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Zusammenfassung

Ziel dieser Masterarbeit war die Konzeption und formale Ausarbeitung von unvoll-
stindigen Argumentationsgraphen mit Mengenangriffen (iSetAF) als Erweiterung der
herkdmmlichen abstrakten Argumentationsgraphen. Diese Erweiterung sollte den Um-
gang sowohl mit Mengenangriffen als auch mit unsicherer Information in einem ein-
heitlichen Modell ermoglichen, um reale Entscheidungsprozesse modellieren zu kon-
nen. Ausgangspunkt dieser Arbeit waren dabei die klassischen abstrakten Argumen-
tationsgraphen (AFs) von Dung sowie zwei Erweiterungen dieser: Argumentations-
graphen mit Mengenangriffen (SetAFs) und unvollstindige Argumentationsgraphen
(iAFs).

Nachdem iSetAFs im Rahmen dieser Arbeit formal definiert wurden, wurden zwei
unterschiedliche Ansitze verfolgt. Dies war zum einen ein vervollstindigungsbasierter
Ansatz und zum anderen ein extensionsbasierter Ansatz.

Der vervollstindigungsbasierte Ansatz berticksichtigt alle moglichen Konstellatio-
nen unsicheren Wissens, um mit Hilfe von Schlussfolgerungsproblemen Aussagen tiber
die Akzeptanz von Argumenten oder Mengen von Argumenten zu treffen. Die Kom-
plexitdtsanalyse zeigte, dass sich diese Probleme auf die Probleme fiir iAFs reduzieren
lielen, wodurch bestehende Komplexitdtsergebnisse tibertragbar waren.

Da die Anzahl der Vervollstindigungen exponentiell anwachsen kann, wurde er-
gidnzend ein extensionsbasierter Ansatz verfolgt. Hierbei wurden Aussagen direkt auf
dem iSetAF getroffen, wofiir die Semantiken neu definiert wurden. Es konnte gezeigt
werden, dass diese Semantiken zentrale Eigenschaften wie Syntaxunabhéngigkeit, I-
Maximalitat, Enthaltung, Direktionalitadt, Dichtheit, Konfliktsensitivitat und Modulari-
sierung weitgehend erfiillen, sofern diese auch von klassischen AFs erfiillt werden.

Insgesamt zeigt die Arbeit, dass iSetAFs eine bedeutende Erweiterung klassischer
Frameworks darstellen. Sie integrieren unsichere Informationen und Mengenangriffe
in einem Modell, ohne die Komplexitit der Schlussfolgerungsprobleme zu erhohen,
und erhalten dabei die meisten wiinschenswerten semantischen Eigenschaften.

Abstract

The aim of this Master’s thesis was the conceptualization and formal development of
incomplete argumentation graphs with set attacks (iSetAF) as an extension of conven-
tional abstract argumentation frameworks. This extension is intended to enable the
handling of both set-based attacks and uncertain information within a unified model,
in order to facilitate the modeling of real-world decision-making processes. The start-
ing point for this work was the classical abstract argumentation frameworks (AFs) in-
troduced by Dung, as well as two of their extensions: argumentation frameworks with
set attacks (SetAFs) and incomplete argumentation frameworks (iAFs).

After formally defining iSetAFs in this thesis, two different approaches were pur-
sued: a completion-based approach and an extension-based approach.
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The completion-based approach considers all possible configurations of uncertain
knowledge in order to draw conclusions about the acceptance of arguments or sets of
arguments through inference problems. The complexity analysis showed that these
problems can be reduced to the problems for iAFs, making it possible to transfer exist-
ing complexity results.

Since the number of completions can grow exponentially, a complementary extension-
based approach was developed. In this approach, statements are made directly on the
iSetAF, for which the semantics were newly defined. It was shown that these seman-
tics largely satisfy key properties such as syntax independence, I-maximality, allowing
abstention, directionality, tightness, conflict-sensitivity, and modularity, provided that
these are also fulfilled by classical AFs.

Overall, the thesis demonstrates that iSetAFs represent a significant extension of clas-
sical frameworks. They integrate uncertain information and set attacks within a single
model, without increasing the complexity of inference problems, while retaining most
of the desirable semantic properties.
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1 Einleitung

Argumentation ist ein grundlegender und alltdglicher Bestandteil menschlicher Ent-
scheidungsfindung. In vielen Bereichen des tdglichen Lebens, wie in der Medizin, der
Luftfahrt oder im Justizwesen, miissen Entscheidungen getroffen werden, die auf einer
sorgfiltigen Abwagung von Argumenten basieren. Dabei werden Argumente fiir und
gegen eine Entscheidung abgewogen, um die bestmogliche Losung zu finden.

Ein anschauliches Beispiel bietet die Luftfahrt: Bei einem Zwischenfall an Bord eines
Flugzeuges muss die Cockpitbesatzung oft in Sekundenbruchteilen eine potenziell fol-
genschwere Entscheidung treffen. Abhédngig von der Situation, welche Art Zwischen-
tall vorliegt, wie viel Treibstoff vorhanden ist, wie schwer die Maschine ist, wie erfahren
die Besatzung ist, ob ein Ausweichflughafen erreichbar ist, usw. muss die Cockpitbe-
satzung die verschiedenen Handlungsoptionen abwégen, um Menschenleben zu ret-
ten. Dabei spielen je nach Schwere des Zwischenfalls auch wirtschaftliche Aspekte eine
Rolle. Sollte eine Zwischenlandung durchgefiihrt werden, kann es passieren, dass die
maximale Arbeitszeit der Besatzung erreicht wird, wodurch ein Weiterflug nicht mehr
moglich wére und Passagiere umgebucht werden miissten.

In stressigen und zeitkritischen Situationen stoffen Menschen jedoch oft an ihre ko-
gnitiven Grenzen. Die Vielzahl an Faktoren erschwert eine umfassende und fehlerfreie
Abwigung aller relevanten Informationen. In solchen Fillen kann der Einsatz von un-
terstiitzenden Systemen, die auf kiinstlicher Intelligenz (KI) basieren, sinnvoll sein. Die-
se konnen komplexe Argumentationsstrukturen analysieren und zu Entscheidungsfin-
dungen beitragen.

Ein zentraler Bereich der KI, der sich mit solchen Entscheidungsproblemen befasst,
ist die formale Argumentation. Insbesondere die Arbeit von Dung [Dun95] aus dem
Jahr 1995 spielt dabei bis heute eine Schliisselrolle. In seiner Arbeit fithrte Dung soge-
nannte abstrakte Argumentationsgraphen (abstract argumentation frameworks) als formales
Modell zur Strukturierung von Argumenten und Angriffsrelationen ein. Dung defi-
nierte die formale Argumentation als strukturiertes System, das aus Argumenten und
Angriffsbeziehungen bestand. Auf diese Weise war es moglich, Entscheidungsprozes-
se zu modellieren, die maschinell verarbeitet werden konnten. Es konnten Konflikte
analysiert werden, um schliefllich eine logische Schlussfolgerung ziehen zu kénnen.

In diesem einfiithrenden Kapitel soll zunéchst die Motivation fiir das gewidhlte Thema
der Masterarbeit vorgestellt werden. Anschlieflend werden die Ziele der Arbeit sowie
die methodische Vorgehensweise vorgestellt.

1.1 Motivation

Die abstrakten Argumentationsgraphen nach Dung [Dun95] modellieren Konflikte nur
als 1-zu-1-Beziehungen: Ein Argument greift ein anderes Argument direkt an. Der Kon-
flikt besteht somit nur zwischen zwei einzelnen Argumenten. Diese strikte Struktur
schrankt die Modellierung realer Argumentationen jedoch stark ein, da durchaus auch
komplexere Szenarien vorkommen konnen. In realen Szenarien ist denkbar, dass meh-
rere Argumente gemeinsam ein anderes Argument angreifen oder es bleibt unklar, ob



ein Argument bzw. eine Angriffsbeziehung tiberhaupt existiert.

Fiir beide Problemstellungen wurden bereits eigenstindige Erweiterungen entwi-
ckelt. Nielsen und Parsons fiithrten 2006 ein Framework ein, das Mengenangriffe be-
riicksichtigte, bei denen erst die Kombination bestimmter Argumente zu einer gemein-
samen Angriffsbeziehung fithrte [NP06]. Dabei greifen Argumente nicht mehr einzeln,
sondern nur in bestimmten Gruppen effektiv an. Unabhédngig davon wurde das Kon-
zept unvollstandiger Argumentationsgraphen entwickelt, wobei erste Ideen von Coste-
Marquis [CMDK07] aus dem Jahr 2007 stammten. Das vollstdndig formal definierte
Argumentationsframework wurde allerdings erst 2018 von Baumeister et al. verodffent-
licht [BNRS18]. Durch dieses Framework war es moglich, auch Informationen bzw. Ar-
gumente bei der Entscheidungsfindung zu berticksichtigen, deren Existenz zwar denk-
bar, aber nicht gesichert ist.

Ein erster Ansatz, unvollstandige Argumentationsgraphen und Argumentationsgra-
phen mit Mengenangriffen zu kombinieren, wurde 2023 von Dimopoulos et al. vorge-
stellt [DDK*23]. Dieses Framework berticksichtigt jedoch nur unsichere Angriffsbezie-
hungen und erlaubt zudem auch Angriffe auf Mengen von Argumenten.

Bisher existiert kein formal definiertes Argumentationsframework, das sowohl unsi-
cheres Wissen (bestehend aus unsicheren Argumenten und unsicheren Angriffen) als
auch Mengenangriffe berticksichtigt. Solche Szenarien sind in der Praxis jedoch realis-
tisch und lassen sich mit bestehenden abstrakten Argumentationsgraphen und deren
Erweiterungen bisher nicht modellieren. Diese Liicke soll durch die vorliegende Mas-
terarbeit geschlossen werden, indem ein solches Framework entwickelt und analysiert
wird.

1.2 Ziele der Arbeit

Das Ziel dieser Arbeit ist die Entwicklung einer neuen Erweiterung fiir abstrakte Ar-
gumentationsgraphen, durch die sich Szenarien modellieren lassen, die sowohl unsi-
cheres Wissen als auch Mengenangriffe enthalten. Dabei werden unvollstindige Arqu-
mentationsgraphen mit Mengenangriffen (iSetAF) formal definiert und die Eigenschaften
sowie die Komplexitidt untersucht. Das Ziel ist die Entwicklung einer Erweiterung der
abstrakten Argumentationsgraphen, die in der Ausdrucksstarke mit Dungs urspriing-
lichem Modell vergleichbar ist. Idealerweise soll die Erweiterung die zentralen Eigen-
schaften von Dungs abstrakten Argumentationsgraphen ebenfalls erfiillen.

1.3 Vorgehensweise

In Abschnitt 2 wird zundchst Dungs abstraktes Argumentationsframework vorgestellt,
das die Grundlage dieser Arbeit bildet. Dabei werden abstrakte Argumentationsgra-
phen, ihre Semantiken und ausgewéhlte Eigenschaften (Postulate) definiert. Anschlie-
end wird tibersichtlich dargestellt, inwieweit Dungs Semantiken fiir abstrakte Argu-
mentationsgraphen die jeweiligen Eigenschaften erfiillen.

Darauf aufbauend werden in Abschnitt 3 die Erweiterungen fiir Argumentations-
graphen mit Mengenangriffen (SetAFs) und unvollstindige Argumentationsgraphen



(iAFs) vorgestellt. Beide Erweiterungen spielen in realen Situationen oft eine Rolle und
ermoglichen es, komplexere und realistischere Argumentationsstrukturen zu model-
lieren. Fiir iAFs werden zudem zwei unterschiedliche Herangehensweisen vorgestellt:
Der vervollstindigungsbasierte Ansatz und der extensionsbasierte Ansatz.

Zur Veranschaulichung der verschiedenen Argumentationsframeworks wird in die-
ser Arbeit ein fortlaufendes Beispiel genutzt. Dabei geht es um zwei Freunde Anna und
Ben. Anna mochte gerne eine Fahrradtour mit Ben unternehmen. Ben hat allerdings ei-
nige Gegenargumente, um sich der Fahrradtour mit Anna zu entziehen. Diese Gegen-
argumente konnen fiir sich alleinstehen, nur in Kombination mit anderen Argumenten
giiltig sein oder auch unsicher sein (d.h. es ist unklar, ob ein Argument iiberhaupt exis-
tiert).

Der Hauptteil der Arbeit erstreckt sich {iber Abschnitt 4, Abschnitt 5 und Abschnitt 6.
In Abschnitt 4 wird die formale Definition unvollstindiger Argumentationsgraphen
mit Mengenangriffen (iSetAFs) vorgestellt. Dabei werden zentrale Begriffe wie Angriff
und Verteidigung neu definiert. Der Abschnitt verfolgt dabei zwei methodische Ansét-
ze:

* Der vervollstindigungsbasierte Ansatz in Anlehnung an Baumeister et al.
[BNRS18], bei dem es notwendig ist, die Vervollstindigungen von iSetAFs neu
zu definieren. Ebenso miissen die Definitionen fiir mogliche und notwendige
o-Extensionen sowie der Schlussfolgerungsprobleme fiir iSetAFs angepasst wer-
den.

* Der extensionsbasierte Ansatz in Anlehnung an Mailly [Mai21], der neue Seman-
tiken definiert, um mit Unsicherheiten und Mengenangriffen direkt zu arbeiten,
ohne dass Vervollstindigungen erzeugt werden miissen.

In Abschnitt 5 erfolgt daraufhin eine detaillierte Untersuchung der in Unterab-
schnitt 2.3 ausgewahlten Eigenschaften, wobei sich diese Analyse lediglich auf den ex-
tensionsbasierten Ansatz bezieht. Die Postulate werden neu definiert, sodass sich diese
auch auf iSetAFs tibertragen lassen. AbschliefSend wird eine tibersichtliche Darstellung
présentiert, die zeigt, welche Semantiken fiir iSetAFs welche Postulate erfiillen oder
nicht erfiillen.

In Abschnitt 6 wird die Komplexitdt der Schlussfolgerungsprobleme von iSetAFs
untersucht, wobei sich dieser Abschnitt lediglich auf den vervollstindigungsbasierten
Ansatz bezieht. Dabei wird insbesondere untersucht, ob sich die Komplexititseigen-
schaften von iAFs auf die Komplexititseigenschaften von iSetAFs {ibertragen lassen,
indem die Schlussfolgerungsprobleme von iSetAFs auf bestehende Probleme reduziert
werden.

Den Abschluss dieser Masterarbeit bilden eine Zusammenfassung der zentralen Er-
gebnisse, ein Fazit sowie ein Ausblick auf weiterfithrende Forschungsfragen, die sich
aus der vorliegenden Arbeit ergeben.



2 Grundlagen der formalen Argumentation

In diesem Kapitel sollen die grundlegenden Konzepte und Definitionen der forma-
len Argumentation basierend auf Dungs Arbeit aus dem Jahr 1995 [Dun95] darge-
stellt werden. Diese Konzepte sind bis heute von zentraler Bedeutung und bilden die
Grundlage dieser Arbeit. Zunéchst sollen die abstrakten Argumentationsgraphen in
Unterabschnitt 2.1 formal eingefiihrt und wichtige Begriffe definiert werden. Anschlie-
Bend werden in Unterabschnitt 2.2 verschiedene relevante Semantiken fiir Argumen-
tationsgraphen vorgestellt und auf zugehorige Entscheidungsprobleme eingegangen.
Abschlieflend werden in Unterabschnitt 2.3 verschiedene Eigenschaften (sogenannte
Postulate) vorgestellt, die eine Semantik bestenfalls erfiillen sollte. Diese Postulate er-
moglichen es, Semantiken miteinander zu vergleichen und zu bewerten.

2.1 Abstrakte Argumentationsgraphen

Die formale Argumentation basiert auf dem Argumentationsframework, das von Dung
verdffentlich wurde [Dun95]. Ziel der formalen Argumentation ist es, eine Menge von
Argumenten und deren Konflikte zu analysieren, um schliefslich Argumente zu finden,
die gemeinsam akzeptiert werden konnen [CD20]. Dabei ist die innere Struktur der
Argumente irrelevant.

Argumente und deren Konflikte (Angriffsbeziehung) lassen sich strukturiert in ei-
nem Argumentationsgraphen darstellen. Dieser ist wie folgt definiert:

Definition 2.1 (Abstrakte Argumentationsgraphent!). Ein abstrakter Argumentations-
graph (engl. abstract argumentation framework) ist ein Tupel F' = (A, R). Dabei bezeichnet
A die Menge der Argumente und R die Menge der Angriffe zwischen diesen Argumen-
ten, wobei R C A x A.

Ein abstrakter Argumentationsgraph (AF) besteht somit aus Argumenten, die sich
gegenseitig angreifen konnen. Auf Basis dieser Grundstruktur ldsst sich nun genauer
definieren, wie Argumente innerhalb eines AFs miteinander in Konflikt stehen kénnen.

Definition 2.2 (Angriffsrelation). Fiir ein AF F' = (A, R) bezeichnet R die Angriffs-
relation zwischen den Argumenten. (a,b) € R mit a,b € A stellt einen Angriff des
Arguments a auf das Argument b dar. Eine dquivalente Schreibweise fiir einen Angriff
von a auf b ist aRb.

Zur Verdeutlichung soll nun ein konkretes Beispiel betrachtet werden, in dem Argu-
mente und deren Angriffsbeziehungen veranschaulicht werden.

Beispiel 2.1. Die Freunde Anna und Ben diskutieren dartiber, was sie heute unterneh-
men sollen. Anna mochte gerne eine Fahrradtour machen. Die Argumentationsfolge
sieht wie folgt aus:

!Definition 2 aus [Dun95]



a1: Lass uns eine Fahrradtour machen.

b1: Mein Fahrrad wurde gestohlen.

az: Du kannst dir ein neues Fahrrad kaufen.
by: Ich habe nicht genug Geld.

a3: Dann kannst du dir ein Fahrrad ausleihen.
bs: Aber es regnet.

a4: Ich besorge uns Regenmaéntel.

Hierbei handelt es sich um Argumente, die in Angriffsbeziehungen stehen. So grei-
fen beispielsweise b; oder auch b3 das Argument a; an, da es sich um Gegenar-
gumente handelt, die eine Fahrradtour verhindern kénnten. Auf der anderen Sei-
te greifen die Argumente as oder auch a3 Bens Gegenargument b; an. Auch wenn
Bens Fahrrad gestohlen wurde, kann die Fahrradtour stattfinden, indem er sich
ein neues Fahrrad kauft oder sich ein Fahrrad ausleiht. Das gesamte AF F; be-
steht somit aus der Menge A = {a1,a2,a3,a4,b1,b2,b3} und den Angriffen R =
{(b1,a1), (b3, a1), (az, b1), (a3, b1), (b2, az), (a4, b3)}.

Ein AF kann als gerichteter Graph betrachtet werden, indem die Argumente A als
Knoten und die Angriffe R als gerichtete Kanten dargestellt werden. Das in Beispiel 2.1
formal beschriebene AF F; wird in Abbildung 1 als gerichteter Graph visualisiert.

Abbildung 1: Abstrakter Argumentationsgraph F; zu Beispiel 2.1. Eigene Darstellung.

Um bestimmte Eigenschaften innerhalb eines AFs zu analysieren, ist es hilfreich,
Mengen von Angreifern und angegriffenen Argumenten zu betrachten. Fiir eine Men-
ge von Argumenten S C A bezeichnet S~ die Menge aller Angreifer von S mit S~ =
{be A|3Ja € S:bRa}. Zudem bezeichnet ST = {b € A | Ja € S : aRb} die Menge der
Argumente, die von S angegriffen werden. Ein kurzes Beispiel soll zeigen, wie diese
Mengen konkret aussehen.



Beispiel 2.2. Fiir das AF F; aus Abbildung 1 und eine Menge S = {ai,as} ist S~ =
{b17 b27 b3} und St = {bl}

Neben der reinen Angriffsstruktur spielt auch die Fahigkeit von Argumenten, ande-
re Argumente zu verteidigen, eine wichtige Rolle. Dies fiihrt zur nidchsten zentralen
Definition der Verteidigung.

Definition 2.3 (Verteidigung). Fiirein AF F' = (A, R), S C Aund a € S gilt: Die Menge
S verteidigt das Argument a gdw. es fiir alle Angreifer b € A mit (b,a) € R ein weiteres
Argument ¢ € S gibt mit (¢,b) € R. Analog wird eine Menge S’ von S verteidigt gdw.
alle Argumente a € S’ von S verteidigt werden.

Auch das Konzept der Verteidigung wird anhand eines Beispiels des zuvor einge-
fiihrten AFs verdeutlicht.

Beispiel 2.3. Fiir das AF F} aus Abbildung 1 verteidigt die Menge S = {as,a4} das
Argument a;. Ben hat insgesamt zwei Argumente, die gegen eine Fahrradtour spre-
chen. Zum einen, dass sein Fahrrad gestohlen wurde und zum anderen, dass es regnet.
Gegen beide Gegenargumente hat Anna selbst wiederum Gegenargumente, denn Ben
kann sich ein Fahrrad ausleihen und wegen des Regens kann Anna Regenmantel fiir
beide besorgen.

Aufbauend auf dem Begriff der Verteidigung fithrt Dung die sogenannte charakteris-
tische Funktion ein. Diese erlaubt es, systematisch alle von einer Argumentmenge ver-
teidigten Argumente zu bestimmen. Da dieser Begriff in unterschiedlichen Kapiteln
auftauchen wird, soll dieser bereits an dieser Stelle definiert werden.

Definition 2.4 (Charakteristische Funktion?). Sei I’ = (A, R) ein AF. Die charakteristi-
sche Funktion

T 24— 24
bestimmt fiir eine Menge S C A alle Argumente, die von dieser Menge verteidigt wer-

den. Es gilt somit
7(S) ={a€ A|{a}” C ST}

Insbesondere werden von einer Menge S zusédtzlich auch immer genau die Argu-
mente verteidigt, die keine Angreifer besitzen.

Beispiel 2.4. Fiir das AF F; aus Abbildung 1 und eine Menge S = {a3, a4} gilt 77(S5) =
{ala as, a4, b2}

Neben der Frage, welche Argumente verteidigt werden, ist auch relevant, welche
Argumente durch eine Menge direkt beeinflusst werden. Hierzu dient der Begriff der
Reichweite. Die Reichweite ist die Vereinigung einer betrachteten Argumentmenge mit
den Argumenten, die von dieser Menge angegriffen werden.

2Definition 16 aus [Dun95]



Definition 2.5 (Reichweite). Sei F' = (A, R) ein AF und S C A. Die Reichweite S® ist
definiert durch
S =85usTt

und bezeichnet die Menge aller Argumente, die in S liegen, vereinigt mit den Argu-
menten, die von S angegriffen werden.

Auch hier verdeutlicht ein Beispiel, wie sich die Reichweite einer Argumentmenge
bestimmen l4sst.

Beispiel 2.5. Fiir das AF F} aus Abbildung 1 und eine Menge S = {as, a4} gilt S® =
{a37 aq, bla b3}

In diesem Unterkapitel wurden die Grundlagen zu AFs vorgestellt. In Unterab-
schnitt 2.2 soll nun gezeigt werden, wie sich Argumente finden lassen, die gemeinsam
akzeptiert werden konnen.

2.2 Semantiken

Ein abstrakter Argumentationsgraph besteht aus einer Menge von Argumenten und
einer Angriffsrelation zwischen diesen Argumenten. Dargestellt werden dabei ledig-
lich die Beziehungen zwischen den einzelnen Argumenten, ohne die spezifischen In-
halte der Argumente zu kennen oder zu beriicksichtigen. Die zentrale Frage ist nun,
welche dieser Argumente akzeptabel sind und welche abgelehnt werden konnen. Das
Problem der Akzeptanz von Argumenten wurde bereits von Dung durch die Definiti-
on verschiedener sogenannter Semantiken formalisiert [Dun95]. Diese Semantiken bein-
halten Kriterien, die zur Beurteilung der Akzeptanz oder der Ablehnung dienen. Dabei
werden jeweils Mengen von Argumenten, sogenannte Extensionen, bestimmt, die diese
Kriterien erfiillen und insgesamt als akzeptabel angesehen werden kénnen.
Zur Einfiihrung sollen nachfolgend zunichst zwei Beispiele gegeben werden.

Beispiel 2.6. In Beispiel 2.1 konnen die beiden Argumente a; (Lass uns eine Fahrrad-
tour machen) und b; (Mein Fahrrad wurde gestohlen) offensichtlich nicht gleichzeitig
akzeptiert werden, da sie sich widersprechen. Wenn das Fahrrad geklaut wurde, ist
eine Fahrradtour nicht moglich. Die beiden Argumente stehen in einem Konflikt zu-
einander.

Beispiel 2.7. In Beispiel 2.1 bringt Ben zum Argument a; die Gegenargumente b; und
bs vor. Es ist nachvollziehbar, dass beide Gegenargumente stichhaltig sind und gegen
eine Fahrradtour sprechen. Hitte Anna keine weiteren Argumente, konnte man da-
von ausgehen, dass Bens Argumente akzeptiert werden und die Fahrradtour abgesagt
wird. Da Anna jedoch fiir beide Gegenargumente jeweils eine Losung in Form der Ar-
gumente a3 und a4 anbietet und Ben nichts mehr dagegen einzuwenden hat, konnte
man in diesem Fall die Argumente {a1, a3, a4} als akzeptiert betrachten, und man wiir-
de schlussfolgern, dass die Fahrradtour stattfindet.



Um die beiden Beispiele nun zu formalisieren, werden die in Dungs Arbeit [Dun95]
vorgestellten konfliktfreien und zulissigen Mengen sowie die dort vorgestellten Semanti-
ken nachfolgend dargestellt. Dies sind die vollstindige, priferierte, grundierte und stabile
Semantik. Dabei wird nach jeder Definition ein Beispiel gegeben, das sich immer auf
das AF F» aus Abbildung 2 beziehen wird, bei dem die Bedeutung der einzelnen Argu-
mente nicht von Relevanz ist. Interessant sind lediglich die Beziehungen zwischen den

einzelnen Argumenten.

Abbildung 2: AF F, zu Beispiel 2.8. Eigene Darstellung.

In Beispiel 2.6 wurde bereits gezeigt, wie ein Konflikt zwischen zwei Argumenten
aussehen kann. Ein solcher Konflikt soll vermieden werden, weshalb stets nach kon-
fliktfreien Mengen gesucht wird, die gemeinsam akzeptiert werden kdnnen.

Definition 2.6 (Konfliktfreie Mengen®). Sei F' = (A, R) ein AF und S C A. Eine Menge
S heift konfliktfrei (engl. conflict-free) gdw. fiir alle a, b € S weder aRbnoch bRa gelten.

Innerhalb der Menge S gibt es somit keine Angriffe. Die Menge aller konfliktfreien
Mengen von F bezeichnet c¢f(F) = {S C A | Sist konfliktfrei}.

Beispiel 2.8. Fiir das AF F, aus Abbildung 2 sind beispielsweise {a1}, {as}, {a1,a4},
{az, a4} und {a1, a3, a4} konfliktfreie Mengen, da innerhalb der jeweiligen Menge keine
Angriffe stattfinden. Die Menge {a4, as } ist nicht konfliktfrei, da (a4, a5) € R gilt. Auch
{ag} ist nicht konfliktfrei, da sich das Argument selbst angreift.

Neben der Konfliktfreiheit von gemeinsam akzeptierten Argumenten ist zudem auch
wiinschenswert, dass eine akzeptierte Menge nicht von aufien angegriffen wird. Sollte
dennoch ein Angriff auf die Menge erfolgen, soll dieser Angriff von der akzeptierten
Menge stets mit einem Gegenangriff verteidigt werden. Dies fiithrt zum Begriff der zu-
lassigen Menge.

Definition 2.7 (Zuldssige Mengen®). Sei F' = (A, R) ein AF und S C A. Eine Menge S
heifst zuldssig (engl. admissible) gdw. S € cf(F') und jedes a € S von S verteidigt wird.
Die Menge aller zuldssigen Mengen von F' bezeichnet ad(F') = {S C A | Sist zulassig}.

Beispiel 2.9. Fiir das AF F, aus Abbildung 2 sind beispielsweise {a;}, {as}, {a1,as5},
oder {ay,a3} zuldssige Mengen. Die Menge {a5} allein ist nicht zuldssig, da sich diese
nicht vor dem Angreifer ay verteidigen kann.

*Definition 5 aus [Dun95]
“Definition 6 aus [Dun95]



Die beiden Begriffe der konfliktfreien und der zuldssigen Menge sind bisher noch re-
lativ schwach, da insbesondere die leere Menge immer zuldssig ist und damit in jedem
Fall eine akzeptable Losung bietet. Dies ist in einer praktischen Anwendung nicht wiin-
schenswert. Zudem kann es immer eine zuldssige Menge geben, die weitere Argumen-
te verteidigt. Wiinschenswert wére, dass auch diese verteidigten Argumente akzeptiert
werden. Dies fiihrt zum Begriff der vollstaindigen Extension.

Definition 2.8 (Vollstindige Extensionen®). Sei F' = (A, R) ein AF und S C A. Eine
Menge S heifst vollstandig (engl. complete) gdw. S € ad(F') und jedes Argumenta € A,
das von S verteidigt wird, auch in S liegt. Es gilt somit 77(S) = S. Die Menge aller
vollstindigen Extensionen von F' bezeichnet co(F') = {S C A | Sist vollstandig}.

Beispiel 2.10. Fiir das AF F; aus Abbildung 2 ist beispielsweise die Menge {a; } bereits
vollstindig, da kein anderes Argument a € A von {a, } verteidigt wird. Insbesondere
werden a3 und a; nicht verteidigt, da sie neben a; noch weitere Angreifer besitzen, die
nicht von {a;} angegriffen werden. Weitere vollstindige Extensionen sind beispiels-
weise {a1,as3} und {a;, as}. Die Menge {a1, a5} hingegen ist nicht vollstandig, da das
Argument a3 verteidigt wird. Auch {a4} ist nicht vollstdndig, da das nicht attackierte
Argument a; von jeder Menge verteidigt wird und somit auch von {a4}.

Auch wenn es sich bei einer Argumentmenge bereits um eine vollstandige Extensi-
on handelt, kann es moglich sein, dass weitere Argumente hinzugenommen werden
konnen, sodass diese grofiere Argumentmenge ebenfalls vollstandig ist. Dies fiihrt zur
préferierten Semantik, die die grofitmogliche vollstandige Extension darstellt.

Definition 2.9 (Préferierte Extensionen®). Sei F' = (A, R) ein AF und S C A. Eine Men-
ge S heifst praferiert (engl. preferred) gdw. S € co(F) und S maximal ist. Es gibt somit
keine groBiere Menge S’ O S, die ebenfalls vollstindig ist. Die Menge aller praferierten
Extensionen von F bezeichnet pr(F') = {S C A | S ist préferiert}.

Beispiel 2.11. Betrachtet man die vollstindige Extension {a, a3} des AFs F» aus Ab-
bildung 2 (vgl. Beispiel 2.10), fallt auf, dass es noch weitere Argumente gibt, die zwar
nicht von der Menge verteidigt werden, aber dennoch der Menge hinzugefiigt werden
konnen, ohne die Vollstandigkeit zu verletzen. Betrachtet man nun das Argument a4,
so wird dieses zwar nicht von {a;, a3} verteidigt, aber es verteidigt sich selbst gegen
alle Angreifer. Somit ist {a1, as, a5 } ebenfalls vollstindig und zudem maximal. Die pra-
ferierten Extensionen von F; sind {a1, a3, a4} und {a1, as, as}.

Bezogen auf die praferierte Semantik kann es unterschiedliche Extensionen und da-
mit auch unterschiedliche Argumente geben, die gemeinsam akzeptiert werden kon-
nen. Es kann auch hilfreich sein, die Schnittmenge aller priferierten Extensionen zu
betrachten. Dies ist somit die Menge, die in jedem Fall akzeptiert werden kann. Dies
fithrt zur grundierten Semantik.

SDefinition 23 aus [Dun95]
®Definition 7 aus [Dun95]



Definition 2.10 (Grundierte Extensionen”). Sei F = (A, R) ein AF und S C A. Fi-
ne Menge S heifit grundiert (engl. grounded) gdw. S € co(F) und S minimal ist. Es
gibt somit keine kleinere Menge S’ C S, die ebenfalls vollstindig ist. Die grundierte
Extension entspricht dem Fixpunkt der iterativen Anwendung der charakteristischen
Funktion, bei der als Startpunkt die leere Menge verwendet wird. Der erste Funkti-
onsaufruf ist somit 7 (). Die Menge aller grundierten Extensionen von F' bezeichnet
gr(F) ={S C A|Sist grundiert}.

Beispiel 2.12. Fiir das AF F; aus Abbildung 2 ist die Menge {a1 } die einzige grundierte
Extension, da diese Menge vollstindig und minimal ist. Der Fixpunkt der iterativen
Anwendung der charakteristischen Funktion ist 7r({a1}) = a1.

Die letzte Semantik ist die stabile Semantik. Bei dieser ist es notwendig, dass alle
Argumente aufserhalb der akzeptierten Argumentmenge angegriffen werden. Dies ver-
deutlicht die nachfolgende Definition.

Definition 2.11 (Stabile Extensionen®). Sei F = (A, R) ein AF und S C A. Eine Men-
ge S heifit stabil (engl. stable) gdw. S € cf(F') und alle Argumente aufierhalb von S
angegriffen werden. Fiir die Reichweite gilt somit S¥ = A. Die Menge aller stabilen
Extensionen von F bezeichnet st(F) = {S C A | Sist stabil}.

Beispiel 2.13. Fiir das AF F, aus Abbildung 2 sind {a1, a3, a5} und {a1, as, as} die ein-
zigen stabilen Extensionen. Fiir S = {aj,a3,a4} € co(F3) gilt beispielsweise ST =
{as, a5, a6} und S® = A,, es gibt somit kein weiteres Argument, das weder in S liegt,
noch von S angegriffen wird.

Wie zuvor beschrieben sind die von Dung eingefiihrten klassischen Semantiken die
vollstdndige, die priferierte, die grundierte und die stabile Semantik. Im Rahmen die-
ser Arbeit werden auch konfliktfreie und zuldssige Mengen zur Vereinfachung als Se-
mantiken bezeichnet. Insbesondere werden konfliktfreie Mengen und zuldssige Men-
gen gleichermafien als Extensionen bezeichnen, es sei aber darauf hingewiesen, dass
diese im klassischen Sinne keine echten Extensionen darstellen. Extensionen werden
somit im Rahmen dieser Arbeit wie folgt definiert:

Definition 2.12 (o-Extensionen). Sei F' = (A, R) ein AF und o € {cf, ad, co, pr, gr, st}.
Dann bezeichnet o (F’) die Menge der jeweiligen Extensionen.

Der Zusammenhang bzw. die Beziehung zwischen allen genannten Semantiken ist
in Abbildung 3 dargestellt. Es gilt st(F') C pr(F) C co(F) C ad(F') C cf(F'). Weiter gilt
gr(F) C co(F). In Erganzung zur Abbildung 3 sei erwéhnt, dass es fiir ein AF F' genau
eine grundierte Extension gibt, die per Definition immer vollstiandig ist. Die grundierte
Extension kann somit, abhidngig vom AF, auch gleichzeitig préferiert oder stabil sein.

Weitere bekannte Semantiken, die auf der Veroffentlichung von Dung [Dun95] basie-
ren, sind beispielsweise die semi-stabile Semantik, die Stage-Semantik und die ideale

"Definition 20 aus [Dun95]
$Definition 13 aus [Dun95]
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Abbildung 3: Mengendarstellung der verschiedenen Mengen von Extensionen cf(F),
ad(F), co(F), pr(F) und st(F). Die grundierte Extension gr(F) ist zur
besseren Ubersicht nicht dargestellt, wiirde aber entweder in st(F), in
pr(F)\ st(F) oder in co(F') \ pr(F') liegen. In jedem Fall gilt aber gr(F") C
co(F'). Eigene Darstellung.

Semantik. Fiir einen vollstindigen Uberblick {iber die aktuellen Semantiken wird auf
Baroni, Caminada und Giacomin [BCG18] verwiesen. Diese werden im Rahmen dieser
Arbeit nicht betrachtet.

Fiir einige Fragestellungen ist nur ein einzelnes Argument von Interesse, fiir das ent-
schieden werden soll, ob dieses Argument in mindestens einer Situation oder mogli-
cherweise sogar in allen Situationen akzeptiert werden kann. Beispielsweise kann fiir
das AF aus Abbildung 2 interessant sein, ob a; in jeder Situation (bzw. in jeder Extensi-
on) akzeptiert werden kann und somit sicher davon auszugehen ist, dass a, unabhéan-
gig von der Akzeptanz anderer Argumente, akzeptiert wird.

Um nun entscheiden zu kénnen, ob ein Argument in mindestens einer oder in allen
Situationen akzeptiert werden kann, wird zwischen leichtgldubigen und skeptischen
Schlussfolgerungen unterschieden [VP00], die nachfolgend definiert werden.

Definition 2.13 (Leichtgldubige o-Schlussfolgerung). Sei F' = (A, R) ein AF und a €
A ein Argument. a ist eine leichtgldubige o-Schlussfolgerung fiir eine Semantik o €
{cf,ad,co,pr, gr, st} gdw. es eine Extension S € o(F') gibt, sodass a € S.

Fiir eine leichtgldubige o-Schlussfolgerung muss ein Argument a somit in mindes-
tens einer o-Extension vorkommen und damit akzeptiert sein.

Beispiel 2.14. Fiir das AF F), aus Abbildung 2 ist das Argument a4 eine leichtgldubige
co-Schlussfolgerung, da die Menge {a1, a4} € co(F) eine vollstindige Extension ist und
as € {a1, as}. Auch die Argumente a; und a3 sind leichtgldubige co-Schlussfolgerungen
(vgl. Beispiel 2.10).

11



Fiir eine skeptische o-Schlussfolgerung muss ein Argument a hingegen in allen mog-
lichen o-Extensionen vorkommen und damit in diesen akzeptiert sein.

Definition 2.14 (Skeptische o-Schlussfolgerung). Sei F' = (A, R) ein AF und a € A ein
Argument. Das Argument a ist eine skeptische o-Schlussfolgerung fiir eine Semantik
o € {cf,ad,co,pr,gr, st} gdw. fuir alle Extensionen S € o(F) gilt, dass a € S.

Beispiel 2.15. Fiir das AF F» aus Abbildung 2 ist das Argument a; eine skeptische co-
Schlussfolgerung, da a; Teil jeder moglichen vollstindigen Extension ist. Grund dafiir
ist, dass a; nicht angegriffen wird und somit von jeder anderen Menge S C A verteidigt
wird. Per Definition muss a; somit in jeder vollstindigen Extension enthalten sein (vgl.
Definition 2.8).

Nachdem in diesem Unterkapitel vorgestellt wurde, wie sich Argumentmengen fin-
den lassen, die gemeinsam akzeptiert werden konnen, soll im nachfolgenden Unterab-
schnitt 2.3 auf wiinschenswerte Eigenschaften dieser Semantiken eingegangen werden.

2.3 Eigenschaften (Postulate)

Um eine passende Semantik fiir ein gegebenes Problem auswéhlen zu kénnen und um
verschiedene Semantiken vergleichbar zu machen, haben van der Torre und Vesic un-
terschiedliche Eigenschaften, sogenannte Postulate, eingefiihrt [vdTV17] (erstmals wur-
den diese bereits 2007 von Baroni und Giacomin vorgestellt [BG07]). Davon sollen die
wichtigsten Grundsitze in diesem Unterkapitel dargestellt werden. Dies stellt ledig-
lich eine Auswahl dar, fiir eine vollstindige Ubersicht sei auf die Arbeiten von van der
Torre und Vesic bzw. von Baroni und Giacomin verwiesen [vdTV17, BG07].

Fiir die nachfolgenden Definitionen dieses Unterkapitels sei, sofern nicht anders er-
wahnt, stets /' = (A, R) ein beliebiges AF und, da die Eigenschaften auf beliebige Se-
mantiken anwendbar sind, sei o € {cf, ad, co, pr, gr, st}.

Fiir die erste Eigenschaft der Syntaxunabhédngigkeit ist zundchst zu definieren, wann
zwei AFs isomorph sind.

Definition 2.15 (Isomorphe AFs). Seien F' = (A, R) und F' = (A’, R') zwei AFs. Die
beiden AFs F' und I’ heiflen isomorph, wenn es eine bijektive Abbildung p : A — A’
gibt, sodass fiir alle a,b € A gilt:

(a,b) €R gdw. (p(a),p(t)) € R.

Mit Hilfe dieser Definition l4sst sich nun die gewtinschte Eigenschaft der Syntaxun-
abhangigkeit definieren, bei der es darum geht, dass sich die o-Extensionen unabhan-
gig von deren Bezeichnung bestimmen lassen sollen.

Definition 2.16 (Syntaxunabhingigkeit®). Eine Semantik o erfiillt Syntaxunabhéngig-
keit gdw. fiir alle AFs F' und F’ gilt: Falls F' und F’ isomorph mit einer bijektiven
Abbildung p sind (es gilt somit p(F') = F’), dann folgt:

o(p(F)) = p(o(F)).

9Principle 1 aus [vdTV17]
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Die zweite Eigenschaft ist die I-Maximalitat. Ist I-lMaximalitat erfiillt, gibt es keine
unterschiedlichen Extensionen eines AFs, die in einer echten Teilmengenbeziehung zu-
einanderstehen.

Definition 2.17 (I-Maximalitit'®). Seien S, S’ € o(F). Eine Semantik o erfiillt I-Maxi-
malitat gdw. fiir alle AFs gilt: Wenn S C $’, dann gilt S = §".

Die dritte Eigenschaft ist die Enthaltung. Gibt es zwei unterschiedliche Extensionen
Sund ', so dass ein Argument a in S akzeptiert und in S’ abgelehnt wird, dann erfiillt
eine Semantik diese Eigenschaft nur, sofern es eine dritte Extension S” gibt, die das
Argument a weder akzeptiert noch ablehnt.

Definition 2.18 (Enthaltung!!). Seien S;,S2 € o(F) zwei Extensionen von F. Eine Se-
mantik o erfiillt Enthaltung gdw. fiir alle Argumente a € A gilt: Ist a € S; und zudem
auch a € S; , dann gibt es eine weitere Extension S5 € o(F'), sodass weder a € S3 noch
a € Sy gilt.

Als Vorbereitung auf das nidchste Postulat muss an dieser Stelle zundchst der Be-
griff der Projektion eingefiihrt werden. Als Projektion werden alle Argumente aus einer
Menge S und deren Angriffe untereinander, die im AF existieren, betrachtet.

Definition 2.19 (Projektion eines AFs). Fiir eine Menge S C A ist die Projektion F| g (F'
projiziert auf S) gegeben durch F| g = (S, RN (S x 9)).

Die vierte wiinschenswerte Eigenschaft ist die Direktionalitdt. Diese Eigenschaft ist
erfiillt, wenn fiir jede Schnittmenge einer unattackierten Menge S und einer Extension
S’ gilt, dass diese Schnittmenge in der Projektion des AFs auf S ebenfalls eine Extension
darstellt. Dies formalisiert die nachfolgende Definition.

Definition 2.20 (Direktionalitit!?). Sei S C A eine in F unattackierte Menge, d.h. S wird
von keinem Argument a € {A \ S} angegriffen. Sei zudem S’ € o(F’) eine o-Extension
in F. Eine Semantik ¢ erfiillt Direktionalitit gdw. o(F|s) = {S' NS | S’ € o(F)} fir
jedes AF gilt.

Die fiinfte Eigenschaft ist die Dichtheit, die wie folgt definiert ist:

Definition 2.21 (Dichtheit'?). Eine Menge von Extensionen S = {S1,...,S,} mitn € N
und Sy, ..., S, € o(F) heifit dicht gdw. gilt: Sei S € Sund SU {a} ¢ Smita € A\ S,
dann folgt, dass es ein b € S gibt, das nicht gemeinsam mit a in einer beliebigen Exten-
sion aus S vorkommen kann. Die Argumente a und b sind auf eine Art inkompatibel
miteinander, beispielsweise durch eine Angriffsbeziehung.

Eine Semantik o erfiillt Dichtheit gdw. die Menge o(F) fiir jedes AF dicht ist.

vdTV17]
vdTV17]
vdTV17]
vdTV17]

%Principle 11 aus
"Principle 12 aus
2Principle 15 aus
BPrinciple 21 aus

————

13



Die sechste wiinschenswerte Eigenschaft ist die Konfliktsensitivitat.

Definition 2.22 (Konfliktsensitivitat'4). Eine Menge von Extensionen S = {S4,..., S,}
mitn € Nund 5i,...,S5, € o(F) heifit konfliktsensitiv gdw. fiir alle Paare S;,5; € S
miti,j € {1,...,n} gilt: Wenn S; U S; ¢ S, dann folgt, dass es ein @ € S; und ein b € S
gibt, die inkompatibel sind und nicht gemeinsam in einer Extension in S vorkommen.

Eine Semantik o erfiillt Konfliktsensitivitdt gdw. die Menge o (F') fiir jedes AF kon-
fliktsensitiv ist.

Ergianzend zu den Postulaten von van der Torre und Vesic [vdTV17] soll an dieser
Stelle noch eine weitere letzte Eigenschaft, die Modularisierung, dargestellt werden,
die von Baumann et al. publiziert wurde [BBU22]. Zuvor muss noch der Begriff des
Redukts eingefiihrt werden.

Definition 2.23 (Redukt!®). Das Redukt F° eines AFs F bzgl. einer Menge S C A ist
wie folgt definiert:
FS = (A, Rn (A x A)),

wobei A’ = A\ S%.
Eine alternative Definition des Redukts ldsst sich mit Hilfe der Projektion (vgl. Defi-
nition 2.19) formulieren mit
F% = F| yg0.

Das heifit, es wird nur der Teilgraph von F' betrachtet, aus dem alle Argumente aus S
und alle Argumente, die von S angegriffen werden, entfernt wurden.

Nachdem das Redukt nun definiert wurde, lasst sich die letzte wiinschenswerte Ei-
genschaft definieren. Dies ist die Modularisierung. Wird diese Eigenschaft erfiillt, lasst
sich fiir eine Extension S aus einem AF F und eine Extension S’ aus dem Redukt ¥
schlieen, dass auch die Vereinigung S U S’ eine Extension im originalen Graphen F
darstellt.

Definition 2.24 (Modularisierunglé). Eine Semantik o erfiillt Modularisierung gdw. fiir
alle AFs F gilt: Wenn S € o(F) und S’ € o(F), dann gilt SU S’ € o(F).

Nachdem nun alle wiinschenswerten Eigenschaften vorgestellt wurden, soll Tabel-
le 1 einen Uberblick dariiber geben, welche der zuvor genannten Postulate von den
verschiedenen Semantiken erfiillt werden und welche nicht erfiillt werden [DDLW15,
DKUW?24]. Anzumerken ist an dieser Stelle, dass es fiir Semantiken, die ein Postulat
im Allgemeinen nicht erfiillen, dennoch einzelne AFs geben kann, die dieses Postulat
erfiillen. Fiir die Erfiillung im Allgemeinen ist allerdings per Definition gefordert, dass
alle beliebigen AFs das Postulat erfiillen.

Y“Principle 22 aus [vdTV17]
BDefinition 3.1 aus [BBU22]
®Definition 6.1 aus [BBU22]
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cf ad co pr gr st
Syntaxunabhingigkeit v v v VvV V V/
I-Maximalitat X x Xx v v /
Enthaltung A S A
Direktionalitat /7 v vV /X
Dichtheit X X X v/
Konfliktsensitivitat A S A A
Modularisierung x v v v v /

Tabelle 1: Ubersicht der Erfiillung von Postulaten durch verschiedene Semantiken. Ei-
gene Darstellung in Anlehnung an Dunne et al. und Dvofak et al. [DDLW15,
DKUW24].
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3 Erweiterungen abstrakter Argumentationsgraphen

Wie bereits im vorherigen Abschnitt 2 beschrieben, wurden die von Dung veroffentli-
chen Semantiken [Dun95] im Laufe der Jahre immer wieder erweitert und es wurden
neue Semantiken verdffentlicht. Zudem gab es aber auch Erweiterungen der urspriing-
lichen abstrakten Argumentationsgraphen (AFs).

Die AFs von Dung waren darauf beschrankt, dass nur ein einzelnes Argument ein
anderes Argument angreifen kann. In der Realitédt gibt es allerdings auch Argumen-
tationen, in denen beispielsweise nicht nur Gegenargumente, sondern auch unterstiit-
zende Argumente hervorgebracht werden konnen. Es ist auch denkbar, dass erst meh-
rere Argumente in Kombination zu einem Angriff fithren oder dass das Wissen {iiber
Angriffsbeziehungen oder iiber die Existenz von Argumenten unsicher ist. Um dieses
Abstraktionsniveau von Dung abzuschwéchen, wurden sogenannte semi-abstrakte Ar-
gumentationsgraphen eingefiihrt, die weitere Aspekte der Realitédt berticksichtigen soll-
ten. Zwei solcher semi-abstrakten Argumentationsgraphen sollen in den nachfolgen-
den Unterabschnitten vorgestellt werden.

3.1 Argumentationsgraphen mit Mengenangriffen

Wie bereits einleitend erwéhnt, ist es in realen Argumentationen denkbar, dass ein Ar-
gument von einer Menge mehrerer Argumente angegriffen wird. Das heifst, es kann ein
Argument a geben, das allein nicht ausreichend ist, um ein Argument c anzugreifen.
Ist aber neben a auch ein weiteres Argument b akzeptabel, konnen beide Argumen-
te in Kombination das Argument c angreifen. Eine solche Erweiterung der abstrakten
Argumentationsgraphen wurde von Nielsen und Parsons [NP06] erarbeitet.

Beispiel 3.1. Das Beispiel 2.1, in dem Anna und Ben {iber eine geplante Fahrradtour
diskutieren, wird abgedandert. Die Argumentation sieht nun wie folgt aus:

a1: Lass uns eine Fahrradtour machen.
b1: Die Sonne scheint.
by: Ich habe eine Sonnenallergie.

Offensichtlich ist Bens Argument b; allein kein aussagekriftiges Argument gegen ei-
ne Fahrradtour. Dass die Sonne scheint, wire tatsdchlich eher ein Grund fiir eine Fahr-
radtour. Aber auch das zweite Argument by allein betrachtet stellt kein Gegenargument
dar. Da tiber das Wetter nichts bekannt ist, stellt die Sonnenallergie von Ben nicht auto-
matisch ein Hinderungsgrund fiir eine Fahrradtour dar.

Erst beide Argumente b; und b2 in Kombination stellen ein Gegenargument fiir a;
dar, sofern diese akzeptiert werden konnen. Da die Sonne scheint und Ben eine Son-
nenallergie hat, ist eine Fahrradtour an diesem Tag nicht moglich.

Um solche Szenarien modellieren zu konnen, wurden Argumentationsgraphen mit
Mengenangriffen (SetAFs) eingefiihrt. SetAFs bieten die Moglichkeit, dass auch meh-
rere Argumente gemeinsam ein anderes Argument angreifen konnen.
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Definition 3.1 (Argumentationsgraph mit Mengenangriffen'”). Ein Argumentations-
graph mit Mengenangriffen (SetAF) ist ein Tupel M = (A, R). Dabei bezeichnet A die
Menge der Argumente und R die Menge der Angriffe zwischen diesen Argumenten,
wobei R C (24\ {0}) x A.

Fiir ein SetAF erfolgt ein Angriff auf ein Argument somit durch eine nichtleere Men-
ge von Argumenten aus A. Insbesondere kann die Menge auch nur ein einziges Argu-
ment enthalten, wodurch alle in AFs modellierbaren Angriffe auch im SetAF modelliert
werden konnen. Fiir SetAFs muss zudem die Angriffsrelation neu definiert werden, da
nun mehrere Argumente in Kombination angreifen konnen.

Definition 3.2 (Angriffsrelation mit Mengenangriffen). Fiir ein SetAF M = (A, R) stellt
(S,b) € Rmit S C 24\ {0} und b € A einen Mengenangriff der Menge S auf das
Argument b dar. Eine dquivalente Schreibweise fiir einen Angriff von der Menge S auf
bist SRb.

Beispiel 3.2. Das zu Beispiel 3.1 gehorende SetAF M; = (A1, R1) mit A; = {a1,b1,b2}
und Ry = {({b1, b2}, a1)} ist in Abbildung 4 dargestellt. Ein Angriff auf a; kann nur in
Kombination aus den Argumenten b; und b, erfolgen.

Abbildung 4: SetAF M aus Beispiel 3.2. Eigene Darstellung.

Die in Unterabschnitt 2.1 eingefiihrten Bezeichnungen fiir S~ und S gelten analog
fiir SetAFs mit § C A. Insbesondere sind die einzelnen Argumente eines Mengenan-
griffs auf ein a € Sin S~ enthalten. Ein Mengenangriff der Menge S’ auf ein Argument
b € Aistin ST enthalten gdw. S’ C S, d.h. wenn alle Argumente des Mengenangriffs
auch in S liegen.

Auch in SetAFs konnen Argumente von anderen Argumenten oder Argumentmen-
gen verteidigt werden. Damit ein Argument in einem SetAF verteidigt wird, muss min-
destens ein Argument der angreifenden Menge angegriffen werden. Fiir eine erfolgrei-
che Verteidigung miissen allerdings nicht notwendigerweise alle Argumente der an-
greifenden Menge angegriffen werden.

Definition 3.3 (Verteidigung). Fiir ein SetAF M = (A,R), S € Aund a € S gilt: Die
Menge S verteidigt das Argument a gdw. es fiir alle Angreifer B C A mit (B,a) € R
eine weitere Menge C' C S gibt, wobei fiir mindestens ein b € B gilt: (C,b) € R. Analog
wird eine Menge S’ von S verteidigt gdw. alle Argumente a € S’ von S verteidigt
werden.

7Definition 1 aus [NP06]

17



Die Definitionen fiir die charakteristische Funktion (Definition 2.4) und die Reich-
weite (Definition 2.5) gelten gleichermafien fiir SetAFs, wobei die gednderte Definition
des Angriffs und der Verteidigung Anwendung findet.

Die in Unterabschnitt 2.2 vorgestellten Semantiken sollen nachfolgend in Kiirze auf
SetAFs tibertragen werden, wobei fiir die ausfiihrlichen Definitionen auf Nielsen und
Parsons [NP06] bzw. Bikakis et al. [BCD*21] verwiesen wird.

Definition 3.4 (Semantiken fiir SetAFs). Sei M = (A,R) ein SetAF und S C A.
Die Mengen aller o-Extensionen wird fiir SetAFs mit (M) bezeichnet, wobei fiir
o € {cf,ad,co,pr, gr, st} gilt. Die Semantiken sind wie folgt definiert:

¢ Eine Menge S heifst konfliktfrei gdw. es keinen Mengenangriff (B,a) € R gibt
mit BC Sunda € S.

¢ Eine konfliktfreie Menge S € c¢f (M) heifit zuldssig gdw. alle a € S von S vertei-
digt werden. Von den angreifenden Mengen wird mindestens ein Argument von
S angegriffen.

e Eine zuldssige Menge S € ad(M) heifit vollstindig gdw. fiir jedes Argument
a € A, das von S verteidigt wird, auch a € S gilt.

e Eine vollstindige Menge S € co(M) heift praferiert gdw. S maximal ist. Es gibt
somit keine weitere vollstindige Menge S’ mit S C S’

¢ Eine vollstindige Menge S € co(M) heifst grundiert gdw. S minimal ist. Es gibt
somit keine weitere vollstindige Menge S’ mit S’ C S.

* Eine vollstandige Menge S € co(M) heifit stabil gdw. S U ST = A.

Abbildung 5: SetAF M>. Eigene Darstellung.

Zum besseren Verstdndnis sollen nachfolgend anhand des SetAFs aus Abbildung 5
Beispiele fiir alle Semantiken gegeben werden.

Beispiel 3.3. In diesem Beispiel soll fiir jede Semantik anhand des SetAFs aus Abbil-
dung 5 eine beispielhafte Extension und ein Gegenbeispiel angegeben werden. Das
SetAF aus Abblldung 5 ist M2 = (AQ, Rg) mit A2 = {al, as,as, aq4, as, aﬁ} und RQ =

{({GQ? CL4}, al)a ({a% a5}a CL4), ({CL5}, a6)> ({aﬁ}a a5)7 ({a27 a3}7 a6)? ({afi}v a3)}' Die Seman-
tiken sollen nun einzeln betrachtet werden:
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e Konfliktfrei: Die Menge {a1,as} ist konfliktfrei, da sich die beiden Argumente
nicht gegenseitig angreifen. Die Menge {a1, az, a4} hingegen ist nicht konfliktfrei,
da ({ag, a4}, a1) € Ro und somit ein Angriff innerhalb der Menge stattfindet.

e Zulassig: Die konfliktfreie Menge {a¢} ist zuldssig, da sich die Menge zum einen
gegen die angreifende Menge {as} durch einen Gegenangriff und zum anderen
gegen den Angreifer {ag,a3} durch einen Angriff auf as verteidigt. Die Menge
{a4} hingegen ist nicht zuldssig, da ({a2, a5}, as) € Ry und keines der Argumente
von {a4} angegriffen wird.

¢ Vollstandig: Die zuldssige Menge S1 = {az, a4, as } ist vollstindig, da jedes Argu-
ment, das von S; verteidigt wird, auch in S; liegt. Die Menge Sy = {ag,as} ist
nicht vollstandig, da S; das Argument a4 durch den Angriff ({as}, as) verteidigt.

e Priferiert: Die vollstindige Menge {a1, as, a3, as} ist préferiert, da es keine echte
Obermenge gibt, die ebenfalls vollstindig ist. Die Menge {a2, a5} hingegen ist
nicht praferiert, da weitere Argumente hinzugefiigt werden kénnen, sodass die
Menge ebenfalls vollstandig ist.

¢ Grundiert: Die vollstindige Menge {a»} ist grundiert, da es keine echte Teilmen-
ge gibt, die ebenfalls vollstandig ist. Insbesondere ist die Menge vollstindig, weil
{a2} kein weiteres Argument verteidigt. Die Menge {as,as} hingegen ist nicht
grundiert, da es die eben gezeigte echte Teilmenge {a2} gibt, die ebenfalls voll-
standig ist.

e Stabil: Die vollstandige Menge {a1, a2, a3, a5 } ist stabil, da alle weiteren Argumen-
te aus A; angegriffen werden. Die Menge {a2, a3, as } hingegen ist nicht stabil, da
das Argument a; weder in der Menge liegt, noch von der Menge angegriffen
wird.

Die in Definition 2.13 und Definition 2.14 eingefiihrten Definitionen der leichtgldubi-
gen und der skeptischen Schlussfolgerung lassen sich gleichermafien auch auf SetAFs
tibertragen. Dabei werden die Definitionen wie folgt abgedndert:

Definition 3.5 (Leichtgldubige o-Schlussfolgerung fiir SetAFs). Sei M = (A, R) ein
SetAF und a € A ein Argument. a ist eine leichtgldubige o-Schlussfolgerung fiir eine
Semantik o € {cf, ad, co, pr, gr, st} gdw. es eine Extension S € (M) gibt, sodass a € S.

Definition 3.6 (Skeptische o-Schlussfolgerung fiir SetAFs). Sei M = (A, R) ein SetAF
und a € A ein Argument. a ist eine skeptische o-Schlussfolgerung fiir eine Semantik
o € {cf,ad,co,pr,gr, st} gdw. fur alle Extensionen S € o(M) gilt, dass a € S.

In diesem Unterkapitel das Framework SetAF als Erweiterung von AFs vorgestellt.
Zudem wurden die Semantiken auf SetAFs iibertragen und die Schlussfolgerungspro-
bleme angepasst. Im nédchsten Unterabschnitt 3.2 soll nun ein weiteres Framework, das
iAF, vorgestellt werden.
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3.2 Unvollstandige Argumentationsgraphen

Bei den von Dung [Dun95] eingefiihrten abstrakten Argumentationsgraphen wird da-
von ausgegangen, dass alle Argumente und Angriffe mit Sicherheit zutreffen. In der
Realitdt kann dies jedoch nicht immer gewdhrleistet werden, da es Argumente geben
kann, die unsicher sind oder tiber deren Existenz nicht gentigend Informationen vor-
liegen. Genauso kann es auch fiir zwei Argumente a und b einen Angriff aRb geben,
fiir den aber nicht mit Sicherheit gesagt werden kann, dass a das Argument b angreift.
Dies kann zwar in einer bestimmten Situation sein, muss es aber nicht zwangslaufig.

Eine Erweiterung der abstrakten Argumentationsgraphen um unvollstindiges Wis-
sen iiber Argumente und Angriffe wurde von Baumeister et al. [BNRS18] veroffent-
licht, wobei die ersten Ideen einer solchen Erweiterung von Coste-Marquis veroffent-
lich wurden [CMDK*07]. Die Notwendigkeit eines solchen Frameworks soll das nach-
folgende Beispiel verdeutlichen.

Beispiel 3.4. Das Beispiel 2.1, in dem Anna und Ben {iber eine geplante Fahrradtour
diskutieren, wird abgedndert. Die Argumentation sieht nun wie folgt aus:

a1: Lass uns eine Fahrradtour machen.
bi: Laut Wetterbericht soll es mit einer Wahrscheinlichkeit von 30% regnen.
by: Ich habe einen platten Reifen.

bs: Meine Fahrradkette konnte rausspringen.

In dieser Situation gibt es nun zum einen das sichere Argument a; von Anna und drei
weitere Argumente von Ben, deren Existenz bzw. Sicherheit des Eintreffens tiberpriift
werden soll. Das Argument b; ist unsicher, denn der Wetterbericht ist oft unzuverlas-
sig und es ist lediglich eine Regenwahrscheinlichkeit von 30% angegeben. Es ist somit
ungewiss, ob es iiberhaupt regnen wird. Wenn es allerdings tatsdachlich regnen sollte,
dann stellt dieses Argument einen Angriff auf a; dar, da die Fahrradtour bei Regen
ausfallt.

Das Argument by hingegen ist ein sicheres Argument. Es ist Fakt, dass Bens Reifen
platt ist. Allerdings ist fraglich, ob dieses Argument a; angreift. Es ist moglich, dass
der Reifen lediglich Luft verloren hat und mit einer Luftpumpe wieder aufgepumpt
werden kann. Es wiirde sich somit nicht um einen Angriff auf a; handeln, da die Fahr-
radtour dennoch moglich ware. Es besteht aber auch die Moglichkeit, dass Ben ein Loch
im Reifen hat. In diesem Fall wére die Fahrradtour nicht moglich und es wiirde sich um
einen Angriff auf a; handeln.

Das Argument b3 ist ein unsicheres Argument. Das Fahrrad funktioniert zum aktu-
ellen Zeitpunkt, Ben hat lediglich Bedenken, dass die Fahrradkette rausspringen konn-
te. Sofern dies tatsdchlich passieren sollte, ware weiterhin unklar, ob dieses Argument
tiberhaupt einen Angriff auf a; darstellt. Es ist moglich, dass Ben sich mit Fahrradern
auskennt und die Fahrradkette selbst wieder einsetzen kann. Die Fahrradtour kénn-
te fortgesetzt werden und ein Angriff findet nicht statt. Allerdings kann es auch sein,
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dass Ben nicht weifs, wie man die Fahrradkette repariert und das Argument wiirde a;
angreifen.

Das eben gezeigte Beispiel lasst sich mittels klassischer AFs nicht darstellen. Eine
Darstellung ist allerdings mit der Erweiterung der unvollstindigen Argumentations-
graphen (iAFs) moglich, das wie folgt definiert ist:

Definition 3.7 (Unvollstindige Argumentationsgraphen'®). Ein unvollstindiger Argu-
mentationsgraph (iAF) ist ein Tupel I = (4, 9", % ,%"). Dabei bezeichnet «/ die Menge
der sicheren Argumente, ¢/’ die Menge der unsicheren Argumente, % die Menge der
bedingt sicheren Angriffe und &” die Menge der unsicheren Angriffe, wobei ¢/ N’ = ()
und R, R C (AUA") x (4 Ud”).

Ein iAF kann sowohl bedingt sichere als auch unsichere Angriffe enthalten. Bedingt
sichere Angriffe sind dabei genau solche Angriffe, bei denen der Angreifer akzeptiert
ist. Formal ldsst sich dies folgendermafsen definieren:

Definition 3.8 (Bedingt sichere Angriffsrelation). Fiir ein iAF I = (s, 4", %, R") be-
zeichnet % die bedingt sichere Angriffsrelation zwischen den Argumenten. Fiir einen
bedingt sicheren Angriff (a,b) € % mit a,b € « U o’ gilt: Wenn die Argumente a
und b giiltig sind, dann greift das Argument a das Argument b an. Eine dquivalente
Schreibweise fiir einen bedingt sicheren Angriff von a auf b ist a%b.

Bedingt sichere Angriffe eines iAFs beinhalten somit auch Angriffe, an denen unsi-
chere Argumente beteiligt sein konnen. Angriffe dieser Art sind nur giiltig, sofern diese
unsicheren Argumente akzeptiert sind. Unsichere Angriffe hingegen sind unabhingig
von den Argumenten, die am Angriff beteiligt sind. Auch wenn der Angreifer akzep-
tiert ist, muss ein unsicherer Angriff nicht zwingend erfolgen.

Definition 3.9 (Unsichere Angriffsrelation). Fiir ein iAF I = (o, 9", %, R") bezeich-
net #° die unsichere Angriffsrelation zwischen den Argumenten. Fiir einen unsicheren
Angriff (a,b) € R mit a,b € o U’ gilt: Wenn die Argumente a und b giiltig sind,
kann ein Angriff von a auf b erfolgen. Dieser Angriff muss nicht zwingend erfolgen.
Eine dquivalente Schreibweise fiir einen unsicheren Angriff von a auf b ist a%’b.

Das nachfolgende Beispiel soll das Konzept von iAFs verdeutlichen, wobei auch
die Unterschiede zwischen bedingt sicheren und unsicheren Angriffen hervorgehoben
werden. Unsichere Argumente und unsichere Angriffe werden grundsétzlich durch ge-
strichelte Linien dargestellt.

Beispiel 3.5. Das zu Beispiel 3.4 gehorende iAF ist in Abbildung 6 dargestellt. Der
in Abbildung 6 dargestellte Argumentationsgraph lautet Iy = {o1, ], R1,%R]} mit
ﬂl = {al,bg}, ﬂ‘l? = {bl,bg}, %1 = {(bl,al)}, %I = {(bz,al), (bg,al)}. Der Angrlff
(b1,a1) € R, ist bedingt sicher, da dieser nur giiltig ist, sofern auch das Argument b;
akzeptiert ist. Der Angriff (b, a1) € %] gilt hingegen als unsicher.
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Abbildung 6: iAF I; aus Beispiel 3.4. Eigene Darstellung.

Um nun Aussagen iiber die Akzeptanz und Ablehnung von Argumenten in iAFs tref-
fen zu konnen, gibt es in der Literatur zwei verschiedene Ansatze. Dies ist zum einen
der von Baumeister et al. [BNRS18] vorgestellte vervollstindigungsbasierte Ansatz und
zum anderen der von Mailly [Mai21] veroffentlichte extensionsbasierte Ansatz. Beide
Ansitze sollen im Rahmen dieser Arbeit untersucht werden. Aus diesem Grund wer-
den nachfolgend zunéchst die Grundlagen beider Ansitze vorgestellt.

3.2.1 Vervolistandigungsbasierter Ansatz

Die Idee des vervollstindigungsbasierten Ansatzes ist es, alle moglichen Konstella-
tionen von AFs zu berticksichtigen und unter Berticksichtigung dieser Moglichkeiten
Schlussfolgerungen {iiber die Akzeptanz von Argumenten zu ziehen. Da ein iAF aus
sicheren und unsicheren Komponenten besteht, lassen sich aus diesem iAF eine Viel-
zahl von AFs ableiten, bei denen alle enthaltenen Komponenten als sicher angesehen
werden kénnen. Dem iAF konnen somit alle moglichen Situationen (mogliche Kombi-
nationen) entnommen werden. Auf diese Weise konnen die einzelnen AFs dann ent-
sprechend der Erlduterungen aus Unterabschnitt 2.1 behandelt werden.

Ein solches AF, das aus einem iAF abgeleitet wird, nennt sich Vervollstindigung. Die-
se Vervollstindigung enthilt selbst kein unsicheres Wissen mehr und ist wie folgt defi-
niert:

Definition 3.10 (Vervollstindigungen von iAFs). Sei I = (od,94°,%,R") ein iAF
und Comp(I) die Menge aller Vervollstandigungen. Fiir alle Vervollstandigungen I* €
Comp(I) mit I* = (A*,R*) gilt f C A* C (4 U")und % N (A* x A*) C R* C
(RURT) N (A* x A¥).

Beispiel 3.6. Fiir das in Abbildung 7 dargestellte iAF I, = {o{s, &42?, R, g&;} mit Ay =
{a1,a2,a4}, 43 = {az}, Ra = {(a1,a2), (az,a3)}, R = {(az,as)} kénnen insgesamt vier
Vervollstandigungen abgeleitet werden. Die Menge der Vervollstandigungen Comp(I5)
kann Abbildung 8 enthommen werden.

Fiir die einzelnen Vervollstindigungen von iAFs gelten die Begriffe des Angriffs und
der Verteidigung aus Unterabschnitt 2.1 gleichermafien. Ebenso gelten fiir die einzelnen

¥Definition 16 aus [BNRS18]
YDefinition 19 aus [BNRS18]
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Abbildung 7: iAF I aus Beispiel 3.6. Eigene Darstellung.
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Abbildung 8: Menge aller Vervollstindigungen des iAF I aus Abbildung 7. Eigene
Darstellung zu Beispiel 3.6.

Vervollstindigungen auch die Semantiken aus Unterabschnitt 2.2, da es sich bei den
Vervollstandigungen um {tibliche AFs nach Dung handelt.

Um nun Aussagen {iiber das iAF selbst treffen zu konnen, werden die Semantiken
und deren Extensionen um die Begriffe der moglichen und der notwendigen o-Exten-
sion wie folgt erweitert.

Definition 3.11 (Mogliche o-Extension). Fiir ein iAF I = (o, ", %,%") und eine Se-
mantik o € {cf,ad, co, pr, gr, st} ist S C (4 Ud”) eine mogliche o-Extension fiir I gdw.
S € o(I*) fur mindestens eine Vervollstindigung I* € Comp(I).

Beispiel 3.7. Fiir das in Abbildung 7 dargestellte iAF ist die Menge {a1, a4} eine mogli-
che gr-Extension, da es in Abbildung 8 mindestens eine Vervollstandigung gibt, fiir die
{a1, a4} eine grundierte Extension ist.

Ebenso lasst sich auch die notwendige o-Extension auf iAFs tibertragen:
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Definition 3.12 (Notwendige o-Extension). Fiir ein iAF I = (o, A’ R, %") und eine
Semantik o € {cf,ad, co, pr, gr,st} ist S C 4 eine notwendige o-Extension fiir I gdw.
S € o(I*) fur alle Vervollstandigungen I* € Comp(I).

Beispiel 3.8. Fiir das in Abbildung 7 dargestellte iAF ist die Menge {a1, a4} eine not-
wendige ad-Extension, da diese fiir alle Vervollstindigungen aus Abbildung 8 jeweils
eine zuldssige Menge ist.

Die in Definition 2.13 und Definition 2.14 eingefiihrten Definitionen der leichtgldubi-
gen und der skeptischen Schlussfolgerung miissen fiir iAFs abgedndert werden, da nun
eine Vielzahl unterschiedlicher Argumentationsgraphen (die Vervollstindigungen) be-
riicksichtigt werden miissen.

Definition 3.13 (Schlussfolgerungsprobleme fiir iAFs). Sei I = (o, 4, %, R ") ein iAF
mit den Vervollstindigungen I* € Comp(I). Fiir ein Argument a € («/ U «4”) und eine
Semantik o € {cf, ad, co, pr, gr, st} gilt:

1. aist eine mégliche leichtgldubige o-Schlussfolgerung von I gdw. es mindestens
eine Vervollstindigung I* gibt, fiir die a eine leichtgldubige o-Schlussfolgerung
ist.

2. aist eine mogliche skeptische o-Schlussfolgerung von I gdw. es mindestens eine
Vervollstandigung I* gibt, fiir die a eine skeptische o-Schlussfolgerung ist.

3. aist eine notwendige leichtglaubige o-Schlussfolgerung von I gdw. fiir alle Ver-
vollstindigungen I* gilt, dass a eine leichtgldubige o-Schlussfolgerung ist.

4. aist eine notwendige skeptische o-Schlussfolgerung von I gdw. fiir alle Vervoll-
stindigungen I* gilt, dass a eine skeptische o-Schlussfolgerung ist.

Beispiel 3.9. Fiir das in Abbildung 7 dargestellte iAF sollen die verschiedenen Schluss-
folgerungen an einem beispielhaften Argument aufgezeigt werden.

1. a3 ist eine mogliche leichtgldubige ad-Schlussfolgerung.

2. ay ist eine mogliche skeptische co-Schlussfolgerung.

3. a4 ist eine notwendige leichtgldubige ad-Schlussfolgerung.
4. ay ist eine notwendige skeptische gr-Schlussfolgerung.

Durch diese Schlussfolgerungsprobleme ist es nun moglich, trotz unvollstandiger In-
formation tiber Argumente oder Angriffe Aussagen iiber die Akzeptanz von Argumen-
ten zu treffen. Insbesondere ist die notwendige skeptische o-Schlussfolgerung eine sehr
strikte Schlussfolgerung, da die Akzeptanz eines Argumentes trotz fehlender Informa-
tionen mit Sicherheit angenommen werden kann.
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3.2.2 Extensionsbasierter Ansatz

Der zweite Ansatz, um Aussagen iiber iAFs treffen zu konnen, ist der extensionsbasier-
te Ansatz. Wahrend beim vervollstandigungsbasierten Ansatz zunichst alle Vervoll-
stindigungen berticksichtigt werden miissen, um anschlieflend unter Bertiicksichtigung
aller Konstellationen der Unsicherheit Aussagen tiber die Akzeptanz von Argumenten
treffen zu konnen, ist die Idee des extensionsbasierten Ansatzes das direkte Schlussfol-
gern von Akzeptanz von Argumenten. Dies erfolgt durch angepasste Definitionen der
konfliktfreien und zuldssigen Menge sowie der bereits in Unterabschnitt 2.2 vorgestell-
ten Semantiken.

Beim extensionsbasierten Ansatz werden dabei zwei unterschiedliche Sichtweisen
tiir jede der neuen Definitionen vertreten. Bei der optimistischen Sichtweise wird ange-
nommen, dass Angriffe von unsicheren Argumenten und generell unsichere Angriffe
keine Gefdhrdung darstellen. Bei der pessimistischen Sichtweise hingegen wird jeder
Angriff als Gefadhrdung eingestuft, wobei nicht von Bedeutung ist, ob das angreifende
Argument sicher oder unsicher ist und ob der Angriff sicher oder unsicher ist.

Bevor die verdnderten Definitionen fiir den extensionsbasierten Ansatz vorgestellt
werden, ist es notwendig, zunidchst den Begriff der Verteidigung neu zu definieren.
Dies liegt daran, dass auch hier die optimistische bzw. die pessimistische Sichtweise
verfolgt wird, die sich durch eine schwache bzw. starke Verteidigung duflert.

Definition 3.14 (Verteidigung in iAFs®). Fiir ein iAF I = (o, %", R, R"), eine Menge
S C ol Ugd” und ein Argument a € o U o7 gilt:

¢ Die Menge S verteidigt das Argument a schwach gdw. es fiir alle sicheren Angrei-
fer b € o mit (b, a) € % ein weiteres sicheres Argument ¢ € S gibt mit (¢, b) € R.

* Die Menge S verteidigt das Argument a stark gdw. es fiir alle Angreifer b € o/ Ust”
mit (b,a) € R UR’ ein sicheres Argument c € S gibt mit (c,b) € %.

Analog wird eine Menge S’ C o/ U «¢” von S schwach bzw. stark verteidigt gdw. alle
Argumente a € S’ von S schwach bzw. stark verteidigt werden.

Beispiel 3.10. Fiir das iAF I3 = (3, &15, Rs, R ;) aus Abbildung 9 gilt beispielsweise:

e Die Menge {a4} verteidigt das Argument a schwach, da der sichere Angriff vom
sicheren Argument a3 selbst wiederrum von a4 sicher angegriffen wird. Der An-
griff von a; ist fiir die schwache Verteidigung nicht zu beachten.

¢ Die Menge {as} verteidigt das Argument ay stark, da alle Angreifer von as wie-
derrum von a5 sicher angegriffen werden. In diesem Fall muss auch a; angegrif-
fen werden.

Nachdem die Verteidigung neu definiert wurde, lassen sich auch die schwach bzw.
stark konfliktfreien Mengen fiir iAFs definieren.

DDefinition 8 aus [Mai21]
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Abbildung 9: iAF I3 aus Beispiel 3.10. Eigene Darstellung.

Definition 3.15 (Konfliktfreie Mengen fiir iAFs?!). Sei I = (o, 1", %, % ") ein iAF und
S C o Ud’. Eine Menge S heifst

¢ schwach konfliktfrei gdw. fiir alle a,b € S N o nicht aZb gilt. Die Menge al-
ler schwach konfliktfreien Mengen von I bezeichnet cf,,(I) = {S C o U s’ |
S ist schwach konfliktfrei}.

o stark konfliktfrei gdw. fiir alle a,b € S weder a%b noch a%’b gilt. Die Men-
ge aller stark konfliktfreien Mengen von I bezeichnet cfs(I) = {S C o U’ |
S ist stark konfliktfrei}.

Erfillt eine Menge S die schwache Konfliktfreiheit fiir iAFs, gibt es keine sicheren
Angriffe zwischen sicheren Argumenten. Bei der starken Konfliktfreiheit hingegen gibt
es zudem auch keine unsicheren Angriffe zwischen den Argumenten aus S, wobei hier
auch keine Unterscheidung zwischen sicheren und unsicheren Argumenten vorgenom-
men wird.

Beispiel 3.11. Fiir das iAF I4(sl4, ], %4, R}) aus Abbildung 10 ist beispielsweise
{as, ag, a7} eine schwach konfliktfreie Menge und {a2, a4} eine stark konfliktfreie Men-
ge. Die Menge {ay, ag, ag} hingegen ist nicht schwach konfliktfrei und {a¢, a7} ist nicht

stark konfliktfrei.
- PR
777{ a3 k;’ aq4 l
A /

£ 'y
\ I
I
I

G OROBO

Abbildung 10: Unvollstindiger Argumentationsgraph I, aus Beispiel 3.11. Eigene Dar-
stellung.

Auch die Zuléssigkeit ldsst sich bezogen auf iAFs in der schwachen und der starken
Variante definieren, wobei bei der Zuléssigkeit nocht eine gemischte Variante gibt, um
alle Konstellationen abzudecken, wie die folgende Definition verdeutlicht.

ADefinition 7 aus [Mai21]
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Definition 3.16 (Zuldssige Mengen fiir iAFs??). Sei I = (o,d",%,R") ein iAF und
S C o Ud’. Eine Menge S heifst

e schwach zuldssig gdw. S € cf,,(I) und alle a € S von S schwach verteidigt wer-
den. Die Menge aller schwach zuldssigen Mengen von I bezeichnet ad,,(I) =
{S C ol U’ |Sistschwach zuléssig}.

e gemischt zuldssig gdw. S € cfs(I) und alle a € S von S schwach verteidigt wer-
den. Die Menge aller gemischt zuldssigen Mengen von I bezeichnet ad,,(I) =
{S Cul U’ |Sist gemischt zulassig}.

e stark zuldssig gdw. S € cfs(/) und alle @ € S von S stark verteidigt werden. Die
Menge aller stark zuldssigen Mengen von I bezeichnet ads(I) = {S C o U’ |
S ist stark zuldssig}.

Beispiel 3.12. Fiir das iAF I, aus Abbildung 10 soll fiir jede der drei Arten der Zulds-
sigkeit ein Beispiel angegeben werden:

* Die Menge {as, a4, ag} ist schwach zuldssig. Es gibt keine sicheren Angriffe zwi-
schen sicheren Argumenten innerhalb der Menge. Aufierdem wird die Menge
von aufien von a7 angegriffen, verteidigt sich jedoch durch das Argument ag ge-
gen diesen Angriff.

* Die Menge {a4, ag} ist gemischt zuldssig. Es gibt keine Angriffe zwischen Argu-
menten und die Menge wird nicht durch einen sicheren Angriff attackiert.

* Die Menge {a1, ag} ist stark zuldssig. Es gibt keine Angriffe zwischen Argumen-
ten der Menge. Alle Argumente, die sicher oder unsicher angegriffen werden,
werden von der Menge stark verteidigt.

Die nédchste Semantik, die neu definiert werden soll, ist die vollstindige Semantik.

Definition 3.17 (Vollstindige Extensionen fiir iAFs?3). Sei I = (o, 94", R, R") ein iAF
und S C o U o’ Eine Menge S heifit

¢ schwach vollstandig gdw. S € ad,,(I) und jedes Argument a € o U4, das von S
schwach verteidigt wird, auch in S liegt. Die Menge aller schwach vollstandigen
Mengen von I bezeichnet co,, (1) = {S C o Udd” | S ist schwach vollstindig}.

o stark vollstandig gdw. S € ads(I) und jedes Argumenta € o/Ug{’, das von S stark
verteidigt wird, auch in S liegt. Die Menge aller stark vollstindigen Mengen von
I bezeichnet co,(I) = {S C o1 Ui’ | Sist stark vollstindig}.

2Definition 9 aus [Mai21]
BDefinition 10 aus [Mai21]
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Beispiel 3.13. Fiir das iAF I aus Abbildung 10 soll fiir jede der zwei Arten der Voll-
standigkeit ein Beispiel angegeben werden:

* Die Menge {a1, a3, a4, ag } ist schwach vollstindig, da die Menge schwach zuldssig
ist und kein weiteres Argument a € o/ U «f? schwach verteidigt wird.

* Die Menge {a1,a¢} ist bereits stark vollstindig. Diese Menge ist stark zuldssig
und es gibt keine weiteren Argumente a € o U «/°, die von der Menge stark
verteidigt werden.

Wie bereits fiir AFs gezeigt wurde, konnen auch schwach vollstandige und stark voll-
standige Extensionen maximal bzw. minimal sein. Eine maximal schwach bzw. stark
vollstandige Extension stellt die schwach bzw. stark préferierte Extension dar.

Definition 3.18 (Préferierte Extensionen fiir iAFs?*). Sei I = (o, 4", % ,%") ein iAF und
S C «dUd’. Eine Menge S heifst

e schwach préferiert gdw. S € ad,(I) und S maximal ist. Es gibt somit kei-
ne groflere Menge S’ O S, die ebenfalls schwach zuldssig ist. Die Menge al-
ler schwach priferierten Mengen von I bezeichnet pr,(I) = {S C o U’ |
S ist schwach praferiert}.

¢ stark praferiert gdw. S € ad,(I) und S maximal ist. Es gibt somit keine grofsere
Menge S’ O S, die ebenfalls stark zuldssig ist. Die Menge aller stark praferierten
Mengen von I bezeichnet pry(I) = {S C of U’ | Sist stark préferiert}.

Beispiel 3.14. Fiir das iAF I aus Abbildung 10 soll fiir jede der zwei Arten der Préfe-
riertheit ein Beispiel angegeben werden:

* Die Menge {a1, as, a4, ag, a7} ist schwach priferiert, da die Menge schwach zulas-
sig ist und es keine Obermenge gibt, die ebenfalls schwach zuléssig ist.

e Die Menge {a, ag, ag} ist stark priferiert. Diese Menge ist stark zuldssig und es
handelt sich bereits um eine maximale stark zuldssige Menge. Insbesondere kann
das Argument a3 nicht stark verteidigt werden, da dieses von a4 angegriffen wird
und a4 von ag lediglich unsicher angegriffen wird, was laut Definition nicht fiir
eine starke Verteidigung ausreicht.

Fiir die formale Definition der grundierten Semantik fiir iAFs wird erneut die in De-
finition 2.4 vorgestellte charakteristische Funktion benétigt, die an dieser Stelle aller-
dings fiir das iAF angepasst werden muss.

ADefinition 10 aus [Mai21]
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Definition 3.19 (z-charakteristische Funktion fiir iAFs?®). Sei I = («,d",%,%") ein
iAF und es bezeichne z € {w,s} die Unterscheidung zwischen der schwachen (w)
und der starken (s) charakteristischen Funktion. Die z-charakteristische Funktion 77, :
Ui’ _y 9" pestimmt fiir eine Menge S C o U of” alle Argumente, die von dieser
Menge

¢ schwach verteidigt werden (fiir den Fall z = w) bzw.
¢ stark verteidigt werden (fiir den Fall z = s).

Beispiel 3.15. Fiir dasiAF I aus Abbildung 10 und eine Menge S = {a1} gilt 77, ,(S) =
{a1, a3, a4, as}. Dies ist genau die Menge, die von a; schwach verteidigt wird. Aufler-
dem gilt 77, (S) = {a1, as}, was genau der Menge entspricht, die von a; stark verteidigt
wird.

Mit Hilfe der neu definierten charakteristischen Funktion ladsst sich nun auch die
grundierte Semantik fiir iAFs definieren.

Definition 3.20 (Grundierte Extensionen fiir iAFs?®). Sei I = (o,47,%,R") ein iAF
und S C 4 U«”. Eine Menge S heifst

¢ schwach grundiert gdw. diese dem Fixpunkt der iterativen Anwendung der w-
charakteristischen Funktion entspricht. Die Menge aller schwach grundierten
Mengen von I bezeichnet gr,,(I) = {S C o U’ | Sist schwach grundiert}.

¢ stark grundiert gdw. diese dem Fixpunkt der iterativen Anwendung der s-cha-
rakteristischen Funktion entspricht. Die Menge aller stark grundierten Mengen
von I bezeichnet gr (1) = {S C o U’ | Sist stark grundiert}.

Beispiel 3.16. Fiir das iAF I, aus Abbildung 10 soll fiir jede der zwei Arten der Grun-
diertheit ein Beispiel angegeben werden:

e Die Menge {a1, a3, a4,as} ist schwach grundiert. Es gilt 77, ,,(0) = {a1,as3,a4},
da diese Argumente nicht sicher von sicheren Argumenten attackiert wer-
den und dadurch von der leeren Menge verteidigt werden. Weiter gelten

Trw({ar, as,as}) = {ar,a3,a4,a6} und 77,0 ({a1, a3,a4,a6}) = {a1,as, a4, a6},
was dem Fixpunkt und damit auch genau der schwach grundierten Extension
entspricht.

e Die Menge {a1, ag} ist stark grundiert. Es gilt 77, ,,(#) = {a;1}, da dieses Argument
nicht angegriffen wird. Weiter gelten 77, ,,({a1}) = {a1, as} und 77, ,n,({a1, a6}) =
{a1, as}. Letzteres entspricht dem Fixpunkt und damit der stark grundierten Ex-
tension.

BDefinition 7 aus [Mai23]
Definition 8 aus [Mai23]
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Die letzte verbleibende Semantik ist die stabile Semantik. Auch diese ldsst sich in
einer schwachen und einer starken Ausprdagung an iAFs anpassen.

Definition 3.21 (Stabile Extensionen fiir iAFs*). Sei I = («,sd”,%,%") ein iAF und
S C o U’ Eine Menge S heifst

¢ schwach stabil gdw. S € cf,,(I) und alle a € o \ S sicher von S angegriffen
werden, es gibt somit ein b € S N o mit b a. Die Menge aller schwach stabilen
Mengen von I bezeichnet st,,(I) = {S C o U’ | Sist schwach stabil }.

o stark stabil gdw. S € cfs(I) und alle a € (9 U «”) \ S sicher von S angegriffen
werden, es gibt somit ein b € S N ¢ mit b%Ra. Die Menge aller stark stabilen
Mengen von I bezeichnet st (1) = {S C o Ugd’ | S ist stark stabil}.

Beispiel 3.17. Fiir dasiAF I, aus Abbildung 10 soll fiir jede der zwei Arten der Stabilitét
ein Beispiel angegeben werden:

* Die Menge {a1, ag, a7} ist schwach stabil, da die Menge schwach konfliktfrei ist
und das einzige verbleibende sichere Argument ag sicher von a7 attackiert wird.

¢ Fiir das iAF I, gibt es keine stark stabile Extension. Die Argumente a3 und a4
werden beide nicht sicher von einem sicheren Argument angegriffen. Fiir eine
stabile Extension miissten somit beide Argumente in der Extension enthalten sein,
was aber aufgrund der notwendigen Bedingung der starken Konfliktfreiheit nicht
moglich ist. Mit einer kleinen Anpassung des iAFs lasst sich allerdings dennoch
ein Beispiel angeben. Angenommen, fiir I, gelte (as,as) € R4 statt (as,as) €
%Z, dann wére {a1, a3, ag, ag} eine stabile Extension, da alle weiteren Argumente
sicher angegriffen werden.

In diesem Unterkapitel wurde das Framework iAF als Erweiterung von AFs vorge-
stellt. Zudem wurden zwei unterschiedliche Ansdtze fiir iAFs verfolgt. Der vervoll-
standigungsbasierte Ansatz verfolgt das Ziel, Aussagen iiber Argumente oder Argu-
mentmenten anhand von Vervollstindigungen zu treffen. Der extensionsbasierte An-
satz hingegen verfolgt das Ziel, direkte Aussagen tiber iAFs treffen zu konnen, indem
die Semantiken neu definiert wurden, wobei zwischen einer schwachen und einer star-
ken Auspragung der jeweiligen Semantik unterschieden wird.

YDefinition 11 aus [Mai21]
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4 Entwicklung des Argumentationsframeworks iSetAF

Im vorherigen Abschnitt 3 wurden zwei Erweiterungen von abstrakten Argumentati-
onsgraphen dargestellt, die Argumentationsgraphen mit Mengenangriffen und unvoll-
stindige Argumentationsgraphen. In realen Argumentationen ist nun aber auch denk-
bar, dass es Mengenangriffe gibt, bei denen das Wissen tiber die Argumente oder tiber
die Angriffe unsicher ist. Diese Situation soll das nachfolgende Beispiel zeigen.

Beispiel 4.1. Das Beispiel 2.1, in dem Anna und Ben iiber eine geplante Fahrradtour
diskutieren, wird abgedandert. Die Argumentation sieht nun wie folgt aus:

a1: Lass uns eine Fahrradtour machen.
by: Ich habe eine Sonnenallergie.

bo: Laut Wetterbericht soll es mit einer Wahrscheinlichkeit von 30% wolkenlos
sein.

In dieser Situation ist das Argument, dass Ben eine Sonnenallergie hat, ein sicheres
Argument, das aber allein genommen kein Argument gegen eine Fahrradtour ist (vgl.
auch Beispiel 3.1). Bens zweites Argument by ist unsicher, da der Wetterbericht nur eine
Vermutung ist und es evtl. auch bewolkt sein konnte. Auch dieses unsichere Argument
stellt allein kein Gegenargument dar.

Lediglich fiir den Fall, dass das unsichere Argument akzeptiert werden kann, wiirde
ein Mengenangriff von {b1, b2} auf a; erfolgen. Da Ben eine Sonnenallergie hat, ist eine
Fahrradtour nicht moglich, sollte die Sonne tatsdchlich scheinen.

In diesem Kapitel sollen unvollstindige Argumentationsgraphen mit Mengenangrif-
fen (iSetAFs) eingefiihrt und zundchst formal definiert werden, wobei insbesonde-
re auch der Begriff des Angriffs neu definiert wird. AnschlieSend soll zur Auswer-
tung von iSetAFs zundchst ein vervollstaindigungsbasierter und anschliefsend ein ex-
tensionsbasierter Ansatz verfolgt werden. Beide Ansédtze wurden bereits in Unterab-
schnitt 3.2 fiir iAFs vorgestellt und sollen in diesem Kapitel auf die neu definierten
iSetAFs angepasst werden.

4.1 Formale Definition

In diesem Unterkapitel wird die formale Definition fiir iSetAFs vorgestellt, die sich
an der Definition fiir iAFs orientiert und sowohl fiir den vervollstindigungsbasierten
Ansatz aus Unterabschnitt 4.2 als auch fiir den extensionsbasierten Ansatz aus Unter-
abschnitt 4.3 giiltig ist.

Definition 4.1 (Unvollstindige Argumentationsgraphen mit Mengenangriffen). Ein
unvollstindiger Argumentationsgraph mit Mengenangriffen (iSetAF) ist ein Tupel
U = (A,A",R,R"). Dabei bezeichnet A die Menge der sicheren Argumente, A7 die
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Menge der unsicheren Argumente, R die Menge der bedingt sicheren Mengenan-
griffe und R’ die Menge der unsicheren Mengenangriffe, wobei A N A” = () und
R, R? C (24947 \ {0}) x (AUA).

Fiir ein iSetAF erfolgt ein Angriff auf ein Argument somit durch eine nichtleere Men-
ge von Argumenten aus A U A’. Insbesondere kann die Menge auch nur ein einziges
Argument enthalten, wodurch alle in AFs modellierbaren Angriffe auch im iSetAF mo-
delliert werden konnen, bei dem die Menge der unsicheren Argumente und die Menge
der unsicheren Angriffe leer ist.

Bei der Angriffsrelation kann zwischen sicheren, bedingt sicheren und unsicheren
Angriffen unterschieden werden. Bedingt sichere Mengenangriffe eines iSetAFs bein-
halten auch Mengenangriffe, an denen unsichere Argumente beteiligt sein konnen. So-
fern aber alle am Mengenangriff beteiligten Argumente tatsdchlich gelten und somit
als sicher angenommen werden konnen, ist auch der Mengenangriff sicher und damit
glltig.

Definition 4.2 (Bedingt sichere und sichere Angriffsrelation in iSetAFs). Fiir ein iSe-
tAF U = (A, A7, R, R?) stellt (G,b) € RmitG C AUA"\Qund b € AU A’ einen
bedingt sicheren Mengenangriff der Menge G auf das Argument b dar. Eine dquivalen-
te Schreibweise fiir einen bedingt sicheren Angriff von der Menge G auf b ist GRb. Ein
Mengenangriff heifst sicher, sofern alle beteiligten Argumente sicher sind und somit die
Eingrenzung G C A\ D und b € A gilt.

Im Gegensatz zu einem bedingt sicheren Angriff, der immer giiltig ist, sofern alle be-
teiligten Argumente giiltig sind, bleibt bei einem unsicheren Mengenangriff unklar, ob
dieser tatsdchlich stattfindet oder nicht. Selbst wenn alle beteiligten Argumente sicher
und somit giiltig sind, muss der unsichere Mengenangriff nicht zwingend giiltig sein.

Definition 4.3 (Unsichere Angriffsrelation in iSetAFs). Fiir ein iSetAF U =
(A, A7, R, R) stellt (G', ') € R mit G’ C AUA"\ Pund &' € AU A’ einen unsicheren
Mengenangriff der Menge S’ auf das Argument ¢’ dar. Eine dquivalente Schreibweise
fiir einen unsicheren Angriff von der Menge G’ auf v/ ist G'R*b.

Beispiel 4.2. Der zu Beispiel 4.1 gehorende unvollstindige Argumentationsgraph mit
Mengenangriffen ist
Up = (A1, AL, R, RY)

mit
A1 ={a1,b1},
A = {ba},
Ri = {({b1, b2}, a1)}
und

R =0
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ist in Abbildung 11 dargestellt. Ein Angriff auf a; kann nur in Kombination aus den
Argumenten b; und b, erfolgen. Der Mengenangriff {({b1, b2}, a1)} stellt einen bedingt
sicheren Angriff dar. Sollte das Argument by nicht giiltig sein, kann auch der Mengen-
angriff nicht giiltig sein. Ist das Argument by allerdings giiltig, muss auch der Mengen-
angriff zwingend giiltig sein.

, ~
\
=
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Abbildung 11: iSetAF U; aus Beispiel 4.2. Eigene Darstellung.
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Abbildung 12: Mogliche Mengenangriffe mit unvollstiandiger Information iiber Argu-
mente oder Angriffe. Dargestellt sind sechs iSetAFs U, bis Uz, die jeweils
unterschiedliche unvollstindige Teilkomponenten besitzen. Eigene Dar-
stellung.

Bei einem Mengenangriff mit unvollstindiger Information konnen unterschiedliche
Teilkomponenten unsicher sein. Es ist moglich, dass nur ein Argument des Mengen-
angriffs unsicher ist, dass mehrere Argumente des Mengenangriffs unsicher sind, oder
dass der Mengenangriff selbst unsicher ist. Moglich sind zudem auch Kombinationen
von unsicheren Teilkomponenten, sodass sich insgesamt sechs Unterscheidungen er-
geben, die in Abbildung 12 dargestellt sind. Die Unsicherheit des angegriffenen Ar-
guments wird dabei aufler Acht gelassen, da die Nichtgiiltigkeit von a; dazu fiihren
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wiirde, dass ein Angriff auf a; generell nicht mehr moglich ist. Genauer gibt es folgen-
de Unterscheidungen:

¢ Alle Argumente des Mengenangriffs und auch der Angriff selbst sind sicher (Ab-
bildung 12, iSetAF Us).

* Es gibt sichere und unsichere Argumente der angreifenden Menge, der Angriff
selbst ist sicher (Abbildung 12, iSetAF Us).

¢ Alle Argumente des Mengenangriffs sind unsicher, der Angriff selbst ist sicher
(Abbildung 12, iSetAF Uy).

¢ Alle Argumente des Mengenangriffs sind sicher, der Angriff selbst ist unsicher
(Abbildung 12, iSetAF Us).

¢ Es gibt sichere und unsichere Argumente der angreifenden Menge, der Angriff
selbst ist unsicher (Abbildung 12, iSetAF Us).

¢ Alle Argumente des Mengenangriffs und auch der Angriff selbst sind unsicher
(Abbildung 12, iSetAF Ur).

Eine Moglichkeit, wie mit diesen unterschiedlichen Teilkomponenten unsicherer In-
formation umgegangen werden kann, bietet der vervollstindigungsbasierte Ansatz,
der nachfolgend in Unterabschnitt 4.2 vorgestellt wird.

4.2 Vervollstandigungsbasierter Ansatz

Wie in Unterabschnitt 3.2 (Unvollstindige Argumentationsgraphen) gezeigt wurde,
wird mit unvollstandiger Information bei unvollstindigen Argumentationsgraphen in
der Art umgegangen, dass alle moglichen Vervollstindigungen eines iAFs betrachtet
und ausgewertet werden. Diese Moglichkeit der Vervollstindigungen ldsst sich auch
auf iSetAFs tibertragen, indem eine Vielzahl von SetAFs aus dem iSetAF abgeleitet
werden. Bei diesen abgeleiteten Argumentationsgraphen handelt es sich um SetAFs,
in denen alle enthaltenen Komponenten als sicher angesehen werden kénnen. Die ent-
standenen abgeleiteten SetAFs kénnen anschliefiend entsprechend der Erlduterungen
aus Unterabschnitt 3.1 (Argumentationsgraphen mit Mengenangriffen) behandelt wer-
den. Vervollstindigungen von iSetAFs lassen sich wie folgt definieren:

Definition 4.4 (Vervollstindigungen von iSetAFs). Sei U = (A, A?, R, R?) ein iSetAF
und Comp(U) die Menge aller Vervollstandigungen von U. Fiir alle Vervollstandigun-
gen U* € Comp(U) mit U* = (A*, R*) gilt:

ACA*C(AUAY

und
RN (2 x A) CR* C (RURY) N (24 x A").
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Eine Vervollstandigung enthédlt somit immer mindestens alle sicheren Argumente,
kann jedoch auch einige unsichere Argumente umfassen. Von den bedingt sicheren
Angriffen sind genau diejenigen in der Vervollstindigung enthalten, deren beteilig-
te Argumente ebenfalls darin vorkommen. Zusétzlich kdnnen auch einige unsiche-
re Angriffe enthalten sein. Insbesondere handelt es sich bei jeder Vervollstindigung
U* € Comp(U) um ein SetAF.

Zur besseren Unterscheidbarkeit werden die Vervollstaindigungen eines iSetAFs im
Rahmen dieser Arbeit wie folgt bezeichnet: Sei U; ein iSetAF mit i € N, dann be-
zeichnet Comp(U;) die Menge der Vervollstaindigungen und U;; € Comp(U;) mit
Jj € {1,...,|Comp(U;)|} bezeichnet die j-te Vervollstindigung von U;. Dies verdeut-
licht das nachfolgende Beispiel.

Beispiel 4.3. Fiir den in Abbildung 11 dargestellten unvollstindigen Argumentations-
graphen U; aus Beispiel 4.2 konnen insgesamt zwei Vervollstindigungen abgeleitet
werden. Die Menge der Vervollstindigungen Comp(U;) kann Abbildung 13 entnom-
men werden.

Uiq Uio

Abbildung 13: Die Menge Comp(U;) der Vervollstindigungen des iSetAFs U; aus Bei-
spiel 4.2. Eigene Darstellung.

In Abbildung 12 wurden bereits mogliche Unterscheidungen bzgl. der Unsicherheit
von Teilkomponenten aufgezeigt. Fiir diese lassen sich die in Abbildung 14 dargestell-
ten Vervollstindigungen ableiten. Dabei wird deutlich, dass die Anzahl der Vervoll-
stindigungen eines einzelnen Angriffs schnell extrem hohe Werte annehmen kann, da
diese in Abhédngigkeit von der Anzahl der unsicheren Argumente des Mengenangriffs
sowie der unsicheren Angriffe exponentiell steigt. Dies zeigt die folgende Proposition.

Proposition 4.1. Sei U = (A, A", R, R") ein iSetAF und sei R; € RUR’ mit R; = (S;, a;)
ein beliebiger Mengenangriff in U mit i € {1,...,|RUR’|}, wobei S; C AUA’ und
a; € A gﬂt.

Weiter sei m = |S; N.A’| die Anzahl der unsicheren Argumente von S; und p € {0,1}
definiert durch:

* p =0gdw. R; € R (der Mengenangriff ist bedingt sicher),

e p=1gdw. R; € R’ (der Mengenangriff ist unsicher).
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Abbildung 14: Vervollstandigungen fiir die in Abbildung 12 dargestellten iSetAFs Us
bis U7. Eigene Darstellung.
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Dann lésst sich die Anzahl der Vervollstindigungen, bezogen auf diesen einen Men-
genangriff, durch |Compg,(U)| = 2™ + p berechnen.

Beweis. Die Proposition ladsst sich durch vollstindige Induktion beweisen. Dabei wird
ein einzelner Mengenangriff eines iSetAFs betrachtet. Es soll gezeigt werden, dass sich
die Anzahl der Vervollstindigungen fiir diesen Mengenangriff durch n = 2™ + p be-
rechnen ldsst.

¢ Induktionsanfang m = 0: Sind keine unsicheren Argumente am Mengenangriff
beteiligt, hangt die Anzahl lediglich davon ab, ob der Angriff selbst sicher oder
unsicher ist.

— Bei einem sicheren Angriff gibt es genau eine Vervollstindigung (vgl. Abbil-
dung 14, Us ;). Dies ist durch n = M4+0=1 gegeben.

— Bei einem unsicheren Angriff gibt es zwei Vervollstindigungen (vgl. Abbil-
dung 14, Us 1 und Us ). Dies ist durch n = 204+1=2 gegeben.

Damit gilt der Induktionsanfang.
¢ Induktionsannahme: Fiir k unsichere Argumente gelte n = 2* + p.

¢ Induktionsschritt: Es ist zu zeigen, dass die Formel auch fiir m = k41 gilt. Per In-
duktionsannahme betrdgt die Anzahl der Vervollstandigungen fiir m = k genau
2k 4+ p. An dieser Stelle folgt eine Fallunterscheidung fiir p:

- Fall p = 0: Wird ein weiteres unsicheres Argument zum Mengenangriff hin-
zugeftiigt (es gilt somit m = k + 1), verdoppelt sich die Anzahl der Moglich-
keiten, da jede bisherige Vervollstindigung bestehen bleibt und um das wei-
tere unsichere Argument erweitert werden kann. Daher gilt: n = 2- (2% +p) =
2k+1 4 2p. Wegen p = 0 folgt n = 281 4 0 und damit gilt die zu zeigende
Aussage.

- Fall p = 1: Mit m = k gibt es genau 2* Vervollstindigungen ohne Angriff
sowie eine zusdtzliche Vervollstindigung mit tatsachlichem Angriff. Wird
ein weiteres unsicheres Argument zum Mengenangriff hinzugefiigt (es gilt
somit m = k + 1), verdoppeln sich lediglich die Vervollstindigungen ohne
Angriff. Hinzu kommt schliefSlich die Vervollstindigung, die den Angriff
beinhaltet. Daher gilt: n =2 - (2¥ +p— 1) + 1 =21 + 2p — 1. Wegen p = 1
folgt n = 281 + 1 und damit gilt die zu zeigende Aussage.

O

Mit Hilfe von Proposition 4.1 lasst sich schliefdlich auch die Gesamtzahl der Vervoll-
standigungen eines iSetAFs bestimmen, indem die Anzahl der moglichen Kombinatio-
nen jedes Angriffs multipliziert werden. Bei dieser Berechnung ist allerdings zu beach-
ten, dass alle Mengenangriffe unabhidngig voneinander sein miissen, das heifst, kein
Argument ist Teil mehrerer Mengenangriffe.
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Beispiel 4.4. Fiir das iSetAF Ug aus Abbildung 15 sind die beiden Mengenangriffe
unabhingig voneinander. Fiir den unsicheren Angriff ({as,as},a1) gibt es entspre-
chend Proposition 4.1 genau 2! + 1 = 3 Moglichkeiten. Fiir den sicheren Angriff
({a2,as,a4},a7) gibt es hingegen 23 + 0 = 8 Moglichkeiten. Insgesamt gilt somit
|Comp(Ug)| = 3-8 = 24. Aus dem iSetAF Us, das lediglich aus zwei Angriffen besteht,
lassen sich somit bereits 24 Vervollstindigungen ableiten.

PR PR =
’ AY ’ AY 4 AY
1 1 1
L a2 ' ag ' ay )
\\-/ \\-,

Abbildung 15: iSetAF Uy zu Beispiel 4.4. Eigene Darstellung.

Ziel der formalen Argumentation ist es, Argumente zu finden, die gemeinsam akzep-
tiert werden konnen. Dies wurde durch die Definition unterschiedlicher Semantiken
formalisiert (vgl. Abschnitt 2). Wie bereits fiir iAFs in Unterabschnitt 3.2 (Unvollstandi-
ge Argumentationsgraphen) beschrieben wurde, lassen sich aufgrund der unvollstan-
digen Information allerdings keine direkten Extensionen aus dem Argumentationsgra-
phen ableiten. Um aber dennoch Aussagen tiber die Akzeptanz und die Ablehnung von
Mengen von Argumenten treffen zu konnen, kann auch fiir iSetAFs auf mogliche und
notwendige o-Extensionen zuriickgegriffen werden. Die Definition 3.11 und Definiti-
on 3.12 fiir mogliche und notwendige o-Extensionen fiir iAFs konnen gleichermafsen
auf iSetAFs tibertragen werden.

Bevor die moglichen und notwendigen o-Extensionen fiir iSetAFs definiert werden,
sei an dieser Stelle nochmals darauf hingewiesen, dass es sich bei allen Vervollstandi-
gungen eines iSetAFs jeweils um einen Argumentationsgraphen mit Mengenangriffen
(SetAF) handelt. Diese Vervollstaindigungen enthalten keine unvollstindige Informa-
tion mehr, weshalb sich alle in Unterabschnitt 3.1 (Argumentationsgraphen mit Men-
genangriffen) eingefiihrten Definitionen auf die Vervollstindigungen anwenden las-
sen. Insbesondere gelten auch die in Definition 3.4 beschriebenen Semantiken.

Definition 4.5 (Mogliche o-Extension fiir iSetAFs). Fiir ein iSetAF U = (A, A" R, RY)
und eine Semantik o € {cf,ad, co,pr, gr, st} ist S C (AUA?) eine mogliche o-Extension
fur U gdw. S € o(U*) fiir mindestens eine Vervollstindigung U* € Comp(U) gilt,
wobei o(U*) die Menge aller o-Extensionen fiir das SetAF U* bezeichnet (vgl. Definiti-
on 3.4).

Beispiel 4.5. Fiir das in Abbildung 16 dargestellte iSetAF Uy ist die Menge S =
{az, a5, a6} eine mogliche co-Extension, da es eine Vervollstindigung Uy ; (siehe Ab-
bildung 17) gibt, in der die Menge S vollstandig ist. Fiir S ldsst sich aber zudem auch
eine Vervollstandigung Uy » (siehe Abbildung 17) finden, in der diese Menge grundiert
ist. Daher ist S auch eine mogliche gr-Extension.
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Abbildung 16: iSetAF Uy zu Beispiel 4.5. Eigene Darstellung.

U971 U9,2

Abbildung 17: Eine Teilmenge von Comp(Uy) der Vervollstindigungen des iSetAFs Uy
aus Beispiel 4.5. Eigene Darstellung.

Definition 4.6 (Notwendige o-Extension fiir iSetAFs). Fiir ein iSetAF U =
(A, A", R,R?) und eine Semantik ¢ € {cf,ad, co, pr, gr, st} ist S C A eine notwendi-
ge o-Extension fiir U gdw. S € o(U™) fiir alle Vervollstindigungen U* € Comp(U) gilt,
wobei o(U*) die Menge aller o-Extensionen fiir das SetAF U* bezeichnet (vgl. Definiti-
on 3.4).

Beispiel 4.6. Fiir das in Abbildung 16 dargestellte iSetAF Uy ist die Menge S = {as} ei-
ne notwendige ad-Extension. Da S~ = () gilt, besitzt die Menge S keine Angreifer und
ist somit in jeder beliebigen Vervollstindigung zuléssig. Je nach betrachteter Vervoll-
staindigung verteidigt S aber noch weitere Argumente, weshalb es sich nicht um eine
notwendige co-Extension handeln kann.

Ein weiteres Beispiel ist die Menge S” = {as, ag }, bei der es sich um eine notwendige
cf-Extension handelt. Die Menge S’ ist in jeder Vervollstindigung konfliktfrei, da es
weder sichere noch unsichere Angriffe zwischen as und a¢ gibt.
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Um nun auch Aussagen iiber die Akzeptanz oder Ablehnung einzelner Argumente
treffen zu konnen, lassen sich auch die Schlussfolgerungsprobleme auf iSetAFs {ibertra-
gen. Dabei werden erneut die einzelnen Vervollstindigungen betrachtet, weshalb die
in Definition 3.5 und Definition 3.6 eingefiihrten Definitionen der leichtglaubigen und
der skeptischen Schlussfolgerung gelten.

Definition 4.7 (Schlussfolgerungsprobleme fiir iSetAFs). Sei U = (A, A?,R,R") ein
iSetAF mit den Vervollstandigungen U* € Comp(U). Fiir ein Argument a € (A U A")
und eine Semantik o € {cf, ad, co, pr, gr, st} gilt:

1. aist eine mogliche leichtglaubige o-Schlussfolgerung von U gdw. es mindestens
eine Vervollstindigung U* gibt, fiir die a eine leichtgldubige o-Schlussfolgerung
fiir SetAFs ist.

2. a ist eine mogliche skeptische o-Schlussfolgerung von U gdw. es mindestens ei-
ne Vervollstandigung U* gibt, fiir die a eine skeptische o-Schlussfolgerung fiir
SetAFs ist.

3. aist eine notwendige leichtglaubige o-Schlussfolgerung von U gdw. fiir alle Ver-
vollstindigungen U™ gilt, dass a eine leichtgldubige o-Schlussfolgerung fiir Set-
AFs ist.

4. a ist eine notwendige skeptische o-Schlussfolgerung von U gdw. fiir alle Ver-
vollstandigungen U* gilt, dass a eine skeptische o-Schlussfolgerung fiir SetAFs
ist.

Beispiel 4.7. Fiir das in Abbildung 16 dargestellte iSetAF Uy sollen die verschiedenen
Schlussfolgerungen an jeweils einem beispielhaften Argument aufgezeigt werden.

1. a¢ ist eine mogliche leichtgldubige co-Schlussfolgerung, da es eine Vervollstandi-
gung Uy 3 (siehe Abbildung 18) gibt, in der a¢ Teil einer vollstindigen Extension
ist.

2. a3 ist eine mogliche skeptische st-Schlussfolgerung, da es eine Vervollstindigung
Uy 3 (siehe Abbildung 18) gibt, in der a3 Teil aller stabilen Extensionen ist.

3. ag ist eine notwendige leichtgldubige ad-Schlussfolgerung, da sich fiir jede belie-
bige Vervollstandigung eine zuldssige Extension finden ldsst, die as enthalt.

4. as ist eine notwendige skeptische gr-Schlussfolgerung. Da das Argument as si-
cher ist und zudem nicht angegriffen wird (weder sicher noch unsicher), muss es
fiir jede Vervollstandigung Teil aller grundierten Extensionen sein.

Durch diese Schlussfolgerungsprobleme ist es nun moglich, trotz unvollstandiger In-
formation tiber Argumente oder Mengenangriffe, Aussagen tiber die Akzeptanz von
Argumenten zu treffen. Fiir eine mogliche leichtglaubige o-Schlussfolgerung lasst sich
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Abbildung 18: Eine weitere mogliche Vervollstandigung Ug 3 € Comp(Uy) des iSetAFs
Ug aus Abbildung 16. Eigene Darstellung zu Beispiel 4.7.

fiir ein Argument schlieffen, dass es wenigstens eine Situation gibt, in der das Argu-
ment akzeptiert werden kann. Die notwendige skeptische o-Schlussfolgerung ist hin-
gegen eine sehr strikte Schlussfolgerung, da die Akzeptanz eines Arguments trotz feh-
lender Informationen mit Sicherheit angenommen werden kann. Fiir das soeben be-
trachtete Beispiel kann fiir das Argument a5 gefolgert werden, dass es in jeder belie-
bigen Vervollstindigung Teil jeder grundierten Extension ist und somit in jedem Fall
akzeptiert werden kann.

Dieses Unterkapitel hat verdeutlicht, wie die Akzeptanz von Argumenten in iSetAFs
mit Hilfe des vervollstindigungsbasierten Ansatzes untersucht werden kann. Eine wei-
tere, davon unabhidngige Moglichkeit ist der extensionsbasierte Ansatz, der im nédchs-
ten Unterabschnitt 4.3 vorgestellt wird.

4.3 Extensionsbasierter Ansatz

Ein Nachteil des zuvor beschriebenen extensionsbasierten Ansatzes ist die exponentiell
steigende Anzahl von Vervollstindigungen. Je mehr unsichere Teilkomponenten ent-
halten sind, umso grofier wird die Anzahl der Vervollstaindigungen, die betrachtet und
ausgewertet werden miissen. Um dies zu vereinfachen, kann auch ein extensionsbasier-
ter Ansatz verfolgt werden, anhand dessen direkte Aussagen fiir iSetAFs bzw. deren
Argumente getroffen werden konnen. Die in Unterunterabschnitt 3.2.2 vorgestellten
Grundlagen sollen in diesem Unterkapitel nun auf iSetAFs angewendet werden, in-
dem die Definitionen fiir die Semantiken entsprechend angepasst werden. Darauf auf-
bauend sollen anschlieffend in Abschnitt 5 die Eigenschaften von iSetAFs untersucht
werden.

Wie bereits in Unterunterabschnitt 3.2.2 beschrieben wurde, wird auch fiir iSetAFs
sowohl eine optimistische als auch eine pessimistische Sichtweise vertreten. Das heifst,
wihrend einer optimistischen Sichtweise werden sichere bzw. unsichere Mengenan-
griffe, an denen unsichere Argumente beteiligt sind, als ungefahrlich fiir die Akzeptanz
von Argumenten angesehen. Bei der pessimistischen Sichtweise hingegen werden alle
Mengenangriffe als gefdhrlich eingestuft.

Bevor Dungs Semantiken neu definiert werden konnen, damit diese auch fiir iSe-
tAFs Anwendung finden, muss zundchst der Begriff der Verteidigung definiert wer-
den. Ahnlich wie fiir den extensionsbasierten Ansatz fiir iAFs wird hier eine schwache
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und eine starke Verteidigung definiert.

Definition 4.8 (Verteidigung in iSetAFs). Fiir einen unvollstindigen Argumentations-
graphen mit Mengenangriffen U = (A, A’,R,R"), eine Menge S C A U A’ und ein
Argument a € AU A’ gilt:

¢ Die Menge S verteidigt das Argument a schwach gdw. fiir jeden sicheren Men-
genangriff (G, a) € Rmit G C 2%\ () eine nichtleere Teilmenge G’ C SNA existiert,
sodass (G, g) € R fiir mindestens ein g € G gilt.

¢ Die Menge S verteidigt das Argument a stark gdw. fiir jeden Mengenangriff
(G,a) € RUR? mit G C 24947\ () eine nichtleere Teilmenge G’ C S N A exis-
tiert, sodass (G, g) € R fiir mindestens ein g € G gilt.

Analog wird eine Menge von Argumenten S’ C A U A’ von S schwach bzw. stark
verteidigt gdw. alle Argumente a € S’ von S schwach bzw. stark verteidigt werden.

Insbesondere ist es fiir die Verteidigung eines Arguments ausreichend, wenn nur ein
einziges am Mengenangriff beteiligtes Argument angegriffen wird. Der Angriff auf ein
einzelnes Argument sorgt fiir die Unwirksamkeit des gesamten Mengenangriffs.

Beispiel 4.8. Fiir das iSetAF Uy = (A10,A}g, R10, R}) aus Abbildung 19 kann Folgen-
des beobachtet werden:

* Die Menge B = {b, by} greift das Argument a unsicher an.

e Die Menge C = {c1, c2} greift das Argument a bedingt sicher an. Sofern das unsi-
chere Argument c; akzeptiert wird, ist auch der Angriff (C,a) € Ry giiltig.

e Die Menge G = {g1, 92, g3} greift das Argument a sicher an, wobei insbesondere
auch alle Argumente aus G sicher sind.

¢ Die Menge S = {s;} greift das Argument g¢; sicher an.

Beispiel 4.9. In Fortsetzung zu Beispiel 4.8 sollen die Begriffe der schwachen und star-
ken Verteidigung beispielhaft fiir das iSetAF Uy aus Abbildung 19 verdeutlicht wer-
den:

* Die Menge S = {s;} verteidigt das Argument a schwach. Zu den sicheren Men-
genangriffen gehort in diesem Fall nur die Menge G, dessen Angriff verteidigt
werden muss. Dies erfolgt durch die Menge S, insbesondere durch den sicheren
Angriff von s1 auf g;. Die Mengen B und C miissen per Definition der schwachen
Verteidigung nicht angegriffen werden.

e Damit die Menge S = {s1} das Argument a nun auch stark verteidigt, miissen
auch die Mengen B und C von S angegriffen werden. Per Definition miissen
auch unsichere Mengenangriffe verteidigt werden. Wiirde die Menge der bedingt
sicheren Mengenangriffe um zwei Mengenangriffe erweitert werden, es gelte so-
mit Rjg = Rio U {(S, b1), (S, 1)}, wiirde a von S stark verteidigt werden.
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Abbildung 19: iSetAF Uj zu Beispiel 4.8. Eigene Darstellung.

Nachdem die Begriffe der schwachen und starken Verteidigung definiert sind, lassen
sich nun auch die tiblichen Semantiken entsprechend definieren, wobei jeweils auch
Beispiele fiir alle Semantiken angegeben werden sollen.

Die schwache Konfliktfreiheit zeichnet sich dadurch aus, dass zwischen sicheren Ar-
gumenten keine sicheren Mengenangriffe stattfinden diirfen. Auch darf ein sicheres
Argument kein unsicheres Argument sicher angreifen, da eine gemeinsame Akzeptanz
(sofern das unsichere Argument akzeptiert ist) zwingend zu einem Konflikt fiihrt. Bei
der starken Konfliktfreiheit sind hingegen keine Mengenangriffe zwischen Argumen-
ten aus S erlaubt, wobei irrelevant ist, ob der jeweilige Mengenangriff sicher oder un-
sicher ist und ob die beteiligten Argumente sicher oder unsicher sind.

Definition 4.9 (Konfliktfreie Mengen fiir iSetAFs). Sei U = (A, A’, R,R") ein iSetAF
und S € AUA’. Eine Menge S heifst

¢ schwach konfliktfrei gdw. es in U keinen sicheren Mengenangriff (B, a) € R gibt
mit B C SNAund a € S. Die Menge aller schwach konfliktfreien Mengen von U
bezeichnet cf,,(U) = {S C AU A’ | Sist schwach konfliktfrei}.

o stark konfliktfrei gdw. es in U keinen Mengenangriff (B,a) € R U R’ gibt mit
B C Sund a € S. Die Menge aller stark konfliktfreien Mengen von U bezeichnet
cfs(U) ={S C AUA"|Sist stark konfliktfrei}.
Beispiel 4.10. Fiir das iSetAF Uy = (A1, A{l, Ri1, Ril) aus Abbildung 20 gilt:

* Die Menge S = {as,ar, ag} ist schwach konfliktfrei, da innerhalb von S kein si-
cherer Mengenangriff vorhanden ist. Diese Menge ist aber nicht stark konfliktfrei.

* Die Menge S = {a1, az, as } ist weder schwach noch stark konfliktfrei, da es einen
sicheren Mengenangriff auf das Argument as gibt.

* Die Menge S = {a1,as, a3} ist sowohl schwach als auch stark konfliktfrei, da es
keinen Mengenangriff innerhalb dieser Menge gibt.
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Abbildung 20: iSetAF Uy, zu Beispiel 4.10. Eigene Darstellung.

e Die Menge S = {a1, ag} ist stark konfliktfrei, da kein Mengenangriff stattfindet.

Die zweite Semantik ist die zuldssige Semantik. Entsprechend der Definition fiir AFs
ist neben der Konfliktfreiheit nétig, dass alle Argumente innerhalb einer Extension von
dieser Extension verteidigt werden.

Definition 4.10 (Zulissige Mengen fiir iSetAFs). Sei U = (A, A’, R, R?) ein iSetAF und
S C AU A", Eine Menge S heif$t

¢ schwach zuldssig gdw. S € cf,,(U) und alle a € S werden von S schwach ver-
teidigt. Die Menge aller schwach zuldssigen Mengen von U bezeichnet ad,,(U) =
{S C AUA" | Sistschwach zuléssig}.

* gemischt zuldssig gdw. S € cfs(U) und alle a € S werden von S schwach vertei-
digt. Die Menge aller gemischt zuldssigen Mengen von U bezeichnet ad,,(U) =
{S C AUA"|Sist gemischt zulassig}.

¢ stark zuldssig gdw. S € cfs(U) und alle a € S werden von S stark verteidigt. Die
Menge aller stark zuldssigen Mengen von U bezeichnet ads(U) = {S C AU A" |
S ist stark zulassig}.

Fiir die erfolgreiche Verteidigung eines Arguments vor einem Mengenangriff ist es
ausreichend, dass mindestens ein einzelnes Argument des Mengenangriffs sicher atta-
ckiert wird. Dies verdeutlicht das nachfolgende Beispiel.

Beispiel 4.11. Fiir das iSetAF U;; aus Abbildung 20 soll fiir jede der drei Arten der
Zulassigkeit ein Beispiel angegeben werden:

* Die Menge {a1,as3,as} ist schwach zuldssig. Es gibt keine sicheren Angriffe zwi-
schen sicheren Argumenten innerhalb der Menge, weshalb diese schwach kon-
fliktfrei ist. AuSerdem wird die Menge von aufien nur von dem Mengenangriff
({a2,as}, a3) sicher angegriffen, verteidigt sich jedoch durch den Mengenangriff
({a1,as}, a2) gegen diesen Angriff. Die weiteren unsicheren Angriffe auf a3 sowie
auf a5 miissen nicht verteidigt werden.
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¢ Das eben genannte Beispiel ist zudem stark konfliktfrei und damit auch gemischt
zuldssig.

* Die Menge {a1, a3, as, ag, ai2} ist stark zuldssig. Es gibt keine sicheren oder unsi-
cheren Angriffe zwischen Argumenten innerhalb der Menge, weshalb diese stark
konfliktfrei ist. Es gibt sowohl sichere als auch unsichere Mengenangriffe auf die-
se Menge, die aber alle stark verteidigt werden. Das heifit, es gibt immer einen
sicheren Gegenangriff. Beispielsweise wird der unsichere Angriff ({a7,as},as)
durch den sicheren Mengenangriff ({as},a7) verteidigt. Der unsichere Angriff
({ag, a10}, as) wird durch den sicheren Mengenangriff ({as}, a10) verteidigt.

Aufbauend auf die zuldssige Semantik wird nachfolgend die vollstandige Semantik
fiir iSetAFs definiert.

Definition 4.11 (Vollstindige Extensionen fiir iSetAFs). Sei U = (A, A’, R, R?) ein iSet-
AFund S C AU A’. Eine Menge S heifst

e schwach vollstandig gdw. S € ad,,(U) und jedes Argument a € AUA’, das von S
schwach verteidigt wird, auch in S liegt. Die Menge aller schwach vollstandigen
Mengen von U bezeichnet co,,(U) = {S C AU A’ | Sist schwach vollstandig}.

o stark vollstindig gdw. S € ads(U) und jedes Argument a € A U A’, das von S
stark verteidigt wird, auch in S liegt. Die Menge aller stark vollstindigen Mengen
von U bezeichnet cos(U) = {S C AUA’ | Sist stark vollstandig}.

Beispiel 4.12. Fiir das iSetAF U;; aus Abbildung 20 soll fiir jede der zwei Arten der
Vollstandigkeit ein Beispiel und ein Gegenbeispiel angegeben werden:

* Die Menge S = {a1,as} ist schwach zuldssig. Es gibt keine sicheren Angriffe zwi-
schen sicheren Argumenten innerhalb der Menge, weshalb diese schwach kon-
fliktfrei ist. Auflerdem wird die Menge von aufien nicht angegriffen. Allerdings
ist S nicht schwach vollstindig. Durch den Mengenangriff ({a1, a5}, a2) wird das
Argument a3 schwach verteidigt und muss in S aufgenommen werden. Aber
auch die Menge S’ = {a1,as,as} ist noch nicht schwach vollstindig, da diese
Menge auch immer genau die Argumente verteidigt, die nicht sicher angegriffen
werden. Dies betrifft die Argumente ag, ag, a11 und ai2. Somit ist erst die Menge
S = {al, as, as, ag, a9, a1, alg} schwach VOllStéil’Idig.

* Die Menge S = {a;} ist stark zuldssig, da diese stark konfliktfrei ist und nicht
angegriffen wird. Diese Menge ist allerdings noch nicht stark vollstindig, da die
Argumente ag und a9 stark verteidigt werden. Die Menge S’ = {a1, a9, ai2} hin-
gegen ist bereits stark vollstindig, da keine weiteren Argumente von S’ stark ver-
teidigt werden.

Die nichste Semantik ist die schwach bzw. stark praferierte Semantik, bei der es sich
um eine grofitmogliche schwach bzw. stark vollstandige Extension handel. Diese kann
fir iSetAFs wie folgt definiert werden:
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Definition 4.12 (Préferierte Extensionen fiir iSetAFs). Sei U = (A, A7, R, R") ein iSetAF
und S C AU A’. Eine Menge S heifit

e schwach priferiert gdw. S € co,(U) und S ist maximal. Es gibt somit keine
groBere Menge S’ O S, die ebenfalls schwach vollstindig ist. Die Menge al-
ler schwach priferierten Mengen von U bezeichnet pr,,(U) = {S € AUA" |
S ist schwach préferiert}.

¢ stark praferiert gdw. S € co,(U) und S ist maximal. Es gibt somit keine grofsere
Menge S’ O S, die ebenfalls stark vollstindig ist. Die Menge aller stark préferier-
ten Mengen von U bezeichnet prs(U) = {S C AU A’ | Sist stark préferiert}.

Beispiel 4.13. Fiir das iSetAF U;; aus Abbildung 20 soll fiir jede der zwei Arten der
Priferiertheit ein Beispiel angegeben werden:

¢ Die zuvor angegebene schwach vollstindige Menge {a1, a3, as, as, ag, a1, a2} ist
bereits maximal und damit schwach praferiert. Es kann keine weitere Menge ge-
funden werden, die weitere Argumente enthélt und ebenfalls vollstandig ist.

* Die Menge {a1, a3, as, as, a9, a11, a2} ist nicht nur schwach vollstindig, sondern
auch stark vollstandig, da alle enthaltenen Argumente stark verteidigt werden.

Fiir die formale Definition der grundierten Semantik fiir iSetAFs wird erneut die
in Definition 2.4 vorgestellte charakteristische Funktion benotigt, die an dieser Stelle
allerdings fiir das iSetAF angepasst werden muss.

Definition 4.13 (z-charakteristische Funktion fiir iSetAFs). Sei U = (A, A’, R, R") ein
iSetAF und es bezeichne = € {w, s} die Unterscheidung zwischen der schwachen (w)
und der starken (s) charakteristischen Funktion. Die z-charakteristische Funktion 77, :

9AUAT _, 2AUA" pestimmt fiir eine Menge S C A U A’ alle Argumente, die von dieser
Menge

¢ schwach verteidigt werden (fiir den Fall z = w) bzw.
¢ stark verteidigt werden (fiir den Fall z = s).

Beispiel 4.14. Fiir das iSetAF U;; aus Abbildung 20 und eine Menge S = {a} gilt
TUn.w(S) = {a1, as, ag, ag, a11, a12}. Dies ist genau die Menge, die von a; schwach ver-
teidigt wird. AuBlerdem gilt 7/, s(S) = {a1, a9, a12}, was genau der Menge entspricht,
die von a; stark verteidigt wird.

Mit Hilfe der z-charakteristischen Funktion ldsst sich nun auch die grundierte Se-
mantik fiir iSetAFs definieren.
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Definition 4.14 (Grundierte Extensionen fiir iSetAFs). Sei U = (A, A’, R, R?) ein iSetAF
und S C AU A’. Eine Menge S heifit

¢ schwach grundiert gdw. diese dem Fixpunkt der iterativen Anwendung der w-
charakteristischen Funktion entspricht. Die Menge aller schwach grundierten
Mengen von U bezeichnet gr,,(U) = {S C AUA’ | Sist schwach grundiert}.

¢ stark grundiert gdw. diese dem Fixpunkt der iterativen Anwendung der s-cha-
rakteristischen Funktion entspricht. Die Menge aller stark grundierten Mengen
von U bezeichnet grs(U) = {S C AUA" | Sist stark grundiert}.

Insbesondere bildet die schwach bzw. stark grundierte Extension die minimale ein-
deutig bestimmte schwach bzw. stark vollstindige Extension. Es gibt somit keine wei-
tere schwach bzw. stark vollstandige Extension, die Teilmenge der schwach bzw. stark
grundierten Extension ist und damit kleiner ist.

Beispiel 4.15. Fiir das iSetAF U;; aus Abbildung 20 soll fiir jede der zwei Arten der
Grundiertheit ein Beispiel angegeben werden:

* Die w-charakteristische Funktion wird iterativ wie folgt angewendet:
= 7011,w(0) = {a1,as5, a6, ag, a11, a1}
- T w({a1, as, a6, a9, a11,a12}) = {a1, a3, as, as, ag, ary, a2}
- Tunw({a1, a3, a5, a6, a9, a11, a12}) = {a1, a3, as, ag, ag, a1, a2}
Damit ist der Fixpunkt erreicht und die schwach grundierte Extension lautet
{a1, a3, a5, ag, ag, a11, ar2}-
¢ Die s-charakteristische Funktion wird iterativ wie folgt angewendet:
- Tu11,s(0) = {a1, ag, ar2}
= Tup1,s({a1, a9, a12}) = {a1, ag, ar2}
Damit ist der Fixpunkt erreicht und die stark grundierte Extension lautet
{al, ag, alg}.

Die letzte Semantik, die fiir iSetAFs angepasst werden soll, ist die schwach bzw. stark
stabile Semantik. Im Gegensatz zu Dungs Definition der stabilen Extensionen fiir die
herkdmmlichen AFs gilt fiir die schwache Stabilitdt nicht, dass jedes vorhandene Ar-
gument entweder in der Extension S liegt oder von dieser angegriffen wird. Es konnen
auch unsichere Argumente enthalten sei, die weder in S noch in S* liegen. Fiir die
starke Stabilitét gilt hingegen wie iiblich S U ST = A U A”.

Definition 4.15 (Stabile Extensionen fiir iSetAFs). Sei U = (A, A7, R, R") ein iSetAF und
S C AUA’. Eine Menge S heifst

¢ schwach stabil gdw. S € ¢f,(U) und alle a € A\ S sicher von S angegriffen
werden, es gibt somit ein b € S N A mit bRa. Die Menge aller schwach stabilen
Mengen von U bezeichnet st,,(U) = {S C AU A’ | Sist schwach stabil }.
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o stark stabil gdw. S € cfs(U) und alle a € (A UA") \ S sicher von S angegriffen
werden. Es gibt somit ein b € SNA mit bRa. Die Menge aller stark stabilen Mengen
von U bezeichnet sts(U) = {S C AUA’ | Sist stark stabil}.

Beispiel 4.16. Fiir das iSetAF U;; aus Abbildung 20 soll fiir jede der zwei Arten der
Stabilitét ein Beispiel angegeben werden:

e Die Menge S = {a1,as, as, as, a11, a1z} ist eine schwach stabile Extension, da die-
se Menge schwach konfliktfrei ist und alle sicheren Argumente aufserhalb dieser
Menge sicher von S angegriffen werden. Insbesondere muss das Argument ag
nicht in S enthalten sein und auch nicht angegriffen werden, da dieses unsicher
ist.

* Die Menge S = {a1, a3, as, ag, ag, ai1, a1} ist eine stark stabile Extension, da diese
Menge stark konfliktfrei ist und alle Argumente auflerhalb dieser Menge sicher
von S angegriffen werden.

Die leere Menge kann als mogliche Teilmenge von Argumenten auch je nach Seman-
tik eine giiltige Extension darstellen. Die leere Menge erfiillt in jedem Fall die Defini-
tionen der schwach konfliktfreien, stark konfliktfreien, schwach zuldssigen und stark
zuldssigen Menge jedes beliebigen iSetAFs, wie die nachfolgende Proposition zeigt.

Proposition 4.2. Fiir ein beliebiges iSetAF U = (A, A”, R, R?) gilt 0 € cf,(U)Nefs(U)N
ady,(U) Nads(U).

Beweis. Sei U = (A, A”, R, R?) einiSetAFund S C AU A",

* () € cfy(U): Die leere Menge ist Teilmenge jeder Menge, weshalb insbesondere
S = C AU A’ gelten kann. Damit ist die Bedingung der schwach konfliktfreien
Menge trivialerweise erfiillt, denn es gibt keine zwei Argumente in .S, die sich
angreifen konnten.

e 0 € cfs(U): Analog Beweis fiir cf,.

* () € ady,(U): Sei ebenfalls S = ) C A U A". Die leere Menge kann per Definition
(vgl. Definition 4.2 und Definition 4.3) nicht sicher angegriffen werden. Wenn es
keinen sicheren Angriff auf S gibt, muss keine schwache Verteidigung erfolgen
und die Menge ist trivialerweise schwach zuléssig.

* () € ads(U): Analog Beweis fiir ad;. Insbesondere kann die leere Menge per Defi-
nition auch nicht bedingt sicher angegriffen werden, wodurch eine starke Vertei-
digung nicht notwendig ist und die Menge trivialerweise stark zul&ssig ist.

O]

Fiir die restlichen Semantiken fiir iSetAFs erfiillt die leere Menge im Allgemeinen
nicht die Bedingungen der entsprechenden Definition der Semantik. Dies soll in einem
abschlieflenden Beispiel verdeutlicht werden.
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Beispiel 4.17. Fiir das iSetAF Uy, aus Abbildung 20 gilt beispielsweise:

* 0 ¢ cow(Ur1), weil {a1,as,as,ag, ag, ar1, a12} O O und {a1, a3, as, ag, ag, a11, a12} €
coy(Ur1). Die Obermenge ist ebenfalls schwach vollstindig, weshalb die leere
Menge nicht schwach vollstindig sein kann.

o @ ¢ COS(UH), weil {al,ag,am} D) (b und {al,ag,alg} € COS(UH).

e () ¢ grs(Ui1), weil der Fixpunkt der w-charakteristischen Funktion noch nicht er-
reicht ist. Dieser ist eindeutig bestimmt und die stark grundierte Extension lautet
{a1,a9,a12} € grs(Ur1), weshalb die leere Menge nicht die schwach grundierte
Extension sein kann.

Analog lassen sich auch fiir die weiteren Semantiken pry,, prs, gry, st, und sty Gegen-
beispiele finden.

In diesem Kapitel wurde das Argumentationsframework iSetAF formal definiert. Be-
zogen auf den vervollstindigungsbasierten Ansatz wurden die Schlussfolgerungspro-
bleme auf iSetAFs tibertragen und untersucht. Bezogen auf den extensionsbasierten
Ansatz wurden die Semantiken neu definiert, wobei jeweils eine schwache und eine
starke Auspragung bertiicksichtigt wurden. Im nachfolgenden Abschnitt 5 sollen nun
ausgewdhlte Eigenschaften dieser Semantiken untersucht werden.
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5 Eigenschaften von extensionsbasierten iSetAFs

In Abschnitt 4 wurde das Argumentationsframework iSetAF formal eingefiihrt und er-
lautert, wobei sowohl ein vervollstindigungsbasierter als auch ein extensionsbasierter
Ansatz behandelt wurden. In diesem Kapitel steht nun der extensionsbasierte Ansatz
im Fokus, da sich dieser - im Gegensatz zum vervollstindigungsbasierten Ansatz -
direkt und ohne Erzeugung von Vervollstindigungen auf seine Eigenschaften unter-
suchen ldsst. Die Postulate, die in diesem Kapitel untersucht werden, wurden bereits
in Unterabschnitt 2.3 definiert. Diese Eigenschaften wurden fiir abstrakte Argumen-
tationsgraphen (AF) definiert, lassen sich aber durch kleine Anpassungen ebenso fiir
iSetAFs anwenden. Dabei ist zu beachten, dass fiir die schwache Auspriagung der Se-
mantiken lediglich sichere Mengenangriffe als Bedrohungen betrachtet werden, wah-
rend bei der starken Ausprdagung sowohl unsichere als auch sichere Mengenangriffe
berticksichtigt und verteidigt werden miissen.

In diesem Kapitel werden die Postulate nacheinander untersucht. Dabei wird das
jeweilige Postulat, sofern notwendig, zundchst auf iSetAFs tibertragen. Anschliefiend
wird die Erfiillung dieser Eigenschaft fiir alle sechs Semantiken (sowohl in schwacher
als auch starker Ausprdagung) untersucht und bewiesen. Zum Abschluss dieses Ka-
pitels bietet eine tabellarische Ubersicht eine Zusammenfassung der Erfiillung oder
Nichterfiillung der Postulate und fasst alle zentralen Ergebnisse dieses Kapitels iiber-
sichtlich zusammen.

5.1 Notation

Im Rahmen dieses Kapitels sei, sofern nicht anders erwéhnt, stets
U=(AA R R

ein beliebiges iSetAF. Weiterhin sei

o € {cf,ad,co,pr,gr,st}
eine beliebige Semantik fiir AFs,

ow € {¢fw,ady, Cow, Py, gTw, Stw }
eine beliebige schwache Semantik (weak) fiir iSetAFs,
s € {cfs, ads, cos, prs, grs, sts}
eine beliebige starke Semantik (strong) fiir iSetAFs und
x € {w,s}

ein Index zur Unterscheidung zwischen schwacher und starker Auspragung von Se-
mantiken und Extensionen.
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Zur vereinfachten Unterscheidung von schwachen und starken Extensionen wird
beispielsweise eine schwach vollstindige Extension als w-vollstindige Extension und
eine stark vollstindige Extension als s-vollstindige Extension bezeichnet. Gilt eine Aus-
sage fiir beide Auspragungen gleichermafien, wird eine beliebige vollstindige Extensi-
on als z-vollstindig bezeichnet. Dies gilt auch analog fiir die weiteren Semantiken aus
O

Zudem kann auch zwischen schwach und stark attackierten Mengen unterschieden
werden. Dies ist fiir die weitere Betrachtung der beiden Auspragungen der Semantiken
relevant und wird daher an dieser Stelle definiert.

Definition 5.1 (z-attackiert). Fiir ein iSetAF U wird eine Menge S C A U A’ als z-
attackierte Menge bezeichnet, gdw.

e S fiir = w sicher angegriffen wird bzw.
¢ S fiir x = s sicher und/oder unsicher angegriffen wird.

Eine schwach attackierte (w-attackierte) Menge ist dabei zwingend von einer unsi-
cher attackierten Menge zu unterscheiden. Die gewdhlten Begriffe verleiten zu einer
Verwechselung, da die Bedeutungen genau entgegengesetzt sind. Eine schwach atta-
ckierte Menge wird sicher angegriffen, eine unsicher attackierte Menge wird hingegen
nur unsicher angegriffen. Eine stark attackierte (s-attackierte) Menge kann sowohl si-
cher als auch unsicher angegriffen werden, wiahrend eine sicher attackierte Menge si-
cher angegriffen wird.

Analog der Definition einer z-attackierten Menge kann auch ein Argument w- oder
s-attackiert werden. Wird ein Argument w-attackiert, dann erfolgt ein sicherer Angriff
auf dieses Argument. Bei einem s-attackierten Argument kann der Angriff auf dieses
Argument sowohl sicher als auch unsicher erfolgen.

Wie bereits zu Beginn der Arbeit erwdhnt, sind konfliktfreie und vollstindige Men-
gen, sowohl in der schwachen als auch in der starken Auspragung, streng genommen
keine Extensionen einer Semantik. Zur Vereinfachung werden diese im Rahmen dieser
Arbeit jedoch als solche bezeichnet.

Nachdem die Notation eingefiihrt wurde, sollen erste Eigenschaften von iSetAFs im
nachfolgenden Unterabschnitt 5.2 betrachtet werden.

5.2 Einfuhrende Eigenschaften

Beim Vergleich von abstrakten Argumentationsgraphen (AFs) und unvollstandigen Ar-
gumentationsgraphen mit Mengenangriffen (iSetAFs) lasst sich feststellen, dass sich je-
des AF auch als iSetAF darstellen ldsst, was in der nachfolgenden Proposition gezeigt
wird. Dies bildet die Grundlage fiir das Theorem 5.1, das zeigt, wie Eigenschaften von
Semantiken fiir AFs, SetAFs (Argumentationsgraphen mit Mengenangriffen) und iAFs
(unvollstindige Argumentationsgraphen) direkt auf iSetAFs tibertragen werden kon-
nen.
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Proposition 5.1. Jeder beliebige abstrakte Argumentationsgraph (AF) stellt eine Form
eines iSetAFs dar.

Beweis. Sei F' = (A, R) ein abstrakter Argumentationsgraph mit der Relation R C Ax A.
Definiere das entsprechende iSetAF U = (A, A”, R, R?) wie folgt:

* A = A (die Argumente von F bilden die sicheren Argumente von U),
o A? = () (U enthilt keine unsicheren Argumente),

* R ={({a},b) | (a,b) € R} (jeder einzelne Angriff (a,b) wird als einelementiger
Mengenangriff aufgefasst, bei dem lediglich ein Argument a angreift),

e R’ = ) (U enthélt keine unsicheren Angriffe).
Auf diese Weise lasst sich fiir jedes AF ein entsprechendes iSetAF konstruieren. O

Gleichzeitig lasst sich aber auch jedes SetAF als iSetAF und jedes iAF als iSetAFs
darstellen.

Proposition 5.2. Jeder beliebige Argumentationsgraph mit Mengenangriffen (SetAF)
stellt eine Form eines iSetAFs dar.

Beweis. Sei M = (A, R) ein SetAF mit der Relation R C (24 \ {#}) x A. Definiere das
entsprechende iSetAF U = (A, A?, R, R") wie folgt:

¢ A = A (die Argumente von M bilden die sicheren Argumente von U),
e A? = () (U enthilt keine unsicheren Argumente),
¢ R =R (die Mengenangriffe von M bilden die sicheren Mengenangriffe von U),
e R” = () (U enthilt keine unsicheren Angriffe).
Auf diese Weise ldsst sich fiir jedes SetAF ein entsprechendes iSetAF konstruieren. []

Proposition 5.3. Jeder beliebige unvollstindige Argumentationsgraph (iAF) stellt eine
Form eines iSetAFs dar.

Beweis. Sei I = (sd,947,%,%") ein iAF mit Relationen &, %" C (o4 U sd”) x (sd U sd”).
Definiere das entsprechende iSetAF U = (A, A”, R, R?) wie folgt:

¢ A = 4 (die sicheren Argumente von I bilden die sicheren Argumente von U),

e A" = " (die unsicheren Argumente von [ bilden die unsicheren Argumente von
U),

e R = {({a},b) | (a,b) € R} (jeder bedingt sichere Angriff (a,b) wird als einele-
mentiger Mengenangriff aufgefasst, bei dem lediglich ein Argument a angreift),

52



o R ={({a},b) | (a,b) € R"} (jeder unsichere Angriff (a, b) wird als einelementiger
Mengenangriff aufgefasst).

Auf diese Weise lasst sich fiir jedes iAF ein entsprechendes iSetAF konstruieren. O

Da gezeigt wurde, dass sich jedes AF, SetAF bzw. iAF auch als iSetAF betrachten
lasst, folgt direkt, dass eine Eigenschaft fiir iSetAFs nicht erfiillt sein kann, wenn diese
bereits fiir AFs, SetAFs bzw. iAFs nicht erfiillt ist. Fiir das nachfolgende Theorem be-
zeichne E € {Syntaxunabhingigkeit, -lMaximalitdt, Enthaltung, Direktionalitat, Dicht-
heit, Konfliktsensitivitdt, Modularisierung} die verschiedenen zu untersuchenden Ei-
genschaften.

Theorem 5.1. Erfiillt eine Semantik o fiir AFs, SetAFs oder iAFs eine Figenschaft
nicht, so wird diese Eigenschaft weder von einer Semantik o,, noch von einer Semantik
o, erfullt.

Beweis. Sei F' ein beliebiger abstrakter Argumentationsgraph, M ein SetAF und I ein
iAF. Angenommen, eine Eigenschaft E gelte nicht fiir /', M oder I. Entsprechend Pro-
position 5.1 ldsst sich jede dieser Strukturen in eine Form eines iSetAFs tiberfiihren,
tir das die Eigenschaft £/ ebenso wenig gilt. Es liegt somit mindestens ein iSetAF vor,
das die Eigenschaft nicht erfiillt, weshalb eine Erfiillung im Allgemeinen nicht moglich
ist. [

Die im Rahmen dieser Arbeit betrachteten Eigenschaften wurden bereits vollstindig
fir AFs untersucht (vgl. [vdTV17, DDLW15]). Die Ergebnisse dieser Untersuchungen
sind in Tabelle 2 tibersichtlich dargestellt. Fiir SetAFs wurde ebenfalls ein Grofiteil der
Eigenschaften untersucht (vgl. [DKUW24]), die Ergebnisse sind in Tabelle 3 dargestellt.
Dabei wurden die Syntaxunabhédngigkeit sowie die Konfliktsensitivitdt nicht unter-
sucht. Auch fiir extensionsbasierte iSetAFs wurden bereits einige dieser Eigenschaften
untersucht (vgl. [Mai24]). Dabei wurden allerdings nur die Semantiken co, pr, gr und st
sowie wenige Postulate bertiicksichtigt. Die Ergebnisse sind in Tabelle 4 dargestellt.

cf ad co pr gr st
Syntaxunabhingigkeit v v v vV V V/
I-Maximalitat X x x v v /
Enthaltung A SR
Direktionalitat o v /7 /7 /X
Dichtheit o X X X v/
Konfliktsensitivitat v v X v v/
Modularisierung x v v v v /

Tabelle 2: Ubersicht der Erfiillung von Postulaten fiir AFs durch verschiedene Seman-
tiken. Eigene Darstellung in Anlehnung an Dunne et al. und Dvorédk et al.
[DDLW15, DKUW24].
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cf ad co pr gr st
I-Maximalitat X x x v v /
Enthaltung A S
Direktionalitat o7 /7 /7 /X
Dichtheit X X x x v X
Modularisierung X v v v V /

Tabelle 3: Ubersicht der Erfiillung von Postulaten fiir SetAFs durch verschiedene Se-
mantiken. Eigene Darstellung in Anlehnung an Dvofék et al. [DKUW24].

COy COg PTy Prs gry grs Sty Sts
I-Maximalitdt X X v v v v
Enthaltung A x v /
Direktionalitit v v / v / v

X v
X X
X X

Tabelle 4: Ubersicht der Erfiillung von Postulaten fiir iAFs durch Semantiken. Eigene
Darstellung in Anlehnung an Mailly [Mai24].

Alle in Tabelle 2, Tabelle 3 und Tabelle 4 nicht erfiillten Eigenschaften erfiillen auch
die Semantiken fiir iSetAFs im Allgemeinen nicht. Dies geht aus Theorem 5.1 hervor.
Daher wird in den folgenden Ausfiithrungen auf einen erneuten Beweis der Nichterfiil-
lung einer Eigenschaft verzichtet.

Ist eine Eigenschaft £ jedoch fiir eine Semantik o fiir AFs, SetAFs bzw. iAFs erfiillt,
lasst sich daraus nicht direkt schliefSen, dass diese auch fiir die entsprechende Semantik
fiir iSetAFs gilt, weshalb diese Falle in den kommenden Unterkapiteln einzeln unter-
sucht werden.

5.3 Syntaxunabhangigkeit

Das erste zu untersuchende Postulat ist die Syntaxunabhéngigkeit. Die Definition 2.16
lasst sich analog auf iSetAFs anwenden, wobei zundchst definiert werden soll, wann
zwei iSetAFs isomorph sind.

Definition 5.2 (Isomorphe iSetAFs). Seien U = (A, A”, R, R")und U’ = (A’, A’ 'R R ?)
zwei iSetAFs. Die beiden iSetAFs U und U’ heiflen isomorph, wenn es eine bijektive
Abbildung p : AUAT — A'UA/ ! gibt, sodass fiir jede Menge S C AUA’ und a € AUA’
gilt:

(S,a) e RUR” gdw. (p(S),pla)) € R UR".

Dabei wird die Abbildung p auf die Menge S elementweise angewandt. Es gilt somit:

p(S) = {p() | z € S).

54



Mit der Isomorphie zweier iSetAFs ldsst sich nun auch die Syntaxunabhéingigkeit fiir
iSetAFs definieren.

Definition 5.3 (Syntaxunabhéngigkeit fiir iSetAFs). Eine Semantik o, erfiillt Syntaxun-
abhéngigkeit gdw. fiir alle iSetAFs U und U’ gilt: Sind U und U’ isomorph mit einer
bijektiven Abbildung p (es gilt somit p(U) = U’), dann folgt:

ox(p(U)) = p(ox(U)).

Die Extensionen eines iSetAFs sollten somit unabhidngig von der konkreten Bezeich-
nung der Argumente sein. Im Folgenden wird gezeigt, dass dies fiir alle Semantiken o,
gilt.

Theorem 5.2. Jede Semantik o, fiir iSetAFs erfiillt Syntaxunabhéngigkeit.

Beweis. Per Definition der Syntaxunabhéngigkeit gibt es fiir jede Semantik ¢, eine Bi-
jektion p(U), die die Knotenbezeichnungen lediglich umbenennt. Dabei wird die Struk-
tur des Graphen durch p nicht verdandert, da die Angriffsbeziehungen der Argumente
erhalten bleiben. Aus diesem Grund sind die Graphen U und p(U) isomorph. Da Se-
mantiken definitionsgemafs von den Knotenbezeichnern unabhingig sind und nur die
Struktur des Graphen berticksichtigt wird, folgt direkt

ax(p(U)) = p(o=(U)).

Damit erfiillt jede Semantik o, fiir iSetAFs Syntaxunabhéngigkeit. O
Cd ) L)
Utz p12(U12)

Abbildung 21: Zwei isomorphe iSetAFs U2 und p12(Ui2) zu Beispiel 5.1. Eigene Dar-
stellung.

Die Syntaxunabhéngigkeit von iSetAFs soll im folgenden Beispiel verdeutlicht wer-
den.

Beispiel 5.1. In Abbildung 21 ist zum einen das iSetAF U3 und zum anderen das um-
benannte iSetAF p12(Us2) abgebildet. Fiir die Bijektion p12 gilt

pi2(a) =v,  pr2(b) =w,  piz(c) =,
pi2(d) =y,  pia(e) = 2.
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Diese Umbenennung verandert jedoch nicht die Struktur der Angriffe oder die Unsi-
cherheit des Graphen, sodass U2 und p12(Ui2) isomorph sind.
Weiter gilt

cow(U12) = {{a,b,d,e}} und

p12(cow(U12)) = {{v,w,y, z}}.

Fiir den isomorphen Graphen gilt ebenso

cow(p12(U12)) = {{v,w,y, z}}.

Es folgt
coy(p12(U12)) = p12(coy(Ui2)).

5.4 I-Maximalitat

Die zweite Eigenschaft ist die I-Maximalitdt. Sofern diese Eigenschaft erfiillt ist, gibt es
keine zwei unterschiedlichen Extensionen eines iSetAFs, die in einer echten Teilmen-
genbeziehung zueinander stehen. Die Definition 2.17 kann analog fiir iSetAFs definiert
werden.

Definition 5.4 (I-Maximalitit fiir iSetAFs). Seien S, S’ € 0,(U) zwei Extensionen eines
iSetAFs. Eine Semantik o, erfiillt -Maximalitat gdw. fiir alle iSetAFs gilt: Wenn S C .5,
dann muss S = S’ gelten.

Mit dieser Definition der I-Maximalitdt kann nun gezeigt werden, dass die Semanti-
ken pry, gr, und st, diese Eigenschaft erfiillen. Das folgende Theorem stellt dies formal
dar.

Theorem 5.3. pr,, gr, und st erfiillen I-Maximalitat.

Beweis. Sei U = (A, A”, R, R?) einiSetAFund S C AU A’.

* pry: Per Definition handelt es sich bei der z-préferierten Extension um eine ma-
ximal z-zuldssige Menge. Es seien S, S" € pr,(U) zwei z-praferierte Extensionen
mit S C 5. Angenommen, es gilt zudem S # S’ und somit auch S’ D S. Dann
kann aber nur S’ z-priferiert sein, da nur diese Extension maximal ist. Daraus
folgt, dass S nicht z-préferiert sein kann, was zum Widerspruch fiihrt. Somit folgt
S =5

® gr,: Per Definition handelt es sich bei der schwach bzw. stark grundierten Ex-
tension um den Fixpunkt der z-charakteristischen Funktion. Dieser Fixpunkt ist
eindeutig bestimmt, weshalb es keine S, 5" € gr,(U) mit S C S’ und S # S’ geben
kann. Hieraus folgt trivialerweise S = 5’

* sty Seien S, S’ € sty zwei stark stabile Extensionen mit S C S’. Angenommen,
es gilt S # 5" und damit auch S’ O S, dann muss ein Argument b existieren mit
be S'undb ¢ S.Da S aber stark stabil ist, werden alle Argumente a € (AUA")\ S
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von S sicher angegriffen, somit auch das Argument b. Wenn S das Argument b
angreift, muss aber auch die Obermenge S’ das Argument b angreifen, woraus
folgt, dass S’ nicht stark konfliktfrei sein kann. Dies steht im Widerspruch und es
muss S = 5’ gelten.
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Abbildung 22: iSetAF U3 zu Beispiel 5.2. Eigene Darstellung.
Die Semantiken cf;, ad;, co, und st,, erfiillen I-Maximalitdt hingegen nicht. Dies

wird durch das nachfolgende Gegenbeispiel verdeutlicht.
Beispiel 5.2. Fiir das in Abbildung 22 dargestellte iSetAF U3 gilt:

e Sy ={a1} € cfyund S2 = {a1,a4} € cfy. Es gilt S} C S, aber S; # Ss.

* 51 ={a3} € ady und Sy = {asz,as} € ad,. Es gilt 51 C Sy, aber S} # Ss.

* 51 ={a2,a4} € cop und Sy = {ag, a3, as} € co,. Es gilt S; C S, aber S; # Ss.

* 51 ={az,a4} € sty, und Sy = {ag, a3, as} € st,,. Es gilt S} C Sy, aber S; # Sa.

Wiirden die zuvor in Beispiel 5.2 genannten Semantiken I-Maximalitit erfiillen, dann
miisste in jedem der gezeigten Beispiele zwingend S; = S5 gelten. Dies ist nicht erfiillt,
weshalb diese Semantiken die I-Maximalitdt grundséatzlich nicht erfiillen.

5.5 Enthaltung

Die dritte zu untersuchende Eigenschaft ist die Enthaltung. Um die Definition 2.18 auf
iSetAFs anwenden zu kénnen, muss zunichst die Bezeichnung S~ bzw. S konkreti-
siert werden. Fiir eine Menge von Argumenten S C A U A’ bezeichnet

e S7% die Menge aller Argumentmengen, von denen S sicher angegriffen wird:

S~ ={BCA|Ja€cS:(B,a)e R},

¢ S7% die Menge aller Argumentmengen, von denen S sicher oder unsicher ange-
griffen wird:

ST ={BCAUA"|JaeS:(B,a) e RUR},
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e ST¥ die Menge aller Argumente, die sicher von S angegriffen werden:

St —fae AUA" |IBC (SNA): (B,a) € R},

e St die Menge aller Argumente, die sicher oder unsicher von S angegriffen wer-
den:
Sts={aec AUA"|IBCS:(B,a) € RUR}.

Mit dieser alternativen Bezeichnung ldsst sich nun auch die Eigenschaft der Enthal-
tung leicht auf iSetAFs tibertragen.

Definition 5.5 (Enthaltung fiir iSetAFs). Seien Si,S2 € 0,(U) zwei Extensionen von U.
Eine Semantik o, erfiillt Enthaltung gdw. fiir alle Argumente a € AU A’ gilt: Ista € S;
und zudem auch a € S;°, dann gibt es eine weitere Extension S3 € o,(U), sodass
weder a € S3noch a € Sy gilt.

Fiir die schwache Auspriagung einer Semantik bedeutet dies: Befindet sich ein Argu-
ment a in einer Menge akzeptierter Argumente und wird es von einem sicheren Argu-
ment einer anderen Menge sicher angegriffen, dann existiert eine dritte Extension, die
weder a enthédlt noch a angreift. Insbesondere werden dabei unsichere Angriffe auf a
nicht berticksichtigt.

Theorem 5.4. Die Semantiken cf;, ad;, co; und gr, fiir iSetAFs erfiillen Enthaltung.

Beweis. Sei U = (A, A”, R, R") ein iSetAF.

* cfy: Seien Si,5; € cfy(U). Angenommen, es existiert ein Argument a € S, das
von einer Menge B C S, z-attackiert wird. Dann gibt es gemafd Proposition 4.2
immer eine weitere Extension S5 = {0} mit S5 € cf,(U).

* ad,: Seien 51, Sy € ad,(U). Angenommen, es existiert ein Argument a € S, das
von einer Menge B C S, z-attackiert wird. Dann gibt es geméfd Proposition 4.2
immer eine weitere Extension S5 = {0} mit S5 € ad,(U).

* cog: Seien Si, 52 € cos. Angenommen, es existiert ein Argument a € S;, das von
einer Menge B C S, s-attackiert wird. Sei S3 € grs(U) die stark grundierte Ex-
tension, fiir die per Definition auch S3 € cos(U) gilt. Insbesondere ist S3 Teil jeder
stark vollstindigen Extension. Wegen S3 C S1 NSz und a ¢ S1 N S folgt a ¢ Ss.
Weiter folgt daraus, dass fiir wenigstens ein Argument b € B gilt, dass b ¢ S;, da
S1 € ¢fs(U) und dies ansonsten zum Konflikt fithren wiirde. Der Mengenangriff
von B auf a kann somit nicht vollstiandig in S; und damit auch nicht in S3 liegen.

* gr;: Da die schwach bzw. stark grundierte Semantik eindeutig bestimmt ist, kann
es keine zwei Extensionen S1,S2 € g¢r,(U) geben, wodurch die Definition der
Enthaltung trivialerweise erfiillt ist.

O]

Die verbliebenen Semantiken co,,, pr; und st, erfiillen die Eigenschaft der Enthal-
tung nicht. Dies wurde bereits in Theorem 5.1 gezeigt.
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5.6 Direktionalitat

Als Vorbereitung auf das ndchste Postulat muss an dieser Stelle zunéchst der Begriff der
Projektion auf iSetAFs tibertragen werden, da dieser von der allgemeinen Definition
abweicht.

Definition 5.6 (Projektion eines iSetAFs). Fiir ein iSetAF U = (A, A, R, R") und eine
Menge S C AU A’ ist die Projektion U} s (das iSetAF U projiziert auf die Menge 5)
gegeben durch:
Uis = (AN S, A" NS, Rys,R|g)
mit
Ris={(B,a) e R|BC Sunda € S} und
Rig={(B,a) e R’ | BC Sunda € S}.

Abbildung 23: iSetAF Uy 4 zu Beispiel 5.3. Eigene Darstellung.

Beispiel 5.3. Das in Abbildung 23 dargestellte iSetAF U;4 kann auf unterschiedliche
Mengen projiziert werden. Einige beispielhafte Projektionen sind zur Veranschauli-
chung in Abbildung 24 dargestellt. Ein Mengenangriff kann somit nur in einer Pro-
jektion enthalten sein, wenn alle beteiligten Argumente — sowohl die angreifenden Ar-
gumente als auch das angegriffene Argument — in der Menge, auf die projiziert wird,
enthalten sind.

Fiir die Uberpriifung der Direktionalitét ist zudem der Begriff der unattackierten
Menge auf iSetAFs zu tibertragen, da Mengenangriffe in der herkommlichen Definition
(vgl. Definition 2.20) nicht berticksichtigt werden. Dabei wird zusétzlich zwischen einer
schwach unattackierten und einer stark unattackierten Menge unterschieden.

Definition 5.7 (z-unattackiert). Sei U = (A, A?, R, R") ein iSetAF und S C A U A’ eine
Menge von Argumenten.

¢ Eine Menge S heifst w-unattackiert gdw. diese von keinem Mengenangriff B C
{A\ S} mit B # 0 sicher angegriffen wird.

¢ Eine Menge S heifst s-unattackiert gdw. diese von keinem Mengenangriff B C
{(AUA")\ S} mit B # ) sicher oder unsicher angegriffen wird.
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Abbildung 24: Beispielhafte Projektionen von Uj4 aus Abbildung 23 auf unterschiedli-
che Mengen. Eigene Darstellung zu Beispiel 5.3.

Nachdem die benétigen Begriffe definiert wurden, ldsst sich nun auch die Definiti-
on 2.20 auf iSetAFs {ibertragen, wobei lediglich minimale Anpassungen erforderlich
sind.

Definition 5.8 (Direktionalitit fiir iSetAFs). Sei S C A U A’ eine in einem iSetAF U
z-unattackierte Menge. Sei zudem S’ € 0,(U) eine o,-Extension in U. Eine Semantik
o, erfiillt Direktionalitat gdw.

0:(Uys) = {Sl NS | S e o:(U)}
fiir jedes iSetAF gilt.
Theorem 5.5. Die Semantik cf,. fiir iSetAFs erfullt Direktionalitat.

Beweis. Sei U = (A, A’, R, R") ein iSetAF und S C A U A’ eine in U z-unattackierte
Menge. Zu zeigen sind dabei beide Seiten der Gleichung cf,(U;s) = {SNS" | &' €

cfz(U)}.

1. Sei S’ € cf5(U). Da S z-unattackiert in U ist und in U g keine nicht erlaubten An-
griffe hinzugefiigt werden, folgt direkt, dass S NS’ in U, g ebenfalls z-konfliktfrei
ist.

2. Sei S’ € ¢fy(Uys). Da S z-unattackiert in U ist, existieren in U keine zusétzlichen
nicht erlaubten Angriffe auf Argumente in S. Weiter ist S’ in U} g z-konfliktfrei,
weshalb S’ C S gelten muss und es folgt direkt, dass die Menge S NS’ = 5" auch
in U z-konfliktfrei ist. Somit gilt S” € ¢f,(U).
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Es lasst sich allerdings leicht feststellen, dass Semantiken, die auf der x-Zuldssigkeit
basieren, Direktionalitdt grundsétzlich nicht erfiillen konnen. Die zwei nachfolgenden
Beispiele zeigen die Problematik unter Beriicksichtigung der herkommlichen Definiti-

on der Direktionalitat.

Abbildung 25: iSetAF U5 zu Beispiel 5.4. Eigene Darstellung.

Beispiel 5.4. Sei U;s das in Abbildung 25 dargestellte iSetAF und S = {a;, a3} eine
z-unattackierte Menge entsprechend Definition 5.7. Da keine unsichere Information
enthalten ist, ldsst sich das Beispiel sowohl fiir die schwache als auch fiir die starke
Auspragung anwenden. Keines der beiden Argumente wird von einem Mengenangriff
auflerhalb von S angegriffen. Es gilt

ady(Urs)s) = {{a1}, {as}, {a1, as}}.
Weiter gilt
ady(Urs) = {{a1}, {az}, {a1, a2}}.
Dann gilt allerdings auch
(SNS"| S € ady(Uns)) = {{a1}}-

Dies widerspricht der Definition der Direktionalitdt. Die Menge {a3} ist somit in U, g
x-zuldssig, in U hingegen nicht, da das Argument vom Mengenangriff ({a;, a2}, a3)
attackiert und nicht verteidigt wird.

Auch fiir die weiteren Semantiken fiir iSetAFs, die auf der z-Zuldssigkeit basieren,
lassen sich Gegenbeispiele finden, wie nachfolgend gezeigt wird.

Beispiel 5.5. Fortsetzung zu Beispiel 5.4. Fiir das iSetAF U;5 aus Abbildung 25 und eine
Menge S = {a1, a3} gilt:

cor(Ursys) = pra(Uisys) = gra(Uisys) = ste(Uisys) = {{a1, a3} }.
Weiter gilt

coz(U1s) = pre(Uss) = grz(Uis) = sto(Uis) = {{a1,a2}}.
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Dann gilt allerdings auch

(8"NS |8 € cop(Uss)) = {{a1}},
("N S| S €pra(Uss)) = {{a1}},
(S'NS |8 €gra(Uis) = {{a1}},
(8'NS |8 € ste(Uns)) = {{ar}}.

Dies widerspricht ebenfalls der Definition der Direktionalitét.

Damit erfiillen die Semantiken ad,, co;, gry, pry und st, Direktionalitat im Allge-
meinen nicht. Dies ist allerdings eine zentrale Eigenschaft, die es ermoglicht, lokale
Entscheidungen zu treffen, ohne den gesamten Argumentationsgraphen zu betrach-
ten. Zudem ist bekannt, dass die Semantiken cf, ad, co, pr und gr fiir AFs die Eigen-
schaft der Direktionalitét erfiillen (vgl. [BG07]), weshalb dies auch fiir iSetAFs eine
wiinschenswerte Eigenschaft ist.

Damit die Direktionalitdt auch fiir Semantiken fiir iSetAFs erfiillt werden kann, soll
zundchst der Begriff der unattackierten Menge eingeschrankt und neu definiert wer-
den. Solange eine bislang unattackierte Menge in einem Teilgraphen durch Hinzunah-
me von weiteren Argumenten von einem moglichen Mengenangriff bedroht sein kann,
kann die Direktionalitdt nicht erfiillt sein. Aus diesem Grund wird nachfolgend ei-
ne unberiihrte Menge fiir die Direktionalitdt definiert (in Anlehnung an Dvofak et al.
[DKUW24]).

Definition 5.9 (z-unberiihrt). Sei U = (A, A", R, R?) ein iSetAF und S C A U A’ eine
Menge von Argumenten.

¢ Eine Menge S heifst w-unberiihrt gdw. es kein b € {A\ S} und keine Menge B C A
mit b € B gibt, sodass (B, a) € R fiir mindestens ein a € S gilt.

* Eine Menge S heifit s-unberiihrt gdw. es kein b € {(AU.A")\ S} und keine Menge
B C AUA’ mitb € B gibt, sodass (B,a) € RUR’ fiir mindestens ein a € S gilt.

Eine Menge ist somit schwach unberiihrt, wenn diese nicht von aufien von einem
sicheren Mengenangriff attackiert wird. Auflerdem miissen alle Argumente eines Men-
genangriffs, der ein Argument innerhalb der schwach unberiihrten Menge attackiert,
auch innerhalb dieser schwach unberiihrten Menge liegen. Ansonsten wiirde ein Men-
genangriff entstehen, der erst durch die Hinzunahme von Argumenten von aufierhalb
der Menge giiltig wird. Genau dies soll vermieden werden. Analog ldsst sich auch eine
stark unberiihrte Menge erkldren.

Beispiel 5.6. Sei Uj¢ das in Abbildung 26 abgebildete iSetAF. Dann sind beispielsweise
die Mengen {a1}, {a1,a2},{a1,a2,a4},{a1, a2, a3}, {as, as, ag} schwach unberiihrt. Die
Mengen {az, as}, {a3, as}, {as, a5} hingegen sind nicht schwach unberiihrt.

Weiter sind beispielsweise die Mengen {a1, a2, a1}, {a2, a3, as}, {az, a3, as, a6} stark
unberiihrt, wihrend die Mengen {a;}, {a1, a2}, {a3, as}, {a2, as} hingegen nicht stark
unbertihrt sind.
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Abbildung 26: iSetAF U;¢ zu Beispiel 5.6. Eigene Darstellung.

Mit Hilfe der z-unberiihrten Menge, ldsst sich die Direktionalitdt neu definieren. Die-
se Neudefinition soll Mengendirektionalitit genannt werden.

Definition 5.10 (Mengendirektionalitit). Sei S C A U A’ eine in einem iSetAF U z-
unberiihrte Menge. Sei zudem S’ € 0,(U) eine o,-Extension in U. Eine Semantik o,
erfiillt Mengendirektionalitat gdw.

0:(Uis) ={S'NS| S €0,(U)}
tiir jedes iSetAF gilt.

Die Mengendirektionalitit ist fiir die meisten Semantiken fiir iSetAFs erfiillt, wie das
nachfolgende Theorem zeigt.

Theorem 5.6. Die Semantiken cf, ad, co,, pr, und gr,, erfiilllen Mengendirektionalitét.

Beweis. Sei U = (A, A’, R, R") ein iSetAF und S C A U A’ eine in U z-unberiihrte
Menge. Zu zeigen sind dabei immer beide Seiten der Gleichung o, (U;s) = {S'N S |
S" e o, (U)}.

1. cfy:

a) Sei S’ € cf,(U).Da S z-unberiihrt in U ist, werden in U, g keine nicht erlaub-
ten Angriffe hinzugefiigt. Daraus folgt direkt, dass S N S’ in U g ebenfalls
x-konfliktfrei ist.

b) Sei S’ € ¢f,(U,s). Da S z-unberiihrt in U ist, existieren in U keine zusétz-
lichen nicht erlaubten Angriffe auf Argumente in S. Weiter ist S" in U g 2-
konfliktfrei, weshalb S” C S gelten muss und es folgt direkt, dass die Menge
SN S’ =S auchin U z-konfliktfrei ist. Somit gilt S € ¢f,(U).

2. adg:

a) Sei S’ € ad,(U). Dann folgt direkt, dass S’ € ¢f,(U) und damit auch SNS’" €
cfz(Us) (vgl. Punkt 1a). Es bleibt zu zeigen, dass SN.S” alle seine Argumente
in U g verteidigt. Da die Menge S z-unberiihrt ist, gilt fiir alle Angreifer
(B,a) mita € SN S’ somit B C S.Da S’ € ad,(U) gilt, existiert eine Menge
C C 5, sodass (C,b) mit b € B gilt. Da C' ein Argument in S angreift und S
z-unbertihrt ist, muss zudem C' C S gelten. Es folgt C C SN S’ und damit
verteidigt sich S N S’ gegen alle Angreifer.
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b)

3. coy:

b)

4. pry:
a)

b)

5. gry:

Sei S’ € ad,(U,s). Dann folgt direkt, dass S’ € ¢f,(U;s) und demnach auch
S" € cfz(U) (vgl. Punkt 1b). Es bleibt zu zeigen, dass S’ in U alle seine Ar-
gumente verteidigt. Da S’ z-zuldssig in U g ist, verteidigt sich S” gegen alle
Angreifer (B,a) mit B C Sund a € S’. Da S z-unberiihrt in U ist, kann es in
U keine weiteren Angriffe auf S’ geben, die verteidigt werden miissten.

Sei S" € co,(U). Dann folgt direkt, dass S’ € ad,(U) und damit auch S N
S" € ad,(U,5) (vgl. Punkt 2a). Es bleibt zu zeigen, dass S N S’ keine weiteren
Argumente in U g verteidigt. Angenommen, es gibt ein Argument a € S mit
a ¢ S, das von S N S’ verteidigt wird. Da SN S" € " und S’ € co,(U) gilt,
miisste aber auch a € S’ gelten, was zum Widerspruch fiithrt. Somit enthalt
SN S’ bereits alle Argumente, die es verteidigt und es folgt SN.S’ € co, (U g).

Sei S' € co,(U,s). Da S z-vollstandig in U g ist, gibt es kein weiteres Ar-
gument a € S, das von S’ verteidigt wird. Zudem folgt aus Punkt 2b, dass
S" € ad;(Uys) und demnach auch S’ € ad,(U). Da S" z-zuldssig in U ist,
muss es auch eine Obermenge S” O S’ geben, sodass S” € co,(U). Trivialer-
weise gilt zudem S’ C S und damit folgt S N .S” = S, womit die Definition
der Mengendirektionalitat erfiillt ist.

Sei " € pry(U). Dann folgt direkt, dass S” € co,(U) und damit auch S N
S" € coy(Uys) (vgl. Punkt 3a). Es bleibt zu zeigen, dass S N S’ maximal z-
vollstindig in U, 5 ist. Angenommen, es gibt ein Argument a € (S'\ (SNS’)),
sodass {aU(SNS’)} z-vollstandig in U g ist. Das heif3t, das Argument a wird
entweder von S N S’ verteidigt oder es verteidigt sich selbst gegen Angriffe.
In beiden Fillen miisste dann aber auch a € S’ gelten, da S’ maximal z-
vollstindig in U ist. Dies widerspricht der Annahme, dass a ¢ S’ gilt. Somit
ist S N S” maximal z-vollstandig und es folgt SN S’ € pry(U,s).

Sei S’ € pry(U,s). Da S' maximal z-vollstindig in U g ist, gibt es kein wei-
teres Argument a € S, sodass {a U S’} z-vollstandig in U, g ist. Zudem folgt
aus Punkt 2b, dass S’ € ad,(U;s) und demnach auch S’ € ad,(U). Da S’
z-zuldssig in U ist, muss es auch eine Obermenge S” O S’ geben, sodass
S" € pry(U). Trivialerweise gilt zudem S’ C S und damit folgt SN S” = 5,
womit die Definition der Mengendirektionalitit erfiillt ist.

Sei §' € gry(U). Dann folgt direkt, dass S’ € co,(U) und damit auch S N
S’ € coy(Uys) (vgl. Punkt 3a). Es bleibt zu zeigen, dass S N S’ minimal z-
vollstdndig in U, g ist. Angenommen, es gibt ein Argument a € SN.S’, sodass
(SNS")\ain U} g z-vollstandig ist. Da S’ minimal z-vollstindig ist und wegen
a € S" auch das Argument a verteidigt, fithrt dies zum Widerspruch. Somit
ist S N S’ minimal z-vollstindig in U g, und es folgt SN S” € gr,(U;s).
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b) Sei S’ € gry(U,s). Da S’ minimal z-vollstandig in U g ist, gibt es kein Argu-
ment a € S’ sodass S’ \ a ebenfalls z-vollstandig in U, g ist. Da S z-unbertihrt
ist, gilt fiir die eindeutig bestimmte z-grundierte Extension S” von U genau
S’ C S”. Trivialerweise gilt zudem S’ C S und damit folgt S N S" = 5,
womit die Definition der Mengendirektionalitét erfiillt ist.

O]

Die stabile Semantik st,, fiir iSetAFs erfiillt Mengendirektionalitdt auch unter Bertick-
sichtigung der neu definierten z-unberiihrten Menge im Allgemeinen hingegen nicht,
wie das nachfolgende Gegenbeispiel zeigt.

Abbildung 27: iSetAF U, zu Beispiel 5.7. Eigene Darstellung.

Beispiel 5.7. Sei U;7 das in Abbildung 27 dargestellte iSetAF und S = {a1, az, az} eine
z-unberiihrte Menge. Fiir die stabile Semantik fiir iSetAFs st,(U;7) gilt dann:

Stgg(Uﬂ) = {{ag}} und
Stm(U17iS) = {{a17 a2}7 {a’3}}‘

Allerdings gilt auch
{SNS"| 8" € ste(Urr)} = {{as}} # sta(Uirys).
Dies zeigt, dass st, das Postulat der Mengendirektionalitdt im Allgemeinen nicht er-
fallt.
5.7 Dichtheit

Die néchste zu iiberpriifende Eigenschaft ist die Dichtheit. Die Definition der Dichtheit
aus Definition 2.21 soll zunédchst auch fiir iSetAFs erweitert werden.

Definition 5.11 (Dichtheit fiir iSetAFs). Eine Menge von Extensionen S = {S1,...,S5,}
mitn € Nund S1,...,S, € 0,(U) hei3it dicht gdw. gilt: Sei S € Sund SU {a} ¢ S mit
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a € (AUATY)\ S, dann folgt, dass es ein b € S gibt, das nicht gemeinsam mit a in einer
beliebigen Extension aus S vorkommen kann.
Eine Semantik o, erfiillt Dichtheit gdw. die Menge o, (U) fiir jedes iSetAF dicht ist.

Entsprechend dieser herkommlichen, aber fiir iSetAFs erweiterten Definition der
Dichtheit ldsst sich zeigen, dass diese Eigenschaft lediglich von der z-grundierten Se-
mantik erfiillt wird.

Theorem 5.7. Die Semantik gr, fiir iSetAFs erfiillt Dichtheit.

Beweis. Sei S € gr,(U) und a € (AUA’)\ S, sodass {S Ua} ¢ gr.(U). Da die z-grun-
dierte Semantik eindeutig bestimmt ist, kann es trivialerweise keine Menge S’ € gr,(U)
mit S’ # S geben, was die Dichtheit beweist. O

Die restlichen Semantiken fiir iSetAFs erfiillen Dichtheit in der Regel nicht, wie das
nachfolgende Gegenbeispiel zeigt.

()
Q’Q’b

Abbildung 28: iSetAF Ug zu Beispiel 5.4. Abbildung in Anlehnung an Dvoték, Fandin-
no und Woltran [DFW19].

Beispiel 5.8. Sei 015 = {cfs,ady, coy,pry, st }. Fir das in Abbildung 28 dargestellte
iSetAF U18 ist die Menge {al,ag} € 0'18(U18) und die Menge {al,ag,ag} % UIS(UIB)-
Wiirde eine Semantik aus o1 nun Dichtheit erfiillen, miisste entweder {ai,a3} ¢
o18(U1s) oder {a1, a2} ¢ 013(Us) gelten. Es gilt allerdings {a1, az}, {a1, a2} € 015(Uis).

Damit die Dichtheit zumindest fiir einige Semantiken erfiillt wird, lasst sich die
Definition der Dichtheit auf iSetAFs {ibertragen, indem auch Mengenangriffe sinnge-
maf berticksichtigt werden. Dafiir miissen statt einzelner Argumente auch Argument-
mengen, die gemeinsam einen Mengenangriff bilden, beriicksichtigt werden. Eine sol-
che Argumentmenge soll als zusammengehdirige Menge wie folgt definiert werden:

Definition 5.12 (Zusammengehorige Menge). Sei U = (A, A, R, R’) ein iSetAF. Eine
Menge B C A U A’ wird als zusammengehirige Menge bezeichnet,

e falls |B| = 1 oder

e falls |B| > 1, dann muss B einen zusammengehorigen Mengenangriff darstellen.
Das heifit, es existiert ein Angriff (B,c¢) € R U R’ fiir ein beliebiges Argument
c € AUA’, sodass B und c in einer Angriffsbeziehung stehen.
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Zudem wird fiir die Definition der Dichtheit, bei der auch Mengenangriffe bertick-
sichtigt werden konnen, die Menge Pairs(S) benétigt, die wie folgt definiert wird.

Definition 5.13 (Pairs(S)). Sei S = {S1,...,S,} mitn € Nund Si,...,S, € S eine
Menge von Extensionen. Zudem seien B, B’ C S zwei zusammengehorige Mengen
einer Extension mit S € S. Definiere

Pairs(S) ={(B,B) | {BUB'} C S,5 € S}

Puairs(o,) bezeichnet somit genau die Menge zweier zusammengehoriger Mengen,
die gemeinsam in einer beliebigen Extension in o, vorkommen. Zwei zusammengehd-
rige Mengen sind nicht Teil von Pairs(o;), wenn ein Konflikt zwischen beiden Mengen
besteht. Ein solcher Konflikt kann beispielsweise ein Angriff einer Menge auf ein Ar-
gument der anderen Menge sein.

Unter Beriicksichtigung von zusammengehdorigen Mengen ldsst sich nun auch der
Begriff der Mengendichtheit analog der Dichtheit formulieren.

Definition 5.14 (Mengendichtheit). Eine Menge von Extensionen S = {51, ..., S, } mit
n € Nund Sy, ...,S, € 0,(U) heifit mengendicht gdw. gilt: Sei S € Sund SU {a} ¢ S
mita € (AUA?)\ S, dann folgt, dass es eine zusammengehorige Menge B C S gibt,
sodass (B, {a}) ¢ Pairs(S).

Eine Semantik o, erfiillt Mengendichtheit gdw. die Menge o, (U) fiir jedes iSetAF
mengendicht ist.

Mit Hilfe dieser neuen Definition ldsst sich nun zeigen, dass sich iSetAFs bzgl. der
Mengendichtheit genauso verhalten wie AFs bzgl. der Dichtheit.

Theorem 5.8. Die Semantiken cf, gr, und st, fiir iSetAFs erfiillen Mengendichtheit.
Beweis. Sei U = (A, A”, R, R?) ein iSetAF.

* cf:Sei S € cfy(U)und a € (AUA")\ S, sodass {S Ua} ¢ cf.(U). Daraus folgt
direkt, dass es eine Menge B C S geben muss, sodass fiir + = w ein sicherer
Mengenangriff (B,a) € R oder ({a},b) € R mit b € B erfolgt und fiir z = s ein
beliebiger Angriff (B,a) € R U R? oder ({a},b) € RU R’ mit b € B erfolgt. Damit
gilt aber auch (B U {a}) ¢ Pairs(cf,(U)), was die Mengendichtheit beweist.

® grp:Sei S € gro(U)und a € (AUA")\ S, sodass {SUa} ¢ gr,(U). Da die z-
grundierte Semantik eindeutig bestimmt ist, kann es trivialerweise keine Menge
S" € gr,(U) mit S” # S geben, was die Mengendichtheit beweist.

* st,:Sei S € st,(U)unda € (AUA")\ S, sodass {SUa} ¢ st,(U).

- Falllmitz =wunda € A:Da S € st,(U), wird jedes b € A\ S von einer
Menge C' C S angegriffen. Angenommen, es gilt (C, {a}) € Pairs(st,(U))
und es gibt eine beliebige Extension {C' U ... U a} € st,,(U). Dann greift auch
in diesem Fall die Menge C' das Argument a an, weshalb diese Extension
weder w-konfliktfrei noch w-stabil sein kann. Dies fithrt zum Widerspruch
und die Mengendichtheit ist erfiillt.
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- Fall2mit 2 = wund a € A": Per Definition muss ein unsicheres Argument
auferhalb von S nicht zwingend angegriffen werden. Wenn aber {S U a} ¢
sty (U) gilt, dann muss es einen Mengenangriff (C,a) € R geben mit C C S.
Wiirde es einen solchen Angriff nicht geben, miisste folglich {SUa} € st,,(U)
gelten. Der Beweis lasst sich analog Fall 1 fortsetzen.

- Fall 3 mit z = s: Da S € st (U) gilt, wird jedes b € (A UA?)\ S von einer
Menge C C S angegriffen. Der Beweis ldsst sich analog Fall 1 fortsetzen.

— Fall 4 mit ({a}, a) € R: Fiir den Fall, dass a sich selbst attackiert, folgt direkt,
dass es keine Extension in st,(U) geben kann, die a enthalt.

Damit erfiillt st, folglich Mengendichtheit.

O]

Die weiteren Semantiken ad,, co, und pr, erfiillen die Eigenschaft der Mengendicht-
heit im Allgemeinen nicht. Nachfolgend soll ein Gegenbeispiel der Mengendichtheit
tir pr, aufgezeigt werden. Da jede z-priferierte Extension auch eine z-vollstandige
und eine z-zulédssige Extension ist, ist die Mengendichtheit auch fiir diese Semantiken
im Allgemeinen nicht erfiillt.

)
@‘@
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()

Abbildung 29: iSetAF U;g zu Beispiel 5.9. Eigene Darstellung.

Beispiel 5.9. Fiir das iSetAF U9 aus Abbildung 29 gilt:

* Die Menge {a1,az,as,as} ist z-praferiert in Ujg. Kein weiteres Argument wird
x-verteidigt und es gibt keine echte Obermenge in Uy g, die grofier ist.

e Die Menge {a1, az,a3,as} U {ag} ist hingegen nicht z-préferiert, da der Angriff
({a7}, ag) nicht verteidigt wird.
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° Allerdings gﬂt: {al,ag,ag,ag} S pT‘gg(Ulg) und auch {ag,a4,a5,a8} S pTx(U19).
Somit steht weder die Menge {a1, az} noch die Menge {as, a4} mit ag in Konflikt.
Dies widerspricht der Definition der Mengendichtheit.

5.8 Konfliktsensitivitat

Das nichste zu priifende Postulat ist die Konfliktsensitivitat, die zundchst auf iSetAFs
tibertragen wird.

Definition 5.15 (Konfliktsensitivitat fiir iSetAFs). Eine Menge von Extensionen S =
{51,..., 8} mitn € Nund Si,...,5, € 0,(U) heifit konfliktsensitiv gdw. fiir alle
Paare §;,5; € Smiti,j € {1,...,n} gilt: Wenn S; U S; ¢ S, dann folgt, dass es ein
a € S;und ein b € S gibt, sodass ({a}, {b}) ¢ Pairs(o,(U)).

Eine Semantik o, erfiillt Konfliktsensitivitidt gdw. die Menge o, (U) fiir jedes iSetAF
konfliktsensitiv ist.

Proposition 5.4. Die Semantik gr,, fiir iSetAFs erfiillt Konfliktsensitivitat.

Beweis. Da es keine zwei unterschiedliche z-grundierte Extensionen S, 5" € gr,(U) in
U mit S # S’ geben kann, wird die Konfliktsensitivitdt trivialerweise erfiillt. O

Ahnlich wie bei der bereits gezeigten Dichtheit kann auch diese herkémmliche De-
finition fiir die meisten Semantiken nicht verwendet werden, da Mengenangriffe nicht
korrekt berticksichtigt werden, wie das nachfolgende Beispiel zeigt.

Beispiel 5.10. Sei 030 = {cfs,ady, coy, prs, sty }. Fiir das in Abbildung 28 dargestellte
iSetAF Uy gilt {a1, a2}, {az, as}, {a1, a3} € o29(Uzp). Die Vereinigung zweier dieser Ex-
tensionen ist hingegen selbst keine Extension. Es gilt {a1, az, as} ¢ o20(Usg). Wiirde ei-
ne Semantik aus o099 nun Konfliktsensitivitdt erfiillen, miisste entweder ({a1}, {as}) ¢
PaiTS(O'QO(UQ())), ({al}, {CLQ}) ¢ PaiTS(UQ()(UQ())) oder ({ag}, {ag}) Qé PaiTS(Ugo(UQU))
gelten. Dies ist jedoch nicht erfiillt.

Mit dem Gegenbeispiel wurde gezeigt, dass die Semantiken cf;, ad,, co., pr, und st
die Konfliktsensitivitdt im Allgemeinen nicht erfiillen. Lediglich die Semantik gr, er-
tullt diese Eigenschaft trivialerweise.

Ahnlich wie bei der Dichtheit soll an dieser Stelle eine fiir iSetAFs angepasste Kon-
fliktsensitivitdt definiert werden, die auch Mengenangriffe sinngeméfs beriicksichtigen
kann. Dies ist die Mengenkonfliktsensitivitit. Zur Vorbereitung auf die Definition und die
nachfolgenden Beweise soll zundchst gezeigt werden, dass sich die Vereinigung zweier
x-zuldssiger Mengen selbst gegen alle Angreifer z-verteidigt. Das nachfolgende Lemma
wird in Anlehnung an Dunne et al. [DDLW15] formuliert, wobei zusitzlich Mengenan-
griffe berticksichtigt werden konnen und somit eine Anwendung fiir iSetAFs moglich
ist.

Lemma 5.1. Sei U = (A,A?, R, 3%7) ein iSetAF und S}, Sy € AU A’ mit S1, 5, € ad,(U)
zweiin U z-zuldssige Mengen, die sich jeweils selbst in U z-verteidigen. Dann folgt fiir
die Vereinigung S U S, dass sich diese in U selbst z-verteidigt.

69



Beweis. Die Mengen 51 und Sy z-verteidigen sich jeweils selbst gegen alle moglichen
Mengenangriffe in U. Angenommen, die Menge S3 = S; U Sy z-verteidigt sich nicht
selbst gegen alle Mengenangriffe auf S3. Dann gibt es fiir # = w einen Mengenangriff
(B,a) € Rbzw. fiir r = s einen Mengenangriff (B,a) € RU R’ mita € S3 und B C
AUA?, der nicht von S verteidigt wird. Sei die Einschrankung a € S; gegeben. Da sich
Sz nicht gegen den Angriff (B, a) z-verteidigen kann, kann sich auch S; nicht gegen
diesen Angriff z-verteidigen, was im Widerspruch zur Annahme der z-Zuldssigkeit
von Sy steht. Gleiches ldsst sich auch fiir ein a € 5> zeigen. Somit folgt direkt, dass die
Annahme widerlegt ist und sich S3 selbst gegen alle Mengenangriffe auf S3 verteidigt.

Ul

Mit Hilfe von Lemma 5.1 ldsst sich nun auch das nachfolgende Lemma schliefien.

Lemma 5.2. Fiir die Vereinigung S; U S, zweier x-zuldssiger Mengen 51,52 C AU A’
gilt: Ist S1 U So z-konfliktfrei in U, dann ist S; U Sy auch z-zuldssig in U.

Beweis. Gemédfs Lemma 5.1 verteidigt sich die Vereinigung S; U Sy selbst gegen alle
Mengenangriffe. Da bereits angenommen wurde, dass S U Sy z-konfliktfrei ist, folgt,
dass S1 U Sy € ad,(U). O

An dieser Stelle ldsst sich nun auch der bereits erwadhnte Begriff der Mengenkonflikt-
sensitivitdt definieren.

Definition 5.16 (Mengenkonfliktsensitivitdt). Eine Menge von Extensionen & =
{S1,..., Sy} mitn € Nund Si,...,S, € S heist mengenkonfliktsensitiv gdw. fiir alle
Paare S;,S; € Smiti,j € {1,...,n} gilt: Wenn S; U S; ¢ S, dann folgt, dass es zwei
zusammengehorige Mengen B C S; und B’ € S; gibt, sodass (B, B') ¢ Pairs(S).

Eine Semantik o, erfiillt Mengenkonfliktsensitivitdt gdw. die Menge o, (U) fiir jedes
iSetAF mengenkonfliktsensitiv ist.

Diese angepasste Definition der herkommlichen Konfliktsensitivitdt wird nun von
den meisten Semantiken erfiillt, wie nachfolgend gezeigt wird.

Theorem 5.9. Die Semantiken cf,, ad,, pry, gr; und st, erfiillen Mengenkonfliktsensi-
tivitéat.
Beweis. Sei U = (A, A, R, R?) ein iSetAF.

* cfy:Seien S1,S2 € cfy(U)und S1US2 ¢ cf.(U). Angenommen, cf, ist nicht men-
genkonfliktsensitiv, dann gilt fiir alle A, B C S1USs, dass (4, B) € Pairs(cf,(U)).
Daraus folgt aber, dass jede Menge AU B z-konfliktfrei ist und damit gilt S;US, €
cfz(U). Dies fithrt zum Widerspruch. Somit ist ¢ f, mengenkonfliktsensitiv.

* ad,:Seien S1, 52 € ad,y(U) und S1USs ¢ ad,(U). Angenommen, ad,, ist nicht men-
genkonfliktsensitiv, dann gilt fiir alle A, B C S1US5, dass (A, B) € Pairs(ad,(U)).
Daraus folgt aber, dass jede Menge AU B z-konfliktfrei ist und damit gilt S; US> €
cfz(U). Da aber nun S; und S5 jeweils z-zuldssig sind und S; U S5 z-konfliktfrei
ist, folgt nach Lemma 5.2, dass S; U Sy auch z-zuldssig ist. Dies fithrt zum Wider-
spruch. Somit ist ad, mengenkonfliktsensitiv.
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* pry:Seien Sy, Sy € pry(U) und S1U S, ¢ pr,(U). Angenommen, pr,, ist nicht men-
genkonfliktsensitiv, dann gilt fiir alle A, B C S1US5, dass (A, B) € Pairs(pry(U)).
Daraus folgt, dass jede Menge A U B z-konfliktfrei ist und damit gilt S; U Sy €
cfz(U). Gemédfl dem letzten Beweis fiir ad, folgt direkt, dass S; U Sy € ad,(U).
Wegen S; U Sy ¢ pry(U) und S; U Sy € ad,(U) muss es eine echte Obermen-
ge S3 O S1 U Sy geben, die z-priferiert ist. Da aber auch S3 D S; und S3 D S
gilt, konnen S; und S nicht z-préferiert sein, was direkt zum Widerspruch fiihrt.
Somit ist pr, mengenkonfliktsensitiv.

* gr,: Da die z-grundierte Semantik eindeutig bestimmt ist, kann es trivialerweise
keine zwei Mengen 51, .52 € gr,(U) mit S; # S» geben, weshalb die Mengenkon-
fliktsensitivitat erfiillt ist.

* st Seien S1,52 € stx(U) und S; U Sy ¢ st (U). Angenommen, st, ist nicht men-
genkonfliktsensitiv, dann gilt fiir alle A, B C S1US5, dass (A, B) € Pairs(st,(U)).
Daraus folgt, dass jede Menge A U B z-konfliktfrei ist und damit gilt S; U Sy €
cfz(U). Gemédfs dem Beweis fiir ad,, folgt direkt, dass S1 U Sz € ad,(U). Da mit Sy
eine z-stabile Extension existiert, kann ausgeschlossen werden, dass das iSetAF
keine z-stabile Extension besitzt. Wegen 51 U Sy ¢ st,(U) muss es fiir = w ein
Argument ¢ € A bzw. fiir + = s ein Argument ¢ € A U A’ geben, das weder in
S1 U S; enthalten ist, noch von 57 U S, attackiert wird. Dann gilt aber auch ¢ ¢ Sy,
cé¢ Sy cé Sfr und ¢ ¢ S, , woraus sich auch Sy, Sy ¢ st.(U) ergibt. Dies fiithrt
zum Widerspruch und damit ist st, mengenkonfliktsensitiv.

O]

Die Semantik co, erfiillt Mengenkonfliktsensitivitdt im Allgemeinen nicht, wie das
nachfolgende Beispiel zeigt.

Beispiel 5.11. Fiir das iSetAF Us; aus Abbildung 30 gilt:
e {aj,as2},{as} € co,(Uz1) und
e {a1,a2,a3} ¢ cop(Uay).
e Allerdings gilt auch {a1, ag, a3, as} € coy(Ua).

Das heift, ({a1}, {as}), {az2},{as}), ({a1, a2}, {as}) € Pairs(co,(Us1)) und es gibt keine
zwei Teilmengen von {a, az, a3} die in einem Konflikt zueinander stehen.

5.9 Modularisierung

Um die Modularisierung untersuchen zu kénnen, muss zundchst der Begriff des Re-
dukts fiir iSetAFs definiert werden. Eine dhnliche Definition fiir SetAFs wurde bereits
von Dvofdk et al. veroffentlicht [DKUW24]. Diese soll entsprechend erweitert wer-
den, sodass zusétzlich auch unvollstandiges Wissen berticksichtigt werden kann. Dabei
wird zudem eine schwache und eine starke Auspragung berticksichtigt.
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Abbildung 30: iSetAF Us; zu Beispiel 5.11. Eigene Darstellung.

Definition 5.17 (z-Redukt eines iSetAFs). Das schwache bzw. starke Redukt U“* eines
iSetAFs U bzgl. einer Menge S C A U A’ ist wie folgt definiert: US* = (A’, A'", R/, R'")
mit

e A=A\ (SUST?),

o A=A\ (SUSTT),

o R ={({B\5S},a) | (B,a) e R,BCAUA" ac A/UA" und BN S™* =} und

e R = ,a ya) R BCAUA ,ac AUA" un NS =0;.
R’ B\ S B RBCAUA"  ac AUA und BN St =0

Das heifit, es wird nur der Teilgraph von U betrachtet, aus dem alle Argumente aus
S und alle Argumente, die von S z-attackiert werden, entfernt wurden. Der Grund fiir
die Berticksichtigung von Angriffen der Art ({B \ S}, a) ist, dass Mengenangriffe, die
zum Teil aus Argumenten aus S bestehen, auch im Redukt weiterhin eine Bedrohung
darstellen (vgl. Beispiel 5.12). Die Bedingung B N S™* = () sorgt zudem dafiir, dass
genau die Mengenangriffe nicht mehr als Bedrohung im Redukt angesehen werden,
deren Argumente zumindest teilweise bereits von S z-attackiert wurden (vgl. ebenfalls
Beispiel 5.12). Das heifst, die Angriffsbeziehung verfallt im Redukt.

it ~
’ AY ’ AY

1 1
@ 777)\ a5 )17\ a6 !
7 7
Nele Nele

Abbildung 31: iSetAF Uss zu Beispiel 5.12. Eigene Darstellung.
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Abbildung 32: Redukte Us;” bzw. Us® des iSetAFs Usy zu Beispiel 5.12 mit § =
{a2,a4}. Eigene Darstellung.

Beispiel 5.12. Fiir das in Abbildung 31 dargestellte iSetAF Us; und eine Menge S =
{as, as} ist das Redukt Us;” bzw. U in Abbildung 32 dargestellt. Fiir beide Reduk-
te fallt auf, dass der Mengenangriff ({ag, a3}, as) durch den Mengenangriff ({as}, ag)
weiterhin im Redukt als Bedrohung angesehen wird. Da das Argument ay bereits in
der Menge S enthalten und damit akzeptiert ist, kann der Mengenangriff durch die
weitere Akzeptanz von a3 eine Bedrohung fiir ag sein.

Fiir eine Menge S = {a; } ist das Redukt U, bzw. U5, in Abbildung 33 dargestellt.
Fiir das starke Redukt féllt auf, dass der Mengenangriff ({ag, as}, ag) durch den Angriff
von S auf as entféllt und keine Bedrohung mehr im Redukt darstellt. Beim schwachen
Redukt hingegen wird as von S nur unsicher angegriffen. Ein solcher Angriff wird
nicht als Bedrohung angesehen, weshalb der Angriff ({a2, a3}, ag) weiterhin im Redukt
bestehen bleibt.

N A Lo~ PN
a5 k—— Qg | a5 le—— ap |
’ 4

N
“«~_- ~_ ~-" ~=-7

S’ w S’.s
U22 U22

Abbildung 33: Redukte Us, ™ bzw. Us,”* des iSetAFs Uy, zu Beispiel 5.12 mit S’ = {a; }.
Eigene Darstellung.

Fiir eine z-konfliktfreie Menge lassen sich nun die folgenden Eigenschaften in Bezug
auf deren Redukt feststellen.
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Lemma 5.3. Sei U ein iSetAFund S € AUA’ mit S € cf,(U) eine z-konfliktfreie Menge
in U. Wenn zudem S’ € cf,(U?) gilt und S’ kein Argument aus S angreift, dann folgt,
dass auch SU S’ € ¢f,(U) gilt.

Beweis. Die Menge S ist 2-konfliktfrei in U und im z-Redukt U5 werden alle Argu-
mente entfernt, die von S angegriffen werden oder in S enthalten sind. Das heifit, jedes
im z-Redukt verbliebene Argument wird nicht von S angegriffen. Die Menge S’ ist im
z-Redukt z-konfliktfrei und damit auch trivialerweise in U. Ein Angriff von S’ auf ein
Argument aus S ist per Voraussetzung ausgeschlossen. Da weder S die Menge S’ an-
greift, noch S’ die Menge S angreift, folgt, dass die Vereinigung beider z-konfliktfreien
Mengen S U S’ ebenfalls z-konfliktfrei sein muss. O

Lemma 5.4. Sei U ein iSetAF und S € A U A’ mit S € co,(U), dann folgt,

1. dass es im w-Redukt U kein Argument geben kann, das nicht sicher angegrif-
fen wird und

2. dass gr, (US™) = {0}.

Beweis. 1. Sei U™ = (A/, A/ R R ?) das w-Redukt von U bzgl. S. Angenommen,
es gibt ein Argumenta € A’UA’ !, das im w-Redukt nicht angegriffen wird. Dann
gibt es in U entweder gar keinen Mengenangriff auf a oder es gibt einen sicheren
Mengenangriff (B,a) € R mit B C (AU A7)\ S. Wire B C S, wiirde a von S
angegriffen werden, weshalb a nicht im Redukt enthalten sein koénnte. Da somit
B ¢Z Sund B € (A’ UA'") gelten, folgt, dass B von S angegriffen wird. In beiden
Féllen, wird a dann aber von S stark verteidigt und wegen S € co,,(U) gilta € S
und somit a ¢ U%%. Dies fithrt zum Widerspruch.

Fiir den Fall, dass es ein a € A’ U A" gibt, das im w-Redukt unsicher angegriffen
wird, muss a nicht verteidigt werden, weil unsichere Angriffe nicht als Bedro-
hung angesehen werden. Damit wiirde ebenfalls a € S und a ¢ U5 gelten, was
zum Widerspruch fiihrt.

2. Aus Lemma 5.4 Punkt 1 folgt bereits, dass es keine Argumente in US* geben
kann, die nicht sicher angegriffen werden. Damit kann es im w-Redukt auch kei-
ne Argumente geben, die von der leeren Menge schwach verteidigt werden. Die
einzige schwach grundierte Extension im w-Redukt ist damit die leere Menge.

O

Aus Lemma 5.4 lasst sich folgende Proposition folgern.

Proposition 5.5. Sei U ein iSetAF und S € A UA’. Es gilt S € co,,(U) gdw. S € ad,,(U)
und gr,, (U>") = {0}.

Beweis. Fiir die erste Richtung gilt: Sei S € co,(U), dann folgt per Definition direkt
S € ady,(U) und gemaf Lemma 5.4 Punkt 2 folgt zudem gr,, (U>*) = {}.
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Fiir die zweite Richtung gilt: Sei S € ad,,(U) und gr,(U>*) = {(}}, dann verteidigt
S alle Angriffe auf S. Angenommen, es gilt S ¢ co,,(U), dann gibt es ein Argument
a € AUA’, das schwach von S verteidigt wird. Das heifst, das Argument a wird entwe-
der nicht angegriffen, unsicher angegriffen oder sicher angegriffen. Wird a nicht oder
nur unsicher in U angegriffen, wird dieses Argument in U%% von der leeren Menge
verteidigt und es folgt a € S’ mit S’ € gr,(U"), was zum Widerspruch fiihrt. Fiir
den Fall, dass a sicher angegriffen und von S in U verteidigt wird, gibt es einen Men-
genangriff (B,a) € R mit B C A und einen verteidigenden Mengenangriff (C,b) € R
mit C C Sund b € B. Da somit b von S angegriffen wird, kann b nicht im w-Redukt
U5 enthalten sein. Somit entfallt per Definition des w-Redukts aber auch der gesam-
te Angriff (B,a) in US. Es folgt, dass a in U%" unangegriffen ist und damit a € S’
mit S’ € gr,(U") gelten muss, was ebenfalls zum Widerspruch fiihrt. Damit muss
S € coy(U) gelten. O

Mit Hilfe des z-Redukts ldsst sich nun auch die Modularisierung auf iSetAFs wie
folgt tibertragen.

Definition 5.18 (Modularisierung fiir iSetAFs). Eine Semantik o, erfiillt Modularisie-
rung gdw. fiir alle iSetAFs U gilt: Wenn S € 0,(U) und S’ € 0,(US?), dann gilt
SuUS € o, (U).

Das heifst, wenn es eine Extension in U und eine weitere Extension im Redukt von
U bzgl. S gibt, so ist auch die Vereinigung dieser beiden Mengen eine Extension des
originalen iSetAFs U.

Theorem 5.10. Die Semantiken fiir iSetAFs ad,,, coy, prw, 97w, Stw und st erfiillen Mo-
dularisierung.

Beweis. Sei U = (A, A”, R, R?) ein iSetAF.

* ady:Sei S € ad,(U) und S’ € ad,,(U%). Da S schwach zulassig in U ist, werden
alle Angriffe auf Argumente aus S auch von S schwach verteidigt. Da S keines
der im w-Redukt verbliebenen Argumente S sicher angreift, kann S von diesen
ebenfalls nicht sicher angegriffen werden, da sich S ansonsten gegen den Angriff
verteidigen wiirde. Es folgt, dass es keinen Angriff von Argumenten aus S” auf
Argumente aus S gibt. Gemafl Lemma 5.3 folgt direkt, dass S U S’ € ¢f,,(U) gilt.
Es bleibt zu zeigen, dass S U S’ sich selbst verteidigt.

Angenommen, es gibt eine Menge B C A U A’, die ein Argument a € S U S’
w-attackiert. Sei a € S, dann folgt wegen S € ad,,(U) direkt, dass der Angriff von
S und somit auch von S U S’ verteidigt wird. Fiir den Fall a € S’ folgt wegen
S’ € ad,,(U5™), dass alle Angriffe innerhalb des w-Redukts auch schwach vertei-
digt werden. Angriffe von auflerhalb des w-Redukts auf S’ werden von S sicher
angegriffen und verteidigen damit den Angriff. Es folgt SU S’ € ad,,(U).

® coy: Sei S € co,(U) und S' € co,(U%Y), dann folgt gemdfl dem ersten Be-
weis S U S’ € ad,(U). Nach Lemma 5.4 Punkt 1 gilt gr,(U%%) = {0} und
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gro(US™®)S ) = {P}. Es folgt gr,(US Y5 ) = {p} und gemaR Proposition 5.5
folgt schlussendlich S U S € co,, (U).

* pry:Sei S € pry,(U) und S’ € pry,(US™). Angenommen, es gilt S’ # {0}. S” wird
in U nicht von § verteidigt, da wegen der schwachen Préferiertheit ansonsten
S’ C S gelten wiirde und S’ nicht in U%% enthalten wire. Daraus folgt, dass sich
S’ selbst in U verteidigt. Dann wire S allerdings nicht schwach préferiert in U,
weil es eine grofere Menge S U S’ gibt, die ebenfalls in U zuldssig ist. Dies steht
im Widerspruch zur Annahme. Somit kann nur S" = {()} gelten. Trivialerweise ist
SUp = S und damitistauch {SUD} € pr, (U). Damit erfiillt pr,, Modularisierung.

® gry: Sei S € gry,(U), dann gilt auch S € co,(U) und es folgt nach Lemma 5.4
Punkt 2, dass {0} im Redukt U%* die einzige schwach grundierte Extension ist.
Trivialerweise ist S U ) = S und damit ist auch {S U0} € gr,(U). Damit erfiillt
gry Modularisierung.

o sty:Sei S € st,(U) und S € st,(US™). Da S schwach stabil in U ist, folgt
S U ST DO A. Alle sicheren Argumente sind entweder in S oder werden von
S sicher angegriffen. Das heifst, im w-Redukt von U bzgl. S kénnen nur unsichere
Argumente enthalten sein, die von S nicht sicher angegriffen werden. Fiir jedes
Argument a € S’ gilt zudem a € A’ \ S. Weil alle Argumente aus S’ unsicher
sind, folgt, dass die Vereinigung S U S’ schwach konfliktfrei ist, da ein Konflikt,
bezogen auf die schwache Konfliktfreiheit, nur zwischen sicheren Argumenten
entstehen kann. Zudem ist S U S” auch schwach zuléssig, da S bereits alle An-
griffe auf S verteidigt und es keine weiteren Angriffe auf S’ gibt, die verteidigt
werden miissen. Es folgt, dass S U S” € st,,(U) gilt, da alle sicheren Argumente
bereits von S sicher angegriffen werden.

* st;:Sei S € sty(U), dann gilt SUST* = AUA". Es gibt somit keine verbleibenden
Argumente in ad,,(U%"). Somit erfiillt st; Modularisierung trivialerweise.

d

Fiir die Semantiken cf,, ads, cos, prs sowie gr; ist die Eigenschaft der Modularisie-
rung aufgrund der Definition der starken Verteidigung nicht gegeben. Wird ein Argu-
ment von einer Menge S schwach angegriffen, wird dieser Angriff als Bedrohung ange-
sehen und dieses Argument ist im s-Redukt von U bzgl. S nicht mehr enthalten. Aller-
dings kann durch diesen schwachen Angriff kein Argument verteidigt werden, weil fiir
die Verteidigung von Argumenten zwingend ein sicherer Angriff erfolgen muss. Nach-
folgend sollen Gegenbeispiele fiir die Nichterfiillung der Modularisierung aufgezeigt
werden.

Beispiel 5.13. Fiir das in Abbildung 34 dargestellte iSetAF Us3 gilt:

Sei S = {a4}, dann ist S € cf,(Uss). Weiter ist S™* = ) und damit wird im z-
Redukt U253’z lediglich das Argument a4 und der Angriff ({as}, as) entfernt. Damit ist
{az} € ¢ fx(U2S3’w), aber S U {az} ¢ cfy(Uss). Dies widerspricht der Definition der Mo-
dularisierung.
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Abbildung 34: iSetAF Uss zu Beispiel 5.13. Eigene Darstellung.

Beispiel 5.14. In Fortsetzung zu Beispiel 5.13 sei U3 das iSetAF aus Abbildung 34 und
023 eine Menge von Semantiken mit 93 = {ads, cos, prs, grs}. Dann gilt:

Sei S = {ai,as}, dann ist S € o93(Ua3). Weiter ist S™* = {a3} und damit besteht
das s-Redukt U2S3’s nur aus dem Argument as und enthélt keine Angriffe. Damit ist
{as} € GQg(U%S), aber SU{as} ¢ 023(Ua3). Dies widerspricht der Definition der Modu-
larisierung.

5.10 Ergebnisse

In diesem Kapitel wurde untersucht, welche Eigenschaften das in Abschnitt 4 neu de-
finierte Framework iSetAF erfiillt und welche dieser Eigenschaften nicht erfiillt wer-
den. Im Fokus standen dabei die folgenden Eigenschaften: Syntaxunabhangigkeit, I-
Maximalitdt, Enthaltung, Direktionalitdt, Dichtheit, Konfliktsensitivitdt und Modulari-
sierung.

Einige dieser Eigenschaften wurden bereits in fritheren Arbeiten fiir klassische AFs,
SetAFs oder auch fiir extensionsbasierte iAFs untersucht. Eine Ubersicht dieser bishe-
rigen Ergebnisse ist in Unterabschnitt 5.2 dargestellt.

Es wurde gezeigt, dass sich jedes AF, SetAF und iAF als Spezialfall eines iSetAFs
auffassen ldsst. Beispielsweise kann ein SetAF als iSetAF modelliert werden, indem
man auf unsichere Argumente und Angriffe verzichtet. Daraus ergibt sich unmittelbar:
Wenn eine bestimmte Eigenschaft bereits fiir AFs, SetAFs oder iAFs nicht erfiillt ist,
kann diese auch fiir iSetAFs nicht erfiillt sein.

Anschlieffend wurden die Eigenschaften einzeln betrachtet. Dabei musste die her-
kommliche Definition aller Eigenschaften fiir AFs angepasst werden, sodass die Postu-
late auch auf iSetAFs anwendbar waren. Nach dieser Anpassung konnten die folgen-
den Postulate ohne weitere Konflikte direkt auf iSetAFs angewendet werden:

¢ Syntaxunabhingigkeit: Es wurde gezeigt, dass das Postulat sowohl von beiden
Auspragungen aller betrachteten Semantiken erfiillt ist. Dies deckt sich mit den
Ergebnissen fiir klassische AFs.

¢ I-Maximalitit: Die Ergebnisse stimmen grofstenteils mit denen fiir klassische AFs
tiberein. Eine Ausnahme bildet die schwache Auspragung der stabilen Semantik,
die das Postulat nicht erfiillt.
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¢ Enthaltung: Grundsitzlich decken sich die Ergebnisse mit den Ergebnissen fiir
klassische AFs. Lediglich die schwache Ausprdagung der vollstindigen Semantik
erfiillt das Postulat nicht.

* Modularisierung: Es wurde gezeigt, dass sich die Ergebnisse der schwachen Aus-
pragung der Semantiken mit den Ergebnissen fiir klassische AFs decken. Die star-
ke Auspragung der Semantiken erfiillt die Modularisierung hingegen grundsatz-
lich nicht und ist nur fiir die stark stabile Semantik trivialerweise erfiillt.

Die Eigenschaften Direktionalitidt, Dichtheit und Konfliktsensitivitdt wurden von vie-
len Semantiken trotz Anpassung nicht erfiillt und entsprachen aufgrund der Besonder-
heiten von iSetAFs auch nicht mehr dem urspriinglichen Sinn der Postulate. Da die-
se Eigenschaften jedoch wiinschenswert sind, wurden neue angepasste Postulate ein-
gefiihrt: Mengendirektionalitdt, Mengendichtheit und Mengenkonfliktsensitivitat. Der
urspriingliche Sinn der Eigenschaften wurde dabei wiederhergestellt. Dies fiihrte zu
folgenden Ergebnissen:

* Mengendirektionalitit: Wird Direktionalitdt im klassischen AF erfiillt, so wird
auch das angepasste Postulat Mengendirektionalitidt von beiden Auspragungen
der jeweiligen Semantik erfiillt.

* Mengendichtheit: Wird das Postulat Dichtheit von einer Semantik fiir AFs erfiillt,
so erfiillen sowohl die schwache als auch die starke Auspragung der jeweiligen
Semantik das angepasste Postulat Mengendichtheit.

* Mengenkonfliktsensitivitit: Wird das Postulat Konfliktsensitivitdt von einer Se-
mantik fiir AFs erfiillt, so erfiillen auch die beiden Auspragungen der jeweiligen
Semantik das angepasste Postulat Mengenkonfliktsensitivitat.

Zur Veranschaulichung der Ergebnisse werden in den folgenden Tabellen (Tabelle 5
und Tabelle 6) die Erfiillungen der Postulate fiir die schwache und starke Auspragung
der betrachteten Semantiken zusammengefasst.

Die Untersuchung der Eigenschaften zeigt, dass iSetAFs in weiten Teilen dem ur-
spriinglichen Framework AF von Dung dhnelt und sich viele Eigenschaften durch ge-
zielte Anpassungen iibertragen lassen. Insgesamt erhilt man durch die Einfiihrung von
iSetAFs weitaus mehr Moglichkeiten, reale Argumentationen zu modellieren, behalt
aber gleichzeitig die meisten der wiinschenswerten Eigenschaften bei.
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cfw cfs ady ads coy cCOs
Syntaxunabhdngigkeit v o/ 7 v o /7 /
I-Maximalitat X X X X X X
Enthaltung v o/ X v
Direktionalitit o/ X X X X
Mengendirektionalitat v o/ 7 v o/ 7
Dichtheit X X X X X X
Mengendichtheit o/ X X X X
Konfliktsensitivitat X X X X X X
Mengenkonfliktsensitivitit v vV X X
Modularisierung X X v x v X

Tabelle 5: Ubersicht der Erfiillung von Postulaten fiir iSetAFs durch Semantiken (Teil
1). Eigene Darstellung.

b
n
8

S

Tw grw  gTs

Syntaxunabhéingigkeit
[-Maximalitat

Enthaltung

Direktionalitat
Mengendirektionalitat
Dichtheit

Mengendichtheit
Konfliktsensitivitat
Mengenkonfliktsensitivitat
Modularisierung

WX XX CNUX NS
XN XXX NNX NS
ANENENENENENENENENEN
LI NENENENENENENENEN
WA XX X XXX
SAOXAUX XXXz

Tabelle 6: Ubersicht der Erfiillung von Postulaten fiir iSetAFs durch Semantiken (Teil
2). Eigene Darstellung.
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6 Komplexitat von vervolistandigungsbasierten iSetAFs

Nachdem iSetAFs als neue Erweiterung der AFs in Abschnitt 4 formal eingefiihrt wur-
den, soll in diesem Kapitel die Komplexitdt von Schlussfolgerungsproblemen unter-
sucht werden. Die Analyse der Komplexitit von Schlussfolgerungsproblemen spielt
eine zentrale Rolle in der formalen Argumentation. Diese gibt Aufschluss dartiiber, wie
aufwendig es ist, Entscheidungen iiber die Akzeptanz eines Argumentes bzw. einer
Menge von Argumenten zu treffen.

Mit der Einfiihrung von iSetAFs wurden zwei Konzepte kombiniert: Mengenangrif-
fe und unvollstandiges Wissen. Diese Kombination erweitert den Ausdrucksgehalt des
Frameworks, erhoht aber potenziell auch die Komplexitdt der Schlussfolgerungspro-
bleme. Die Komplexitat klassischer AFs wurde bereits umfassend von Baroni et al.
[BGGVdT18] analysiert. Fiir SetAFs (Dvofék et al., Bikakis et al. [DKUW24, BCD*21])
und iAFs (Baumeister et al. [BNR18]) existieren ebenfalls detaillierte Untersuchungen.
Wie sich jedoch die Kombination beider Erweiterungen auf die Komplexitiat auswirkt,
ist bislang ungeklart. Ziel dieses Kapitels ist es daher, die Komplexitidt von Schlussfol-
gerungsproblemen fiir iSetAFs zu untersuchen. Dabei werden insbesondere die Ent-
scheidungsprobleme CRED (leichtgldubige Akzeptanz), SKEP (skeptische Akzeptanz)
und VER (Verifikation) fiir die verschiedenen Semantiken betrachtet.

Nach einer kurzen Einfithrung in die Komplexitdtstheorie werden zunéchst die re-
levanten Entscheidungsprobleme algorithmisch dargestellt. Da bereits Modgil und
Bench-Capon [MBC11] gezeigt haben, wie sich SetAFs in polynomieller Zeit in AFs
umformen lassen, soll dieser Ansatz auch zur Bestimmung der Komplexitit fiir iSetAFs
verfolgt werden. Dafiir soll untersucht werden, ob sich iSetAFs in polynomieller Zeit in
iAFs umwandeln lassen, sodass sich auch deren Komplexititseigenschaften {ibertragen
lassen. Abschlieflend werden die Ergebnisse zusammengefasst.

Sofern nicht anders erwahnt, sei auch fiir dieses Kapitel stets o € {cf, ad, co, pr, gr, st}
eine beliebige Semantik und U = (A, A’ R, R?) ein iSetAF.

6.1 Komplexitatstheorie

Die Komplexititstheorie untersucht den Ressourcenverbrauch von Algorithmen bei
der Losung von Problemen. Dabei unterscheidet man grundsétzlich zwischen Zeit- und
Platzkomplexitit. In dieser Arbeit liegt der Fokus auf der Zeitkomplexitat, die der Fra-
ge nachgeht, wie viel Rechenzeit ein Algorithmus benoétigt, um ein gegebenes Schluss-
folgerungsproblem zu 16sen. Schlussfolgerungsprobleme sind dabei immer genau sol-
che Probleme, die sich mit Ja oder Nein beantworten lassen. Die Probleme werden da-
fiir in sogenannte Komplexitdtsklassen eingeteilt. Eine der grundlegendsten Klassen
ist P, die alle Probleme umfasst, die durch einen deterministischen Algorithmus in po-
lynomieller Zeit gelost werden konnen. Die Laufzeit von Problemen in P liegt somit
maximal bei O(n¥), wobei n die Eingabegrofie und k € N eine Konstante ist.

Eine weitere wichtige Komplexitédtsklasse ist die Klasse NP. Diese entspricht der
Menge aller Entscheidungsprobleme, die in nichtdeterministischer polynomieller Zeit
16sbar sind. Ein Problem in NP ldsst sich wie folgt 16sen:
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1. Rate eine mogliche Losung des Problems.

2. Uberpriife durch einen deterministischen Algorithmus in polynomieller Zeit, ob
die geratene Losung korrekt ist.

Neben P und NP existieren noch weitere Komplexitatsklassen. Beispielsweise ist
coNP die Klasse der Probleme, deren Komplement in NP liegt. Eine weitere wichtige
Klasse ist 25 , die Probleme umfasst, die durch einen nichtdeterministischen Algorith-
mus mit Zugriff auf ein NP-Orakel in polynomieller Zeit gelost werden kdnnen. Das
heifit, ein Problem in %’ lasst sich wie folgt 16sen:

1. Rate eine mogliche Losung des Problems.

2. Uberpriife durch einen Algorithmus der Komplexititsklasse NP, ob die geratene
Losung korrekt ist.

Eine weitere Komplexititsklasse, die im Rahmen dieser Arbeit verwendet wird, ist
die Klasse I1Z". Diese enthélt alle Probleme, deren Komplement in %%’ liegt.

Dartiber hinaus ist die sogenannte Reduktion ein wichtiger Begriff der Komplexitits-
theorie. Ist es moglich, ein Problem R auf ein anderes Problem R’ abzubilden, sodass
eine Losung fiir R’ automatisch auch eine Losung fiir R liefert, wird das Problem R
auf R’ reduziert. Dies ist ein wichtiges Konzept im Rahmen dieser Arbeit, da auf diese
Weise auch die Laufzeiten iibertragen werden konnen, sofern sich das Problem R in
polynomieller Zeit auf das Problem R’ abbilden ldsst.

Sei nachfolgend C eine beliebige Komplexitatsklasse. Lassen sich nun alle Probleme
einer Klasse C auf ein bestimmtes Problem R’ abbilden, dann ist R’ C-schwer. Wenn R’
weiterhin selbst in C liegt, ist dieses Problem C-vollstindig. Die Begriffe C-schwer und
C-vollstandig (kurz C-c) lassen sich unter anderem auf alle genannten Komplexitits-
klassen P, NP, £ und 11 anwenden.

6.2 Schlussfolgerungsprobleme

Einige der Schlussfolgerungsprobleme wurden bereits in Abschnitt 3 und Abschnitt 4
in Kiirze vorgestellt. Diese Probleme sollen an dieser Stelle als algorithmische Problem-
stellungen dargestellt werden.

Bezogen auf ein SetAF M = (A, R) kann zundchst zwischen einer leichtgldubigen
(credulous) und einer skeptischen (skeptical) o-Schlussfolgerung unterschieden werden
(vgl. Abschnitt 3). Mit Hilfe der leichtgldubigen o-Schlussfolgerung lasst sich fiir ein
Argument a € A schlieflen, dass es mindestens eine o-Extension in M gibt, die das
Argument a enthélt. Als algorithmische Problemstellung ldsst sich Definition 3.5 aus
Abschnitt 3 wie folgt darstellen:

CRED,
Eingabe: SetAF M = (A,R), Argumenta € A
Ausgabe: J3, falls es eine o-Extension S C A gibt, sodass a € S. Sonst NEIN.
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Mit Hilfe der skeptischen o-Schlussfolgerung hingegen lésst sich fiir ein Argument
a € A schlieflen, dass jede o-Extension in M das Argument a enthélt. Algorithmisch
lasst sich Definition 3.6 aus Abschnitt 3 wie folgt darstellen:

SKEP,
Eingabe: SetAF M = (A,R), Argumenta € A
Ausgabe: J3, falls fiir jede o-Extension S C A gilt, dass a € S. Sonst NEIN.

Neben den bereits gezeigten Schlussfolgerungsproblemen fiir SetAFs soll zudem das
Verifikationsproblem eingefiihrt werden. Beim Verifikationsproblem geht es darum, zu
entscheiden, ob eine gegebene Menge von Argumenten eine o-Extension in einem be-
stimmten SetAF darstellt oder nicht. Algorithmisch sieht das Problem wie folgt aus:

VER,
Eingabe: SetAF M = (A, R), Argumentmenge S C A
Ausgabe: J3, falls S eine o-Extension in M ist. Sonst NEIN.

Die fiir SetAFs genannten Schlussfolgerungsprobleme CRED,,, SKEP,, sowie das Ve-
rifikationsproblem VER, lassen sich allerdings nicht direkt auf vervollstindigungsba-
sierte iSetAFs tibertragen, weshalb zusitzlich zwischen moglichen (possible) und not-
wendigen (necessary) o-Schlussfolgerungen unterschieden werden muss, wie es bereits
in Abschnitt 4 in Definition 4.7 definiert wurde.

Fir CRED,, lasst sich die Problemstellung, bezogen auf eine mogliche o-Schlussfol-
gerung, wie folgt algorithmisch darstellen:

p-CRED,
Eingabe: iSetAF U = (A, A", R, R?), Argument a € A U A’

Ausgabe: J3, falls es fiir eine Vervollstandigung von U eine o-Extension S C
AUA’ gibt, sodass a € S. Sonst NEIN.

Analog zur moglichen Schlussfolgerung lédsst sich auch eine notwendige Variante
definieren. Bezogen auf eine notwendige o-Schlussfolgerung sieht die Problemstellung
folgendermafien aus:

n-CRED,,
Eingabe: iSetAF U = (A, A", R, R"), Argument a € AU A’

Ausgabe: J2, falls es fiir jede Vervollstandigung von U eine o-Extension S C
A UA” gibt, sodass a € S. Sonst NEIN.
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Fiir die skeptische Schlussfolgerung SKEP,, ldsst sich die Problemstellung analog for-
mulieren. Zunéchst wird der Fall einer moglichen skeptischen o-Schlussfolgerung be-
trachtet:

p-SKEP,
Eingabe: iSetAF U = (A, A", R, R"), Argument a € AU A’

Ausgabe: JA, falls es eine Vervollstandigung von U gibt, sodass fiir jede o-
Extension S C A U A’ dieser Vervollstindigung gilt, dass a € S. Sonst NETIN.

Im Gegensatz dazu erfordert die notwendige skeptische o-Schlussfolgerung, dass
das Argument in jeder Vervollstindigung und jeder o-Extension enthalten ist:

n-SKEP,
Eingabe: iSetAF U = (A, A", R, R?), Argumenta € AU A’

Ausgabe: J3, falls fiir jede Vervollstindigung von U und jede o-Extension S C
A U A’ dieser Vervollstindigung gilt, dass a € S. Sonst NEIN.

Schliefslich wird das Verifikationsproblem VER,, betrachtet, bei dem tiberpriift wird,
ob eine Menge von Argumenten in einer Vervollstindigung bzw. allen Vervollstandi-
gungen akzeptiert wird. Fiir eine mogliche o-Schlussfolgerung ergibt sich folgende Pro-
blemstellung:

p-VER,
Eingabe: iSetAF U = (A, A", R, R?), Argumentmenge S C A U A’

Ausgabe: J3, falls es eine Vervollstindigung von U gibt, sodass S eine o-
Extension in dieser Vervollstindigung ist. Sonst NEIN.

Fiir die notwendige verifizierende o-Schlussfolgerung ergibt sich entsprechend:

n-VER,
Eingabe: iSetAF U = (A, A", R, R?), Argumentmenge S C A U A’

Ausgabe: J3, falls S eine o-Extension in jeder Vervollstindigung von U ist.
Sonst NEIN.

Mit Hilfe der Schlussfolgerungsprobleme lassen sich schliefslich Aussagen tiber die
Akzeptanz von einzelnen Argumenten oder Mengen von Argumenten treffen. Die Kom-
plexitatseigenschaften dieser Probleme sollen im nachfolgenden Unterkapitel genauer
untersucht werden.
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6.3 Ubertragung von Komplexititseigenschaften

Nachdem die Schlussfolgerungsprobleme in Unterabschnitt 6.2 algorithmisch darge-
stellt wurden, soll in diesem Unterkapitel die Komplexitit dieser Problemstellungen
untersucht werden.

Zunidchst ldsst sich leicht feststellen, dass sich jedes iAF zugleich auch als iSetAF
darstellen ldsst, wie Proposition 5.3 aus Abschnitt 5 bereits gezeigt hat. Insbesondere
lasst sich auf diese Weise jedes iAF zu einem iSetAF umformen, wie das nachfolgende
Beispiel zeigt.

Beispiel 6.1. Sei I5 = (15, 9%, R5, %) ein iAF mit:
* ds={a1,az,a3}
o o = {as, a5}
* Rs ={(a1,0a2), (a4, a2), (a3, a5)}
* Ri={(as,01)}

Dann lasst sich daraus analog Proposition 5.3 das entsprechende iSetAF Uj, =
(AIS,A?I5,9%15,R7I5) ableiten mit:

e A, ={a1,a2,a3}

o A35 = {a4,a5}

* Ry ={({a1},a2), ({as}, a2), ({as}, as)}
o Ri, = {({asa}, 1)}

Mit dieser Erkenntnis ldsst sich direkt folgern, dass alle genannten Problemstellun-
gen fiir iSetAFs mindestens genauso schwer sein miissen, wie die entsprechenden Pro-
blemstellungen fiir iAFs, da sich jedes iAF auch als iSetAF darstellen ldsst.

An dieser Stelle stellt sich die Frage, ob auch die umgekehrte Richtung gilt: Lassen
sich die Problemstellungen fiir iSetAFs auf diejenigen fiir iAFs reduzieren? Falls dies
der Fall ist, ware die Komplexitdt der Probleme fiir iSetAFs mit der Komplexitat der
entsprechenden Probleme fiir iAFs identisch. Dies wiirde die zu Beginn getroffene An-
nahme widerlegen, dass die Kombination zweier Erweiterungen fiir AFs potenziell zu
einer hoheren Komplexitat fiihrt.

Damit die Problemstellungen fiir iSetAFs auf die Problemstellungen fiir iAFs redu-
ziert werden kdnnen, muss gezeigt werden, dass ein iSetAF in polynomieller Zeit in ein
iAF umgewandelt werden kann, ohne die semantischen Eigenschaften zu verlieren. Ein
dhnlicher Ansatz, ein SetAF in polynomieller Zeit in ein AF umzuwandeln, wurde be-
reits von Modgil und Bench-Capon [MBC11] vorgestellt. Deren Vorgehen fiihrte neue
Hilfsargumente ein, um schliefSlich die Mengenangriffe zu eliminieren. Analog kénnen
aber auch die Mengenangriffe von iSetAFs eliminiert werden, um iAFs zu erhalten.
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Die Idee von Modgil und Bench-Capon war es, fiir jedes bestehende Argument ei-
nes Mengenangriffs ein weiteres Hilfsargument hinzuzufiigen. Zudem wurde fiir je-
den Mengenangriff ebenfalls ein zusdtzliches Argument hinzugefiigt, das diese An-
griffsbeziehung reprasentiert. Ein dhnlicher Ansatz soll nun auch fiir iSetAFs verfolgt
werden. Nachfolgend ist in Algorithmus 1 eine mogliche Konstruktion fiir iSetAFs al-
gorithmisch im Pseudocode dargestellt.

Algorithmus 1 Transformation iSetAF in iAF
Eingabe: iSetAF U = (A, A", R, R")

—_

2: Ausgabe: iAF Iy = (dU,sﬂ;],gBU,%?])
3 Ay «+— A > Initialisiere /;; mit den Argumenten aus A
4 ol — A7 > Initialisiere «/{; mit den Argumenten aus A’
5: Ry + 0 > Leere Angriffsrelation fiir
6: Riy < 0 > Leere Angriffsrelation fiir &/,
7: for (S,b) in RUR’ do
8: Ay + dy U{hsp } > Hilfsargument fiir jeden Mengenangriff
9: forain S do
10: Ay dy U {hy} > Hilfsargument fiir jedes Argument aus S
11: Ru <+ Ry U{(a,ha), (ha, hisp))} > Fiige die Angriffsrelationen hinzu
12: end for
13: end for
14: for (S,b) in R do
15: Ru Ry U{(h(sp),b)} > Angriffsrelation fiir sichere Angriffe
16: end for
17: for (S,b) in R* do
18: Ry — R U] (h(s),b)} > Angriffsrelation fiir unsichere Angriffe
19: end for
20: Ergebnis: Iy = (dy, 4, Ry, R) > Ausgabe des transformierten iAFs

Der Algorithmus macht deutlich, dass sich ein iSetAF in maximal polynomieller Zeit
in ein iAF transformieren lasst. Seien n = [A U A’| und m = |R U R’|. Sei zudem n + m
die gesamte Eingabeldnge des Algorithmus, dann ergeben sich folgende Laufzeiten:

Initialisieren von ¢y und o/, O(n)
Erste Schleife O(n-m)
Zweite Schleife O(m)
Dritte Schleife O(m)

Dabei ist zu beachten, dass es auch iSetAFs gibt, fiir die |R U R’| = |R| gilt, falls
es keine unsicheren Angriffe gibt. Entsprechend kann es auch iSetAFs geben, die nur
unsichere Angriffe enthalten, weshalb die Laufzeit der zweiten und dritten Schleife bei
O(m) liegt. Offensichtlich betragt die Gesamtlaufzeit des Algorithmus O(n - m) und
erfolgt damit in polynomieller Zeit.
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Die zuvor algorithmisch dargestellte Transformation von iSetAFs in iAFs soll nun
formal definiert werden.

Definition 6.1 (Transformierte iSetAFs). Sei U = (A, A’, R, R") ein iSetAF. Das dazu-
gehorige transformierte iSetAF Iy = (dy, A E], Ry, QBZ]) stellt ein iAF dar und wird wie
folgt definiert:

o dy=AU{hg|a€s8 (50b)eRUR}TU{hy | (5,b) € RUR}
o ol =A"

* Ry = {(a,ha) | a € S,(S,b) € RUR"} U {(ha,hsy)) | a € S,(S,b) € RUR'}U
{(h(s),b) | (5,) € R}

o Ri = {(hsp),b) | (S,b) € R}

Auf diese Weise ldsst sich fiir jedes iSetAF ein entsprechendes iAF konstruieren. Im
Folgenden werden die Bezeichnungen der unterschiedlichen Argumenttypen wie folgt
unterschieden:

¢ Argumente vom Typ a: Standardargumente,
¢ Argumente vom Typ h,: Standard-Hilfsargument,

* Argumente vom Typ h(g): Angriffs-Hilfsargument.

In Abschnitt 4, Abbildung 12 wurden die unterschiedlichen Mengenangriffe von iSe-
tAFs dargestellt. Diese sind nochmals in Abbildung 35 zu finden. Die unterschiedlichen
Arten von Mengenangriffen von iSetAFs konnen nun entsprechend Definition 6.1 in
iAFs transformiert werden. Die transformierten iSetAFs konnen Abbildung 36 entnom-
men werden. Es ist offensichtlich, dass keine Mengenangriffe mehr vorhanden sind und
es sich um iAFs handelt. Zudem lasst sich leicht feststellen, dass das Argument a; in
allen sechs iAFs nur dann angegriffen wird, wenn die Argumente a2 und a3 beide ak-
zeptiert sind und zudem auch der Angriff (h,, a;) giiltig ist. Fiir den Fall, dass az oder
a3 nicht akzeptiert sind, wird in jeder Konstellation das Argument h, angegriffen und
damit wird das Argument a; nicht attackiert und kann akzeptiert werden.

Um zu zeigen, dass die Transformation ohne Verlust von semantischen Eigenschaf-
ten erfolgt, soll zundchst die transformierte Vervollstindigung eingefiihrt werden. Dies ist
eine Vervollstaindigung des transformierten iSetAFs, die dieselben semantischen Eigen-
schaften hat, wie die entsprechende Vervollstindigung des urspriinglichen iSetAFs.
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Abbildung 35: Mogliche Mengenangriffe mit unvollstindiger Information tiber Argu-
mente oder Angriffe. Dargestellt sind sechs iSetAFs U, bis Uy, die jeweils
unterschiedliche unvollstindige Teilkomponenten besitzen. Eigene Dar-
stellung.

Definition 6.2 (Transformierte Vervollstindigung). Seien
o U =(A,A" R R?) ein iSetAF,
e Iy = (dAy, &4[?], Ry, %;}) das dazugehorige transformierte iSetAF (ein iAF) und

e U* = (A*,R*) eine Vervollstindigung (SetAF) von U mit A C A* C (AUA’) und
RN (24" x A*) CR* C(RURY) N (247 x A%).

Dann ldsst sich die transformierte Vervollstindigung vom SetAF U* wie folgt bestim-
men:

:U* = (BaT)
B = {dy U (4N A*)}

und
T= {(Cad> | c,d € B, (Cad) EQU}U{(h(S,a)va) ’ SCB, (Saa) € R*}

Die transformierte Vervollstindigung enthilt somit immer alle Hilfsargumente, Ar-
gumente, die in der Vervollstindigung des iSetAFs enthalten sind sowie alle sicheren

87



Iy,

Abbildung 36: Ergebnisse der Transformation der iSetAFs aus Abbildung 35 in die ent-
sprechenden iAFs, wobei fiir r = ({ag, ag}, a1) gilt. Eigene Darstellung.
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Angriffe zwischen diesen. Weiterhin sind fiir alle Mengenangriffe (S, a) der Vervoll-
stindigung des iSetAFs entsprechende Angriffe (h(g,),a) des Hilfsarguments auf das
Argument a enthalten.

Die Definition der transformierten Vervollstindigung soll nachfolgend an einem Bei-
spiel verdeutlicht werden.

Beispiel 6.2. Fiir das in Abbildung 37 dargestellte iSetAF Uy ist U7 eine mogliche Ver-
vollstandigung. Weiterhin ldsst sich das iSetAF U; zu einem iAF transformieren. Dieses
transformierte iSetAF Iy, ist der Ubersicht halber ebenfalls in Abbildung 37 abgebil-
det. Entsprechend der Definition 6.2 ldsst sich dann die transformierte Vervollstandi-
gung I :U; ableiten. Dabei gilt fiir dieses Beispiel r = ({a2, as}, a1). Die transformierte
Vervollstandigung I*, Uz enthalt:

¢ Alle sicheren Argumente von Iy, :
{ah hr, haza has}'

¢ Alle unsicheren Argumente von Iy, die auch in der Vervollstindigung U> vor-
kommen:

{as}

¢ Alle bedingt sicheren Angriffe von Ir;, zwischen Argumenten, die in / :U; ent-
halten sind:

{(a37 has)a (hll27 hT)? (ha3> hT)}

Der unsichere Angriff (h,,a;) von I, ist in der transformierten Vervollstindigung
nicht enthalten, weil der entsprechende Mengenangriff ({az, az}, a1) von Uy ebenfalls
nicht in dessen Vervollstindigung U7 enthalten ist.

Fiir das eben gezeigte Beispiel ist {a;, az} die grundierte Extension von UZ. Fiir die
transformierte Vervollstandigung / Sy ist {a1, hay, a3} die grundierte Extension und es
gilt {a1,a3} C {a1, ha,,az}. Dies verdeutlicht den Erhalt der semantischen Eigenschaf-
ten, was nachfolgend gezeigt werden soll. Zuvor soll allerdings noch die transformierte
Menge eingefiihrt werden, durch die sich insbesondere auch o-Extensionen transfor-
mieren lassen.

Definition 6.3 (Transformierte Menge). Seien

e U =(A,A",R,R") ein iSetAF,

Iy = (d4y, w?U, Ry, QBZ]) das dazugehorige transformierte iSetAF (ein iAF),

S C AU A’ eine Menge von Argumenten aus U,

U* = (A*, R*) eine Vervollstindigung (SetAF) von U und

I*,;;. = (B,T) die transformierte Vervollstindigung bzgl. U*.
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Iy, Iius

Abbildung 37: In der oberen Reihe ist das iSetAF U7 sowie eine mogliche Vervollstandi-
gung U7 abgebildet. In der unteren Reihe ist das transformierte iSetAF
Iy, sowie die zu U7 gehorige transformierte Vervollstindigung 1iy: dar-

gestellt, vgl. Beispiel 6.2. Eigene Darstellung.
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Definiere die bzgl. S transformierte Menge wie folgt:

;S:SUHSUHA/S',

wobei S Standardargumente, Hg Angriffs-Hilfsargumente und H Standard-Hilfsar-
gumente sind, die wie folgt definiert sind:

Hgs ={hc.a | C C S},
Hy = {ha | hc,a) € Hsgodera € df;,a ¢ B}.

Mit Hilfe der soeben eingefiihrten transformierten Menge lassen sich nun alle Men-
gen von Argumenten aus einem iSetAF in eine gleichbedeutende Menge von Argumen-
ten im transformierten iSetAF umwandeln. Hintergrund der Einfithrung dieser Defini-
tion ist, dass nun gezeigt werden kann, dass es fiir jede o-Extension S einer Vervollstan-
digung eines iSetAFs eine entsprechende Menge S’ gibt, sodass S’ eine o-Extension
einer Vervollstindigung des transformierten iSetAFs ist. Dies zeigt das nachfolgende
Theorem 6.1.

Theorem 6.1. Sei U = (A, A’, R, R") ein iSetAF, Iy = (dy, d[?],QBU,%(?]) das dazugeho-
rige transformierte iSetAF, S C (A U A’) eine Menge von Argumenten aus U und 5’
die bzgl. S transformierte Menge. Dann gilt:

1. §’, 4 ist eine mogliche o-Extension in I;; gdw. S eine mogliche o-Extension in U
ist.

2. 8, ¢ ist eine notwendige o-Extension in Iy gdw. S eine notwendige o-Extension
in U ist.

Beweis. Sei U* eine Vervollstandigung von U und I*,;;. = (B, T) die zugehorige trans-
formierte Vervollstindigung und damit auch eine Vervollstindigung von I;. Es wird
tir alle Semantiken gezeigt, dass

;S:SUHSUHQ

mit Hs = {hcq | C € S} und Hg = {ha | hcq € Hsodera ¢ df;,a ¢ B} eine
mogliche o-Extension in Iy ist, wenn S eine mogliche o-Extension in U ist.

Zunidchst sollen dafiir die angreifenden und angegriffenen Mengen fiir die einzelnen
Teilmengen von S’ ¢ in der Vervollstindigung I*, ;. bestimmt werden. Berticksichtigt
werden dabei somit nur Argumente, die in der Vervollstaindigung I*,;;. enthalten sind:

St ={hy|hy € B,be S},
HE ={d| hica € B, CCS, (hca,d) €T},
H ={hpg | F LS, fe€F, hye Hg},
S™={hpe | Mp,e) € B, e € S},
Hg = {he|hca € B, CCS, ceCh,
Hyg ={i|hcy e B, CC S}
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Insbesondere fillt auf, dass es per Definition keine Selbstangriffe auf Argumente ge-
ben kann. Insgesamt gilt dann:

(8,9)T =STUH{ UHY,
(S',g)" =S~ UH3 UHS
Nachfolgend sollen nun die Semantiken einzeln betrachtet werden.

¢ cf: Da S eine mogliche cf-Extension ist, gibt es eine Vervollstindigung U* von
U, sodass S € cf(U*). Zu zeigen ist, dass es keine Angriffe innerhalb von S’ ¢
in I* ;. gibt. Dafiir werden die drei Teilmengen, aus denen sich S’ ¢ zusammen-
setzt, einzeln betrachtet:

- S greift Argumente aus St an. ST ist aber per Definition nicht in S’ ¢ ent-
halten. Es gilt S*™ N Hy = {}.

- Hg greift Argumente aus HJ an. H} kann aber nicht in S’ 4 enthalten sein.
Da S in U* konfliktfrei ist, kann es kein h(C,d) € B geben mit C' C S und
d € S. Dies wire ein Selbstangriff. Es gilt H{ NS = {}.

— Es gilt per Definition Hg" N Hg = {}, da Hg" alle Angriffs-Hilfsargumente
h(pg mit I € S enthidlt, wihrend Hg genau die Angriffs-Hilfsargumente
mit F' C S enthilt.

Damit ist gezeigt, dass keine der drei Teilmengen von S’ ¢ ein weiteres Argument
innerhalb dieser Menge angreift. Damit gilt S’ ¢ € cf(I*, ;).

¢ ad: Da S eine mogliche ad-Extension ist, gibt es eine Vervollstindigung U* von U,
sodass S € ad(U*). Zu zeigen ist, dass S’ ¢ konfliktfrei in I*, ;. ist und dass sich
die Menge S’ ¢ gegen alle Angreifer verteidigt.

Da S zuldssig in U* ist, ist S konfliktfrei in U*. Es wurde bereits gezeigt, dass
daraus S, ¢ € cf(I*,.) folgt. Es bleibt zu zeigen, dass alle Argumente aus S’ ¢
von S, ¢ verteidigt werden. Dafiir werden die drei Teilmengen, aus denen sich
S; g zusammensetzt, einzeln betrachtet:

- Ein Standardargument j € S wird nur von Angriffs-Hilfsargumenten % ;)
angegriffen. Weil S konfliktfrei ist, gilt fiir F" allerdings F'  S. Daraus folgt
direkt iz ;) € Hg" und alle Angriffe auf S werden durch H{ verteidigt.

- Ein Angriffs-Hilfsargument hcq € Hg wird nur von Standard-
Hilfsargumenten h, mit ¢ € C und C C S angegriffen. Daraus folgt, dass
¢ € S und damit ist h. € ST enthalten. Alle Angriffe auf Hg werden durch
S verteidigt.

- Esgilt H; = H}.Damit werden alle Argumente, die ein Argument aus H
angreifen, von Hg attackiert. Alle Argumente aus H§ werden somit vertei-
digt.
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Damit ist gezeigt, dass keine der drei Teilmengen von S’ ¢ angegriffen wird, ohne
dass dieser Angriff von S’ ¢ verteidigt wird. Damit gilt S, ¢ € ad(I*,;.).

co: Da S eine mogliche co-Extension ist, gibt es eine Vervollstindigung U* von
U, sodass S € co(U*). Zu zeigen ist, dass S’, ¢ zuldssig in I*,;;. ist und dass die
Menge S, ¢ keine weiteren Argumente verteidigt.

Da S vollstandig in U* ist, ist S konfliktfrei und zuldssig in U*. Es wurde be-
reits gezeigt, dass daraus S, € ad(I*,;;.) folgt. Es bleibt zu zeigen, dass alle
Argumente, die von S’ ¢ verteidigt werden, in S’ ¢ liegen. Angenommen, dies
gilt nicht, dann gibt es ein Argument aus B \ S’ ¢, das von S’ ¢ verteidigt wird.
Dieses Argument kann fiir die drei Argumenttypen einzeln betrachtet werden:

- Sei k € B\ 5’ ¢ ein Standardargument, das von S’, ¢ verteidigt wird. Fiir
den Fall, dass k allein dadurch verteidigt wird, dass k£ unattackiert ist, folgt
direkt, dass £ dann auch in U* unattackiert ist. Damit kann aber die Menge
S in U™ nicht vollstindig sein, was zum Widerspruch fiihrt. Fiir den Fall,
dass k attackiert wird, gibt es ein Angriffs-Hilfsargument h; ), das von ei-
nem Standard-Hilfsargument h,, € S’,¢ mit m € J angegriffen wird und
damit k verteidigt. Dann folgt aber auch, dass es ein Angriffs-Hilfsargument
hiGm) € S.,g mit G C S geben muss. Ubertragen auf die Vervollstindigung
U* muss es somit einen Mengenangriff (G, m) mit G C S geben, der den
Mengenangriff (.J, k) verteidigt. Dann verteidigt S aber auch das Argument
k in U*. Daraus folgt, dass S in U* aber nicht vollstandig ist, was zum Wi-
derspruch fiihrt.

- Sei hy € B\ S, 4 ein Standard-Hilfsargument, das von S’ ¢ verteidigt
wird. Fiir den Fall, dass hy, allein dadurch verteidigt wird, dass h;, unatta-
ckiert ist, folgt direkt per Definition, dass h, € Hg C S’,g. Dies fithrt zum
Widerspruch, da per Annahme h;, € B\ S’ ¢ gilt. Fiir den Fall, dass hy,
attackiert wird, gibt es ein Standardargument k, das von einem Angriffs-
Hilfsargument hg ) € S’ g mit G C S angegriffen und damit verteidigt
wird. Wegen h(g iy € S’ mit G C S folgt direkt, dass bereits per Definiti-
on hy € S’ 4 gilt. Dies fiihrt ebenfalls zum Widerspruch, da per Annahme
hy € B\ 5, ¢ gilt.

- Sei hgn) € B\ 5,4 ein Angriffs-Hilfsargument, das von S’ 4 verteidigt
wird. Der Fall, dass kg ,) allein dadurch verteidigt wird, dass hj, unatta-
ckiert ist, existiert nicht, da Angriffs-Hilfsargumente per Definition immer
mindestens einen Angreifer haben. Somit wird h (g ., attackiert. Gilt zudem
K C S, dann folgt direkt h(g,y € Hs C S’. g, was im Widerspruch zur

Annahme steht. Gilt fiir b ,,) hingegen K ¢ S und fiir ein £ € K zudem

hi € Hg, dann folgt direkt, dass h( Kn) € H ’S+ gilt und damit von Sg g an-

gegriffen wird. Gilt fiir i ,,) weiterhin K ¢ S, aber es gibt kein k € K

mit hy, € Hg, dann kann g ,) aber nur vom Standardargument & verteidigt

werden. Wegen K ¢ Sund k € K gilt k ¢ S und damit auch k& ¢ S’ o. Alle
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Falle stehen im Widerspruch zu der Annahme, dass h(x ) von S’, ¢ vertei-
digt wird.

Damit ist gezeigt, dass S’ ¢ € co(I*,;;+) in allen Féllen gelten muss.

¢ gr:Da S eine mogliche gr-Extension ist, gibt es eine Vervollstindigung U* von U,
sodass S € gr(U*). Zu zeigen ist, dass S’ ¢ vollstandig in I*, ;. ist und dass S’ ¢
minimal ist.

Da S grundiert in U™ ist, ist S vollstandig in U*. Es wurde bereits gezeigt, dass
daraus S’, ¢ € co(I*,;;.) folgt. Es bleibt zu zeigen, dass es keine kleinere Menge
S" c S’ 4 gibt, die ebenfalls vollstindig in I*, ;. ist. Angenommen, es existiert ein
Argument aus S5’ ¢, das nicht in S” C 5’, ¢ enthalten ist und 5" ist grundiert in

I*,;;.. Dieses Argument muss dann einem der drei unterschiedlichen Argument-

typen entsprechen:

— Sei k ein Standardargument, mit k € S, g und S” = S’ o\ {k} die grundierte
Extension in I*, ;.. Angewendet auf U* wiirde dies aber bedeuten, dass S'\ k
grundiert ist. Dies steht im Widerspruch dazu, dass S grundiert ist.

— Sei hy, ein Standard-Hilfsargument, mit 7, € S’ g und S” = 5", ¢ \ {h} die
grundierte Extension in I, ;.. Per Definition muss es dann ein hc ;) € S, ¢
geben und damit gilt auch ¢ ;) € S”. Das Argument h(c ) € S” verteidigt
dann aber wiederum das Argument hj, weshalb S” nicht vollstindig sein
kann. Dies steht im Widerspruch zur Annahme, dass S” grundiert ist.

- Sei h(x ) ein Angriffs-Hilfsargument, mit h ,,) € 7,5 und hg ,,) ¢ S”. Da
es flirjedes k € K einen Angreifer hy, gibt und weil S’ ¢ vollstandig ist, muss
es in S, 4 die dazugehorigen Verteidiger & geben. Damit sind alle Standar-
dargumente k aber auch in S” enthalten und verteidigen g ,,), weshalb S”
nicht vollstindig sein kann. Auch dies steht im Widerspruch zur Annahme.

¢ pr:Da S eine mogliche pr-Extension ist, gibt es eine Vervollstindigung U* von U,
sodass S € pr(U*). Zu zeigen ist, dass S’ ¢ vollstandig in I*, ;. ist und dass S’ ¢
maximal ist.

Da S préferiert in U™ ist, ist S vollstandig in U*. Es wurde bereits gezeigt, dass
daraus 5’4 € co(I*,;.) folgt. Es bleibt zu zeigen, dass es keine grolere Menge
S" > 8, ¢ gibt, die ebenfalls vollstandig in I*, ;. ist. Angenommen, es existiert ein
weiteres Argument aus B \ S’ ¢, das von S’ ¢ verteidigt wird. Dieses Argument
muss dann einem der drei unterschiedlichen Argumenttypen entsprechen:

- Sei k € B\ 5,4 ein Standardargument, mit £ ¢ S’ und S” = S’ ¢ U
{k} eine priferierte Extension in I*, ;.. Dann verteidigt S’, ¢ das Argument
k. Angewendet auf U* wiirde dies aber bedeuten, dass S das Argument &
verteidigt und S somit nicht vollstandig ist. Dies steht im Widerspruch dazu,
dass S praferiert ist.
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- Sei b € B\ S’ ¢4 ein Standard-Hilfsargument, mit h;, ¢ S’ ¢ und §” =
S’ ¢ U {hi} eine préferierte Extension in I* .. Fiir den Fall, dass hj; von
S” dadurch verteidigt wird, dass hy nicht attackiert wird, folgt direkt, dass
hy, bereits per Definition in S’, ¢ enthalten sein muss. Andernfalls muss es
ein h(c ) € S” geben, das ebenfalls in S 4 liegt und das Argument 7, ver-
teidigt. Daraus folgt aber auch direkt, dass bereits h;, € S’, ¢ gelten muss,
was im Widerspruch zur Annahme steht. Somit kann es kein Standard-
Hilfsargument geben, das von S’ ¢ verteidigt wird und noch nicht in S’ ¢
enthalten ist.

- Sei hxny € B\ S, g ein Angriffs-Hilfsargument, mit hg ) ¢ 5,4 und
hkny € S”. Da es fiir jedes k € K einen Angreifer h;, gibt und weil S”
per Annahme vollstdndig ist, muss es in S” die dazugehorigen Verteidiger k
geben. Diese sind folglich dann auch in S’ ¢ enthalten. Daraus folgt direkt,
dass hk ) € S, 5 gelten muss, weshalb S, ¢ bereits maximal ist.

Damit ist gezeigt, dass S’ ¢ € pr(I*,;;.) in allen Fillen gelten muss.

st: Da S eine mogliche st-Extension ist, gibt es eine Vervollstandigung U* von U,
sodass S € st(U*). Zu zeigen ist, dass S’ ¢ konfliktfrei in I*,;,. ist und dass jedes
Argument entweder in der Menge S’ ¢ enthalten ist oder von dieser angegriffen
wird.

Da S stabil in U* ist, ist S konfliktfrei in U*. Es wurde bereits gezeigt, dass daraus
S’ g € cf(I*,;.) folgt. Es bleibt zu zeigen, dass jedes Argument entweder in S’ ¢
liegt oder von S’ ¢ angegriffen wird. Dafiir werden wieder die drei unterschied-
lichen Argumenttypen betrachtet:

- Standardargumente: Da .S in U™ stabil ist, gibt es fiir jedes Argument d ¢ S
einen Mengenangriff (C,d) mit C C S auf das Argument d. Dann gilt fiir
das Argument d in I*,;,. aber direkt per Definition d € H}. Somit wird d
von S’ ¢ angegriffen.

- Standard-Hilfsargumente: Da S in U* stabil ist, gibt es fiir jedes Argument
d ¢ S einen Mengenangriff (C,d) mit C C S auf das Argument d. Per
Definition folgt direkt, dass hy € Hyg C S’ ¢ gilt. Fiir alle Argumente
s € S gilt ebenfalls per Definition hs € S*. Diese werden somit angegrif-
fen. Es bleibt der Fall, dass ein Argument a € o}, als unsicheres Argu-
ment nicht in der Vervollstindigung I* ;;. enthalten ist. Dann ist das zuge-
horige Standard-Hilfsargument h, per Definition in S’ ;. Somit liegen alle
Standard-Hilfsargumente entweder in S’ ; oder werden von dieser Menge
attackiert.

- Angriffs-Hilfsargumente: Gilt fiir ein Angriffs-Hilfsargumente h(c 4) C C S,
dann folgt per Definition, dass h(cq) € 5, gilt. Gilt hingegen C' Z S und
gibt es ein ¢ € C' mit h. € Hg, dann folgt direkt h(c 4 € H'". Gilt C Z S und
gibt es kein ¢ € C mit h. € Hg, dann folgt, dass das Standardargument c
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nicht von S’ ¢ angegriffen wird. Andernfalls wére h, per Definition in S’ ¢
enthalten. Dann folgt aber auch fiir U*, dass ¢ ¢ S und c ist unangegriffen.
Dies steht im Widerspruch dazu, dass S in U* stabil ist. Damit werden alle
Angriffs-Hilfsargumente entweder von S’ ¢ angegriffen oder sind in dieser
Menge enthalten.

Damit ist gezeigt, dass S’ ¢ € st(I*,;.) in allen Féllen gelten muss.

Die Gegenrichtung der Aquivalenz von Theorem 6.1, Punkt 1 erfolgt mit einer ana-
logen Argumentation wie der soeben gezeigte Beweis. Fiir die Konfliktfreiheit gilt bei-
spielsweise:

Sei S eine beliebige Menge von Argumenten aus U und sei S’, ¢ = S U Hg U Hy
die bzgl. S transformierte Menge entsprechend Definition 6.3. Sei S’, ¢ eine mogliche
konfliktfreie Menge in Iys. Es ist zu zeigen, dass dann auch S eine mogliche konflikt-
freie Menge in U ist. Betrachtet man alle Angriffs-Hilfsargumente hp .y € Hs C S’g,
fallt auf, dass diese nur in S; ¢ enthalten sein konnen, wenn B C S gilt. Da S; g ei-
ne mogliche konfliktfreie Menge ist, kann jedes Argument ¢, das von einem Angriffs-
Hilfsargument h(p ) € Hg angegriffen wird, nicht in S’ 5 und damit auch nicht in S
enthalten sein. Angenommen, es gibt keine Vervollstandigung vom iSetAF U, in der S
konfliktfrei ist. Dann gibt es einen Mengenangriff (D, e), wobei fiir jedes d € D auch
d € S und zudem e € S gilt. Daraus folgt per Definition Definition 6.3, dass die Men-
ge D aber auch in 5, ¢ enthalten ist. Zudem gilt e € S’ ¢ und es gibt ein Angriffs-
Hilfsargument h(p .y € S, 4. Wegen des Angriffs (h(p ), e) in Iy folgt aber direkt, dass
S’ ¢ nicht konfliktfrei sein kann. Dies fiihrt zum Widerspruch zur Annahme, weshalb
Sin U eine mogliche konfliktfreie Menge sein muss.

Aufgrund der strukturellen Ahnlichkeit und der Lange des Beweises wird im Rah-
men dieser Arbeit auf eine ausfiihrliche Darstellung der weiteren Beweise verzichtet.
Dies betrifft insbesondere auch Theorem 6.1, Punkt 2, deren Giiltigkeit sich in analoger
Weise zu den bereits gezeigten Beweisen nachvollziehen lésst. O

Zum besseren Verstandnis wird nachfolgend noch ein Beispiel gegeben.

Beispiel 6.3. Fiir das in Abbildung 38 dargestellte iSetAF Uy, ist das transformierte iSe-
tAF Iy, in Abbildung 39 abgebildet. In Abbildung 40 ist eine Vervollstindigung vom
iSetAF Uy dargestellt. Fiir diese Vervollstaindigung ldsst sich die transformierte Ver-
vollstandigung entsprechend Definition 6.2 bilden. Diese transformierte Vervollstindi-
gung I, ;}54 ist in Abbildung 41 abgebildet. Es ist leicht nachzuvollziehen, dass es sich
hierbei tatsdchlich auch um eine korrekte Vervollstindigung von I, handelt. Zum
Vergleich ist nun in Tabelle 7 anschaulich dargestellt, welche Mengen S bzw. 5’ ¢ in
Us, bzw. I Uy, einer o-Extension entsprechen und welche dieser nicht entsprechen. Ge-

méf Theorem 6.1 gilt immer: Wenn S € o(Us,), dann giltauch S’ ¢ € o (1 (*12*4).
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Abbildung 38: iSetAF Us4 zu Beispiel 6.3. Eigene Darstellung.
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Abbildung 39: Transformiertes iSetAF I;,, zu Beispiel 6.3. Eigene Darstellung.
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Abbildung 40: Eine Vervollstindigung Uj, vom iSetAF U4 aus Abbildung 39 zu Bei-
spiel 6.3. Eigene Darstellung.
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Abbildung 41: Transformierte Vervollstaindigung Iy;, bzgl. der Vervollstindigung Uz,
aus Abbildung 40 zu Beispiel 6.3. Eigene Darstellung.



S € o(Us3y) s € o(lyz)
Y B O el 7
{CL, b} 4 {(17 b) h({a,b},c)> hC} 4
{CL, b, C} X {CL, b, c, h({a,b},c)v h({c},e)) h({c},d)a hc} X
ad {d} 4 {d; higay ¢, e} 4
{CL, b} 4 {aa b7 h({a,b},c)7 hc} 4
{e} X {e} X
co {(17 b,d, 6} 4 {av b,d,e, h({a,b},c)v h({d},c)a hc} v
{CL, b, d} X {CL, b,d, h({a,b},c)a h({d},c)a hc} X
pr {a7 b,d, 6} 4 {CL, b,d,e, h({a,b},c)7 h({d},c)a hc} v
{d, e} X {d, e, hqay.e), he} X
gr {G, b,d, 6} v {a7 b,d,e, h({a,b},c)a h({d},c)a hc} v
{aa b} X {CL, b, h({a,b},c)7 hc} X
st {CL, b,d, 6} v {a7 b,d,e, h({a,b},c)a h({d},c)a hC} v
{CL, b, 6} X {av b, e, h({a,b},c)a hC} X

Tabelle 7: Dargestellt sind unterschiedliche Mengen S bzw. 5’ ¢, fiir die jeweils angege-

ben wird, ob diese in U;, bzw. I ;}54 einer o-Extension entsprechen oder nicht.
Dabei wird zwischen den Semantiken cf, ad, co, pr, gr und st unterschieden.
Eigene Darstellung zu Beispiel 6.3.

Durch Theorem 6.1 wird deutlich, wie sich die Schlussfolgerungsprobleme fiir iSe-
tAFs auf die entsprechenden Schlussfolgerungsprobleme fiir iAFs reduzieren lassen.
Um ein Schlussfolgerungsproblem fiir iSetAFs zu 16sen, wird das dazugehorige trans-
formierte iSetAF bestimmt. Anschlieflend ladsst sich das Problem leicht auf dieses iAF
tibertragen und losen. Insbesondere gilt fiir p-CRED,,, s-CRED,,, p-SKEP, und n-
SKEP,, dass die Antwort JA ausgegeben wird, sofern das in der Eingabe tibergebene
Argument a in einer bzw. jeder Vervollstandigung des transformierten iSetAFs Iy Teil
einer bzw. jeder o-Extension ist. Ansonsten lautet die Antwort NEIN.

Fiir die Probleme p-VER, und n-VER, hingegen wird die Antwort JA ausgegeben,
sofern die bzgl. S (Eingabe) transformierte Menge S’ ¢ eine o-Extension in einer bzw.
jeder Vervollstindigung des transformierten iSetAFs Ij; ist. Ansonsten lautet die Ant-
wort NEIN.

6.4 Ergebnisse

Nachdem in Unterabschnitt 6.3 gezeigt wurde, dass sich jedes iSetAF durch Eliminieren
von Mengenangriffen zu einem iAF transformieren ldsst, ohne dabei die semantischen
Eigenschaften zu verlieren, sollen in diesem letzten Unterkapitel die Komplexitatsei-
genschaften von iSetAFs dargestellt werden. Diese Komplexitdtseigenschaften lassen
sich direkt von den Eigenschaften von iAFs tibernehmen. Die Schlussfolgerungsproble-
me p-CRED,, s-CRED,, p-SKEP, und n-SKEP, wurden fiir iAFs bereits von Baumeis-
ter, Neugebauer und Rothe [BNR18] untersucht. Die Verifikationsprobleme p-VER,
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und n-VER, wurden ebenfalls von Baumeister et al. [BNRS18] fiir iAFs untersucht.
Die Ergebnisse lassen sich direkt auf iSetAFs iibertragen und werden in Tabelle 8 dar-
gestellt. Insbesondere heifit ein Schlussfolgerungsproblem trivial, wenn die Antwort
unabhéngig von der Eingabe immer JA bzw. immer NEIN lautet.

p-CRED, n-CRED, | p-SKEP, n-SKEP, | p-VER, n-VER,
cf in P in P trivial trivial inP inP
ad NP-c ¥-c trivial trivial inP inP
co NP-c n%-c NP-c coNP-c in P in P
pr | NP-c ¥ -c ¥ -c I¥-c II¥-c  coNP-c
gr NP-c coNP-c NP-c coNP-c inP inP
st NP-c ¥-c ¥-c coNP-c inP in P

Tabelle 8: Komplexitadt der Schlussfolgerungsprobleme von iSetAFs, die von aus Ergeb-
nissen der Komplexititsuntersuchung fiir iAFs aus den Arbeiten von Bau-
meister, Neugebauer und Rothe bzw. Baumeister et al. [BNR18, BNRS18]
iibernommen wurden.
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7 Zusammenfassung

Ziel dieser Arbeit war die Entwicklung einer neuen Erweiterung der herkémmlichen
abstrakten Argumentationsgraphen (AFs) von Dung [Dun95]. Diese Erweiterung ist
das iSetAF (unsichere Argumentationsgraphen mit Mengenangriffen), das den Um-
gang sowohl mit Mengenangriffen als auch mit unsicherer Information in einem ein-
heitlichen Modell ermdoglichen sollte.

Ausgangspunkt dieser Arbeit waren dabei die klassischen von Dung eingefiihrten
AFs, die es ermoglichen, Entscheidungsprozesse maschinell zu verarbeiten. Zudem
dienten zwei bestehende Erweiterungen dieser AFs als Grundlage der im Rahmen die-
ser Arbeit zu entwickelnden Erweiterung: Argumentationsgraphen mit Mengenangrif-
fen (SetAFs) von Nielsen und Parsons [NP06] und unvollstindige Argumentationsgra-
phen (iAFs) von Coster Marquis et al. sowie Baumeister et al. [CMDK™" (07, BNRS18].

All diese Frameworks erweitern die herkommlichen AFs und ermoglichen die Mo-
dellierung zusatzlicher realweltlicher Szenarien. Allerdings gibt es auch Szenarien, in
denen die Existenz von einzelnen Argumenten oder Mengenangriffen nicht sicher an-
genommen werden kann. Solche Szenarien konnten bislang nicht modelliert werden.
Die Motivation war daher, diese Liicke zu schliefSen, indem sowohl Elemente aus An-
sdtzen zur Modellierung von Mengenangriffen als auch solche zur Behandlung von
unvollstindigem Wissen in einem weiteren Framework, dem iSetAF, integriert werden.

Im Rahmen der Arbeit wurde zunéchst das iSetAF formal definiert. Dieses wurde
als ein Tupel U = (A, A’ R, R?) definiert, das aus sicheren Argumenten A, unsicheren
Argumenten A’ sowie bedingt sicheren Mengenangriffen R und unsicheren Mengen-
angriffen R’ besteht. Dabei ist ein bedingt sicherer Mengenangriff immer genau dann
giiltig, wenn alle Argumente der angreifenden Menge giiltig sind. Fiir unsichere Argu-
mente und Angriffe kann nicht mit Sicherheit entschieden werden, ob diese giiltig sind
oder nicht. Es kann somit unterschiedliche Konstellationen geben.

Zur Auswertung und Entscheidungsfindung bzgl. solcher iSetAFs wurden anschlie-
lend zwei unterschiedliche Ansétze verfolgt. Dies war zum einen ein vervollstandi-
gungsbasierter Ansatz, dhnlich wie es bereits von Baumeister et al. [BNRS18] fiir iAFs
gezeigt wurde. Zum anderen wurde ein extensionsbasierter Ansatz verfolgt, dhnlich
wie es in der Arbeit von Mailly [Mai21] fiir iAFs gezeigt wurde.

Die Idee des vervollstindigungsbasierten Ansatzes war es, alle moglichen Konstel-
lationen des unsicheren Wissens durch Vervollstindigungen zu berticksichtigen. Dabei
ist eine Vervollstindigung ein vom iSetAF abgeleitetes SetAF, bei dem kein unsiche-
res Wissen mehr enthalten ist. Auf Basis dieser Vervollstaindigungen lieflen sich Aus-
sagen liber mogliche und notwendige o-Extensionen treffen. Eine Menge von Argu-
menten bildet dabei genau dann eine mogliche o-Extension, wenn sie in mindestens
einer Vervollstaindigung des iSetAFs als o-Extension akzeptiert wird. Eine notwendige
o-Extension liegt hingegen vor, wenn eine Menge von Argumenten in jeder moglichen
Vervollstaindigung eine o-Extension darstellt. Eine weitere Unterteilung erfolgte in eine
leichtgldaubige und eine skeptische Schlussfolgerung, wodurch insgesamt vier Schluss-
folgerungsprobleme entstanden. Zusitzlich wurde noch das Verifikationsproblem be-
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trachtet, bei dem Schlussfolgerungen fiir ganze Mengen getroffen werden konnten. Mit
Hilfe dieser Probleme war es somit moglich, Aussagen iiber einzelne Argumente oder
Mengen von Argumenten in den iSetAFs zu treffen. Beispielsweise ldsst sich fiir ein ein-
zelnes Argument schlieffen, dass es in jeder Vervollstindigung Teil jeder o-Extension
ist. Fiir dieses Argument kann dann sicher angenommen werden, dass es in jedem Fall
giltig und damit akzeptiert ist.

Fiir die Schlussfolgerungsprobleme wurde anschlieffend die Komplexitdt analysiert,
da fraglich war, ob sich die Komplexitidt der Probleme erhtht, wenn sich die Aussage-
kraft des gesamten Frameworks erhoht. Tatsdchlich zeigte sich, dass jedes iAF gleich-
zeitig auch ein iSetAF darstellt und sich zudem jedes iSetAF mittels Hilfsargumenten
in polynomieller Zeit in ein iAF umwandeln ldsst. Aus diesem Grund liefien sich auch
die Komplexititseigenschaften direkt von iAFs auf iSetAFs tibertragen, da sich die Pro-
bleme fiir iSetAFs auf die Probleme fiir iAFs abbilden liefSen. Die Ergebnisse der Kom-
plexitédtsbetrachtung wurden in Tabelle 8 in Abschnitt 6 dargestellt.

Der Nachteil des vervollstindigungsbasierten Ansatzes war jedoch, dass immer al-
le Vervollstandigungen berticksichtigt werden mussten, um Aussagen tiber das iSetAF
treffen zu konnen. Die Anzahl der Vervollstindigungen steigt allerdings exponentiell
mit der Anzahl unsicherer Argumente und Angriffe. Aus diesem Grund wurde noch
ein zweiter Ansatz verfolgt, der extensionsbasierte Ansatz. Bei diesem ging es darum,
Aussagen iiber Mengen von Argumenten treffen zu konnen, ohne dass alle Vervoll-
stindigungen berticksichtigt werden mussten. Dafiir wurden die klassischen Semanti-
ken fiir AFs neu definiert und an das neue iSetAF angepasst. Dabei wurde jeweils eine
schwache (w) und eine starke (s) Variante jeder Semantik definiert, wobei die schwache
Auspragung widerspiegelt, dass nur sichere Angriffe als Bedrohung angesehen wer-
den, wihrend in der starken Ausprdagung auch unsichere Angriffe als Bedrohung an-
gesehen und ggf. verteidigt werden miissen.

Neben der Definition dieser Semantiken wurden auch verschiedene Eigenschaften
aus der Literatur untersucht, die als wiinschenswert fiir Argumentationsframeworks
angenommen wurden. Untersucht wurden dabei die Eigenschaften Syntaxunabhan-
gigkeit, I-Maximalitdt, Enthaltung, Direktionalitdt, Dichtheit, Konfliktsensitivitat und
Modularisierung. Diese Postulate wurden angepasst, um auch Mengenangriffe zu be-
riicksichtigen. Um auch die Besonderheiten von iSetAFs zu beriicksichtigen und da-
bei den urspriinglichen Sinn der Postulate beizubehalten, mussten die Direktionalitat,
Dichtheit und Konfliktsensitivitdat abgedndert werden und es wurden die Eigenschaf-
ten Mengendirektionalitdt, Mengendichtheit und Mengenkonfliktsensitivitdt definiert.

Wihrend die Syntaxunabhangigkeit unverandert analog der Ergebnisse fiir AFs auch
tiir iSetAFs galt, konnte fiir die Mengendirektionalitat, Mengendichtheit bzw. Mengen-
konfliktsensitivitdt gezeigt werden, dass diese Eigenschaften von den Semantiken fiir
iSetAFs genau dann erfiillt sind, wenn die klassischen Postulate Direktionalitdt, Dicht-
heit bzw. Konfliktsensitivitdt von den entsprechenden Semantiken fiir AFs erfiillt sind.

Auch die Postulate I-Maximalitdt und Enthaltung stimmten, bezogen auf iSetAFs,
grofitenteils mit den Ergebnissen von klassischen AFs {iberein. Fiir die I-Maximalitat
kam es lediglich bei der schwach stabilen Semantik und fiir die Enthaltung bei der
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schwach vollstaindigen Semantik zu Abweichungen. Bei der Modularisierung hingegen
stimmte lediglich die schwache Auspragung aller Semantiken mit den Ergebnissen von
AFs tiberein. Bis auf die stark stabile Semantik erfiillten die starken Auspriagungen die
Modularisierung grundsitzlich nicht. Eine genaue Ubersicht der Ergebnisse wurde in
Tabelle 5 und Tabelle 6 in Abschnitt 5 dargestellt.

Die vorliegende Arbeit zeigt, dass iSetAFs eine bedeutende Erweiterung klassischer
Argumentationsframeworks darstellen, die es ermoglichen, unsichere Informationen
und Mengenangriffe in einem einheitlichen Modell zu integrieren, ohne dabei die Kom-
plexitdt der Schlussfolgerungsprobleme zu erhthen. Zudem bleiben die wiinschens-
werten Eigenschaften fiir die meisten Semantiken fiir extensionsbasierte iSetAFs ent-
sprechend der Ergebnisse fiir die herkommlichen AFs erhalten.

Zum Abschluss dieser Arbeit folgt nun noch ein Fazit sowie ein Ausblick auf mogli-
che weitere Forschungsthemen.

7.1 Fazit

Die vorliegende Arbeit hat gezeigt, dass die klassischen abstrakten Argumentations-
graphen von Dung in ihrer herkommlichen Form nicht ausreichen, um komplexe, mit
Unsicherheit behaftete Entscheidungsprozesse realitdtsnah abzubilden. Durch die Ein-
fithrung von iSetAFs konnten sowohl Mengenangriffe als auch unvollstandiges Wissen
in einem einzigen Modell kombiniert werden.

Durch den vervollstandigungsbasierten Ansatz lassen sich Schlussfolgerungen fiir
die Akzeptanz einzelner Argumente oder Mengen von Argumenten ableiten. In-
teressant sind dabei insbesondere die notwendigen o-Schlussfolgerungen fiir Men-
gen von Argumenten, da diese in jedem Fall gemeinsam akzeptiert werden konnen.
Dabei ist die Existenz der weiteren unsicheren Argumente irrelevant. Mogliche o-
Schlussfolgerungen hingegen dienen nur als erste Einschdtzung tiber die Akzeptanz
von Argumenten oder Mengen von Argumenten. Diese Schlussfolgerungen unterlie-
gen selbst einer gewissen Unsicherheit und hédngen von der Existenz weiterer Argu-
mente in der Realitdt ab. Das heifdt, es bleibt weiterhin unklar, ob eine Menge tatsdchlich
eine zu akzeptierende Extension bildet oder nicht.

Allerdings fiihrt der vervollstindigungsbasierte Ansatz in Szenarien mit hoher Unsi-
cherheit und mit vielen Argumenten zu einer erheblichen Steigerung der Berechnungs-
aufwinde, da die Anzahl der Vervollstindigungen exponentiell mit der Anzahl unsi-
cherer Komponenten wéchst.

Um den letztgenannten Nachteil zu umgehen, ist der extensionsbasierte Ansatz eine
gute Alternative, da simtliche Berechnungen unmittelbar auf dem iSetAF durchgefiihrt
werden konnen, ohne Vervollstindigungen bilden zu miissen. Insbesondere konnen
die Extensionen direkt aus dem iSetAF abgeleitet werden. Durch die Abgrenzung der
Semantiken in eine schwache und eine starke Ausprdagung, lassen sich zwei Arten von
Extensionen direkt aus dem iSetAF ableiten:

103



¢ Extensionen, die in gewissen Situationen giiltig sind. Bei der schwachen Aus-
pragung werden unsichere Argumente oder Angriffe nicht als Angreifer wahr-
genommen. Diese Extensionen sind somit giiltig, sofern potenziell angreifende
unsichere Elemente in der Realitét nicht existieren.

¢ Extensionen, die in jedem Fall giiltig sind. Bei der starken Auspragung werden
alle Angriffe verteidigt, sodass eine solche Extension zwingend giiltig ist, unab-
hingig davon, ob unsichere Argumente oder unsichere Angriffe tatsdchlich exis-
tieren oder nicht.

Es lassen sich somit, dhnlich wie beim vervollstindigungsbasierten Ansatz, immer
Extensionen finden, die in einer bestimmten Situation akzeptabel sind und Extensio-
nen, die immer akzeptabel sind.

Der Nachteil des extensionsbasierten Ansatzes ist jedoch, dass dabei nicht jede mogli-
che Konstellation von Argumenten berticksichtigt werden kann. Es werden immer alle
unsicheren Argumente und unsicheren Angriffe in Kombination entweder als unbe-
drohlich oder bedrohlich angesehen. Dabei kann nicht zwischen unsicheren Argumen-
ten unterschieden werden, die mit hoher Wahrscheinlichkeit existieren und unsicheren
Argumenten, die mit geringer Wahrscheinlichkeit existieren.

7.2 Ausblick

Die Ergebnisse dieser Arbeit bieten viele Moglichkeiten fiir weiterfithrende For-
schungsarbeiten. Zukiinftige Ansdtze konnten das Framework dahingehend erweitern,
dass auch Angriffe auf Mengen explizit zugelassen werden. Einen dhnlichen Ansatz
verfolgten bereits Dimopoulos et al. [DDK*23], bei dem eine &hnliche Form von iSe-
tAFs eingefiihrt wurde, bei der allerdings nur Angriffe unsicher sein konnten. Argu-
mente waren dabei nicht mit unsicherem Wissen behaftet.

Ein weiterer vielversprechender Forschungsansatz besteht darin, Wahrscheinlichkei-
ten bei der Modellierung unvollstindiger Information zu beriicksichtigen. Auf diese
Weise liefse sich fiir unsichere Argumente oder Angriffe abschitzen, wie wahrschein-
lich deren Existenz tatsdchlich ist. Solche probabilistischen Argumentationsgraphen
wurden bereits von Li, Oren und Norman eingefiihrt [LON11], wobei sich diese nur
auf die klassischen AFs von Dung beziehen.

Eine weitere Moglichkeit ist die Erweiterung der Semantiken. In dieser Arbeit wur-
den lediglich die Standard-Semantiken von Dung im Rahmen des extensionsbasierten
Ansatzes neu definiert. Mittlerweile existieren jedoch zahlreiche weitere Semantiken,
die sich ebenfalls fiir die Anwendung auf iSetAFs neu definieren lassen, was Aufga-
be zukiinftiger Arbeiten sein konnte. Beispielsweise konnten die semi-stabile Semantik
von Caminada [Cam06], die ideale Semantik von Dung et al. [DMT07] oder die stage-
Semantik von Verhej [Ver96] so angepasst werden, dass diese mit Mengenangriffen und
unsicherem Wissen kompatibel sind.

Dariiber hinaus wire auch eine Untersuchung weiterer Eigenschaften denkbar. Ne-
ben den in dieser Arbeit ausgewdhlten Eigenschaften gibt es noch zahlreiche weitere
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wiinschenswerte Eigenschaften. Beispielsweise wurden von Dvofdk et al. [DKUW24]
bereits weitere Eigenschaften wie die Naivitat (naivety), die Widereinsetzung (reinstate-
ment) oder die Widerstandsfahigkeit (crash-resistence) in Bezug auf SetAFs untersucht.
Die Untersuchung der Erfiillung bzw. Nichterfiillung dieser Eigenschaften fiir iSetAFs
konnte Ziel weiterer Forschungsansitze sein.

Letztlich wére auch eine praktische Implementierung und Evaluation in realen Sze-
narien ein denkbarer nédchster Schritt. Auf diese Weise liefen sich die theoretischen
Erkenntnisse dieser Arbeit in die praktische Anwendung iiberfiihren. Zudem konn-
te der Mehrwert des Frameworks fiir die maschinelle Entscheidungsunterstiitzung in
komplexen, mit Unsicherheit behafteten Umgebungen praktisch getestet werden.
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