12 shows that the lower pruner only outperforms
the baseline with the inconsistency approach, as the inconsistency approach was
the only approach besides the baseline that found optimal solutions in 100% of the
instances. For the cardinality and random approach, the algorithm is less efficient,
as it does not find the optimal solution due to the lack of knowledge about the value
of the subproblem.

Figure 12: Lower pruner performance for found optimal solutions

However, the algorithm outperforms the baseline for all instances in which the
optimal solution was considered to provide the lowest value. Figure 13 meets our
expectations and the algorithm was able to find the solution with the lowest value
in less time compared to the baseline. In Figure 13 we have included the instances
of the baseline that timed out to show the improvements of our approach. We can
also see that the random approach and the cardinality approach found the optimal
solution in the same number of instances, but the random approach was more effi-
cient. This is not surprising as all runs used the Priority-Based Search that is more
efficient the more the weights of the elements differ from each other. Therefore we
can see that the random approach offers the best performance. The inconsistency
approach was unable to compute the same amount of instances as the baseline or
the cardinality and random algorithms, as for the inconsistency approach we did
not compute the instances where ν(B) =

∑
βi∈B wI(βi) = 0.

Figure 13 shows the execution time of the upper pruner over the number of in-
stances, wherein in all instances an optimal solution was computed.

The results for the upper pruner are not surprising, as the upper pruner finds the
optimal solution with the lowest value min(ν). This task is not considered hard as
the search algorithm can explore the tree based on the lowest path values ν(P (v),

85

Figure 13: Upper pruner performance for found optimal solutions

such that this approach does not even face the challenge of computing the potential
value νP of the unexplored subproblems.

Figure 14 shows the performance of the best pruner by comparing the inconsis-
tency approach to the baseline.

Figure 14: Best pruner performance for found optimal solutions

It is encouraging to see that the B&B algorithm outperforms the baseline with
the inconsistency weight assignment, where it was able to find 100% of the optimal
solutions in less time. It is important to note that in Figure 14 we limited the baseline
to all instances where the inconsistency approach was able to compute an optimal
solution, so all instances where ν(B) =

∑
βi∈B wI(βi) > 0. This also allows for a

better resolution of the time differences between the two runs.
The time difference is mainly based on the pruned branches and therefore on the

lower amount of computed kernels, which is shown in Figure 15. In this graph, we
can see that the higher the number of kernels of the baseline, the larger the difference
between the number of kernels. This means that our approach performs better with
increasing number of kernels and therefore also bigger or more complex knowledge
bases.

86

Figure 15: Number of kernels of baseline and inconsistency approach

Figure 16 shows the distribution of the relative time difference between the two
approaches. We can see that in almost all cases the relative time difference was >
50%. Instances in which the baseline was faster (indicated by positive time differ-
ences) can be linked to knowledge bases with a small number of formulas.

Figure 16: Relative time difference between baseline and inconsistency approach

87

In the next section, we will evaluate the performance of the alternating strategies
used to compute kernels k as described in Section 5.4.1.

6.4. Advanced Find Kernel and Remainder Algorithm

In this section we will evaluate the influence of the Find Kernel Algorithm 2 and the
Find Remainder Algorithm 7 on the performance of this application. First, we will
evaluate the implemented strategies like divide-and-conquer and sliding window
for the expand and shrink phase as described in Section 5.4.1 and see how this affects
the performance and especially the runtime of the algorithm.

In general, we have computed the following combinations, where 0 indicates the
strategy being deactivated (False) and 1 denotes the strategy being activated (True):

Figure 17: Comparison of execution time for computing kernels strategies

The results used to produce Figure 17 were aggregated and a mean values were
calculated that are shown in Table 8.

In this table, we see that we achieved the best results with the sliding window size
5 and without using the divide-and-conquer strategy. Usually, divide-and-conquer
is expected to produce better results in combinatorial problems, but we suggest that
in the field of finding kernels, where a SAT-solver is called to evaluate the satisfi-
ability of a set, it can be faster to determine the satisfiability of bigger sets. There-
fore, it might be the case that divide-and-conquer performs worst as it splits the
datasets into two halves such that the SAT-solver had to determine the satisfiabil-
ity for smaller sets. This assumption will be supported by the following Figures 18
and 19 where we see that with the divide-and-conquer technique we were able to

88

Condition Mean Execution Time (s)
div_conq sw_size

0 1 153.79
0 5 99.86
0 10 107.25
1 1 159.18
1 5 110.35
1 10 106.06

Table 8: Mean Execution Times for Different divide-and-conquer and sliding win-
dow Combinations

compute more instances before timing out. This means that the divide-and-conquer
technique shows improved performance for larger datasets, since we assume that
the execution time increases with the signature size and number of formulas.

Figure 18: Detailed comparison of
divide-and-conquer for slid-
ing window size 5

Figure 19: Detailed comparison of
divide-and-conquer or sliding
window size 10

Conclusively, we showed that the developed advanced strategies, namely divide-
and-conquer and sliding window do outperform the baseline, which is represented
by expanding and shrinking the knowledge base by one formula at a time. In com-
parison between all possible combinations we saw that a bigger window size results
in up to 50% less execution time. The next section covers the performance of the
computation of remainders for the remainder value.

6.4.1. Computing Remainder Value

In this section, we evaluate the computation of the remainder value as described in
Section 4.6.2. We ran the sig3 dataset with the lower pruner and the random weight
assignment, as this pruner has the most potential for improvement. Figure 20 shows
that both approaches perform similarly, although in some instances, the remainder
value computation took more time to compute the hitting sets.

89

Figure 20: Comparison of execution time for computing hitting sets with and with-
out remainder value

We also compared both approaches in terms of computed kernels (Fig. 21) and the
number of pruned branches (Fig. 22). In some instances, the number of computed
kernels is higher, which correlates with an increase in pruned branches. This illus-
trates the variability of this approach, aligning with the evaluation by Resina et al.
[RRW14], where the computation of remainders either outperformed or underper-
formed the computation of kernels. This variability is reflected in our approach by
a higher number of pruned branches in some cases and more time-intensive com-
putations in others. It would be interesting to further compare instances where the
remainder computation outperforms the kernel computation to understand its im-
pact on the execution time of the algorithm.

Figure 21: Execution time comparison of
remainder computation

Figure 22: Number of pruned branches
in remainder computation

Furthermore, the remainder value computation approach found fewer optimal
solutions, as illustrated in Figure 23. This may be due to the higher number of
pruned branches, where the remaining value could cause pruning of branches that
include subproblems with higher values ν. It is important to note that the lower
pruner performed poorly regardless of the value computation approach. The cal-
culation of the remainder value ν(R) uses a more aggressive pruning approach,
increasing the likelihood of pruning branches that contain higher values.

90

Figure 23: Comparison of optimal solutions found with remainder computation

In summary, we did not find instances where the remainder computation value
significantly outperformed the algorithm that counts the value of a node’s subprob-
lem as the sum of all values, regardless of their participation in the hitting set of the
node’s subproblems. This might be because this approach not only computes the
kernel of the node but also a remainder, resulting in more calls to the SAT solver.
Nonetheless, this approach could be worth exploring in future work, particularly if
the computed remainders are used not only to calculate the remainder value ν(R)
but also to span subproblems, such as HS = B \R.

6.4.2. Search Strategy Comparison

In this section, we evaluate the impact of the search strategy on the performance of
the algorithm in terms of the execution time and the instances where the optimal
solution was found. We ran the algorithm on a subset of knowledge bases from
the sig3 and sig5 with the inconsistency value νI and the three pruners. In this
evaluation, the Priority-Based Search serves as the baseline, as we want to find out
if one of the other searches can outperform the Priority-Based Search, that is deemed
to explore the fewest number of subproblems, according to the literature [MJSS16].

Figures 24, 25, 26 show the execution time over the number of computed knowl-
edge bases for each pruner. The graphs show that the search strategies do perform
similarly in terms of the execution time, although it is interesting to see that the
Hybrid-Search (HYS) did perform better when used in combination with the lower
or upper pruner. It seem as if our assumption was correct that combining both ad-
vantages of DFS and BFS can yield to better results. We interpret this result in such a
way that the algorithm quickly sets a bound and therefore prunes branches earlier.
Another encouraging outcome is that the HYS operated well within a managable
range wherein the other searches had instances with longer execution time.

In the next step, we are comparing the instances where the optimal solution was
found for each search strategy. This is shown in Figure 27. Again, we do see very
similar results, although it appears that the Priority-Based Search is slightly faster

91

Figure 24: Execution time of lower
pruner with all search strate-
gies

Figure 25: Execution time of upper
pruner with all search strate-
gies

Figure 26: Execution time of best pruner
with all search strategies

than the other search strategies when finding the optimal solution with the highest
value. It is interesting to see that in our algorithm the BFS did also perform well in
terms of finding optimal solutions. For the best pruner the searches almost always
found the same number of optimal solutions.

Figure 27: Comparison of optimal solutions found with remainder computation

92

In summary, we can confirm that the search strategy that implements a best-first
approach (PSB) offers the most promising results. In combination with the pruner
approach and the value assignment approach the Priority-Based Search performed
the best in finding the solution with the highest value (lower pruning). This is an
encouraging result, as these instances serve the hardest approach in terms of the
pruning decision.

93

7. Conclusion

With the rapid advancements in artificial intelligence, AI agents increasingly gather
vast amounts of information that may contradict existing beliefs, leading to incon-
sistencies within their belief bases. Therefore, efficient heuristics for belief base revi-
sion are crucial. When adapting a belief base to resolve inconsistencies, selecting the
right subset of data for contraction is essential. This can be addressed through ap-
plications and heuristics that identify optimal solutions for belief base contraction.

Current literature predominantly offers algorithms and advancements for com-
puting maximal inconsistent subsets, known as kernels, or maximal consistent sub-
sets, known as remainders. Most research focuses on Description Logic (DL) or Web
Ontology Language (OWL), with limited attention given to Classical Propositional
Logic (CPL) (see Section 3). Furthermore, there is a scarcity of research on qualifi-
cation approaches that add a layer to the algorithms, determining a value or score
for potential solutions in belief base contraction. The goal is to not only identify
possible solutions but also to find the one that best meets certain criteria, such as
maximal inconsistency or minimal disruption to the belief base.

Our findings provide a heuristic to characterize possible solutions for belief base
contraction and propose algorithms to find these optimal solutions more efficiently.
By introducing the inconsistency value νI , we developed a technique for ranking
elements of a belief base in terms of inconsistency. This approach is particularly
valuable because it can be applied to all inconsistent belief bases where I(B) ≥ 0.

We also demonstrated that the introduced values ν can be utilized to implement
a Branch-and-Bound strategy, pruning branches during the computation of hitting
sets HS, which are potential solutions for belief base contraction. Our approach can
identify optimal solutions HS∗ in less than 50% of the time required compared to
exploring the entire search space of a hitting set tree HST .

Additionally, we introduced advancements like the divide-and-conquer and slid-
ing window techniques, enhancing known algorithms for computing kernels and
remainders. These techniques allowed us to compute kernels with an average time
saving of 50% compared to existing algorithms. We also showed the impact of dif-
ferent search strategies for spanning a hitting set tree, verifying that a best-first ap-
proach yields the most effective results.

Lastly, we proposed further advancements for improving known Branch-and-
Bound techniques by introducing the computation of a remainder value ν(R), which
helps calculate a potential value νP for a node’s subproblem, enhancing the perfor-
mance of the Branch-and-Bound algorithm. Our results indicated that this approach
leads to higher pruning rates, although it comes at the cost of increased computation
time. Thus, further research is needed to explore these findings in greater detail.

94

Outlook

For future work, there are four promising research directions:
1. Improving Weight Assignment Approaches: We could enhance the weight

assignment by incorporating other inconsistency measures, e.g. as provided by
Kuhlmann and Thimm [KT21]. Another approach is the Shapley value that was
provided by Hunter and Konieczny [HK10], which computes inconsistency mea-
sures at the formula level. Recent research on atom-centric inconsistency measures
[GH23] presents another promising approach.

2. Exploring Remainders for Hitting Set Trees: Further investigation into com-
puting remainders and using them to span hitting set trees, rather than comput-
ing kernels for each node, could lead to significant improvements. This area, be-
ing less explored, offers high potential for advancements. Resina et al. [RRW14]
showed that remainders can outperform kernels in some instances, although pre-
dicting these cases beforehand remains challenging.

3. Enhancing Hitting Set Tree Generation: The performance of weight assign-
ment approaches and search strategies is significantly influenced by the sequence
in which kernels are computed. This is particularly evident in the lower pruner ap-
proach, where the optimal solution HS∗ may not be found or might even be pruned
if the initial branches stemming from the root node vroot have low values (as il-
lustrated by the branch ¬A0 or the hitting set tree in Figure 31). Consequently, a
promising research direction would be to identify an optimal root node vroot or to
explore rearranging the hitting set tree HST to improve performance.

4. Enhancing Pruning Rules for Branch-and-Bound: Our remainder value ap-
proach suggests that there is room for improving pruning rules. Future research
could focus on enhancing pruning techniques not only for minimization problems
[BFSW23] but also for maximality problems. Developing heuristics to determine
subproblem values could significantly improve the performance of lower pruners,
particularly for computing optimal solutions with maximum values.

95

References

[AGM85] Carlos E. Alchourrón, Peter Gärdenfors, and David Makinson. On the
Logic of Theory Change: Partial Meet Contraction and Revision Func-
tions. The Journal of Symbolic Logic, 50(2):510–530, 1985. Publisher: As-
sociation for Symbolic Logic.

[AM85] Carlos E. Alchourrón and David Makinson. On the logic of theory
change: Safe contraction. Studia Logica, 44(4):405–422, December 1985.

[BFSW23] Thomas Bläsius, Tobias Friedrich, David Stangl, and Christopher
Weyand. An Efficient Branch-and-Bound Solver for Hitting Set, Septem-
ber 2023.

[BHV21] Handbook of Satisfiability, April 2021.

[CW15] Raphael Cóbe and Renata Wassermann. Ontology repair through partial
meet contraction. In Proceedings of the 2015 International Conference on
Defeasible and Ampliative Reasoning - Volume 1423, DARe’15, pages 9–15,
Aachen, DEU, July 2015. CEUR-WS.org.

[Dix94] S. Dixon. Belief Revision: A Computational Approach. 1994.

[DP85] Rina Dechter and Judea Pearl. Generalized best-first search strategies
and the optimality of A*. Journal of the ACM, 32(3):505–536, July 1985.

[DPF+05] Li Ding, Rong Pan, Tim Finin, Anupam Joshi, Yun Peng, and Pranam
Kolari. Finding and Ranking Knowledge on the Semantic Web. Pro-
ceedings of the 4th International Semantic Web Conference, pages 156–170,
November 2005.

[DW93] S. Dixon and W. Wobcke. The implementation of a first-order logic AGM
belief revision system. In Proceedings of 1993 IEEE Conference on Tools with
Al (TAI-93), pages 40–47, November 1993. ISSN: 1063-6730.

[FH11] Eduardo Fermé and Sven Ove Hansson. AGM 25 Years: Twenty-
Five Years of Research in Belief Change. Journal of Philosophical Logic,
40(2):295–331, 2011. Publisher: Springer.

[FH18] Eduardo Fermé and Sven Ove Hansson. Belief Bases. In Eduardo
Fermé and Sven Ove Hansson, editors, Belief Change: Introduction and
Overview, SpringerBriefs in Intelligent Systems, pages 49–57. Springer
International Publishing, Cham, 2018.

[Fuh96] André Fuhrmann. An Essay on Contraction. Studies in Logic, Language,
and Information. Center for the Study of Language and Information,
June 1996.

97

[GH11] John Grant and Anthony Hunter. Measuring Consistency Gain and In-
formation Loss in Stepwise Inconsistency Resolution. In Weiru Liu, ed-
itor, Symbolic and Quantitative Approaches to Reasoning with Uncertainty,
volume 6717, pages 362–373. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2011.

[GH23] John Grant and Anthony Hunter. Semantic inconsistency measures
using 3-valued logics. International Journal of Approximate Reasoning,
156:38–60, May 2023.

[Gui20] Ricardo Guimaraes, Ferreira. Modularity in Belief Change of Descrip-
tion Logic Bases. 2020.

[Gä88] Peter Gärdenfors. Knowledge in Flux. Modeling the Dynamics of Epis-
temic States, 1988.

[Han94] Sven Ove Hansson. Kernel Contraction. The Journal of Symbolic Logic,
59(3):845–859, November 1994. Publisher: Association for Symbolic
Logic.

[Han99] Sven Ove Hansson. A Textbook of Belief Dynamics. 1999.

[HK10] Anthony Hunter and Sébastien Konieczny. On the measure of conflicts:
Shapley Inconsistency Values. Artificial Intelligence, 174(14):1007–1026,
September 2010.

[Hor11] Matthew Horridge. Justification Based Explanation in Ontologies, 2011.

[JBQ19] Qiu Ji, Khaoula Boutouhami, and Guilin Qi. Resolving Logical Contra-
dictions in Description Logic Ontologies Based on Integer Linear Pro-
gramming. IEEE Access, 7:71500–71510, 2019. Conference Name: IEEE
Access.

[JQH09] Qiu Ji, Guilin Qi, and Peter Haase. A Relevance-Directed Algorithm
for Finding Justifications of DL Entailments. In Asunción Gómez-Pérez,
Yong Yu, and Ying Ding, editors, The Semantic Web, Lecture Notes in
Computer Science, pages 306–320, Berlin, Heidelberg, 2009. Springer.

[Jun01] Ulrich Junker. QuickXPlain: Conflict Detection for Arbitrary Constraint
Propagation Algorithms. October 2001.

[Kal06] Aditya Anand Kalyanpur. Debugging and Repair of OWL Ontologies.
July 2006.

[KGLT23] Isabelle Kuhlmann, Anna Gessler, Vivien Laszlo, and Matthias Thimm.
Comparison of SAT-based and ASP-based Algorithms for Inconsistency
Measurement, April 2023. arXiv:2304.14832 [cs].

98

[KPHS07] Aditya Kalyanpur, Bijan Parsia, Matthew Horridge, and Evren Sirin.
Finding All Justifications of OWL DL Entailments. In Karl Aberer,
Key-Sun Choi, Natasha Noy, Dean Allemang, Kyung-Il Lee, Lyndon
Nixon, Jennifer Golbeck, Peter Mika, Diana Maynard, Riichiro Mi-
zoguchi, Guus Schreiber, and Philippe Cudré-Mauroux, editors, The Se-
mantic Web, Lecture Notes in Computer Science, pages 267–280, Berlin,
Heidelberg, 2007. Springer.

[KT21] Isabelle Kuhlmann and Matthias Thimm. Algorithms for Inconsistency
Measurement using Answer Set Programming. November 2021.

[LD60] A. H. Land and A. G. Doig. An Automatic Method of Solving Discrete
Programming Problems. Econometrica, 28(3):497–520, 1960.

[LW66] E. L. Lawler and D. E. Wood. Branch-and-Bound Methods: A Survey.
Operations Research, 14(4):699–719, August 1966.

[MJSS16] David R. Morrison, Sheldon H. Jacobson, Jason J. Sauppe, and Ed-
ward C. Sewell. Branch-and-bound algorithms: A survey of recent
advances in searching, branching, and pruning. Discrete Optimization,
19:79–102, February 2016.

[Moo10] Kodylan Moodley. DEBUGGING AND REPAIR OF DESCRIPTION
LOGIC ONTOLOGIES, December 2010.

[NKTJ23] Andreas Niskanen, Isabelle Kuhlmann, Matthias Thimm, and Matti
Järvisalo. Computing MUS-Based Inconsistency Measures. In Sarah
Gaggl, Maria Vanina Martinez, and Magdalena Ortiz, editors, Logics
in Artificial Intelligence, volume 14281, pages 745–755. Springer Nature
Switzerland, Cham, 2023. Series Title: Lecture Notes in Computer Sci-
ence.

[Pri79] Graham Priest. The Logic of Paradox. Journal of Philosophical Logic,
8(1):219–241, 1979.

[PSLP03] Chintan Patel, Kaustubh Supekar, Yugyung Lee, and E. K. Park. On-
toKhoj: a semantic web portal for ontology searching, ranking and clas-
sification. In Proceedings of the 5th ACM international workshop on Web in-
formation and data management, WIDM ’03, pages 58–61, New York, NY,
USA, November 2003. Association for Computing Machinery.

[QHH+08] Guilin Qi, Peter Haase, Zhisheng Huang, Qiu Ji, Jeff Pan, and Johanna
Völker. A Kernel Revision Operator for Terminologies - Algorithms and
Evaluation - VideoLectures.NET, November 2008.

[Ref91] Paul Refenes. Reasoning and revision in hybrid representation systems
by Bernhard Nevel, Springer-Verlag, Berlin, 1990, pp 270, DM 42. The

99

Knowledge Engineering Review, 6(2):132–133, June 1991. Publisher: Cam-
bridge University Press.

[Rei87] Raymond Reiter. A Theory of Diagnosis From First Principles. Artificial
Intelligence, 32(1):57–95, 1987.

[Rib13] Márcio Moretto Ribeiro. Algorithms for Belief Bases. In Márcio Moretto
Ribeiro, editor, Belief Revision in Non-Classical Logics, SpringerBriefs in
Computer Science, pages 105–113. Springer, London, 2013.

[RRW14] Fillipe Resina, Marcio Ribeiro, and Renata Wassermann. Algorithms for
Multiple Contraction and an Application to OWL Ontologies. Proceed-
ings - 2014 Brazilian Conference on Intelligent Systems, BRACIS 2014, pages
366–371, December 2014.

[SQJH08] Boontawee Suntisrivaraporn, Guilin Qi, Qiu Ji, and Peter Haase. A
Modularization-Based Approach to Finding All Justifications for OWL
DL Entailments. In John Domingue and Chutiporn Anutariya, edi-
tors, The Semantic Web, Lecture Notes in Computer Science, pages 1–15,
Berlin, Heidelberg, 2008. Springer.

[Thi19] Matthias Thimm. Inconsistency Measurement. In Nahla Ben Amor, Ben-
jamin Quost, and Martin Theobald, editors, Scalable Uncertainty Man-
agement, volume 11940, pages 9–23. Springer International Publishing,
Cham, 2019.

[Tse83] G. S. Tseitin. On the Complexity of Derivation in Propositional Calcu-
lus. In Jörg H. Siekmann and Graham Wrightson, editors, Automation
of Reasoning: 2: Classical Papers on Computational Logic 1967–1970, pages
466–483. Springer, Berlin, Heidelberg, 1983.

[TW19] Matthias Thimm and Johannes P. Wallner. On the complexity of incon-
sistency measurement. Artificial Intelligence, 275:411–456, October 2019.

[Was99] Renata Wassermann. Resource Bounded Belief Revision. Erkenntnis,
50(2):429–446, May 1999.

100

A. Annex

A.1. UML - Advanced Expand Shrink Algorithm Implementation

Figure 28: Class implementation of kernel finding strategy

101

A.2. UML - Seach Strategy Implementation

Figure 29: Class implementation of the search strategy

102

A.3. UML - Pruner Implementation

Figure 30: Class implementation of the Pruners

103

A.4. Example Hitting Set Tree with Assigned Weights

Figure 31: Exemplary HST with edge elements and all three assigned weights

104

	Introduction
	Objectives
	Contributions
	Structure

	Background
	Formal Preliminaries
	AGM Theory
	Belief Change
	Belief Base Theory
	Base Contraction
	Base Contraction Postulates
	Base Partial Meet Contraction
	Base Kernel Contraction

	Related Work
	Boolean Satisfiability Solving (SAT)
	Algorithms for Belief Change
	Expand and Shrink
	Hitting set tree
	Branch-and-Bound Algorithms

	Systems approach and strategies
	Weight assignment
	Known rank-based approaches
	Assignment strategies
	Cardinality
	Random Value
	Inconsistency Value

	Branch-and-Bound Framework
	Theoretical Background
	Phases of B&B Algorithm

	Search strategies
	Breadth-First Search
	Depth-First Search
	Hybrid Search
	Priority-Based Search

	Boundary Management and Pruning
	Upper Pruner
	Lower Pruner
	Best Pruner

	Implementation
	Application Architecture
	Verification Model
	Preprocessing
	Baseline Collection
	Value Determination

	Computation Model
	Initialization
	Kernel Processing
	Generation of Hitting Set Tree
	Logging

	Advanced Expand Shrink Algorithm
	Advanced Finding Kernel Algorithm
	Expand phase with sliding window
	Expand phase with divide-and-conquer
	Shrink phase with sliding window
	Shrink phase with divide-and-conquer

	Finding Remainder Algorithm
	Hitting Set Tree Algorithm
	Priority-Based Search Algorithm
	BFS, DFS, and HYS

	Branching Implementation
	Pruner Implementation
	Base Pruner
	Upper Pruner
	Lower Pruner
	Best Pruner

	Strategy combinations

	Evaluation
	Hardware Setup
	Knowledge Bases
	Branch-and-Bound performance
	Computing Optimal Solutions - Verification
	Comparative Performance Analysis

	Advanced Find Kernel and Remainder Algorithm
	Computing Remainder Value
	Search Strategy Comparison

	Conclusion
	Annex
	UML - Advanced Expand Shrink Algorithm Implementation
	UML - Seach Strategy Implementation
	UML - Pruner Implementation
	Example Hitting Set Tree with Assigned Weights

