
Faculty of Mathematics and Computer Science Artificial Intelligence Group

Utilizing Knowledge Graphs in Outside
Knowledge-based Visual Question

Answering

Master’s Thesis
in partial fulfillment of the requirements for

the degree of Master of Science (M.Sc.)
in Practical Computer Science

submitted by
Max Upravitelev

First examiner: Prof. Dr. Matthias Thimm
Artificial Intelligence Group

Advisor: Isabelle Kuhlmann
Artificial Intelligence Group

External advisor: Dr. Christopher Krauß
Fraunhofer FOKUS

Zusammenfassung

Das Feld des Visual Question Answering (VQA) verbindet die Disziplinen des bild-
und sprachbasierten Urteilens, indem es das Verstehen einer Szene und die Beant-
wortung beliebiger Fragen in Bezug auf ein bestimmtes Bild kombiniert. Die Anzahl
der Fragen, die beantwortet werden können, ist durch die in einem Bild enthaltenen
visuellen Informationen begrenzt. Sie kann jedoch durch die Nutzung von exter-
nem Wissen aus verschiedenen Quellen erweitert werden, zum Beispiel durch die
Verwendung von Wissensgraphen (KGs), die auf öffentlich zugänglichen Wissens-
datenbanken basieren. Vor kurzem wurde die Aufgabenstellung des Outside Know-
ledge Visual Question Answering (OK-VQA) vorgestellt, um die Forschung auf
diesem Gebiet zu befördern. Mehrere aktuelle Lösungen verwenden Graph Neural
Networks (GNNs) für diese Aufgabe. Eine der Herausforderungen bei der weiteren
Verbesserung der Ergebnisse bei dieser Strategie ist die Interpretierbarkeit dieser
Modelle. Ziel dieser Arbeit ist es zu untersuchen, ob ein aus aktuellen Forschungs-
ansätzen ausgewähltes Basismodell gleichzeitig sowohl in der Interpretierbarkeit
als auch in der Genauigkeit verbessert werden kann. Um dies zu erreichen, werden
mehrere Aktualisierungen der Modellarchitektur vorgeschlagen, die sich auf einem
attention-basierten Ansatz und auf Konstruktionsstrategien der Knotenmerkmale
konzentrieren, die den verwendeten KG repräsentieren. Die Evaluation der vorge-
schlagenen Aktualisierungen weist darauf hin, dass Interpretierbarkeit und Genau-
igkeit gleichzeitig verbessert werden können, wenn auch nicht in jedem Szenario.
Dieses Verhalten wird in drei Fallstudien weiter betrachtet, in denen anhand ausge-
wählter Beispiele untersucht wird, wie attention scores zur Interpretation von Vor-
hersagen eines GNN-basierten Modells genutzt werden können.

Abstract

The field of Visual Question Answering (VQA) bridges the disciplines of vision- and
language-based reasoning by combining scene understanding and the answering of
arbitrary questions in regard to a given image. The number of questions that can
be answered is limited by the visual information given in an image. However, it
can be expanded by utilizing external knowledge from different sources, for exam-
ple, by utilizing Knowledge Graphs (KGs) based on publicly available Knowledge
Bases. Recently, the Outside Knowledge Visual Question Answering (OK-VQA)
task was introduced to facilitate research in this field. Several current state-of-the-
art solutions incorporate Graph Neural Networks (GNNs) for this task. One of the
challenges in further improving the results of this strategy is the interpretability of
these models. The goal of this theses is to investigate whether a baseline model
chosen from current research approaches can be improved simultaneously in inter-
pretability as well as in accuracy. To achieve this, several updates to the model archi-
tecture are proposed, focusing on an attention-based approach and on construction

v

strategies of the node features that represent the utilized KG. The evaluation of the
proposed updates indicates that interpretability and accuracy can be improved si-
multaneously, although not in all scenarios. This behavior is further investigated in
three case studies that consider selected examples to examine how attention scores
can be utilized to interpret predictions from a GNN-based model.

vi

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Research Objectives and Strategy . 2
1.4 Scope and Limitations . 4
1.5 Thesis Outline . 5

2 Background 7
2.1 Introduction to the Visual Question Answering Task 7
2.2 Related VQA Datasets . 8
2.3 The Outside Knowledge Visual Question Answering Task 9
2.4 Related Work: OK-VQA approaches 10

2.4.1 Natural Language Processing-centric Approaches 10
2.4.2 Graph-centric Approaches . 11

3 Methodology I: Representation Learning for OK-VQA 15
3.1 Preliminaries . 16

3.1.1 Neural Networks . 17
3.1.2 The Attention Mechanism . 20

3.2 Representation Learning on Image Data 21
3.2.1 Convolutional Neural Network-based Architectures 21
3.2.2 Object Detection Based on Representation Learning With

Faster R-CNN . 22
3.3 Representation Learning on Textual Data 23

3.3.1 Encoding Textual Questions . 23
3.3.2 Recurrent Neural Networks . 24
3.3.3 The Transformer Model . 24
3.3.4 The Bidirectional Encoder Representations from Transformers

Model . 27
3.4 VisualBERT: Combining visual and textual representations 27
3.5 Representation Learning on Graph Data 28

3.5.1 Constructing Knowledge Graphs 29
3.5.2 Introduction to Graph Neural Networks 30
3.5.3 Graph Convolution Networks 31
3.5.4 Graph Attention Networks . 32
3.5.5 Interpretability of GNNs . 36

4 Methodology II: The Baseline Model and the Proposed Updates 39
4.1 The KRISP-GCN Baseline Model . 39

4.1.1 An Overview of the KRISP Approach 39
4.1.2 VisualBERT Submodule . 40
4.1.3 Graph Submodule . 41

vii

4.1.4 Configurating the KRISP Architecture 44
4.2 Proposed Updates to the KRISP-GCN Baseline Model 45

4.2.1 KRISP-GAT: Replacing GCN with GAT 45
4.2.2 KRISP-GAT-VF: Augmenting the MMKG With Visual Features 45
4.2.3 KRISP-GAT-MS: Splitting the Augmented MMKG Into Two

Modal-Specific KGs . 46
4.3 Evaluation Strategy . 47

4.3.1 Quantitative Evaluation and Metrics 47
4.3.2 Case Study: Qualitative Evaluation of Examples 48

5 Experiments for Quantitative Evaluation 49
5.1 Experimental Setup and Training Details 49
5.2 Presentation and Discussion of Results 50

5.2.1 Comparison of Accuracy on the OK-VQA Benchmark 50
5.2.2 Ablation Study . 51

6 Experiments for Qualitative Evaluation 53
6.1 Case Studies: Qualitative Analysis of Examples 53

6.1.1 Case 1: Right Answer in GAT and GCN 53
6.1.2 Case 2: Right Answer in GAT, Wrong Answer in GAT-VF . . . 55
6.1.3 Case 3: Wrong Answers in GAT and GAT-VF 57

7 Conclusion 59
7.1 Summary and Discussion of Results 59
7.2 Future Work . 60
7.3 Outlook . 61

viii

List of Figures

1 An example from the OK-VQA dataset. 10
2 A visualization of a hidden unit. 18
3 A simple Neural Network Architecture. 18
4 The Visualization of the transformer model. 26
5 ReLU vs. LeakyReLU. 34
6 The attention mechanism in Graph Attention Networks. 35
7 Overview over the general KRISP approach. 40
8 Node feature construction within the KRISP approach. 43
9 The KRISP-GAT-VF update: Augmenting node representations with

visual features. 46
10 Node feature construction within the proposed KRISP-GAT-VF update. 46
11 The KRISP-GAT-MS update: Splitting the augmented MMKG. 47
12 Example from OK-VQA: Question ID 5635255. 54
13 Visualizing GCN and GAT predictions. 55
14 Example from OK-VQA: Question ID 4295985 56
15 Example from OK-VQA: Question ID 1844855. 57

ix

1 Introduction

1.1 Motivation

In his first lecture in an introductory series on philosophical terminology [Ado73],
the philosopher Theodor W. Adorno described two different approaches to the way
humans are able to grasp the meaning of a concept. One approach is to define it with
words: For instance, by capturing the meaning of a natural language sign related to
a concept through an assessment of how this sign is generally used. In philosophy as
a science, this strategy would be equivalent to capturing the meaning of a word by
considering other words and the relations between them. To contrast word-based
approaches, Adorno highlights another strategy outside of philosophy on how a
concept can be grasped without the reliance of words: by showing things or, simply
put, by pointing at things. This approach is not only independent of words, it is also
more suitable in some cases, like pointing to shades of colors.

There are two Machine Learning (ML) fields that can be related to exactly these
two strategies described above: Natural Language Processing (NLP) and Computer
Vision (CV). Neural Network (NN)-based approaches within NLP can be summa-
rized as a strategy to grasp a concept by analyzing clusters of similar impressions
and embedding them in the vector space so that they can be related to others [Ots22].
At the same time, NN-based CV models are trained by being pointed to image data
that represents these concepts, from which vector representations corresponding to
specific concepts are learned.

NN-based approaches in both fields often learn from data that was created by
humans for humans in the first place. Textual datasets are usually made from exist-
ing text corpora, and image datasets are often composed of human-readable image
data. Therefore, there seems to be a degree of accordance between the research on
NN-based reasoning processes and the way humans gain knowledge. As described
above, humans can rely on different modalities that can be based on, for example,
textual or visual data. Hence, it stands to reason that considering both modalities
within one unified field can increase the ability of machine understanding regard-
ing concepts in general, mimicking the human approach. One field devoted to this
task is Visual Question Answering (VQA), the field of reasoning based on vision
and language.

VQA aims at analyzing a scene within an image so that arbitrary questions about
this scene can be answered. Its approaches often combine strategies from subfields
like CV, NLP, and Knowledge Representation and Reasoning (KRR) in general. VQA
can be understood as a generalization of Image Captioning (IC), which can assist
blind and visually impaired people in interpreting the content of visual images by
generating textual descriptions of images. While image captions can return an an-
swer to the question “What is in the image?”, VQA provides the generalized ability
to query an image for different types of questions.

The number of questions that can be answered is limited by the visual infor-
mation provided in an image. It can, however, be expanded by utilizing external

1

knowledge. One common source for this knowledge is implicit knowledge from
pre-trained language models, while another approach of external knowledge ac-
quisition considers publicly available data, like large Knowledge Bases (KBs) for
structured textual, visual and commonsense knowledge (like ConceptNet, DBPedia
or VisualGenome), or unstructured sources like Wikipedia or Google Images.

Dealing with outside knowledge in VQA is a rather novel task. Recently, a first
dataset (OK-VQA, [MRFM19]) was proposed to provide an evaluation benchmark
for approaches to solve this specific task. Currently, the task can still be considered
unsolved, since state-of-the-art approaches reach around 60 % in overall accuracy
on this benchmark 1.

Most current approaches within the OK-VQA task focus on architectures based
on NNs. NN-based models, such as the transformer model [VSP+17], can encode
patterns correlated to meaning and return quantified values of concepts and their re-
lations, but these feature representations and the resulting predictions are not easily
interpretable for humans. This poses several challenges when utilizing these mod-
els in real-life scenarios. For example, there is the issue of compliance with legal
standards, which can only be ensured if information can be given on the reasoning
process behind a prediction. In addition to societal issues, there are also challenges
from a technical point of view: Interpretability is needed to improve a model by
error analysis, since understanding the source of wrong predictions could showcase
the kinds of problem a model struggles with the most.

1.2 Problem Statement

One common approach to solving the OK-VQA task within current solutions is the
utilization of end-to-end trained models based on Graph Neural Networks (GNNs).
A challenge to further improve the results of this approach is the interpretability
of these models. As with most NN-based strategies, GNNs often behave as black
boxes, where the actual reasoning behind an answer prediction is difficult to inter-
pret. Interpretability is, however, a desirable property, as it could highlight which
particular cases the models have the most difficulty with. Nevertheless, an increase
in interpretability has to take into account a possible trade-off between interpretabil-
ity and accuracy, where increasing one factor could lead to a decline in the other.

1.3 Research Objectives and Strategy

The goal of VQA, in general, is the ability to query arbitrary real-world images with
arbitrary questions. A step forward in this direction would be an improvement of
the task proposed by the OK-VQA benchmark. Furthermore, this thesis is based
on the assumption that improved interpretability can increase the results of future
work by showcasing the reasons for wrong predictions. Therefore, the central
research question of this thesis is:

1Source: https://okvqa.allenai.org/leaderboard.html, accessed on 19.08.2023

2

Is it viable to utilize Knowledge Graphs (KGs) in OK-VQA in a way that simultane-
ously improves accuracy and interpretability?

To answer the research question, this thesis follows a strategy that can be
seen as a set of the following goals:

1. Build and train a chosen baseline model based on a proposed model from the
literature that delivers good results and utilizes graph-structured knowledge,
but is not interpretable by design.

2. Update the model architecture to enhance the interpretability of the model.

3. Propose updates for the construction of node features representing the utilized
KG to improve accuracy.

4. Evaluate the baseline model and its updates to assess if the level of accuracy
increases.

5. Build a demo application utilizing the model and its updates to return random
examples from the OK-VQA dataset, corresponding predicted answers, and
information about them.

6. Perform a qualitative analysis of specific examples to explore the improved
interpretability.

7. Discuss whether the proposed updates are suitable for improving the inter-
pretability and the accuracy simultaneously.

The model chosen for (1) is KRISP-GCN, a configuration of the KRISP model from
[MCP+21]. The model was proposed in 2021 with one of the coauthors, Kenneth
Marino, being also one of the coauthors of the original OK-VQA paper [MRFM19].
When it was proposed, the approach delivered a state-of-the-art result on the OK-
VQA benchmark. At the time of writing this thesis, KRISP was overtaken by other
approaches on the benchmark, but to this day serves as an important reference point
for comparison in evaluations. It is chosen as a reference model to build the baseline
model for this project because of its focus on the utilization of KGs within its archi-
tecture. The discussion of this choice is expanded within the related work section of
this thesis.

The possible contributions of this thesis are based on updates to this architec-
ture. (2) centers on the update of the architecture of the GNN-based submodule,
swapping the utilized Graph Convolutional Network (GCN) with a Graph Atten-
tion NeTwork (GAT) and thus incorporating an architecture that utilizes the atten-
tion mechanism. With this first proposed update, which is called KRISP-GAT in this

3

thesis, the attention scores that are computed by the model can be returned and fur-
ther processed. Within this thesis, they will be utilized to visualize the nodes that
were rated important to find a target answer by the attention mechanism and for
other interpretability-related computations within the case studies.

The other approach to updating the architecture, (3), considers the construction of
the KG. When utilizing a KG in KRISP, a vector is added to every node that repre-
sents the input data that is the basis for the feature vectors utilizing this data during
training. This vector can contain information from different modalities, which (in
this case) can be a numerical representation of textual information, visual informa-
tion, or both. Therefore, within the updates regarding (3), the construction of multi-
modal and modal-specific KGs is explored. The update KRISP-GAT-VF is proposed
as the second update, which enhances the multi-modality of KRISP-GAT by aug-
menting the node features with visual features representing detected objects in an
image. The third update called KRISP-GAT-MS splits these enhanced node features
again into two modal-specific modalities.

The updates (2) and (3) are evaluated (4) on the OK-VQA benchmark to ensure
that the level of accuracy remains at a comparable level. The evaluation focuses
on ablation studies, which are performed to evaluate the actual contributions of the
updates.

Within (6), the goal is to explore how the updates actually influenced the inter-
pretability of a model. For this purpose, a demo application (5) based on a Jupyter
Notebook is implemented to run the trained models in inference mode, extract the
attention scores from the model, and utilize them to interpret how the final pre-
dictions were calculated. A selection of specific examples will be documented and
discussed within the case studies. A qualitative approach is chosen for this part,
because, to the best of my knowledge, no framework providing quantifiable metrics
currently exists for the Interpretability Measurement of GNN-based model predic-
tions (see Section 3.4 for further discussion). Due to this limitation, the goal of (6)
is simply to gather qualitative examples to discuss whether and what can be inter-
preted based on the attention scores collected.

Finally, the results from (4) and (6) will be discussed in conclusion in (7).

1.4 Scope and Limitations

This thesis focuses on increasing the interpretability of a model by utilizing the at-
tention mechanism within GNNs. The next step would be to investigate how the
interpretation could actually be achieved, or how the attention scores could be uti-
lized. Since this is a different topic with its own set of challenges, an investigation
and systematic evaluation of possible interpretation strategies is left for future work.
However, some possible strategies are explored in the case study section.

NN-based Learning (or: Deep Learning) is a highly tuneable process with many
hyperparameters and possible configurations. The approach within this thesis does
not follow the strategy of improving the accuracy by exploring the most perfor-

4

mant configuration of hyperparameters, but instead focuses on the architecture of
the model. Therefore, the hyperparameters and most configurations are taken over
from [MCP+21]. The same limitation of scope applies to the exploration of pre-
training strategies, which are also discussed in the supplemental material of the
[MCP+21] paper. While pre-training of models on other datasets can lead to signif-
icantly higher accuracy scores during evaluation, this goal is beyond the scope of
this thesis.

Although being out of scope of this project due to the focus on KGs and GNNs,
the transformer-based VisualBERT architecture that is utilized within a submodule
of the baseline model could also be suitable for enhancing the overall interpretability
due to its reliance on the self-attention mechanism.

In addition, the construction of KGs is focused on building node representations
within this thesis. Another aspect of KG-construction could be utilizing other ex-
cerpts from publicly available sources, or different pruning strategies. These are,
however, out of scope of this project, since the focus is on the proposed updates of
the underlying architecture and not on modification of the specific content.

1.5 Thesis Outline

The beginning of the main part of the thesis is marked by a contextualization of
the VQA field, to consider how it can be placed within the intersection between CV
and NLP and how to distinguish it from related tasks. After this, a brief overview
of the history of VQA is considered to relate the OK-VQA task to similar tasks
by describing a selection of VQA datasets that led to the creation of the OK-VQA
dataset, before introducing the dataset itself. The “Background” section is con-
cluded by reviewing other approaches within the OK-VQA field, with an emphasis
on approaches that inspired some updates of the baseline approach that was chosen
within this thesis.

The purpose of the “Methodology I” section is to provide the theoretical foun-
dation of the research strategy described above, especially considering the baseline
model and the proposed updates. This is accomplished by introducing the approach
of this thesis as a method of representation learning, which unifies approaches of
representation learning within different domains that can be distinguished by the
kind of input data they are processing, namely visual, textual and graph-based data.

Another common thread that connects all three sub-topics is the utilization of the
attention mechanism. It is first introduced as a general method, before consider-
ing one of its most prominent applications within the transformer model, which is
the architecture the VisualBERT submodule within the baseline model is built upon.
Within this approach, VisualBERT is the source of internal knowledge based on tex-
tual and visual input data. Finally, strategies for utilizing different GNN-based ar-
chitectures are considered, while the attention-based GAT is at the center of all three
updates proposed in this thesis.

In general, the “Methodology I” section can be considered as preliminary work to

5

enable the presentation of the functionality of the baseline model and the proposed
updates presented in the “Methodology II” section, where the overall evaluation
strategy is also introduced and which consists of two parts. First, quantitative eval-
uations are carried out in the section “Experiments for Quantitative Evaluation”,
which consider different configurations of the baseline model and its updates. Sec-
ond, the consideration of specific examples follows in “Experiments for Qualitative
Evaluation”.

Finally, the results of both evaluation strategies are discussed along with impli-
cations and pointers to possible direction within future work in the “Conclusion”
section.

6

2 Background

2.1 Introduction to the Visual Question Answering Task

The emergence of VQA can be described from the two disciplines it unifies within
one task: from the perspective of CV and from the perspective of NLP.

From the perspective of CV, the field of VQA arose from the task of Image Cap-
tioning, a task aimed at describing the content of an image in natural language.
Within this task, a program takes visual content as input and produces a natural
language output, thus combining the fields of CV and NLP within one task. VQA
differs from Image Captioning by the amount of questions it aims to handle, since
Image Captioning can be understood as always asking one single question about
what kind of contents can be found in an image in summary.

Before the field of Image Captioning arose, CV and NLP were often understood
as independent fields in the past, since CV is about utilizing input from camera
sensors or otherwise obtained image data, while NLP deals with textual or audio
data. In [WWW+22], NLP is further contrasted by the goal of teaching machines
to learn how to read, as opposed to teaching machines how to see within CV. Both
domains are, however, somewhat intervened due to similar methods. In fact, in
recent years both domains have started to show signs of convergence due to both
utilizing transformer-based models and the trend of multi-modal models in general
[LS23], [ZLW+22].

The task of Image Captioning can be seen as a first unification of CV and NLP
within one task. VQA can be understood as the next development of this unification
that aims to answer arbitrary questions about arbitrary images, and can be seen as
a function A = V QA(I,Q) that has an image I and a corresponding question Q as
an input and an answer A as its output.

There are several subfields of VQA, which can be specified by the three different
components:

• The answers can be binary yes/no answers, free text multi-class classifications,
multiply-choice classifications or aim at open-ended answer generation.

• The selection of images can indicate the necessity of domain-specific knowl-
edge, like in Medical VQA.

• The questions can be answered by the content given in an image or by having
to utilize outside knowledge, as in OK-VQA.

VQA can also be understood from the perspective of the development within the
NLP field, where there is a large subfield of Question Answering (QA) based on tex-
tual input. VQA can be seen as a superset of QA tasks, where textual information
alone does not suffice to answer a question and further utilization of visual infor-
mation is needed. Within this process, visual information like data from images (or
videos in Video Question Answering) also introduces significantly more informa-
tion that might not be directly relevant for the task. At the same time, textual QA

7

mostly answers questions based on a given context, which are usually more narrow
and tailored to finding an answer.

2.2 Related VQA Datasets

Similar to related research fields within NN-based ML, VQA is largely driven by the
introduction of new datasets, created for the development of new algorithms and
the evaluation of the proposed algorithms, allowing benchmarks to track progress
within the fields. Therefore, the history of progress on the VQA task can be told as
the history of its datasets (which was done in [WWW+22], for example, where also
an overview of the domain-specific datasets for fields such as Medical VQA can be
found). The focus of the following section is, however, on a selection of datasets
that can be understood as especially relevant predecessors to the OK-VQA dataset
to explore how various settings of this task can differ in practice.

One of the first large datasets for VQA was Visual Question Answering [AAL+15].
It aimed at popularizing the VQA task with the goal of laying the groundwork for
new AI algorithms. The authors argued that the task of Image Captioning as the
field that previously unified CV and NLP was not “AI-complete”, unlike VQA.
Thus, the need for a new task was identified, one that focuses on free-form and
open-ended questions while considering both modalities. The VQA dataset con-
sists of a subset of images from the MS COCO dataset, which is a popular image
dataset for tasks like Image Captioning containing a diverse set of real-life objects
and scenes. For each image in the dataset, human annotators provided a set of
open-ended questions related to the image. Additionally, the VQA dataset includes
ground-truth answers (mostly one worded), provided by the annotators. The an-
swers can be either multiple-choice or free-form text. For multiple-choice questions,
the dataset provides a set of candidate answers with a labeled correct answer. The
dataset also provides answers to questions that could be considered plausible but
are likely incorrect.

A second version of the dataset, VQAv2 [GKS+17], was later released as an update
to VQA as an extended version that also addresses data balancing issues within the
dataset. For example, if a question starts with “Do you see...”, a strategy of always
returning “yes” as an answer without even considering the image would yield 87
% [WWW+22]. VQA is available in both versions and also in different subversions
that, for example, focus on synthetic image data instead of real-life data.

In the [MCP+21] paper that describes the model that was chosen as the baseline
model for this thesis, the results of an approach to use a pre-training strategy by
training the KRISP model on the VQAv2 dataset before training it on OK-VQA are
also documented. This strategy leads to a considerable improvement in accuracy of
around 6.5 %, which is intuitively explained by the similarity of the two tasks.

Another family of VQA datasets was introduced around the Visual Genome
dataset [KZG+16] that was introduced for different CV tasks such as Object Recogni-
tion, Image Captioning, Scene Understanding and Visual Question Answering. The

8

dataset has a focus on visual relations and thus contains annotations to images that
include information on visual relationships and scene graphs in addition to image
annotations.

There are other datasets within this field that, for example, focus on visual rea-
soning (like spatial reasoning on image data) such as CLEVR (Compositional Lan-
guage and Elementary Visual Reasoning [JHvdM+16]). It contains synthetic images
of objects with different shapes, colors, materials, and sizes. The dataset focuses on
compositional questions, such as “What color is the cube to the right of the yellow
sphere?” and also comes with structured scene representations in the form of scene
graphs, as well as answers to the questions. The dataset is of interest, since it rep-
resents another approach of bringing neuro-symbolic strategies to the VQA field by
combining the output of neural networks with logic programming, like [EHOP22]
where Answer Set Programming (ASP) is utilized to compute answers to questions
based on confidences from a trained object detection NN using an ASP solver. These
approaches are beyond the scope of this thesis, but could be promising research di-
rections for future work.

All of these datasets have one thing in common: They consist of image/question
pairs that can be answered by the information given in an image alone. The first
dataset that focused on outside knowledge and thus paved the way for the OK-VQA
dataset was FVQA (Fact-based Visual Question Answering) [WWS+17]. However,
this dataset comes with a fixed set of knowledge triples as answers from a precon-
structed knowledge base, while OK-VQA has simple strings as candidate answers
and thus allows for the utilization of a variety of knowledge sources.

2.3 The Outside Knowledge Visual Question Answering Task

The motivation for the construction of the OK-VQA dataset, as described in the
accompanying paper [MRFM19], was to move the VQA field towards models that
not only recognize visual content, but also incorporate logical reasoning within their
approaches, as well as knowledge about the world that cannot be answered by the
visual content itself.

An example2 from the dataset can be seen in Fig. 1. Since the answer “grapes”
is neither in the image nor in the question, the given data has to be somehow con-
nected with an outside knowledge source that, for example, contains the knowl-
edge triplet (wine, madeFrom, grapes). The OK-VQA data set contains 14,055 open-
ended questions and corresponding images like this example, which are split into
different categories and over two parts of the dataset: A training dataset that con-
tains 9,009 image/question pairs and a test dataset that serves as the dataset for the
actual evaluation and contains 5,046 image/question pairs, while human annotators
provided the corresponding answers. Recently, updated datasets like A-OKVQA
[SKC+22] were introduced to further improve several aspects, such as the quality of
the questions or the amount of knowledge that should be used to answer a question.

2Source: https://okvqa.allenai.org/browse.html, accessed: 27.07.2023

9

Figure 1: An example from the OK-VQA dataset.

Since the evaluation of different proposed updates to the original OK-VQA dataset
is outside the scope of this thesis, their exploration is left for future work.

2.4 Related Work: OK-VQA approaches

In this section, some selected approaches to the OK-VQA task will be considered.
The goal of this section is not to provide an extensive survey of all available ap-
proaches that can be found in the literature, but to set a context of how the chosen
baseline model for this thesis and its updates relate to other approaches in the field.
The section is divided into two parts. First, a selection of NLP-centric approaches
is discussed. These approaches mostly understand the OK-VQA task as an NLP
problem like Text Generation, and thus are not within the focus of this thesis. They
are, however, an important part within the field and can be considered as another
main cluster of approaches to contrast graph-centric strategies, which are consid-
ered in the second section. Furthermore, the two categories are not exclusive, since
some approaches such as LaKo[CHC+22] utilize KGs as an external source, despite
understanding OK-VQA as an NLP task.

2.4.1 Natural Language Processing-centric Approaches

The appropriately named paper “A Thousand Words Are Worth More Than a
Picture” from 2022 [GPT+22] proposed the Transform-Retrieve-Generate (TRiG)
model, while understanding the OK-VQA task mainly as an NLP problem. This ap-

10

proach translates the OK-VQA task to the task of Generative Question Answering,
where an image is transformed into a verbose image caption as a first step, which is
utilized to retrieve passages from Wikipedia based on scores from a semantic sim-
ilarity search. Finally, an answer prediction is generated by an encoder-decoder
transformer based on those inputs.

Another NLP-centric approach, LaKo (Late Knowledge-to-text Injection), was
proposed in the end of 2022 [CHC+22]. This approach utilizes a KG by transforming
knowledge triples from a KG into a textual format for further processing. Within
this approach, the OK-VQA task is addressed as a text generation task. As a first
step, captions are generated on the basis of the input image. Like QA strategies
in the NLP domain, this approach is centered on providing a given context to a
given question – which in this case is provided by the generated captions. Further-
more, the given question and the image captions serve as the basis for retrieving
knowledge triples from a KG. After the transformation of the triples into textual
format, the textual information serves as input to an encoder-decoder transformer-
based submodule that returns the final prediction. According to the evaluation in
[CHC+22],

LaKo outperforms KRISP with an accuracy score of 47.01 on the OK-VQA dataset.
This approach is also interesting from the perspective of interpretability, since it
is one of the approaches that does not incorporate a KG within a GNN and thus
remains its inherent interpretability. The TRiG approach also outperforms KRISP
with an accuracy score of 50.50 [GPT+22] and has also advantages in terms of in-
terpretability, since the generated and retrieved information can be used to give
clues about the reasoning process. Although NLP-centric approaches are beyond
the scope of this project, a combination of these strategies with graph-centric ap-
proaches might be interesting for future work. Especially considering that the great-
est advances in the OK-VQA task in the recent time frame can be attributed to the
use of newer GPT-3 models in NLP-centric approaches, such as the Knowledge
Augmented Transformer (KAT) [GWH+22] with an accuracy score of 54.41 or the
approach from [SYWY23] with an accuracy score of 61.1.

2.4.2 Graph-centric Approaches

In the following, a selection of approaches is considered that are more related to the
architecture of the selected baseline model within this thesis. Their main difference
lies in different strategies for utilizing KGs within their architectures.

MUCKO

The MUCKO (Multi-Layer Cross-Modal Knowledge Reasoning) model was
introduced in 2020 [ZYW+20] and was one of the first solutions proposed for the
OK-VQA task, scoring 29.20 on the accuracy metric. This approach is described in

11

more detail than the other examples, because its utilization of modal-specific KGs
can be seen as a general approach that is also used in other examples [JM23] and is
also an inspiration for one of the updates to the KRISP architecture proposed in this
thesis.

At the center of the MUCKO approach is the construction of three aforementioned
modal-specific subgraphs that are utilized within submodules of the overall model.

The first constructed graph is a Visual Graph. An image that is given as part of
the input is evaluated with Faster R-CNN [RHGS15] for object detection. After a set
of K objects O = {oi}Ki=1 with K = 36 is returned, every object in that set serves as
the basis for a node in the final visual graph that contains the following information
represented by features, where d is the number of dimensions in a vector:

• A visual feature vector vi ∈ Rdv (dv = 2048)

• A spatial vector bi ∈ Rdb (db = 4) that represents the bounding boxes of the
detected objects in the image.

• a corresponding label

For the final Visual Graph GV =
(
VV , EV

)
over O, where VV =

{
vVi

}K

i=1
, the nodes

vVi are connected by the edges eVij ∈ EV where each edge represents the relative
spatial relationship between two objects.

A Semantic Graph is constructed after the utilization of dense captions based on
the approach from [JKFF16], where an image is transformed into D dense captions.
The generated captions are zi descriptions of local regions in the image that com-
prise the set of Z = {zi}Di=1. The generated captions are further processed by the
semantic graph parsing model [AFJG16], so for example, the string “A fire hydrant
on the sidewalk” is returned as the knowledge triple (Fire hydrant, On, Sidewalk).
The resulting graph is denoted as GS =

(
VS , ES

)
, where every node vSi ∈ VS rep-

resents an object label and every edge eSij ∈ ES represents the relationship between
the nodes vSi and vSj .

Finally, a Fact Graph is constructed by retrieving relevant facts from a predefined
knowledge base by computing the cosine similarity between words from the ques-
tion and the descriptions of the detected objects. Based on the 100 top scored facts,
the Graph GF =

(
VF , EF

)
is constructed, where each node vFi is represented by an

embedding of a fact, and each edge eFij ∈ EF represents the relationship between the
corresponding nodes.

Following the creation of the graphs, Graph Convolutional Networks are utilized
on each for generating embeddings that are later combined within the final layer.
This way, the last layer considers all three modal-specific subgraphs and produces
a prediction based on the overall context.

12

MuKEA

The model MuKEA (Multimodal Knowledge Extraction and Accumulation
for Knowledge-based Visual Question Answering) was proposed in 2022 and
achieves an accuracy score of 42.59 on the OK-VQA benchmark. This approach
is an interesting contrast to the role of KGs within its architecture: Instead of
utilizing KGs from publicly available sources, a KG is learned. At the center of
the approach is the goal of learning multi-modal knowledge triples to construct
a KG that correlates visual objects, internal knowledge, and external knowledge
in the form of (visualInformation, relation, textLabel). The resulting KG is used to
directly infer an answer corresponding to a given image/question pair, which can
be seen as predicting the tail (or: the textLabel) from the accumulated knowledge
triples: The paper understands tasks like OK-VQA as a multimodal knowledge
graph completion problem. The algorithm is trained on the VQA and the OK-VQA
datasets. Besides this, the only other source for knowledge utilized in this approach
is a transformer-based model. The learning-based construction of a KG from given
datasets is a promising approach and could be combined with the strategies that
are in the focus of this thesis in future work.

MSG-KRM

Recently, a new model was proposed that can be seen as a combination of the
above approaches and achieves an accuracy score of 43.58. The MSG-KRM
(Multi-Modal Semantic Graph Knowledge Reasoning Model) was proposed in
May 2023 [JM23]. While the above approaches work with one (MuKEA) or two
(MUCKO, KRISP) knowledge sources, MSG-KRM considers three different types
of external knowledge: Structured information represented by knowledge graphs,
unstructured knowledge in the form of retrieved external texts and non-symbolic
(or internal) knowledge from pre-trained models while also generating Knowledge
Graphs based on these sources.

Similarly to MUCKO, MSG-KRM constructs a MMKG by utilizing three separate
KGs for integrating knowledge from the three sources above, introducing both
symbolic and non-symbolic nodes in the process. Unlike within the MUCKO archi-
tecture, information on the type of edges is also evaluated during by the utilized
GNN, which itself is based on GAT. This allows for increased interpretability of
the model, which, like in MUCKO, considers the intermediate layers handling the
modal-specific KGs. However, the output from these layers is passed to a further
layer in both cases, which hinders the interpretability of how the final predictions
came to be.

13

KRISP

The KRISP (Knowledge Reasoning with Implicit and Symbolic rePresentations)
model was introduced in 2021 [MCP+21] and achieved an accuracy of 32.31 on the
OK-VQA dataset. In the accompanying paper, another configuration is considered
in which the model is also pre-trained on the VQA dataset, a strategy that raises the
accuracy score further to 38.90. Due to its significance within this thesis, the details
of the model are considered in the following sections. Within this section, the goal
is to contextualize the KRISP approach in the general OK-VQA field to give reasons
why it was chosen as a baseline model:

• KRISP considers internal and symbolic knowledge and can be considered as a
representative example of approaches that follow this strategy due to its pop-
ularity and good results on the OK-VQA benchmark.

• KRISP is not interpretable by design, but the interpretability could be im-
proved by some updates proposed in this thesis.

• Within the KRISP approach, a backbone KG is pre-constructed and then dy-
namically updated during training with the construction of node input data.
This strategy is suitable for the exploration of possible updates in the second
construction phase, which is the focus of some updates proposed in this the-
sis. Therefore, this architecture is well suited to evaluate the influence of its
individual components and its updates within ablation studies.

• The component that handles graphs within KRISP is one of its last layers
within the overall architecture, so the results generated here can be consid-
ered as the basis for the final predictions.

14

3 Methodology I: Representation Learning for OK-VQA

There are several possible sources for retrieving knowledge within the OK-
VQA task. A common differentiation is to distinguish between implicit and ex-
plicit/symbolic knowledge [LS23].

Implicit knowledge is knowledge that can be retrieved from pre-trained NN
models. It is non-symbolic, meaning that only the trained weights of a NN rep-
resent some sort of knowledge. However, these weights are not interpretable for
humans out of the box, since they are available only as a very large set of numerical
values.

Although neural networks suffer from an increased difficulty of interpretability,
they also deliver impressive results on a variety of tasks. They are also an integral
part of the baseline model of this thesis and the proposed updates:

• The NN-based object detector, Faster-RCNN [RHGS15], is utilized for various
steps within the model, starting with data pre-processing. Its outputs are also
utilized within one of the proposed updates.

• The NN-based Bidirectional Encoder Representations from Transformers
(BERT) architecture [DCLT19] is utilized within the handling of textual data
and also serves as the backbone of the VisualBERT-based [LYY+19a] submod-
ule, which combines the processing of image and textual data within one
model.

• The architectures for processing the constructed KGs are the Graph Neural
Network architectures GCN [KW16] and GAT [VCC+18].

Although all of these parts are NN-based, only the VisualBERT submodule and
its utilization of a pretrained BERT model can be considered as an actual source
for internal knowledge within KRISP, since this part utilizes the knowledge from
a pretrained transformer-based model and is also the place where the weights for
returning an actual answer corresponding to an image/question pair are trained.

As discussed above, internal knowledge has one shortcoming: the difficulty of
interpretability. This poses difficulties in evaluating a model with respect to the
question of where it might have gotten the answers wrong and how these answers
came to be. For example, because of the black-box nature of the NN-based models,
it is not clear if specific information retrieved from the model is missing within the
dataset it was trained on, or even wrong.

Another source of knowledge is explicit knowledge [LS23], or symbolic knowl-
edge [MCP+21], which consists of unstructured or structured knowledge, such as
in the form KGs. There are various large KGs publicly available that are usually
utilized in OK-VQA research. Although the knowledge within a KG is interpretable
by design, the utilization of KGs comes with some challenges of its own.

First, a KG has to be constructed based on excerpts from available KGs since the
vast majority of the information in most publicly available KGs is not relevant to the

15

specific task. Second, the constructed KG is equipped with node features that can
be further processed by a GNN. There are several strategies that can be considered
regarding the construction of node features. And there is the issue of interpreting a
GNN. Within the KRISP approach, the general structure of the input and output KG
of the GNN is the same. The actual learning takes place by generating representa-
tions from the node features, which are not easily interpretable for humans.

In fact, this point can actually be seen as the saddle point of this thesis, because
here is where the first proposed update to the KRISP architecture comes into play:
The GNN architecture used in KRISP can be replaced with another architecture that
is more suitable for interpreting the prediction results.

This section of the thesis is devoted to the exploration of the methodology of how
an OK-VQA model can be built, following the KRISP approach, which also serves
as the model proposed as a baseline within this thesis in a specific configuration.
Furthermore, the processing of the input data is considered in regard to the pro-
cessing of textual, visual, and graph data for representation learning within this ap-
proach. Finally, the preliminary work of how this baseline approach can be updated
is presented, regarding the focus of enhancing the interpretability of the model by
utilizing a different GNN architecture and by exploring different strategies of con-
structing (multimodal) KGs. Since the updates around the handling of symbolic
knowledge are the main focus of the thesis, the corresponding sections are more
detailed compared to their counterpart regarding the processing of implicit knowl-
edge. However, one component of some prominent NN-based architectures will be
especially considered, since it is vital for both, the handling of implicit knowledge
and the handling of symbolic knowledge after one of the proposed updates to the
KRISP architecture: The attention mechanism.

3.1 Preliminaries

Like with other Machine Learning fields, at its core, Machine Learning by utilizing
NNs can be understood as an approach to Representation Learning. The first part
of training a model is to transform input data into vectors (or: embeddings) that
represent the input data within the hidden layers of a network and thus enable it
to perform operations like backpropagation. The goal of NN-based Representation
Learning is to generate increasingly useful representations by combining several
non-linear transformations [WCPZ22].

Appropriate representations are an integral part of designing a NN architecture,
as they are one of the parts that determine the performance of the overall NN-based
learning algorithm. Therefore, the goal is to transform the input data in a way that
represents them in a sufficient, but minimal way, with feature engineering being the
field devoted to this task [WCPZ22]. Feature engineering itself is intervened with
the task of data preprocessing, since the original data has to be preprocessed in a
standardized way, before becoming the input data of an NN.

According to [WCPZ22], the field of deep learning-based representation learning

16

can be divided into the following subfields that are generally congruent to other
Machine Learning approaches:

1. Supervised Learning, which requires a substantial amount of labeled data for
training. The goal of the training is to learn a mapping between the input
data and the corresponding labels so that the model can make predictions on
unseen data.

2. Unsupervised Learning, which usually also requires a large amount of data,
but is not dependent on labels. Here, the goal is to discover an underlying
structure, specific patterns, and relationships within the data.

3. Transfer Learning utilizes pre-trained models as a starting point for further
training the model in a new, usually related, task.

Within the approach chosen for the thesis, as well as its updates, the focus is pri-
marily on (1). Here, the OK-VQA task is understood as a multi-class classification
problem and a provided dataset with labeled data to solve it. Like in image classi-
fication tasks, a given image is classified within a set of possible answers as classes.
(3) comes into play within the VisualBERT module, since a pre-trained BERT mod-
ule is utilized here as a starting point. Despite it also being a pre-trained model,
the utilized object detection algorithm Faster R-CNN, cannot be summarized under
(3), because it is only utilized during the processing of the data, but is not actually
trained within the overall model.

Different strategies of utilizing NNs within different modalities were established
within the last years, while there is also a trend of utilizing unifying architectures
based on transformer-models for some modalities. Before we move on to these ar-
chitectures, we will first consider some preliminaries for NNs in general.

3.1.1 Neural Networks

An NN consists of basic building blocks called hidden units (or: neurons). A
hidden unit can be visualized as in Fig. 2 and defined as follows:

Definition 1 (based on [Vas19]):

z = f (y) , where y =
n∑

i=1

xiwi + b

, where

• z is the single-valued output of a hidden unit.

• f is an activation function. Activation functions introduce non-linearity in
NNs to enable the approximation of non-linear functions. They are also dif-
ferentiable, so gradient descent can be performed during backpropagation.

17

• y is the sum of all hidden unit inputs xi (with n total inputs), weighted by
the weights wi. Additionally, another weight, the bias weight b, is added to
the sum. xi can either be the input data of the NN, or the output of another
hidden unit.

This definition can also be rewritten as: y = f(x · w + b) [Vas19], where x =
(x1, x2, . . . , xn) and w = (w1, w2, . . . , wn) substitute xi and wi, so the dot product of
the vector representations can be calculated instead of the sum (which is the opera-
tion performed in the actual calculation during training on GPUs, which are heavily
optimized for parallel matrix multiplications).

Figure 2: A visualization of a hidden unit [WWW+22]

Neural networks are usually made up of at least one layer, where a layer is the
combination of multiple hidden units within one output vector [Vas19]. The classi-
cal structure of NNs is built from fully connected layers, where every hidden unit of
a layer is connected to every element of the input data. With the rise of Deep Learn-
ing, many layer types were introduced, e.g., convolutional layers that are utilized in
many image data-based architectures.

Figure 3: A simple Neural Network Architecture [WWW+22].

A simple version of an NN with three fully connected layers can be seen in Fig.
3 from [WWW+22], which illustrates the two main processes of training NNs: for-
ward calculation and backpropagation.

During the forward calculation (green and yellow arrows), the input data is
passed through each layer, resulting in the following operation for calculating the

18

outputs A2 and A3 (based on [WWW+22]):

Z2 = f (W1A1 +B2) A2 = f (Z2)
Z3 = f (W2A2 +B3) A3 = f (Z3)

(1)

A1 represents the input vector, while the W and B values represent the learned
weights and biases.

Activation Functions

There are several activation functions available for different use cases. In the
following, we will define the activation functions utilized within this thesis:

Definition 2 (based on [WWW+22]):

σ(x) =
1

1 + e−x
, with x ∈ R

Is the sigmoid function, with which every output is bounded between 0 and 1. In
this way, the output can also be interpreted stochastically, since it corresponds to
a probability value [Vas19]. The sigmoid function is often used in the output layer
of an NN for multi-class classification problems, where each unit output represents
the probability of a certain class.

Definition 3 (based on [WCPZ22]):

ReLU(x) = max(0, x) , with x ∈ R

Is the function that represents the ReLU, the REctified Linear Unit, which maps
each output to 0 if x < 0 and retains the output otherwise. Compared to the
sigmoid function, it is computationally simpler and is therefore favored within the
in-between states of a NN [Vas19]. Another activation function used in several
approaches to classification problems is the softmax function:

Definition 4 (based on [Vas19]):

softmax (zi) =
exp (zi)∑n
j=1 exp (zj)

, where z = (z1, z2, . . . , zn) is the vector that contains the output of the final layer
and thus contains the probabilities of n possible classes. The softmax function
returns the probabilities as normalized values between 0 and 1.

19

Backpropagation

Backpropagation is the central part of how training is actually achieved in su-
pervised NN-based learning algorithms. With backpropagation, the gradient
of a given loss function (e.g., the Binary Cross Entropy loss function in KRISP
[MCP+21]) is continuously updated with respect to the weights and biases of
the NN, while the goal is to minimize the loss function and thus minimizing the
difference between predicted output values and target values that are part of the
labeled data in a dataset.

Backpropagation consists of the following steps that are repeated over and over
during a training run (based on [Vas19], where also a lower level overview of the
actual calculations can be found):

1. Initialize the NN weights with random values

2. Forward pass: Feed the training data into the NN

3. Loss calculation: Compute the given loss function comparing the predicted
output and the target output

4. Backward pass: Compute the derivative of the given loss function with respect
to the NN weights

5. Update the NN weights wrt. to calculated derivatives

6. Repeat steps 2-5

3.1.2 The Attention Mechanism

The goal of the attention mechanism is to represent the relational importance
between elements by assigning them learnable score values. Within Deep Learning
Approaches, this mechanism was popularized in the field of NLP field of machine
translation after the application in [BCB16], but also had a great influence on other
NN-based approaches, such as computer vision, due to it being a fundamental part
of the transformer architecture.
The general attention framework can be defined as follows:

Definition 5 (based on [WWW+22], [Vas19]):

O = Attention(Q,K, V)

, where Q is a query, K and V are keys and values, and O is the output.

The attention mechanism returns a mapping between Q and a set of key-value pairs
represented by K and V . The general steps of the mechanism are as follows (based
on [WWW+22]):

20

1. Input Q, K and V into the Attention function

2. Calculate scores with si = Score (query, keyi), where query is used to find the
related keyi

3. Normalize all si outputs with a softmax function, resulting in attention scores
ai

4. Aggregate the outputs based on their attention scores ai and corresponding
valuesi within a weighted sum, which is the output O of the attention mecha-
nism

The actual Attention and Score functions are specified in their actual context, like
within the transformer model and within the GAT model, as described in the ac-
cording sections of this thesis.

3.2 Representation Learning on Image Data

3.2.1 Convolutional Neural Network-based Architectures

One of the first steps in a VQA pipeline usually involves the processing of image
data. A very common approach is to utilize CNN-based models for this task. Be-
fore the current trend of using transformer-based architectures to represent images
(or regions of images) by NNs, the most common architecture within supervised
representation learning was the Convolutional Neural Network (CNN) [LS23]. The
name-giving convolution operation was already widely utilized within image pro-
cessing before the rise of NN-based architectures on tasks like Feature Extraction,
Filtering, Edge Detection or Image Transformation. It can be understood as com-
bining two functions to produce a third function, which represents their combined
information.

CNNs are typically constructed by stacking four types of layers (based on
[ON15]):

1. An input layer that receives the input data, e.g., a matrix of pixel values. In
the case of image data, the input data can be rather large, often containing
thousands or millions of pixels, often in triplicate to contain the information
from three separate color channels.

2. The convolutional layer is responsible for extracting features from the input
data. This is achieved by applying a set of filters (or: kernels) to the input
data. Each kernel is a matrix of weights, which is convolved with the input
data by an approach similar to a sliding window: While the kernel is sliding
over the input data, the dot product between the kernel and the correspond-
ing region of the input is computed, resulting in a feature map that highlights
certain spatial patterns or features. The weights of the kernel are the learnable
parameters that are adjusted during the training process by backpropagation.

21

The output of this layer is passed to an activation function like ReLU for in-
troducing non-linearity to the network and thus enabling the learning of more
complex patterns.

3. The pooling layer is responsible for downsampling the feature maps while
preserving important information and applying pooling techniques.

4. The fully-connected layer is similar to the same structure in other NNs: This
layer flattens the feature maps into a 1d vector and is responsible for learning
representations and producing class probabilities from the activations.

There are different strategies for constructing a CNN architecture, but it usually
involves combinations based on these building blocks [ON15]. Their common goal
can be summarized as learning a lower dimensional representation of the input
data, which usually is rather due to the amount of pixel information.

3.2.2 Object Detection Based on Representation Learning With Faster R-CNN

The embedding strategies of image data can be divided into the involvement of im-
age level data or region-based data. Generating embeddings for a complete image
can be utilized in a variety of tasks, such as image classification. Region-based data
becomes important if the goal is not to compare whole images with each other but to
extract specific regions from images, like bounding boxes of detected objects. Pre-
trained Object Detectors like Faster R-CNN (Region-based Convolutional Neural
Network) [RHGS15] can be utilized for the latter [LS23].

The Faster R-CNN algorithm is an integral part of the preprocessing of image data
within the KRISP approach. The region-based features of the objects are also utilized
within one of the updates to the KRISP architecture proposed in this thesis. Hence,
the following serves as a brief overview of the architecture behind Faster R-CNN.

Faster R-CNN has two predecessors: R-CNN [GDDM14] and Fast R-CNN [Gir15].
R-CNN was proposed in 2013 and was the first model based on a CNN architecture
that introduces the idea of region proposal-based object detection. At first, region
proposals are generated while identifying potential object bounding boxes as re-
gions within the input image. Next, each of these proposed regions is fed into a
CNN to extract features. The output is further fed into a set of fully-connected lay-
ers for object classification.

The original R-CNN suffered from some drawbacks regarding the training and
inference time, which could mainly be attributed to treating each object detection as
a separate task. To overcome these drawbacks, Fast R-CNN [Gir15] was introduced
in 2015. Here, instead of processing each region proposal independently, the ex-
traction of features is performed on the entire image only once by utilizing a CNN.
Then, a region of interest pooling layer is introduced, which extracts fixed-size fea-
ture vectors based on every proposed region.

The further improved version, Faster R-CNN [RHGS15] was also introduced in
2015. It addresses another bottleneck of its predecessors: their reliance on external

22

region proposal algorithms. Here, a Region Proposal Network (RPN) is introduced
that generates region proposals directly within the model. In the paper [RHGS15],
the authors draw a parallel to the attention mechanism: The RPN tells the Fast R-
CNN module where to look. The RPN is combined with the Fast R-CNN network
and shares some convolutional features with it directly, and thus enables faster ob-
ject detection.

3.3 Representation Learning on Textual Data

Compared to image data, representation learning on textual data is challenged by
the sheer variety of forms the textual data can take. An image is usually a structure
with clear dimensions, like a grid of pixels. A natural language text can be com-
prised of one sign or millions; it can come in different languages, etc. Hence, the
preparation of the input data for NN-based architectures is not as straightforward
as with image data and will receive further consideration within this section, before
the actual architectures of NNs for textual inputs are considered.

3.3.1 Encoding Textual Questions

NN architectures work with fixed-size input vectors, so, for example, given a dataset
comprised of textual data, a way of standardizing the data is needed. This is ac-
complished by generating word embeddings, which represent words or tokens as
dense numerical vectors. Tokens are parts of words that were split up for further
processing; their length and structure depend on the given tokenization algorithm.
Word embeddings can be seen as a lookup table that maps words or tokens to their
dense vector representation. These vectors are the basis for NN-based representa-
tion learning and can capture the semantic and syntactic regularities between words
when subjected to a machine learning algorithm.

There are several techniques to acquire word embeddings. One of them is to use
embeddings from the pre-trained GloVe model (Global Vectors for Word Represen-
tation), introduced in [PSM14]. GloVe is a popular unsupervised learning algorithm
for generating word embeddings. Here, the key idea is to consider the statistics of
word co-occurrence within a large textual dataset (including a complete dump of
Wikipedia). The term “global” in GloVe refers to the fact that the model consid-
ers the co-occurrence of words over the complete dataset, unlike methods that only
consider local text information (the immediate surroundings of where the word oc-
curs). Thus, the method aims at embedding the meaning of a word within a vector
that is not dependent on the local context: Every word in the dataset is mapped to
the vector space. This way, the approach is suitable for tasks that want to utilize a
pre-trained model for retrieving dense vector representations, like within KRISP.

Another word embedding technique is to utilize a pre-trained BERT model for
this task, which is discussed in the corresponding section of this thesis below.

23

3.3.2 Recurrent Neural Networks

Recurrent neural networks (RNNs) are centered around the idea of sequential pro-
cessing of elements within a finite sequence (x1, x2, . . . , xT), one by one [LS23]. Dur-
ing this process, the context based on the left side of the sequence from the current
element is retained, and both the context and the current element are utilized for
computation of the current element’s feature representation. Although sequential
processing corresponds to the way humans process a text, it suffers from the same
challenge: The right-hand side of the current element that is being processed is not
considered at all. The BERT architecture addresses [DCLT19] this challenge, as de-
scribed in the following section.

3.3.3 The Transformer Model

Similarly to other approaches within the OK-VQA field, the main source of internal
knowledge within the KRISP approach is a transformer-based model. In the follow-
ing, we will consider the transformer architecture, before we move forward to BERT
and VisualBERT, the models that are actually utilized in KRISP.

The transformer model was introduced in 2017 [VSP+17] and was designed pri-
marily for sequence-to-sequence tasks such as machine translation, where a se-
quence of textual input is translated from one language to another.

The two key components of the architecture are the encoder and the decoder for
processing and generating sequences, respectively. The encoder/decoder structure
was already commonly utilized within RNN-approaches before the transformer
[WWW+22] and is further improved within this approach. Both components are
composed of layers of self-attention and feed-forward NNs, but differ in their roles
and corresponding operations within the model.

The self-attention mechanism is a key component of the transformer model. It
calculates attention scores by computing the dot product between the query vec-
tor Q, the key vector K, and the value vector V , which are derived from the input
sequence. The attention scores determine the importance of different elements in
the sequence, allowing the model to focus on the relevant information. Multi-head
attention is used to perform multiple independent self-attention operations in par-
allel, and the results are concatenated and linearly transformed to obtain the final
output [VSP+17].

The particular attention method was called “Scaled Dot-Product Attention” in the
original paper [VSP+17] and can be calculated as follows for each head:

Attention(Q,K, V) = softmax

(
QKT

√
dk

)
V (2)

, where dk is the dimension of each key vector in K (this formula represents the
formula that is used in practice when computing attention, where Q, K and V refer
to the matrices that collect the corresponding vectors).

24

The goal here is to compute the dot products between the queries and the keys,
and scale and normalize the results with the softmax function, so they become prob-
abilities that represent the initial importance of a specific key to a specific query.

The results from the individual heads are accumulated as follows (based on
[WWW+22]):

MultiHeadAttention(Q,K, V) = Concat (head1, head2, . . . headh)W
o

, where headi = Attention
(
QWQ

i ,KWK
i , V W V

) (3)

, where W are the weights, where the actual representation learning takes place and
W o are the weights corresponding to the output o.

The Encoder

The input data is first processed by the encoder, which takes a textual se-
quence as input and outputs a sequence of contextualized representations. Its role
is to capture the meaning of the input sequence and encode it into an abstract
representation. The encoder can be seen on the left side of the architecture in
Fig. 4 consists of N = 6 identical layers, which themselves contain two sublayers
representing:

1. A Multi-Head self-attention mechanism, where Q, K and V to calculate Eq. 2
are either based on the input data or the output of the previous encoder layer.
This is where the importance of the relations between the words in a sequence
is initially weighted.

2. A position-wise fully connected feed-forward network. This sublayer is re-
sponsible for the actual learning of patterns and relations within the input
data.

The Decoder

The decoder generates an output sequence based on the output of the en-
coder. The decoder can be seen on the right side of Fig. 4 and also contains several
identical layers that consist of:

1. A masked multi-head self-attention mechanism, which processes the output
of the encoder and ensures that only the previous positions in the output se-
quence are attended by masking out all others.

2. A multi-head encoder-decoder attention mechanism, where K and V are part
of the output from the encoder and Q are the queries from the decoder

3. A position-wise fully connected feed-forward network that has the same func-
tion as the corresponding sublayer in the encoder.

25

Figure 4: The Visualization of the transformer model [VSP+17].

The Transformer model also incorporates positional encodings, which provide
information about the order of elements in the sequence. Positional encodings are
added to the input embeddings, allowing the model to capture sequential informa-
tion.

These building blocks serve as main components for different transformer-based
models, which can be divided into three general approaches:

1. Encoder-only architectures that are mostly used within approaches that fo-
cus on the learning of a representation from an input sequence, like BERT
[DCLT19]

2. Decoder-only architectures that focus on tasks like text generation, like the
InstructGPT model [OWJ+22]

3. Encoder-Decoder architectures like the original transformer described in this
section.

An overview of how different transformer architectures within current OK-VQA
approaches can be found in [CHC+22].

26

3.3.4 The Bidirectional Encoder Representations from Transformers Model

The Bidirectional Encoder Representations from Transformers (BERT) model is one
of the first Large Language Models (LLMs) that was pre-trained on a large amount
of textual data with the goal of providing a simple way of fine-tuning the model
with labeled data for downstream tasks such as question answering or language
understanding.

Before BERT, algorithms for creating embeddings of words like GloVe [PSM14]
captured the context of the sequence in one direction, e.g., by evaluating a given
text from left to right. BERT considers both directions, thus contextualizing both its
preceding and succeeding words. This is enabled by the transformer architecture,
since its purpose is to capture the relations between all words of a given text by
utilizing the self-attention mechanism, regardless of their relative positions.

The pretraining of BERT consists of unsupervised learning on a large corpus of
unlabeled text with the objective of learning word prediction by, for example, mask-
ing out a word in a sentence and sequentially predicting these words based on the
context from both directions [DCLT19].

Since BERT is designed for language understanding and processing and not text
generation, it focuses solely on the encoder part of the transformer architecture and
does not have a decoder part.

3.4 VisualBERT: Combining visual and textual representations

VisualBERT builds up on BERT [DCLT19] that was proposed within the realm of
NLP. It combines BERT and outputs from object detection models such as Faster
R-CNN. Within this approach, image features are extracted from detected objects
and become part of the BERT inputs by being treated as unordered input tokens, so
both modalities are processed jointly throughout the BERT layers. The main idea of
the approach is to utilize the self-attention mechanism to align the input text and
regions of the image. In this way, BERT is augmented by the ability to handle visual
embeddings F . Every visual embedding f ∈ F represents a region of the image and
is computed by summing three embeddings:

• fo is a representation of visual features within the bounding box that corre-
sponds to the region of f .

• fs is a segment embedding. In BERT, segment embeddings are used to indicate
which specific segment of a text a token belongs to. Here, it indicates whether
the embedding is an image embedding or a text embedding.

• fp is a position embedding. In BERT, it is used to indicate the position of a
token within a sentence. Here, it is utilized if alignments between words and
bounding boxes are provided.

Subsequently, the visual embeddings are combined with the initial text embed-
dings and fed into the multi-layer transformer. This enables the model to learn

27

alignments between the two input modalities and to calculate their joint represen-
tation.

The original paper [DCLT19] concludes that the attention mechanism utilized in
VisualBERT can capture information in a way that is interpretable for humans. This
thesis focuses on handling external knowledge in the form of KGs, but it could be a
promising research direction to deliver interpretable results from the implicit knowl-
edge source as well and to compare it with the interpretation of the external source.

3.5 Representation Learning on Graph Data

A graph represents entities and the relationships between them. While the nodes of
a graph correspond to the entities, the relationships are represented by the edges
connecting the nodes. A graph can be defined as follows:

Definition 6 (based on [SSYR23]):

G = (V,E), where G is the graph. V is the set of n nodes (or: vertices) that
are connected by edges in the set E. If a node v ∈ V and a node u ∈ V are connected
by an edge, then ev,u ∈ E.

A graph can be directed or undirected. In the directed case, the edges of the
graph are associated with a specific direction, which means that ev,u does not imply
the existence of eu,v. If the graph is undirected, no direction is associated with the
edges and thus ev,u = eu,v for all edges [SSYR23].

The neighborhood N (v) of a node v ∈ V is the subset of all nodes in V with an
edge connection to v. [SSYR23]. A k−hop neighborhood is a set of nodes, where
the shortest distance from v is not greater than k (based on [WCPZ22]).

A graph is heterogeneous, if the graph consists of different types of nodes and/or
edges. It is homogeneous, if it is not.

Graphs are central parts of many VQA approaches, especially those that are built
with GNN-based submodules. There are different types of graphs that can be con-
structed and utilized for this task. For example and as introduced in the related
work section, in [ZYW+20] a Visual Graph based on visual features of the image, a
Fact Graph based on excerpts from Knowledge Bases, and a Semantic Graph based
on the textual labels of detected objects and their attributes are constructed. The
term “Semantic Graph” is often used interchangeably with the term “Scene Graph”.
Within this thesis, the argument from [SSYR23] will be followed to use the term
“Semantic Graph”, because “Scene Graph” could be understood as a generalized
version of different graph types representing information about an image, so the
term “Semantic Graph” is more precise.

28

3.5.1 Constructing Knowledge Graphs

Knowledge Graphs (KGs) are a type of structured knowledge representation, where
knowledge is organized as a graph.

KGs can typically be seen as a set of knowledge triples KG = {(h, r, t)} (based
on [WMWG17]), where a knowledge triplet (h, r, t) ∈ F consists of a head entity, a
relation, and a tail entity, such as (Cat, needs, Food), and F is a collection of facts. A
common approach is to represent the entities and the relations as natural numbers
corresponding to preprocessed node labels, so h, r, t ∈ N0. In this way h, r, t can
correspond to indexed values in arrays representing nodes and edges.

The overall construction of KGs within the VQA task (like within the [MCP+21])
approach can be divided into two parts:

1. Constructing a KG based on excerpts from existing Knowledge Graphs during
data preprocessing steps.

2. Adding one more dimension representing information about the node.

After these two steps, the constructed KG serves as the input data of a GNN-
based submodule during training. The training is based on the overall structure
that remains within the input as well as within the output.

The (1) part focuses on the preprocessing of data from existing KGs such as Con-
ceptNet [SCH18]. Since these KGs are usually too large to be processed on common
hardware (e.g., ConceptNet contains around 8 million nodes and around 21 million
edges) and also contain a lot of information that is not relevant to questions within a
specific dataset, strategies to prune the KGs are introduced. An overview of widely
used and publicly available KGs can be found in [LS23] The specific pruning strat-
egy within KRISP is discussed in the experiments section.

The (2) part is where the actual training takes place, or where the input data is
processed into learnable features. There are many possible ways of constructing
the input data. Within this thesis, two approaches are considered as part of the
proposed updates to the baseline model: By constructing a multi-modal KG and by
constructing a modal-specific KG.

Multi-Modal Knowledge Graphs

The utilization of multi-modal KGs (MMKGs) is generally on the rise within
NN-based fields, not only within VQA [ZLW+22]. The term “multi-modality”
in this context usually refers to a combination of the modalities text and image
(although other modalities like sound could also be utilized).

In [ZLW+22], MMKGS are divided into two general approaches:

• MMKGs that have nodes in one modality (usually text), but can have informa-
tion from other modalities stored within their attributes.

29

• MMKGs with nodes representing entities from different modalities.

The construction of MMKGs aims at adding visual information to the symbolic
knowledge found in traditional KGs, for example by creating an association
between a node (or a relation between nodes) and a representation of the concept
that the node represents. Accordingly, the construction of an MMKG is provided by
the extraction of visual entities or concepts on the one hand and on the extraction
of visual relations on the other. With the goal of symbol grounding, meaning the
putting into relation of symbolic concepts and their proper multi-modal representa-
tion. [ZLW+22]. While this can be achieved, for example, by retrieving images from
publicly available sources, it can also be the task of a learning algorithm to learn a
multi-modal representation, like [DYL+22]

Modal-specific Knowledge Graphs

One goal within this thesis is to compare the accuracy and interpretability of
two different proposed KG construction methods. Therefore, the modal-specific
construction of KGs is proposed. It is inspired by approaches like [ZYW+20] and
[JM23] and can be understood as dividing the node features into two modalities.
This results in two KGs as input data that share the same structure but whose
node features are comprised with a focus of textual features and visual features,
respectively. This approach is described in detail within the experiments section.

3.5.2 Introduction to Graph Neural Networks

Graph Neural Networks were already applied within the VQA task before the OK-
VQA subfield emerged [WWW+22]. The necessity arose after it was found that
methods based on Convolutional Neural Networks (CNNs) were not enough to
model the relations within an image for the VQA task. On the other hand, the appli-
cation of Graph Neural Networks (GNNs) in visual-language image understanding
tasks like Image Captioning, Image Retrieval or Visual Question Answering is be-
ing progressively researched in the last couple of years [CWD+22], [SSYR23]. GNNs
enable learning algorithms based on NNs to learn with non-Euclidian data. So, one
of the main motivations behind this architecture is the combination of NN-based
approaches with the utilization of symbolic knowledge that can be provided with a
knowledge graph.

GNN-based architectures can generally be divided into [WCPZ22]:

• Spatial approaches, which consider the structure of a graph by collecting the
information around each node, often representing this information with an
adjacency matrix.

• Spectral approaches, which consider graph structures within the spectral do-
main.

30

In the following, we will focus on spatial approaches.
Another delimitation of the subject of the following is the type of input data with

which we will deal. Recently, GNNs were applied on processing image data within
several Computer Vision tasks, with promising results [WCPZ22]. Here, image data
is interpreted as graph data, for example, by viewing every pixel as a node that has
a fixed number of neighbors and edges, resulting in a grid. A combination of these
approaches is left for future work. The following considers graph data as input that
does not have a fixed structure.

The two architectures that are considered are Graph Convolutional Networks
(GCNs) and Graph Attention NeTworks (GATs), which are both utilized in the base-
line model and its proposed updates within this thesis.

GCNs and GATs were already utilized within VQA prior to the OK-VQA task
[WWW+22] to improve the ability to evaluate the relationships detected in an image
to answer a given question. GCNs are commonly used within the OK-VQA task,
such as in [MCP+21] or [ZYW+20]. Some current approaches, like [JM23], explore
the application of GATs within the OK-VQA task.

3.5.3 Graph Convolution Networks

The GCN architecture was introduced in 2017 [KW16] and is based on the goal of
applying the CNN architecture to graphs. Since its proposal, the GCN architecture
became the most popular GNN architecture within the research area and is usually
considered a baseline method to work with graph data [Lab23].

In principle, image data can also be seen as a graph, where every pixel in the
grid can be considered a node. One key difference between Euclidean data like
image data and graph data is the number of neighbors of nodes. In image data, the
number of neighbors is fixed, for example, to the number of 8 neighbors if a pixel is
in the middle of an image, or 3 if a pixel is the corner pixel of an image. The pixels
within this grid are fully connected to their neighbors. This is different within the
graph data, where the number of neighbors can vary significantly.

This challenges the idea of applying CNNs to graph data directly. To illustrate
this problem (based on [Lab23]), we can consider a basic neural network layer that
represents a linear transformation hi = xiW

T , where xi is the input vector of a node
i while W represents the weight matrix. In this case, no specific consideration of the
input structure is taken.

A first solution could be to update this formula as follows ([Lab23]):

hi =
∑
j∈Ni

xjW
T

Where Ni is the set of neighbors of a node i. This way, the number of neighboring
nodes is considered and can vary.

However, the problem with this solution is that the comparison between the re-
sulting hidden units hi is compromised, as the difference in the number of nodes

31

leads to potentially very different results.
This can be improved by adding a normalization coefficient, where each embed-

ding representing the hidden unit hi can be divided by the degree of the node i
(based on [Lab23]):

hi =
1

deg(i)

∑
j∈Ni

xjW
T

As stated in the original GCN paper, this formula still needs another update to
better balance the nodes with high degrees and the low ones (based on [KW16]):

hi =
∑
j∈Ni

1√
deg(i)

√
deg(j)

xjW
T

In this way, nodes with fewer neighbors are assigned higher weights to balance
out the distribution.

3.5.4 Graph Attention Networks

Although the normalization coefficients 1√
deg(i)

√
deg(j)

in GCN reflect the structure

of node surroundings by considering node degrees, they remain static values during
the learning process. In GAT, these coefficients become learnable parameters, called
attention scores [Lab23]:

hi =
∑
j∈Ni

αijWxj

Where αij are the attention coefficients (or: the attentions scores) between two corre-
sponding nodes i and j that reflect the learnable importance of the relation between
the nodes. The attention scores are the results of a comparison of the inputs to each
other, which itself is the mechanism of self-attention. This reminds of the function-
ality of the Transformer model, and the authors of GAT paper [VCC+18] explicitly
cite the original Transformer paper [VSP+17] as an inspiration. In fact, it can be ar-
gued that transformers can be thought of as a special case of GNNs, where the input
data is fully connected (where a sentence is understood as a set, where every word
is connected with every other word) – as it was done in [Jos20] or [Vel23].

Apart from the attention scores, the architecture of GAT and its functionality are
very similar to GCN. Despite possible redundancies and due to the importance of
GAT for this project, GAT is described step by step below, based on the original
GAT paper [VCC+18] and [Lab23].

32

The GAT Architecture

1. Inputs and Outputs

The inputs of a GAT layer are represented by x = {x1, x2, . . . , xN} , xi ∈ RF

and contain the inital input data. The outputs h = {h1, h2, . . . , hN} , hi ∈ RF ′
. In

both cases, N corresponds to the number of nodes, while F and F ′ are the number
of features in each node of potentially different cardinality.

2. Adding trainable parameters

The goal of every Deep Learning model is to gain expressivity, which means
the ability to appropriately approximate a function. To achieve this, we need learn-
able parameters or at least one learnable linear transformation that is represented
by a weight matrix W ∈ RF ′×F and applied to every node (based on [Lab23] and
(based on [Lab23]).

3. Self-attention mechanism

In the following, the self-attention operation a is performed on the nodes with
a : RF ′ × RF ′ → R.

eij = a (Wxi,Wxj) (4)

The attention score as attributed to each edge eij between the given node features hi
and hj .

During the actual training, the attentions score aij between a node i and one of
its neighbors j, both feature vectors x from each node are needed for the compu-
tation. In the self-attention operation a in GAT, the two vectors Wxi and Wxj are
concatenated. Also, an additional trainable weight matrix Watt is applied:

aij = W T
att [Wxi∥Wxj] (5)

Where Watt is the weight matrix that is trained to produce the attention coefficients
aij .

4. LeakyReLU activation

As with other NN-based approaches, nonlinearity is added to enable the ap-
proximation of non-linear functions.

33

eij = LeakyReLU (aij) (6)

In GAT, the LeakyReLU function is chosen over the ReLU function. The comparison
between both is visualized in Fig. 5. ReLU functions suffer from the so-called dying
ReLU problem, which occurs when some hidden unit in a layer always receive
negative inputs, causing them to always output 0 [Vas19]. Since this behavior is not
desired within GAT, LeakyReLU was applied.

Figure 5: ReLU vs. LeakyReLU [Lab23].

5. Softmax normalization

Next, softmax is applied to eij for enabling the comparison of attention scores
between different nodes.

αij = softmax (eij) =
exp (eij)∑

k∈Ni
exp (eik)

Which gives as the final attention scores αij .

The steps for computing αij can be summarized as follows (based on [Lab23],
[VCC+18]):

αij =
exp

(
LeakyReLU

(
W T

att [Wxi∥Wxj]
))∑

k∈Ni
exp

(
LeakyReLU

(
W T

att [Wxi∥Wxj]
)) (7)

6. GATv2 update

An updated version of GAT called GATv2 was introduced in 2021 [BAY22].
The paper identifies a problem with the way of how GAT computes attention
scores. In GAT, the linear transformations are applied directly after each other. In
this process, for every node hi that queries a neighbor node hj , the calculation of the

34

attention scores is not effected by the query node. GATv2 proposes a modification
of the order of the operations of GAT to fix this; the overall functionality remains
the same.

This is the modified order in GATv2:

αij =
exp

(
W t

att LeakyReLU ([Wxi∥Wxj])
)∑

k∈Ni
exp (W t

att LeakyReLU ([Wxi∥Wxj]))
(8)

In the original paper of GATv2 [BAY22], theoretical proofs and results of experi-
ments on different benchmarks compare the performance of GAT and GATv2 with
GATv2 consistently outperforming the original GAT. Hence, GATv2 will be utilized
throughout this thesis.

Figure 6: The attention mechanism in Graph Attention Networks (based on
[VCC+18]).

7. Multi-head attention

In the GAT paper [VCC+18], two ways of integrating the result from the heads are
discussed: Concatenating the resulting features or averaging them out. Concatena-
tion is utilized within the hidden layers. This process is visualized in Fig. 6 and can
be calculated as follows [Lab23]:

hi =
∥∥∥nk=1h

k
i =

∥∥∥n
k=1

∑
j∈Ni

αk
ijW

kxj (9)

, where n is the number of attention heads and k is the index of the attention heads.

35

Since the last layer only has one head, concatenation is no longer sensible
[VCC+18] and the final features are the averages of the results per head [Lab23]:

hi =
1

n

n∑
k=1

hki =
1

n

n∑
k=1

∑
j∈Ni

αk
ijW

kxj (10)

, where n is the number of attention heads and k is the index of the attention heads.

3.5.5 Interpretability of GNNs

GNNs have applications in a variety of fields, including critical applications such
as drug discovery and drug repurposing, or safety and security applications. As
GNNs are more and more implemented in tasks outside of research and thus have
more and more impact on actual real-life decision-making, the need to understand
the reasoning of GNNs surges.

Like other NN-based approaches, GNNs suffer from the difficulty of interpreting
their results. Furthermore, trade-offs between the performance of a model and the
increase of interpretability must be considered [DMW+23].

Currently, there is no consensus on a definition of interpretability or explainability
within the literature, and both terms are sometimes used interchangeably. In fact,
the search for a definition or at least the formulation of working definitions can be
seen as an example of how humans can try to define non-mathematical concepts by
considering how the concept is used by others, as described in the beginning of the
motivation section of this thesis.

In [Lab23], the current discussions are summarized as a model that can be “in-
terpretable” or “explainable”. It is deemed “interpretable” if it is understandable to
humans by design, like a decision tree (or, in our case, a knowledge graph). “Ex-
plainable”, on the other hand, is attributed to models whose results can only be un-
derstood retroactively by applying explainability methods. In the case of the GNN
application within the KRISP approach, the model could be understood as both: It
takes a human-readable KG as an input that was augmented with more input data
for each node, and returns a human-readable KG with the same structure but differ-
ent node features that have to be explained retroactively.

Furthermore, in [Lab23] the differentiation between local and global explanations
is discussed. While local explanations focus on the explanation of specific predic-
tions of a model, global explanations focus on the model itself.

In [WCPZ22], “interpretation” and “explanation” are also distinguished by an-
alyzing their usage within the literature. Here, “explanation” is summarized as a
result of the collection of important features within a given prediction that can be
used for a post-hoc interpretation of a result returned by a model. This corresponds
to the positioning of local explanations given above. Interpretations, however, are
simply referred to as a broader range of concepts that refer to models that are intrin-
sically interpretable.

36

Although the interpretability of a model is commonly referred to as a degree
[WCPZ22], to the best of my knowledge, there is no current approach to actually
specify this degree in numbers. While several research frameworks have been pro-
posed for the evaluation of Graph Explainability methods (e.g., [AQLZ23]) and
while these approaches propose different evaluation metrics, their goal is to quan-
tify the difference between Graph Explainability methods, not the model predictions
themselves.

For future work, it could be a fruitful research direction to establish a framework
of Interpretability Measurement of GNN-based (or NN-based in general) model
predictions; similar to the field of Inconsistency Measurement, where one goal is
to overcome the binary view of “consistent” and “inconsistent” information by
mapping inconsistency to numbers between 0 and ∞ [UTB20]. A starting point on
the discussion why such a framework would have to face several challenges can
be found in [CPC19]. Since a proposal of such a framework would be beyond the
scope of this thesis, and since, for now, only a binary Interpretability Measure that
represents whether a model prediction is interpretable, or not, would be applicable,
interpretability is defined qualitatively:

Definition 7 (based on [WCPZ22]):

The Interpretability of a model is given when a human observer can interpret
the cause of a decision. An interpretation is the mapping of an abstract concept into
a domain that humans can understand.

Interpreting GAT

In [WCPZ22], the utilization of attention scores for interpretability is com-
pared to post-hoc explanations of model predictions, while there is also a significant
difference: The attention scores are a fundamental part of the overall model; they
are not computed post-hoc for explanatory reasons. Their utilization can be seen as
utilizing a byproduct for interpretability purposes, so in terms introduced above,
it could be understood as a partially human-readable model, but only if some
specific parts of the model are considered within additional post-hoc computations
performed after the prediction.

There are several approaches of generating post-hoc explanations for GNN-
based model predictions that are currently discussed in the literature ([AQLZ23],
[WCPZ22]). Since this thesis focuses on interpretability by utilizing the attention-
based and human-readable parts of the model, the exploration of additional ex-
plainability methods is left for future work.

It should also be noted that there is no consensus on the reliability of attention
scores for the interpretability of NN-based models, in general. A short overview of
pro- and contra-arguments can be found in [NZY21]. However, studies that argue

37

against this approach focus on NLP architectures that work with textual data.
When working with graph data, the attention scores αij calculated in Eq. 8 are

computed between the feature vectors of the two corresponding nodes to indicate
the importance of the edges between them. Thus, they can be visualized and inter-
preted, as is done in the case study section.

38

4 Methodology II: The Baseline Model and the Proposed
Updates

4.1 The KRISP-GCN Baseline Model

4.1.1 An Overview of the KRISP Approach

The original KRISP [MCP+21] model presented a novel approach to combine two
sources of external knowledge representations:

1. Implicit knowledge from the pre-trained and transformer-based language
model BERT [DCLT19], which is used within the utilized VisualBERT
[LYY+19b] architecture.

2. Symbolic knowledge from several publicly available knowledge bases, repre-
sented by a constructed KG, which is processed by a GNN.

Both approaches are implemented within submodules of the KRISP model and
are handled sequentially. The process can be summarized as follows before being
described in detail in this section:

1. A question/image pair is processed by a Faster R-CNN object detector and
textual processors. This step is completed in advance of training for the entire
dataset to ensure faster training.

2. In the first actual training step, the VisualBERT submodule receives a prepro-
cessed question/image pair.

3. The output of the last layer of the VisualBERT submodule, zimplicit, is returned.

4. The prediction yimplicit is calculated from zimplicit

5. zimplicit is compressed from a vector of 768d to a vector of 128d and is passed to
the GNN-based submodule together with the pre-processed question/image
pair.

6. In the GNN-based submodule, all nodes that correspond to the ques-
tion/image input data are activated based on preprocessed KG data.

7. The compressed zimplicit vector is concatenated to every activated node. This
is the first strategy to integrate internal and symbolic knowledge within the
KRISP approach.

8. The updated KG is passed to a GNN-based submodule, which returns the
output zsymbolic.

39

9. The prediction of the GNN-based submodule, ysymbolic, is calculated by multi-
plying zimplicit and zsymbolic. This is the second strategy of integrating the two
knowledge sources within KRISP, which is called “late fusion” in the KRISP
paper [MCP+21].

10. The two vectors containing the predictions scores, yimplicit and ysymbolic are
concatenated.

11. The final answer predictions correspond to the highest scores values within
the concatenated prediction vector.

A visualization of the steps described in the summary can be seen in the visual-
ized model overview in Fig. 7.

Figure 7: Overview over the general KRISP approach.

4.1.2 VisualBERT Submodule

The backbone of the implicit knowledge retrieval submodule is the VisualBERT
model, which is based on a BERT model that has been pre-trained on large textual
datasets.

As described in Section 3.4, VisualBERT augments the BERT architecture by incor-
porating visual features alongside the textual features as part of the model’s input
data, and thus enabling the model to work with two modalities. The visual features
are gathered from utilizing an object detection model, which is a crucial part of most
VQA approaches. Within the KRISP approach, the popular Faster R-CNN is utilized
for detecting objects in an image. There are different object detectors available, but
since exploring other approaches of object detection is out of scope of this paper, it
is left for future work and Faster R-CNN will be also utilized within the following
experiments as in KRISP.

40

For each detected object, the 2048d representation of the object is calculated within
pre-processing steps and serves as part of the input data, together with features
based on the bounding boxes of the detected objects which enable the embedding
of visual regions associated with the detected objects, as well as the question encod-
ings.

As in the original BERT implementation, the input question Q is tokenized utiliz-
ing the algorithm WordPiece, resulting in a sequence of |Q| tokens. This sequence
is embedded by utilizing pretrained BERT embeddings. Furthermore, the posi-
tional encoding of the tokens is appended to the output, resulting in the sequence
xQ1 , . . . , x

Q
|Q|, which is the actual input of the transformer and is used for representa-

tion learning.
The output of all transformer steps is mean-pooled, resulting in the representation

of the implicit knowledge zimplicit.

4.1.3 Graph Submodule

Constructing the Knowledge Graph

Alongside the feature representations of the detected objects, the actual pre-
diction labels of the detected objects are also extracted from Faster R-CNN. These
prediction labels are utilized within the KG pruning and also serve as a first step in
transforming an image into a set of symbols.

For the collection of visual symbols, 4 image classifiers are utilized that are pre-
trained on the following datasets:

• ImageNet for information about objects

• Places365 for information about places

• LVIS for information on objects and parts of objects

• Visual Genome for visual relations between objects

Thus, a visual symbol within the KRISP approach can be understood as a vector
with 4 elements that contains probabilities returned from 4 image classifiers that
represent the probability of an object being in the given image. Furthermore, an
additional classifier is added at the beginning of the vector, indicating if a concept
is referenced in the question or not. This classifier is simply a binary value of 0 or 1
and is acquired during preprocessing steps.

The Knowledge Graph is constructed by extracting and processing excerpts from:

• ConceptNet [SCH18], a multilingual KG with a focus on commonsense facts.

• DBPedia [ABK+07] a multilingual KG with factual information that was ex-
tracted from Wikipedia and thus covers a variety of domains and concepts.

41

• VisualGenome [KZG+16] KG in the form of Semantic Graphs.

• hasPart KB [BRTC20] that focuses on part relationships between objects.

One first approach to combining these sources within one KG would be to sim-
ply combine all knowledge triples in a unifying manner. This approach would,
however, be very limited, not only because of the problem of scale (it would result
in a graph with millions of nodes and edges), but also because of the problem of
noise (the most symbols within the KG would not have any relevance to the im-
age/question pairs). Hence, the KRISP approach follows a pruning strategy of lim-
iting the construction of the KG to elements that are more likely to be utilized in
producing an answer prediction.

The KG is constructed within KRISP based on the following pre-processing steps:

1. Collect all symbolic concepts from the OK-VQA dataset based on the ques-
tions, the possible prediction labels from object detection algorithms (see
above).

2. Include only edges in the construction of the KG that correspond to nodes that
include the symbolic concepts.

The resulting KG has 7643 nodes and 35039 edges and is basically a graph consist-
ing of the symbolic concepts extracted from the dataset and their 1-hop neighbors.
The details of the selection of the excerpts and on the unification of the excerpts
within one KG can be found in the supplementary material of [MCP+21]. The prob-
lem of incompleteness that influences this approach is discussed in the future work
section. Other methods of constructing the KG could be explored but are left for
future work since the focus of this thesis is on the latter part of the KG construction:
The construction of node features.

The preprocessed KG described here was made publicly available by the authors
of the KRISP paper and will be built upon within the experiments of this project. It
serves as the backbone of the input of the GNN-based graph module within KRISP
that is used to incorporate the knowledge from the KG.

Preparation of the GNN Input Data

Before passing the KG to a GNN, the representation of each node is built as a
433d vector with the following elements:

1. Element 0: A binary 0/1 value that indicates whether the concept appears in
the question or not.

2. Elements 1-4: probabilities between 0 and 1 from each of the 4 classifiers indi-
cating if a concept is in the image and how high the probability of its detection
is.

42

3. Elements 5-304: A 300d GloVe representation of the concept label.

4. Elements 305-432: zimplicit from the VisualBERT submodule, compressed to
128 elements.

Figure 8: Node feature construction within the KRISP approach (resulting in a 7643
× 433 matrix)

During the pre-processing step, the KG representation is constructed with a
vector of 305d which is added to each node, where the first five elements cor-
respond to (1) and (2) and are zeroed out at the beginning. Additionally, the
300d GloVe representation (3) is added to every node. During the actual training,
information about the nodes related to the specific question/image pair is gathered
from preprocessed data, specifically information regarding (1) and (2). In this way,
the nodes are “activated” to indicate the relevant nodes within the KG for further
processing, while all other nodes are zeroed-out within (1) and (2) while the GloVe
representation remains. Finally, (4) is concatenated as a version of zimplicit, which
was compressed from 768d to 128d by passing it through a linear transformation
layer and a subsequent ReLU activation for efficiency reasons. The resulting matrix
is visualized in 8.

Predicting Answers

In summary, the architecture presented above describes two submodules that
return the output zimplicit from the VisualBERT submodule and the output zsymbolic

from the GNN-based submodule.
The implicit answer prediction yimplicit is calculated in a final prediction layer by:

yimplicit = σ
(
Wzimplicit + b

)
(11)

, where σ is the sigmoid activation function. This layer is a simple linear projection
of zimplicit onto a vector of size vi, to predict an answer based on a set vocabulary of
answers V ∈ Rvi.

43

The amount of possible answers, vi, is determined by pre-processing steps.
Within the KRISP approach, each candidate for an answer is first extracted from
the OK-VQA dataset. Next, an element is added to the set of answers if it is present
at least 10 times in the overall dataset. Following this method, the final set of possi-
ble answer candidates contains 2,250 elements. This also determines vg, the number
of possible answer nodes in the constructed KG: If a collected answer also corre-
sponds to a node in the KG, it is included in the graph answer set, which totals
1,746 elements.

As for the symbolic answer prediction, zsymbolic
i represents the nodes of the input

KG with the corresponding and updated node features, where each i corresponds
to a node in the KG. The predictions ysymbolic

i based on the answers V ∈ Rvg are
calculated as follows:

ysymbolic
i = σ

((
W szsymbolic

i + bs
)T (

W zzimplicit + bz
))

(12)

Here, the matrix representing the hidden state of zsymbolic is multiplied by the
vector representing the hidden state zimplicit, followed by a sigmoid activation, out-
putting normalized prediction values between 0 and 1. Finally, both prediction vec-
tors yimplicit and ysymbolic are concatenated and the highest scored elements are cho-
sen by index, which corresponds to the textual labels given in the sets of the two
sets of answers. During the actual training, yimplicit and ysymbolic are optimized sep-
arately by utilizing the binary cross entropy loss function.

4.1.4 Configurating the KRISP Architecture

KRISP-GCN, the model that was chosen as the baseline within this thesis, is a con-
figuration of the general KRISP approach. There are several other configurations
possible in regard to the architecture of the GNN-submodule. The architecture
chosen for the final KRISP model in the original paper [MCP+21] was based on a
Relational Graph Convolution Network (RGCN). Unlike GCN and GAT, the Rela-
tional Graph Convolution Network (RGCN) takes different edge types into account.
Hence, RGCN can handle heterogeneous KGs as opposed to GCN and GAT, which
omit the information on edge types and thus treat the constructed graph as a ho-
mogeneous graph. While a comparable counterpart to RGCN, the Relational Graph
Attention Network (RGAT) exists, the GCN variant was chosen as the baseline, al-
though the RGCN variant was the final architecture in the original paper and scored
1,73 % higher than the GCN architecture, which was also briefly evaluated in the
supplemental material in the original paper.

The reason for this choice is the question of scope: One goal of this thesis is to im-
prove a baseline model by utilizing an attention-based counterpart. So it is not nec-
essary to choose the best performing configuration, since the same principle could
be applied to a related update. As stated in the evaluation of RGAT in [BSCH19], the
results indicate that RGAT also outperforms its counterpart (although marginally, as

44

also stated in the paper). However, this comes with higher hardware requirements,
which were beyond the restraints of this thesis project. For future work, different
attention-based types of GNN-architectures could be evaluated within this context,
which also include other types than GAT and RGAT, such as the Heterogeneous
Attention Network (HAN) architecture.

4.2 Proposed Updates to the KRISP-GCN Baseline Model

4.2.1 KRISP-GAT: Replacing GCN with GAT

The first update to the KRISP-GCN baseline model focuses on the utilized architec-
ture within the GNN submodule: The GCN-based network is replaced with GAT.
One reason for this update is the expectation that the performance of the model
could improve, since GAT often performs better than GCN, as concluded in research
papers like [PMS20]. The other reason for this choice is the attention mechanism
within GAT which enables the model to return attention scores.

This update focuses on the GNN architecture, while the other two proposed up-
dates focus on the construction of node representations.

4.2.2 KRISP-GAT-VF: Augmenting the MMKG With Visual Features

Within the KRISP approach, the vector representing each node’s features has 5 clas-
sifier elements representing the visual content of the image, 300 elements represent-
ing the GloVe embedding of the textual label of the node, and 128 elements that
represent the output of the VisualBERT module. Although the GloVe vector is the
largest chunk of each node vector, the evaluations in the KRISP paper [MCP+21]
indicate that its influence is rather small: Its ablation results in a drop in accuracy of
only 0.36 %, as evaluated in the KRISP paper.

On the other hand, the representation of the visual content is represented by only
five elements that do not contain any visual features, but probabilities regarding
whether a concept is present in the image or in the question.

The Faster R-CNN object detector utilizes the region surrounding a detected ob-
ject, marked by a bounding box around it. This cut-out of the image is further pro-
cessed within the algorithm and is compressed to a 2048d feature vector in the pro-
cess. This vector is the same vector fo that represents a visual embedding and is
utilized within the VisualBERT submodule, where it is further compressed to 768d.

As a second update and as visualized in 10, the augmentation of the input vec-
tors of the nodes by this compressed vector is proposed within the KRISP-GAT-VF
update. In this way, the initial node representations are enriched by the actual rep-
resentation of a visual concept in the image.

45

Figure 9: The KRISP-GAT-VF update: Augmenting node representations with vi-
sual features.

Figure 10: Node feature construction within the proposed KRISP-GAT-VF update
(resulting in a 7643 × 1201 matrix)

4.2.3 KRISP-GAT-MS: Splitting the Augmented MMKG Into Two
Modal-Specific KGs

Inspired by [ZYW+20] and [JM23], the augmented MMKG from the proposed
KRISP-GAT-VF update is split into two modal-specific KGs. While the model archi-
tecture remains unchanged from the first update, it is augmented by an additional
GNN-based submodule as seen in Fig. 11. The input data is now processed by three
separate submodules:

1. The VisualBERT submodule, which remains unchanged.

2. The GNN-submodule for textual information, which constructs the same
GloVe-based node features as in KRISP-GCN.

3. The GNN-submodule for visual information, which removes the GloVe fea-
tures and adds the region-based visual features from the proposed KRISP-

46

GAT-VF update to each node

Figure 11: The KRISP-GAT-MS update: Splitting the augmented MMKG into two
modal-specific KGs and handling them in separate submodules.

4.3 Evaluation Strategy

4.3.1 Quantitative Evaluation and Metrics

The general strategy for evaluating the baseline model and its updates utilizes
ablation studies. Ablation studies are a common method of evaluation within
the research of NN-based approaches and focus on considering the causality of a
model, which usually consists of several components. Ablation studies follow the
idea that if a specific component is removed or replaced, the behavior of the model
changes; normally expected for the worse. After the change, the overall model
can be evaluated (for example on a benchmark dataset such as OK-VQA), and the
results of different ablations can be compared between each other. This strategy
is also applied within the evaluation of this thesis, since the goal here is already
centered on working on and replacing specific parts of a baseline model. Therefore,
the baseline model and the proposed updates are evaluated after different ablations
on OK-VQA by measuring the overall accuracy on this benchmark. The actual
ablations are described in the “Experiments or Quantitative Evaluation” section.

Accuracy on OK-VQA

A way of calculating accuracy within the VQA task was introduced within
the family of VQA datasets. It became a standard within VQA evaluations in
general, and is also suggested by the OK-VQA paper [MRFM19]. In the VQA

47

dataset, every question/image pair is accompanied by 10 answer annotations
provided by humans, while in OK-VQA only 5 are given. To make this metric
applicable to OK-VQA, every annotation is used twice within the dataset, resulting
in 10 possible answers per question/image pair. The metric is calculated as follows
(based on [GKS+17]):

Accuracy(ans) = min

(
humanans · ans

3
, 1

)
(13)

, where humanans ∈ N0 is the amount of humans who provided the same answer
within the annotation, as the given ans.

4.3.2 Case Study: Qualitative Evaluation of Examples

As discussed in Section 3.4, to the best of my knowledge, there is currently no
model-based framework to evaluate the enhancement of the interpretability of a
model in a quantitative manner. Therefore, a case study of some qualitative predic-
tion examples is conducted within this thesis to explore how and if the interpretabil-
ity of the proposed updates to the baseline model was enhanced.

One subgoal of this thesis project was to build a demo application that returns in-
formation about the calculation of a prediction of a model, such as prediction prob-
abilities and attention scores. This application is utilized within the case studies.
Additionally, the objective of the case studies is to suggest what could be done with
the returned information in terms of quantitative evaluations when conducted sys-
tematically and how the returned attention scores could actually be interpreted.

48

5 Experiments for Quantitative Evaluation

5.1 Experimental Setup and Training Details

In the following, the hyperparameters for the experimental training runs are doc-
umented, which are partially influenced by or taken over from the original KRISP
paper [MCP+21]. For example, Table 1 collects the hyperparameters for the Visual-
BERT submodule, which was not updated within this thesis. Therefore, the hyper-
parameters remain unchanged and are included here for reference.

Parameter Value
Hidden Size 768
Visual Embedding Dim 2048
Num Hidden 12
Num Attention Heads 12
Hidden Dropout Prob 0.1
Transfer function ReLU
BERT model name bert-base-uncased

Table 1: Hyperparameters of VisualBERT submodule [MCP+21]

The Table 2 collects the hyperparameters for the GNN-based submodules. The
hidden size of the nodes refers to the size of the output vector that represents each
node after being processed by a GNN submodule, which therefore is represented
by a matrix of size b × 7643 × 128, where b is the batch size and 7643 is the number
of nodes in the utilized KG. The last two entries document the compression dimen-
sions of the output of the VisualBERT module, which is compressed from 768d to
128d, and the compression of the visual features extracted by Faster R-CNN from
2048d to 128d.

Parameter Value
Node Hidden Size 128
GNN Layers 2
GNN Type GCN / GAT
GAT attention heads 8
Activation function ReLU
VisualBERT input compress dim 128
Visual Features compress dim 768

Table 2: Hyperparameters for the GNN-based submodules (built upon [MCP+21])

Table 3 shows the general training parameters. A batch size of 20 was chosen to
ensure better comparison, since different architecture that were utilized have also
different hardware requirements. For example, GAT requires significantly more
memory (one of the reasons being the utilization of 8 attention heads, so all compu-

49

tations take place 8 times in parallel). For this reason, the batch size was determined
by the model with the highest requirements and was used for all other architectures
as well. The warm-up steps refer to the incrementation of the learning over a certain
number of steps. This is done to weaken the influence of the first epochs, since in the
beginning of each training run the weights of the model are initialized with random
values. Therefore, the first training steps usually should have a lesser influence,
until actual representation patterns start to emerge.

Parameter Value
Optimizer Adam
Batch Size 20
Learning Rate 5e− 5
Epsilon 1e− 8
Warmup Steps 1500
Epochs 100

Table 3: Training Hyperparameters

The KRISP model and its implementation were published within the MMF frame-
work by Facebook3. For the implementation of this thesis, some parts of the pre-
processed data like the utilized KG, as well as some parts of the original code, were
extracted to be built upon. The training of each configuration was conducted on ma-
chines with an NVIDIA A6000 48 GB GPU to ensure the comparison of the models.
Since there are several randomized factors [Vas19] that could influence the outcome
during the training of a model (such as the random batching of multiple samples
per training step), each configuration was trained in three separate runs.

5.2 Presentation and Discussion of Results

5.2.1 Comparison of Accuracy on the OK-VQA Benchmark

Table 4 displays the results of the baseline evaluation and the evaluation of its up-
dates, where the label KRISP-GAT corresponds to the results of the first update, the
label KRISP-GAT-VF to the second, and KRISP-GAT-MS to the third update. For a
better comparison, the two latter updates were also trained with the GCN architec-
ture from the baseline.

The results indicate that the goal of maintaining the level of accuracy while in-
creasing the interpretability has been reached in regard to the first update. Here,
switching out the GCN architecture with an architecture that includes attention
scores did lead to an increase in accuracy. However, the results also indicate, that
both proposed updates on the KG construction did not improve the results. Con-
sidering the third update, it can be said that utilizing two GNN submodules with
modal-specific data as was done within this thesis does not improve the results in

3https://github.com/facebookresearch/mmf.git, accessed: 07.08.2023

50

Model Run 1 Run 2 Run 3 mean std
KRISP-GCN 0.3095 0.3159 0.3126 0.3127 0.0032
KRISP-GCN-VF** 0.3272 0.3189 0.3214 0.3225 0.0043
KRISP-GCN-MS** 0.2950 0.3041 0.3003 0.2998 0.0046
KRISP-GAT* 0.3167 0.3222 0.3205 0.3198 0.0028
KRISP-GAT-VF* 0.3097 0.3132 0.3112 0.3114 0.0018
KRISP-GAT-MS* 0.3146 0.3142 0.3111 0.3133 0.0019

Table 4: Level of Accuracy on the OK-VQA benchmark, where * indicates updates
proposed in this thesis that are also evaluated in the ablation study. ** in-
dicates the proposed updates in combination with a GCN architecture that
were included for comparison.

any case. KRISP-GAT-MS has a worse accuracy than KRISP-GAT from the first up-
date, and the update also performs worse when combined with the GCN architec-
ture. The results can be interpreted as showing that the update is not fruitful in
general, since it follows the behavior of GCN performing worse than GAT in this
regard. However, this cannot be indicated for the second update. In fact, the KRISP-
GCN-VF model turns out to be the best scoring model that was built with an update
proposed in this thesis, which also performs worse when utilizing the GAT archi-
tecture. This unexpected result will be further investigated within the case studies.

5.2.2 Ablation Study

The Table 5 displays the results of the ablation study. Experiments 1-10 consider
different construction strategies of input data, and Experiments 11-13 consider the
ablation of complete submodules.

Experiment 1 is equivalent to KRISP-GAT-VF from Table 4, while Experiment 2
is equivalent to KRISP-GAT from Table 4 and KRISP-GAT-MS without the visual
graph.

When comparing the results of the ablation study, it is noticeable that omitting
the VisualBERT submodule leads to a large performance drop (Experiments 12 and
13). On the other hand, the VisualBERT submodule reaches an accuracy score of
0.2836 when utilized by itself without a single GNN-based submodule (Experiment
11). Including GNN-based submodules leads to a further increase in accuracy of
up to 0,0386 points, but the ablation study can be understood as an indication that
with regard to performance, the most important part of the overall architecture is
the VisualBERT submodule.

It can also be stated that the selection of utilized features seems to actually matter,
and it can not be concluded that the accuracy simply gets better, the more elements
the vector representation is composed of: Including visual features as in Experiment
1 seems to make the performance worse, whereas the selection in Experiment 2 leads

51

Experiment Components Accuracy
1 CLASS+GloVE+VBERT+VF 0.3132
2 CLASS+GloVE+VBERT 0.3222
3 CLASS+GloVE+VF 0.3090
4 CLASS+GloVe 0.3192
5 CLASS+VBERT 0.3125
6 CLASS+VF 0.2955
7 CLASS 0.3028
8 VF 0.2857
9 VBERT 0.2982

10 GloVe 0.2989
11 VBERT, w/o GNN submodules 0.2836
12 CLASS+GloVE+VF, w/o VisualBERT submodule 0.1107
13 CLASS, w/o VisualBERT submodule 0.0826

Table 5: Result of the ablation study, where CLASS are the 5 classification values,
GloVe refers to the textual embedding, VBERT to the VisualBERT output
and VF to the visual features augmentation.

to the best results. This is also indicated by Experiments 7, 8, 9 and 10. The short-
est representation is evaluated in Experiment 7 where only a short vector with the
five classifiers is utilized to represent a node. Perhaps surprisingly, this leads to the
best result within the ablation studies that consider the separate parts of node fea-
tures, although the other four configurations consist of (in part significantly) longer
representations.

52

6 Experiments for Qualitative Evaluation

6.1 Case Studies: Qualitative Analysis of Examples

The focus within these case studies is on an interpretation of how the KRISP-GAT
and the KRISP-GAT-VF updates, which are proposed within this thesis, differ. The
KRISP-GAT-MS is not further investigated, since it did not achieve the objective of
holding the accuracy while increasing the interpretability.

In the context of this thesis, a demo application was built that selects a random
example from the OK-VQA dataset and returns predictions regarding the answer,
as well as attention scores. These scores are utilized within the demo application as
follows:

1. Collect the attention scores aij from Eq. 8 from the model during an inference
step.

2. Calculate line width linewidth with linewidth = s · aij , where s is the scaling
factor. s is merely an enhancing of visualization, since the attention scores are
normalized values between 0 and 1.

3. Pass the computed linewidth values to the graph visualization routing that uti-
lizes the library Pyvis 4.

Furthermore, the attention scores aij are used to compare path results of different
models:

1. For every activated node, the shortest path between this node and the target
node is computed utilizing the Dijkstra algorithm (provided within the Net-
workX5 package).

2. Since the shortest paths are the same, but the attention scores differ depending
on the utilized model, they can be compared, e.g. by summing the scores along
the paths.

The following case studies are performed by considering results from this demo
application.

6.1.1 Case 1: Right Answer in GAT and GCN

The utilization of GAT was motivated by the ability of utilizing attention scores for
the interpretability of a model. One common approach that is often mentioned in
the literature is the visualization of the attention scores. As a first case study, we will
consider the example that was introduced in the Section 2.3 and can be seen in Fig.
12

4Pyvis, Source: https://github.com/WestHealth/pyvis
5https://networkx.org/, accessed: 04.08.2023

53

Figure 12: Question ID 5635255: What fruit is this beverage made of?

1 2 3 4 5
Overall GCN grape, 0.9999 grape, 0.9992 purple, 0.0049 green, 0.0034 apple, 0.0030
Overall GAT grape, 0.9168 grape, 0.2772 wine, 0.2051 bottle, 0.1187 italy, 0.1165
VisualBERT in GCN grape, 0.9993 wine, 0.0024 vitamin c, 0.0.0019 navy, 00.0016 broccoli,0.0010
VisualBERT in GAT grape, 0.9168 wine, 0.0207 glass, 0.0192 cherry, 0.0169 lime, 0.0113
GNN in GCN grape, 0.9999 purple, 0.0049 green, 0.0034 apple, 0.0030 jean, 0.0025
GNN in GAT grape, 0.2772 wine, 0.2051 bottle, 0.1187 italy, 0.1165 orange, 0.0429
Target grape

Table 6: Top 5 predictions returned by the model and its VisualBERT and GNN sub-
modules.

In Table 6, we can see that the resulting predictions for both, the GCN and the GAT
architecture, correspond to the correct target answer with high confidence scores.
When considering the results of GCN, the prediction values are the only information
that can be interpreted with regard to the computation of the results. For example,
we can see that in this particular case, the confidence of the prediction is so high that
the next scored prediction is only at 0.0049. This seems to indicate a difference to the
calculation within the GAT architecture, where the other probable answers within
the top 5 results are all above 0.1. Also, the VisualBERT representation within the
node vectors seems to have a weaker influence on GAT than GCN, since the results
from the GAT submodule are more present in the overall scores.

Although the information about the final predictions can already be somewhat
interpreted in regard to how it came to be, this is all the information we have in
the case of GCN. With GAT, attentions scores can be considered for further inter-
pretability. The difference can be visualized as in Fig. 13: Since we are working
with a KG, we can consider the final target node and its relations to its neighbors to
interpret the result. With GCN, we could speculate that the most important relation
for the result follows the intuition that we are looking for a knowledge triple with
“wine” as the head and “grape” as the tail, but we do not know for sure. With GAT,

54

we can incorporate the attentions scores into the visualization of the edges and see
that, in fact, “wine” is considered the most important neighbor by the GAT module.

Figure 13: Visualizing GCN and GAT predictions.

Path Attention Score
wine – grape 0.8012
water – grape 0.0496
melon – grape 0.0403

chardonnay – grape 0.0154
plant – grape 0.0147

Table 7: Attention scores for the top 5 neighbors of the target node.

While visualizing the attention scores of a node prediction can help to understand
a model, this example also illustrates one shortcoming. In this case, the actual pre-
diction can be clearly seen, while the distribution of the other scores seems to be
somewhat uniform. As can be seen in Table 7, there actually is a gradation within
the next values. This shortcoming can be problematic, especially in cases when the
distribution is not so clear-cut towards the highest-scored value. For this reason,
the next case studies will focus on utilizing the actual attention scores, instead of
visualizing strategies.

6.1.2 Case 2: Right Answer in GAT, Wrong Answer in GAT-VF

In addition to visualizing the attention scores from a GAT model, there is also the
possibility to work with the actual values returned by the model. This option is
explored in the next case studies.

As described in the ablation study, it is somewhat surprising that, although GAT
generally performs better than GCN, the performance drops if visual features are

55

1 2 3 4 5
Overall GAT microwave, 0.5168 microwave, 0.4029 dishwasher, 0.3550 oven, 0.3075 dryer, 0.2442
Overall GAT-VF stove, 0.7556 oven, 0.5759 stove, 0.5620 oven, 0.3097 dishwasher, 0.0322
VisualBERT in GAT microwave, 0.5168 dishwasher, 0.3550 oven, 0.3075 dryer, 0.2442 blender, 0.1609
VisualBERT in GAT-VF oven, 0.5759 stove, 0.5620 dishwasher, 0.0322 dish, 0.0301 blender, 0.0066
GNN in GAT microwave, 0.4029 convection, 0.2415 wireless, 0.2312 toaster, 0.1870 stove, 0.0901
GNN in GAT-VF stove, 0.7556 oven, 0.3097 refrigerator, 0.0156 dishwasher, 0.0098 pan, 0.0084
Target microwave

Table 8: Top 5 predictions returned by the model and its VisualBERT and GNN sub-
modules.

utilized as within the KRISP-GAT-VF update proposed in this thesis. This case study
is an attempt to investigate whether and what attention scores can tell us about the
computation of a prediction regarding the example in Fig. 14 that yields a correct
result in KRISP-GAT, but a wrong one when utilizing visual features.

Figure 14: Question ID 4295985: What common appliance is missing from this
kitchen?

Taking into account the results in Table 8, we can see that every submodule in the
KRISP-GAT-VF variant yields a wrong prediction, while its counterpart consistently
returns the right one. Furthermore, although “dishwasher” is also a possible target
answer within the dataset, its prediction score is less than 0.05 in all cases, so it is
not considered a predicted answer. This indicates that adding visual features leads
to the failure of the model in terms of predicting the right answer.

As described in the introduction of this section, one way to compare the resulting
attention scores could be to sum the scores over the paths between the activated
nodes and the target. One first intuition could be that the sum of all of these sums
should be larger in the GAT-only case. At least within this case, this intuition holds:
Summing up all 33 paths (not only the top 12 from Table 9) result in 4.3256 for
KRISP-GAT and 1.0339 for KRISP-GAT-VF.

56

GAT: Path GAT: Sum GAT-VF: Path GAT-VF: Sum
knobs – stove – kitchen – microwave 0.5809 appliance – microwave 0.1532
stove – kitchen – microwave 0.5793 knobs – stove – kitchen – microwave 0.1439
wooden – house – kitchen – microwave 0.4565 stove – kitchen – microwave 0.1437
appliance – microwave 0.4355 small – mouse – kitchen – microwave 0.1153
bottle – counter – microwave 0.2993 wooden – house – kitchen – microwave 0.0741
wall – shelf – microwave 0.2684 bottle – counter – microwave 0.0726
small – mouse – kitchen – microwave 0.2232 cabinet – kitchen – microwave 0.0422
counter – microwave 0.2226 brown – eye – potato – microwave 0.0380
fire extinguisher – house – kitchen – microwave 0.2045 fire extinguisher – house – kitchen – microwave 0.0373
framed – book – kitchen – microwave 0.1579 refrigerator – kitchen – microwave 0.0359
sink – kitchen – microwave 0.0962 hinge – door – band – microwave 0.0355
stainless steel – iron – potato – microwave 0.0861 counter – microwave 0.0330

Table 9: Top 12 activated nodes out of 33 with corresponding aggregated sums of
attention scores between an activated node and the target node, rounded
up to four decimal places.

6.1.3 Case 3: Wrong Answers in GAT and GAT-VF

Inspired by the field of Inconsistency Measurement, the goal of the last case study is
to explore the possibility of utilizing attention scores to quantify the wrongness of a
prediction by investigating the example in Fig. 15.

Figure 15: Question ID 1844855: Which country are these souvenirs from?

As seen in Table 10, both models that were proposed within this thesis yield
wrong results. In both cases, the target “germany” is not only not predicted, it is
also not present in the top 5 predictions (and actually also not in the top 15).

In both cases, the predicted result is wrong across all submodules. It is, however,
notable that the top scoring predictions are countries. In fact, the predicted nodes
and the target node are 1-hop neighbors of the node “country” in our KG. Even
without utilizing attention scores, this opens up the strategy of counting the hops

57

1 2 3 4 5
Overall GAT usa, 0.3675 walmart, 0.2221 macintosh, 0.1849 williams, 0.1800 scotland, 0.1593
Overall GAT-VF england, 0.8848 china, 0.8597 china, 0.67169 europe, 0.5159 england, 0.3935
VisualBERT in GAT england, 0.105 disney, 0.0780 theodore roosevelt, 0.0764 japan, 0.0659 roosevelt, 0.0621
VisualBERT in GAT-VF england, 0.8848 china, 0.6716 france, 0.2238 africa, 0.1817 india, 0.0525
GNN in GAT usa, 0.3675 walmart, 0.2220 macintosh, 0.1849 williams, 0.1800 scotland, 0.1593
GNN in GAT-VF china, 0.8598 europe, 0.5159 england, 0.3935 united kingdom, 0.3213 great britain, 0.313667
Target germany

Table 10: Top 5 predictions returned by the model and its VisualBERT and GNN
submodules.

between the predictions and the targets based on the KG to get a quantification of
how far away a prediction is from a target.

An additional strategy could be to also incorporate the attention scores in the
paths between the activated nodes and the targets. In this case, the sum in KRISP-
GAT results in 1.4063, while the sum in KRISP-GAT-VF results in 0.7445. This could
also support the thesis that this sum can be seen as an indicator that a result is more
wrong than a prediction by another model, where a higher scored value could be
closer to the target prediction.

GAT: Path GAT: Sum GAT-VF: Path GAT-VF: Sum
playroom – ball – street – germany 0.7595 book – city – germany 0.1565
book – city – germany 0.1288 playroom – ball – street – germany 0.1006
wooden – house – cat – germany 0.1096 bottle – grocery store – potato – germany 0.0901
ear – cat – germany 0.0814 teddy bear – nose – cat – germany 0.0846
teddy bear – nose – cat – germany 0.0502 teddy – hair – cat – germany 0.0633
country – germany 0.0476 wooden – house – cat – germany 0.0397
toothbrush – mouth – cat – germany 0.0377 toothbrush – mouth – cat – germany 0.0393
bottle – grocery store – potato – germany 0.0367 country – germany 0.0355
nose – cat – germany 0.0361 ear – cat – germany 0.0320
teddy – hair – cat – germany 0.0326 nose – cat – germany 0.0296
head – cat – germany 0.0312 brown – eye – potato – germany 0.0274
brown – eye – potato – germany 0.0296 head – cat – germany 0.0157

Table 11: Top 12 activated nodes out of 33 with corresponding aggregated sums of
attention scores between an activated node and the target node, rounded
up to four decimal places.

Both measures can be computed for all wrong answers on a dataset and thus
could be utilized as another metric for the evaluation of a model, in addition to
accuracy.

58

7 Conclusion

7.1 Summary and Discussion of Results

The results within the quantitative evaluation indicate that it is in fact possible to im-
prove the accuracy and the interpretability of a model simultaneously by utilizing
an attention-based GNN architecture, like in the case of replacing a GCN architec-
ture with the GAT architecture. . The findings suggest that this is not a universal
occurrence in all situations. This was especially surprising in regard to the second
proposed update of this thesis, the augmentation of the constructed node features
with visual features representing the detected object within an image. While this
update did lead to a comparably large improvement when used together with a
GCN architecture, it failed to do so when utilized together with GAT. The results
also seem to indicate that splitting the utilized KG into modal-specific KGs does not
improve the outcome; at least not in the way it was done within this thesis. Other
strategies could be investigated and evaluated in future work. One strategy could
be to not use both modal-specific submodules simultaneously, but to develop an al-
gorithm to determine which modal-specific information might be better suited for
different situations.

The second part of the quantitative evaluation focused on an ablation study. One
takeaway from the study is an indicator for the general behavior of KRISP-based
models: The VisualBERT submodule has the most influence on the accuracy, since
without it the accuracy significantly drops when this submodule is ablated. How-
ever, while GNN-based submodules do not perform well by themselves, the results
indicate that they improve an overall model when utilized alongside VisualBERT.
Another takeaway from the ablation study is that it actually does seem to matter
which features are utilized within node representations. Another outcome could
have been that the accuracy simply gets better, if a vector representation consists of
more elements and therefore has more learnable parameters.

The purpose of the case studies was to investigate how attention scores actually
increase the interpretability of a model. One first approach was to visualize an an-
swer node and its neighbors, while weighting the edges between these nodes ac-
cording to the attention scores. This type of visualization seems to help to inter-
pret how a prediction probability was calculated. When considering the same node
structure with GCN, there might be an intuition of which neighbors might have
been considered the most important ones for the result. With the GAT architecture, it
seems to be possible to know for sure. However, the biggest takeaway from the case
studies is that attention scores could make models comparable beyond prediction
probabilities, and thus open up new ways of evaluating the models. This remains
to be investigated systematically in future work, but some first pointers could be
concluded from the case studies. The main idea here was that attention scores could
be used to investigate how wrong a model is compared to a model with correct pre-
dictions; or compared with another model with wrong ones to evaluate which of
the models actually could come closer to a correct result.

59

7.2 Future Work

The following directions towards possible future work can be derived from this
thesis:

1. The dominant metric for benchmarks on the OK-VQA is accuracy. For fu-
ture work that utilizes KGs, it could be considered to move away from the bi-
nary view of the wrong and right answers and toward a quantification of the
wrongness of the answers, similar to the field of Inconsistency Measurement
[UTB20]. This could be achieved, for example, by counting hops between the
target and the predicted answer nodes, to quantify how far away an answer
is. If additionally models based on the attention mechanism are utilized, the
attention score across these paths could also be taken into account.

2. Establishing a framework for Interpretability Measurement of model predic-
tions by GNN-based (or NN-based in general) architectures could help the
research on the interpretability of GNN-based models. Currently, to the best
of my knowledge, no such framework is available. Interpretability is already
commonly referred to as a degree, so it seems fitting to actually quantify inter-
pretability to compare it between proposed model architectures.

3. The enhanced interpretability of the baseline model was achieved by utilizing
the GAT architecture within this thesis. This is only one approach to utilize
an attention-based GNN architecture; other possibilities such as the RGAT or
the HAN architecture also exist. For the exploration and comparison of those
architectures, a framework for a quantified interpretability degree could be
especially fruitful.

4. Since the first popular GNN approach proposed in [KW16], it was docu-
mented that GNNs tend to over-smooth after only two layers of processing
the input data, so the node features become indistinguishable. This challenge
persists to this day, but there are approaches to conquering this challenge that,
for example, are currently discussed in [SSYR23]. So another pointer could be
the exploration of newer GNN architectures within the OK-VQA task.

5. The interpretability approach of this thesis centers on the attention mecha-
nism, which is also utilized in the transformer-based VisualBERT submodule
that serves as the source of implicit knowledge. Some approaches to improve
the interpretability based on attention within transformer-based models like
[YCW+23] were proposed in the literature and could be further explored in
future work. An additional challenge that would have to be addressed here is
the handling of visual features instead of textual features only.

6. One direction to generally improve the accuracy of an approach that utilizes
KGs is to focus on how this KG is constructed. In KRISP, the KG is built by
extracting symbols from the dataset and collecting their direct neighbors. This

60

approach can be attributed to the necessity of pruning publicly available KGs
for the purpose of cutting some irrelevant information and also to enable the
processing of the resulting KGs on current GPUs. The resulting KG from the
KRISP approach thus consists of 7643 nodes, 1746 of which are answer nodes.
This poses a challenge, because even the VisualBERT submodule has more
answers to work with, since here the answer vocabulary consists of 2250 an-
swers that are collected from the dataset in case an answer is at least 10 times
given in the overall collection. Approaches such as [JM23] address the in-
completeness of knowledge sources by constructing graphs from additional
sources, including language models. This direction of research could also be
promising for OK-VQA approaches that especially consider interpretability,
since constructed graphs based on information from language models are at
least interpretable as an intermediate step.

7.3 Outlook

In general, the utilization of KGs within OK-VQA can be categorized as a promising
approach, not only in regard to research on better performing models, but also in
regard to models returning interpretable information on their calculation process.
This opens up possibilities for further research on how these models work exactly
in detail. Given a KG as a form of structured symbolic knowledge and a GNN ar-
chitecture that returns attention scores, it can be accomplished to utilize both factors
for interpreting the inner workings of a model.

The motivation section of this thesis began as an argument for the combination of
CV-based and NLP-based approaches. While approaches that focus on transform-
ing VQA problems to NLP-based problems deliver good results, the results of this
thesis indicate that the utilization of visual features should not be completely ne-
glected. Although the specific finding that KRISP-GCN performs better with the
augmentation of visual features was more of a byproduct of this thesis, since the
main focus was actually on utilizing this update together with an attention-based
architecture.

Overall, this thesis underscores the promising research on interpreting attention
scores in GNN-based approaches. Attention scores can be utilized not only in the
interpretation of a correct prediction of a model, but perhaps also for the formulation
of additional metrics besides accuracy. Especially within GNNs, this could lead to
new measurements of how wrong a model actually is, since the attention scores can
be compared alongside specific paths within the utilized graphs. This opens up new
possibilities of comparing and interpreting the outcome of GNN based models.

61

References

[AAL+15] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell,
Dhruv Batra, C. Lawrence Zitnick, and Devi Parikh. VQA: Visual
Question Answering. In International Conference on Computer Vision
(ICCV), 2015.

[ABK+07] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard
Cyganiak, and Zachary Ives. Dbpedia: A nucleus for a web of open
data. In Karl Aberer, Key-Sun Choi, Natasha Noy, Dean Allemang,
Kyung-Il Lee, Lyndon Nixon, Jennifer Golbeck, Peter Mika, Diana
Maynard, Riichiro Mizoguchi, Guus Schreiber, and Philippe Cudré-
Mauroux, editors, The Semantic Web, pages 722–735, Berlin, Heidel-
berg, 2007. Springer Berlin Heidelberg.

[Ado73] Theodor W. Adorno. Philosophische Terminologie. Zur Einleitung. Band
1. Suhrkamp Verlag, Frankfurt am Main, 1973.

[AFJG16] Peter Anderson, Basura Fernando, Mark Johnson, and Stephen Gould.
Spice: Semantic propositional image caption evaluation. In ECCV,
2016.

[AQLZ23] Chirag Agarwal, Owen Queen, Himabindu Lakkaraju, and Marinka
Zitnik. Evaluating explainability for graph neural networks. Scientific
Data, 10(1):144, March 2023. Number: 1 Publisher: Nature Publishing
Group.

[BAY22] Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph
attention networks?, 2022.

[BCB16] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural ma-
chine translation by jointly learning to align and translate, 2016.

[BRTC20] Sumithra Bhakthavatsalam, Kyle Richardson, Niket Tandon, and Pe-
ter Clark. Do dogs have whiskers? a new knowledge base of haspart
relations, 2020.

[BSCH19] Dan Busbridge, Dane Sherburn, Pietro Cavallo, and Nils Y. Ham-
merla. Relational graph attention networks, 2019.

[CHC+22] Zhuo Chen, Yufeng Huang, Jiaoyan Chen, Yuxia Geng, Yin Fang,
Jeff Pan, Ningyu Zhang, and Wen Zhang. LaKo: Knowledge-driven
Visual Question Answering via Late Knowledge-to-Text Injection,
November 2022. arXiv:2207.12888 [cs].

[CPC19] Diogo V. Carvalho, Eduardo M. Pereira, and Jaime S. Cardoso. Ma-
chine learning interpretability: A survey on methods and metrics.
Electronics, 8(8), 2019.

63

[CWD+22] Chaoqi Chen, Yushuang Wu, Qiyuan Dai, Hong-Yu Zhou, Mutian Xu,
Sibei Yang, Xiaoguang Han, and Yizhou Yu. A Survey on Graph Neu-
ral Networks and Graph Transformers in Computer Vision: A Task-
Oriented Perspective, October 2022. arXiv:2209.13232 [cs].

[DCLT19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding. In Proceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers), pages 4171–4186,
Minneapolis, Minnesota, June 2019. Association for Computational
Linguistics.

[DMW+23] Lauren Nicole DeLong, Ramon Fernández Mir, Matthew Whyte,
Zonglin Ji, and Jacques D. Fleuriot. Neurosymbolic AI for Reason-
ing on Graph Structures: A Survey, February 2023. arXiv:2302.07200
[cs, stat].

[DYL+22] Yang Ding, Jing Yu, Bang Liu, Yue Hu, Mingxin Cui, and Qi Wu.
MuKEA: Multimodal Knowledge Extraction and Accumulation for
Knowledge-based Visual Question Answering. In 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages
5079–5088, New Orleans, LA, USA, June 2022. IEEE.

[EHOP22] Thomas Eiter, Nelson Higuera, Johannes Oetsch, and Michael Pritz.
A Neuro-Symbolic ASP Pipeline for Visual Question Answering, May
2022. arXiv:2205.07548 [cs].

[GDDM14] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich
feature hierarchies for accurate object detection and semantic segmen-
tation, October 2014. arXiv:1311.2524 [cs].

[Gir15] Ross Girshick. Fast R-CNN. pages 1440–1448, 2015.

[GKS+17] Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and
Devi Parikh. Making the V in VQA matter: Elevating the role of im-
age understanding in Visual Question Answering. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2017.

[GPT+22] Feng Gao, Qing Ping, Govind Thattai, Aishwarya Reganti, Ying Nian
Wu, and Prem Natarajan. A thousand words are worth more than a
picture: Natural language-centric outside-knowledge visual question
answering, 2022.

[GWH+22] Liangke Gui, Borui Wang, Qiuyuan Huang, Alexander Hauptmann,
Yonatan Bisk, and Jianfeng Gao. KAT: A knowledge augmented trans-
former for vision-and-language. In Proceedings of the 2022 Conference

64

of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 956–968, Seattle, United
States, July 2022. Association for Computational Linguistics.

[JHvdM+16] Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-
Fei, C. Lawrence Zitnick, and Ross Girshick. Clevr: A diagnostic
dataset for compositional language and elementary visual reasoning,
2016.

[JKFF16] Justin Johnson, Andrej Karpathy, and Li Fei-Fei. Densecap: Fully con-
volutional localization networks for dense captioning. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.

[JM23] Lei Jiang and Zuqiang Meng. Knowledge-based visual question an-
swering using multi-modal semantic graph. Electronics, 12(6), 2023.

[Jos20] Chaitanya Joshi. Transformers are graph neural networks. The Gradi-
ent, 2020.

[KW16] Thomas N. Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. CoRR, abs/1609.02907, 2016.

[KZG+16] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata,
Joshua Kravitz, Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A.
Shamma, Michael S. Bernstein, and Fei-Fei Li. Visual genome: Con-
necting language and vision using crowdsourced dense image anno-
tations, 2016.

[Lab23] Maxime Labonne. Hands-on graph neural networks using Python: practi-
cal techniques and architectures for building powerful graph and deep learn-
ing apps with PyTorch. Packt Publishing Ltd., Birmingham, UK, 2023.
OCLC: 1377285473.

[LS23] Maria Lymperaiou and Giorgos Stamou. A survey on knowledge-
enhanced multimodal learning, February 2023. arXiv:2211.12328 [cs].

[LYY+19a] Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, and Kai-Wei
Chang. Visualbert: A simple and performant baseline for vision and
language. CoRR, abs/1908.03557, 2019.

[LYY+19b] Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, and Kai-Wei
Chang. Visualbert: A simple and performant baseline for vision and
language, 2019.

[MCP+21] Kenneth Marino, Xinlei Chen, Devi Parikh, Abhinav Gupta, and Mar-
cus Rohrbach. KRISP: Integrating Implicit and Symbolic Knowledge

65

for Open-Domain Knowledge-Based VQA. In 2021 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pages 14106–
14116, Nashville, TN, USA, June 2021. IEEE.

[MRFM19] Kenneth Marino, Mohammad Rastegari, Ali Farhadi, and Roozbeh
Mottaghi. OK-VQA: A Visual Question Answering Benchmark Re-
quiring External Knowledge. pages 3195–3204, 2019.

[NZY21] Zhaoyang Niu, Guoqiang Zhong, and Hui Yu. A review on the atten-
tion mechanism of deep learning. Neurocomputing, 452:48–62, 2021.

[ON15] Keiron O’Shea and Ryan Nash. An Introduction to Convolutional
Neural Networks, December 2015. arXiv:1511.08458 [cs].

[Ots22] Jun Otsuka. Thinking About Statistics: The Philosophical Foundations.
Routledge, New York, 1 edition, November 2022.

[OWJ+22] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wain-
wright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina
Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke
Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Chris-
tiano, Jan Leike, and Ryan Lowe. Training language models to follow
instructions with human feedback, 2022.

[PMS20] Ankit Pal, Selvakumar Murugan, and Malaikannan Sankarasubbu.
Multi-label text classification using attention-based graph neural net-
work, 03 2020.

[PSM14] Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe:
Global vectors for word representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language Processing (EMNLP),
pages 1532–1543, Doha, Qatar, October 2014. Association for Compu-
tational Linguistics.

[RHGS15] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn:
Towards real-time object detection with region proposal networks. In
C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 28. Curran
Associates, Inc., 2015.

[SCH18] Robyn Speer, Joshua Chin, and Catherine Havasi. Conceptnet 5.5: An
open multilingual graph of general knowledge, 2018.

[SKC+22] Dustin Schwenk, Apoorv Khandelwal, Christopher Clark, Kenneth
Marino, and Roozbeh Mottaghi. A-OKVQA: A Benchmark for
Visual Question Answering using World Knowledge, June 2022.
arXiv:2206.01718 [cs].

66

[SSYR23] Henry Senior, Gregory Slabaugh, Shanxin Yuan, and Luca Rossi.
Graph Neural Networks in Vision-Language Image Understanding:
A Survey, March 2023. arXiv:2303.03761 [cs].

[SYWY23] Zhenwei Shao, Zhou Yu, Meng Wang, and Jun Yu. Prompting large
language models with answer heuristics for knowledge-based visual
question answering, 2023.

[UTB20] Markus Ulbricht, Matthias Thimm, and Gerhard Brewka. Handling
and measuring inconsistency in non-monotonic logics. Artificial Intel-
ligence, 286, 2020.

[Vas19] I. Vasilev. Advanced Deep Learning with Python: Design and imple-
ment advanced next-generation AI solutions using TensorFlow and PyTorch.
Packt Publishing, 2019.

[VCC+18] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana
Romero, Pietro Liò, and Yoshua Bengio. Graph attention networks,
2018.

[Vel23] Petar Veličković. Everything is Connected: Graph Neural Networks,
January 2023. arXiv:2301.08210 [cs, stat].

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Atten-
tion Is All You Need, December 2017. arXiv:1706.03762 [cs].

[WCPZ22] Lingfei Wu, Peng Cui, Jian Pei, and Liang Zhao, editors. Graph Neu-
ral Networks: Foundations, Frontiers, and Applications. Springer Nature
Singapore, Singapore, 2022.

[WMWG17] Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. Knowledge
Graph Embedding: A Survey of Approaches and Applications. IEEE
Transactions on Knowledge and Data Engineering, 29(12):2724–2743, De-
cember 2017. Conference Name: IEEE Transactions on Knowledge
and Data Engineering.

[WWS+17] Peng Wang, Qi Wu, Chunhua Shen, Anton van den Hengel, and An-
thony Dick. Fvqa: Fact-based visual question answering, 2017.

[WWW+22] Qi Wu, Peng Wang, Xin Wang, Xiaodong He, and Wenwu Zhu. Visual
Question Answering: From Theory to Application. Advances in Com-
puter Vision and Pattern Recognition. Springer Nature Singapore, Sin-
gapore, 2022.

[YCW+23] Catherine Yeh, Yida Chen, Aoyu Wu, Cynthia Chen, Fernanda Viégas,
and Martin Wattenberg. Attentionviz: A global view of transformer
attention, 2023.

67

[ZLW+22] Xiangru Zhu, Zhixu Li, Xiaodan Wang, Xueyao Jiang, Penglei Sun,
Xuwu Wang, Yanghua Xiao, and Nicholas Jing Yuan. Multi-Modal
Knowledge Graph Construction and Application: A Survey. IEEE
Transactions on Knowledge and Data Engineering, pages 1–20, 2022.
arXiv:2202.05786 [cs].

[ZYW+20] Zihao Zhu, Jing Yu, Yujing Wang, Yajing Sun, Yue Hu, and Qi Wu.
Mucko: Multi-Layer Cross-Modal Knowledge Reasoning for Fact-
based Visual Question Answering, November 2020. arXiv:2006.09073
[cs].

68

