@ FernUniversitat in Hagen A HlE

Faculty of Mathematics and Computer Science Artificial Intelligence Group

Logic Programming for a Global Logistics
Problem

Master’s Thesis

in partial fulfillment of the requirements for
the degree of Master of Science (M.Sc.)
in Praktische Informatik

submitted by
Olcay Altay-Kern

First examiner: Prof. Dr. Matthias Thimm
Artificial Intelligence Group

Advisor: Dr. Emmanuelle Dietz
Airbus

Statement

I declare that I have written the master 's thesis independently and without unau-
thorized use of third parties. I have only used the indicated resources and I have
clearly marked the passages taken verbatim or in the sense of these resources as
such. The assurance of independent work also applies to any drawings, sketches or
graphical representations. The work has not previously been submitted in the same
or similar form to the same or another examination authority and has not been pub-
lished. By submitting the electronic version of the final version of the master ’s the-
sis, I acknowledge that it will be checked by a plagiarism detection service to check
for plagiarism and that it will be stored exclusively for examination purposes.

I explicitly agree to have this thesis published on the webpage of the artificial intel-
ligence group and endorse its public availability.

Software created for this work has been made available as open source; a corre-
sponding link to the sources is included in this work. The same applies to any
research data.

Signed by:Olcay Altay Kern
Signed at:2025-07-14 12:09:00 +02:00
Reason:| Approve this document

e =s il AIRBUS

(Place, Date) (Signature)

1ii

Zusammenfassung

Abstract

Logic programming has demonstrated to be a compelling alternative to imperative
methodologies for addressing combinatorial optimization problems. Within an in-
dustrial setting, an Airbus R&T (Research and Technology) team has adopted ASP
(Answer Set Programming) as the programming paradigm to find valid solutions
for the global manufacturing setup of a future commercial aircraft. Initial research
efforts have provided promising outcomes, however the obtained answer sets do
not meet the expectations regarding the resulting KPIs (Key Performance Indica-
tors) and variability of solutions. In this thesis additional capabilities from the used
framework were implemented to improve answer sets significantly with regards to
the objective functions. The use of domain-heuristics and weak constraints com-
bined with an active design of optimization statements led to answer sets which are
almost optimal despite a vast solution space. The industrial systems engineers can
explore diverse solutions from a range of near-optimal answer sets and find desir-
able configurations with relatively low runtime.

Contents

1.

Introduction
1.1. Motivation and Background
1.2. Problem Statement
1.2.1. Generalization of the Problem and Solution Space
1.2.2. Related Problems
1.2.3. Objective Functions and Optimization Statements
1.2.4. Search Tree Traversal
1.25. Hypotheses
1.3. Industrial System Scenarios and Constraints
1.4. Objectives
1.5. Current Stateof Research
1.6. Outline

Theoretical Background

2.1. LogicProgramming

2.2. Answer Set Programming (ASP) and Stable Model Semantics

2.3. PotasscoToolset

24. InputLanguageofclingo, ..
24.1. TheGroundergringo
242. TheSolverclasp

Representation of the Logistics System and the Optimization Problem
3.1. Representation of the Logistics System
3.2. Major Issues of the initial Research Work
3.2.1. Optimization Statements
3.2.2. Usageof Aggregates
3.3. Overview of New Features and Expected Impact
3.3.1. Main Objective Functions
3.3.2. SearchTree Traversal

Methodology

4.1. Designof Experiments

42. Evaluation Metrics
42.1. Key Performance Indicators of Objective Functions
42.2. Variability Measurement
42.3. Search Performance

Results of Main Phase

5.1. BaselineReference

5.2. Workshare Constraint Implementations
52.1. KPlevolution
522. Variability

vii

5.2.3. Search Performance 52

5.3. Domain Heuristics 54
53.1. KPIevolution 54

53.2. Variability oo 54

5.3.3. Search Performance 56

54. Weak Constraints 0 i it 56
54.1. KPIevolution, 56

542. Variability o 58

5.4.3. Search Performance, 58

5.5. Optimization Statements 58
55.1. KPlevolution i 59

55.2. Variability o oo 60

5.5.3. Search Performance 61

5.6. Consolidated Result 61
6. Discussion of Main Phase 64
7. Results of Final Phase 68
7.1. KPIevolution e 68
7.2. Variability 69
7.3. Search Performance 69
8. Discussion of Final Phase 71
9. Conclusion 72
9.1. Summary of Contributions 72
9.2. Future Work 73
A. Appendix 78

viii

List of Figures

1.

w

10.
11.
12.

13.

14.

15.
16.
17.

18.
19.
20.
21.
22.
23.

24.

25.

Exemplary aircraft breakdown and associated production and trans-

portationsequence L. 4
Principle of a Multi-Echelon Production Network for an aircraft . . . 7
Impact of warehouses on therouting 9
Multi-scatter plot of answer sets evolution showing all KPI combina-

tions. Source: [1]. e 10

Pareto optimal answer sets in red forming a Pareto Front. Source: [2] 11
Three answer sets with different values for the two observed objective

functions function 1 and function 2. Source: [2] 12
Part of a full Multi-Echelon Production Network 14
One selected solution with four different paths within the Multi-Echelon
Production Network 15
Design parametersand outputs 16
Typical two-step architecture of ASP solutions like clingo, Source: [3] 24
Single-Sourcing vs Multi-Sourcing: Multiplepaths 37
Evolution of the Production Costs with respect to the Transportation
Costs within the (baseline)run 47
Evolution of the Production Costs with respect to the CO3 costs within

the (baseline)run 48
Evolution of the Transportation Costs with respect to the CO, costs
within the (baseline) run oL 49
Evolution of the similarity values within the baseline run. 50
Evolution of the KPIs for the different Workshare implementations . 50
Evolution of the Production Costs with respect to the Transportation
Costs for the different Workshare implementations 52
Similarity evolution of two single configurations 52
Similarity evolution of two combined configurations 53
Overview of the resulting KPIs from the domain heuristics runs . . . 55
Overview of the resulting KPIs from the Weak Constraintruns 57

Overview of the resulting KPIs from the optimization statement runs 59
Evolution of the Production Costs with respect to the Transportation

Costs for the tested optimization statements 60
Evolution of the Production Costs with respect to the Transportation

Costs for all tested features 62
Overview of the resulting KPIs from the final configurationruns . . . 69

ix

List of Tables

N

NP W

10.

11.

12.

13.
14.

15.

16.
17.

18.

19.

20.

21.

22.

Overview of all facts of the logic program. 33
Relevant rules and optimization statements of the (baseline) program

excluding facts. o L o Lo 35
Overview of all new featurestobetested. 40
The number of models found for the (baseline) run 45
The reference KPIs of the (baseline) run. 45
The reference model last (baseline) printed asa table. 46

KPI percentages of the baseline comparing the first and the last model 47
The KPI percentages of each heuristic in relation to the last (baseline)

model. The best results are highlighted ingray. 51
Similarity comparison for all Workshare implementations for produc-
tion sites (p) and transportation similarities (t). 53
The number of models found for the different Workshare implemen-
tations 53
The KPI percentages of each heuristic in relation to the last (baseline)
model. The best results are highlighted ingray. 55
Similarity comparison for all heuristics, with respect to the produc-
tion sites (p) and transportationmeans (t). 55
The number of models found for the different heuristics 56
The KPI percentages of each Weak Constraint in relation to the last
(baseline) model. The best results are highlighted in gray. 57
Similarity comparison for all Weak Constraints, with respect to the
production sites (p) and transportation means (t). 58
The number of models found for the different Weak Constraints . . 58
The KPI percentages of each optimization statement in relation to the
last (baseline) model. The best results are highlighted in gray. 60
Similarity comparison for all optimization statements with respect to
the production sites (p) and transportation means (t). 61
The number of models found for the different optimization state-
ments 61
The KPI percentages of each final configuration in relation to the last
(baseline)model. L 68
Similarity comparison for all final configurations, with respect to the
production sites (p) and transportation means (t). 69
The number of models found for the different final configurations . 70

Acronyms

ASP Answer Set Programming.

CDCL Conlflict-Driven Clause Learning.
CDNL Conflict-Driven Nogood Learning.

DAG Directed Acyclic Graph.

DPLL Davies-Puttham-Logemann-Loveland algorithm.
KPI Key Performance Indicator.
R&T Research & Technology.

SAT Boolean Satisfiability Problem.
SMC Set Multicover Problem.

TSP Traveling Salesperson Problem.

VSIDS Variable State Independent Decaying Sum.

1. Introduction

This section outlines the motivation behind the research and provides necessary
background information. It includes the following content:

* Motivation and Background: A description of the relevance of the research area
and the broader context of this work

* Problem Statement: A formulation of the general and specific problems to be
addressed in this thesis

* Related Problems: A mentioning of similar or related problems
* Objectives: The research goals and expected outcomes

* Current State of Research: A short overview of previous and related works, the
current state and possible gaps in the literature

1.1. Motivation and Background

Imagine being within an immense labyrinth of galactic scale, with only a few known
honey pots. Given such vast dimensions, the likelihood of locating one within a
lifetime, even with knowledge of a direct route and moving with the speed of light,
is close to zero. This analogy serves as a representation of real-world challenges
encountered in industrial applications, where navigating immense solution spaces
with numerous constraints is commonplace [4]. These combinatorial optimization
problems are symbolized as a massive labyrinth, representing the solution space,
where the honey pots symbolize the local optima and the moving speed the compu-
tational power.

In any combinatorial optimization problem characterized by such a vast solution
space, guidance is essential to even approach the targets. One would benefit from
multiple starting points scattered across different regions of the labyrinth, ideally
in promising areas. Additionally, indicators confirming whether one’s directional
choices are correct would be helpful. Without such aids, achieving the objective — or
finding a way in the labyrinth in this metaphorical scenario — is almost impossible.

This thesis focuses on a use case within the industrial sector, specifically concern-
ing the development and manufacturing of a next-generation civil passenger air-
craft.

In the conceptual-design stage of a commercial aircraft and its manufacturing sys-
tem, industrial architects must generate and compare multiple production architec-
tures before any landmark investment decisions are taken by the senior manage-
ment. Multiple scenarios need to be analyzed and optimized with regards to some
predefined Key Performance Indicator (KPI) [5, 6], typically recurring production
and transportation costs or non-recurring costs of investments.

The difficulty of manufacturing such a product necessitates a multitude of re-
sources. The product design defines the manufacturing build process, which in-
cludes workloads and technologies, requiring diverse sites equipped with various
expertise and resources. Moreover, in the politically charged atmosphere of the
aerospace industry, numerous commitments to partners must be upheld, involv-
ing some dozens of major manufacturing sites across the world, each responsible
for producing or assembling components [7, 8]. The main challenge is to identify
the optimal configuration for a manufacturing setup that minimizes logistics efforts
while keeping production cost low.

Given - for instance — the limitations of transportation means, such as the ne-
cessity of a harbor for ship use, this task represents a common combinatorial op-
timization problems in industrial applications. A trivial solution — manufacturing
everything at one site centrally — is unfeasible due to the substantial number of con-
straints as indicated above.

To address this combinatorial challenge, an Airbus central Research & Technol-
ogy (R&T) team has adopted Answer Set Programming (ASP). ASP is a subclass of
logic programming which belongs to the declarative programming paradigms. ASP
is based on the Stable Model Semantics and has demonstrated significant efficacy in
resolving such problems. It is regarded as one of the most successful domains of ar-
tificial intelligence [9]. In this case the solver is supposed to identify valid solutions
and optimize with regards to a number of different figures of merit, such as pro-
duction or transportation costs. A valid solution is a solution that ensures that all
required manufacturing steps are passed in the right order and that transportation -
internal or external - is performed between every manufacturing step while holding
the constraints. Figure 1 shows the basic steps when defining the industrial system.
The product breakdown determines the manufacturing steps to be performed. The
associated order of production steps is then defined. A typical manufacturing and
transportation path consists of repeating sequences of productions step, transport
step, warehouse, transportation and the next production step. These will determine
the according objective functions.

Although valid solutions have been generated, the variability of these solutions
remains low, and they appear to be distant from any optimum. It is concluded that
only a very small fraction of the solution space has been explored. This work is the
continuation of former research work of the central R&T team of Airbus with the
title A Logic Programming approach to Global Logistics in a Co-Design Environment [1]
using the clingo ASP System to solve the optimization problem.

1.2. Problem Statement

The problem statement will be split into three subsections, the first one generalizing
the specific problem of the thesis to known problems, the second one tackling the
problem of selecting the right objective functions and according formulation of the

ey B 1 o, BaEN g
| Q i [T f | Q i [
$i8c 7 e~ mise B
Production Transportation ~ Warehouse Transportation =~ Assembly
Part 1 Part1 & 2

Figure 1: Exemplary aircraft breakdown and associated production and transportation se-
quence

optimization statements and the third one dealing with issues that arise with the
traversal of the search space.

The detailed concepts behind the ASP features mentioned in this section will be
subject to Section 2, the Theoretical Background.

1.2.1. Generalization of the Problem and Solution Space

The main problem faced in this thesis is the optimization of a Multi-Echelon Pro-
duction Network with regards to some cost functions. A Multi-Echelon Production
Network is organized in stages that must be passed in a predefined order [10].

To be more precise, this problem consists of two subproblems: First, to match parts
to production sites in order to guarantee that each part is produced by at least two
sites and each site produces at least one part (or the required share by site or coun-
try), and second, to decide on the transportation routes and according means among
the production sites. For better visualization of the problems, the representation as
a Multi-Echelon Production Network graph is helpful, which we will do below.

The first subproblem, where parts are matched with production locations, can be
regarded as a Set Multicover Problem (SMC). The production locations assigned with
parts to be manufactured correspond to the nodes of the Multi-Echelon Production
Network. The second subproblem is about selecting transportation means among
the production sites, which completes the network with its edges. Optimization in-
side this network, e. g. minimizing transportation costs, corresponds to the Shortest
Path in a Directed Acyclic Graph Problem. The details are described below.

Optimal Allocation of Part Production Across Sites

A set of manufacturing sites across the world is involved in the full manufacturing
chain, all with their individual capacities to produce specific components. As sites
can produce multiple parts and each part need to be produced by two sites for our
specific Scenario, this leads to a many-to-many assignment problem. In this case,
we deal with a special case of a Set Multicover Problem. A Set Multicover Cover
Problem is to cover all elements of a universe /N containing n elements at least a
predefined number of times ¢ with a minimum number of sets. It is a generalization
of the Set Cover Problem with the main difference that elements of the universe may
be covered multiple times [11].

To formalize the above problem, let there be a set P = {p1, p2, ..., pn } of parts to
be produced and a set S = {s1, s2, ..., s, } of (production) sites. Each site s € S can
produce a subset P; C P of all parts. Depending on the Sourcing Strategy, each part
p € P must be produced by i, sites (e.g. i = 1 for single sourcing, i = 2 for double
sourcing etc). Each part p has a fixed workload w, independent from the site where
it is produced. And finally each site s € S has a dedicated cost factor c, reflecting
the specific manufacturing cost level of the location. Let z,,; be the decision variable
with

{1 if part p is produced at site s
Tps = .
0 otherwise

The objective function is

mmg E Cs " Wp * Tps

sES peP

accordingly and we have the following constraints:

* Workshare: each site must produce at least one part

ZmpSZPVSGS
pEPs

* Sourcing Strategy/Completeness: each part p must be produced by at least i, sites

Z Tps > ip Vp € P
sES:pEPs

e Eligibility: parts can only be assigned to sites when they are able to produce
the part
xps =0 if p & Py

The size of this subproblem is determined by the given instances of production
sites that can produce the number of parts to be produced. There are 1,4, = 13
production sites available for 34 parts to be produced. In average, every part can
only be produced by n = 10 production sites. From these, k£ = 2 need to be selected
for every part to comply with the Double Sourcing Strategy (will be explained in
Section 1.3). This can be calculated with the binomial coefficient with the following
number of possible combinations for every part [12]:

(1) = m

As we have overall P = 34 parts to be produced, the overall number of possible
combinations is

b) 1.6E56
<k!(n—k)!> -

Optimal Routing Across Production Sites The second problem is finding the
shortest path in a logistics network which can be regarded as a Multi-Echelon Pro-
duction Network. It represents an industrial setup that is structured in manufactur-
ing stages. Every stage must be passed downstream and for all stages there might be
multiple sites to fulfill the task. It can typically be represented as a Directed Acyclic
Graph (DAG) [13]. See an example of a Multi-Echelon Production Network with
four echelons (Elementary Part Suppliers, Sub-Assembly Sites, Assembly Sites and
Final Assembly Sites) in Figure 2. All need to be passed downstream in this order
to produce a product.

Common challenges in industrial applications are the optimization of such a net-
work with regard to some KPIs [2], e. g. production or transportation costs, or ana-
lyzing the robustness of the network against disruptions [14].

Let G be a DAG with G = (V, E) withu € V and V is partitioned into [layers
V=1hulWhu..uVy

where each V; (with ¢ € {1,...,(}) is the set of nodes representing the possible pro-
duction sites at echelon i. Edges £ C V x V are directed and can only go from one
level i to the next level i + 1. Each edge (u;, vi+1) € E has a cost ¢y, (ui, viy1) where
tm is any transportation means that is available between the nodes u; and v;.

As there are multiple possibilities to select production sites per echelon, binary
decision variables must be introduced for any edge:

x’llﬂ} -

1 if wand v and edge(u, v) is selected in the path
0 otherwise

Elementary Sub-Assembly Assembly Final Assembly
Part Suppliers Sites Sites Sites

Site G
Part1234

Site H
Part1234

Figure 2: Principle of a Multi-Echelon Production Network for an aircraft

The optimization problem with regards to any cost ¢, of a transportation mean tm
at the edge (u;, vi11) can then be expressed by:

min Z Ctm (Ui, Vit1)

(ui,’ui+1)€E

Problem formulations that are expressed as shortest path problems in a DAG with
vertices V' and edges E can be solved in linear time with ©(V + E), for instance with
a topological sort method [12].

The size of this subproblem is determined by the transport routes which are de-
pending on the selected production sites from the first subproblem, the available
transport means for these routes, the part to be transported and potential ware-
houses that are used in between. There are R = 132 core routes (the connection
between two production sites that need perform consecutive manufacturing steps)
to be served for a Double Sourcing Strategy (see Section 1.3 for explanation of the
Sourcing Strategy and see Section 3.2.2 for the explanation why a double Sourc-
ing Strategy requires four times the routes compared to a Single Sourcing Strategy),
n1 = 17 warehouses and 30 transportation means available. In average, every route

and part can only be served by ny = 10 transport means. Between every route there
is the option to have none, k; = 0 (which we call Direct), one, k1 = 1 (called Via 1)
or two , ki = 2 warehouses (called Via 2). See the Warehouse Scenario explained
in Section 1.3 for detailed description. Selecting a warehouse to be used between
two production sites will make two routes necessary instead of a single direct route.
And two warehouse will lead to three routes instead of one. See Figure 3 for visu-
alization. As a consequence the number of routes can increase up to three times of
the 132 routes mentioned earlier resulting in R, = 394 possible routes maximum
for the Double Sourcing Strategy.

As for the first subproblem, this can be calculated with the binomial coefficient
with the following number of possible combinations split into two key decisions, i.e.
the selection of the number of warehouses for a route between two production sites
and the selection of a transportation mean for every resulting route to be served.

For the selection of warehouses the solution space or number of possible combi-
nations can be calculated for all 132 core routes with:

R
ny () (m = (1417 +136)'32 = 5.6 £288
k1 ko ko

And for the selection of one transportation mean for each of the worst case num-
ber of routes R,z

lel(l/'
("f) — 10%% = 10E394

Regarding the KPIs, the production costs are determined by the assignment of
parts to production sites and therefore subject to the Set Multicover Problem. Trans-
portation costs and CO, emissions on the other hand are subject to the routing prob-
lem as they can be represented and computed from the costs of the edges.

1.2.2. Related Problems

Typically the problem above comes with another well-known problem, the Multi-
Commodity Flow Problem, which appears when multiple part types flow through a
logistics network. This problem additionally considers capacity and time factors of
the network to be optimized making it a Minimum-Cost-Flow-Problem [15] which is
not subject to this thesis.

Due to the obligation that every partner must hold a share in the manufacturing
process, a Traveling Salesperson Problem (TSP) component is also a characteristic of
the overall problem. The main problems and constraints addressed in the TSP, find-
ing the shortest path with passing every node, are already tackled in the problem

Direct Via 1 Via 2
. Site A
Site A Site A Part 1
Part 1 P
1
1
Warehouse
1 2
Warehouse
Warehouse
2
3
Site B Site B :
Site B
Part 2 Part 2 Pla; 2

Figure 3: Impact of warehouses on the routing

generalization by the Set Multicover Problem with the constraint that every site must
produce a part - ensuring that every node of the DAG is passed.

1.2.3. Objective Functions and Optimization Statements

The implementation of the initial research activity and the according answer sets are
far away from an optimum with regards to a multi-objective function. An optimum
is an answer set which optimizes the predefined KPIs in a multi-objective optimiza-
tion formula. Figure 4 is visualizing the effects observed for a Pareto optimization
indicating that solutions do not hit the Pareto frontier. A Pareto optimization aims
at finding the best solution between two conflicting objective functions [2]. See the
evolution of the KPIs in the scatter plot in Figure 4. It is not important to see the
details of the axes, but rather the general evolution of the models and according
KPIs.

Each dot represents a solution - answer set - of the logistics system. Each subplot
is showing the according value for every answer set with regard to any combination
of two KPIs out of the predefined ones. The iterations evolve over time from the top
right corner of the plot to improved solutions in the direction of the bottom left cor-

I\I
\

- - e o
- e e " i
R g s -
- - -
—— - - — e
e et - e
p—y e = - = —

Figure 4: Multi-scatter plot of answer sets evolution showing all KPI combinations. Source:

(1]

ner for every subplot without finding an optimum. The single dots representing
answer sets are linearly moving until timeout. The process does not provide an op-
timum for any combination. An optimum in a Pareto diagram is normally indicated
by the so-called Pareto Front. The set of Pareto optimal solutions in Pareto diagrams
is supposed to form a front around the bottom left corner as both KPIs can not be
improved simultaneously anymore [2]. The principle is shown in Figure 5.

A Pareto optimal solution dominates another answer set if the two resulting objec-
tive function values are both better than for the compared answer set. An example
is shown in Figure 6. Answer set A dominates answer set B, but does not dominate
answer set C. Pareto optimal solutions are not dominated by any other solution.

Apparently the Pareto Front is not reached for any combination of KPIs and the

given predefined maximum number of models for the optimization.
It is acknowledged by the research team and confirmed by the industrial architects,
who are the customers of the research work, that part of the chosen KPIs are not the
right ones to be taken into account for architectonic trades and according decisions.
The analysis of the solutions shows that variability of the selected predicates or
atoms which build an answer set is low. The generated solutions cover a very small
portion of the search space, which leads to the next problem: the limited traversal
of the search space.

1.2.4. Search Tree Traversal

The problem encoding consists of a large number of facts and rules without nega-
tions. This leads to a positive propositional program which is stratified (see Section
2.1) once the program is grounded, which only takes a few seconds. This prevents
from single atoms cyclic dependencies. All rules are safe (see Section 2.1). All to-
gether, this has a positive impact on the complexity of the program and the associ-
ated effort and run-times of the solver.

On the other hand, the absence of negations will result in the inference processes
to not encounter many conflicts during solving while solvers like clingo, which use
Conflict-Driven Nogood Learning (CDNL) techniques, may not be able to prune the
search space effectively. As the search space is not pruned sufficiently, the optimizer
does not succeed in converging for any combination of KPIs.

10

function 2

function 1

Figure 5: Pareto optimal answer sets in red forming a Pareto Front. Source: [2]

The static weighting of the optimization statements does lead to a unique search
space traversal, missing opportunities to actively explore promising spaces.

The conclusion of the observations above is that partially the choice of the KPIs is
not suitable for a Pareto optimization due to their linear dependencies. Additionally,
the selected KPIs do not serve to properly perform the trades requested to enable
decisions on architectural alternatives.

It is assumed that only a small amount of the search space is explored, which is sug-
gested by the low variability of answer sets and the linear direction of the answer
set evolution towards the theoretical optimum. The search space is not pruned suf-
ficiently to enable convergence of the optimizer.

1.2.5. Hypotheses

As a consequence of the observations made and described in the previous sections,
the following hypotheses are established:

H1 The static and independent formulation of the optimization statements does

11

function 2

function 1

Figure 6: Three answer sets with different values for the two observed objective functions
function 1 and function 2. Source: [2]

not enable a proper Pareto optimization and results in a unique convergence
behavior of the optimizer missing diversity in the traversal of the search space

H2 The problem encoding does not support main mechanism of the solver, i.e.
CDNL, and the search space is therefore not properly pruned to enable to find
an optimum

H3 The solver is not actively guided through the search space and promising areas
are not actively searched to increase both, variability of answer sets and the
probability to find an optimum

1.3. Industrial System Scenarios and Constraints

The character of the industrial system to be optimized is strongly determined by
some general strategies or assumptions concerning the supply chain and manufac-
turing setup which can be regarded as possible standard Scenarios. These Scenarios
do have an impact on the topology of the industrial system that can significantly

12

change the systems properties. They might act as additional constraints or choices,
potentially having an impact on the complexity of the system and the according
problem formulation. The Scenarios to be considered in this work are Sourcing Strat-
egy and Warehouse Strategy.

The Sourcing Strategy defines whether a production step has to be performed by
minimum one or multiple sites to ensure redundancy in the system which might
lead to more robustness of the industrial system. The strategy might be defined and
applied depending on the production stage of the Multi-Echelon Production Net-
work.

Warehouses contribute to the robustness of the network, too, but can also have an
impact on reachability of production sites with certain transportation means, be-
cause these warehouses provide an opportunity to switch transportation means. It
can be chosen to have no warehouse, one warehouse or two warehouses between
two production steps.

Two important constraints need to be implemented: one to guarantee each site pro-
duces at least one part (Completeness) and one to make sure that every part is pro-
duced by at least one site (Workshare). The Workshare constraint might be refined
with an interval of expected shares per site or country.

Batching considerations will not be tackled in this thesis. Batching refers to the pos-
sibility to transport several numbers of a part with one transportation mean depend-
ing on the available space. An even more advanced approach which is applied often
in practice is the concept of mixed batching, i.e. the possibility to transport different
sorts of parts in multiple numbers with one transportation mean [16]. Practically,
batching will directly influence the number of necessary transports between two
sites. In this thesis, a single-part batching is assumed, meaning that every trans-
portation mean transports exactly one part.

1.4. Objectives

The objective of this thesis is to find solutions to the problem of identifying valid
industrial and logistics setups with ASP for the next generation Airbus civil aircraft
manufacturing system with Pareto optimal KPIs regarding the multi-objective func-
tions.

A valid solution in our context is an answer set that ensures that all required man-
ufacturing steps are passed in the right order and that transportation is performed
between every manufacturing step. This finally results in the representation of a
Multi-Echelon Production Network, which describes a manufacturing system that
is arranged in stages or multiple layers with materials and products flowing down-
stream [10]. Figure 7 aims at visualizing such Multi-Echelon Production Network
with different possibilities to produce specific parts (represented as nodes) and trans-
portation links among them (represented as edges).

For the specific problem tackled in this thesis, 30 locations around the globe can
act as production or warehouse sites with 34 parts to be produced. For the trans-

13

Echelon i Echelon i+1 Echelon i+2

Site A
Part 1 ==

SiteB \ _ - - - ><-~ - - %
Part1 ~ - N ~ <

, /
, /
) /
/
/
/
/
|
7 I
1
1 1
o
[
ol
Lo
[
\ [
\ [
AN
1
\
32
25
S ®
-
I
I
!
I
I
/
I

3 s
2 3
\ /
\ ! /
N S
N , |
N vy, |
\ 7 |
I |
| |
\ | \ |
\ I | I
\ | \ |
\] \ I
Vo \ |
[[
[[
(. [
[(]
[(]
[v
[\\AI
Vi, v
W
é @
g g-
\ N ! N
\ ~ I
\ N I
\ |
\ !
¥
N
N
N
’
’
’
/
S
s
.

Figure 7: Part of a full Multi-Echelon Production Network

portation among the selected production and warehouse sites 34 different transport
means are available. The valid solutions are constrained by the facts that not every
production site can produce every part, not every transportation mean is available
between every site and not every part can be transported with every transportation
mean.
There must be locations that produce the parts needed for a full aircraft. For our
problem we need two locations to produce a specific part, which is called Double-
Sourcing. This is a significant element of the Scenario to be considered, i.e. the
Sourcing Strategy. The Sourcing Strategy is defined per production stage of the
Multi-Echelon Production Network.
The next major Scenario to be considered is the Warehouse Scenario, which requests
that between two manufacturing steps there should be none, one or two ware-
houses.
Figure 7 visualizes a part of a full Multi-Echelon Production Network with three
stages from echelon i to echelon i+2, which would be Elementary Part, Sub-Assembly
and Assembly translated to our specific problem with only the last stage — Final As-
sembly — not shown in this Figure.

It represents all possible solutions to produce a part and potential transportation

14

Echelon i Echelon i+1 Echelon i+2

Figure 8: One selected solution with four different paths within the Multi-Echelon Produc-
tion Network

in between production sites. In this case two suppliers are available per part which
could produce the according part. The directed edges between the production sites
indicate transportation, but are not visualizing all available transportation links and
means in this figure. There are no warehouses between two production sites in this
Scenario.
Figure 8 on the other hand shows one selected solution out of the possibilities seen
earlier. The solution includes the choice of one production site per part in case of a
Single Sourcing Strategy (one production site per part) and the selection of a trans-
portation link and according mean in between two selected production sites of con-
secutive activities.

A simple single batching is assumed, meaning that only one single piece of a spe-
cific part is transported by the according transportation mean.
All together, the Double Sourcing Strategy, the Warehouse Strategy allowing to se-
lect zero to two warehouses and the single batching as defined above set the baseline
configuration for this work.
The predefined KPIs are determining the objective functions which need to be opti-

15

n . Production Costs
§ Sourcing Strategy o~
8 Transportation Costs §
2 Warehouses

Co2 Costs
o
2 Workshare >0
2 Variability g5
o =®
E Completeness X3
z P Search Efficiency 3: E
Inputs: Design parameters Derive Solutions Outputs

Figure 9: Design parameters and outputs

mized leading to a multi-objective optimization need.
The KPlIs are Production Costs, Transportation Costs and CO5 emissions. All are sup-
posed to be (at least partially) conflicting and therefore subject to a Pareto optimiza-
tion. The objective with the highest priority of this thesis is to find Pareto optimal
solutions for some combinations of the defined KPIs as stated above.
Moreover, having high variability among answer sets is required for two reasons:
first, to increase confidence that a large amount of the search space is explored and
no better local optimum is missed, and second, to provide a variety of solutions that
an industrial architect can actively explore to learn from unknown solutions and
gain additional knowledge which can support an iterative and incremental product
development.
Figure 9 gives an overview of the inputs and outputs of the experiments to be per-
formed in this thesis. The inputs are considered design variables of the industrial
system and the outputs are KPIs or auxiliary indicators to measure the quality of the
solution system.

The optimization of the industrial system as above is a task performed in the
context of systems engineering activities. Modeling and simulation capabilities as

16

developed and provided in this thesis aim at providing decision support for design
trades [17]. In order to take decisions, it is not only required to obtain results for
the KPIs, but also to have means to interpret the results properly. Therefore a visu-
alization of the solutions and results is a desired, but not mandatory function to be
delivered with this thesis.

The Research Questions derived from the problem statements and objective are:

Research Questions

1. Does a weighting of KPIs regarding the objective functions lead to more vari-
ability of the answer sets and support finding Pareto optimal solutions?

2. Do heuristic programming and Weak Constraints help find solutions in more
promising areas as expected by domain knowledge and therefore faster gen-
erate improved results with regards to the optimization objectives?

3. Can a combined use of all above-mentioned methods lead to significantly bet-
ter answer sets with regards to the optimization objectives, with more vari-
ability of answer sets and lower runtime?

1.5. Current State of Research

ASP has proven to deliver very good results when it comes to solving search prob-
lems in an industrial domain . There are successful industrial implementations
mainly in the application areas of configuration, scheduling and planning. The
declarative problem specifications are easy to understand and provide high expres-
siveness, making it a suitable paradigm [9]. Erdem, Gelfond and Leone [18] provide
an overview of successful implementations, for instance in the optimization of the
planning of Robot activities, where the work plan is considered optimal when the
total cost of actions is minimal. Ostrowski, Schaub, Toletti and Wanko have pre-
sented an ASP based solution for the problem of train scheduling involving routing
and scheduling optimization for a dense railway system.

As with imperative programs, ASP often faces a huge search space with many non-
deterministic decisions. The clingo solution offers non-domain and domain heuris-
tics to improve the performance. Non-domain heuristics have not demonstrated a
significant increase of performance yet, therefore research is focusing more on intro-
ducing domain-specific heuristics into ASP solvers [9].

Combinatorial optimization problems are usually solved in a single shot [3] which
leads to limitations in the exploration of the search space. Very few multi-shot ap-
proaches exist, most of them focus on dealing with changing logic programs. They
tackle the grounding and solving steps with a flexible approach that enables the ma-
nipulation of logic programs with certain operations [19]. This approach can also
help in reducing the ground programs to a minimal size which is very beneficial as

17

the grounding of very large problem instances is one of the major challenges in the
use of ASP for industrial decision problems.

The use of multi-shot approaches is not officially published yet for the Potassco
framework.

To the best of our knowledge there are no references found that investigate the ca-
pabilities of a system that combines active optimization statement weighting and
domain-heuristics.

1.6. Outline

This subsection provides an overview and the structure of this thesis and how the
sections interconnect.

The thesis starts with an Abstract which serves as a brief preview. It summarizes the
motivation, key problems, methodologies, major findings and conclusions.

The Theoretical Background will review the theoretical foundations necessary to
understand this work. It is divided as follows:

* Logic Programming: An introduction to the fundamental principles of logic pro-
gramming

* Answer Set Programming and Stable Model Semantics: An explanation of answer
set programming as a paradigm including the stable model semantics as an
essential element of it

* Potassco Toolset: A description of the software tools and frameworks utilized
for this work

e Input Language: An overview of the input language and the according con-
structs used for modeling and representation of the problem in this thesis

The section Representation of the Industrial System and Optimization Problem is essen-
tial to understand the logic program created in this work, which is one of the core
elements of this thesis and translating the real-world problem into computational
one. It consists of the following topics:

e Issues of the Initial Program: Explaining some major issues that caused the initial
encoding to not produce the expected results or even errors

* Representation of the Logistics System in a Logic Program: Presenting the Problem
Encoding with facts and rules

* New Features and Expected Impact: Introducing the new features to be tested
and their expected impact on the objective functions and search tree traversal
behavior

18

The Methodology section outlines the scientific approach adopted in this work. It
explains:

¢ the specific research method and experimental design employed
¢ the evaluation criteria and procedures for analyzing the results

The outcomes of the experiments of the main and final phase are presented in the
Results sections. They are supported by providing figures, tables and statistical data.
Both Results sections are followed by their associated Discussions which will inter-
pret the results in the context of the research questions and objectives. It critically
reviews the findings and highlights the limitations of the work.

The thesis will close with the Conclusion which will summarize the main findings
and reflect the main contributions. It will also include a suggestion for Future Work.

19

2. Theoretical Background

From an imperative programming perspective and in a simplified way, the indus-
trial optimization problem described above could be characterized as finding the
shortest path with constraints in a DAG where the nodes represent manufacturing
sites and the edges transportation among them. The nodes hold the information
about Production Costs while the edges provide the Transportation and CO; Costs.
In this work we look at the problem from a declarative programming perspective
using ASP as the programming methodology. It is rooted in the field of artificial
intelligence and computational logic [20].

2.1. Logic Programming

Declarative programming characterizes the expected solution of a problem instead
of precisely defining the steps to get there [20]. One kind of declarative program-
ming is Logic Programming which is the foundation of the ASP solution used in
this thesis. In Logic Programming an algorithm can be regarded as consisting of
two components, the logic and the control. The logic expresses what the problem
is while the control specifies the control flow. This separation does bring the ad-
vantage that the programmer can focus on specifying the logic by describing the
problem. The control flow can be left to the Logic Programming system [21]. The
implementation of the logic is based on First-Order Logic and uses logical formulas
to represent knowledge in the form of rules. A Logic Program is a finite set of rules.
Given a signature ¥, a rule r has the following form:

A Ay, .., A, notAgst, ..., not Ay, 1

Let head(r) = A be the head and body(r) = Ay, .., A, notAm41, ..., not A, be the
body of the rule. Negative atoms are denoted not which refers to Negation as a Failure,
which will be explained later. Therefore the understanding of the formula is that the
head of the rule must hold if any positive atom in the body is provably true and any
negative atom can not be proven true and therefore is assumed false [22]. Van Gelder
[23] defines the body of such rule as a sub-goal. Rules without a body or sub-goal are
called facts and the "<’ can be omitted.

We define the set of positive atoms in the body of the rule above as
B(r)T ={Ao, ..., A}
and the set of negative atoms as
B(r)” = {not Ap+1,...,n0t Ay}

The handling of negation can be treated differently and it will be subject to Section
22.

20

Alternatively a rule as in Equation 1 can be written without negation in literal form.
A literal can be a positive or negative atom. The rule looks as following accordingly:

A Ly, Ly)

When comparing Equation 2 with the previous style in Equation 1, Ly corre-
sponds with the head atom A, the literals L1, .., L,, with the positive atoms Ay, ..., 4,
and Ly, 41, ..., Ly, with the negative atoms A, 41, ..., Ay.

When a rule does not contain any variables, but only constants of the signature
Y, it is called a ground rule. The ground program of a program that includes vari-
ables can be obtained by replacing all variables in the program by all combinations
of constants provided with the signature of the program. The universe of such kind
of program is consequently built by the ground terms of the given signature, the
Herbrand-Universe.

Take the following signature ¥ = { Hamburg/0, Toulouse/0, Part1/0, Part2/0}. All
elements are functions of arity 0, i.e. constants. The first two represent production
locations while the latter two represent parts to be manufactured. Then the accord-
ing Herbrand-Universe is given with U = { Hamburg, T'oulouse, Partl, Part2}.

For the following program

Example 1.

ispart(Partl)
isPart(Part2).

isProduction(Hamburg).
(

canProduce(Hamburg, Partl).

isProduction(Toulouse).

canProduce(Toulouse, Part2).

produces(X,Y) < canProduce(X,Y),isProduction(X),isPart(Y).

the according ground rules are

21

isPart(Partl).

isPart(Part2).

isProduction(Hamburg).

isProduction(Toulouse).

canProduce(Hamburg, Partl).

canProduce(Hamburg, Part2).

canProduce(Toulouse, Partl).

canProduce(Toulouse, Part2).

produces(Hamburg, Partl) <— canProduce(Hamburg, Partl),
isProduction(Hamburg),isPart(Partl).

produces(Hamburg, Part2) <— canProduce(Hamburg, Part2),
isProduction(Hamburg),isPart(Part2).

produces(Toulouse, Partl) < canProduce(Toulouse, Partl),
isProduction(Toulouse), isPart(Partl).

produces(Toulouse, Part2) < canProduce(Toulouse, Part2),
isProduction(Toulouse), isPart(Part2).

See in Example 1 that the variables in the last rule of the program in Example 1
are replaced by some - but not all - combination of the elements of the Herbrand-
Universe. Note that the process of grounding already mentions the possible do-
mains of the variables which is defined by the facts. It is obvious that only the
constants which are defined as production sites can produce parts. The considera-
tion of the domain of a variable while grounding can reduce the effort to generate
the ground programs. This aspect of the definition of the domain of a variable is es-
pecially critical if the body of a rule contains negation. This issue will be addressed
later with the concept of safe and unsafe negation.

Herbrand-Interpretations I are assignments of truth values { L, T} to a set X of ground
atoms indicating valid solutions, also called Herbrand-Models, so that for each rule
in P I(r) = T holds [19, 1]. For the definition of a valid solution or model, there
are varying concepts depending on the selected semantics. In general, different in-
terpretations I may be models of program P, but some solutions might be more fa-
vorable. One common problem that requires attention is the handling of incomplete
information. These topics will be addressed in the Section 2.2 for further details.

A program consisting only of positive atoms and ground formulas is called a Posi-
tive Propositional Program [20].

Positive Propositional Programs are stratified, which ensures that an atom never de-
pends on its own negation. Non-stratified programs on the other hand lead to cyclic
dependencies putting additional complexity to the programs, valid interpretations

22

and the possible models [23].

Furthermore the concept of safe and unsafe negation in the body or sub-goal of
a rule is important to avoid an undefined domain of a variable. Unsafe negation
occurs when a negative sub-goal contains free variables. In order to avoid unsafe
negation it is necessary that any variable in a negative sub-goal must appear in the
head of the rule or in a positive sub-goal. Otherwise the undefined domain will
lead to a free variable for the negative atom and can increase the search space signif-
icantly for grounding and proof of negation, practically reducing the performance
of the solver [23].

Example 2.

unproducable Part At(X,Y) < part(X),not part Producable At(X,Y).
unproducable Part At(X,Y) < part(X), productionSite(Y),
not partProducable At(X,Y).

Example 2 gives two examples of formula - one safe and one unsafe. The first
formula contains the free variable Y in a negative atom of its body without defining
it with any positive atom while the second formula defines the variable Y with the
preceding positive atom productionSite(Y) and is therefore safe.

2.2. Answer Set Programming (ASP) and Stable Model Semantics

ASP is a special paradigm of logic programming without a specific query that needs
to be answered. Instead, ASP returns an Answer Set that includes all facts that can
be derived from the rules of the program. This Answer Set is the Stable Model of the
program [20]. The Stable Model semantics is one main characteristic of ASP. Stable
Model semantics handles incomplete information under the Closed World Assump-
tion (CWA) applying Negation as a Failure. This means that any ground atom that can
not be derived from the program P is assumed false by default. When applied to a
positive propositional program, the Stable Model is a Minimal Model, meaning that
there exists no subset of the Answer Set which is also a Stable Model of the program
[20]. Positive propositional programs have a unique Minimal Herbrand Model [24].
Most ASP solvers use a two-step approach as shown in Figure 10. First, a ground
program of the existing program is created. This step is called grounding. Then the
ASP solver computes the Stable Models of this propositional program - the Answers
Sets [19, 3].

The grounding process requires the substitution of variables by constants which
can lead to a combinatorial challenge with a complexity depending on the specific
problem encoding. This can lead to the so-called Grounding Bottleneck [3]. Drivers
of complexity can be the number of variables and elements of the universe, but also
the use of certain input language constructs that reflect the combinatorial challenges
of the problem. Possible constructs of the used input language leading to possibly

23

24

Grounded
Program

Anser
Sets

Logic
Program

— Grounder ASP Solver

Figure 10: Typical two-step architecture of ASP solutions like clingo, Source: [3]

increased complexity will be presented later.

To tackle the possible Grounding Bottleneck, ASP systems might apply strategies
to delay grounding of some parts of the program by incremental grounding of pro-
gram segments or even preventing from grounding parts that are not needed at all
for solving. The latter is presented by Faber and Friedrich in [3] and named Lazy
Grounding.

For solving, Boolean Satisfiability Problem (SAT) solving techniques are applicable
on propositional programs, looking for an assignment of the variables making the
entire formula true. These SAT solving techniques are often applied as well for ASP
solutions [22].

Common algorithms to solve the Boolean Satisfiability Problem are Davies-Puttnam-
Logemann-Loveland algorithm (DPLL) and Conflict-Driven Clause Learning (CDCL). Both
algorithms use Backtracking, Unit Propagation and Restarts as key mechanisms to find
solutions. Backtracking is a method in an algorithm to return to an earlier decision
level when the recent search was unsuccessful. It is a mean to traverse the search
tree. Unit propagation is a deterministic rule which looks for unit clauses - clauses
with a single unassigned literal inside the logic program which can be assigned cor-
rectly with little effort. Restarts is a technique that can help improve the efficiency
of a search by resetting the assignment of variables, but keeping learned clauses or
Nogoods, which will be explained later. As a result the search tree will be traversed
differently when starting from the beginning [25]. The foundations and further ex-
planations of DPPL and the according use of Backtracking and Unit Propagation
can be found in [26] and [27]. The concept of conflicts, i.e. assignments that can
not lead to solutions, is important to both algorithms. The main difference between
both algorithms is that for CDCL, after finding a conflict, not only Backtracking is
performed, but adding a new learned clause to the program which represents the
assignment which led to the conflict and therefore can not lead to a valid solution.
Also, there is a difference in the application of Backtracking. DPLL performs chrono-
logical Backtracking while CDCL uses non-chronological Backtracking by recording
the causes of conflict and using it later instead of immediately returning to the pre-
ceding decision level. This can prune the search space significantly [28, 29].

ASP is able to solve decision problems that are NP-hard and harder [3].

2.3. Potassco Toolset

The toolset used in this work is the Potassco Collection which includes clingo, a com-
bination of a solver, which is called clasp, and a grounder named gringo. As a con-
sequence, clingo follows a two-step approach to generate Answer Sets as described
earlier. First, a grounding step is performed replacing all variables in the logic pro-
gram with given instances and generating a finite propositional representation of
the program [30]. Then the solver computes the stable models using CDNL (Conflict-
Driven Nogood Learning) techniques which can be regarded as an evolution of the

25

CDCL algorithm described in the previous section [19].

2.4. Input Language of clingo

Alogic program in clingo allows the use of facts and rules as described in Section 2.1.
Additionally, so called Integrity Constraints are admitted. Integrity Constraints are
rules without a head of the form:

c— Ay, . ApynotApta, -, not Ay 3)

An Integrity Constraint as in Equation 3 states that solution candidates which
satisfy the body are not desired solutions, potentially describing constraints to the
solution space.

clingo incorporates the utilization of Weak Constraints to provide guidance through-
out the search process. Weak Constraints diverge from the binary nature of Integrity
Constraints as they are not restricted to absolute fulfillment or negation. Instead,
they operate with optimization statements that enable the evaluation of constraint
adherence with regard to specific criteria. By this, the task of finding valid solutions
- or Answer Sets - can be extended to finding optimal solutions [31].

Weak Constraints have the form:

Had L17~--;Ln [w@p,tl,...tn] (4:)

The Weak Constraint is associated with a term tuple which can be seen in the
squared brackets of Equation 4. The first element of the tuple represents the weight
that is associated with the satisfied body. The @p is an optional prioritization factor.
Whenever the body of a Weak Constraint is satisfied, it contributes its term tuple
t1, ..., t, to a cost function. This cost function accumulates the weights w of all con-
tributing tuples. Each tuple is only included once with its dedicated weight which
refers to the aggregate property of the Weak Constraint. Note that when generating
term tuples which contribute to some function, this is normally done to perform
some operations on the results. This is demonstrated later when explaining opti-
mization statements.

To properly understand the underlying concepts behind Weak Constraints it is im-
portant to see how aggregates are defined and expressed in clingo.

Before looking at some examples of aggregates and arithmetic functions applied
on them, it is important to mention that typically the set of tuples in aggregates as
described above are subject to conditions. Therefore conditions and conditional literals
will be presented upfront.

A conditional literal has the form:

Lo:Lq,....L, 0)

26

The ”:” expresses a set notation and the literals behind it - L1, ...L,, - is the condition.
L holds whenever the condition holds. Conditions can have a meaning of a nested
implication if we look at the next example:

A:—Ly:Lq, Lo (6)

In the body of Equation 6, Lo and L1, L practically act as head and body. L¢ holds
if L1 and Ly hold.

Aggregates are expressive modeling constructs that allow forming values from
groups of elements and conditions over terms. Together with arithmetic functions
and comparisons available from build-in light theory solving capabilities, truth val-
ues can be derived from the aggregate’s evaluation [31]. Aggregates can appear in
the head and body of rules.

An aggregate in the body of a rule has the form:

s1 < Oé{tl i TR A Ln} < 89 (7)

In Equation 7 the main part of the aggregate is inside the brackets including the
term tuples ¢4, ..., t, and the corresponding conditional literal tuples L1, ..., L,,. a is
some predefined built-in arithmetic function that can be applied to the term-tuples.
clingo provides the functions #count (counts the number of term tuples), #sum (sums
the weights of the term tuples), #sum+ (sums only the positive weighted elements
of the term tuples), #min (the minimum value weight of the term tuples) and #max
(the maximum value of the term tuples).

The result of applying the function « to the term tuples can be compared to the
terms s; and s which act as lower and upper bounds. The comparison finally can
be evaluated to true or false values.

The bounds as well as the function « can be omitted. In that case the default is the
#count function, which is resulting in a so called Cardinality Constraint. There are no
weights needed for the elements of the term tuples of a Cardinality Constraint. For
the #count function a default value of 0 is set as a term in case no term is provided.
It is important to remind that the term tuples are treated as set elements, so that the
same term tuple is only counted once. Taking into account the said, the shortcut of
the aggregate above would be:

{t1: L1;..;tn : Lp}2 (8)

The aggregate in Equation 8 can be understood as selecting maximum two ele-
ments ¢; and ¢; which fulfill the corresponding literal condition L;.

Example 3.

{partProducedAt(Part, Location) : part Producable At(Part, Location)}2

27

Example 3 shows an example of a Cardinality Constraint with the #count func-
tion. The term tuple as well as the function declaration is therefore omitted. This
aggregate will select minimum one or maximum two production locations for every
part (partProduced At(Part,Location) which fulfills the condition that the according lo-
cation is capable of producing it (partProducableAt(Part,Location)).

Cardinality Constraints are also called Choice Rules as they enable to select a prede-
fined number of elements out of a set. In case that no boundaries are set, all possible
combination of the set can be selected.

When it comes to aggregates in the head of a rule, the literal to be derived needs
to be added. Therefore a head aggregate has the form:

s1 <afty: Ly :Ly;..5ty: Lyt Ly} < s2

Optimization statements are a way to express several Weak Constraints. There are
two optimization statements available, #minimize and #maximize.
A minimize statements for example has the form:

#minimize{wiQpy,t1 : Ly, ...,w,Qpp,t, : Ly}

It represents the following n Weak Constraints:

Had Ll.[wl@pl,tl],...,
i~ Ly [wy,Qpy, t,]

A #maximize statement is treated the same way as a #minimize statement with
inverse weights.
With the use of an Optimization statement with several Weak Constraints, a weight-
ing or order of prioritization of term tuples can be performed. The definition of an
optimal Answer Set can be adjusted to a specific preference this way:.

The following example should showcase the use of a #minimize optimization
statement applied on a #sum aggregate.

Take a transportation path between two production locations expressed this way as
a fact: path(Part, Locationl, Location2, Distance). It tells that the Part can be
transported form Location 1 to Location 2 with the according distance. If we aim to
minimize the transportation distance of all necessary transportation between two
consecutive production steps performed at the according locations, it can be
expressed with the following statement:

Example 4.

#minimize{(Distance, Part, Locationl, Location2 :
path(Part, Locationl, Location2, Distance)}.

28

This statement will sum all the single distances reflected in the term Distance

of ground atoms that hold the condition path(Part,Location1,Location2,Distance) and
find the model that minimizes this value. Note, that the value to be minimized is
the first element of the term tuple - in this case the term Distance from the term tuple
Distance, Part, Location1, Location2.
The other elements of the term tuple are needed as some kind of identifier to ad-
dress the aggregate property of the expression and to prevent from counting ele-
ments only once when it is not intended. The following example will demonstrate
the potential issue:

Example 5.

#minimize{(Distance, Locationl, Location?2 :
path(Part, Locationl, Location2, Distance)}.

Imagine, the term Part is left out from the term tuple compared to Example 4. Then
the two different ground atoms path(Part1,Hamburg, Toulouse,2000) and
path(Part5,Hamburg, Toulouse,2000) do both contribute with the identical term tuple
2000,Hamburg, Toulouse to the #sum function and therefore are only counted once
due to the aggregate property of the construct. Assuming that these two are the
only term tuples contributing to the #sum function, it evaluates to 2000 while in
the previous example it evaluates to 4000. In this specific case, the additional term
Part ensures that despite the fact that it is a transport between the same production
locations it distinguishes them, because both represent two different transportation
activities for different parts at possibly different stages of the production process.

2.4.1. The Grounder gringo

The Grounder used in the Potassco framework is called gringo. It is applying incre-
mental grounding by gradually increasing the atom base. Facts and rules that can be
derived independently can be grounded immediately while others are on hold until
their conditions are met. This can have a positive impact on grounding efficiency
and runtime overall.

2.4.2. The Solver clasp

The SAT solver used in the Potassco framework is clasp. The solving mechanisms
in clasp are based on algorithms such as DPLL and CDCL including Unit Propaga-
tion, Backtracking and conflict-driven learning techniques which guide the search
tree traversal and prune the search space. clasp is an evolution of the previously
mentioned algorithms with the concept that all inferences in ASP solving can be
regarded as Unit Propagation of so-called Nogoods [22]. Nogoods are local assign-
ments that can not be extended to a solution. Formally, a Nogood is a set of literals
{61,...,0n} defining an assignment that is unintended as it can not lead to a solu-
tion. A Nogood is violated by an assignment A if {01,...,0n} C A. Otherwise, if

29

{61,...,6n} € A, Ais asolution for a set of Nogoods [22].

When it comes to heuristic decisions to be made, clasp uses the Variable State In-
dependent Decaying Sum (VSIDS) heuristic as its default [31]. VSIDS is a heuristic
that selects the ground literals depending on their values inside the (local) program.
The value is resulting from the literal’s appearance in recent conflicts. Furthermore
it uses a decaying sum mechanism to adjust the scores or values dynamically over
time. For further details consult [32].

One important feature of clasp is the possibility to use Domain-specific Heuristics
into ASP solving which complements the solver’s default heuristics. This enables
to guide the search through non-determinism with experts knowledge and explore
promising zones of the search space first, potentially leading to a more efficient
search [31].

Heuristics are represented the following way:

#heuristic Ay : Ly, ..., Ly, [wQ@Qp, m]

The # symbol is used to signal meta-statements in clingo. Ay is an atom, Ly, ..., Ly,

is the body of a rule, and w, p and m inside the squared brackets are terms. Similar
as for Weak Constraints, w represents a weight, p is an optional prioritization and
m is a modifier representing different types of heuristic information. Six different
types for modifier m are available in clingo: sign, level, true, init and factor.
The heuristic modifier sign gives guidance for the assignment of the truth value
when the solver has to decide. By default the sign value is 0. If the sign value -
represented by w above - is set greater than 0, then the solver will assign the value
of the according atom to true. If the value is less than 0, it will be set to false. These
decisions will not impact the number of Answer Sets, but only the order in which
they will be identified and listed. To understand this concept, the modifier level will
be introduced as well and an example will demonstrate the impact on according
Answer Sets. The heuristic modifier level puts some kind of importance to the atoms.
In the Example 6, the solver is asked to assign two atoms with the truth value true
first. The Integrity Constraint disallows to have both true at the same time. So, the
modifier level determines which atom to set true first, i.e. transportMean(truck) in this
case:

Example 6.
#heuristic transportMean(truck). [1, sign]
#heuristic transportMean(aircraft). [1, sign)
#heuristic transport Mean(truck). [10, level])
{transport M ean(truck);transportMean(aircraft)}

: — transportMean(truck), transport Mean(aircraft).

Example 6 will result in providing the Answer Set {transportMean(truck)} first
as it is asked to be set to true due to its sign value of 1 and its higher level value than

30

transportMean(aircraft). The next Answer Set is {transportMean(aircraft)} and the
final Answer Set is the empty set. The Answer Set with both atoms is disallowed
due to the Integrity Constraint.

The modofier true combines the modifiers sign and level. The detailed explanations
of the other modifiers will be left out here as they will not be used for this thesis.
The interested reader is referred to [31].

clingo offers - among others - a vast set of additional features, including advanced
constraint and theory solving capabilities, optimization and hybrid solving tech-

niques. Some of these capabilities are still in the research stage [31].

With the Input Language explained, the next section will describe, how a Logistics
System can be modeled with ASP.

31

3. Representation of the Logistics System and the
Optimization Problem

This section will present how an industrial and logistics system — including the op-
timization problem and constraints — can be represented in a logic program with its
according facts and rules. This program is considered to be the baseline program.
Significant issues that are resolved with the new baseline and the according changes
of the encoding will be highlighted next.

This chapter will end with the features to be tested and their according formulations
in ASP.

3.1. Representation of the Logistics System

As common in logic programming and ASP, the program can be split into facts and
rules and structured in a Guess-and-Check architecture [33]. Guess-and-Check is a
structure which aims at finding solutions by first generating solution candidates
(Guess) and then filtering these by eliminating those that do not meet constraints or
conditions (Check).
The baseline program including facts and rules is defined as the baseline configura-
tion labeled with (baseline).
Find an overview of the facts, i.e. 15 predicates, their descriptions and the according
labels for further referencing in Table 1. Overall the logic program consists of more
than 30.000 instances of facts.

The predicates productionLocation/1 and warehouseLocation/1 simply define the do-
main of existing production and warehouse locations.
costLocation/2 provides the relative cost of working units per location and is required
to calculate the Production Costs per part at a specific production location.
country/1 defines the domain of countries where the production and warehouse lo-
cations are belonging, while locatedIn/2 establishes the relation between a location
and the country.
part/1 defines the domain of parts to be produced in a dedicated production step
and valueAdded/2 the according value or required workload to be manufactured in-
dependent from the production location. partProduceableAt/2 determines which part
can be produced at which production site.
productionPlan/2 provides the production sequence, telling which part is required
for another part as an input.
transportMean/1 sets the domain of available transportation means.
canBeTransportedFromTo/8 is the most complex fact providing all available trans-
portation links including the according properties of the link. There are more than
29.0000 facts of this predicate.

The rules to describe a logistics system are explained next.

32

Fact Description Label

productionLocation(aProduction) aProduction is a Location that can produce a part (prodLoc)

warehouseLoc(aW arehouse) aWarehouse is a Warehouse that can store and (wareLoc)
repack parts

costLocation(aProduction, 120) aProduction has a cost factor of 120 per unit (costLoc)

country(germany) Germany is a country (country)

locatedIn(aProduction,italy) aProduction is located in Italy (locIn)

part(partl) partl is a part to be produced (part)

value Added(part1, 30) partl has a value or workload of 30 units (valAdd)

partProduceable At(partl, aProduction) partl can be produced at production location aProduction (pProdceableAt)

productionPlan(part12, partl) partl is needed for production of part 12 (prodPlan)
and needs to be produced before part12

transport Mean(aircraft) an aircraft is a tranportation mean (transpMean)

canBeTransportedF'romTo(Hamburg, part2 can be transported from Hamburg to Toulouse by truck with (canBeTransp)

Toulouse, part2, truck,120,70,23,1200) distance 120, lead-time 70, Co2 emission 23 and transport cost 1200

elmentaryPart(part1) partl is an elementary part and therefore belonging (isElementary)
to the first stage of the multi echelon network

subAssembly(part12) partl2 is a sub-assembly part and therefore belonging (isSubAss)
to the second stage of the multi echelon network

assembly(part1234) part1234 is an assembly part and therefore belonging belonging (isAss)
to the third stage of the multi echelon network

final Product(part12345678) part12345678 is an elementary part and therefore belonging (isFinal)
to the last stage of the multi echelon network

Table 1: Overview of all facts of the logic program.

Find the overview of the baseline program rules —referred to as the baseline configu-
ration with the label (baseline) in Table 2. The following explanations are providing
the according label of the rules which are shown in the label column in the table.

At every production location there is an intrasite transportation available that can
transport any part within a location with distance zero. As a consequence, every
part can be transported intrasite: (intraSite).

It is always possible to transport a part directly from one production location to an-
other if it can be transported at all: (ruleDirect).

Another option is that the part goes via a Hub, which is a warehouse: (ruleVial).
Or the part can even be transported via two hubs, which significantly increases ac-
cessibility: (ruleVia2).

Finally, the solution candidates, i.e. the valid logistics system to be derived, are
represented by two predicates, path/8 and partProducedAt/2. Therefore these rules
reflect the guess part of the baseline program as described earlier.
partProducedAt/2 describes which part is produced at which site. Depending on the
Sourcing Strategy to be selected for the according echelon, it is expressed as a Choice
Rule/Cardinality Constraint. It is the implementation of the logical element which
represents the Set Multicover Problem as described in Section 1.2.1.

It must be possible to define the Sourcing Strategy per production stage consider-
ing the multi-echelon property of the production and logistic system. Therefore,
the Choice Rules are implemented for every level of the Multi-Echelon Production

33

Network: (choiceLv1), (choiceLv2), (choiceLv3) and (choiceLv4). This ensures that
every part is produced at at least at the number of sites that was set as the lower
bound. The baseline value is 2 for all lower and upper bounds resulting in a Double
Sourcing request for all production stages.

One important constraint is the implementation of the Workshare constraint ensur-
ing that every production location must at least produce one part. In the (baseline)
configuration, this is implemented as an Integrity Constraint: (workshare-IC).

The second solution candidate predicate, path/8, expresses a transportation path

between two production sites that needs to be performed with a specific transporta-
tion mean and the according attributes. As this is part of the solution to be derived,
it is expressed as a Choice Rule/Cardinality Constraint in the head of the rule. A
valid path can be either direct, via one hub or via two hubs. One out of of several
possible paths taking into account the correct production sequence, including the
choice of an available transportation mean, has to be selected: (choicePath).
Finally, the optimization statements used for the objective functions - or KPIs - can
be found in the group of rules (optim-baseline).
The first optimization statement aims at minimizing the Production Costs, the sec-
ond the Transportation Costs and the last one the CO; emissions. As no priorities
are set, clingo does prioritize in declining order of appearance. This topic will be
detailed later in section 3.2.1.

3.2. Major Issues of the initial Research Work

This thesis builds upon the initial research work done by the central R&T team and
it is worth to specifically look at some major shortcomings or issues in order to
understand the rationales behind some modified or new features implemented for
the baseline or to be tested in the experiments.

3.2.1. Optimization Statements

The initial problem encoding which is part of the bassline configuration is facing
general issues with the formulation of the optimization problem, making it unsuit-
able for a Pareto optimization and resulting in wrong results for some KPIs. This
needed to be resolved together with logical mistakes encountered.
The attempt for a Pareto optimization for the KPIs as mentioned above was realized
by three independent #minimize statements as visible in (optim-baseline).

clingo will prioritize by the order of appearance by default, meaning that the first
optimization statement will be optimized as first priority. Once this term is opti-
mized, the following optimization statements will be taken into account to break
the tie of the previous optimization [31]. As a conclusion, this might lead to a Pareto
optimization with a behavior that prioritizes accordingly and potentially generates
answer sets with unbalanced KPIs, meaning that the KPI with the highest priority
will have good values while the lower priority KPIs might be weak. 1.2.3.

34

Program excluding facts Description Label
transportMeanASite(P, intrasiteTransport) + productionLocation(P) intrasite transport available (intraSite)
at every site
canTransport(intrasiteTransport, Part) « part(Part) intrasite can transport
every part
direct(Part, From, To, TM, D, LT, CO2, TC) +~ canTransport(From, To, Part, TM, D, LT, CO2, TC) transport part directly (ruleDirect)
vial(Part, From, (Vial, To), (TM1, TM2), D, LT, CO2, TC) (ruleVial)
+ canTransport(From, Vial, Part, TM1, D1, LT1, CO21, TC1), From! = To, productionLoc(From),
productionLoc(To), warehouseLoc(Vial), canTransport(Vial, To, Part, TM2, D2, LT2, CO22, TC2), via one warehouse or
D = D1 + D2,LT = LT1 4 LT2,CO2 = CO21 + CO22, TC = TC1 + TC2
via2(Part, From, ((Vial, Via2), To), (TM1, TM2, TM3), D, LT, CO2, TC) (ruleVia2)

 canTransport(From, Vial, Part, TM1, D1), From! = To, productionLoc(From), warehouseLoc(Via1),

canTransport(Vial, Via2, Part, TM2, D2), Vial! = Via2, productionLoc(To), warehouseLoc(Via2),
canTransport(Via2, To, Part, TM3, D3), D = D1 + D2 + D3, LT = LTI + LT2 + LT3,

CO2 = CO21 + CO22 + CO23, TC = TC1 + TC2 + TC3

via two warehouses

« productionLoc(P), not produced (P)

produced(P) « producedAt(_, P)

at least one part per site

true if P produces a part

(workshare-IC)

1 {path(Part, From, To, TM, D, LT, CO2, TC) : direct(From, To, Part, TM, D, LT, CO2, TC); direct path, or (choicePath)
path(From, Part, (Vial, To), (TM1, TM2), D, LT, CO2, TC) :
vial(Part, From, (Vial, To), (TM1, TM2), D, LT, CO2, TC), path via one site, or
path(Part, From, ((Vial, Via2), To), (TM1, TM2, TM3), D, LT, CO2, TC),) :
via2(Part, From, ((Vial, Via2), To), (TM1, TM2, TM3), D, LT, CO2, TC),)} 1 path via two sites
« producedAt(Part, From), productionPlan (Super, Part), produced At(Super, To)
e{producedAt(Part, P) : produceableAt(Part, P)}e ¢ elementary (Part) depending on its echelon (choiceLv1)
s{producedAt(Part, P) : p t(Part, P)} s < Part) each part needs to be (choiceLv2)
a{producedAt(Part, P) : produceableAt(Part, P)}a + assembly(Part) produced at e, s, a or f (choiceLv3)
F{producedAt(Part, P) : produceableAt(Part, P)} f + finalProduct(Part) sites, with e, s,a, f € N (choiceLv4)
#minimize{ (Value - Cost) /e - o, Part, P : produced At(Part, P), valAdded (Part, Value), costLoc(P, Cost} inimize Production Costs (optim-baseline)

#minimize {CO2, Part, From, To, TM : path(Part, From, To, TM, D, LT, CO2, TC) }

minimize Transportation Costs

minimize CO, emissions

Table 2: Relevant rules and optimization statements of the (baseline) program excluding

facts.

35

3.2.2. Usage of Aggregates

A wrong usage of aggregates in the optimization statements as described in Exam-
ple 4 for Transportation and CO; Costs was detected resulting in values that are too
high for Multiple Sourcing Strategies. The starting point of the issue is the body B
of rule (choicePath) in Table 2.

While for a Single Sourcing Strategy there is only one production location se-
lected per part and therefore partProduced At(Part,From) would only evaluate to True
for one combination of part and production location, it will be True for multiple pro-
duction locations in the case of a Multiple Sourcing Strategy. The same applies to
partProducedAt(Part,To). This results in several combinations per part evaluating to
True in the body B(r) of this rule and ultimately in selecting multiple valid paths as
requested by the head of the rule H ((choicePath)).

All these valid paths are taken into account for the #minimize statements, which
are aggregates and therefore sum all elements and their contributing terms as if all
parts are taking every single path (see section 2.4). In fact, the overall number of a
specific part would be distributed among all existing possible paths. The number
of possible paths 7,4 can be determined by the number of production sites for
a dedicated predecessor part nbSitesy,.q and the number of sites for the successor
part nbSitesgyq. with:

Npaths = NbSTtes, eq - nbSTtesgyce

See the following example for two parts A and B with A needed for production of
B: In the case of single sourcing, the body of the rule (choicePath) only evaluates to
True for

Example 7.

< partProducedAt(Partl, SiteA), productionPlan(Part2, Partl), part Produced At(Part2, SiteC')

while for the example of a Double Sourcing for part1 and Triple sourcing for part2
all of the following bodies would evaluate to True and thus derive the Choice Rule
(choicePath) to select solution candidates with path/8.

partProduced At(Partl, SiteA), productionPlan(Part2, Partl), part Produced At(Part2, SiteC').
partProduced At(Partl, SiteA), productionPlan(Part2, Partl), part Produced At(Part2, SiteD)

partProduced At(Partl, SiteA), productionPlan(Part2, Partl), part Produced At(Part2, SiteE).
partProduced At(Partl, SiteB), production Plan(Part2, Partl), part Produced At(Part2, SiteC).
partProduced At(Partl, SiteB), productionPlan(Part2, Partl), part Produced At(Part2, SiteD).
partProduced At(Partl, SiteB), productionPlan(Part2, Partl), part Produced At(Part2, SiteE).

2 N Y

),
)
)
),
)
)

This example is reflected in Figure 11. For Single Sourcing, only one path can
exist through which the full flow of parts is guided. For the Multiple Sourcing with
n paths, the fraction of parts flow is only % for each existing path assuming that the
distribution among the paths is equal.

36

Singe Source Multi Source

Site A
Part 1

Site C
Part 2

Figure 11: Single-Sourcing vs Multi-Sourcing: Multiple paths

37

3.3. Overview of New Features and Expected Impact

Remember that the complexity of the problem is depending on the Scenarios. The
features to be tested will be tested on the (baseline) Scenarios. The baseline Scenario
is the Double Sourcing Strategy and the Warehouse option, which gives the choice
between no, one or two warehouse. The baseline configuration are all facts and
rules as presented in Tables 1 and 2. An overview of all new features to be tested is
shown in Table 3 with the according references of each rule or group of rules in the
label column.

The following description of the new features to be tested is split into two groups
depending on the expected main impact, i.e. on the KPIs or the Search Tree Traver-
sal.

3.3.1. Main Objective Functions

Different order of weightings/priorities of the main objective functions will be tested
as in rules (optim-1P-2C-3T), (optim-1T-2P-3C), (optim-1T-2C-3P), (optim-1C-2P-
3T), (optim-1C-2T-3P) and (optim-comb-Obj). Except for the last one, which will
replace the two first #minimize statements, all optimization statements are part of
the according configuration, but only with changing order of priorities as indicated
by the naming. This is expected to have a direct quantitative impact on the KPIs.
The active weighting of the optimization statements should also increase Variability
of the answer sets by optimizing in different directions. A combined multi-objective
function as in rule (optim-comb-Obj) will be tested to provoke different traversal
behavior of the optimizer on its convergence paths tackling hypothesis H1. A com-
bined function is an indirect mean to optimize two KPIs with the same priority as
long as both values are normalized. This is expected to result in a different behavior
of the solver than with independent optimization statements.

3.3.2. Search Tree Traversal

The active exploration of the search space is targeting to enable to prune the search
space effectively and efficiently and by that increasing the probability to converge
to an optimum. Only by steadily increasing the number of identified Nogoods, the
search space can be reduced to a manageable size [19]. Active traversal manage-
ment can also increase variability of the solutions and reduce runtime to find an
optimum.

For the purpose of search space pruning, the use of Integrity and Weak Constraints
to identify undesired solutions can be useful means. These are expected to in-
crease the number of detected Nogoods and actively trigger the main mechanism
of the solver and tackle hypothesis H2. Undesired solutions might refer to practical
constraints concerning the industrial setup, for instance, that some work packages
should be certainly assigned to some production sites.

38

On the other hand, implementation of domain knowledge by the means of Integrity
or Weak Constraints might have negative impacts by excluding or penalizing so-
lutions that could be mathematically optima, but are not desired solutions from
domain experts view. Runtime until convergence may increase as well when math-
ematically better solutions are excluded or penalized.

The following group of Integrity Constraints will be tested as a set: (minVal-IC).
These Integrity Constraints ensure that minimum workshares are allocated to cer-
tain production sites making results more valid for the end-user and expected to
prune the search-space. But it can also lead to excluding mathematically better or
even optimal solutions and therefore produce worse KPIs and longer runtime.
Weak Constraints will be tested in two ways. One Weak Constraint will be replac-
ing the (workshare-IC) rule from the (baseline) configuration: (nb-Sites—WC). The
weight w will be set higher than for all other optimization statements, so that over
time every site will be allocated with a part.

Second approach is to test Weak Constraints as domain knowledge representations
and compare them with domain heuristics implementations.

The strategic use of Weak Constraints as described in Section 2.4 may guide the
solver and reduce the runtime. As Weak Constraints are light versions of Integrity
Constraints, this might partially ease hypothesis H3 and prune the search space
while also guiding the solver actively. The guided search into more favorable areas
and rejecting solutions that are not valid or optimal is supposed to prune the search
space and reduce runtime required to find a (local) optimum.

The Weak Constraints to be tested are (min-hubs-on-locations), (min-prefer-trucks),
(min-prefer-certain-locations) and (min-back-forth).

The implementation of domain heuristics is an alternative way of domain knowl-
edge implementation. When applying a domain heuristic, it replaces the default
VSIDS heuristics for the concerned predicates and will set according atoms to True
when deciding on the atom. Therefore models including the preset domain heuris-
tics will be found earlier.

The domain heuristics to be tested are supposed to be counterparts of the Weak
Constraints mentioned above: (heu-hubs-on-locations), (heu-prefer-trucks), (heu-
prefer-certain-locations) and (heu-back-forth).

The Weak Constraints and domain heuristics aim to represent secured or assumed
knowledge about the mathematical optimum with regards to a specific objective
and are expected to find better KPIs faster for the addressed KPI, but can have ad-
verse effects on another KPI

(heu-prefer-certain-locations) and (min-prefer-certain-locations) are targeting to
find better solutions quicker for the Production Costs. The optimization of Produc-
tion Costs can be facilitated by guiding the search through preferred production
sites, 1. e. sites where the Production Costs are the lowest. Therefore this is also
expected to have a positive effect on the runtime. It can lead to lower performance
regarding the other KPIs though.

39

Program excluding facts

Description

Label

#heuristic producedAt(Part, P) : produceableAt(Part, P). [w, truc]

#heuristic producedAt(Part, P) : producedAt(Part, P), productionPlan(Super, Part)

subassembly (Part), produceableAt(Part, P). [w, true]

#heuristic producedAt(Super, P2) : productionPlan(SuperSuper, Super), productionPlan (Super, Part), producedAt(Part, P),

producedAt(Super, P), PL! = PL2. [w, false]

prefer to produce part
at site P

prefer to produce subassemblies
at same site as assemblies P

prefer trucks as transportation
mean

avoid transporting a part
when it needs to be
transported back

(heu-prefer-
certain-locs)

(heu-hubs-on-
location)

(heu-prefer-trucks)

(heu-back-forth)

#maximize {w, Part, Super, P : producedAt(Part, P), (choiceLvL2) (Part) }

#maximize{1, Part, From, To, TM, _, _, _, _), truck(TM) }

backAndForth(Part,

producedAt(Super, P2), produced At(.P), P21 = P

#minimize{w, Part, Super, P : backAndForth(Part, SuperSuper) }

) + productionP! , Super), produg an (Super, Part),

maximize number of sites where
sub- and assembly are done

maximize production at
certain sites

maximize usage of trucks as
transportation mean
minimize transporting a part
to be returned

(min-hubs-on-
locations)
(min-prefer-certain-locs)

(min-prefer-trucks)

(min-back-forth)

#maximize{1@1w, P : producedAt(Part, P)}.

maximize number of
production sites

(nb-Sites-WC)

« #sum{Value, Part : producedAt(Part, P), valAdded (Part, Value), locatedIn(P,)} < n.

 #sum{Value, Part : producedAt(Part, tls), valAdded(Part, Value)} < m

work share for France,
Germany,
Hamburg and

Toulouse with m,n € N

(minVal-IC)

#minimize{ (Value + Cost) /e@uw, Part, P : producedAt(Part, P), valAdded (Part, Value), costLoc(P, Cost) }

#minimize{((Value - Cost) + TC) /1 - e2, Part, P : producedAt(Part, P), valAdded (Part, Value), costLoc(P, Cost),

path(Part, From, To, TM, D, LT, CO2, TC) }

minimize Production Costs

minimize Transportation Costs
minimize CO, emissions

minimize sum of production
and transportation

(optim-1P-2C-3T)

(optim-1T-2P-3C)
(optim-1T-2C-3P)

(optim-1C-2P-3T)
(optim-1C-2T-3P)

(optim-comb-Obj)

Table 3: Overview of all new features to be tested .

All other Weak Constraints and heuristics are addressing to improve the Transporta-
tion and CO; Costs. (min-prefer-trucks) and (heu—prefer—trucks) take advantage
of the fact that some transportation means are considered “standard” transportation
means and therefore have the lowest Transportation Costs.

Considering the production plan, it seems reasonable that parts of the same level
are transported to a possibly close site or to the same site for further assembly, the
so-called hubs. Hubs can occur at different levels, but given the constraint that
each site needs to produce (at least) one part in one industrial system, they should
probably not be on all levels. Therefore it is chosen that sub-assembly and assembly
should be produced at the same location: (min-hubs-on-location) and (heu-hubs-
on-location).

Finally the rules (min-back-forth) and (min-back-forth) are trying to avoid so-
lutions where a part is produced in location A (previous), then sub-assembled in
location B (intermediate), and then again assembled in location A (last).

40

4. Methodology

The methodology chosen and applied in this thesis is an Experimental Quantitative
Methodology. It suits to quantify the influence of additional features and their accord-
ing impact on the objectives systematically. Quantitative experimental methods en-
able to find patterns or associations among design parameters and the outputs and
the according weighted dependencies [34].

This section will present how experiments will be conducted, the according data
gathered and the metrics applied to measure the performance of the tested features.
Three metrics will be used to determine the impacts of the dedicated rules on the
overall performance, i.e. the KPIs, the Variability and the Search Performance.

4.1. Design of Experiments

The research will be performed in two phases. In the Main Phase an independent
analysis of each feature will be conducted to have clear visibility of the single im-
pacts on Answer Sets and their associated measures, which will be presented in the
next sections. After presentation and discussion of the Main Phase results, propos-
als will be made for the second phase, the Final Phase configurations to assess the
conclusions made from the Main Phase.

The reference for all experiments are the results of the (baseline) configuration run,
including all facts, all rules and optimization statements as shown in Table 2.

An overview of all new features to be tested is shown in Table 3.

Each heuristic and Weak Constraint will be added individually to the (baseline)
configuration for simulation.

The rules (nb-Sites-WC) and (minVal-IC) and any combination of them will each re-
place the (workshare-IC) rule as they are alternative implementations of the Work-
share constraint. The constraints (minVal-IC) and (nb-Sites-WC) can be combined
and will be tested as well with the label (comb. nbSites-minVal). So will the combi-
nation (workshare-IC) and (minVal-IC) which is labeled (comb. baseline-minVal)
accordingly.

The optimization statements at the bottom of Table 3 are representing the same op-
timization statements of the (baseline) configuration, only with alternative weight-
ings of each KPIs, except for the rule (optim-comb-Obj), which will replace the first
two optimization statements concerning Production and Transportation Costs.

The timeout for every run is 36.000 seconds.

Every optimization run will generate the KPIs as described in Section 4.2.1. The
Answer Sets will be analyzed regarding their Variability with the method as de-
scribed in Section 4.2.2. And finally, the number of models will be logged for every
run to compare the Search Performance for the according configuration. The results
of the KPIs as well as for the Search Performance will be compared in percentages
against the reference results.

The features and configurations to be tested in the Final Phase will be defined
with the discussion of the Main Phase results in Section 6.

41

4.2. Evaluation Metrics

The Evaluation Metrics described in this section are the parameters to measure the
impact of each feature on the performance of the program. There will be two kinds
of evaluation metrics:

¢ the first group of metrics will refer to the main objective functions of the in-
dustrial and logistics system itself and act as a direct indicator of the impact
on the performance i.e. the KPIs

¢ the second group of metrics are auxiliary performance indicators measuring
the behavior of the solver and optimizer, especially with regards to its search
tree traversal and act as indirect indicators, i.e. Variability and Search Perfor-
mance

4.2.1. Key Performance Indicators of Objective Functions

Key Performance Indicators are all objective functions of the industrial and logistics
system. They refer to the two problems of Optimal Allocation of Part Production Across
Sites and Optimal Routing Across Production Sites as described in Section 1.2.1. These
are:

¢ Production Costs: Cost for production of all parts that need to be produced.
Production Costs are driven by the workload per part w,, which is fixed, and
the cost factor of the dedicated production location ¢, that is chosen to produce
the part, which is location dependent. The specific formula for the Production
Costs ProdCost of a part is

ProdCost = w, - ¢

which are implemented by the facts (valAdd) and (costLoc). See the according
formal optimization statements and implementation of the sum of all Produc-
tion Costs as an aggregate in the logic program in the first rule of the group
of rules (optim-baseline). It cumulates in the first term of the term tuple as
described in the aggregate part of section 2.4 and Equation 7.

¢ Transportation Costs: Cost of transportation activities are driven by the dis-
tance D of the transport activity and the transport cost per distance factor for
the transportation mean chosen. The according cost for a transportation link
between two production sites that perform consecutive activities are given
by facts as represented in the eighth argument in (canBeTransp). See the ac-
cording formal optimization statements and implementation of the sum of all
transportation costs as an aggregate in the logic program in the second rule of
the group of rules (optim-baseline).

42

¢ CO; emissions: Cost of CO5 emissions is driven by the distance D of the trans-
port activity and the transportation mean chosen similarly as for the Trans-
portation Costs. Nevertheless, these two are not fully linear as CO; emissions
and operational cost of a transportation mean are independent from each oth-
ers. The according CO; cost for a transportation link between two production
sites that perform consecutive activities is given by facts, represented as the
seventh argument in (canBeTransp). This optimization statement of the sum
of all CO; costs is implemented as an aggregate in the logic program in the
third rule of the group of rules (optim-baseline).

The general reference to compare the KPIs as defined above will be the according
results from the (baseline) run. All runs need to be confirmed by a validation run.
For the consolidated summary of all tested features, two additional trivial valida-
tion values will be determined, i.e. the best achievable Production Costs — labeled
(trivial-production) — and Transportation Costs — labeled (trivial-transportation).
Both are resulting from a (baseline) configuration run with 360.000 seconds timeout,
except that for the optimization statements (optim-baseline) only a single #minimize
statement each for Production and Transportation Costs only will be implemented.
For the Production Costs also the Workshare constraint (workshare-IC) is removed,
so that parts can be assigned to the lowest cost production sites where possible with-
out being forced to consider locations with higher costs.

These two values should help to better evaluate the quality of the potential Pareto
Front in a consolidated scatter plot of the two concerned KPIs.

As the CO; emissions have the lowest priority in the (baseline) configuration, they
will not be analyzed for Pareto optimal Answer Sets. The according figures of the
KPI will be available in the appendix.

4.2.2. Variability Measurement

The Variability of the Answer Sets is an indicator of how extensively the search
space is explored. The more the Answer Sets are diverse, the more confidence can
be gained that no global or local optimum is missed.

To measure Variability of the Answer Sets, a similarity unit of measurement is se-
lected that bases on the Jaccard-Coefficient. Originally developed by Salton & McGill
in 1983 [35] in the context of electronic information retrieval, it is generally speaking
a unit that measures commonality of two objects.

_ [P(@)nT()
T(a) UT()

See in Equation 10 how a Jaccard coefficient can be formalized. Following this, the
similarity is defined by the ratio of elements that two objects a and b share versus
the sum of all elements they relate to individually.

In this context it aims at comparing two Answer Sets that are represented as tables
including the columns Part, Produced At, Transported To and Transport Mean. The row

Jaccard(a,b) (10)

43

elements of the table are all transportation steps derived from the set of path/8 predi-
cates of the solution. As the path is determined by two decisions, i.e the allocation of
parts to production sites and the choice of transportation means between two sites,
the Jaccard coefficient will be split into two components. This could be regarded as
the split into node-similarity and edge-similarity when each solution is represented
as a graph as we did earlier.

First, the set with respect to the allocation of a part p € P to sites s € S for a model
is defined as

Snodes(p) - {Snodesl (p)7 cee 7Snodesn (p)}

with Spodes; () = {(p,si) | p € P, 1 <i < n} with n being the total number of sites
s € S producing part p € P. The corresponding set of all such sets is denoted as
Snodes = {Snodes(p) | p € P}. Likewise, the set of all sets with respect to all choices
of transportation means between sites for a model (or Answer Set) is defined as

Sedges = {Sed96517 cee >Sedgesm}

with m being the number of all performed transportation activities. Accordingly,
we compute the Jaccard similarity between two Answer Sets m; and my following
Equation 10:

|Snodesm1 N Snodesm2 |

Jproduction =
production
|Snodesm1 U Snodesm2 |

|Sedgesm1 N Sedgesm2 ’

Jtrans =
port
|Sedgesm1 U Snodesm2 ’

The similarity measure is applied in three ways. First, we compare the models of
the first and last model of some runs to determine the internal Variability within a
single run. Second, we aim to see the Variability against a reference model, which
is the last model of the (baseline) run to see how much Variability can be achieved
overall among different runs with different encoding. Finally, the configurations are
compared among each other to check whether they produce diverse Answer Sets.

4.2.3. Search Performance

The Search Performance is a mean to measure how good the solver can find models
for the given configuration. It will be measured by logging the number of models
found until standard timeout, i.e. 36.000 seconds. The figures will be presented in
percentages versus the models found by the (baseline) configuration.

Another aspect of Search Performance is whether an optimum was found before time-
out or not.

Finally, the grounding time is the last element of Search Performance, which will be
tracked for every optimization run.

44

5. Results of Main Phase

This section presents the results of the conducted experiments of the Main Phase as
described in Section 4.

Experiments were carried out on an AMD EPYC 7443P 24-Core Processor, 64GB
RAM type DDR4-3200. The timeout was set to 36.000 seconds. Note that in all
tigures, only every 100th model is plotted. The best performing rules regarding the
KPIs and Search Performance will be highlighted in grey in the tables.

5.1. Baseline Reference

Grounding took about half a minute and the first model was found after a few sec-
onds.

The reference for all further evaluations is the (baseline) run with a timeout of 36.000
seconds. It found more than 13.300 models. No optimum was found. See the out-
put of the model’s path/8 atoms with 132 lines, each representing one of the core
routes in Table 4. It contains all the arguments reflecting the decisions taken, i.e.
parts allocated to production locations (columns producedAt and part), the routing
(columns transportedTo and Transport Mean) and the associated costs (columns Dis-
tance, TranspRC, Co2 and Lead-Time).

number of models found after

configuration optimum found 36.000sec

(baseline) no 13.300 (100%)

Table 5: The number of models found for the (baseline) run

The respective KPIs for the last model are shown in Table 6 and defined as the
reference with 100% each. The figures refer to the definitions from Section 1.2.3, but
are all factorized, so that real figures are hidden due to confidentiality.

Costs after 36000sec timeout

model Production Transport CO,

last (baseline) 1.498.375 (100%) 1.322.027 (100%) 145.597 (100%)

Table 6: The reference KPIs of the (baseline) run.

Table 7 shows the percentages of the KPIs (Production Costs, Transportation Costs
and COs, costs) for the first and the last model of the baseline run. As the last model

45

Unnamed: 0 part producedAt transportedTo Transport Mean Distance TranspRC Co2 LeadTime
0 s6Tpart locationC locationD truckOversizedLowBed 2899 13044 2261 58
1 sdUpperpart locationC locationD truckOversizedLowBed 2899 13044 2261 58
2 s5UpperTpart location locationD truckOversizedLowBed 211 10399 1802 6
3 sdLowerFpart locationC locationD truckGeneralCargo 2899 10146 2055 53
4 s6Upperpart locationC localmnD truckGeneralCargo 2899 10146 2055 53
5 s3Fpart location] locatio truckOversizedLowBed 780 3511 608 16
6 part7 ation! locauoaneexengm oversizedBelugaXL 463 14824 22916 1
7 sdlowerTpart locationC locat truckLongDistance 2841 9944 2015 52
8 partd locationD Jocation oversizedUnderDeckRoRoShip 153 978 24 6
9 part3 locationD locationB oversizedUnderDeckRoRoShip 153 978 24 6
10 part7 locationl locationB oversizedUnderDeckRoRoShip 153 978 24 6
11 sdLowerFpart locationC locationB truckGeneralCargo 2841 9944 2015 52
12 s5LowerTpart locationC locationB truckGeneralCargo 2841 9944 2015 52
13 :ZUppc‘[Tparl location locationB truckOversizedLowBed 2368 10658 1847 47
14 part7 locationl ationB oversizedBelugaXL 631 20207 31239 1
15 part67 locationHdeBretagne locationE oversizedBelugaXL. 492 15745 24341 1
16 partl locationHdeBretagne locationE oversizedBelugaXL. 492 15745 24341 1
17 part2345 locationHdeBretagne location oversizedBelugaXL. 492 15745 24341 1
18 part67 TocationB tionE oversizedBelugaXL. 1266 40507 62621 2
19 partl locationB locationE oversizedBelugaXL 1266 40507 62621 2
20 part23d5 locationB locationE oversizedBelugaXL 1266 40507 62621 2
21 parts locationB locationB intrasiteTransport 0 0 0 0
2 part23yss locationB locationB trasiteTransport 0 0 0 0
23 party locationB locationB intrasiteTransport 0 0 0 0
24 partl locationB locationB intrasiteTransport 0 0 0 0
25 part6 locationB locationB intrasiteTransport 0 0 0 0
26 s3Tpart locationB locationB intrasiteTransport 0 0 0 0
27 partd locationB locationB intrasiteTransport 0 0 0 0
28 par2 locationB locationB intrasiteTransport 0 0 0 0
29 parts7 locationB locationB intrasiteTransport 0 0 0 0
30 s3Tpart locationD locationD intrasiteTransport 0 0 0 0
31 s6Upperpart locationG (naplesHarbor,locationD) (truckGeneralCargo,truckLongDistance) 1902 665 1349 35
32 s2LowerTpart locationG (naplesHarbor,locationD) (truckOversizedStandardBed,truckGeneralCargo) 1902 6684 1351 35
33 s3Fpart location] (marseilleHarbor locationB) (truckOversizedLowBed, truckOversizedLowBed) 2339 10523 1824 47
34 par2 locationD (edUnderl Ship,L {Transport) 2599 17623 481 104
35 partd locationD (edUnderl Ship,largeOr {Transport) 2599 17623 481 104
36 part7 locationD (edUnd, {Transport) 2599 17623 481 104
37 séFpart locationG (locationHHarbor locationD) (truckOversizedLowBed, truckOversizedLowBed) 3093 13920 2413 62
38 part7 (largeO InderDe 2678 18111 492 107
39 part2345 (largeO InderDe 2678 18111 492 107
40 part67 locationB (locationKHarborlocationK) (oversizedUnderDe 5Oy Transport) 9219 60882 1599 369
41 stUpperFpart locationC (dunkerqueHarborlocationD) (rxucthnexalCarbo!m:kLon&Dl:&ance) 3804 13313 2697 6
42 s3Fpart rochefort (dunkerqueHarbor locationD) (truckOversizedLowBed truckOversizedLowBed) 1398 6293 1091 28
43 s3Upperpart locationC (dunkerqueHarbor locationD) (truckLongDistance, seaL.argeContainerShip) 3763 11926 2278 81
44 s3Fpart rochefort (gruenendeichHarbor JocationB) (truckOversizedLowBedtruckOversizedLowBed) 1351 6083 1055 27
45 séUpperpart locationC (gruenendeichHarbor JocationB) (truckO: truckO 2865 12897 2236 57
46 sélowerTpart locationC (gruenendeichHarbor locationD) (truckLongDistance truckLongDistance) 2952 10333 2094 54
47 séUpperTpart locationC (gruenendeichHarbor locationB) (truckLongDistance truckShortDistance) 2865 10013 2032 52
48 s2UpperFpart locationC (gruenendeichHarbor locationB) (truckLongDistance, truckLongDistance) 2865 10030 2032 52
49 s2LowerFpart locationC (gruenendeichHarbor locationB) (truckLongDistance, truckLongDistance) 2865 10030 2032 52
50 s2LowerTpart locationF (gruenendeichHarbor locationD) (truckGeneralCargo,truckGeneralCargo) 2470 8645 1752 45
51 s2LowerTpart locationF (gruenendeichHarbor locationB) (truckGeneralCargo,truckGeneralCargo) 2383 8342 1690 43
52 s6Fpart locationG (gruenendeichHarbor locationB) (truckOversizedLowBed,truckOversizedLowBed) 1872 8028 1461 37
53 s6Tpart locationC (gruenendeichHarbor locationB) (truckOversizedLowBed truckOversizedLowBed) 2865 12897 2236 57
54 sSLowerTpart locationC (gruenendeichHarbor locationD) (truckOversizedLowBed truckOversizedStandardBed) 2952 13287 2303 59
55 sdUpperTpart locationC (gruenendeichHarbor locationD) (truckGeneralCargo,truckGeneralCargo) 2952 10333 2094 54
56 s3LowerFpart locationC (gruenendeichHarbor locationD) (truckGeneralCargo, truckShortDistance) 2952 10247 2094 54
57 s3Tpart locationD (locationBHarbor locationB) (oversizedUnderDeckRoRoShip kugelbake) 167 2 2 7
58 parté locationD (locationBHarborlocationB) (oversizedUnderDeckRoRoShip kugelbake) 167 2 w2 7
59 parts locationD (locationBHarborlocationB) (oversizedUnderDeckRoRoShip kugelbake) 167 2 @ 7
60 s3Tpart locationB (locationBHarborlocationD) (oversizedUnderDeckRoRoShip kugelbake) 167 4219 266 13
61 s5UpperTpart locationC (locationBHarborlocationD) (truckOversizedLowBed, dUnderl 3000 13799 2242 6
62 s5UpperTpart locationC (locationBHarborlocationB) (truckOversizedLowBed kugelbake) 2853 13059 2234 58
63 séLowerpart locationC (locationBHarborlocationD) (IrucvaexslzedLev\BedIxuckOvexslzechv\Bed) 2979 13406 2323 60
64 sLowerpart locationC (locationBHarborlocationB) (truckOversizedL 2853 12857 2219 57
65 seFpart locationC (locationBHarborlocationD) (rxuckO\u:lzchov\Bcd,nucvau:nzchu\«Bcd) 2979 13406 2323 60
66 s6Fpart locationC (locationBHarborlocationB) (truckOversizedLowBed, truckOversizedLowBed) 2853 12839 2225 57
67 part2 locationD (locationBHarbor locationB) (kugelbake kugelbake) 167 4451 281
68 s5UpperFpart locationC (locationBHarborlocationD) (truckLongDistance truckGeneralCargo) 2979 10426 2113
69 sSLowerFpart locationC (locationBHarborlocationD) (truckLongDistance, seaL.argeContainerShip) 3000 10176 2026
70 s5Upperpart locationC (locationBHarborlocationD) (truckLongDistance truckGeneralCargo) 2979 10426 2113
71 s2Upperpart locationC (locationBHarborlocationD) (r{uckLnngDnlan(ekmtkShuanstance) 2980 10320 2113
72 s5UpperTpart locationF (locationBHarbor locationB) truckOversi i 2387 10762 1856
73 s2UpperTpart locationF (locationBHarborlocationD) (nuckmemmdLowBed Huck(‘r\emmdl,owl}ed) 2513 1311 1960 51
74 sdLowerpart locationC (locationBHarbor locationB) (truckGeneralCargo,kugelbake 2853 10216 2033 53
75 s5LowerFpart location (locationBHarbor,locationB) (truckGeneralCargo, truckLongDistance) 2853 9986 2023 52
76 s3Upperpart locationC (locationBHarbor,locationB) (truckGeneralCargo,seaLargeContainerShip) 2853 9964 2017 52
77 s5Upperpart locationC (locationBHarbor,locationB) (truck eneralCargo,truckShorthslance 2853 9977 2023 52
78 s2LowerFpart locationC (locationBHarborlocationD) truckGeneralCargo,truckLongDistance) 2980 10430 2113 54
79 s3Upperpart locationA (locationAHarbor, locationB) (truckShoriDistanc sesLargeContainerShip) 27800 40057 1747 11
80 siLowerpart locationC locationD) truckLongDistance) 176 12800 2404 9%
81 s6Upperpart locationG locationB) ok LargeC truckLongDistance) 2301 6276 1074 62
82 s6Upperpart locationC locationB) truckGeneralC: LargeC truckLongDistance) 7793 2789 4118 189
83 siLowerTpart locationA i locationD) ShortDist LargeC LargeCa) 30908 4531 1941 1236
81 stUpperTpart locationA I locationB) Dist LargeC KGeneralCargo) 27020 41837 2610 1050
85 stUpperTpart location I locationD) truckGeneralC: LargeC Ship,truckGeneralCargo) 26962 41649 2569 1049
86 sdUpperFpart locatior I locationB) ShortDists LargeC S LargeC S 28257 40715 1775 1130
87 s2UpperFpart locatior I locationB) truckGeneralC: LargeC LargeC 7996 40351 1759 119
88 s3LowerFpart locationA ! locationD) (truckGeneralC: LargeC LargeC 27916 40237 1754 1116
89 s5Upperpart location! locationB) (truckLongDist: LargeC truckLongDistance) 4321 8473 975 149
90 stUpperFpart locationC locationB) (truckLongDist: LargeC truckLongDistance) 3865 12095 2290 85
91 s5UpperFpart locationC locationB) (truckLongDist: LargeC truckGeneralCargo) 12095 2290 85
92 s5Upperpart locationE locationD) (truckLongDist: LargeC LargeC 4607 738 52
93 s3LowerFpart locationC locationB) (truckGeneralCargo,seaLargeCt KLongDistance) 12005 2290 85
94 sdLowerFpart locati ' locationB) (Distance,seal argeC Kugelbake) 40329 1764 112
95 sdlowerTpart locationA ' JocationB) Dist: LargeC ICargo) 40099 1754 111
96 s5UpperFpart locatior ((locationAHarbor locationBHarbor),locationD) Dist LargeCa KLongDistance) 40543 1844 113
97 s5UpperFpart locationA ((locationAHarbor locationBHarbor) locationB) (truckGeneralCargo,seaLargeC truckShortDistance) 40104 1754 11
98 sSLowerFpart locationA ((locationAHarborlocationBHarbor),locationD) Dist LargeC KShortDistance) 40433 1844 1113
99 s2LowerFpart locationA ((locationAHarbor locationBHarbor),locationB) truckGeneralCargo seal argeCe sizedUnderDx 40141 1749 111
100 s2Upperpart locationA ((locationAHarborlocationBHarbor),locationD) truckGeneralCargo,seaLargeCe truckShortDistance) 40447 1844 113
101 s2Upperpart locationA ((locationAHarbor locationBHarbor),locationB) truckGeneralCargo,seaLargeC versizedUnderD: 40141 1749 1111
102 s3LowerFpart locationA ((locationAHarbor locationBHarbor),locationB) truckGeneralC: LargeCe i 1 10113 1754 1111
103 sdLowerpart locationA ((locationAHarbor gibraltarHarbor) locationB) (truckGeneralC LargeC LargeCa 40967 1786 1136
104 s2UpperFpart locationA ((locationAHarbor gibraltarHarbor),locationD) ‘Distance, seaLargeCe LargeCa 40839 1781 1133
105 sdLowerpart locationA ((locationAHarbor,portoHarbor),locationD) truckGeneralC: LargeCe LargeCa 40074 1747 112
106 s5LowerFpart locationA {(location Alarbor portobatbor) locationt) (truckGeneralC LargeC truckLongDistance) 43954 3255 1030
107 s3Upperpart locationA. (truckGeneral LargeC i 40074 1747 112
108 s2LowerTpart locationA ((lnLatmnAHzrbm,pnrmHarbm),localmnD) (truckOversizedLowBed,seaLargeC C. 40093 1748 112
109 séUpperFpart locationA anji 1 D) © e LargeC LargeContai 42478 1850 178
110 sdLowerFpart locationA locati locationD) truckGeneralC: LargeC LargeC 40452 1764 12
111 s6Tpart locationA. ((locationAHarbormarseilleHarbor) locationB) (truckOversizedLowBed,oversizedUnderD Ship,truckOversizedLowBed) 170214 5209 1052
12 par2 locationB i i i Ibak dUnderD Ship largeO (Transport) 1824 512 108
13 partd locationD izedUnderD dUnderD: 5 C (Transport) 19164 520 13
114 partd locationB edUnderD dUnderD: Ship,largeO (Transport) 18222 497 107
15 part6 locationB edUnderD dUnderD: Ship,largeO (Transport) 18222 497 107
116 partd locationB (edUnderD dUnderD: largeO (Transport) 18222 497 107
17 parts locationD kugelbak dUnderl largeOs (Transport) 2343 759 120
118 sdUpperpart locationA ') locationB) (truckGeneralC: dUnderL truckGeneralCargo) 168228 5024 1047
119 parts locationD edUnderD versizedUnderD JargeOr (Transport) 2189 577 128
120 parts locationB (edUnderD versizedUnderD largeOr (Transport) 2052 592 132
121 partl locationB Harbor) locationK) (kugelbak dUnderDe largeOs (Transport) 61176 1617 371
122 part2345 locationB Harbor) locationK) (oversizedUnderDe edUnderD e Transport) 60974 1602 370
123 part6? Harbor) locationK) (largeOy InderD largeO (Transport) 56605 1531 337
124 partl Harbor) locationK) (largeOy InderD largeO (Transport) 56605 1531 337
125 part2345 Harbor) locationK) (largeOy InderDe largeO (Transport) 56605 1531 337
126 s2LowerTpart locationG ((dunkerqueHarborlocationBHarbor),locationB) (truckGeneralC: dUnderD k ICargo) 10661 1369 60
127 s2UpperFpart locationC ((dunkerqueHarborlocationBHarbor),locationD) (truckGeneralC dUnderD: LargeContai 15733 2361 91
128 partl i i (largeO InderD kugelbake) 18404 510 108
129 s6Tpart TocationA ((locationAHarbor gibraltarHarbor),locationD) (truckOversizedLowBed,oversizedUnderD truckOversizedLowBed) 167738 5996 1026
130 s2UpperTpart locationA ((locationAHarbor gibraltarHarbor) locationB) (truckOversizedLowBed,oversizedUnderD kO dLowBed) 167997 6041 1027
131 s4Upperpart locationA ((locationAHarbor gibraltarHarbor),locationD) (truckO: versizedUnderDe 167738 5996 1026
132 s5LowerTpart locationA ((locationAHarbor gibraltarHarbor) locationB) (truckOversizedLowBed,oversizedUnderD truckGeneralCargo) 27068 165257 5847 1022

46

Table 4: The reference model last (baseline) printed as a table.

% of models cost to last (baseline)

model Production Transport COq
last (baseline) 100 100 100
first (baseline) 115 138 131

Table 7: KPI percentages of the baseline comparing the first and the last model

1.7M
1.6M : i .: S E ‘i
1.5M
1.4M

1.3M

Transportation Cost

1.2M

1.1M g o -

1.5M 1.55M 1.6M 1.65M 1.7M
Production Cost

Figure 12: Evolution of the Production Costs with respect to the Transportation Costs within
the (baseline) run

of the baseline run does act as the main reference for all evaluations it is set to 100%
as described above. The table shows that the values at the start of the run were
higher with 115% for Production Costs, 138% for Transportation Costs and 131% for
the CO9 emissions.

Figure 12 visualizes the evolution of the Production Costs with respect to the
Transportation Costs. Each dot represents a model and the progress is shown by
the colors of the dots, moving from dark purple for the first model to bright yel-
low for the last. A Pareto Front is indicated as described in Section 1.2.3 and Figure
5. The last models are those with the lowest Production Costs from the supposed
Pareto Front, but not the lowest Transportation Costs that were found in earlier iter-
ations.

Figure 12 on the other hand shows the evolution of the Production Costs with
respect to the CO, costs with a similar behavior. The models move from the upper

47

180k — = S
175k b s i

170k : G

165k

160k

Co2 Cost

155k
150k

145k

1.5M 1.55M 1.6M 1.65M 1.7M
Production Cost

Figure 13: Evolution of the Production Costs with respect to the CO; costs within the (base-
line) run

right corner to the lower left and a Pareto Front is indicated, but less obvious for
both KPIs.

The last scatter plot in Figure 14 visualizes the evolution of Transportation Costs
with respect to the CO3 costs. While there is still a tendency of dots moving from
the upper right corner to the lower left, there is no apparent Pareto Front and the
last models are clearly not close to a potential optimum with regards to the two KPIs.

Finally, Figure 15 presents how the Jaccard similarity values evolve from the first
to the last model within the (baseline) run. The x-axis is the index of the model
(every 100th printed) and the y-axis is the Jaccard similarity value, which is split
into production (orange) and transportation (green) similarity. The figure shows the
according similarity values of each model compared with the last (best) model.

The first model of the baseline run has similarities with the last model between
0.16 for transportation and 0.23 for production similarity. Similarity values steadily
go up until finally reaching 1.0 for both values. It can be observed that there is an
exponential looking increase of the transportation similarity at the end of the run.
This is an effect resulting from the prioritization of the optimization statements and
the way the solver manages these. With the (baseline) configuration, first the Pro-
duction Costs are optimized, then the Transportation Costs. Therefore, once the
Production Costs value has improved (one iteration), several iterations of improv-
ing the Transportation Costs follow. This reflects in the similarity values for trans-
portation. Secondly, transportation similarity is production similarity-dependent,
meaning that a transportation link can only be similar, when both nodes (produc-
tion sites) are already similar. Together this explains the increase at the end and is

48

180k
170k g . ?"l.
160k

150k

Co2 Cost

140k .
130k

1.1M 1.2M 1.3M 1.4M 1.5M 1.6M 1.7M
Transportation Cost

Figure 14: Evolution of the Transportation Costs with respect to the CO, costs within the
(baseline) run

also observed for all other runs (compare Figures 18 and 19).
The models are represented by the path/8 predicate as described in rule (choi-

cePath).

5.2. Workshare Constraint Implementations

The Workshare Constraint and its implementation is one of the elements to test fea-
tures as described in Section 3.3. Find the results below split by KPI evolution,
Variability and Search Performance.

49

production sim
* transport sim

4 o e e o
n o N ® © -

Jaccard similarity

e
>

.........

e
w

* oo
..........

o
N

.....
rarttestersetesseytne®
......
o
........
PORTPRORS oo i

0 20 40 60 80 100 120 140

Figure 15: Evolution of the similarity values within the baseline run.

5.2.1. KPI evolution

| [1
- |
N \ y\ b
= £ : ‘H \ \
¥ o\ \
! JIANTR"|
) M A
- N 1 9 \ N
i = § nay, NIV Y 4
§ = 2 f “ By N \ lll l.‘\
£ Y k] \| | K
! 3 * LR P
— £ y \ g IR
- . A\.Y'.'.A'.‘s‘\‘
"__ﬁ '._- ".] t*l YW I\
L b] L
L CH
~ Sy
..\—;W" _h_—___ ~
(a) Evolution of the Production Costs for the (b) Evolution of the Transportation Costs for
different Workshare implementations the different Workshare implementations

Figure 16: Evolution of the KPIs for the different Workshare implementations

Figure 16 shows how the KPIs evolved over time. The x-axis refers to the model
id (every 100th model) and the y-axis refers to the respective KPI. Regarding the
Production Costs, the baseline run, the (min-Val-IC) run and the (comb. nbSites-
WC/minVal-IC) run progress very closely and produce nearly the same number of
models while the (comb. baseline/minVal-IC) starts with the far best Production

50

% of models cost to last (baseline)

(workshare) implementation Production Transport COq
last (minVal-IC) 99% 107% 118%
last (nbSites-WC) 102% 106% 110%
last (comb. baseline/minVal-IC) 100% 100% 205%
last (comb. nbSites-WC /minVal-IC) 100% 87% 112%

Table 8: The KPI percentages of each heuristic in relation to the last (baseline) model. The
best results are highlighted in gray.

Costs and remains steadily below all other runs, but produces less models (see Fig-
ure 10. All configurations produce continuously decreasing Production Costs and
end up with similar Production Costs values.

The behavior concerning the Transportation Costs differs strongly from the rela-
tively homogeneous evolutions of the Production Costs. All configurations have
ups and downs throughout the runs, but finally reach similar Transportation Costs
values. The (comb. baseline/minVal-IC) rule does produce lower values compared
with all other configurations from the beginning before arriving in the same area as
the others towards the end of the run.

The CO, costs evolve similarly for all configurations, except for (comb. baseline/min-
Val) with steadily higher values, ending up at 205% above the baseline configuration
(see Table 8).

Figure 17 is exemplarily visualizing all Workshare constraints on a scatter plot
showing the Production Costs with regards to the Transportation Costs. This view
emphasizes the supposed Pareto Front from Figure 12 by producing diverse models
with diverse KPIs supporting the visibility of a Pareto Front. The variability of the
KPIs among the different Workshare constraints indicates variability of answers sets
as only differences in the models can lead to differences of the KPIs.

The direct measurement of the variability is subject to the next subsection.

5.2.2. Variability

The similarities within the runs are shown in four graphs, Figures 18a, 18b, 19a and
19b. Most of them are evolving similarly, with the production similarity starting
slightly above the transportation similarity around 0.2, is steadily remaining above
the transportation similarity until finally reaching 1. The transportation similarities
are increasing slower for most of the run, but having a steep increase for the last
models until reaching 1, too. In Figure 19, 19b the behavior of the (comb. baseline-

51

2.5M

19
g 2M - ‘,'l" 4
o e Pl
g ® 3 § S22 e 8 3 . P fe il
s ...l_ 0,200 0 % i’ RS .g-...). el pertr g e
g 15m "'“'lilb"*,q S 2280 TR
o ot : . .
o LTI . o3 = .
2 Lo : €5 ! " Sille 8
E 9 * = - ":
= ™ ¥ {
0.5M
1.5M 1.55M 1.6M 1.65M 1.7M 1.75M

Production Cost

Figure 17: Evolution of the Production Costs with respect to the Transportation Costs for the
different Workshare implementations

(a) Evolution of the similarities within the (b) Evolution of the similarities within the
(minVal) configuration run (nbSites-WC) configuration run

Figure 18: Similarity evolution of two single configurations

minVal-IC) run differs from the others. It starts with a higher production similarity
value of 0.6 already.

Note, that the general evolution of similarities as presented here also applies to
the following features and runs, so they will not be presented anymore, but are
accessible in the Appendix.

Figure 9 is providing an overview of all Jaccard similarities among the applied
Workshare configurations for both production (p) and transportation (t) similarities.
Production similarities vary between 0.375 to 0.69 while transportation similarities
range between 0.16 and 0.3.

5.2.3. Search Performance

Table 10 shows the number of models found until timeout for all different Work-
share representations. The (nbSites-WC) configuration was able to find 26% more

52

modet id moded id

(a) Evolution of the similarities within the (b) Evolution of the similarities within the
combined (nbSites-WC) and (minVal-IC) combined (baseline) and (minVal-IC) con-
configuration run figuration run

Figure 19: Similarity evolution of two combined configurations

Heuristic (minVal-IC) (nbSites-WC) (baseline/minVal-IC) (nbSites-WC/minVal-IC)
p t p t p t p t

(baseline) 069 029 05 0.24 0.53 0.2 0.63 0.3

(minVal-IC) 1 1 055 0.24 0.51 0.18 0.71 0.29

(nbSites-WC) 1 1 0.375 0.16 0.55 0.25

(comb. baseline/minVal-IC) 1 1 0.48 0.17

(comb. nbSites-WC/minVal-IC) 1 1

Table 9: Similarity comparison for all Workshare implementations for production sites (p)
and transportation similarities (t).

number of models found after

(workshare) implementation optimum found 36.000sec
(minVal-IC) no 113%
(nbSites-WQC) no 126%
(comb. baseline/minVal-IC) no 75%
(comb. minVal-IC /nbSites-WQC) no 107%

Table 10: The number of models found for the different Workshare implementations

53

models compared to the (baseline) while the (minVal-IC) and (comb. minVal-
IC/nbSites-WC) configurations still found 13% or 7% respectively more models.
Only (comb. baseline/minVal-IC) found less, namely 25% less models than the
(baseline).

5.3. Domain Heuristics

The results of the tested heuristics will be presented in this section. Find the results
below split again by KPI evolution, Variability and Search Performance.

5.3.1. KPI evolution

Figure 20 gives an overview of the evolution of the KPIs of the heuristics runs.

For the Production Costs, the (baseline), the (heu-reduce-back-forth) and the (heu-
prefer-certain-locations) configurations move closely with the (heu-prefer-certain-
locations) heuristic achieving better results shortly after start and the (baseline)
finding better solutions quicker towards the end of the run. The (heu-hubs-on-
locations-sub-assembly) starts with significantly better values and remains with
better values until it finally ends up with similar values as all other configurations,
except the (heu-prefer-trucks) heuristics which started with relatively good values,
but finishes worst with just minor improvements compared with the first model. All
heuristics end with the same result as the (baseline) run or worse (see Figure 11).
The Transportation Costs on the other hand are all better compared to the (baseline)
in the end for the applied heuristics, except for the (heu-reduce-back-forth)rule.
All heuristics improve the Transportation Costs values over time, but only the (heu-
prefer-trucks) rule ends up slightly worse than at the start, which is by far the lowest
Transportation Costs at the beginning. The (heu-hubs-on-location-sub-assembly)
heuristics achieves the best improvements right away from the start and finally ends
at 92% compared with the baseline, only outperformed by the (heu-prefer-trucks)
rule with 88% versus the baseline (compare Table 11). The CO, Costs evolution leads
to three observations: First, almost all heuristics have different starting points. Sec-
ond, except for the (heu-prefer-trucks) rule (174%, see Tablell) all end in the same
area, around 100% of the (baseline). And third, while starting worst, the (heu-hubs-
on-location-sub-assembly) heuristic outpaces all others with steep improvements
before reaching 3.000 models.

5.3.2. Variability

Concerning the Jaccard similarities among all heuristics, diversity is higher than for
the Workshare implementations, especially for the production similarities with val-
ues between 0.2 and 0.5. The transportation variability is again higher with values
of 0.15 to 0.23. See Table 12 for the precise values.

54

;W - sults
-‘
9
R mbi ! Wt |
AWM e
4 ML
1 AL
A \“ Y, 1
s 2 NV Wy \
2 p -3 8 17 N i
8 -
: = ‘ oy N1
o “ % \ r
§ '\.. ? ‘ﬁ l“ i n 1
& [— g A In N Y \
- L 2 N 1 11k L N
—— - { S’!;.\ Y I YR AT
— - \ Yy, 4 \ | N
o O e “h ;‘ ‘ m“\L | " 1 : D
" N | L
= o8 N [N R
iy . \ A
4 -
_-‘-‘ \ g Se—
—_—

model_id model_id

(a) Evolution of the Production Costs for the

(b) Evolution of the Transportation Costs for
tested heuristics

the tested heuristics

Figure 20: Overview of the resulting KPIs from the domain heuristics runs

% of models cost to last (baseline)

Heuristic Production Transport COq
last (heu-reduce-back-forth) 100% 106% 102%
last (heu-prefer-certain-locations) 100% 94% 98%
last (heu-prefer-trucks) 106% 88% 174%
last (heu-hubs-on-location) 100% 92% 105%

Table 11: The KPI percentages of each heuristic in relation to the last (baseline) model. The
best results are highlighted in gray.

Heuristic (heu-reduce-back-forth) (heu-hubs-on-locations) (heu-prefer-certain-locations) (heu-prefer-trucks)
P t P t P t P t
(baseline) 0.65 0.27 0.52 0.2 0.61 0.3 0.2 0.15
(heu-reduce-back-forth) 1 1 0.55 0.24 0.61 0.27 0.22 0.16
(heu-hubs-on-location) 1 1 0.43 0.19 0.15 0.11
(heu-prefer-certain-locations) 1 1 0.2 0.15

(heu-prefer-trucks)

1

1

Table 12: Similarity comparison for all heuristics, with respect to the production sites (p) and
transportation means (t).

55

number of models found after

heuristic optimum found 36.000sec
(heu-reduce-back-forth) no 114%
(heu-hubs-on-location) no 71%
(heu-prefer-certain-locations) no 102%
(heu-prefer-trucks) no 82%

Table 13: The number of models found for the different heuristics

5.3.3. Search Performance

Grounding took between 0.37 and 0.38 seconds. The Search Performance is reflected
in Table 13. The (heu-hubs-on-locations) and (heu-prefer-trucks) rules only find
71% and 82% of the number of models of the baseline run. (heu-prefer-certain lo-
cations) finds slightly more and (heu-reduce-back-forth) find even 14% more than
the baseline. No optimum was found by any configuration.

5.4. Weak Constraints

Find the results for the tested Weak Constraints below with the usual split by KPI
evolution, Variability and Search Performance.

5.4.1. KPI evolution

The evolution of the KPIs can be seen in Figure 21.

The Production Costs evolution is similar for all Weak Constraints and they achieve
values between 99% and 102% compared with the (baseline) with (min-prefer-
certain-locations) being the one configuration performing better than the (baseline)
and finding more models before timeout (+32% versus (baseline)) while all other
configurations find less (see Table 16). (min-reduce-back-forth) has a lower starting
point than the others, but quickly moves in the same areas as the other configura-
tions.

The Transportation Costs start with similar values for all configurations and end
close to the baseline for (min-prefer-trucks) and (min-hubs-on-locations). (min-
reduce-back-forth) quickly improves and finishes best with 93% versus (baseline).
(min-prefer-certain-locations) performs worst, ending at 121% versus (baseline).
CO; values start and evolve similarly for all configurations, except for (min-reduce-
back-forth) which starts with higher values, but improves quickly outperforming
the others before the 5000th model. (min-prefer-certain-locations) and (min-prefer-
trucks) have slightly better results than the baseline, while (min-hubs-on-location)
and (min-reduce-back-forth) have same or worse results (see Table 14).

56

2
2
2
8
g -
g p
E =
3 \ &
a g‘ %+
4 b
\ :
-0 T
\
T
—
- ~
‘\ ‘.—..
Sy -

model_id

(a) Evolution of the Production Costs for the
tested Weak Constraints

Ll
1 1 i
| 1
‘J'Lk “1 fV\' N1 | 1 4 1
T RY
9] \ \ i
] ™ ‘,'-"\f“‘"u LYt} N[Y bk
g > '} \ ’J l‘s\ A T | . s
3 1 N | N
§ 3 LY N
£ b -G\‘ [ig + 3
s Y Vi ¥
Y AN
«-«:"
X

(b) Evolution of the Transportation Costs for
the tested Weak Constraints

Figure 21: Overview of the resulting KPIs from the Weak Constraint runs

% of models cost to last (baseline)

Weak Constraint Production Transport CO,
last (min-reduce-back-forth) 102% 93% 105%
last (min-prefer-certain-locations) 99% 121% 96%
last (min-prefer-trucks) 101% 100% 99%
last (min-hubs-on-location) 100% 103% 100%

Table 14: The KPI percentages of each Weak Constraint in relation to the last (baseline)
model. The best results are highlighted in gray.

57

Heuristic (min-red.-back-forth) (min-hubs-on-loc.) (min-prefer-certain-loc.) (min-prefer-trucks)

p t p t p t p t
(baseline) 0.5 0.21 0.69 0.32 0.69 0.26 0.63 0.27
(min-red.-back-forth) 1 1 0.5 0.25 0.5 0.23 0.47 0.23
(min-hubs-on-loc.) 1 1 0.67 0.27 0.59 0.28
(min-prefer-certain-loc.) 1 1 0.67 0.27
(min-prefer-trucks) 1 1

Table 15: Similarity comparison for all Weak Constraints, with respect to the production sites
(p) and transportation means (t).

number of models found after

Weak Constraint optimum found 36.000sec
(min-reduce-back-forth) no 83%
(min-hubs-on-location) no 74%
(min-prefer-certain-locations) no 132%
(min-prefer-trucks) no 92%

Table 16: The number of models found for the different Weak Constraints

5.4.2. Variability

Jaccard similarities of the applied Weak Constraints move between 0.5 and 0.69 ver-
sus last (baseline) for the production and between 0.21 and 0.32 for the transporta-
tion.

The similarities among the Weak Constraint configurations are 0.47 to 0.67 for pro-
duction and 0.23 to 0.27 for transportation which are relatively narrow intervals
compared with the previous features, but confirming the tendency of higher vari-
ability of transportation compared with production. All figures can be seen in Table
9.

5.4.3. Search Performance

Grounding took between 0.36 and 0.4 seconds for all configurations. Table 16 shows
the percentage of models found versus the (baseline) run. As already mentioned in
the KPI evolution analysis, (min-prefer-certain-locations) has significantly higher
number of models found while the other Weak Constraints are significantly below
the (baseline) performance. No optimum was found for any run.

5.5. Optimization Statements

This section presents the Main Phase results of the different optimization statement
configurations.

58

- -0t
5 & himanis o
. ‘
S, 2
g _s. 3 M. \h.
< § of N L
2 \. ® Y : b \
B ‘s. E_ _\ yw~- v -.\
\%.‘ _\\ 1 “~ W
=y S o i U
_- b‘\
S
_ -
- \\-L.___v‘-
model_id model_id
(a) Evolution of the Production Costs for the (b) Evolution of the Transportation Costs for
tested optimization statements the tested optimization statements

Figure 22: Overview of the resulting KPIs from the optimization statement runs

5.5.1. KPI evolution

The evolution of the KPIs as visible in Figure 22 does strongly deviate from the re-
sults of the previous trials.

The Production Costs evolution of the (optim-1-2C-3T) configuration is the only one
with a similar behavior as the (baseline) and other configurations tested before end-
ing up with 102% compared with it (see Table 17 for all values). The configuration
(optim-comb-Obj) starts with lower values and is improving slowly, but there is no
valid tendency to be observed as the number of models found is very low compared
with all tested configurations and stops at 109% above (baseline). All other config-
urations move almost flat regarding the Production Costs finishing at 113% or 114%
of (baseline) costs.

The Transportation Costs again evolve similarly with continuously improving val-
ues for all configurations prioritizing Transportation or CO, Costs ending up with
significantly lower costs for both (see Table 17) compared to the (baseline). The
(optim-comb-ODbj) starts with the highest values, but shows a very steep improve-
ment of values stopping at 109% with the timeout without showing hints of satura-
tion. The (optim-1P-2C-3T) configuration show minor improvements with ups-and-
downs finishing at 107% of the (baseline). The CO; costs show similar evolutions
as the Transportation Costs, but behavior of all configurations is closer among each
others. All configurations end up with better values than the (baseline) or at least
equal, i.e. for (optim-comb-Obj).

59

% of models cost to last (baseline)

Optimization statement Production Transport COq
last (optim-1P-2C-3T) 102% 107% 84%
last (optim-1T-2P-3C) 114% 44% 58%
last (optim-1T-2C-3P) 113% 47% 62%
last (optim-1C-2P-3T) 114% 52% 59%
last (optim-1C-2T-3P) 113% 57% 60%
last (optim-comb-Obj) 109% 125% 100%

Table 17: The KPI percentages of each optimization statement in relation to the last (baseline)
model. The best results are highlighted in gray.

5.5.2. Variability

The production similarities versus the (baseline) are between 0.2 and 0.25 for all
configurations, except the (optim-1P-2C-3T) configuration with 0.61. The trans-
portation values versus (baseline) range between 0.14 and 0.21.

Among the optimization statements the values are between 0.21 and 0.65 for pro-
duction and between 0.14 and 0.43 for transportation. Find all values in Figure 18.
To visualize the impact of the alternative optimization statements on the KPIS as
well as on the variability, see Figure 23. Again a Pareto Front is implied, this time
approached from different directions than previously observed.

3M

2.5M
”
4
S
M S
c
o . 1] s L8 -'3 ge ¢ .:
5 LI ¢ s 94 s . '
.
g . . . l.\.. e : L s o ' . s
. .
2 1.5M i 4 o 2t
2 ' 3. o % iy B
c A o = o
: L
]
.
™M . l
. @ b
PPN ‘_ s
0.5M
1.5M 1.55M 1.6M 1.65M 1.7M

Production Cost

Figure 23: Evolution of the Production Costs with respect to the Transportation Costs for the
tested optimization statements

60

Heuristic (optim-1P-2C-3T) (optim-1T-2P-3C) (optim-1T-2C-3P) (optim-1C-2P-3T) (optim-1C-2T-3P) (optim-comb-Obj)

P t P t P t P t P t P t
(baseline) 0.61 0.21 0.2 0.18 0.21 0.2 0.2 0.17 0.2 0.16 0.25 0.14
(optim-1P-2C-3T) 1 1 0.25 0.17 0.28 0.17 0.26 0.18 0.25 0.18 0.24 0.14
(optim-1T-2P-3C) 1 1 0.65 0.43 0.57 0.31 0.61 0.32 0.25 0.17
(optim-1T-2C-3P) 1 1 0.55 0.31 0.57 0.3 0.28 0.17
(optim-1C-2P-3T) 1 1 0.51 0.31 0.21 0.16
(optim-1C-2T-3P) 1 1 0.22 0.15
(optim-comb-Obj) 1 1

Table 18: Similarity comparison for all optimization statements with respect to the produc-
tion sites (p) and transportation means (t).

number of models found after

Optimzation statement optimum found 36.000sec

(optim-1P-2C-3T) no 86%
(optim-1T-2P-3C) no 107%
(optim-1T-2C-3P) no 110%
(optim-1C-2P-3T) no 99%
(optim-1C-2T-3P) no 84%
(optim-comb-Obj) no 10%

Table 19: The number of models found for the different optimization statements

5.5.3. Search Performance

Grounding too between 0.39 and 0.41 seconds for all configuration except for the
(optim-comb-Obj), which took almost five minutes. Finally, the number of found
models can be seen in Table 19. The only configuration with Production Costs as
the top priority like the (baseline) configuration found 14% less models. The two
configurations prioritizing the Transportation Costs are producing few more models
than the (baseline) while the two prioritizing CO, produce few less. No optimum
was found for any configuration.

5.6. Consolidated Result

To get the full and consolidated picture of all the tested features, all experimental
results are gathered in one scatter plot and compared with trivial validation op-
timization runs. These validation runs were configured as described in Section 4
and are supposed to provide the lowest values that can be achieved for Production
and Transportation Costs optimized exclusively while at least holding the minimum
constraints of feasibility. For the best achievable costs the rule (workshare-IC) from
the (baseline) configuration was removed, so that solutions were only constrained
by the facts (pProduceableAt). As a consequence, the resulting Production Costs re-

61

flect the best possible cost under realistic conditions, which is 1.442.125 (96% versus
(baseline). The best achievable Transportation Costs is 522.286 (40% versus (base-
line)) accordingly.

See Figure 24 for a consolidated result with all tested features included. Every fea-
ture out of 11 is plotted with a dedicated color. Now the Pareto Front is clearly
visible. The distribution of the models across the scatter plot shows the diverse
penetration of the search space as only different models can produce different KPIs.
The Pareto Front is approached from diverse areas of the search space into differ-
ent directions. The two lines mark the results of the best Production Costs (orange)
and Transportation Costs (green) from the trivial configuration as described above.
It shows that the best possible Transportation Costs is almost reached and the best
Production Costs very close (note, that the scale of the Production Costs axis is much
finer).

4Mm

= N w
n N n w in
= = = = =

Transportation Cost

2

o
n
=

1.4M 1.45M 1.5M 1.55M 1.6M 1.65M 1.7M 1.75M 1.8M
Production Cost

Figure 24: Evolution of the Production Costs with respect to the Transportation Costs for all
tested features

Overall the best values were achieved by the rule (min-prefer-certain-locations)
for Production Costs (highlighted in green in Table 14) and (optim-1T-2P-3C) for
Transportation and CO; Costs (highlighted green in Table 17).

62

The results of the Main Phase will be interpreted in the next section.

63

6. Discussion of Main Phase

This section aims at interpreting the results presented in the previous section. It will
compare the results with the hypotheses and Research Questions expressed in Sec-
tion 1 and the specific expected impacts of the features to be tested in Section 3.3.
The first observation made is that, regarding the KPIs, the far biggest impact was
achieved by modified weightings and prioritization of the KPIs as implemented
with all optimization statements targeting Transportation or CO; costs (see Table
17). The improvements of these two KPIs were between 40 to 56% for all tested opti-
mization statements while improvements for Production Costs were rarely achieved
by any tested feature or only 1% versus the (baseline) configuration which already
prioritizes Production Costs. The consolidated scatter plot of the KPIs as in Figure
24 including the different KPI weightings reinforces the visibility of a Pareto Front
and demonstrates that with the use of different configurations the best achievable
values for Production and Transportation Costs are almost reached for both. This
and the observation that the Pareto Front is approached from different directions is
providing an answer to the first Research Questions. The selection of the KPIs and
the active weighting of the according optimization statements can lead to improved
answers sets with regards to the objective functions, not only with better values for
individual KPIs, but for many more balanced Pareto optimal solutions in between.
A Pareto front is clearly indicated with higher variability of the KPIs and deeper
penetration of the solution space. A higher variability of the Answer Sets is sup-
porting this and will be described below.

The impact of the prioritization of the optimization statements seems to play a big-
ger role for all other means as well. This assumption is supported by looking at
the KPIs evolutions for the tested features in Figures 16, 20 and 21. Regarding the
Production Costs all tested features show a similar evolution with continuously im-
proving values over time. The impact of the features is limited to accelerating or
slowing down the improvements, but the general tendency remains. For the other
KPIs, Transportation and CO, Costs the evolutions look rather random, even for
those heuristics and Weak Constraints that were addressing them directly as de-
scribed in section 3.3.2. Therefore the conclusions that can be drawn from the impact
of the tested features on KPIs which are not prioritized could be limited while fea-
tures that were targeting Production Costs, i.e. (heu-prefer-certain-locations) and
(min-prefer-certain-locations) were leading to slightly better outcomes quicker as
it was expected. These two rules also led to higher Search Performance reflected
in more models found, especially for the Weak Constraint (+32%), while all other
Weak Constraints found fewer models. This could indicate that Weak Constraints
directly addressing the prioritized KPI can foster Search Performance.

The possible positive effect of Weak Constraints on Search Performance is also hinted
by the tested rule (nbSites-WC). Again the Weak Constraint leads to significantly
more models found (+26%, see Table 10) which hints to the assumption that the
Workshare constraint could be realized more smoothly than with the (baseline) con-

64

figuration and the according implementation as an integrity constraint, i.e. (workshare-
IC). The (minVal-IC) still finds +13% more models. All together these observations
can support the hypothesis that Weak Constraints can guide the solver more effi-
ciently. Nevertheless it needs to be considered that KPIs of the different Workshare
configurations can not be compared directly as they modify the solution space dif-
ferently.

Overall the rule (heu-prefer-certain-locations) had a positive impact on all KPIs
while also slightly increasing Search Performance making it a good choice for gen-
eral implementation. The Weak Constraint (min-prefer-certain-locations) produced
the best Production Costs from all features and increased Search Performance the
most. heu-hubs-on-location) produced better results for the Pareto optimization
of Production and Transportation Costs. The optimization statement (optim-1T-2P-
3C) performed best for Transportation and CO; Costs. The Workshare constraint im-
plementation (comb. minVal-IC/nbSites-WC) produced good KPIs and still made
solutions more desirable, because it incorporated important domain knowledge and
is therefore recommended for all future runs.

Regarding Research Question 3, the results hint at positive impacts of the heuristics
and Weak Constraints on Search Performance, especially when they target higher
prioritized objective functions.

An observation worth mentioning are the results regarding the features concerning
the optimization statements. As stated at the beginning of this section, only the
prioritized KPI was showing the typical behavior of continuous improvement over
time for all tested features, while Transportation and especially CO, Costs rather
evolved randomly. This behavior changes for all optimization statements prioritiz-
ing Transportation or CO; costs, making the values continuously improving. This
emphasizes that it can make sense to apply active and alternative weightings of
the optimization statements in order to be able to optimize as well for the other
KPIs and to generate solutions that might dominate the solutions from the (base-
line) configuration in the meaning of a Pareto optimization as described in Section
1.2.3. It could be observed that Search Performance was highest when the opti-
mization prioritization was on the KPI with the highest variability — both in terms
of KPI values and solution candidates — which is Transportation Costs in this case.
This might be a consequence of the solvers behavior when optimizing for multi-
ple objective functions. Once it improves the value of the primary KP], it will first
optimize the lower priority KPIs before turning back to the highest priority and im-
prove the value with one iteration. When the lower priority KPIs have significantly
higher variability, this might be more time consuming for the overall optimization
run. Further research is needed to investigate this hypothesis. The (optim-comb-
Obj) configuration shows promising directions when looking at the KPI evolution
curves (see Figure 21). Though, the Search Performance is low and the grounding
took roughly five minutes compared to less than 0.4 minutes for all other configura-
tions.

It is clearly visible that all features that were tested were leading to diverse Answer

65

Sets as reflected in the similarity comparison Tables 9, 12, 15 and 18. Throughout all
features similarities of the last models were between 0.14 and 0.43 for transporta-
tion and generally higher for production from 0.2 to 0.69. As a consequence, the
variability of the Production Costs KPI was also low as described earlier. If a global
optimum exists, this values could also indicate how close the solutions are to that
with the experiments conducted so far with a timeout of 36.000 seconds. In the
case of a global optimum for Production Costs, the similarities need to reach 1.0
for different configurations. With all last models prioritizing the Production Costs,
the average production similarity .J(p) is relatively high, but still far from 1.0 with
J(p) = 0.5. This value incorporates a noticeable low production similarity of the
(heu-prefer-trucks) configuration of only between 0.15 and 0.22 compared with the
other heuristics applied. This might be the result of reducing feasible solutions to the
assignment of parts to production sites when preferring truck transportation as not
all sites can be connected via truck transportation. But the impact still seems higher
than expected considering that still the (workshare-IC) rule from the (baseline) con-
figuration requires all production sites to be involved in the logistics network.

The results presented earlier and the fact that production similarities average is 0.5
and transportation even below, imply that the timeout of 36.000 seconds is not suf-
ficient to converge to any optimum and to enable deeper conclusions about the fea-
tures implemented. This is emphasized by the fact that no configuration found an
optimum. It can also be concluded that the search space has still not been pruned
sufficiently and further constraints or even facts need to be added to achieve con-
vergence.

Some results are unexpected, such as the fact that the rules (heu-hubs-on-locations)
and (min-reduce-back-forth) start with noticeable better solutions with regards to
Production Costs despite the fact that these features target Transportation Costs op-
timization, so an adverse impact was rather expected.

Finally, the behavior of the combined objective function implemented with the rule
(optim-comb-Obj) is remarkable (see Figure 22). It starts with the lowest Production
Costs values and the Transportation Costs improve drastically. As the combined
objective function requires an additional optimization statement which includes the
sum of two terms that are subject to two optimization statements themselves, the
grounding times are much higher and Search Performance gets very low due to the
hugely increased number of ground rules (30 million vs. 1.5 million for all other
configurations). Nevertheless, the fact that the evolution of the curves look promis-
ing and a combined objective function is a way to equally weigh two KPIs it could
lead to interesting results as it looks for more balanced Pareto optimal solutions
than the weighted optimization statements which will look to find solutions on the
Pareto Front that are minimal with regards to the highest weighted KPI. The ob-
servation of the combined objective functions behavior seems promising on much
longer runtime and guided search.

Summary regarding the Research Questions:

66

1. yes, the active and alternate weighting of the objective functions has a major
impact on the results and does produce variability in the Answer Sets, increas-
ing the solution space penetration and finding better solutions with regards to
some specific KPI, but also finding more Pareto optimal solutions on the Pareto
Front. A combined objective function which weights different KPIs equally
can be a good alternative for more balanced Answer Sets on the Pareto Front.

2. yes, with constraints: heuristics and Weak Constraints can help finding bet-
ter solutions quicker, but only when they address the primary KPI. Otherwise
their impact is weakened, but can still lead to much higher variability of An-
swer Sets during the search. The impact of heuristics and Weak Constraints
on the overall outcome of objective functions seems moderate. But especially
Weak Constraints seem to be able to increase Search Performance by guiding
the search more smoothly than an Integrity Constraint could do.

3. yes, the combined use of all features can lead to better answers sets with re-
gards to the objective functions and more variability of the solutions. The use
of heuristics and Weak Constraints should be aligned with the weighting of
the objective functions to find better solutions quicker.

Still, no configuration found an optimum, so the solution space was still not pruned
sufficiently and the tested features were not able to provide enough guidance to
converge to an optimum.

Following the results of the Main Hhase and the according discussion here, the
following configurations will be tested with a 360.000 second timeout in the Final
Phase:

¢ (conclusion-1): targeting all KPIs, the best performing heuristic (heu-prefer-
certain-locations) will be tested together with the generally implemented ones
as below. the optimization statements remain as for the (baseline) configura-
tion.

* (conclusion-2): targeting Transportation and CO; Costs, the best performing
rules (heu-hubs-on-location) and the optimization statement (optim-1T-2P-
3C) will be applied

¢ (conclusion-3): in order to increase search efficiency, the rule (min-prefer-
certain-locations) will be applied together with the combined objective func-
tion (optim-comb-Obj) which looked promising with regards to more bal-
anced KPIs.

All tested configurations will implement (comb. minVal-IC/nbSites-WC) into
the baseline. The timeout will be extended to 360.000 seconds (10 times of previous
experiments). These configurations follow the conclusion that the prioritization of
the objective functions is a key driver of the runs’ behavior and the impact of applied
features is strongly dependent on it.

Find the results of these final experiments in the next section.

67

% of models cost to last (baseline)

final configuration Production Transport COq
last (conclusion-1) 97% 105% 182%
last (conclusion-2) 107% 52% 152%
last (conclusion-3) 108% 96% 143%

Table 20: The KPI percentages of each final configuration in relation to the last (baseline)
model.

7. Results of Final Phase

This part presents the results of the conducted experiments of the Final Phase as
described in Section 4.

Experiments were again carried out on an AMD EPYC 7443P 24-Core Processor,
64GB RAM type DDR4-3200. The timeout was set to 360.000 seconds. Note that in
all figures, only every 100th model is plotted.

7.1. KPI evolution

Taking the results from the Main Phase, the discussion of these and the according
proposed configurations to be tested in the Final Phase, find now the results of the
final configurations (conclusion-1), (conclusion-2) and (conclusion-3) as described
at the end of Section 6.

The (conclusion-1) configuration which intends to further improve the Production
Costs KPI was able to find the best value so far with 97% versus (baseline) (see Table
20 and practically finding the best possible result holding the according constraints.
This is supported by the evolution of the Production Costs over time, which implies
a saturation. The Transportation and CO, Costs are worse than for the (baseline)
run though.

The last model of (conclusion-2) does not reach as good results for its main tar-
get Transportation Costs (-48%) compared with (optim-1T-2P-3C) (-56%) versus the
(baseline), but is better for Production Costs making the configuration as good at
least for a Pareto optimization of these two KPIs. CO; costs are significantly worse.
This configuration also shows first indications of a saturation as visible in Figure 25.
Finally, configuration (conclusion-3) with a combined objective function remains
above all reference (baseline) KPIs, but the values are better balanced across the
KPIs and the evolution of the KPIs still looks promising as still no signs of satura-
tion are shown for Transportation Costs.

68

it
"." -

production costs
FEFENE
P

LY

model_id model_id

(a) Evolution of the production costs for the (b) Evolution of the transportation costs for
final configurations the final configurations

Figure 25: Overview of the resulting KPIs from the final configuration runs

final configuration (conclusion-1) (conclusion-2) (conclusion-3)
p t p t p t
(baseline) 057 022 0.21 0.13 0.21 0.13
(heu-prefer-certain-locations) 0.65 0.2 0.21 0.14
(optim-1T-2P-3C) 0.16 0.14 0.22 0.14

Table 21: Similarity comparison for all final configurations, with respect to the production
sites (p) and transportation means (t).

7.2. Variability

The similarities among the final configurations and their main inspired configura-
tions show that they still differ strongly regarding their final models (see Table 21).
Production similarity between (min-prefer-certain-locations) and (conclusion-1) is
relatively high with 0.65, but still distant from 1.0.

7.3. Search Performance

The number of models found over time is steadily decreasing for all configura-
tions. The solver seems to be struggling to find new, improved models especially
for (conclusion-2), which found no better model anymore after the 6.000th model
which was already after 1.180 minutes. (conclusion-3) showed a heterogeneous be-
havior, generally still slow in finding models, but partially with better performance
and phases of longer pauses. See Table 22 for details.

69

number of models found after

final configuration optimum found 360.000sec

(conclusion-1) no 114%
(conclusion-2) no 56%
(conclusion-3) no 27%

70

Table 22: The number of models found for the different final configurations

The results of the Final Phase will be discussed next.

8. Discussion of Final Phase

In this section the outcome of the final configurations experiments will be discussed
and whether the are able to confirm the expectations.

The (conclusion-1) configuration, which prioritizes the Production Costs, achieves
almost the best possible values with 97% versus (baseline) configuration and only
1% above the best achievable value of the (trivial-production) configuration already
after 4.306 minutes. On the other hand, the value for Transportation Costs is slightly
higher (+5%) and CO; Cost significantly higher (+82%). A similar effect is observ-
able for the (conclusion-2) configuration for the prioritized Transportation Costs
KPI and the others. The values are very close to the best achievable value of the
(trivial-transportation) configuration taking into account that all configurations in-
corporated the rule (comb. baseline/minVal-IC), which prunes the search space,
but also removes possibly better solutions with regards to the KPI.

Two conclusions could be drawn from these figures: First, that with longer runtime
the setup with several optimization statements and according weightings, the top-
prioritized KPI will be able to almost achieve the best possible value. Second, that
this will happen at the expense of the other KPIs, finally leading to more unbal-
anced KPIs, which are usually not the preferred solutions when going for a Pareto
optimization. The (conclusion-3) configuration with the combined objective func-
tion seems to produce more balanced KPlIs, but still has low Search Performance,
possibly due to the huge number of ground rules as described earlier. A modified
formulation of the combined optimization statement could be attempted to tackle
this issue.

Still, none of these configurations did find an optimum, but only showed signs of
saturation close to the best possible values of the prioritized KPI for the (conclusion-
1) and (conclusion-2) configurations. They were also struggling to find any new
model a lot in advance of the timeout (see below). Apparently, the search space was
still not sufficiently pruned, which is the main obstacle to converge to an optimum.
Looking at the number of models found to get the best model, it took 15.100 mod-
els and 4.306 minutes for (conclusion-1) and 6.000 models and 1.180 minutes for
(conclusion-2) to get there with the better overall results for (conclusion-2) (see Table
20. This reinforces the hypothesis of the possible positives impact of putting priority
higher for the KPI that has higher variability.

With all the results discussed, find the Conclusion in the next section.

71

9. Conclusion

This final section will conclude the work in this thesis with summarizing the main
contributions and proposing future work.

9.1. Summary of Contributions

With the features tested in this thesis, it was possible to produce a clearly visible
Pareto Front for the primary KPIs Production and Transportation Costs and hints
of a Pareto Front for all other combinations of KPIs. The best single configurations
achieved KPIs that were close to the best achievable values for the according KPIs
resulting from the trivial validation runs. The configurations from the Final Phase
even reached near-optimal KPIs after relatively short runtime, especially consider-
ing the vast solution space.

The tested heuristics have demonstrated that they can find better solutions quicker
when they are targeting the prioritized KPI of the optimization run. As expected,
solutions are getting closer to configurations without the use of heuristics on the
mid and long term.

Similarly Weak Constraints could unfold their impact mainly when they addressed
the KPI with the highest prioritization for the optimization run, either with slightly
better results or often with a higher Search Performance.

The impact of heuristics or Weak Constraints were strongly weakened, invisible or
even counterproductive when not addressing the KPI with the highest priority. All
this demonstrates the importance of the optimization statements and the according
weighting on the outcome.

This said, the results of the tested optimization statement configurations had the
biggest impact on the KPI results and it is recommended to actively manage these
to achieve the best results. Combined objective functions can lead to better balanced
results of several KPIs than individual, prioritized optimization statements, which
tend to optimize in favor of the highest prioritized KPI at the expense of the others.
All tested features led to diverse Answer Sets. If there is an interest in exploring
the solution space, the use of the tested features can help. Additionally, the diverse
solution space penetration offers better visibility of the Pareto Front and provides
more solutions on it which can be of interest.

None of the runs found an optimum, so the search space was still not pruned suf-
ficiently and timeout times were still too low. Trivial test runs with single objective
optimizations and simplified constraints provided lower bounds of the KPIs which
showed that the obtained KPIs from the tested features are close to the optima, but
failed to converge.

There are some hints that Search Performance can be improved when considering
the variability of a KPI or the size of the search space that drives the according KPI.
Putting higher priority to the KPI with higher variability could lead to shorter run-
time.

The experiments were conducted with a single real-world dataset and confirmed

72

with validation runs. Due to the high complexity of the data, the IT platform and the
Design of Experiments, the features could not be tested on new datasets or smaller
test instances. It is recommended to do this to ensure transferability of the results.
Overall this thesis can contribute to the activities of industrial architects in reduc-
ing times to find good and diverse solutions on the Pareto Front of two KPIs. It
can support an iterative process to explore the solution space and find desirable
configurations. Taking into account the vast solution space in this thesis, the qual-
ity of Answer Sets is impressive and makes ASP a very interesting paradigm to be
followed up for industrial design optimization activities.

9.2. Future Work

The future work will tackle shortcomings and limitations of the current work, but
also deal with additional capabilities that were not used for this thesis, either to en-
sure comparability with previous work, lacking maturity of the capabilities or due
to resource and time restrictions.

No configuration and run has found an optimum, which necessitates future research
to extend the timeout limit. Also, additional constraints and facts need to be added
to further prune the solution space. For this, promising and desired elements of
generated models can be used to set them as new facts or preferences, either as con-
straints or heuristics. One idea is to set intervals for the KPIs resulting from the
lower boundaries gained from the (trivial-production) and (trivial-transportation)
optimization statements that were described in Section 4.2.1. This way solutions
with worse KPIs than the defined interval would be refused and the search space
could be effectively pruned.

When testing additional features, especially such as heuristics and Weak Constraints,
they should be tested together with optimization statements that prioritize the KPIs
which is targeted most by the the feature to be tested. This can help that the impact
of the dedicated feature is not weakened. This does not only apply to new features,
but also to some features tested in this thesis.

The features should also be tested on new datasets and smaller instances to ensure
transferability of the results.

Some capabilities of clingo were not used for this thesis, but are planned to be imple-
mented for further research. These include the optimization framework asprin and
the solver clasps’ built-in option parallel-solving. asprin supports computing answers
sets with preferences when optimizing with regards to some objective functions.
One offered preference type is pareto and aims at finding Pareto optimal solutions
as intended in this thesis. The option parallel-solving of the solver clasp on the other
hand enables multi-threading and can exploit the resources of the used 24-Core pro-
cessor hardware much more efficiently.

Finally, some work can be done on the user interface to provide helpful visualiza-
tions to the architect of the results so far, especially to browse solutions on the Pareto
front.

73

References

[1]

[2]

3]

[5]

[7]

8]

[9]

(10]

(1]

E. Dietz, T. Philipp, G. Schramm, and A. Zindel, “A logic programming ap-
proach to global logistics in a co-design environment,” Electronic Proceedings in
Theoretical Computer Science, vol. 385, pp. 227-240, 2023.

J. R. R. A. Martins and S. A. Ning, Engineering design optimization. Cambridge
and New York NY: Cambridge University Press, 2021.

W. Faber, G. Friedrich, M. Gebser, and M. Morak, Eds., Logics in Artificial Intelli-
gence: 17th European Conference, [ELIA 2021, Virtual Event, May 17-20, 2021, Pro-
ceedings, 1st ed., ser. Lecture Notes in Artificial Intelligence. Cham: Springer
International Publishing and Imprint Springer, 2021, vol. 12678.

H. Li and R. Lachmayer, “Automated exploration of design solution
space applying the generative design approach,” in Proceedings of the 22nd
International Conference on Engineering Design (ICED19), Delft, The Netherlands,
2019. [Online]. Available: https://www.designsociety.org/publication/4189
6/ Automated%2Bexploration%2Bof%2Bdesign%2Bsolution%2Bspace%2Bapp
lying%?2Bthe%2BGenerative%2BDesign%2BApproach

R. Arista, X. Zheng, J. Lu, and E. Mas, “An ontology-based engineering sys-
tem to support aircraft manufacturing system design,” Journal of Manufacturing
Systems, vol. 68, pp. 270-288, 2023.

X. Zheng, X. Hu, R. Arista, J. Lu, J. Sorvari, J. Lentes, E. Ubis, and D. Kiritsis,
“A semantic-driven tradespace framework to accelerate aircraft manufacturing

system design,” Journal of Intelligent Manufacturing, vol. 35, no. 1, pp. 175-198,
2024.

Airbus, “Airbus production,” https://www.airbus.com/en/products-ser
vices/commercial-aircraft/the-life-cycle-of-an-aircraft/production, 2025,
20.05.2025.

——, “Airbus our worldwide presence,” https://www.airbus.com/en/abou
t-us/our-worldwide-presence, 2025, 20.05.2025.

A. Falkner, G. Friedrich, K. Schekotihin, R. Taupe, and E. C. Teppan, “Industrial
applications of answer set programming,” KI - Kiinstliche Intelligenz, vol. 32, no.
2-3, pp. 165-176, 2018.

J. Sun, J. Tang, W. Fu, Z. Chen, and Y. Niu, “Construction of a multi-echelon
supply chain complex network evolution model and robustness analysis of cas-
cading failure,” Computers & Industrial Engineering, vol. 144, p. 106457, 2020.

Q.-5. Hua, Y. Wang, D. Yu, and F. C. Lau, “Dynamic programming based algo-
rithms for set multicover and multiset multicover problems,” Theoretical Com-
puter Science, vol. 411, no. 26-28, pp. 2467-2474, 2010.

75

https://www.designsociety.org/publication/41896/Automated%2Bexploration%2Bof%2Bdesign%2Bsolution%2Bspace%2Bapplying%2Bthe%2BGenerative%2BDesign%2BApproach
https://www.designsociety.org/publication/41896/Automated%2Bexploration%2Bof%2Bdesign%2Bsolution%2Bspace%2Bapplying%2Bthe%2BGenerative%2BDesign%2BApproach
https://www.designsociety.org/publication/41896/Automated%2Bexploration%2Bof%2Bdesign%2Bsolution%2Bspace%2Bapplying%2Bthe%2BGenerative%2BDesign%2BApproach
https://www.airbus.com/en/products-services/commercial-aircraft/the-life-cycle-of-an-aircraft/production
https://www.airbus.com/en/products-services/commercial-aircraft/the-life-cycle-of-an-aircraft/production
https://www.airbus.com/en/about-us/our-worldwide-presence
https://www.airbus.com/en/about-us/our-worldwide-presence

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algo-
rithms, 3rd ed. MIT Press, 2009.

[13] K. Thulasiraman and M. N. Swamy, Graphs: theory and algorithms. John Wiley
& Sons, 2011.

[14] A.]. Schmitt and M. Singh, “A quantitative analysis of disruption risk in a
multi-echelon supply chain,” International Journal of Production Economics, vol.
139, no. 1, pp. 22-32, 2012.

[15] W. Hochstéttler and A. Schliep, CATBox: An interactive course in combinatorial
optimization. Heidelberg: Springer, 2010.

[16] Airbus, “Airbus transportation fleet,” https://www.airbus.com/en/newsro
om/stories/2023-10-building-a-lower-emission-maritime-transport-fleet,
2025, 20.05.2025.

[17] ——, “Airbus digital twin,” https:/ /www.airbus.com/en/newsroom/stories
/2025-04-digital-twins-accelerating-aerospace-innovation-from-design-to-o
perations, 2025, 20.05.2025.

[18] Esra Erdem, Michael Gelfond, Nicola Leone, “Applications of answer set pro-
gramming,” Al Magazine, 2016.

[19] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub, “Multi-shot asp solving
with clingo.” [Online]. Available: http://arxiv.org/pdf/1705.09811v2

[20] V. Lifschitz, Answer Set Programming, 1st ed., ser. Springer eBooks Computer
Science. Cham: Springer, 2019.

[21] J. W. Lloyd, Foundations of Logic Programming, 2nd ed., ser. Symbolic computa-
tion. Berlin and Heidelberg and New York and London and Paris and Tokyo:
Springer, 1987.

[22] M. Gebser, B. Kaufmann, and T. Schaub, “Conflict-driven answer set solving:
From theory to practice,” Artificial Intelligence, vol. 187-188, pp. 52-89, 2012.

[23] A. van Gelder, “Negation as failure using tight derivations for general logic
programs,” The Journal of Logic Programming, vol. 6, no. 1-2, pp. 109-133, 1989.

[24] M. Gelfond and V. Lifschitz, “The stable model semantics for logic
programming,” in Proceedings of the Fifth International Conference on Logic
Programming (ICLP), R. Kowalski and K. Bowen, Eds. MIT Press, 1988, pp.
1070-1080. [Online]. Available: https:/ /www.cs.utexas.edu/~ai-lab/?gel88

[25] A. Ramos, P. van der Tak, and M. J. H. Heule, “Between restarts and back-
jumps,” Lecture Notes in Computer Science, vol. 6695, pp. 216-229, 2011.

76

https://www.airbus.com/en/newsroom/stories/2023-10-building-a-lower-emission-maritime-transport-fleet
https://www.airbus.com/en/newsroom/stories/2023-10-building-a-lower-emission-maritime-transport-fleet
 https://www.airbus.com/en/newsroom/stories/2025-04-digital-twins-accelerating-aerospace-innovation-from-design-to-operations
 https://www.airbus.com/en/newsroom/stories/2025-04-digital-twins-accelerating-aerospace-innovation-from-design-to-operations
 https://www.airbus.com/en/newsroom/stories/2025-04-digital-twins-accelerating-aerospace-innovation-from-design-to-operations
http://arxiv.org/pdf/1705.09811v2
https://www.cs.utexas.edu/~ai-lab/?gel88

[26] M. Davis and H. Putnam, “A computing procedure for quantification theory,”
Journal of the ACM, vol. 7, no. 3, pp. 201-215, 1960.

[27] Martin Davis, George Logemann, Donald Loveland, M. Davis, G. Logemann,
and D. Loveland, “A machine program for theorem-proving,” Communications
of the ACM, vol. 5, no. 7, pp. 394-397, 1961 / / 1962.

[28]]J. P.Marques Silva and K. A. Sakallah, “Grasp-a new search algorithm for satis-
tiability,” Proceedings of International Conference on Computer Aided Design; (1996)
S. 220-227, pp. 220-227, 1996.

[29] Steffen Holldobler, Norbert Manthey, Van Hau Nguyen, Julian Stecklina, and
Peter Steinke, 2011 International Conference on Advanced Computer Science and
Information Systems (ICACSIS 2011): Jakarta, Indonesia, 17 - 18 December 2011 ;
[proceedings. Piscataway, NJ: IEEE, 2011.

[30] R. Comploi-Taupe, G. Friedrich, K. Schekotihin, and A. Weinzierl, “Domain-
specific heuristics in answer set programming: A declarative non-monotonic
approach,” Journal of Artificial Intelligence Research, vol. 76, pp. 59-114, 2023.

[31] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and
S. Thiele, Potassco Guide: An Introduction to Answer Set Programming Tools,
University of Potsdam, 2015, accessed: 2025-07-12. [Online]. Available:
https:/ /potassco.org/doc/

[32] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff,” in
Proceedings of the 38th conference on Design automation - DAC 01,]. Rabaey, Ed.
New York, New York, USA: ACM Press, 2001, pp. 530-535.

[33] C. Baral, Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, 2003.

[34]]J. Rana, P. L. Gutierrez, and J. C. Oldroyd, “Quantitative methods,” in
Global Encyclopedia of Public Administration, Public Policy, and Governance.
Springer Nature Switzerland AG, 2021, pp. 11202-11207. [Online]. Available:
https://doi.org/10.1007 /978-3-030-66252-3_460

[35] G. Salton and M. J. McGill, Introduction to modern information retrieval, ser.
McGraw-Hill computer science series. New York: McGraw-Hill Book Comp,
1983.

77

https://potassco.org/doc/
https://doi.org/10.1007/978-3-030-66252-3_460

A. Appendix

Find all data of this thesis in the according github repository:
https:/ /github.com/olcayHH/ASP_Master

For all codes used, see:
https://github.com/olcayHH/ASP_Master/tree /main/codes

For all experimental data, see:
https:/ /github.com/olcayHH/ASP_Master/tree/main/experimental %20data

For supplementary figures, see:
https:/ /github.com/olcayHH /ASP_Master/tree/main/graphics

78

https://github.com/olcayHH/ASP_Master
https://github.com/olcayHH/ASP_Master/tree/main/codes
https://github.com/olcayHH/ASP_Master/tree/main/experimental%20data
https://github.com/olcayHH/ASP_Master/tree/main/graphics

	Introduction
	Motivation and Background
	Problem Statement
	Generalization of the Problem and Solution Space
	Related Problems
	Objective Functions and Optimization Statements
	Search Tree Traversal
	Hypotheses

	Industrial System Scenarios and Constraints
	Objectives
	Current State of Research
	Outline

	Theoretical Background
	Logic Programming
	Answer Set Programming (ASP) and Stable Model Semantics
	Potassco Toolset
	Input Language of clingo
	The Grounder gringo
	The Solver clasp

	Representation of the Logistics System and the Optimization Problem
	Representation of the Logistics System
	Major Issues of the initial Research Work
	Optimization Statements
	Usage of Aggregates

	Overview of New Features and Expected Impact
	Main Objective Functions
	Search Tree Traversal

	Methodology
	Design of Experiments
	Evaluation Metrics
	Key Performance Indicators of Objective Functions
	Variability Measurement
	Search Performance

	Results of Main Phase
	Baseline Reference
	Workshare Constraint Implementations
	KPI evolution
	Variability
	Search Performance

	Domain Heuristics
	KPI evolution
	Variability
	Search Performance

	Weak Constraints
	KPI evolution
	Variability
	Search Performance

	Optimization Statements
	KPI evolution
	Variability
	Search Performance

	Consolidated Result

	Discussion of Main Phase
	Results of Final Phase
	KPI evolution
	Variability
	Search Performance

	Discussion of Final Phase
	Conclusion
	Summary of Contributions
	Future Work

	Appendix

