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Zusammenfassung

Ziel dieser Masterarbeit war die Konzeption und formale Ausarbeitung von unvoll-
ständigen Argumentationsgraphen mit Mengenangriffen (iSetAF) als Erweiterung der
herkömmlichen abstrakten Argumentationsgraphen. Diese Erweiterung sollte den Um-
gang sowohl mit Mengenangriffen als auch mit unsicherer Information in einem ein-
heitlichen Modell ermöglichen, um reale Entscheidungsprozesse modellieren zu kön-
nen. Ausgangspunkt dieser Arbeit waren dabei die klassischen abstrakten Argumen-
tationsgraphen (AFs) von Dung sowie zwei Erweiterungen dieser: Argumentations-
graphen mit Mengenangriffen (SetAFs) und unvollständige Argumentationsgraphen
(iAFs).

Nachdem iSetAFs im Rahmen dieser Arbeit formal definiert wurden, wurden zwei
unterschiedliche Ansätze verfolgt. Dies war zum einen ein vervollständigungsbasierter
Ansatz und zum anderen ein extensionsbasierter Ansatz.

Der vervollständigungsbasierte Ansatz berücksichtigt alle möglichen Konstellatio-
nen unsicheren Wissens, um mit Hilfe von Schlussfolgerungsproblemen Aussagen über
die Akzeptanz von Argumenten oder Mengen von Argumenten zu treffen. Die Kom-
plexitätsanalyse zeigte, dass sich diese Probleme auf die Probleme für iAFs reduzieren
ließen, wodurch bestehende Komplexitätsergebnisse übertragbar waren.

Da die Anzahl der Vervollständigungen exponentiell anwachsen kann, wurde er-
gänzend ein extensionsbasierter Ansatz verfolgt. Hierbei wurden Aussagen direkt auf
dem iSetAF getroffen, wofür die Semantiken neu definiert wurden. Es konnte gezeigt
werden, dass diese Semantiken zentrale Eigenschaften wie Syntaxunabhängigkeit, I-
Maximalität, Enthaltung, Direktionalität, Dichtheit, Konfliktsensitivität und Modulari-
sierung weitgehend erfüllen, sofern diese auch von klassischen AFs erfüllt werden.

Insgesamt zeigt die Arbeit, dass iSetAFs eine bedeutende Erweiterung klassischer
Frameworks darstellen. Sie integrieren unsichere Informationen und Mengenangriffe
in einem Modell, ohne die Komplexität der Schlussfolgerungsprobleme zu erhöhen,
und erhalten dabei die meisten wünschenswerten semantischen Eigenschaften.

Abstract

The aim of this Master’s thesis was the conceptualization and formal development of
incomplete argumentation graphs with set attacks (iSetAF) as an extension of conven-
tional abstract argumentation frameworks. This extension is intended to enable the
handling of both set-based attacks and uncertain information within a unified model,
in order to facilitate the modeling of real-world decision-making processes. The start-
ing point for this work was the classical abstract argumentation frameworks (AFs) in-
troduced by Dung, as well as two of their extensions: argumentation frameworks with
set attacks (SetAFs) and incomplete argumentation frameworks (iAFs).

After formally defining iSetAFs in this thesis, two different approaches were pur-
sued: a completion-based approach and an extension-based approach.
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The completion-based approach considers all possible configurations of uncertain
knowledge in order to draw conclusions about the acceptance of arguments or sets of
arguments through inference problems. The complexity analysis showed that these
problems can be reduced to the problems for iAFs, making it possible to transfer exist-
ing complexity results.

Since the number of completions can grow exponentially, a complementary extension-
based approach was developed. In this approach, statements are made directly on the
iSetAF, for which the semantics were newly defined. It was shown that these seman-
tics largely satisfy key properties such as syntax independence, I-maximality, allowing
abstention, directionality, tightness, conflict-sensitivity, and modularity, provided that
these are also fulfilled by classical AFs.

Overall, the thesis demonstrates that iSetAFs represent a significant extension of clas-
sical frameworks. They integrate uncertain information and set attacks within a single
model, without increasing the complexity of inference problems, while retaining most
of the desirable semantic properties.
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1 Einleitung

Argumentation ist ein grundlegender und alltäglicher Bestandteil menschlicher Ent-
scheidungsfindung. In vielen Bereichen des täglichen Lebens, wie in der Medizin, der
Luftfahrt oder im Justizwesen, müssen Entscheidungen getroffen werden, die auf einer
sorgfältigen Abwägung von Argumenten basieren. Dabei werden Argumente für und
gegen eine Entscheidung abgewogen, um die bestmögliche Lösung zu finden.

Ein anschauliches Beispiel bietet die Luftfahrt: Bei einem Zwischenfall an Bord eines
Flugzeuges muss die Cockpitbesatzung oft in Sekundenbruchteilen eine potenziell fol-
genschwere Entscheidung treffen. Abhängig von der Situation, welche Art Zwischen-
fall vorliegt, wie viel Treibstoff vorhanden ist, wie schwer die Maschine ist, wie erfahren
die Besatzung ist, ob ein Ausweichflughafen erreichbar ist, usw. muss die Cockpitbe-
satzung die verschiedenen Handlungsoptionen abwägen, um Menschenleben zu ret-
ten. Dabei spielen je nach Schwere des Zwischenfalls auch wirtschaftliche Aspekte eine
Rolle. Sollte eine Zwischenlandung durchgeführt werden, kann es passieren, dass die
maximale Arbeitszeit der Besatzung erreicht wird, wodurch ein Weiterflug nicht mehr
möglich wäre und Passagiere umgebucht werden müssten.

In stressigen und zeitkritischen Situationen stoßen Menschen jedoch oft an ihre ko-
gnitiven Grenzen. Die Vielzahl an Faktoren erschwert eine umfassende und fehlerfreie
Abwägung aller relevanten Informationen. In solchen Fällen kann der Einsatz von un-
terstützenden Systemen, die auf künstlicher Intelligenz (KI) basieren, sinnvoll sein. Die-
se können komplexe Argumentationsstrukturen analysieren und zu Entscheidungsfin-
dungen beitragen.

Ein zentraler Bereich der KI, der sich mit solchen Entscheidungsproblemen befasst,
ist die formale Argumentation. Insbesondere die Arbeit von Dung [Dun95] aus dem
Jahr 1995 spielt dabei bis heute eine Schlüsselrolle. In seiner Arbeit führte Dung soge-
nannte abstrakte Argumentationsgraphen (abstract argumentation frameworks) als formales
Modell zur Strukturierung von Argumenten und Angriffsrelationen ein. Dung defi-
nierte die formale Argumentation als strukturiertes System, das aus Argumenten und
Angriffsbeziehungen bestand. Auf diese Weise war es möglich, Entscheidungsprozes-
se zu modellieren, die maschinell verarbeitet werden konnten. Es konnten Konflikte
analysiert werden, um schließlich eine logische Schlussfolgerung ziehen zu können.

In diesem einführenden Kapitel soll zunächst die Motivation für das gewählte Thema
der Masterarbeit vorgestellt werden. Anschließend werden die Ziele der Arbeit sowie
die methodische Vorgehensweise vorgestellt.

1.1 Motivation

Die abstrakten Argumentationsgraphen nach Dung [Dun95] modellieren Konflikte nur
als 1-zu-1-Beziehungen: Ein Argument greift ein anderes Argument direkt an. Der Kon-
flikt besteht somit nur zwischen zwei einzelnen Argumenten. Diese strikte Struktur
schränkt die Modellierung realer Argumentationen jedoch stark ein, da durchaus auch
komplexere Szenarien vorkommen können. In realen Szenarien ist denkbar, dass meh-
rere Argumente gemeinsam ein anderes Argument angreifen oder es bleibt unklar, ob
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ein Argument bzw. eine Angriffsbeziehung überhaupt existiert.
Für beide Problemstellungen wurden bereits eigenständige Erweiterungen entwi-

ckelt. Nielsen und Parsons führten 2006 ein Framework ein, das Mengenangriffe be-
rücksichtigte, bei denen erst die Kombination bestimmter Argumente zu einer gemein-
samen Angriffsbeziehung führte [NP06]. Dabei greifen Argumente nicht mehr einzeln,
sondern nur in bestimmten Gruppen effektiv an. Unabhängig davon wurde das Kon-
zept unvollständiger Argumentationsgraphen entwickelt, wobei erste Ideen von Coste-
Marquis [CMDK+07] aus dem Jahr 2007 stammten. Das vollständig formal definierte
Argumentationsframework wurde allerdings erst 2018 von Baumeister et al. veröffent-
licht [BNRS18]. Durch dieses Framework war es möglich, auch Informationen bzw. Ar-
gumente bei der Entscheidungsfindung zu berücksichtigen, deren Existenz zwar denk-
bar, aber nicht gesichert ist.

Ein erster Ansatz, unvollständige Argumentationsgraphen und Argumentationsgra-
phen mit Mengenangriffen zu kombinieren, wurde 2023 von Dimopoulos et al. vorge-
stellt [DDK+23]. Dieses Framework berücksichtigt jedoch nur unsichere Angriffsbezie-
hungen und erlaubt zudem auch Angriffe auf Mengen von Argumenten.

Bisher existiert kein formal definiertes Argumentationsframework, das sowohl unsi-
cheres Wissen (bestehend aus unsicheren Argumenten und unsicheren Angriffen) als
auch Mengenangriffe berücksichtigt. Solche Szenarien sind in der Praxis jedoch realis-
tisch und lassen sich mit bestehenden abstrakten Argumentationsgraphen und deren
Erweiterungen bisher nicht modellieren. Diese Lücke soll durch die vorliegende Mas-
terarbeit geschlossen werden, indem ein solches Framework entwickelt und analysiert
wird.

1.2 Ziele der Arbeit

Das Ziel dieser Arbeit ist die Entwicklung einer neuen Erweiterung für abstrakte Ar-
gumentationsgraphen, durch die sich Szenarien modellieren lassen, die sowohl unsi-
cheres Wissen als auch Mengenangriffe enthalten. Dabei werden unvollständige Argu-
mentationsgraphen mit Mengenangriffen (iSetAF) formal definiert und die Eigenschaften
sowie die Komplexität untersucht. Das Ziel ist die Entwicklung einer Erweiterung der
abstrakten Argumentationsgraphen, die in der Ausdrucksstärke mit Dungs ursprüng-
lichem Modell vergleichbar ist. Idealerweise soll die Erweiterung die zentralen Eigen-
schaften von Dungs abstrakten Argumentationsgraphen ebenfalls erfüllen.

1.3 Vorgehensweise

In Abschnitt 2 wird zunächst Dungs abstraktes Argumentationsframework vorgestellt,
das die Grundlage dieser Arbeit bildet. Dabei werden abstrakte Argumentationsgra-
phen, ihre Semantiken und ausgewählte Eigenschaften (Postulate) definiert. Anschlie-
ßend wird übersichtlich dargestellt, inwieweit Dungs Semantiken für abstrakte Argu-
mentationsgraphen die jeweiligen Eigenschaften erfüllen.

Darauf aufbauend werden in Abschnitt 3 die Erweiterungen für Argumentations-
graphen mit Mengenangriffen (SetAFs) und unvollständige Argumentationsgraphen
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(iAFs) vorgestellt. Beide Erweiterungen spielen in realen Situationen oft eine Rolle und
ermöglichen es, komplexere und realistischere Argumentationsstrukturen zu model-
lieren. Für iAFs werden zudem zwei unterschiedliche Herangehensweisen vorgestellt:
Der vervollständigungsbasierte Ansatz und der extensionsbasierte Ansatz.

Zur Veranschaulichung der verschiedenen Argumentationsframeworks wird in die-
ser Arbeit ein fortlaufendes Beispiel genutzt. Dabei geht es um zwei Freunde Anna und
Ben. Anna möchte gerne eine Fahrradtour mit Ben unternehmen. Ben hat allerdings ei-
nige Gegenargumente, um sich der Fahrradtour mit Anna zu entziehen. Diese Gegen-
argumente können für sich alleinstehen, nur in Kombination mit anderen Argumenten
gültig sein oder auch unsicher sein (d.h. es ist unklar, ob ein Argument überhaupt exis-
tiert).

Der Hauptteil der Arbeit erstreckt sich über Abschnitt 4, Abschnitt 5 und Abschnitt 6.
In Abschnitt 4 wird die formale Definition unvollständiger Argumentationsgraphen
mit Mengenangriffen (iSetAFs) vorgestellt. Dabei werden zentrale Begriffe wie Angriff
und Verteidigung neu definiert. Der Abschnitt verfolgt dabei zwei methodische Ansät-
ze:

• Der vervollständigungsbasierte Ansatz in Anlehnung an Baumeister et al.
[BNRS18], bei dem es notwendig ist, die Vervollständigungen von iSetAFs neu
zu definieren. Ebenso müssen die Definitionen für mögliche und notwendige
σ-Extensionen sowie der Schlussfolgerungsprobleme für iSetAFs angepasst wer-
den.

• Der extensionsbasierte Ansatz in Anlehnung an Mailly [Mai21], der neue Seman-
tiken definiert, um mit Unsicherheiten und Mengenangriffen direkt zu arbeiten,
ohne dass Vervollständigungen erzeugt werden müssen.

In Abschnitt 5 erfolgt daraufhin eine detaillierte Untersuchung der in Unterab-
schnitt 2.3 ausgewählten Eigenschaften, wobei sich diese Analyse lediglich auf den ex-
tensionsbasierten Ansatz bezieht. Die Postulate werden neu definiert, sodass sich diese
auch auf iSetAFs übertragen lassen. Abschließend wird eine übersichtliche Darstellung
präsentiert, die zeigt, welche Semantiken für iSetAFs welche Postulate erfüllen oder
nicht erfüllen.

In Abschnitt 6 wird die Komplexität der Schlussfolgerungsprobleme von iSetAFs
untersucht, wobei sich dieser Abschnitt lediglich auf den vervollständigungsbasierten
Ansatz bezieht. Dabei wird insbesondere untersucht, ob sich die Komplexitätseigen-
schaften von iAFs auf die Komplexitätseigenschaften von iSetAFs übertragen lassen,
indem die Schlussfolgerungsprobleme von iSetAFs auf bestehende Probleme reduziert
werden.

Den Abschluss dieser Masterarbeit bilden eine Zusammenfassung der zentralen Er-
gebnisse, ein Fazit sowie ein Ausblick auf weiterführende Forschungsfragen, die sich
aus der vorliegenden Arbeit ergeben.
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2 Grundlagen der formalen Argumentation

In diesem Kapitel sollen die grundlegenden Konzepte und Definitionen der forma-
len Argumentation basierend auf Dungs Arbeit aus dem Jahr 1995 [Dun95] darge-
stellt werden. Diese Konzepte sind bis heute von zentraler Bedeutung und bilden die
Grundlage dieser Arbeit. Zunächst sollen die abstrakten Argumentationsgraphen in
Unterabschnitt 2.1 formal eingeführt und wichtige Begriffe definiert werden. Anschlie-
ßend werden in Unterabschnitt 2.2 verschiedene relevante Semantiken für Argumen-
tationsgraphen vorgestellt und auf zugehörige Entscheidungsprobleme eingegangen.
Abschließend werden in Unterabschnitt 2.3 verschiedene Eigenschaften (sogenannte
Postulate) vorgestellt, die eine Semantik bestenfalls erfüllen sollte. Diese Postulate er-
möglichen es, Semantiken miteinander zu vergleichen und zu bewerten.

2.1 Abstrakte Argumentationsgraphen

Die formale Argumentation basiert auf dem Argumentationsframework, das von Dung
veröffentlich wurde [Dun95]. Ziel der formalen Argumentation ist es, eine Menge von
Argumenten und deren Konflikte zu analysieren, um schließlich Argumente zu finden,
die gemeinsam akzeptiert werden können [CD20]. Dabei ist die innere Struktur der
Argumente irrelevant.

Argumente und deren Konflikte (Angriffsbeziehung) lassen sich strukturiert in ei-
nem Argumentationsgraphen darstellen. Dieser ist wie folgt definiert:

Definition 2.1 (Abstrakte Argumentationsgraphen1). Ein abstrakter Argumentations-
graph (engl. abstract argumentation framework) ist ein Tupel F = (A,R). Dabei bezeichnet
A die Menge der Argumente und R die Menge der Angriffe zwischen diesen Argumen-
ten, wobei R ⊆ A×A.

Ein abstrakter Argumentationsgraph (AF) besteht somit aus Argumenten, die sich
gegenseitig angreifen können. Auf Basis dieser Grundstruktur lässt sich nun genauer
definieren, wie Argumente innerhalb eines AFs miteinander in Konflikt stehen können.

Definition 2.2 (Angriffsrelation). Für ein AF F = (A,R) bezeichnet R die Angriffs-
relation zwischen den Argumenten. (a, b) ∈ R mit a, b ∈ A stellt einen Angriff des
Arguments a auf das Argument b dar. Eine äquivalente Schreibweise für einen Angriff
von a auf b ist aRb.

Zur Verdeutlichung soll nun ein konkretes Beispiel betrachtet werden, in dem Argu-
mente und deren Angriffsbeziehungen veranschaulicht werden.

Beispiel 2.1. Die Freunde Anna und Ben diskutieren darüber, was sie heute unterneh-
men sollen. Anna möchte gerne eine Fahrradtour machen. Die Argumentationsfolge
sieht wie folgt aus:

1Definition 2 aus [Dun95]
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a1: Lass uns eine Fahrradtour machen.

b1: Mein Fahrrad wurde gestohlen.

a2: Du kannst dir ein neues Fahrrad kaufen.

b2: Ich habe nicht genug Geld.

a3: Dann kannst du dir ein Fahrrad ausleihen.

b3: Aber es regnet.

a4: Ich besorge uns Regenmäntel.

Hierbei handelt es sich um Argumente, die in Angriffsbeziehungen stehen. So grei-
fen beispielsweise b1 oder auch b3 das Argument a1 an, da es sich um Gegenar-
gumente handelt, die eine Fahrradtour verhindern könnten. Auf der anderen Sei-
te greifen die Argumente a2 oder auch a3 Bens Gegenargument b1 an. Auch wenn
Bens Fahrrad gestohlen wurde, kann die Fahrradtour stattfinden, indem er sich
ein neues Fahrrad kauft oder sich ein Fahrrad ausleiht. Das gesamte AF F1 be-
steht somit aus der Menge A = {a1, a2, a3, a4, b1, b2, b3} und den Angriffen R =
{(b1, a1), (b3, a1), (a2, b1), (a3, b1), (b2, a2), (a4, b3)}.

Ein AF kann als gerichteter Graph betrachtet werden, indem die Argumente A als
Knoten und die Angriffe R als gerichtete Kanten dargestellt werden. Das in Beispiel 2.1
formal beschriebene AF F1 wird in Abbildung 1 als gerichteter Graph visualisiert.

a1

b1 b3

a2 a3

b2

a4

Abbildung 1: Abstrakter Argumentationsgraph F1 zu Beispiel 2.1. Eigene Darstellung.

Um bestimmte Eigenschaften innerhalb eines AFs zu analysieren, ist es hilfreich,
Mengen von Angreifern und angegriffenen Argumenten zu betrachten. Für eine Men-
ge von Argumenten S ⊆ A bezeichnet S− die Menge aller Angreifer von S mit S− =
{b ∈ A | ∃a ∈ S : bRa}. Zudem bezeichnet S+ = {b ∈ A | ∃a ∈ S : aRb} die Menge der
Argumente, die von S angegriffen werden. Ein kurzes Beispiel soll zeigen, wie diese
Mengen konkret aussehen.
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Beispiel 2.2. Für das AF F1 aus Abbildung 1 und eine Menge S = {a1, a2} ist S− =
{b1, b2, b3} und S+ = {b1}.

Neben der reinen Angriffsstruktur spielt auch die Fähigkeit von Argumenten, ande-
re Argumente zu verteidigen, eine wichtige Rolle. Dies führt zur nächsten zentralen
Definition der Verteidigung.

Definition 2.3 (Verteidigung). Für ein AF F = (A,R), S ⊆ A und a ∈ S gilt: Die Menge
S verteidigt das Argument a gdw. es für alle Angreifer b ∈ A mit (b, a) ∈ R ein weiteres
Argument c ∈ S gibt mit (c, b) ∈ R. Analog wird eine Menge S′ von S verteidigt gdw.
alle Argumente a ∈ S′ von S verteidigt werden.

Auch das Konzept der Verteidigung wird anhand eines Beispiels des zuvor einge-
führten AFs verdeutlicht.

Beispiel 2.3. Für das AF F1 aus Abbildung 1 verteidigt die Menge S = {a3, a4} das
Argument a1. Ben hat insgesamt zwei Argumente, die gegen eine Fahrradtour spre-
chen. Zum einen, dass sein Fahrrad gestohlen wurde und zum anderen, dass es regnet.
Gegen beide Gegenargumente hat Anna selbst wiederum Gegenargumente, denn Ben
kann sich ein Fahrrad ausleihen und wegen des Regens kann Anna Regenmäntel für
beide besorgen.

Aufbauend auf dem Begriff der Verteidigung führt Dung die sogenannte charakteris-
tische Funktion ein. Diese erlaubt es, systematisch alle von einer Argumentmenge ver-
teidigten Argumente zu bestimmen. Da dieser Begriff in unterschiedlichen Kapiteln
auftauchen wird, soll dieser bereits an dieser Stelle definiert werden.

Definition 2.4 (Charakteristische Funktion2). Sei F = (A,R) ein AF. Die charakteristi-
sche Funktion

τF : 2A → 2A

bestimmt für eine Menge S ⊆ A alle Argumente, die von dieser Menge verteidigt wer-
den. Es gilt somit

τF (S) = {a ∈ A | {a}− ⊆ S+}.

Insbesondere werden von einer Menge S zusätzlich auch immer genau die Argu-
mente verteidigt, die keine Angreifer besitzen.

Beispiel 2.4. Für das AF F1 aus Abbildung 1 und eine Menge S = {a3, a4} gilt τF (S) =
{a1, a3, a4, b2}.

Neben der Frage, welche Argumente verteidigt werden, ist auch relevant, welche
Argumente durch eine Menge direkt beeinflusst werden. Hierzu dient der Begriff der
Reichweite. Die Reichweite ist die Vereinigung einer betrachteten Argumentmenge mit
den Argumenten, die von dieser Menge angegriffen werden.

2Definition 16 aus [Dun95]
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Definition 2.5 (Reichweite). Sei F = (A,R) ein AF und S ⊆ A. Die Reichweite S⊕ ist
definiert durch

S⊕ = S ∪ S+

und bezeichnet die Menge aller Argumente, die in S liegen, vereinigt mit den Argu-
menten, die von S angegriffen werden.

Auch hier verdeutlicht ein Beispiel, wie sich die Reichweite einer Argumentmenge
bestimmen lässt.

Beispiel 2.5. Für das AF F1 aus Abbildung 1 und eine Menge S = {a3, a4} gilt S⊕ =
{a3, a4, b1, b3}.

In diesem Unterkapitel wurden die Grundlagen zu AFs vorgestellt. In Unterab-
schnitt 2.2 soll nun gezeigt werden, wie sich Argumente finden lassen, die gemeinsam
akzeptiert werden können.

2.2 Semantiken

Ein abstrakter Argumentationsgraph besteht aus einer Menge von Argumenten und
einer Angriffsrelation zwischen diesen Argumenten. Dargestellt werden dabei ledig-
lich die Beziehungen zwischen den einzelnen Argumenten, ohne die spezifischen In-
halte der Argumente zu kennen oder zu berücksichtigen. Die zentrale Frage ist nun,
welche dieser Argumente akzeptabel sind und welche abgelehnt werden können. Das
Problem der Akzeptanz von Argumenten wurde bereits von Dung durch die Definiti-
on verschiedener sogenannter Semantiken formalisiert [Dun95]. Diese Semantiken bein-
halten Kriterien, die zur Beurteilung der Akzeptanz oder der Ablehnung dienen. Dabei
werden jeweils Mengen von Argumenten, sogenannte Extensionen, bestimmt, die diese
Kriterien erfüllen und insgesamt als akzeptabel angesehen werden können.

Zur Einführung sollen nachfolgend zunächst zwei Beispiele gegeben werden.

Beispiel 2.6. In Beispiel 2.1 können die beiden Argumente a1 (Lass uns eine Fahrrad-
tour machen) und b1 (Mein Fahrrad wurde gestohlen) offensichtlich nicht gleichzeitig
akzeptiert werden, da sie sich widersprechen. Wenn das Fahrrad geklaut wurde, ist
eine Fahrradtour nicht möglich. Die beiden Argumente stehen in einem Konflikt zu-
einander.

Beispiel 2.7. In Beispiel 2.1 bringt Ben zum Argument a1 die Gegenargumente b1 und
b3 vor. Es ist nachvollziehbar, dass beide Gegenargumente stichhaltig sind und gegen
eine Fahrradtour sprechen. Hätte Anna keine weiteren Argumente, könnte man da-
von ausgehen, dass Bens Argumente akzeptiert werden und die Fahrradtour abgesagt
wird. Da Anna jedoch für beide Gegenargumente jeweils eine Lösung in Form der Ar-
gumente a3 und a4 anbietet und Ben nichts mehr dagegen einzuwenden hat, könnte
man in diesem Fall die Argumente {a1, a3, a4} als akzeptiert betrachten, und man wür-
de schlussfolgern, dass die Fahrradtour stattfindet.
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Um die beiden Beispiele nun zu formalisieren, werden die in Dungs Arbeit [Dun95]
vorgestellten konfliktfreien und zulässigen Mengen sowie die dort vorgestellten Semanti-
ken nachfolgend dargestellt. Dies sind die vollständige, präferierte, grundierte und stabile
Semantik. Dabei wird nach jeder Definition ein Beispiel gegeben, das sich immer auf
das AF F2 aus Abbildung 2 beziehen wird, bei dem die Bedeutung der einzelnen Argu-
mente nicht von Relevanz ist. Interessant sind lediglich die Beziehungen zwischen den
einzelnen Argumenten.

a1 a2 a3

a4 a5 a6

Abbildung 2: AF F2 zu Beispiel 2.8. Eigene Darstellung.

In Beispiel 2.6 wurde bereits gezeigt, wie ein Konflikt zwischen zwei Argumenten
aussehen kann. Ein solcher Konflikt soll vermieden werden, weshalb stets nach kon-
fliktfreien Mengen gesucht wird, die gemeinsam akzeptiert werden können.

Definition 2.6 (Konfliktfreie Mengen3). Sei F = (A,R) ein AF und S ⊆ A. Eine Menge
S heißt konfliktfrei (engl. conflict-free) gdw. für alle a, b ∈ S weder aRb noch bRa gelten.
Innerhalb der Menge S gibt es somit keine Angriffe. Die Menge aller konfliktfreien
Mengen von F bezeichnet cf(F ) = {S ⊆ A | S ist konfliktfrei}.
Beispiel 2.8. Für das AF F2 aus Abbildung 2 sind beispielsweise {a1}, {a4}, {a1, a4},
{a2, a4} und {a1, a3, a4} konfliktfreie Mengen, da innerhalb der jeweiligen Menge keine
Angriffe stattfinden. Die Menge {a4, a5} ist nicht konfliktfrei, da (a4, a5) ∈ R2 gilt. Auch
{a6} ist nicht konfliktfrei, da sich das Argument selbst angreift.

Neben der Konfliktfreiheit von gemeinsam akzeptierten Argumenten ist zudem auch
wünschenswert, dass eine akzeptierte Menge nicht von außen angegriffen wird. Sollte
dennoch ein Angriff auf die Menge erfolgen, soll dieser Angriff von der akzeptierten
Menge stets mit einem Gegenangriff verteidigt werden. Dies führt zum Begriff der zu-
lässigen Menge.

Definition 2.7 (Zulässige Mengen4). Sei F = (A,R) ein AF und S ⊆ A. Eine Menge S
heißt zulässig (engl. admissible) gdw. S ∈ cf(F ) und jedes a ∈ S von S verteidigt wird.
Die Menge aller zulässigen Mengen von F bezeichnet ad(F ) = {S ⊆ A | S ist zulässig}.
Beispiel 2.9. Für das AF F2 aus Abbildung 2 sind beispielsweise {a1}, {a4}, {a1, a5},
oder {a1, a3} zulässige Mengen. Die Menge {a5} allein ist nicht zulässig, da sich diese
nicht vor dem Angreifer a2 verteidigen kann.

3Definition 5 aus [Dun95]
4Definition 6 aus [Dun95]
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Die beiden Begriffe der konfliktfreien und der zulässigen Menge sind bisher noch re-
lativ schwach, da insbesondere die leere Menge immer zulässig ist und damit in jedem
Fall eine akzeptable Lösung bietet. Dies ist in einer praktischen Anwendung nicht wün-
schenswert. Zudem kann es immer eine zulässige Menge geben, die weitere Argumen-
te verteidigt. Wünschenswert wäre, dass auch diese verteidigten Argumente akzeptiert
werden. Dies führt zum Begriff der vollständigen Extension.

Definition 2.8 (Vollständige Extensionen5). Sei F = (A,R) ein AF und S ⊆ A. Eine
Menge S heißt vollständig (engl. complete) gdw. S ∈ ad(F ) und jedes Argument a ∈ A,
das von S verteidigt wird, auch in S liegt. Es gilt somit τF (S) = S. Die Menge aller
vollständigen Extensionen von F bezeichnet co(F ) = {S ⊆ A | S ist vollständig}.

Beispiel 2.10. Für das AF F2 aus Abbildung 2 ist beispielsweise die Menge {a1} bereits
vollständig, da kein anderes Argument a ∈ A2 von {a1} verteidigt wird. Insbesondere
werden a3 und a5 nicht verteidigt, da sie neben a2 noch weitere Angreifer besitzen, die
nicht von {a1} angegriffen werden. Weitere vollständige Extensionen sind beispiels-
weise {a1, a3} und {a1, a4}. Die Menge {a1, a5} hingegen ist nicht vollständig, da das
Argument a3 verteidigt wird. Auch {a4} ist nicht vollständig, da das nicht attackierte
Argument a1 von jeder Menge verteidigt wird und somit auch von {a4}.

Auch wenn es sich bei einer Argumentmenge bereits um eine vollständige Extensi-
on handelt, kann es möglich sein, dass weitere Argumente hinzugenommen werden
können, sodass diese größere Argumentmenge ebenfalls vollständig ist. Dies führt zur
präferierten Semantik, die die größtmögliche vollständige Extension darstellt.

Definition 2.9 (Präferierte Extensionen6). Sei F = (A,R) ein AF und S ⊆ A. Eine Men-
ge S heißt präferiert (engl. preferred) gdw. S ∈ co(F ) und S maximal ist. Es gibt somit
keine größere Menge S′ ⊃ S, die ebenfalls vollständig ist. Die Menge aller präferierten
Extensionen von F bezeichnet pr(F ) = {S ⊆ A | S ist präferiert}.

Beispiel 2.11. Betrachtet man die vollständige Extension {a1, a3} des AFs F2 aus Ab-
bildung 2 (vgl. Beispiel 2.10), fällt auf, dass es noch weitere Argumente gibt, die zwar
nicht von der Menge verteidigt werden, aber dennoch der Menge hinzugefügt werden
können, ohne die Vollständigkeit zu verletzen. Betrachtet man nun das Argument a4,
so wird dieses zwar nicht von {a1, a3} verteidigt, aber es verteidigt sich selbst gegen
alle Angreifer. Somit ist {a1, a3, a5} ebenfalls vollständig und zudem maximal. Die prä-
ferierten Extensionen von F2 sind {a1, a3, a4} und {a1, a3, a5}.

Bezogen auf die präferierte Semantik kann es unterschiedliche Extensionen und da-
mit auch unterschiedliche Argumente geben, die gemeinsam akzeptiert werden kön-
nen. Es kann auch hilfreich sein, die Schnittmenge aller präferierten Extensionen zu
betrachten. Dies ist somit die Menge, die in jedem Fall akzeptiert werden kann. Dies
führt zur grundierten Semantik.

5Definition 23 aus [Dun95]
6Definition 7 aus [Dun95]

9



Definition 2.10 (Grundierte Extensionen7). Sei F = (A,R) ein AF und S ⊆ A. Ei-
ne Menge S heißt grundiert (engl. grounded) gdw. S ∈ co(F ) und S minimal ist. Es
gibt somit keine kleinere Menge S′ ⊂ S, die ebenfalls vollständig ist. Die grundierte
Extension entspricht dem Fixpunkt der iterativen Anwendung der charakteristischen
Funktion, bei der als Startpunkt die leere Menge verwendet wird. Der erste Funkti-
onsaufruf ist somit τF (∅). Die Menge aller grundierten Extensionen von F bezeichnet
gr(F ) = {S ⊆ A | S ist grundiert}.

Beispiel 2.12. Für das AF F2 aus Abbildung 2 ist die Menge {a1} die einzige grundierte
Extension, da diese Menge vollständig und minimal ist. Der Fixpunkt der iterativen
Anwendung der charakteristischen Funktion ist τF ({a1}) = a1.

Die letzte Semantik ist die stabile Semantik. Bei dieser ist es notwendig, dass alle
Argumente außerhalb der akzeptierten Argumentmenge angegriffen werden. Dies ver-
deutlicht die nachfolgende Definition.

Definition 2.11 (Stabile Extensionen8). Sei F = (A,R) ein AF und S ⊆ A. Eine Men-
ge S heißt stabil (engl. stable) gdw. S ∈ cf(F ) und alle Argumente außerhalb von S
angegriffen werden. Für die Reichweite gilt somit S⊕ = A. Die Menge aller stabilen
Extensionen von F bezeichnet st(F ) = {S ⊆ A | S ist stabil}.

Beispiel 2.13. Für das AF F2 aus Abbildung 2 sind {a1, a3, a5} und {a1, a3, a4} die ein-
zigen stabilen Extensionen. Für S = {a1, a3, a4} ∈ co(F2) gilt beispielsweise S+ =
{a2, a5, a6} und S⊕ = A2, es gibt somit kein weiteres Argument, das weder in S liegt,
noch von S angegriffen wird.

Wie zuvor beschrieben sind die von Dung eingeführten klassischen Semantiken die
vollständige, die präferierte, die grundierte und die stabile Semantik. Im Rahmen die-
ser Arbeit werden auch konfliktfreie und zulässige Mengen zur Vereinfachung als Se-
mantiken bezeichnet. Insbesondere werden konfliktfreie Mengen und zulässige Men-
gen gleichermaßen als Extensionen bezeichnen, es sei aber darauf hingewiesen, dass
diese im klassischen Sinne keine echten Extensionen darstellen. Extensionen werden
somit im Rahmen dieser Arbeit wie folgt definiert:

Definition 2.12 (σ-Extensionen). Sei F = (A,R) ein AF und σ ∈ {cf, ad, co, pr, gr, st}.
Dann bezeichnet σ(F ) die Menge der jeweiligen Extensionen.

Der Zusammenhang bzw. die Beziehung zwischen allen genannten Semantiken ist
in Abbildung 3 dargestellt. Es gilt st(F ) ⊆ pr(F ) ⊆ co(F ) ⊆ ad(F ) ⊆ cf(F ). Weiter gilt
gr(F ) ⊆ co(F ). In Ergänzung zur Abbildung 3 sei erwähnt, dass es für ein AF F genau
eine grundierte Extension gibt, die per Definition immer vollständig ist. Die grundierte
Extension kann somit, abhängig vom AF, auch gleichzeitig präferiert oder stabil sein.

Weitere bekannte Semantiken, die auf der Veröffentlichung von Dung [Dun95] basie-
ren, sind beispielsweise die semi-stabile Semantik, die Stage-Semantik und die ideale

7Definition 20 aus [Dun95]
8Definition 13 aus [Dun95]
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cf(F ) ad(F ) co(F ) pr(F ) st(F )

Abbildung 3: Mengendarstellung der verschiedenen Mengen von Extensionen cf(F ),
ad(F ), co(F ), pr(F ) und st(F ). Die grundierte Extension gr(F ) ist zur
besseren Übersicht nicht dargestellt, würde aber entweder in st(F ), in
pr(F ) \ st(F ) oder in co(F ) \ pr(F ) liegen. In jedem Fall gilt aber gr(F ) ⊆
co(F ). Eigene Darstellung.

Semantik. Für einen vollständigen Überblick über die aktuellen Semantiken wird auf
Baroni, Caminada und Giacomin [BCG18] verwiesen. Diese werden im Rahmen dieser
Arbeit nicht betrachtet.

Für einige Fragestellungen ist nur ein einzelnes Argument von Interesse, für das ent-
schieden werden soll, ob dieses Argument in mindestens einer Situation oder mögli-
cherweise sogar in allen Situationen akzeptiert werden kann. Beispielsweise kann für
das AF aus Abbildung 2 interessant sein, ob a1 in jeder Situation (bzw. in jeder Extensi-
on) akzeptiert werden kann und somit sicher davon auszugehen ist, dass a1, unabhän-
gig von der Akzeptanz anderer Argumente, akzeptiert wird.

Um nun entscheiden zu können, ob ein Argument in mindestens einer oder in allen
Situationen akzeptiert werden kann, wird zwischen leichtgläubigen und skeptischen
Schlussfolgerungen unterschieden [VP00], die nachfolgend definiert werden.

Definition 2.13 (Leichtgläubige σ-Schlussfolgerung). Sei F = (A,R) ein AF und a ∈
A ein Argument. a ist eine leichtgläubige σ-Schlussfolgerung für eine Semantik σ ∈
{cf, ad, co, pr, gr, st} gdw. es eine Extension S ∈ σ(F ) gibt, sodass a ∈ S.

Für eine leichtgläubige σ-Schlussfolgerung muss ein Argument a somit in mindes-
tens einer σ-Extension vorkommen und damit akzeptiert sein.

Beispiel 2.14. Für das AF F2 aus Abbildung 2 ist das Argument a4 eine leichtgläubige
co-Schlussfolgerung, da die Menge {a1, a4} ∈ co(F ) eine vollständige Extension ist und
a4 ∈ {a1, a4}. Auch die Argumente a1 und a3 sind leichtgläubige co-Schlussfolgerungen
(vgl. Beispiel 2.10).
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Für eine skeptische σ-Schlussfolgerung muss ein Argument a hingegen in allen mög-
lichen σ-Extensionen vorkommen und damit in diesen akzeptiert sein.

Definition 2.14 (Skeptische σ-Schlussfolgerung). Sei F = (A,R) ein AF und a ∈ A ein
Argument. Das Argument a ist eine skeptische σ-Schlussfolgerung für eine Semantik
σ ∈ {cf, ad, co, pr, gr, st} gdw. für alle Extensionen S ∈ σ(F ) gilt, dass a ∈ S.

Beispiel 2.15. Für das AF F2 aus Abbildung 2 ist das Argument a1 eine skeptische co-
Schlussfolgerung, da a1 Teil jeder möglichen vollständigen Extension ist. Grund dafür
ist, dass a1 nicht angegriffen wird und somit von jeder anderen Menge S ⊆ A verteidigt
wird. Per Definition muss a1 somit in jeder vollständigen Extension enthalten sein (vgl.
Definition 2.8).

Nachdem in diesem Unterkapitel vorgestellt wurde, wie sich Argumentmengen fin-
den lassen, die gemeinsam akzeptiert werden können, soll im nachfolgenden Unterab-
schnitt 2.3 auf wünschenswerte Eigenschaften dieser Semantiken eingegangen werden.

2.3 Eigenschaften (Postulate)

Um eine passende Semantik für ein gegebenes Problem auswählen zu können und um
verschiedene Semantiken vergleichbar zu machen, haben van der Torre und Vesic un-
terschiedliche Eigenschaften, sogenannte Postulate, eingeführt [vdTV17] (erstmals wur-
den diese bereits 2007 von Baroni und Giacomin vorgestellt [BG07]). Davon sollen die
wichtigsten Grundsätze in diesem Unterkapitel dargestellt werden. Dies stellt ledig-
lich eine Auswahl dar, für eine vollständige Übersicht sei auf die Arbeiten von van der
Torre und Vesic bzw. von Baroni und Giacomin verwiesen [vdTV17, BG07].

Für die nachfolgenden Definitionen dieses Unterkapitels sei, sofern nicht anders er-
wähnt, stets F = (A,R) ein beliebiges AF und, da die Eigenschaften auf beliebige Se-
mantiken anwendbar sind, sei σ ∈ {cf, ad, co, pr, gr, st}.

Für die erste Eigenschaft der Syntaxunabhängigkeit ist zunächst zu definieren, wann
zwei AFs isomorph sind.

Definition 2.15 (Isomorphe AFs). Seien F = (A,R) und F ′ = (A′, R′) zwei AFs. Die
beiden AFs F und F ′ heißen isomorph, wenn es eine bijektive Abbildung ρ : A → A′

gibt, sodass für alle a, b ∈ A gilt:

(a, b) ∈ R gdw. (ρ(a), ρ(b)) ∈ R′.

Mit Hilfe dieser Definition lässt sich nun die gewünschte Eigenschaft der Syntaxun-
abhängigkeit definieren, bei der es darum geht, dass sich die σ-Extensionen unabhän-
gig von deren Bezeichnung bestimmen lassen sollen.

Definition 2.16 (Syntaxunabhängigkeit9). Eine Semantik σ erfüllt Syntaxunabhängig-
keit gdw. für alle AFs F und F ′ gilt: Falls F und F ′ isomorph mit einer bijektiven
Abbildung ρ sind (es gilt somit ρ(F ) = F ′), dann folgt:

σ(ρ(F )) = ρ(σ(F )).
9Principle 1 aus [vdTV17]
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Die zweite Eigenschaft ist die I-Maximalität. Ist I-Maximalität erfüllt, gibt es keine
unterschiedlichen Extensionen eines AFs, die in einer echten Teilmengenbeziehung zu-
einanderstehen.

Definition 2.17 (I-Maximalität10). Seien S, S′ ∈ σ(F ). Eine Semantik σ erfüllt I-Maxi-
malität gdw. für alle AFs gilt: Wenn S ⊆ S′, dann gilt S = S′.

Die dritte Eigenschaft ist die Enthaltung. Gibt es zwei unterschiedliche Extensionen
S und S′, so dass ein Argument a in S akzeptiert und in S′ abgelehnt wird, dann erfüllt
eine Semantik diese Eigenschaft nur, sofern es eine dritte Extension S′′ gibt, die das
Argument a weder akzeptiert noch ablehnt.

Definition 2.18 (Enthaltung11). Seien S1, S2 ∈ σ(F ) zwei Extensionen von F . Eine Se-
mantik σ erfüllt Enthaltung gdw. für alle Argumente a ∈ A gilt: Ist a ∈ S1 und zudem
auch a ∈ S+

2 , dann gibt es eine weitere Extension S3 ∈ σ(F ), sodass weder a ∈ S3 noch
a ∈ S+

3 gilt.

Als Vorbereitung auf das nächste Postulat muss an dieser Stelle zunächst der Be-
griff der Projektion eingeführt werden. Als Projektion werden alle Argumente aus einer
Menge S und deren Angriffe untereinander, die im AF existieren, betrachtet.

Definition 2.19 (Projektion eines AFs). Für eine Menge S ⊆ A ist die Projektion F↓S (F
projiziert auf S) gegeben durch F↓S = (S,R ∩ (S × S)).

Die vierte wünschenswerte Eigenschaft ist die Direktionalität. Diese Eigenschaft ist
erfüllt, wenn für jede Schnittmenge einer unattackierten Menge S und einer Extension
S′ gilt, dass diese Schnittmenge in der Projektion des AFs auf S ebenfalls eine Extension
darstellt. Dies formalisiert die nachfolgende Definition.

Definition 2.20 (Direktionalität12). Sei S ⊆ A eine in F unattackierte Menge, d.h. S wird
von keinem Argument a ∈ {A \ S} angegriffen. Sei zudem S′ ∈ σ(F ) eine σ-Extension
in F . Eine Semantik σ erfüllt Direktionalität gdw. σ(F↓S) = {S′ ∩ S | S′ ∈ σ(F )} für
jedes AF gilt.

Die fünfte Eigenschaft ist die Dichtheit, die wie folgt definiert ist:

Definition 2.21 (Dichtheit13). Eine Menge von Extensionen S = {S1, . . . , Sn}mit n ∈ N
und S1, . . . , Sn ∈ σ(F ) heißt dicht gdw. gilt: Sei S ∈ S und S ∪ {a} /∈ S mit a ∈ A \ S,
dann folgt, dass es ein b ∈ S gibt, das nicht gemeinsam mit a in einer beliebigen Exten-
sion aus S vorkommen kann. Die Argumente a und b sind auf eine Art inkompatibel
miteinander, beispielsweise durch eine Angriffsbeziehung.

Eine Semantik σ erfüllt Dichtheit gdw. die Menge σ(F ) für jedes AF dicht ist.

10Principle 11 aus [vdTV17]
11Principle 12 aus [vdTV17]
12Principle 15 aus [vdTV17]
13Principle 21 aus [vdTV17]
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Die sechste wünschenswerte Eigenschaft ist die Konfliktsensitivität.

Definition 2.22 (Konfliktsensitivität14). Eine Menge von Extensionen S = {S1, . . . , Sn}
mit n ∈ N und S1, . . . , Sn ∈ σ(F ) heißt konfliktsensitiv gdw. für alle Paare Si, Sj ∈ S
mit i, j ∈ {1, . . . , n} gilt: Wenn Si ∪ Sj /∈ S, dann folgt, dass es ein a ∈ Si und ein b ∈ Sj

gibt, die inkompatibel sind und nicht gemeinsam in einer Extension in S vorkommen.
Eine Semantik σ erfüllt Konfliktsensitivität gdw. die Menge σ(F ) für jedes AF kon-

fliktsensitiv ist.

Ergänzend zu den Postulaten von van der Torre und Vesic [vdTV17] soll an dieser
Stelle noch eine weitere letzte Eigenschaft, die Modularisierung, dargestellt werden,
die von Baumann et al. publiziert wurde [BBU22]. Zuvor muss noch der Begriff des
Redukts eingeführt werden.

Definition 2.23 (Redukt15). Das Redukt FS eines AFs F bzgl. einer Menge S ⊆ A ist
wie folgt definiert:

FS = (A′, R ∩ (A′ ×A′)),

wobei A′ = A \ S⊕.
Eine alternative Definition des Redukts lässt sich mit Hilfe der Projektion (vgl. Defi-

nition 2.19) formulieren mit
FS = F↓A\S⊕ .

Das heißt, es wird nur der Teilgraph von F betrachtet, aus dem alle Argumente aus S
und alle Argumente, die von S angegriffen werden, entfernt wurden.

Nachdem das Redukt nun definiert wurde, lässt sich die letzte wünschenswerte Ei-
genschaft definieren. Dies ist die Modularisierung. Wird diese Eigenschaft erfüllt, lässt
sich für eine Extension S aus einem AF F und eine Extension S′ aus dem Redukt FS

schließen, dass auch die Vereinigung S ∪ S′ eine Extension im originalen Graphen F
darstellt.

Definition 2.24 (Modularisierung16). Eine Semantik σ erfüllt Modularisierung gdw. für
alle AFs F gilt: Wenn S ∈ σ(F ) und S′ ∈ σ(FS), dann gilt S ∪ S′ ∈ σ(F ).

Nachdem nun alle wünschenswerten Eigenschaften vorgestellt wurden, soll Tabel-
le 1 einen Überblick darüber geben, welche der zuvor genannten Postulate von den
verschiedenen Semantiken erfüllt werden und welche nicht erfüllt werden [DDLW15,
DKUW24]. Anzumerken ist an dieser Stelle, dass es für Semantiken, die ein Postulat
im Allgemeinen nicht erfüllen, dennoch einzelne AFs geben kann, die dieses Postulat
erfüllen. Für die Erfüllung im Allgemeinen ist allerdings per Definition gefordert, dass
alle beliebigen AFs das Postulat erfüllen.

14Principle 22 aus [vdTV17]
15Definition 3.1 aus [BBU22]
16Definition 6.1 aus [BBU22]
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cf ad co pr gr st
Syntaxunabhängigkeit ✓ ✓ ✓ ✓ ✓ ✓

I-Maximalität ✗ ✗ ✗ ✓ ✓ ✓

Enthaltung ✓ ✓ ✓ ✗ ✓ ✗

Direktionalität ✓ ✓ ✓ ✓ ✓ ✗

Dichtheit ✓ ✗ ✗ ✗ ✓ ✓

Konfliktsensitivität ✓ ✓ ✗ ✓ ✓ ✓

Modularisierung ✗ ✓ ✓ ✓ ✓ ✓

Tabelle 1: Übersicht der Erfüllung von Postulaten durch verschiedene Semantiken. Ei-
gene Darstellung in Anlehnung an Dunne et al. und Dvořák et al. [DDLW15,
DKUW24].

15



3 Erweiterungen abstrakter Argumentationsgraphen

Wie bereits im vorherigen Abschnitt 2 beschrieben, wurden die von Dung veröffentli-
chen Semantiken [Dun95] im Laufe der Jahre immer wieder erweitert und es wurden
neue Semantiken veröffentlicht. Zudem gab es aber auch Erweiterungen der ursprüng-
lichen abstrakten Argumentationsgraphen (AFs).

Die AFs von Dung waren darauf beschränkt, dass nur ein einzelnes Argument ein
anderes Argument angreifen kann. In der Realität gibt es allerdings auch Argumen-
tationen, in denen beispielsweise nicht nur Gegenargumente, sondern auch unterstüt-
zende Argumente hervorgebracht werden können. Es ist auch denkbar, dass erst meh-
rere Argumente in Kombination zu einem Angriff führen oder dass das Wissen über
Angriffsbeziehungen oder über die Existenz von Argumenten unsicher ist. Um dieses
Abstraktionsniveau von Dung abzuschwächen, wurden sogenannte semi-abstrakte Ar-
gumentationsgraphen eingeführt, die weitere Aspekte der Realität berücksichtigen soll-
ten. Zwei solcher semi-abstrakten Argumentationsgraphen sollen in den nachfolgen-
den Unterabschnitten vorgestellt werden.

3.1 Argumentationsgraphen mit Mengenangriffen

Wie bereits einleitend erwähnt, ist es in realen Argumentationen denkbar, dass ein Ar-
gument von einer Menge mehrerer Argumente angegriffen wird. Das heißt, es kann ein
Argument a geben, das allein nicht ausreichend ist, um ein Argument c anzugreifen.
Ist aber neben a auch ein weiteres Argument b akzeptabel, können beide Argumen-
te in Kombination das Argument c angreifen. Eine solche Erweiterung der abstrakten
Argumentationsgraphen wurde von Nielsen und Parsons [NP06] erarbeitet.

Beispiel 3.1. Das Beispiel 2.1, in dem Anna und Ben über eine geplante Fahrradtour
diskutieren, wird abgeändert. Die Argumentation sieht nun wie folgt aus:

a1: Lass uns eine Fahrradtour machen.

b1: Die Sonne scheint.

b2: Ich habe eine Sonnenallergie.

Offensichtlich ist Bens Argument b1 allein kein aussagekräftiges Argument gegen ei-
ne Fahrradtour. Dass die Sonne scheint, wäre tatsächlich eher ein Grund für eine Fahr-
radtour. Aber auch das zweite Argument b2 allein betrachtet stellt kein Gegenargument
dar. Da über das Wetter nichts bekannt ist, stellt die Sonnenallergie von Ben nicht auto-
matisch ein Hinderungsgrund für eine Fahrradtour dar.

Erst beide Argumente b1 und b2 in Kombination stellen ein Gegenargument für a1
dar, sofern diese akzeptiert werden können. Da die Sonne scheint und Ben eine Son-
nenallergie hat, ist eine Fahrradtour an diesem Tag nicht möglich.

Um solche Szenarien modellieren zu können, wurden Argumentationsgraphen mit
Mengenangriffen (SetAFs) eingeführt. SetAFs bieten die Möglichkeit, dass auch meh-
rere Argumente gemeinsam ein anderes Argument angreifen können.
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Definition 3.1 (Argumentationsgraph mit Mengenangriffen17). Ein Argumentations-
graph mit Mengenangriffen (SetAF) ist ein Tupel M = (A,R). Dabei bezeichnet A die
Menge der Argumente und R die Menge der Angriffe zwischen diesen Argumenten,
wobeiR ⊆ (2A \ {∅})×A.

Für ein SetAF erfolgt ein Angriff auf ein Argument somit durch eine nichtleere Men-
ge von Argumenten aus A. Insbesondere kann die Menge auch nur ein einziges Argu-
ment enthalten, wodurch alle in AFs modellierbaren Angriffe auch im SetAF modelliert
werden können. Für SetAFs muss zudem die Angriffsrelation neu definiert werden, da
nun mehrere Argumente in Kombination angreifen können.

Definition 3.2 (Angriffsrelation mit Mengenangriffen). Für ein SetAF M = (A,R) stellt
(S, b) ∈ R mit S ⊆ 2A \ {∅} und b ∈ A einen Mengenangriff der Menge S auf das
Argument b dar. Eine äquivalente Schreibweise für einen Angriff von der Menge S auf
b ist SRb.

Beispiel 3.2. Das zu Beispiel 3.1 gehörende SetAF M1 = (A1,R1) mit A1 = {a1, b1, b2}
und R1 = {({b1, b2}, a1)} ist in Abbildung 4 dargestellt. Ein Angriff auf a1 kann nur in
Kombination aus den Argumenten b1 und b2 erfolgen.

a1

b1 b2

Abbildung 4: SetAF M1 aus Beispiel 3.2. Eigene Darstellung.

Die in Unterabschnitt 2.1 eingeführten Bezeichnungen für S− und S+ gelten analog
für SetAFs mit S ⊆ A. Insbesondere sind die einzelnen Argumente eines Mengenan-
griffs auf ein a ∈ S in S− enthalten. Ein Mengenangriff der Menge S′ auf ein Argument
b ∈ A ist in S+ enthalten gdw. S′ ⊆ S, d.h. wenn alle Argumente des Mengenangriffs
auch in S liegen.

Auch in SetAFs können Argumente von anderen Argumenten oder Argumentmen-
gen verteidigt werden. Damit ein Argument in einem SetAF verteidigt wird, muss min-
destens ein Argument der angreifenden Menge angegriffen werden. Für eine erfolgrei-
che Verteidigung müssen allerdings nicht notwendigerweise alle Argumente der an-
greifenden Menge angegriffen werden.

Definition 3.3 (Verteidigung). Für ein SetAF M = (A,R), S ⊆ A und a ∈ S gilt: Die
Menge S verteidigt das Argument a gdw. es für alle Angreifer B ⊆ A mit (B, a) ∈ R
eine weitere Menge C ⊆ S gibt, wobei für mindestens ein b ∈ B gilt: (C, b) ∈ R. Analog
wird eine Menge S′ von S verteidigt gdw. alle Argumente a ∈ S′ von S verteidigt
werden.
17Definition 1 aus [NP06]
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Die Definitionen für die charakteristische Funktion (Definition 2.4) und die Reich-
weite (Definition 2.5) gelten gleichermaßen für SetAFs, wobei die geänderte Definition
des Angriffs und der Verteidigung Anwendung findet.

Die in Unterabschnitt 2.2 vorgestellten Semantiken sollen nachfolgend in Kürze auf
SetAFs übertragen werden, wobei für die ausführlichen Definitionen auf Nielsen und
Parsons [NP06] bzw. Bikakis et al. [BCD+21] verwiesen wird.

Definition 3.4 (Semantiken für SetAFs). Sei M = (A,R) ein SetAF und S ⊆ A.
Die Mengen aller σ-Extensionen wird für SetAFs mit σ(M) bezeichnet, wobei für
σ ∈ {cf, ad, co, pr, gr, st} gilt. Die Semantiken sind wie folgt definiert:

• Eine Menge S heißt konfliktfrei gdw. es keinen Mengenangriff (B, a) ∈ R gibt
mit B ⊆ S und a ∈ S.

• Eine konfliktfreie Menge S ∈ cf(M) heißt zulässig gdw. alle a ∈ S von S vertei-
digt werden. Von den angreifenden Mengen wird mindestens ein Argument von
S angegriffen.

• Eine zulässige Menge S ∈ ad(M) heißt vollständig gdw. für jedes Argument
a ∈ A, das von S verteidigt wird, auch a ∈ S gilt.

• Eine vollständige Menge S ∈ co(M) heißt präferiert gdw. S maximal ist. Es gibt
somit keine weitere vollständige Menge S′ mit S ⊂ S′.

• Eine vollständige Menge S ∈ co(M) heißt grundiert gdw. S minimal ist. Es gibt
somit keine weitere vollständige Menge S′ mit S′ ⊂ S.

• Eine vollständige Menge S ∈ co(M) heißt stabil gdw. S ∪ S+ = A.

a1 a2 a3

a4 a5 a6

Abbildung 5: SetAF M2. Eigene Darstellung.

Zum besseren Verständnis sollen nachfolgend anhand des SetAFs aus Abbildung 5
Beispiele für alle Semantiken gegeben werden.

Beispiel 3.3. In diesem Beispiel soll für jede Semantik anhand des SetAFs aus Abbil-
dung 5 eine beispielhafte Extension und ein Gegenbeispiel angegeben werden. Das
SetAF aus Abbildung 5 ist M2 = (A2, R2) mit A2 = {a1, a2, a3, a4, a5, a6} und R2 =
{({a2, a4}, a1), ({a2, a5}, a4), ({a5}, a6), ({a6}, a5), ({a2, a3}, a6), ({a6}, a3)}. Die Seman-
tiken sollen nun einzeln betrachtet werden:
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• Konfliktfrei: Die Menge {a1, a5} ist konfliktfrei, da sich die beiden Argumente
nicht gegenseitig angreifen. Die Menge {a1, a2, a4} hingegen ist nicht konfliktfrei,
da ({a2, a4}, a1) ∈ R2 und somit ein Angriff innerhalb der Menge stattfindet.

• Zulässig: Die konfliktfreie Menge {a6} ist zulässig, da sich die Menge zum einen
gegen die angreifende Menge {a5} durch einen Gegenangriff und zum anderen
gegen den Angreifer {a2, a3} durch einen Angriff auf a3 verteidigt. Die Menge
{a4} hingegen ist nicht zulässig, da ({a2, a5}, a4) ∈ R2 und keines der Argumente
von {a4} angegriffen wird.

• Vollständig: Die zulässige Menge S1 = {a2, a4, a6} ist vollständig, da jedes Argu-
ment, das von S1 verteidigt wird, auch in S1 liegt. Die Menge S2 = {a2, a6} ist
nicht vollständig, da S2 das Argument a4 durch den Angriff ({a6}, a5) verteidigt.

• Präferiert: Die vollständige Menge {a1, a2, a3, a5} ist präferiert, da es keine echte
Obermenge gibt, die ebenfalls vollständig ist. Die Menge {a2, a5} hingegen ist
nicht präferiert, da weitere Argumente hinzugefügt werden können, sodass die
Menge ebenfalls vollständig ist.

• Grundiert: Die vollständige Menge {a2} ist grundiert, da es keine echte Teilmen-
ge gibt, die ebenfalls vollständig ist. Insbesondere ist die Menge vollständig, weil
{a2} kein weiteres Argument verteidigt. Die Menge {a2, a5} hingegen ist nicht
grundiert, da es die eben gezeigte echte Teilmenge {a2} gibt, die ebenfalls voll-
ständig ist.

• Stabil: Die vollständige Menge {a1, a2, a3, a5} ist stabil, da alle weiteren Argumen-
te aus A2 angegriffen werden. Die Menge {a2, a3, a5} hingegen ist nicht stabil, da
das Argument a1 weder in der Menge liegt, noch von der Menge angegriffen
wird.

Die in Definition 2.13 und Definition 2.14 eingeführten Definitionen der leichtgläubi-
gen und der skeptischen Schlussfolgerung lassen sich gleichermaßen auch auf SetAFs
übertragen. Dabei werden die Definitionen wie folgt abgeändert:

Definition 3.5 (Leichtgläubige σ-Schlussfolgerung für SetAFs). Sei M = (A,R) ein
SetAF und a ∈ A ein Argument. a ist eine leichtgläubige σ-Schlussfolgerung für eine
Semantik σ ∈ {cf, ad, co, pr, gr, st} gdw. es eine Extension S ∈ σ(M) gibt, sodass a ∈ S.

Definition 3.6 (Skeptische σ-Schlussfolgerung für SetAFs). Sei M = (A,R) ein SetAF
und a ∈ A ein Argument. a ist eine skeptische σ-Schlussfolgerung für eine Semantik
σ ∈ {cf, ad, co, pr, gr, st} gdw. für alle Extensionen S ∈ σ(M) gilt, dass a ∈ S.

In diesem Unterkapitel das Framework SetAF als Erweiterung von AFs vorgestellt.
Zudem wurden die Semantiken auf SetAFs übertragen und die Schlussfolgerungspro-
bleme angepasst. Im nächsten Unterabschnitt 3.2 soll nun ein weiteres Framework, das
iAF, vorgestellt werden.
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3.2 Unvollständige Argumentationsgraphen

Bei den von Dung [Dun95] eingeführten abstrakten Argumentationsgraphen wird da-
von ausgegangen, dass alle Argumente und Angriffe mit Sicherheit zutreffen. In der
Realität kann dies jedoch nicht immer gewährleistet werden, da es Argumente geben
kann, die unsicher sind oder über deren Existenz nicht genügend Informationen vor-
liegen. Genauso kann es auch für zwei Argumente a und b einen Angriff aRb geben,
für den aber nicht mit Sicherheit gesagt werden kann, dass a das Argument b angreift.
Dies kann zwar in einer bestimmten Situation sein, muss es aber nicht zwangsläufig.

Eine Erweiterung der abstrakten Argumentationsgraphen um unvollständiges Wis-
sen über Argumente und Angriffe wurde von Baumeister et al. [BNRS18] veröffent-
licht, wobei die ersten Ideen einer solchen Erweiterung von Coste-Marquis veröffent-
lich wurden [CMDK+07]. Die Notwendigkeit eines solchen Frameworks soll das nach-
folgende Beispiel verdeutlichen.

Beispiel 3.4. Das Beispiel 2.1, in dem Anna und Ben über eine geplante Fahrradtour
diskutieren, wird abgeändert. Die Argumentation sieht nun wie folgt aus:

a1: Lass uns eine Fahrradtour machen.

b1: Laut Wetterbericht soll es mit einer Wahrscheinlichkeit von 30% regnen.

b2: Ich habe einen platten Reifen.

b3: Meine Fahrradkette könnte rausspringen.

In dieser Situation gibt es nun zum einen das sichere Argument a1 von Anna und drei
weitere Argumente von Ben, deren Existenz bzw. Sicherheit des Eintreffens überprüft
werden soll. Das Argument b1 ist unsicher, denn der Wetterbericht ist oft unzuverläs-
sig und es ist lediglich eine Regenwahrscheinlichkeit von 30% angegeben. Es ist somit
ungewiss, ob es überhaupt regnen wird. Wenn es allerdings tatsächlich regnen sollte,
dann stellt dieses Argument einen Angriff auf a1 dar, da die Fahrradtour bei Regen
ausfällt.

Das Argument b2 hingegen ist ein sicheres Argument. Es ist Fakt, dass Bens Reifen
platt ist. Allerdings ist fraglich, ob dieses Argument a1 angreift. Es ist möglich, dass
der Reifen lediglich Luft verloren hat und mit einer Luftpumpe wieder aufgepumpt
werden kann. Es würde sich somit nicht um einen Angriff auf a1 handeln, da die Fahr-
radtour dennoch möglich wäre. Es besteht aber auch die Möglichkeit, dass Ben ein Loch
im Reifen hat. In diesem Fall wäre die Fahrradtour nicht möglich und es würde sich um
einen Angriff auf a1 handeln.

Das Argument b3 ist ein unsicheres Argument. Das Fahrrad funktioniert zum aktu-
ellen Zeitpunkt, Ben hat lediglich Bedenken, dass die Fahrradkette rausspringen könn-
te. Sofern dies tatsächlich passieren sollte, wäre weiterhin unklar, ob dieses Argument
überhaupt einen Angriff auf a1 darstellt. Es ist möglich, dass Ben sich mit Fahrrädern
auskennt und die Fahrradkette selbst wieder einsetzen kann. Die Fahrradtour könn-
te fortgesetzt werden und ein Angriff findet nicht statt. Allerdings kann es auch sein,
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dass Ben nicht weiß, wie man die Fahrradkette repariert und das Argument würde a1
angreifen.

Das eben gezeigte Beispiel lässt sich mittels klassischer AFs nicht darstellen. Eine
Darstellung ist allerdings mit der Erweiterung der unvollständigen Argumentations-
graphen (iAFs) möglich, das wie folgt definiert ist:

Definition 3.7 (Unvollständige Argumentationsgraphen18). Ein unvollständiger Argu-
mentationsgraph (iAF) ist ein Tupel I = (A,A?,R,R?). Dabei bezeichnet A die Menge
der sicheren Argumente, A? die Menge der unsicheren Argumente, R die Menge der
bedingt sicheren Angriffe und R? die Menge der unsicheren Angriffe, wobei A∩A? = ∅
und R,R? ⊆ (A ∪ A?)× (A ∪ A?).

Ein iAF kann sowohl bedingt sichere als auch unsichere Angriffe enthalten. Bedingt
sichere Angriffe sind dabei genau solche Angriffe, bei denen der Angreifer akzeptiert
ist. Formal lässt sich dies folgendermaßen definieren:

Definition 3.8 (Bedingt sichere Angriffsrelation). Für ein iAF I = (A,A?,R,R?) be-
zeichnet R die bedingt sichere Angriffsrelation zwischen den Argumenten. Für einen
bedingt sicheren Angriff (a, b) ∈ R mit a, b ∈ A ∪ A? gilt: Wenn die Argumente a
und b gültig sind, dann greift das Argument a das Argument b an. Eine äquivalente
Schreibweise für einen bedingt sicheren Angriff von a auf b ist aRb.

Bedingt sichere Angriffe eines iAFs beinhalten somit auch Angriffe, an denen unsi-
chere Argumente beteiligt sein können. Angriffe dieser Art sind nur gültig, sofern diese
unsicheren Argumente akzeptiert sind. Unsichere Angriffe hingegen sind unabhängig
von den Argumenten, die am Angriff beteiligt sind. Auch wenn der Angreifer akzep-
tiert ist, muss ein unsicherer Angriff nicht zwingend erfolgen.

Definition 3.9 (Unsichere Angriffsrelation). Für ein iAF I = (A,A?,R,R?) bezeich-
net R? die unsichere Angriffsrelation zwischen den Argumenten. Für einen unsicheren
Angriff (a, b) ∈ R? mit a, b ∈ A ∪ A? gilt: Wenn die Argumente a und b gültig sind,
kann ein Angriff von a auf b erfolgen. Dieser Angriff muss nicht zwingend erfolgen.
Eine äquivalente Schreibweise für einen unsicheren Angriff von a auf b ist aR?b.

Das nachfolgende Beispiel soll das Konzept von iAFs verdeutlichen, wobei auch
die Unterschiede zwischen bedingt sicheren und unsicheren Angriffen hervorgehoben
werden. Unsichere Argumente und unsichere Angriffe werden grundsätzlich durch ge-
strichelte Linien dargestellt.

Beispiel 3.5. Das zu Beispiel 3.4 gehörende iAF ist in Abbildung 6 dargestellt. Der
in Abbildung 6 dargestellte Argumentationsgraph lautet I1 = {A1,A?

1 ,R1,R?
1} mit

A1 = {a1, b2}, A?
1 = {b1, b3}, R1 = {(b1, a1)}, R?

1 = {(b2, a1), (b3, a1)}. Der Angriff
(b1, a1) ∈ R1 ist bedingt sicher, da dieser nur gültig ist, sofern auch das Argument b1
akzeptiert ist. Der Angriff (b2, a1) ∈ R?

1 gilt hingegen als unsicher.
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a1

b1

b2

b3

Abbildung 6: iAF I1 aus Beispiel 3.4. Eigene Darstellung.

Um nun Aussagen über die Akzeptanz und Ablehnung von Argumenten in iAFs tref-
fen zu können, gibt es in der Literatur zwei verschiedene Ansätze. Dies ist zum einen
der von Baumeister et al. [BNRS18] vorgestellte vervollständigungsbasierte Ansatz und
zum anderen der von Mailly [Mai21] veröffentlichte extensionsbasierte Ansatz. Beide
Ansätze sollen im Rahmen dieser Arbeit untersucht werden. Aus diesem Grund wer-
den nachfolgend zunächst die Grundlagen beider Ansätze vorgestellt.

3.2.1 Vervollständigungsbasierter Ansatz

Die Idee des vervollständigungsbasierten Ansatzes ist es, alle möglichen Konstella-
tionen von AFs zu berücksichtigen und unter Berücksichtigung dieser Möglichkeiten
Schlussfolgerungen über die Akzeptanz von Argumenten zu ziehen. Da ein iAF aus
sicheren und unsicheren Komponenten besteht, lassen sich aus diesem iAF eine Viel-
zahl von AFs ableiten, bei denen alle enthaltenen Komponenten als sicher angesehen
werden können. Dem iAF können somit alle möglichen Situationen (mögliche Kombi-
nationen) entnommen werden. Auf diese Weise können die einzelnen AFs dann ent-
sprechend der Erläuterungen aus Unterabschnitt 2.1 behandelt werden.

Ein solches AF, das aus einem iAF abgeleitet wird, nennt sich Vervollständigung. Die-
se Vervollständigung enthält selbst kein unsicheres Wissen mehr und ist wie folgt defi-
niert:

Definition 3.10 (Vervollständigungen von iAFs19). Sei I = (A,A?,R,R?) ein iAF
und Comp(I) die Menge aller Vervollständigungen. Für alle Vervollständigungen I∗ ∈
Comp(I) mit I∗ = (A∗, R∗) gilt: A ⊆ A∗ ⊆ (A ∪ A?) und R ∩ (A∗ × A∗) ⊆ R∗ ⊆
(R ∪ R?) ∩ (A∗ ×A∗).

Beispiel 3.6. Für das in Abbildung 7 dargestellte iAF I2 = {A2,A?
2 ,R2,R?

2} mit A2 =
{a1, a2, a4}, A?

2 = {a3}, R2 = {(a1, a2), (a2, a3)}, R?
2 = {(a2, a4)} können insgesamt vier

Vervollständigungen abgeleitet werden. Die Menge der Vervollständigungen Comp(I2)
kann Abbildung 8 entnommen werden.

Für die einzelnen Vervollständigungen von iAFs gelten die Begriffe des Angriffs und
der Verteidigung aus Unterabschnitt 2.1 gleichermaßen. Ebenso gelten für die einzelnen

18Definition 16 aus [BNRS18]
19Definition 19 aus [BNRS18]
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a1 a2 a3

a4

Abbildung 7: iAF I2 aus Beispiel 3.6. Eigene Darstellung.

a1 a2

a4

I2,1

a1 a2

a4

I2,2

a1 a2 a3

a4

I2,3

a1 a2 a3

a4

I2,4

Abbildung 8: Menge aller Vervollständigungen des iAF I2 aus Abbildung 7. Eigene
Darstellung zu Beispiel 3.6.

Vervollständigungen auch die Semantiken aus Unterabschnitt 2.2, da es sich bei den
Vervollständigungen um übliche AFs nach Dung handelt.

Um nun Aussagen über das iAF selbst treffen zu können, werden die Semantiken
und deren Extensionen um die Begriffe der möglichen und der notwendigen σ-Exten-
sion wie folgt erweitert.

Definition 3.11 (Mögliche σ-Extension). Für ein iAF I = (A,A?,R,R?) und eine Se-
mantik σ ∈ {cf, ad, co, pr, gr, st} ist S ⊆ (A ∪A?) eine mögliche σ-Extension für I gdw.
S ∈ σ(I∗) für mindestens eine Vervollständigung I∗ ∈ Comp(I).

Beispiel 3.7. Für das in Abbildung 7 dargestellte iAF ist die Menge {a1, a4} eine mögli-
che gr-Extension, da es in Abbildung 8 mindestens eine Vervollständigung gibt, für die
{a1, a4} eine grundierte Extension ist.

Ebenso lässt sich auch die notwendige σ-Extension auf iAFs übertragen:
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Definition 3.12 (Notwendige σ-Extension). Für ein iAF I = (A,A?,R,R?) und eine
Semantik σ ∈ {cf, ad, co, pr, gr, st} ist S ⊆ A eine notwendige σ-Extension für I gdw.
S ∈ σ(I∗) für alle Vervollständigungen I∗ ∈ Comp(I).

Beispiel 3.8. Für das in Abbildung 7 dargestellte iAF ist die Menge {a1, a4} eine not-
wendige ad-Extension, da diese für alle Vervollständigungen aus Abbildung 8 jeweils
eine zulässige Menge ist.

Die in Definition 2.13 und Definition 2.14 eingeführten Definitionen der leichtgläubi-
gen und der skeptischen Schlussfolgerung müssen für iAFs abgeändert werden, da nun
eine Vielzahl unterschiedlicher Argumentationsgraphen (die Vervollständigungen) be-
rücksichtigt werden müssen.

Definition 3.13 (Schlussfolgerungsprobleme für iAFs). Sei I = (A,A?,R,R?) ein iAF
mit den Vervollständigungen I∗ ∈ Comp(I). Für ein Argument a ∈ (A ∪ A?) und eine
Semantik σ ∈ {cf, ad, co, pr, gr, st} gilt:

1. a ist eine mögliche leichtgläubige σ-Schlussfolgerung von I gdw. es mindestens
eine Vervollständigung I∗ gibt, für die a eine leichtgläubige σ-Schlussfolgerung
ist.

2. a ist eine mögliche skeptische σ-Schlussfolgerung von I gdw. es mindestens eine
Vervollständigung I∗ gibt, für die a eine skeptische σ-Schlussfolgerung ist.

3. a ist eine notwendige leichtgläubige σ-Schlussfolgerung von I gdw. für alle Ver-
vollständigungen I∗ gilt, dass a eine leichtgläubige σ-Schlussfolgerung ist.

4. a ist eine notwendige skeptische σ-Schlussfolgerung von I gdw. für alle Vervoll-
ständigungen I∗ gilt, dass a eine skeptische σ-Schlussfolgerung ist.

Beispiel 3.9. Für das in Abbildung 7 dargestellte iAF sollen die verschiedenen Schluss-
folgerungen an einem beispielhaften Argument aufgezeigt werden.

1. a3 ist eine mögliche leichtgläubige ad-Schlussfolgerung.

2. a4 ist eine mögliche skeptische co-Schlussfolgerung.

3. a4 ist eine notwendige leichtgläubige ad-Schlussfolgerung.

4. a1 ist eine notwendige skeptische gr-Schlussfolgerung.

Durch diese Schlussfolgerungsprobleme ist es nun möglich, trotz unvollständiger In-
formation über Argumente oder Angriffe Aussagen über die Akzeptanz von Argumen-
ten zu treffen. Insbesondere ist die notwendige skeptische σ-Schlussfolgerung eine sehr
strikte Schlussfolgerung, da die Akzeptanz eines Argumentes trotz fehlender Informa-
tionen mit Sicherheit angenommen werden kann.
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3.2.2 Extensionsbasierter Ansatz

Der zweite Ansatz, um Aussagen über iAFs treffen zu können, ist der extensionsbasier-
te Ansatz. Während beim vervollständigungsbasierten Ansatz zunächst alle Vervoll-
ständigungen berücksichtigt werden müssen, um anschließend unter Berücksichtigung
aller Konstellationen der Unsicherheit Aussagen über die Akzeptanz von Argumenten
treffen zu können, ist die Idee des extensionsbasierten Ansatzes das direkte Schlussfol-
gern von Akzeptanz von Argumenten. Dies erfolgt durch angepasste Definitionen der
konfliktfreien und zulässigen Menge sowie der bereits in Unterabschnitt 2.2 vorgestell-
ten Semantiken.

Beim extensionsbasierten Ansatz werden dabei zwei unterschiedliche Sichtweisen
für jede der neuen Definitionen vertreten. Bei der optimistischen Sichtweise wird ange-
nommen, dass Angriffe von unsicheren Argumenten und generell unsichere Angriffe
keine Gefährdung darstellen. Bei der pessimistischen Sichtweise hingegen wird jeder
Angriff als Gefährdung eingestuft, wobei nicht von Bedeutung ist, ob das angreifende
Argument sicher oder unsicher ist und ob der Angriff sicher oder unsicher ist.

Bevor die veränderten Definitionen für den extensionsbasierten Ansatz vorgestellt
werden, ist es notwendig, zunächst den Begriff der Verteidigung neu zu definieren.
Dies liegt daran, dass auch hier die optimistische bzw. die pessimistische Sichtweise
verfolgt wird, die sich durch eine schwache bzw. starke Verteidigung äußert.

Definition 3.14 (Verteidigung in iAFs20). Für ein iAF I = (A,A?,R,R?), eine Menge
S ⊆ A ∪ A? und ein Argument a ∈ A ∪ A? gilt:

• Die Menge S verteidigt das Argument a schwach gdw. es für alle sicheren Angrei-
fer b ∈ A mit (b, a) ∈ R ein weiteres sicheres Argument c ∈ S gibt mit (c, b) ∈ R.

• Die Menge S verteidigt das Argument a stark gdw. es für alle Angreifer b ∈ A∪A?

mit (b, a) ∈ R ∪ R? ein sicheres Argument c ∈ S gibt mit (c, b) ∈ R.

Analog wird eine Menge S′ ⊆ A ∪ A? von S schwach bzw. stark verteidigt gdw. alle
Argumente a ∈ S′ von S schwach bzw. stark verteidigt werden.

Beispiel 3.10. Für das iAF I3 = (A3,A?
3 ,R3,R?

3) aus Abbildung 9 gilt beispielsweise:

• Die Menge {a4} verteidigt das Argument a2 schwach, da der sichere Angriff vom
sicheren Argument a3 selbst wiederrum von a4 sicher angegriffen wird. Der An-
griff von a1 ist für die schwache Verteidigung nicht zu beachten.

• Die Menge {a5} verteidigt das Argument a2 stark, da alle Angreifer von a2 wie-
derrum von a5 sicher angegriffen werden. In diesem Fall muss auch a1 angegrif-
fen werden.

Nachdem die Verteidigung neu definiert wurde, lassen sich auch die schwach bzw.
stark konfliktfreien Mengen für iAFs definieren.

20Definition 8 aus [Mai21]
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a1 a2 a3 a4

a5

Abbildung 9: iAF I3 aus Beispiel 3.10. Eigene Darstellung.

Definition 3.15 (Konfliktfreie Mengen für iAFs21). Sei I = (A,A?,R,R?) ein iAF und
S ⊆ A ∪ A?. Eine Menge S heißt

• schwach konfliktfrei gdw. für alle a, b ∈ S ∩ A nicht aRb gilt. Die Menge al-
ler schwach konfliktfreien Mengen von I bezeichnet cfw(I) = {S ⊆ A ∪ A? |
S ist schwach konfliktfrei}.

• stark konfliktfrei gdw. für alle a, b ∈ S weder aRb noch aR?b gilt. Die Men-
ge aller stark konfliktfreien Mengen von I bezeichnet cfs(I) = {S ⊆ A ∪ A? |
S ist stark konfliktfrei}.

Erfüllt eine Menge S die schwache Konfliktfreiheit für iAFs, gibt es keine sicheren
Angriffe zwischen sicheren Argumenten. Bei der starken Konfliktfreiheit hingegen gibt
es zudem auch keine unsicheren Angriffe zwischen den Argumenten aus S, wobei hier
auch keine Unterscheidung zwischen sicheren und unsicheren Argumenten vorgenom-
men wird.

Beispiel 3.11. Für das iAF I4(A4,A?
4 ,R4,R?

4) aus Abbildung 10 ist beispielsweise
{a5, a6, a7} eine schwach konfliktfreie Menge und {a2, a4} eine stark konfliktfreie Men-
ge. Die Menge {a1, a2, a3} hingegen ist nicht schwach konfliktfrei und {a6, a7} ist nicht
stark konfliktfrei.

a1 a2 a3 a4

a5 a6 a7 a8

Abbildung 10: Unvollständiger Argumentationsgraph I4 aus Beispiel 3.11. Eigene Dar-
stellung.

Auch die Zulässigkeit lässt sich bezogen auf iAFs in der schwachen und der starken
Variante definieren, wobei bei der Zulässigkeit nocht eine gemischte Variante gibt, um
alle Konstellationen abzudecken, wie die folgende Definition verdeutlicht.
21Definition 7 aus [Mai21]
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Definition 3.16 (Zulässige Mengen für iAFs22). Sei I = (A,A?,R,R?) ein iAF und
S ⊆ A ∪ A?. Eine Menge S heißt

• schwach zulässig gdw. S ∈ cfw(I) und alle a ∈ S von S schwach verteidigt wer-
den. Die Menge aller schwach zulässigen Mengen von I bezeichnet adw(I) =
{S ⊆ A ∪ A? | S ist schwach zulässig}.

• gemischt zulässig gdw. S ∈ cfs(I) und alle a ∈ S von S schwach verteidigt wer-
den. Die Menge aller gemischt zulässigen Mengen von I bezeichnet adm(I) =
{S ⊆ A ∪ A? | S ist gemischt zulässig}.

• stark zulässig gdw. S ∈ cfs(I) und alle a ∈ S von S stark verteidigt werden. Die
Menge aller stark zulässigen Mengen von I bezeichnet ads(I) = {S ⊆ A ∪ A? |
S ist stark zulässig}.

Beispiel 3.12. Für das iAF I4 aus Abbildung 10 soll für jede der drei Arten der Zuläs-
sigkeit ein Beispiel angegeben werden:

• Die Menge {a3, a4, a8} ist schwach zulässig. Es gibt keine sicheren Angriffe zwi-
schen sicheren Argumenten innerhalb der Menge. Außerdem wird die Menge
von außen von a7 angegriffen, verteidigt sich jedoch durch das Argument a8 ge-
gen diesen Angriff.

• Die Menge {a4, a6} ist gemischt zulässig. Es gibt keine Angriffe zwischen Argu-
menten und die Menge wird nicht durch einen sicheren Angriff attackiert.

• Die Menge {a1, a6} ist stark zulässig. Es gibt keine Angriffe zwischen Argumen-
ten der Menge. Alle Argumente, die sicher oder unsicher angegriffen werden,
werden von der Menge stark verteidigt.

Die nächste Semantik, die neu definiert werden soll, ist die vollständige Semantik.

Definition 3.17 (Vollständige Extensionen für iAFs23). Sei I = (A,A?,R,R?) ein iAF
und S ⊆ A ∪ A?. Eine Menge S heißt

• schwach vollständig gdw. S ∈ adw(I) und jedes Argument a ∈ A∪A?, das von S
schwach verteidigt wird, auch in S liegt. Die Menge aller schwach vollständigen
Mengen von I bezeichnet cow(I) = {S ⊆ A ∪ A? | S ist schwach vollständig}.

• stark vollständig gdw. S ∈ ads(I) und jedes Argument a ∈ A∪A?, das von S stark
verteidigt wird, auch in S liegt. Die Menge aller stark vollständigen Mengen von
I bezeichnet cos(I) = {S ⊆ A ∪ A? | S ist stark vollständig}.

22Definition 9 aus [Mai21]
23Definition 10 aus [Mai21]
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Beispiel 3.13. Für das iAF I4 aus Abbildung 10 soll für jede der zwei Arten der Voll-
ständigkeit ein Beispiel angegeben werden:

• Die Menge {a1, a3, a4, a6} ist schwach vollständig, da die Menge schwach zulässig
ist und kein weiteres Argument a ∈ A ∪ A? schwach verteidigt wird.

• Die Menge {a1, a6} ist bereits stark vollständig. Diese Menge ist stark zulässig
und es gibt keine weiteren Argumente a ∈ A ∪ A?, die von der Menge stark
verteidigt werden.

Wie bereits für AFs gezeigt wurde, können auch schwach vollständige und stark voll-
ständige Extensionen maximal bzw. minimal sein. Eine maximal schwach bzw. stark
vollständige Extension stellt die schwach bzw. stark präferierte Extension dar.

Definition 3.18 (Präferierte Extensionen für iAFs24). Sei I = (A,A?,R,R?) ein iAF und
S ⊆ A ∪ A?. Eine Menge S heißt

• schwach präferiert gdw. S ∈ adw(I) und S maximal ist. Es gibt somit kei-
ne größere Menge S′ ⊃ S, die ebenfalls schwach zulässig ist. Die Menge al-
ler schwach präferierten Mengen von I bezeichnet prw(I) = {S ⊆ A ∪ A? |
S ist schwach präferiert}.

• stark präferiert gdw. S ∈ ads(I) und S maximal ist. Es gibt somit keine größere
Menge S′ ⊃ S, die ebenfalls stark zulässig ist. Die Menge aller stark präferierten
Mengen von I bezeichnet prs(I) = {S ⊆ A ∪ A? | S ist stark präferiert}.

Beispiel 3.14. Für das iAF I4 aus Abbildung 10 soll für jede der zwei Arten der Präfe-
riertheit ein Beispiel angegeben werden:

• Die Menge {a1, a3, a4, a6, a7} ist schwach präferiert, da die Menge schwach zuläs-
sig ist und es keine Obermenge gibt, die ebenfalls schwach zulässig ist.

• Die Menge {a1, a6, a8} ist stark präferiert. Diese Menge ist stark zulässig und es
handelt sich bereits um eine maximale stark zulässige Menge. Insbesondere kann
das Argument a3 nicht stark verteidigt werden, da dieses von a4 angegriffen wird
und a4 von a8 lediglich unsicher angegriffen wird, was laut Definition nicht für
eine starke Verteidigung ausreicht.

Für die formale Definition der grundierten Semantik für iAFs wird erneut die in De-
finition 2.4 vorgestellte charakteristische Funktion benötigt, die an dieser Stelle aller-
dings für das iAF angepasst werden muss.

24Definition 10 aus [Mai21]
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Definition 3.19 (x-charakteristische Funktion für iAFs25). Sei I = (A,A?,R,R?) ein
iAF und es bezeichne x ∈ {w, s} die Unterscheidung zwischen der schwachen (w)
und der starken (s) charakteristischen Funktion. Die x-charakteristische Funktion τI,x :

2A∪A? → 2A∪A?
bestimmt für eine Menge S ⊆ A ∪ A? alle Argumente, die von dieser

Menge

• schwach verteidigt werden (für den Fall x = w) bzw.

• stark verteidigt werden (für den Fall x = s).

Beispiel 3.15. Für das iAF I4 aus Abbildung 10 und eine Menge S = {a1} gilt τI4,w(S) =
{a1, a3, a4, a6}. Dies ist genau die Menge, die von a1 schwach verteidigt wird. Außer-
dem gilt τI4,s(S) = {a1, a6}, was genau der Menge entspricht, die von a1 stark verteidigt
wird.

Mit Hilfe der neu definierten charakteristischen Funktion lässt sich nun auch die
grundierte Semantik für iAFs definieren.

Definition 3.20 (Grundierte Extensionen für iAFs26). Sei I = (A,A?,R,R?) ein iAF
und S ⊆ A ∪ A?. Eine Menge S heißt

• schwach grundiert gdw. diese dem Fixpunkt der iterativen Anwendung der w-
charakteristischen Funktion entspricht. Die Menge aller schwach grundierten
Mengen von I bezeichnet grw(I) = {S ⊆ A ∪ A? | S ist schwach grundiert}.

• stark grundiert gdw. diese dem Fixpunkt der iterativen Anwendung der s-cha-
rakteristischen Funktion entspricht. Die Menge aller stark grundierten Mengen
von I bezeichnet grs(I) = {S ⊆ A ∪ A? | S ist stark grundiert}.

Beispiel 3.16. Für das iAF I4 aus Abbildung 10 soll für jede der zwei Arten der Grun-
diertheit ein Beispiel angegeben werden:

• Die Menge {a1, a3, a4, a6} ist schwach grundiert. Es gilt τI4,w(∅) = {a1, a3, a4},
da diese Argumente nicht sicher von sicheren Argumenten attackiert wer-
den und dadurch von der leeren Menge verteidigt werden. Weiter gelten
τI4,w({a1, a3, a4}) = {a1, a3, a4, a6} und τI4,w({a1, a3, a4, a6}) = {a1, a3, a4, a6},
was dem Fixpunkt und damit auch genau der schwach grundierten Extension
entspricht.

• Die Menge {a1, a6} ist stark grundiert. Es gilt τI4,w(∅) = {a1}, da dieses Argument
nicht angegriffen wird. Weiter gelten τI4,w({a1}) = {a1, a6} und τI4,w({a1, a6}) =
{a1, a6}. Letzteres entspricht dem Fixpunkt und damit der stark grundierten Ex-
tension.

25Definition 7 aus [Mai23]
26Definition 8 aus [Mai23]
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Die letzte verbleibende Semantik ist die stabile Semantik. Auch diese lässt sich in
einer schwachen und einer starken Ausprägung an iAFs anpassen.

Definition 3.21 (Stabile Extensionen für iAFs27). Sei I = (A,A?,R,R?) ein iAF und
S ⊆ A ∪ A?. Eine Menge S heißt

• schwach stabil gdw. S ∈ cfw(I) und alle a ∈ A \ S sicher von S angegriffen
werden, es gibt somit ein b ∈ S ∩ A mit bRa. Die Menge aller schwach stabilen
Mengen von I bezeichnet stw(I) = {S ⊆ A ∪ A? | S ist schwach stabil}.

• stark stabil gdw. S ∈ cfs(I) und alle a ∈ (A ∪ A?) \ S sicher von S angegriffen
werden, es gibt somit ein b ∈ S ∩ A mit bRa. Die Menge aller stark stabilen
Mengen von I bezeichnet sts(I) = {S ⊆ A ∪ A? | S ist stark stabil}.

Beispiel 3.17. Für das iAF I4 aus Abbildung 10 soll für jede der zwei Arten der Stabilität
ein Beispiel angegeben werden:

• Die Menge {a1, a6, a7} ist schwach stabil, da die Menge schwach konfliktfrei ist
und das einzige verbleibende sichere Argument a8 sicher von a7 attackiert wird.

• Für das iAF I4 gibt es keine stark stabile Extension. Die Argumente a3 und a4
werden beide nicht sicher von einem sicheren Argument angegriffen. Für eine
stabile Extension müssten somit beide Argumente in der Extension enthalten sein,
was aber aufgrund der notwendigen Bedingung der starken Konfliktfreiheit nicht
möglich ist. Mit einer kleinen Anpassung des iAFs lässt sich allerdings dennoch
ein Beispiel angeben. Angenommen, für I4 gelte (a8, a4) ∈ R4 statt (a8, a4) ∈
R?

4, dann wäre {a1, a3, a6, a8} eine stabile Extension, da alle weiteren Argumente
sicher angegriffen werden.

In diesem Unterkapitel wurde das Framework iAF als Erweiterung von AFs vorge-
stellt. Zudem wurden zwei unterschiedliche Ansätze für iAFs verfolgt. Der vervoll-
ständigungsbasierte Ansatz verfolgt das Ziel, Aussagen über Argumente oder Argu-
mentmenten anhand von Vervollständigungen zu treffen. Der extensionsbasierte An-
satz hingegen verfolgt das Ziel, direkte Aussagen über iAFs treffen zu können, indem
die Semantiken neu definiert wurden, wobei zwischen einer schwachen und einer star-
ken Ausprägung der jeweiligen Semantik unterschieden wird.

27Definition 11 aus [Mai21]
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4 Entwicklung des Argumentationsframeworks iSetAF

Im vorherigen Abschnitt 3 wurden zwei Erweiterungen von abstrakten Argumentati-
onsgraphen dargestellt, die Argumentationsgraphen mit Mengenangriffen und unvoll-
ständige Argumentationsgraphen. In realen Argumentationen ist nun aber auch denk-
bar, dass es Mengenangriffe gibt, bei denen das Wissen über die Argumente oder über
die Angriffe unsicher ist. Diese Situation soll das nachfolgende Beispiel zeigen.

Beispiel 4.1. Das Beispiel 2.1, in dem Anna und Ben über eine geplante Fahrradtour
diskutieren, wird abgeändert. Die Argumentation sieht nun wie folgt aus:

a1: Lass uns eine Fahrradtour machen.

b1: Ich habe eine Sonnenallergie.

b2: Laut Wetterbericht soll es mit einer Wahrscheinlichkeit von 30% wolkenlos
sein.

In dieser Situation ist das Argument, dass Ben eine Sonnenallergie hat, ein sicheres
Argument, das aber allein genommen kein Argument gegen eine Fahrradtour ist (vgl.
auch Beispiel 3.1). Bens zweites Argument b2 ist unsicher, da der Wetterbericht nur eine
Vermutung ist und es evtl. auch bewölkt sein könnte. Auch dieses unsichere Argument
stellt allein kein Gegenargument dar.

Lediglich für den Fall, dass das unsichere Argument akzeptiert werden kann, würde
ein Mengenangriff von {b1, b2} auf a1 erfolgen. Da Ben eine Sonnenallergie hat, ist eine
Fahrradtour nicht möglich, sollte die Sonne tatsächlich scheinen.

In diesem Kapitel sollen unvollständige Argumentationsgraphen mit Mengenangrif-
fen (iSetAFs) eingeführt und zunächst formal definiert werden, wobei insbesonde-
re auch der Begriff des Angriffs neu definiert wird. Anschließend soll zur Auswer-
tung von iSetAFs zunächst ein vervollständigungsbasierter und anschließend ein ex-
tensionsbasierter Ansatz verfolgt werden. Beide Ansätze wurden bereits in Unterab-
schnitt 3.2 für iAFs vorgestellt und sollen in diesem Kapitel auf die neu definierten
iSetAFs angepasst werden.

4.1 Formale Definition

In diesem Unterkapitel wird die formale Definition für iSetAFs vorgestellt, die sich
an der Definition für iAFs orientiert und sowohl für den vervollständigungsbasierten
Ansatz aus Unterabschnitt 4.2 als auch für den extensionsbasierten Ansatz aus Unter-
abschnitt 4.3 gültig ist.

Definition 4.1 (Unvollständige Argumentationsgraphen mit Mengenangriffen). Ein
unvollständiger Argumentationsgraph mit Mengenangriffen (iSetAF) ist ein Tupel
U = (A,A?,R,R?). Dabei bezeichnet A die Menge der sicheren Argumente, A? die
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Menge der unsicheren Argumente, R die Menge der bedingt sicheren Mengenan-
griffe und R? die Menge der unsicheren Mengenangriffe, wobei A ∩ A? = ∅ und
R,R? ⊆ (2A∪A? \ {∅})× (A ∪A?).

Für ein iSetAF erfolgt ein Angriff auf ein Argument somit durch eine nichtleere Men-
ge von Argumenten aus A ∪ A?. Insbesondere kann die Menge auch nur ein einziges
Argument enthalten, wodurch alle in AFs modellierbaren Angriffe auch im iSetAF mo-
delliert werden können, bei dem die Menge der unsicheren Argumente und die Menge
der unsicheren Angriffe leer ist.

Bei der Angriffsrelation kann zwischen sicheren, bedingt sicheren und unsicheren
Angriffen unterschieden werden. Bedingt sichere Mengenangriffe eines iSetAFs bein-
halten auch Mengenangriffe, an denen unsichere Argumente beteiligt sein können. So-
fern aber alle am Mengenangriff beteiligten Argumente tatsächlich gelten und somit
als sicher angenommen werden können, ist auch der Mengenangriff sicher und damit
gültig.

Definition 4.2 (Bedingt sichere und sichere Angriffsrelation in iSetAFs). Für ein iSe-
tAF U = (A,A?,R,R?) stellt (G, b) ∈ R mit G ⊆ A ∪ A? \ ∅ und b ∈ A ∪ A? einen
bedingt sicheren Mengenangriff der Menge G auf das Argument b dar. Eine äquivalen-
te Schreibweise für einen bedingt sicheren Angriff von der Menge G auf b ist GRb. Ein
Mengenangriff heißt sicher, sofern alle beteiligten Argumente sicher sind und somit die
Eingrenzung G ⊆ A \ ∅ und b ∈ A gilt.

Im Gegensatz zu einem bedingt sicheren Angriff, der immer gültig ist, sofern alle be-
teiligten Argumente gültig sind, bleibt bei einem unsicheren Mengenangriff unklar, ob
dieser tatsächlich stattfindet oder nicht. Selbst wenn alle beteiligten Argumente sicher
und somit gültig sind, muss der unsichere Mengenangriff nicht zwingend gültig sein.

Definition 4.3 (Unsichere Angriffsrelation in iSetAFs). Für ein iSetAF U =
(A,A?,R,R?) stellt (G′, b′) ∈ R? mit G′ ⊆ A ∪ A? \ ∅ und b′ ∈ A ∪ A? einen unsicheren
Mengenangriff der Menge S′ auf das Argument b′ dar. Eine äquivalente Schreibweise
für einen unsicheren Angriff von der Menge G′ auf b′ ist G′R?b′.

Beispiel 4.2. Der zu Beispiel 4.1 gehörende unvollständige Argumentationsgraph mit
Mengenangriffen ist

U1 = (A1,A
?
1,R1,R

?
1)

mit
A1 = {a1, b1},

A?
1 = {b2},

R1 = {({b1, b2}, a1)}

und
R?
1 = ∅
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ist in Abbildung 11 dargestellt. Ein Angriff auf a1 kann nur in Kombination aus den
Argumenten b1 und b2 erfolgen. Der Mengenangriff {({b1, b2}, a1)} stellt einen bedingt
sicheren Angriff dar. Sollte das Argument b2 nicht gültig sein, kann auch der Mengen-
angriff nicht gültig sein. Ist das Argument b2 allerdings gültig, muss auch der Mengen-
angriff zwingend gültig sein.

a1

b1 b2

Abbildung 11: iSetAF U1 aus Beispiel 4.2. Eigene Darstellung.

a1

a2 a3

U2

a1

a2 a3

U3

a1

a2 a3

U4

a1

a2 a3

U5

a1

a2 a3

U6

a1

a2 a3

U7

Abbildung 12: Mögliche Mengenangriffe mit unvollständiger Information über Argu-
mente oder Angriffe. Dargestellt sind sechs iSetAFs U2 bis U7, die jeweils
unterschiedliche unvollständige Teilkomponenten besitzen. Eigene Dar-
stellung.

Bei einem Mengenangriff mit unvollständiger Information können unterschiedliche
Teilkomponenten unsicher sein. Es ist möglich, dass nur ein Argument des Mengen-
angriffs unsicher ist, dass mehrere Argumente des Mengenangriffs unsicher sind, oder
dass der Mengenangriff selbst unsicher ist. Möglich sind zudem auch Kombinationen
von unsicheren Teilkomponenten, sodass sich insgesamt sechs Unterscheidungen er-
geben, die in Abbildung 12 dargestellt sind. Die Unsicherheit des angegriffenen Ar-
guments wird dabei außer Acht gelassen, da die Nichtgültigkeit von a1 dazu führen
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würde, dass ein Angriff auf a1 generell nicht mehr möglich ist. Genauer gibt es folgen-
de Unterscheidungen:

• Alle Argumente des Mengenangriffs und auch der Angriff selbst sind sicher (Ab-
bildung 12, iSetAF U2).

• Es gibt sichere und unsichere Argumente der angreifenden Menge, der Angriff
selbst ist sicher (Abbildung 12, iSetAF U3).

• Alle Argumente des Mengenangriffs sind unsicher, der Angriff selbst ist sicher
(Abbildung 12, iSetAF U4).

• Alle Argumente des Mengenangriffs sind sicher, der Angriff selbst ist unsicher
(Abbildung 12, iSetAF U5).

• Es gibt sichere und unsichere Argumente der angreifenden Menge, der Angriff
selbst ist unsicher (Abbildung 12, iSetAF U6).

• Alle Argumente des Mengenangriffs und auch der Angriff selbst sind unsicher
(Abbildung 12, iSetAF U7).

Eine Möglichkeit, wie mit diesen unterschiedlichen Teilkomponenten unsicherer In-
formation umgegangen werden kann, bietet der vervollständigungsbasierte Ansatz,
der nachfolgend in Unterabschnitt 4.2 vorgestellt wird.

4.2 Vervollständigungsbasierter Ansatz

Wie in Unterabschnitt 3.2 (Unvollständige Argumentationsgraphen) gezeigt wurde,
wird mit unvollständiger Information bei unvollständigen Argumentationsgraphen in
der Art umgegangen, dass alle möglichen Vervollständigungen eines iAFs betrachtet
und ausgewertet werden. Diese Möglichkeit der Vervollständigungen lässt sich auch
auf iSetAFs übertragen, indem eine Vielzahl von SetAFs aus dem iSetAF abgeleitet
werden. Bei diesen abgeleiteten Argumentationsgraphen handelt es sich um SetAFs,
in denen alle enthaltenen Komponenten als sicher angesehen werden können. Die ent-
standenen abgeleiteten SetAFs können anschließend entsprechend der Erläuterungen
aus Unterabschnitt 3.1 (Argumentationsgraphen mit Mengenangriffen) behandelt wer-
den. Vervollständigungen von iSetAFs lassen sich wie folgt definieren:

Definition 4.4 (Vervollständigungen von iSetAFs). Sei U = (A,A?,R,R?) ein iSetAF
und Comp(U) die Menge aller Vervollständigungen von U . Für alle Vervollständigun-
gen U∗ ∈ Comp(U) mit U∗ = (A∗,R∗) gilt:

A ⊆ A∗ ⊆ (A ∪A?)

und
R ∩ (2A

∗ ×A∗) ⊆ R∗ ⊆ (R ∪ R?) ∩ (2A
∗ ×A∗).
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Eine Vervollständigung enthält somit immer mindestens alle sicheren Argumente,
kann jedoch auch einige unsichere Argumente umfassen. Von den bedingt sicheren
Angriffen sind genau diejenigen in der Vervollständigung enthalten, deren beteilig-
te Argumente ebenfalls darin vorkommen. Zusätzlich können auch einige unsiche-
re Angriffe enthalten sein. Insbesondere handelt es sich bei jeder Vervollständigung
U∗ ∈ Comp(U) um ein SetAF.

Zur besseren Unterscheidbarkeit werden die Vervollständigungen eines iSetAFs im
Rahmen dieser Arbeit wie folgt bezeichnet: Sei Ui ein iSetAF mit i ∈ N, dann be-
zeichnet Comp(Ui) die Menge der Vervollständigungen und Ui,j ∈ Comp(Ui) mit
j ∈ {1, . . . , |Comp(Ui)|} bezeichnet die j-te Vervollständigung von Ui. Dies verdeut-
licht das nachfolgende Beispiel.

Beispiel 4.3. Für den in Abbildung 11 dargestellten unvollständigen Argumentations-
graphen U1 aus Beispiel 4.2 können insgesamt zwei Vervollständigungen abgeleitet
werden. Die Menge der Vervollständigungen Comp(U1) kann Abbildung 13 entnom-
men werden.

a1

b1

U1,1

a1

b1 b2

U1,2

Abbildung 13: Die Menge Comp(U1) der Vervollständigungen des iSetAFs U1 aus Bei-
spiel 4.2. Eigene Darstellung.

In Abbildung 12 wurden bereits mögliche Unterscheidungen bzgl. der Unsicherheit
von Teilkomponenten aufgezeigt. Für diese lassen sich die in Abbildung 14 dargestell-
ten Vervollständigungen ableiten. Dabei wird deutlich, dass die Anzahl der Vervoll-
ständigungen eines einzelnen Angriffs schnell extrem hohe Werte annehmen kann, da
diese in Abhängigkeit von der Anzahl der unsicheren Argumente des Mengenangriffs
sowie der unsicheren Angriffe exponentiell steigt. Dies zeigt die folgende Proposition.

Proposition 4.1. Sei U = (A,A?,R,R?) ein iSetAF und sei Ri ∈ R ∪ R? mit Ri = (Si, ai)
ein beliebiger Mengenangriff in U mit i ∈ {1, . . . , |R ∪ R?|}, wobei Si ⊆ A ∪A? und
ai ∈ A gilt.

Weiter sei m = |Si ∩A?| die Anzahl der unsicheren Argumente von Si und p ∈ {0, 1}
definiert durch:

• p = 0 gdw. Ri ∈ R (der Mengenangriff ist bedingt sicher),

• p = 1 gdw. Ri ∈ R? (der Mengenangriff ist unsicher).
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Abbildung 14: Vervollständigungen für die in Abbildung 12 dargestellten iSetAFs U2

bis U7. Eigene Darstellung.
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Dann lässt sich die Anzahl der Vervollständigungen, bezogen auf diesen einen Men-
genangriff, durch |CompRi

(U)| = 2m + p berechnen.

Beweis. Die Proposition lässt sich durch vollständige Induktion beweisen. Dabei wird
ein einzelner Mengenangriff eines iSetAFs betrachtet. Es soll gezeigt werden, dass sich
die Anzahl der Vervollständigungen für diesen Mengenangriff durch n = 2m + p be-
rechnen lässt.

• Induktionsanfang m = 0: Sind keine unsicheren Argumente am Mengenangriff
beteiligt, hängt die Anzahl lediglich davon ab, ob der Angriff selbst sicher oder
unsicher ist.

– Bei einem sicheren Angriff gibt es genau eine Vervollständigung (vgl. Abbil-
dung 14, U2,1). Dies ist durch n = 20 + 0 = 1 gegeben.

– Bei einem unsicheren Angriff gibt es zwei Vervollständigungen (vgl. Abbil-
dung 14, U5,1 und U5,2). Dies ist durch n = 20 + 1 = 2 gegeben.

Damit gilt der Induktionsanfang.

• Induktionsannahme: Für k unsichere Argumente gelte n = 2k + p.

• Induktionsschritt: Es ist zu zeigen, dass die Formel auch für m = k+1 gilt. Per In-
duktionsannahme beträgt die Anzahl der Vervollständigungen für m = k genau
2k + p. An dieser Stelle folgt eine Fallunterscheidung für p:

– Fall p = 0: Wird ein weiteres unsicheres Argument zum Mengenangriff hin-
zugefügt (es gilt somit m = k + 1), verdoppelt sich die Anzahl der Möglich-
keiten, da jede bisherige Vervollständigung bestehen bleibt und um das wei-
tere unsichere Argument erweitert werden kann. Daher gilt: n = 2·(2k+p) =
2k+1 + 2p. Wegen p = 0 folgt n = 2k+1 + 0 und damit gilt die zu zeigende
Aussage.

– Fall p = 1: Mit m = k gibt es genau 2k Vervollständigungen ohne Angriff
sowie eine zusätzliche Vervollständigung mit tatsächlichem Angriff. Wird
ein weiteres unsicheres Argument zum Mengenangriff hinzugefügt (es gilt
somit m = k + 1), verdoppeln sich lediglich die Vervollständigungen ohne
Angriff. Hinzu kommt schließlich die Vervollständigung, die den Angriff
beinhaltet. Daher gilt: n = 2 · (2k + p− 1) + 1 = 2k+1 + 2p− 1. Wegen p = 1
folgt n = 2k+1 + 1 und damit gilt die zu zeigende Aussage.

Mit Hilfe von Proposition 4.1 lässt sich schließlich auch die Gesamtzahl der Vervoll-
ständigungen eines iSetAFs bestimmen, indem die Anzahl der möglichen Kombinatio-
nen jedes Angriffs multipliziert werden. Bei dieser Berechnung ist allerdings zu beach-
ten, dass alle Mengenangriffe unabhängig voneinander sein müssen, das heißt, kein
Argument ist Teil mehrerer Mengenangriffe.
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Beispiel 4.4. Für das iSetAF U8 aus Abbildung 15 sind die beiden Mengenangriffe
unabhängig voneinander. Für den unsicheren Angriff ({a5, a6}, a1) gibt es entspre-
chend Proposition 4.1 genau 21 + 1 = 3 Möglichkeiten. Für den sicheren Angriff
({a2, a3, a4}, a7) gibt es hingegen 23 + 0 = 8 Möglichkeiten. Insgesamt gilt somit
|Comp(U8)| = 3 · 8 = 24. Aus dem iSetAF U8, das lediglich aus zwei Angriffen besteht,
lassen sich somit bereits 24 Vervollständigungen ableiten.

a1 a2 a3 a4

a5 a6 a7

Abbildung 15: iSetAF U8 zu Beispiel 4.4. Eigene Darstellung.

Ziel der formalen Argumentation ist es, Argumente zu finden, die gemeinsam akzep-
tiert werden können. Dies wurde durch die Definition unterschiedlicher Semantiken
formalisiert (vgl. Abschnitt 2). Wie bereits für iAFs in Unterabschnitt 3.2 (Unvollständi-
ge Argumentationsgraphen) beschrieben wurde, lassen sich aufgrund der unvollstän-
digen Information allerdings keine direkten Extensionen aus dem Argumentationsgra-
phen ableiten. Um aber dennoch Aussagen über die Akzeptanz und die Ablehnung von
Mengen von Argumenten treffen zu können, kann auch für iSetAFs auf mögliche und
notwendige σ-Extensionen zurückgegriffen werden. Die Definition 3.11 und Definiti-
on 3.12 für mögliche und notwendige σ-Extensionen für iAFs können gleichermaßen
auf iSetAFs übertragen werden.

Bevor die möglichen und notwendigen σ-Extensionen für iSetAFs definiert werden,
sei an dieser Stelle nochmals darauf hingewiesen, dass es sich bei allen Vervollständi-
gungen eines iSetAFs jeweils um einen Argumentationsgraphen mit Mengenangriffen
(SetAF) handelt. Diese Vervollständigungen enthalten keine unvollständige Informa-
tion mehr, weshalb sich alle in Unterabschnitt 3.1 (Argumentationsgraphen mit Men-
genangriffen) eingeführten Definitionen auf die Vervollständigungen anwenden las-
sen. Insbesondere gelten auch die in Definition 3.4 beschriebenen Semantiken.

Definition 4.5 (Mögliche σ-Extension für iSetAFs). Für ein iSetAF U = (A,A?,R,R?)
und eine Semantik σ ∈ {cf, ad, co, pr, gr, st} ist S ⊆ (A∪A?) eine mögliche σ-Extension
für U gdw. S ∈ σ(U∗) für mindestens eine Vervollständigung U∗ ∈ Comp(U) gilt,
wobei σ(U∗) die Menge aller σ-Extensionen für das SetAF U∗ bezeichnet (vgl. Definiti-
on 3.4).

Beispiel 4.5. Für das in Abbildung 16 dargestellte iSetAF U9 ist die Menge S =
{a2, a5, a6} eine mögliche co-Extension, da es eine Vervollständigung U9,1 (siehe Ab-
bildung 17) gibt, in der die Menge S vollständig ist. Für S lässt sich aber zudem auch
eine Vervollständigung U9,2 (siehe Abbildung 17) finden, in der diese Menge grundiert
ist. Daher ist S auch eine mögliche gr-Extension.
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a5

Abbildung 16: iSetAF U9 zu Beispiel 4.5. Eigene Darstellung.

a6

a1

a2

a3 a4

a5

U9,1

a6

a1

a2

a4

a5

U9,2

Abbildung 17: Eine Teilmenge von Comp(U9) der Vervollständigungen des iSetAFs U9

aus Beispiel 4.5. Eigene Darstellung.

Definition 4.6 (Notwendige σ-Extension für iSetAFs). Für ein iSetAF U =
(A,A?,R,R?) und eine Semantik σ ∈ {cf, ad, co, pr, gr, st} ist S ⊆ A eine notwendi-
ge σ-Extension für U gdw. S ∈ σ(U∗) für alle Vervollständigungen U∗ ∈ Comp(U) gilt,
wobei σ(U∗) die Menge aller σ-Extensionen für das SetAF U∗ bezeichnet (vgl. Definiti-
on 3.4).

Beispiel 4.6. Für das in Abbildung 16 dargestellte iSetAF U9 ist die Menge S = {a5} ei-
ne notwendige ad-Extension. Da S− = ∅ gilt, besitzt die Menge S keine Angreifer und
ist somit in jeder beliebigen Vervollständigung zulässig. Je nach betrachteter Vervoll-
ständigung verteidigt S aber noch weitere Argumente, weshalb es sich nicht um eine
notwendige co-Extension handeln kann.

Ein weiteres Beispiel ist die Menge S′ = {a5, a6}, bei der es sich um eine notwendige
cf -Extension handelt. Die Menge S′ ist in jeder Vervollständigung konfliktfrei, da es
weder sichere noch unsichere Angriffe zwischen a5 und a6 gibt.
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Um nun auch Aussagen über die Akzeptanz oder Ablehnung einzelner Argumente
treffen zu können, lassen sich auch die Schlussfolgerungsprobleme auf iSetAFs übertra-
gen. Dabei werden erneut die einzelnen Vervollständigungen betrachtet, weshalb die
in Definition 3.5 und Definition 3.6 eingeführten Definitionen der leichtgläubigen und
der skeptischen Schlussfolgerung gelten.

Definition 4.7 (Schlussfolgerungsprobleme für iSetAFs). Sei U = (A,A?,R,R?) ein
iSetAF mit den Vervollständigungen U∗ ∈ Comp(U). Für ein Argument a ∈ (A ∪ A?)
und eine Semantik σ ∈ {cf, ad, co, pr, gr, st} gilt:

1. a ist eine mögliche leichtgläubige σ-Schlussfolgerung von U gdw. es mindestens
eine Vervollständigung U∗ gibt, für die a eine leichtgläubige σ-Schlussfolgerung
für SetAFs ist.

2. a ist eine mögliche skeptische σ-Schlussfolgerung von U gdw. es mindestens ei-
ne Vervollständigung U∗ gibt, für die a eine skeptische σ-Schlussfolgerung für
SetAFs ist.

3. a ist eine notwendige leichtgläubige σ-Schlussfolgerung von U gdw. für alle Ver-
vollständigungen U∗ gilt, dass a eine leichtgläubige σ-Schlussfolgerung für Set-
AFs ist.

4. a ist eine notwendige skeptische σ-Schlussfolgerung von U gdw. für alle Ver-
vollständigungen U∗ gilt, dass a eine skeptische σ-Schlussfolgerung für SetAFs
ist.

Beispiel 4.7. Für das in Abbildung 16 dargestellte iSetAF U9 sollen die verschiedenen
Schlussfolgerungen an jeweils einem beispielhaften Argument aufgezeigt werden.

1. a6 ist eine mögliche leichtgläubige co-Schlussfolgerung, da es eine Vervollständi-
gung U9,3 (siehe Abbildung 18) gibt, in der a6 Teil einer vollständigen Extension
ist.

2. a3 ist eine mögliche skeptische st-Schlussfolgerung, da es eine Vervollständigung
U9,3 (siehe Abbildung 18) gibt, in der a3 Teil aller stabilen Extensionen ist.

3. a6 ist eine notwendige leichtgläubige ad-Schlussfolgerung, da sich für jede belie-
bige Vervollständigung eine zulässige Extension finden lässt, die a6 enthält.

4. a5 ist eine notwendige skeptische gr-Schlussfolgerung. Da das Argument a5 si-
cher ist und zudem nicht angegriffen wird (weder sicher noch unsicher), muss es
für jede Vervollständigung Teil aller grundierten Extensionen sein.

Durch diese Schlussfolgerungsprobleme ist es nun möglich, trotz unvollständiger In-
formation über Argumente oder Mengenangriffe, Aussagen über die Akzeptanz von
Argumenten zu treffen. Für eine mögliche leichtgläubige σ-Schlussfolgerung lässt sich
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Abbildung 18: Eine weitere mögliche Vervollständigung U9,3 ∈ Comp(U9) des iSetAFs
U9 aus Abbildung 16. Eigene Darstellung zu Beispiel 4.7.

für ein Argument schließen, dass es wenigstens eine Situation gibt, in der das Argu-
ment akzeptiert werden kann. Die notwendige skeptische σ-Schlussfolgerung ist hin-
gegen eine sehr strikte Schlussfolgerung, da die Akzeptanz eines Arguments trotz feh-
lender Informationen mit Sicherheit angenommen werden kann. Für das soeben be-
trachtete Beispiel kann für das Argument a5 gefolgert werden, dass es in jeder belie-
bigen Vervollständigung Teil jeder grundierten Extension ist und somit in jedem Fall
akzeptiert werden kann.

Dieses Unterkapitel hat verdeutlicht, wie die Akzeptanz von Argumenten in iSetAFs
mit Hilfe des vervollständigungsbasierten Ansatzes untersucht werden kann. Eine wei-
tere, davon unabhängige Möglichkeit ist der extensionsbasierte Ansatz, der im nächs-
ten Unterabschnitt 4.3 vorgestellt wird.

4.3 Extensionsbasierter Ansatz

Ein Nachteil des zuvor beschriebenen extensionsbasierten Ansatzes ist die exponentiell
steigende Anzahl von Vervollständigungen. Je mehr unsichere Teilkomponenten ent-
halten sind, umso größer wird die Anzahl der Vervollständigungen, die betrachtet und
ausgewertet werden müssen. Um dies zu vereinfachen, kann auch ein extensionsbasier-
ter Ansatz verfolgt werden, anhand dessen direkte Aussagen für iSetAFs bzw. deren
Argumente getroffen werden können. Die in Unterunterabschnitt 3.2.2 vorgestellten
Grundlagen sollen in diesem Unterkapitel nun auf iSetAFs angewendet werden, in-
dem die Definitionen für die Semantiken entsprechend angepasst werden. Darauf auf-
bauend sollen anschließend in Abschnitt 5 die Eigenschaften von iSetAFs untersucht
werden.

Wie bereits in Unterunterabschnitt 3.2.2 beschrieben wurde, wird auch für iSetAFs
sowohl eine optimistische als auch eine pessimistische Sichtweise vertreten. Das heißt,
während einer optimistischen Sichtweise werden sichere bzw. unsichere Mengenan-
griffe, an denen unsichere Argumente beteiligt sind, als ungefährlich für die Akzeptanz
von Argumenten angesehen. Bei der pessimistischen Sichtweise hingegen werden alle
Mengenangriffe als gefährlich eingestuft.

Bevor Dungs Semantiken neu definiert werden können, damit diese auch für iSe-
tAFs Anwendung finden, muss zunächst der Begriff der Verteidigung definiert wer-
den. Ähnlich wie für den extensionsbasierten Ansatz für iAFs wird hier eine schwache
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und eine starke Verteidigung definiert.

Definition 4.8 (Verteidigung in iSetAFs). Für einen unvollständigen Argumentations-
graphen mit Mengenangriffen U = (A,A?,R,R?), eine Menge S ⊆ A ∪ A? und ein
Argument a ∈ A ∪A? gilt:

• Die Menge S verteidigt das Argument a schwach gdw. für jeden sicheren Men-
genangriff (G, a) ∈ R mit G ⊆ 2A\∅ eine nichtleere Teilmenge G′ ⊆ S∩A existiert,
sodass (G′, g) ∈ R für mindestens ein g ∈ G gilt.

• Die Menge S verteidigt das Argument a stark gdw. für jeden Mengenangriff
(G, a) ∈ R ∪ R? mit G ⊆ 2A∪A? \ ∅ eine nichtleere Teilmenge G′ ⊆ S ∩ A exis-
tiert, sodass (G′, g) ∈ R für mindestens ein g ∈ G gilt.

Analog wird eine Menge von Argumenten S′ ⊆ A ∪ A? von S schwach bzw. stark
verteidigt gdw. alle Argumente a ∈ S′ von S schwach bzw. stark verteidigt werden.

Insbesondere ist es für die Verteidigung eines Arguments ausreichend, wenn nur ein
einziges am Mengenangriff beteiligtes Argument angegriffen wird. Der Angriff auf ein
einzelnes Argument sorgt für die Unwirksamkeit des gesamten Mengenangriffs.

Beispiel 4.8. Für das iSetAF U10 = (A10,A
?
10,R10,R

?
10) aus Abbildung 19 kann Folgen-

des beobachtet werden:

• Die Menge B = {b1, b2} greift das Argument a unsicher an.

• Die Menge C = {c1, c2} greift das Argument a bedingt sicher an. Sofern das unsi-
chere Argument c2 akzeptiert wird, ist auch der Angriff (C, a) ∈ R10 gültig.

• Die Menge G = {g1, g2, g3} greift das Argument a sicher an, wobei insbesondere
auch alle Argumente aus G sicher sind.

• Die Menge S = {s1} greift das Argument g1 sicher an.

Beispiel 4.9. In Fortsetzung zu Beispiel 4.8 sollen die Begriffe der schwachen und star-
ken Verteidigung beispielhaft für das iSetAF U10 aus Abbildung 19 verdeutlicht wer-
den:

• Die Menge S = {s1} verteidigt das Argument a schwach. Zu den sicheren Men-
genangriffen gehört in diesem Fall nur die Menge G, dessen Angriff verteidigt
werden muss. Dies erfolgt durch die Menge S, insbesondere durch den sicheren
Angriff von s1 auf g1. Die Mengen B und C müssen per Definition der schwachen
Verteidigung nicht angegriffen werden.

• Damit die Menge S = {s1} das Argument a nun auch stark verteidigt, müssen
auch die Mengen B und C von S angegriffen werden. Per Definition müssen
auch unsichere Mengenangriffe verteidigt werden. Würde die Menge der bedingt
sicheren Mengenangriffe um zwei Mengenangriffe erweitert werden, es gelte so-
mit R10 = R10 ∪ {(S, b1), (S, c1)}, würde a von S stark verteidigt werden.
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Abbildung 19: iSetAF U10 zu Beispiel 4.8. Eigene Darstellung.

Nachdem die Begriffe der schwachen und starken Verteidigung definiert sind, lassen
sich nun auch die üblichen Semantiken entsprechend definieren, wobei jeweils auch
Beispiele für alle Semantiken angegeben werden sollen.

Die schwache Konfliktfreiheit zeichnet sich dadurch aus, dass zwischen sicheren Ar-
gumenten keine sicheren Mengenangriffe stattfinden dürfen. Auch darf ein sicheres
Argument kein unsicheres Argument sicher angreifen, da eine gemeinsame Akzeptanz
(sofern das unsichere Argument akzeptiert ist) zwingend zu einem Konflikt führt. Bei
der starken Konfliktfreiheit sind hingegen keine Mengenangriffe zwischen Argumen-
ten aus S erlaubt, wobei irrelevant ist, ob der jeweilige Mengenangriff sicher oder un-
sicher ist und ob die beteiligten Argumente sicher oder unsicher sind.

Definition 4.9 (Konfliktfreie Mengen für iSetAFs). Sei U = (A,A?,R,R?) ein iSetAF
und S ⊆ A ∪A?. Eine Menge S heißt

• schwach konfliktfrei gdw. es in U keinen sicheren Mengenangriff (B, a) ∈ R gibt
mit B ⊆ S ∩A und a ∈ S. Die Menge aller schwach konfliktfreien Mengen von U
bezeichnet cfw(U) = {S ⊆ A ∪A? | S ist schwach konfliktfrei}.

• stark konfliktfrei gdw. es in U keinen Mengenangriff (B, a) ∈ R ∪ R? gibt mit
B ⊆ S und a ∈ S. Die Menge aller stark konfliktfreien Mengen von U bezeichnet
cfs(U) = {S ⊆ A ∪A? | S ist stark konfliktfrei}.

Beispiel 4.10. Für das iSetAF U11 = (A11,A
?
11,R11,R

?
11) aus Abbildung 20 gilt:

• Die Menge S = {a3, a7, a8} ist schwach konfliktfrei, da innerhalb von S kein si-
cherer Mengenangriff vorhanden ist. Diese Menge ist aber nicht stark konfliktfrei.

• Die Menge S = {a1, a2, a5} ist weder schwach noch stark konfliktfrei, da es einen
sicheren Mengenangriff auf das Argument a2 gibt.

• Die Menge S = {a1, a5, a3} ist sowohl schwach als auch stark konfliktfrei, da es
keinen Mengenangriff innerhalb dieser Menge gibt.
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Abbildung 20: iSetAF U11 zu Beispiel 4.10. Eigene Darstellung.

• Die Menge S = {a1, a6} ist stark konfliktfrei, da kein Mengenangriff stattfindet.

Die zweite Semantik ist die zulässige Semantik. Entsprechend der Definition für AFs
ist neben der Konfliktfreiheit nötig, dass alle Argumente innerhalb einer Extension von
dieser Extension verteidigt werden.

Definition 4.10 (Zulässige Mengen für iSetAFs). Sei U = (A,A?,R,R?) ein iSetAF und
S ⊆ A ∪A?. Eine Menge S heißt

• schwach zulässig gdw. S ∈ cfw(U) und alle a ∈ S werden von S schwach ver-
teidigt. Die Menge aller schwach zulässigen Mengen von U bezeichnet adw(U) =
{S ⊆ A ∪A? | S ist schwach zulässig}.

• gemischt zulässig gdw. S ∈ cfs(U) und alle a ∈ S werden von S schwach vertei-
digt. Die Menge aller gemischt zulässigen Mengen von U bezeichnet adm(U) =
{S ⊆ A ∪A? | S ist gemischt zulässig}.

• stark zulässig gdw. S ∈ cfs(U) und alle a ∈ S werden von S stark verteidigt. Die
Menge aller stark zulässigen Mengen von U bezeichnet ads(U) = {S ⊆ A ∪ A? |
S ist stark zulässig}.

Für die erfolgreiche Verteidigung eines Arguments vor einem Mengenangriff ist es
ausreichend, dass mindestens ein einzelnes Argument des Mengenangriffs sicher atta-
ckiert wird. Dies verdeutlicht das nachfolgende Beispiel.

Beispiel 4.11. Für das iSetAF U11 aus Abbildung 20 soll für jede der drei Arten der
Zulässigkeit ein Beispiel angegeben werden:

• Die Menge {a1, a3, a5} ist schwach zulässig. Es gibt keine sicheren Angriffe zwi-
schen sicheren Argumenten innerhalb der Menge, weshalb diese schwach kon-
fliktfrei ist. Außerdem wird die Menge von außen nur von dem Mengenangriff
({a2, a6}, a3) sicher angegriffen, verteidigt sich jedoch durch den Mengenangriff
({a1, a5}, a2) gegen diesen Angriff. Die weiteren unsicheren Angriffe auf a3 sowie
auf a5 müssen nicht verteidigt werden.
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• Das eben genannte Beispiel ist zudem stark konfliktfrei und damit auch gemischt
zulässig.

• Die Menge {a1, a3, a5, a6, a12} ist stark zulässig. Es gibt keine sicheren oder unsi-
cheren Angriffe zwischen Argumenten innerhalb der Menge, weshalb diese stark
konfliktfrei ist. Es gibt sowohl sichere als auch unsichere Mengenangriffe auf die-
se Menge, die aber alle stark verteidigt werden. Das heißt, es gibt immer einen
sicheren Gegenangriff. Beispielsweise wird der unsichere Angriff ({a7, a8}, a3)
durch den sicheren Mengenangriff ({a6}, a7) verteidigt. Der unsichere Angriff
({a9, a10}, a5) wird durch den sicheren Mengenangriff ({a6}, a10) verteidigt.

Aufbauend auf die zulässige Semantik wird nachfolgend die vollständige Semantik
für iSetAFs definiert.

Definition 4.11 (Vollständige Extensionen für iSetAFs). Sei U = (A,A?,R,R?) ein iSet-
AF und S ⊆ A ∪A?. Eine Menge S heißt

• schwach vollständig gdw. S ∈ adw(U) und jedes Argument a ∈ A∪A?, das von S
schwach verteidigt wird, auch in S liegt. Die Menge aller schwach vollständigen
Mengen von U bezeichnet cow(U) = {S ⊆ A ∪A? | S ist schwach vollständig}.

• stark vollständig gdw. S ∈ ads(U) und jedes Argument a ∈ A ∪ A?, das von S
stark verteidigt wird, auch in S liegt. Die Menge aller stark vollständigen Mengen
von U bezeichnet cos(U) = {S ⊆ A ∪A? | S ist stark vollständig}.

Beispiel 4.12. Für das iSetAF U11 aus Abbildung 20 soll für jede der zwei Arten der
Vollständigkeit ein Beispiel und ein Gegenbeispiel angegeben werden:

• Die Menge S = {a1, a5} ist schwach zulässig. Es gibt keine sicheren Angriffe zwi-
schen sicheren Argumenten innerhalb der Menge, weshalb diese schwach kon-
fliktfrei ist. Außerdem wird die Menge von außen nicht angegriffen. Allerdings
ist S nicht schwach vollständig. Durch den Mengenangriff ({a1, a5}, a2) wird das
Argument a3 schwach verteidigt und muss in S aufgenommen werden. Aber
auch die Menge S′ = {a1, a3, a5} ist noch nicht schwach vollständig, da diese
Menge auch immer genau die Argumente verteidigt, die nicht sicher angegriffen
werden. Dies betrifft die Argumente a6, a9, a11 und a12. Somit ist erst die Menge
S′′ = {a1, a3, a5, a6, a9, a11, a12} schwach vollständig.

• Die Menge S = {a1} ist stark zulässig, da diese stark konfliktfrei ist und nicht
angegriffen wird. Diese Menge ist allerdings noch nicht stark vollständig, da die
Argumente a9 und a12 stark verteidigt werden. Die Menge S′ = {a1, a9, a12} hin-
gegen ist bereits stark vollständig, da keine weiteren Argumente von S′ stark ver-
teidigt werden.

Die nächste Semantik ist die schwach bzw. stark präferierte Semantik, bei der es sich
um eine größtmögliche schwach bzw. stark vollständige Extension handel. Diese kann
für iSetAFs wie folgt definiert werden:
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Definition 4.12 (Präferierte Extensionen für iSetAFs). Sei U = (A,A?,R,R?) ein iSetAF
und S ⊆ A ∪A?. Eine Menge S heißt

• schwach präferiert gdw. S ∈ cow(U) und S ist maximal. Es gibt somit keine
größere Menge S′ ⊃ S, die ebenfalls schwach vollständig ist. Die Menge al-
ler schwach präferierten Mengen von U bezeichnet prw(U) = {S ⊆ A ∪ A? |
S ist schwach präferiert}.

• stark präferiert gdw. S ∈ cos(U) und S ist maximal. Es gibt somit keine größere
Menge S′ ⊃ S, die ebenfalls stark vollständig ist. Die Menge aller stark präferier-
ten Mengen von U bezeichnet prs(U) = {S ⊆ A ∪A? | S ist stark präferiert}.

Beispiel 4.13. Für das iSetAF U11 aus Abbildung 20 soll für jede der zwei Arten der
Präferiertheit ein Beispiel angegeben werden:

• Die zuvor angegebene schwach vollständige Menge {a1, a3, a5, a6, a9, a11, a12} ist
bereits maximal und damit schwach präferiert. Es kann keine weitere Menge ge-
funden werden, die weitere Argumente enthält und ebenfalls vollständig ist.

• Die Menge {a1, a3, a5, a6, a9, a11, a12} ist nicht nur schwach vollständig, sondern
auch stark vollständig, da alle enthaltenen Argumente stark verteidigt werden.

Für die formale Definition der grundierten Semantik für iSetAFs wird erneut die
in Definition 2.4 vorgestellte charakteristische Funktion benötigt, die an dieser Stelle
allerdings für das iSetAF angepasst werden muss.

Definition 4.13 (x-charakteristische Funktion für iSetAFs). Sei U = (A,A?,R,R?) ein
iSetAF und es bezeichne x ∈ {w, s} die Unterscheidung zwischen der schwachen (w)
und der starken (s) charakteristischen Funktion. Die x-charakteristische Funktion τU,x :

2A∪A? → 2A∪A?
bestimmt für eine Menge S ⊆ A ∪ A? alle Argumente, die von dieser

Menge

• schwach verteidigt werden (für den Fall x = w) bzw.

• stark verteidigt werden (für den Fall x = s).

Beispiel 4.14. Für das iSetAF U11 aus Abbildung 20 und eine Menge S = {a1} gilt
τU11,w(S) = {a1, a5, a6, a9, a11, a12}. Dies ist genau die Menge, die von a1 schwach ver-
teidigt wird. Außerdem gilt τU11,s(S) = {a1, a9, a12}, was genau der Menge entspricht,
die von a1 stark verteidigt wird.

Mit Hilfe der x-charakteristischen Funktion lässt sich nun auch die grundierte Se-
mantik für iSetAFs definieren.
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Definition 4.14 (Grundierte Extensionen für iSetAFs). Sei U = (A,A?,R,R?) ein iSetAF
und S ⊆ A ∪A?. Eine Menge S heißt

• schwach grundiert gdw. diese dem Fixpunkt der iterativen Anwendung der w-
charakteristischen Funktion entspricht. Die Menge aller schwach grundierten
Mengen von U bezeichnet grw(U) = {S ⊆ A ∪A? | S ist schwach grundiert}.

• stark grundiert gdw. diese dem Fixpunkt der iterativen Anwendung der s-cha-
rakteristischen Funktion entspricht. Die Menge aller stark grundierten Mengen
von U bezeichnet grs(U) = {S ⊆ A ∪A? | S ist stark grundiert}.

Insbesondere bildet die schwach bzw. stark grundierte Extension die minimale ein-
deutig bestimmte schwach bzw. stark vollständige Extension. Es gibt somit keine wei-
tere schwach bzw. stark vollständige Extension, die Teilmenge der schwach bzw. stark
grundierten Extension ist und damit kleiner ist.

Beispiel 4.15. Für das iSetAF U11 aus Abbildung 20 soll für jede der zwei Arten der
Grundiertheit ein Beispiel angegeben werden:

• Die w-charakteristische Funktion wird iterativ wie folgt angewendet:

– τU11,w(∅) = {a1, a5, a6, a9, a11, a12}
– τU11,w({a1, a5, a6, a9, a11, a12}) = {a1, a3, a5, a6, a9, a11, a12}
– τU11,w({a1, a3, a5, a6, a9, a11, a12}) = {a1, a3, a5, a6, a9, a11, a12}

Damit ist der Fixpunkt erreicht und die schwach grundierte Extension lautet
{a1, a3, a5, a6, a9, a11, a12}.

• Die s-charakteristische Funktion wird iterativ wie folgt angewendet:

– τU11,s(∅) = {a1, a9, a12}
– τU11,s({a1, a9, a12}) = {a1, a9, a12}

Damit ist der Fixpunkt erreicht und die stark grundierte Extension lautet
{a1, a9, a12}.

Die letzte Semantik, die für iSetAFs angepasst werden soll, ist die schwach bzw. stark
stabile Semantik. Im Gegensatz zu Dungs Definition der stabilen Extensionen für die
herkömmlichen AFs gilt für die schwache Stabilität nicht, dass jedes vorhandene Ar-
gument entweder in der Extension S liegt oder von dieser angegriffen wird. Es können
auch unsichere Argumente enthalten sei, die weder in S noch in S+ liegen. Für die
starke Stabilität gilt hingegen wie üblich S ∪ S+ = A ∪A?.

Definition 4.15 (Stabile Extensionen für iSetAFs). Sei U = (A,A?,R,R?) ein iSetAF und
S ⊆ A ∪A?. Eine Menge S heißt

• schwach stabil gdw. S ∈ cfw(U) und alle a ∈ A \ S sicher von S angegriffen
werden, es gibt somit ein b ∈ S ∩ A mit bRa. Die Menge aller schwach stabilen
Mengen von U bezeichnet stw(U) = {S ⊆ A ∪A? | S ist schwach stabil}.
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• stark stabil gdw. S ∈ cfs(U) und alle a ∈ (A ∪ A?) \ S sicher von S angegriffen
werden. Es gibt somit ein b ∈ S∩A mit bRa. Die Menge aller stark stabilen Mengen
von U bezeichnet sts(U) = {S ⊆ A ∪A? | S ist stark stabil}.

Beispiel 4.16. Für das iSetAF U11 aus Abbildung 20 soll für jede der zwei Arten der
Stabilität ein Beispiel angegeben werden:

• Die Menge S = {a1, a3, a5, a6, a11, a12} ist eine schwach stabile Extension, da die-
se Menge schwach konfliktfrei ist und alle sicheren Argumente außerhalb dieser
Menge sicher von S angegriffen werden. Insbesondere muss das Argument a9
nicht in S enthalten sein und auch nicht angegriffen werden, da dieses unsicher
ist.

• Die Menge S = {a1, a3, a5, a6, a9, a11, a12} ist eine stark stabile Extension, da diese
Menge stark konfliktfrei ist und alle Argumente außerhalb dieser Menge sicher
von S angegriffen werden.

Die leere Menge kann als mögliche Teilmenge von Argumenten auch je nach Seman-
tik eine gültige Extension darstellen. Die leere Menge erfüllt in jedem Fall die Defini-
tionen der schwach konfliktfreien, stark konfliktfreien, schwach zulässigen und stark
zulässigen Menge jedes beliebigen iSetAFs, wie die nachfolgende Proposition zeigt.

Proposition 4.2. Für ein beliebiges iSetAF U = (A,A?,R,R?) gilt ∅ ∈ cfw(U)∩ cfs(U)∩
adw(U) ∩ ads(U).

Beweis. Sei U = (A,A?,R,R?) ein iSetAF und S ⊆ A ∪A?.

• ∅ ∈ cfw(U): Die leere Menge ist Teilmenge jeder Menge, weshalb insbesondere
S = ∅ ⊆ A ∪A? gelten kann. Damit ist die Bedingung der schwach konfliktfreien
Menge trivialerweise erfüllt, denn es gibt keine zwei Argumente in S, die sich
angreifen könnten.

• ∅ ∈ cfs(U): Analog Beweis für cfw.

• ∅ ∈ adw(U): Sei ebenfalls S = ∅ ⊆ A ∪ A?. Die leere Menge kann per Definition
(vgl. Definition 4.2 und Definition 4.3) nicht sicher angegriffen werden. Wenn es
keinen sicheren Angriff auf S gibt, muss keine schwache Verteidigung erfolgen
und die Menge ist trivialerweise schwach zulässig.

• ∅ ∈ ads(U): Analog Beweis für ads. Insbesondere kann die leere Menge per Defi-
nition auch nicht bedingt sicher angegriffen werden, wodurch eine starke Vertei-
digung nicht notwendig ist und die Menge trivialerweise stark zulässig ist.

Für die restlichen Semantiken für iSetAFs erfüllt die leere Menge im Allgemeinen
nicht die Bedingungen der entsprechenden Definition der Semantik. Dies soll in einem
abschließenden Beispiel verdeutlicht werden.
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Beispiel 4.17. Für das iSetAF U11 aus Abbildung 20 gilt beispielsweise:

• ∅ /∈ cow(U11), weil {a1, a3, a5, a6, a9, a11, a12} ⊃ ∅ und {a1, a3, a5, a6, a9, a11, a12} ∈
cow(U11). Die Obermenge ist ebenfalls schwach vollständig, weshalb die leere
Menge nicht schwach vollständig sein kann.

• ∅ /∈ cos(U11), weil {a1, a9, a12} ⊃ ∅ und {a1, a9, a12} ∈ cos(U11).

• ∅ /∈ grs(U11), weil der Fixpunkt der w-charakteristischen Funktion noch nicht er-
reicht ist. Dieser ist eindeutig bestimmt und die stark grundierte Extension lautet
{a1, a9, a12} ∈ grs(U11), weshalb die leere Menge nicht die schwach grundierte
Extension sein kann.

Analog lassen sich auch für die weiteren Semantiken prw, prs, grw, stw und sts Gegen-
beispiele finden.

In diesem Kapitel wurde das Argumentationsframework iSetAF formal definiert. Be-
zogen auf den vervollständigungsbasierten Ansatz wurden die Schlussfolgerungspro-
bleme auf iSetAFs übertragen und untersucht. Bezogen auf den extensionsbasierten
Ansatz wurden die Semantiken neu definiert, wobei jeweils eine schwache und eine
starke Ausprägung berücksichtigt wurden. Im nachfolgenden Abschnitt 5 sollen nun
ausgewählte Eigenschaften dieser Semantiken untersucht werden.
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5 Eigenschaften von extensionsbasierten iSetAFs

In Abschnitt 4 wurde das Argumentationsframework iSetAF formal eingeführt und er-
läutert, wobei sowohl ein vervollständigungsbasierter als auch ein extensionsbasierter
Ansatz behandelt wurden. In diesem Kapitel steht nun der extensionsbasierte Ansatz
im Fokus, da sich dieser - im Gegensatz zum vervollständigungsbasierten Ansatz -
direkt und ohne Erzeugung von Vervollständigungen auf seine Eigenschaften unter-
suchen lässt. Die Postulate, die in diesem Kapitel untersucht werden, wurden bereits
in Unterabschnitt 2.3 definiert. Diese Eigenschaften wurden für abstrakte Argumen-
tationsgraphen (AF) definiert, lassen sich aber durch kleine Anpassungen ebenso für
iSetAFs anwenden. Dabei ist zu beachten, dass für die schwache Ausprägung der Se-
mantiken lediglich sichere Mengenangriffe als Bedrohungen betrachtet werden, wäh-
rend bei der starken Ausprägung sowohl unsichere als auch sichere Mengenangriffe
berücksichtigt und verteidigt werden müssen.

In diesem Kapitel werden die Postulate nacheinander untersucht. Dabei wird das
jeweilige Postulat, sofern notwendig, zunächst auf iSetAFs übertragen. Anschließend
wird die Erfüllung dieser Eigenschaft für alle sechs Semantiken (sowohl in schwacher
als auch starker Ausprägung) untersucht und bewiesen. Zum Abschluss dieses Ka-
pitels bietet eine tabellarische Übersicht eine Zusammenfassung der Erfüllung oder
Nichterfüllung der Postulate und fasst alle zentralen Ergebnisse dieses Kapitels über-
sichtlich zusammen.

5.1 Notation

Im Rahmen dieses Kapitels sei, sofern nicht anders erwähnt, stets

U = (A,A?,R,R?)

ein beliebiges iSetAF. Weiterhin sei

σ ∈ {cf, ad, co, pr, gr, st}

eine beliebige Semantik für AFs,

σw ∈ {cfw, adw, cow, prw, grw, stw}

eine beliebige schwache Semantik (weak) für iSetAFs,

σs ∈ {cfs, ads, cos, prs, grs, sts}

eine beliebige starke Semantik (strong) für iSetAFs und

x ∈ {w, s}

ein Index zur Unterscheidung zwischen schwacher und starker Ausprägung von Se-
mantiken und Extensionen.
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Zur vereinfachten Unterscheidung von schwachen und starken Extensionen wird
beispielsweise eine schwach vollständige Extension als w-vollständige Extension und
eine stark vollständige Extension als s-vollständige Extension bezeichnet. Gilt eine Aus-
sage für beide Ausprägungen gleichermaßen, wird eine beliebige vollständige Extensi-
on als x-vollständig bezeichnet. Dies gilt auch analog für die weiteren Semantiken aus
σx.

Zudem kann auch zwischen schwach und stark attackierten Mengen unterschieden
werden. Dies ist für die weitere Betrachtung der beiden Ausprägungen der Semantiken
relevant und wird daher an dieser Stelle definiert.

Definition 5.1 (x-attackiert). Für ein iSetAF U wird eine Menge S ⊆ A ∪ A? als x-
attackierte Menge bezeichnet, gdw.

• S für x = w sicher angegriffen wird bzw.

• S für x = s sicher und/oder unsicher angegriffen wird.

Eine schwach attackierte (w-attackierte) Menge ist dabei zwingend von einer unsi-
cher attackierten Menge zu unterscheiden. Die gewählten Begriffe verleiten zu einer
Verwechselung, da die Bedeutungen genau entgegengesetzt sind. Eine schwach atta-
ckierte Menge wird sicher angegriffen, eine unsicher attackierte Menge wird hingegen
nur unsicher angegriffen. Eine stark attackierte (s-attackierte) Menge kann sowohl si-
cher als auch unsicher angegriffen werden, während eine sicher attackierte Menge si-
cher angegriffen wird.

Analog der Definition einer x-attackierten Menge kann auch ein Argument w- oder
s-attackiert werden. Wird ein Argument w-attackiert, dann erfolgt ein sicherer Angriff
auf dieses Argument. Bei einem s-attackierten Argument kann der Angriff auf dieses
Argument sowohl sicher als auch unsicher erfolgen.

Wie bereits zu Beginn der Arbeit erwähnt, sind konfliktfreie und vollständige Men-
gen, sowohl in der schwachen als auch in der starken Ausprägung, streng genommen
keine Extensionen einer Semantik. Zur Vereinfachung werden diese im Rahmen dieser
Arbeit jedoch als solche bezeichnet.

Nachdem die Notation eingeführt wurde, sollen erste Eigenschaften von iSetAFs im
nachfolgenden Unterabschnitt 5.2 betrachtet werden.

5.2 Einführende Eigenschaften

Beim Vergleich von abstrakten Argumentationsgraphen (AFs) und unvollständigen Ar-
gumentationsgraphen mit Mengenangriffen (iSetAFs) lässt sich feststellen, dass sich je-
des AF auch als iSetAF darstellen lässt, was in der nachfolgenden Proposition gezeigt
wird. Dies bildet die Grundlage für das Theorem 5.1, das zeigt, wie Eigenschaften von
Semantiken für AFs, SetAFs (Argumentationsgraphen mit Mengenangriffen) und iAFs
(unvollständige Argumentationsgraphen) direkt auf iSetAFs übertragen werden kön-
nen.
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Proposition 5.1. Jeder beliebige abstrakte Argumentationsgraph (AF) stellt eine Form
eines iSetAFs dar.

Beweis. Sei F = (A,R) ein abstrakter Argumentationsgraph mit der Relation R ⊆ A×A.
Definiere das entsprechende iSetAF U = (A,A?,R,R?) wie folgt:

• A = A (die Argumente von F bilden die sicheren Argumente von U ),

• A? = ∅ (U enthält keine unsicheren Argumente),

• R = {({a}, b) | (a, b) ∈ R} (jeder einzelne Angriff (a, b) wird als einelementiger
Mengenangriff aufgefasst, bei dem lediglich ein Argument a angreift),

• R? = ∅ (U enthält keine unsicheren Angriffe).

Auf diese Weise lässt sich für jedes AF ein entsprechendes iSetAF konstruieren.

Gleichzeitig lässt sich aber auch jedes SetAF als iSetAF und jedes iAF als iSetAFs
darstellen.

Proposition 5.2. Jeder beliebige Argumentationsgraph mit Mengenangriffen (SetAF)
stellt eine Form eines iSetAFs dar.

Beweis. Sei M = (A,R) ein SetAF mit der Relation R ⊆ (2A \ {∅}) × A. Definiere das
entsprechende iSetAF U = (A,A?,R,R?) wie folgt:

• A = A (die Argumente von M bilden die sicheren Argumente von U ),

• A? = ∅ (U enthält keine unsicheren Argumente),

• R = R (die Mengenangriffe von M bilden die sicheren Mengenangriffe von U ),

• R? = ∅ (U enthält keine unsicheren Angriffe).

Auf diese Weise lässt sich für jedes SetAF ein entsprechendes iSetAF konstruieren.

Proposition 5.3. Jeder beliebige unvollständige Argumentationsgraph (iAF) stellt eine
Form eines iSetAFs dar.

Beweis. Sei I = (A,A?,R,R?) ein iAF mit Relationen R,R? ⊆ (A ∪ A?) × (A ∪ A?).
Definiere das entsprechende iSetAF U = (A,A?,R,R?) wie folgt:

• A = A (die sicheren Argumente von I bilden die sicheren Argumente von U ),

• A? = A? (die unsicheren Argumente von I bilden die unsicheren Argumente von
U ),

• R = {({a}, b) | (a, b) ∈ R} (jeder bedingt sichere Angriff (a, b) wird als einele-
mentiger Mengenangriff aufgefasst, bei dem lediglich ein Argument a angreift),
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• R? = {({a}, b) | (a, b) ∈ R?} (jeder unsichere Angriff (a, b) wird als einelementiger
Mengenangriff aufgefasst).

Auf diese Weise lässt sich für jedes iAF ein entsprechendes iSetAF konstruieren.

Da gezeigt wurde, dass sich jedes AF, SetAF bzw. iAF auch als iSetAF betrachten
lässt, folgt direkt, dass eine Eigenschaft für iSetAFs nicht erfüllt sein kann, wenn diese
bereits für AFs, SetAFs bzw. iAFs nicht erfüllt ist. Für das nachfolgende Theorem be-
zeichne E ∈ {Syntaxunabhängigkeit, I-Maximalität, Enthaltung, Direktionalität, Dicht-
heit, Konfliktsensitivität, Modularisierung} die verschiedenen zu untersuchenden Ei-
genschaften.

Theorem 5.1. Erfüllt eine Semantik σ für AFs, SetAFs oder iAFs eine Eigenschaft E
nicht, so wird diese Eigenschaft weder von einer Semantik σw noch von einer Semantik
σs erfüllt.

Beweis. Sei F ein beliebiger abstrakter Argumentationsgraph, M ein SetAF und I ein
iAF. Angenommen, eine Eigenschaft E gelte nicht für F , M oder I . Entsprechend Pro-
position 5.1 lässt sich jede dieser Strukturen in eine Form eines iSetAFs überführen,
für das die Eigenschaft E ebenso wenig gilt. Es liegt somit mindestens ein iSetAF vor,
das die Eigenschaft nicht erfüllt, weshalb eine Erfüllung im Allgemeinen nicht möglich
ist.

Die im Rahmen dieser Arbeit betrachteten Eigenschaften wurden bereits vollständig
für AFs untersucht (vgl. [vdTV17, DDLW15]). Die Ergebnisse dieser Untersuchungen
sind in Tabelle 2 übersichtlich dargestellt. Für SetAFs wurde ebenfalls ein Großteil der
Eigenschaften untersucht (vgl. [DKUW24]), die Ergebnisse sind in Tabelle 3 dargestellt.
Dabei wurden die Syntaxunabhängigkeit sowie die Konfliktsensitivität nicht unter-
sucht. Auch für extensionsbasierte iSetAFs wurden bereits einige dieser Eigenschaften
untersucht (vgl. [Mai24]). Dabei wurden allerdings nur die Semantiken co, pr, gr und st
sowie wenige Postulate berücksichtigt. Die Ergebnisse sind in Tabelle 4 dargestellt.

cf ad co pr gr st
Syntaxunabhängigkeit ✓ ✓ ✓ ✓ ✓ ✓

I-Maximalität ✗ ✗ ✗ ✓ ✓ ✓

Enthaltung ✓ ✓ ✓ ✗ ✓ ✗

Direktionalität ✓ ✓ ✓ ✓ ✓ ✗

Dichtheit ✓ ✗ ✗ ✗ ✓ ✓

Konfliktsensitivität ✓ ✓ ✗ ✓ ✓ ✓

Modularisierung ✗ ✓ ✓ ✓ ✓ ✓

Tabelle 2: Übersicht der Erfüllung von Postulaten für AFs durch verschiedene Seman-
tiken. Eigene Darstellung in Anlehnung an Dunne et al. und Dvořák et al.
[DDLW15, DKUW24].
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cf ad co pr gr st
I-Maximalität ✗ ✗ ✗ ✓ ✓ ✓

Enthaltung ✓ ✓ ✓ ✗ ✓ ✗

Direktionalität ✓ ✓ ✓ ✓ ✓ ✗

Dichtheit ✗ ✗ ✗ ✗ ✓ ✗

Modularisierung ✗ ✓ ✓ ✓ ✓ ✓

Tabelle 3: Übersicht der Erfüllung von Postulaten für SetAFs durch verschiedene Se-
mantiken. Eigene Darstellung in Anlehnung an Dvořák et al. [DKUW24].

cow cos prw prs grw grs stw sts
I-Maximalität ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✓

Enthaltung ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗

Direktionalität ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗

Tabelle 4: Übersicht der Erfüllung von Postulaten für iAFs durch Semantiken. Eigene
Darstellung in Anlehnung an Mailly [Mai24].

Alle in Tabelle 2, Tabelle 3 und Tabelle 4 nicht erfüllten Eigenschaften erfüllen auch
die Semantiken für iSetAFs im Allgemeinen nicht. Dies geht aus Theorem 5.1 hervor.
Daher wird in den folgenden Ausführungen auf einen erneuten Beweis der Nichterfül-
lung einer Eigenschaft verzichtet.

Ist eine Eigenschaft E jedoch für eine Semantik σ für AFs, SetAFs bzw. iAFs erfüllt,
lässt sich daraus nicht direkt schließen, dass diese auch für die entsprechende Semantik
für iSetAFs gilt, weshalb diese Fälle in den kommenden Unterkapiteln einzeln unter-
sucht werden.

5.3 Syntaxunabhängigkeit

Das erste zu untersuchende Postulat ist die Syntaxunabhängigkeit. Die Definition 2.16
lässt sich analog auf iSetAFs anwenden, wobei zunächst definiert werden soll, wann
zwei iSetAFs isomorph sind.

Definition 5.2 (Isomorphe iSetAFs). Seien U = (A,A?,R,R?) und U ′ = (A′,A′?,R′,R′?)
zwei iSetAFs. Die beiden iSetAFs U und U ′ heißen isomorph, wenn es eine bijektive
Abbildung ρ : A∪A? → A′∪A′? gibt, sodass für jede Menge S ⊆ A∪A? und a ∈ A∪A?

gilt:
(S, a) ∈ R ∪ R? gdw. (ρ(S), ρ(a)) ∈ R′ ∪ R′?.

Dabei wird die Abbildung ρ auf die Menge S elementweise angewandt. Es gilt somit:

ρ(S) = {ρ(x) | x ∈ S}.
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Mit der Isomorphie zweier iSetAFs lässt sich nun auch die Syntaxunabhängigkeit für
iSetAFs definieren.

Definition 5.3 (Syntaxunabhängigkeit für iSetAFs). Eine Semantik σx erfüllt Syntaxun-
abhängigkeit gdw. für alle iSetAFs U und U ′ gilt: Sind U und U ′ isomorph mit einer
bijektiven Abbildung ρ (es gilt somit ρ(U) = U ′), dann folgt:

σx(ρ(U)) = ρ(σx(U)).

Die Extensionen eines iSetAFs sollten somit unabhängig von der konkreten Bezeich-
nung der Argumente sein. Im Folgenden wird gezeigt, dass dies für alle Semantiken σx
gilt.

Theorem 5.2. Jede Semantik σx für iSetAFs erfüllt Syntaxunabhängigkeit.

Beweis. Per Definition der Syntaxunabhängigkeit gibt es für jede Semantik σx eine Bi-
jektion ρ(U), die die Knotenbezeichnungen lediglich umbenennt. Dabei wird die Struk-
tur des Graphen durch ρ nicht verändert, da die Angriffsbeziehungen der Argumente
erhalten bleiben. Aus diesem Grund sind die Graphen U und ρ(U) isomorph. Da Se-
mantiken definitionsgemäß von den Knotenbezeichnern unabhängig sind und nur die
Struktur des Graphen berücksichtigt wird, folgt direkt

σx(ρ(U)) = ρ(σx(U)).

Damit erfüllt jede Semantik σx für iSetAFs Syntaxunabhängigkeit.

a

d

b c

e

U12

v

y

w x

z

ρ12(U12)

Abbildung 21: Zwei isomorphe iSetAFs U12 und ρ12(U12) zu Beispiel 5.1. Eigene Dar-
stellung.

Die Syntaxunabhängigkeit von iSetAFs soll im folgenden Beispiel verdeutlicht wer-
den.

Beispiel 5.1. In Abbildung 21 ist zum einen das iSetAF U12 und zum anderen das um-
benannte iSetAF ρ12(U12) abgebildet. Für die Bijektion ρ12 gilt

ρ12(a) = v, ρ12(b) = w, ρ12(c) = x,

ρ12(d) = y, ρ12(e) = z.
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Diese Umbenennung verändert jedoch nicht die Struktur der Angriffe oder die Unsi-
cherheit des Graphen, sodass U12 und ρ12(U12) isomorph sind.
Weiter gilt

cow(U12) = {{a, b, d, e}} und
ρ12(cow(U12)) = {{v, w, y, z}}.

Für den isomorphen Graphen gilt ebenso

cow(ρ12(U12)) = {{v, w, y, z}}.

Es folgt
cow(ρ12(U12)) = ρ12(cow(U12)).

5.4 I-Maximalität

Die zweite Eigenschaft ist die I-Maximalität. Sofern diese Eigenschaft erfüllt ist, gibt es
keine zwei unterschiedlichen Extensionen eines iSetAFs, die in einer echten Teilmen-
genbeziehung zueinander stehen. Die Definition 2.17 kann analog für iSetAFs definiert
werden.

Definition 5.4 (I-Maximalität für iSetAFs). Seien S, S′ ∈ σx(U) zwei Extensionen eines
iSetAFs. Eine Semantik σx erfüllt I-Maximalität gdw. für alle iSetAFs gilt: Wenn S ⊆ S′,
dann muss S = S′ gelten.

Mit dieser Definition der I-Maximalität kann nun gezeigt werden, dass die Semanti-
ken prx, grx und sts diese Eigenschaft erfüllen. Das folgende Theorem stellt dies formal
dar.

Theorem 5.3. prx, grx und sts erfüllen I-Maximalität.

Beweis. Sei U = (A,A?,R,R?) ein iSetAF und S ⊆ A ∪A?.

• prx: Per Definition handelt es sich bei der x-präferierten Extension um eine ma-
ximal x-zulässige Menge. Es seien S, S′ ∈ prx(U) zwei x-präferierte Extensionen
mit S ⊆ S′. Angenommen, es gilt zudem S ̸= S′ und somit auch S′ ⊃ S. Dann
kann aber nur S′ x-präferiert sein, da nur diese Extension maximal ist. Daraus
folgt, dass S nicht x-präferiert sein kann, was zum Widerspruch führt. Somit folgt
S = S′.

• grx: Per Definition handelt es sich bei der schwach bzw. stark grundierten Ex-
tension um den Fixpunkt der x-charakteristischen Funktion. Dieser Fixpunkt ist
eindeutig bestimmt, weshalb es keine S, S′ ∈ grx(U) mit S ⊆ S′ und S ̸= S′ geben
kann. Hieraus folgt trivialerweise S = S′.

• sts: Seien S, S′ ∈ sts zwei stark stabile Extensionen mit S ⊆ S′. Angenommen,
es gilt S ̸= S′ und damit auch S′ ⊃ S, dann muss ein Argument b existieren mit
b ∈ S′ und b /∈ S. Da S aber stark stabil ist, werden alle Argumente a ∈ (A∪A?)\S
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von S sicher angegriffen, somit auch das Argument b. Wenn S das Argument b
angreift, muss aber auch die Obermenge S′ das Argument b angreifen, woraus
folgt, dass S′ nicht stark konfliktfrei sein kann. Dies steht im Widerspruch und es
muss S = S′ gelten.

a1 a2 a3

a4 a6

Abbildung 22: iSetAF U13 zu Beispiel 5.2. Eigene Darstellung.

Die Semantiken cfx, adx, cox und stw erfüllen I-Maximalität hingegen nicht. Dies
wird durch das nachfolgende Gegenbeispiel verdeutlicht.

Beispiel 5.2. Für das in Abbildung 22 dargestellte iSetAF U13 gilt:

• S1 = {a1} ∈ cfx und S2 = {a1, a4} ∈ cfx. Es gilt S1 ⊆ S2, aber S1 ̸= S2.

• S1 = {a3} ∈ adx und S2 = {a3, a4} ∈ adx. Es gilt S1 ⊆ S2, aber S1 ̸= S2.

• S1 = {a2, a4} ∈ cox und S2 = {a2, a3, a4} ∈ cox. Es gilt S1 ⊆ S2, aber S1 ̸= S2.

• S1 = {a2, a4} ∈ stw und S2 = {a2, a3, a4} ∈ stw. Es gilt S1 ⊆ S2, aber S1 ̸= S2.

Würden die zuvor in Beispiel 5.2 genannten Semantiken I-Maximalität erfüllen, dann
müsste in jedem der gezeigten Beispiele zwingend S1 = S2 gelten. Dies ist nicht erfüllt,
weshalb diese Semantiken die I-Maximalität grundsätzlich nicht erfüllen.

5.5 Enthaltung

Die dritte zu untersuchende Eigenschaft ist die Enthaltung. Um die Definition 2.18 auf
iSetAFs anwenden zu können, muss zunächst die Bezeichnung S− bzw. S+ konkreti-
siert werden. Für eine Menge von Argumenten S ⊆ A ∪A? bezeichnet

• S−,w die Menge aller Argumentmengen, von denen S sicher angegriffen wird:

S−,w = {B ⊆ A | ∃a ∈ S : (B, a) ∈ R},

• S−,s die Menge aller Argumentmengen, von denen S sicher oder unsicher ange-
griffen wird:

S−,s = {B ⊆ A ∪A? | ∃a ∈ S : (B, a) ∈ R ∪ R?},
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• S+,w die Menge aller Argumente, die sicher von S angegriffen werden:

S+,w = {a ∈ A ∪A? | ∃B ⊆ (S ∩A) : (B, a) ∈ R},

• S+,s die Menge aller Argumente, die sicher oder unsicher von S angegriffen wer-
den:

S+,s = {a ∈ A ∪A? | ∃B ⊆ S : (B, a) ∈ R ∪ R?}.

Mit dieser alternativen Bezeichnung lässt sich nun auch die Eigenschaft der Enthal-
tung leicht auf iSetAFs übertragen.

Definition 5.5 (Enthaltung für iSetAFs). Seien S1, S2 ∈ σx(U) zwei Extensionen von U .
Eine Semantik σx erfüllt Enthaltung gdw. für alle Argumente a ∈ A∪A? gilt: Ist a ∈ S1

und zudem auch a ∈ S+,x
2 , dann gibt es eine weitere Extension S3 ∈ σx(U), sodass

weder a ∈ S3 noch a ∈ S+,x
3 gilt.

Für die schwache Ausprägung einer Semantik bedeutet dies: Befindet sich ein Argu-
ment a in einer Menge akzeptierter Argumente und wird es von einem sicheren Argu-
ment einer anderen Menge sicher angegriffen, dann existiert eine dritte Extension, die
weder a enthält noch a angreift. Insbesondere werden dabei unsichere Angriffe auf a
nicht berücksichtigt.

Theorem 5.4. Die Semantiken cfx, adx, cos und grx für iSetAFs erfüllen Enthaltung.

Beweis. Sei U = (A,A?,R,R?) ein iSetAF.

• cfx: Seien S1, S2 ∈ cfx(U). Angenommen, es existiert ein Argument a ∈ S1, das
von einer Menge B ⊆ S2 x-attackiert wird. Dann gibt es gemäß Proposition 4.2
immer eine weitere Extension S3 = {∅}mit S3 ∈ cfx(U).

• adx: Seien S1, S2 ∈ adx(U). Angenommen, es existiert ein Argument a ∈ S1, das
von einer Menge B ⊆ S2 x-attackiert wird. Dann gibt es gemäß Proposition 4.2
immer eine weitere Extension S3 = {∅}mit S3 ∈ adx(U).

• cos: Seien S1, S2 ∈ cos. Angenommen, es existiert ein Argument a ∈ S1, das von
einer Menge B ⊆ S2 s-attackiert wird. Sei S3 ∈ grs(U) die stark grundierte Ex-
tension, für die per Definition auch S3 ∈ cos(U) gilt. Insbesondere ist S3 Teil jeder
stark vollständigen Extension. Wegen S3 ⊆ S1 ∩ S2 und a /∈ S1 ∩ S2 folgt a /∈ S3.
Weiter folgt daraus, dass für wenigstens ein Argument b ∈ B gilt, dass b /∈ S1, da
S1 ∈ cfs(U) und dies ansonsten zum Konflikt führen würde. Der Mengenangriff
von B auf a kann somit nicht vollständig in S1 und damit auch nicht in S3 liegen.

• grx: Da die schwach bzw. stark grundierte Semantik eindeutig bestimmt ist, kann
es keine zwei Extensionen S1, S2 ∈ grx(U) geben, wodurch die Definition der
Enthaltung trivialerweise erfüllt ist.

Die verbliebenen Semantiken cow, prx und stx erfüllen die Eigenschaft der Enthal-
tung nicht. Dies wurde bereits in Theorem 5.1 gezeigt.
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5.6 Direktionalität

Als Vorbereitung auf das nächste Postulat muss an dieser Stelle zunächst der Begriff der
Projektion auf iSetAFs übertragen werden, da dieser von der allgemeinen Definition
abweicht.

Definition 5.6 (Projektion eines iSetAFs). Für ein iSetAF U = (A,A?,R,R?) und eine
Menge S ⊆ A ∪ A? ist die Projektion U↓S (das iSetAF U projiziert auf die Menge S)
gegeben durch:

U↓S = (A ∩ S,A? ∩ S,R↓S ,R
?
↓S)

mit

R↓S = {(B, a) ∈ R | B ⊆ S und a ∈ S} und

R?
↓S = {(B, a) ∈ R? | B ⊆ S und a ∈ S}.

a1 a2

a3 a4

Abbildung 23: iSetAF U14 zu Beispiel 5.3. Eigene Darstellung.

Beispiel 5.3. Das in Abbildung 23 dargestellte iSetAF U14 kann auf unterschiedliche
Mengen projiziert werden. Einige beispielhafte Projektionen sind zur Veranschauli-
chung in Abbildung 24 dargestellt. Ein Mengenangriff kann somit nur in einer Pro-
jektion enthalten sein, wenn alle beteiligten Argumente – sowohl die angreifenden Ar-
gumente als auch das angegriffene Argument – in der Menge, auf die projiziert wird,
enthalten sind.

Für die Überprüfung der Direktionalität ist zudem der Begriff der unattackierten
Menge auf iSetAFs zu übertragen, da Mengenangriffe in der herkömmlichen Definition
(vgl. Definition 2.20) nicht berücksichtigt werden. Dabei wird zusätzlich zwischen einer
schwach unattackierten und einer stark unattackierten Menge unterschieden.

Definition 5.7 (x-unattackiert). Sei U = (A,A?,R,R?) ein iSetAF und S ⊆ A ∪ A? eine
Menge von Argumenten.

• Eine Menge S heißt w-unattackiert gdw. diese von keinem Mengenangriff B ⊆
{A \ S}mit B ̸= ∅ sicher angegriffen wird.

• Eine Menge S heißt s-unattackiert gdw. diese von keinem Mengenangriff B ⊆
{(A ∪A?) \ S}mit B ̸= ∅ sicher oder unsicher angegriffen wird.
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U14↓{a1,a2}

a1 a2

a3

U14↓{a1,a2,a3}

a1

a3 a4

U14↓{a1,a3,a4}

a1 a2

a4

U14↓{a1,a2,a4}

Abbildung 24: Beispielhafte Projektionen von U14 aus Abbildung 23 auf unterschiedli-
che Mengen. Eigene Darstellung zu Beispiel 5.3.

Nachdem die benötigen Begriffe definiert wurden, lässt sich nun auch die Definiti-
on 2.20 auf iSetAFs übertragen, wobei lediglich minimale Anpassungen erforderlich
sind.

Definition 5.8 (Direktionalität für iSetAFs). Sei S ⊆ A ∪ A? eine in einem iSetAF U
x-unattackierte Menge. Sei zudem S′ ∈ σx(U) eine σx-Extension in U . Eine Semantik
σx erfüllt Direktionalität gdw.

σx(U↓S) = {S′ ∩ S | S′ ∈ σx(U)}

für jedes iSetAF gilt.

Theorem 5.5. Die Semantik cfx für iSetAFs erfüllt Direktionalität.

Beweis. Sei U = (A,A?,R,R?) ein iSetAF und S ⊆ A ∪ A? eine in U x-unattackierte
Menge. Zu zeigen sind dabei beide Seiten der Gleichung cfx(U↓S) = {S ∩ S′ | S′ ∈
cfx(U)}.

1. Sei S′ ∈ cfx(U). Da S x-unattackiert in U ist und in U↓S keine nicht erlaubten An-
griffe hinzugefügt werden, folgt direkt, dass S ∩ S′ in U↓S ebenfalls x-konfliktfrei
ist.

2. Sei S′ ∈ cfx(U↓S). Da S x-unattackiert in U ist, existieren in U keine zusätzlichen
nicht erlaubten Angriffe auf Argumente in S. Weiter ist S′ in U↓S x-konfliktfrei,
weshalb S′ ⊆ S gelten muss und es folgt direkt, dass die Menge S ∩ S′ = S′ auch
in U x-konfliktfrei ist. Somit gilt S′ ∈ cfx(U).
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Es lässt sich allerdings leicht feststellen, dass Semantiken, die auf der x-Zulässigkeit
basieren, Direktionalität grundsätzlich nicht erfüllen können. Die zwei nachfolgenden
Beispiele zeigen die Problematik unter Berücksichtigung der herkömmlichen Definiti-
on der Direktionalität.

a1 a2

a3

Abbildung 25: iSetAF U15 zu Beispiel 5.4. Eigene Darstellung.

Beispiel 5.4. Sei U15 das in Abbildung 25 dargestellte iSetAF und S = {a1, a3} eine
x-unattackierte Menge entsprechend Definition 5.7. Da keine unsichere Information
enthalten ist, lässt sich das Beispiel sowohl für die schwache als auch für die starke
Ausprägung anwenden. Keines der beiden Argumente wird von einem Mengenangriff
außerhalb von S angegriffen. Es gilt

adx(U15↓S) = {{a1}, {a3}, {a1, a3}}.

Weiter gilt

adx(U15) = {{a1}, {a2}, {a1, a2}}.

Dann gilt allerdings auch

(S ∩ S′ | S′ ∈ adx(U15)) = {{a1}}.

Dies widerspricht der Definition der Direktionalität. Die Menge {a3} ist somit in U↓S
x-zulässig, in U hingegen nicht, da das Argument vom Mengenangriff ({a1, a2}, a3)
attackiert und nicht verteidigt wird.

Auch für die weiteren Semantiken für iSetAFs, die auf der x-Zulässigkeit basieren,
lassen sich Gegenbeispiele finden, wie nachfolgend gezeigt wird.

Beispiel 5.5. Fortsetzung zu Beispiel 5.4. Für das iSetAF U15 aus Abbildung 25 und eine
Menge S = {a1, a3} gilt:

cox(U15↓S) = prx(U15↓S) = grx(U15↓S) = stx(U15↓S) = {{a1, a3}}.

Weiter gilt

cox(U15) = prx(U15) = grx(U15) = stx(U15) = {{a1, a2}}.
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Dann gilt allerdings auch

(S′ ∩ S | S′ ∈ cox(U15)) = {{a1}},
(S′ ∩ S | S′ ∈ prx(U15)) = {{a1}},
(S′ ∩ S | S′ ∈ grx(U15)) = {{a1}},
(S′ ∩ S | S′ ∈ stx(U15)) = {{a1}}.

Dies widerspricht ebenfalls der Definition der Direktionalität.

Damit erfüllen die Semantiken adx, cox, grx, prx und stx Direktionalität im Allge-
meinen nicht. Dies ist allerdings eine zentrale Eigenschaft, die es ermöglicht, lokale
Entscheidungen zu treffen, ohne den gesamten Argumentationsgraphen zu betrach-
ten. Zudem ist bekannt, dass die Semantiken cf, ad, co, pr und gr für AFs die Eigen-
schaft der Direktionalität erfüllen (vgl. [BG07]), weshalb dies auch für iSetAFs eine
wünschenswerte Eigenschaft ist.

Damit die Direktionalität auch für Semantiken für iSetAFs erfüllt werden kann, soll
zunächst der Begriff der unattackierten Menge eingeschränkt und neu definiert wer-
den. Solange eine bislang unattackierte Menge in einem Teilgraphen durch Hinzunah-
me von weiteren Argumenten von einem möglichen Mengenangriff bedroht sein kann,
kann die Direktionalität nicht erfüllt sein. Aus diesem Grund wird nachfolgend ei-
ne unberührte Menge für die Direktionalität definiert (in Anlehnung an Dvořák et al.
[DKUW24]).

Definition 5.9 (x-unberührt). Sei U = (A,A?,R,R?) ein iSetAF und S ⊆ A ∪ A? eine
Menge von Argumenten.

• Eine Menge S heißt w-unberührt gdw. es kein b ∈ {A\S} und keine Menge B ⊆ A

mit b ∈ B gibt, sodass (B, a) ∈ R für mindestens ein a ∈ S gilt.

• Eine Menge S heißt s-unberührt gdw. es kein b ∈ {(A∪A?)\S} und keine Menge
B ⊆ A ∪A? mit b ∈ B gibt, sodass (B, a) ∈ R ∪ R? für mindestens ein a ∈ S gilt.

Eine Menge ist somit schwach unberührt, wenn diese nicht von außen von einem
sicheren Mengenangriff attackiert wird. Außerdem müssen alle Argumente eines Men-
genangriffs, der ein Argument innerhalb der schwach unberührten Menge attackiert,
auch innerhalb dieser schwach unberührten Menge liegen. Ansonsten würde ein Men-
genangriff entstehen, der erst durch die Hinzunahme von Argumenten von außerhalb
der Menge gültig wird. Genau dies soll vermieden werden. Analog lässt sich auch eine
stark unberührte Menge erklären.

Beispiel 5.6. Sei U16 das in Abbildung 26 abgebildete iSetAF. Dann sind beispielsweise
die Mengen {a1}, {a1, a2}, {a1, a2, a4}, {a1, a2, a3}, {a2, a3, a6} schwach unberührt. Die
Mengen {a2, a6}, {a3, a6}, {a4, a5} hingegen sind nicht schwach unberührt.

Weiter sind beispielsweise die Mengen {a1, a2, a4}, {a2, a3, a6}, {a2, a3, a5, a6} stark
unberührt, während die Mengen {a1}, {a1, a2}, {a3, a6}, {a2, a5} hingegen nicht stark
unberührt sind.
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a1 a2 a3

a4 a5 a6

Abbildung 26: iSetAF U16 zu Beispiel 5.6. Eigene Darstellung.

Mit Hilfe der x-unberührten Menge, lässt sich die Direktionalität neu definieren. Die-
se Neudefinition soll Mengendirektionalität genannt werden.

Definition 5.10 (Mengendirektionalität). Sei S ⊆ A ∪ A? eine in einem iSetAF U x-
unberührte Menge. Sei zudem S′ ∈ σx(U) eine σx-Extension in U . Eine Semantik σx
erfüllt Mengendirektionalität gdw.

σx(U↓S) = {S′ ∩ S | S′ ∈ σx(U)}

für jedes iSetAF gilt.

Die Mengendirektionalität ist für die meisten Semantiken für iSetAFs erfüllt, wie das
nachfolgende Theorem zeigt.

Theorem 5.6. Die Semantiken cfx, adx, cox, prx und grx erfüllen Mengendirektionalität.

Beweis. Sei U = (A,A?,R,R?) ein iSetAF und S ⊆ A ∪ A? eine in U x-unberührte
Menge. Zu zeigen sind dabei immer beide Seiten der Gleichung σx(U↓S) = {S′ ∩ S |
S′ ∈ σx(U)}.

1. cfx:

a) Sei S′ ∈ cfx(U). Da S x-unberührt in U ist, werden in U↓S keine nicht erlaub-
ten Angriffe hinzugefügt. Daraus folgt direkt, dass S ∩ S′ in U↓S ebenfalls
x-konfliktfrei ist.

b) Sei S′ ∈ cfx(U↓S). Da S x-unberührt in U ist, existieren in U keine zusätz-
lichen nicht erlaubten Angriffe auf Argumente in S. Weiter ist S′ in U↓S x-
konfliktfrei, weshalb S′ ⊆ S gelten muss und es folgt direkt, dass die Menge
S ∩ S′ = S′ auch in U x-konfliktfrei ist. Somit gilt S′ ∈ cfx(U).

2. adx:

a) Sei S′ ∈ adx(U). Dann folgt direkt, dass S′ ∈ cfx(U) und damit auch S∩S′ ∈
cfx(U↓S) (vgl. Punkt 1a). Es bleibt zu zeigen, dass S∩S′ alle seine Argumente
in U↓S verteidigt. Da die Menge S x-unberührt ist, gilt für alle Angreifer
(B, a) mit a ∈ S ∩ S′ somit B ⊆ S. Da S′ ∈ adx(U) gilt, existiert eine Menge
C ⊆ S′, sodass (C, b) mit b ∈ B gilt. Da C ein Argument in S angreift und S
x-unberührt ist, muss zudem C ⊆ S gelten. Es folgt C ⊆ S ∩ S′ und damit
verteidigt sich S ∩ S′ gegen alle Angreifer.
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b) Sei S′ ∈ adx(U↓S). Dann folgt direkt, dass S′ ∈ cfx(U↓S) und demnach auch
S′ ∈ cfx(U) (vgl. Punkt 1b). Es bleibt zu zeigen, dass S′ in U alle seine Ar-
gumente verteidigt. Da S′ x-zulässig in U↓S ist, verteidigt sich S′ gegen alle
Angreifer (B, a) mit B ⊆ S und a ∈ S′. Da S x-unberührt in U ist, kann es in
U keine weiteren Angriffe auf S′ geben, die verteidigt werden müssten.

3. cox:

a) Sei S′ ∈ cox(U). Dann folgt direkt, dass S′ ∈ adx(U) und damit auch S ∩
S′ ∈ adx(U↓S) (vgl. Punkt 2a). Es bleibt zu zeigen, dass S ∩S′ keine weiteren
Argumente in U↓S verteidigt. Angenommen, es gibt ein Argument a ∈ S mit
a /∈ S′, das von S ∩ S′ verteidigt wird. Da S ∩ S′ ⊆ S′ und S′ ∈ cox(U) gilt,
müsste aber auch a ∈ S′ gelten, was zum Widerspruch führt. Somit enthält
S∩S′ bereits alle Argumente, die es verteidigt und es folgt S∩S′ ∈ cox(U↓S).

b) Sei S′ ∈ cox(U↓S). Da S′ x-vollständig in U↓S ist, gibt es kein weiteres Ar-
gument a ∈ S, das von S′ verteidigt wird. Zudem folgt aus Punkt 2b, dass
S′ ∈ adx(U↓S) und demnach auch S′ ∈ adx(U). Da S′ x-zulässig in U ist,
muss es auch eine Obermenge S′′ ⊇ S′ geben, sodass S′′ ∈ cox(U). Trivialer-
weise gilt zudem S′ ⊆ S und damit folgt S ∩ S′′ = S′, womit die Definition
der Mengendirektionalität erfüllt ist.

4. prx:

a) Sei S′ ∈ prx(U). Dann folgt direkt, dass S′ ∈ cox(U) und damit auch S ∩
S′ ∈ cox(U↓S) (vgl. Punkt 3a). Es bleibt zu zeigen, dass S ∩ S′ maximal x-
vollständig in U↓S ist. Angenommen, es gibt ein Argument a ∈ (S \ (S∩S′)),
sodass {a∪(S∩S′)} x-vollständig in U↓S ist. Das heißt, das Argument a wird
entweder von S ∩ S′ verteidigt oder es verteidigt sich selbst gegen Angriffe.
In beiden Fällen müsste dann aber auch a ∈ S′ gelten, da S′ maximal x-
vollständig in U ist. Dies widerspricht der Annahme, dass a /∈ S′ gilt. Somit
ist S ∩ S′ maximal x-vollständig und es folgt S ∩ S′ ∈ prx(U↓S).

b) Sei S′ ∈ prx(U↓S). Da S′ maximal x-vollständig in U↓S ist, gibt es kein wei-
teres Argument a ∈ S, sodass {a ∪ S′} x-vollständig in U↓S ist. Zudem folgt
aus Punkt 2b, dass S′ ∈ adx(U↓S) und demnach auch S′ ∈ adx(U). Da S′

x-zulässig in U ist, muss es auch eine Obermenge S′′ ⊇ S′ geben, sodass
S′′ ∈ prx(U). Trivialerweise gilt zudem S′ ⊆ S und damit folgt S ∩ S′′ = S′,
womit die Definition der Mengendirektionalität erfüllt ist.

5. grx:

a) Sei S′ ∈ grx(U). Dann folgt direkt, dass S′ ∈ cox(U) und damit auch S ∩
S′ ∈ cox(U↓S) (vgl. Punkt 3a). Es bleibt zu zeigen, dass S ∩ S′ minimal x-
vollständig in U↓S ist. Angenommen, es gibt ein Argument a ∈ S∩S′, sodass
(S∩S′)\a in U↓S x-vollständig ist. Da S′ minimal x-vollständig ist und wegen
a ∈ S′ auch das Argument a verteidigt, führt dies zum Widerspruch. Somit
ist S ∩ S′ minimal x-vollständig in U↓S , und es folgt S ∩ S′ ∈ grx(U↓S).
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b) Sei S′ ∈ grx(U↓S). Da S′ minimal x-vollständig in U↓S ist, gibt es kein Argu-
ment a ∈ S′ sodass S′ \a ebenfalls x-vollständig in U↓S ist. Da S x-unberührt
ist, gilt für die eindeutig bestimmte x-grundierte Extension S′′ von U genau
S′ ⊆ S′′. Trivialerweise gilt zudem S′ ⊆ S und damit folgt S ∩ S′′ = S′,
womit die Definition der Mengendirektionalität erfüllt ist.

Die stabile Semantik stx für iSetAFs erfüllt Mengendirektionalität auch unter Berück-
sichtigung der neu definierten x-unberührten Menge im Allgemeinen hingegen nicht,
wie das nachfolgende Gegenbeispiel zeigt.

a1 a2

a3

a4

Abbildung 27: iSetAF U17 zu Beispiel 5.7. Eigene Darstellung.

Beispiel 5.7. Sei U17 das in Abbildung 27 dargestellte iSetAF und S = {a1, a2, a3} eine
x-unberührte Menge. Für die stabile Semantik für iSetAFs stx(U17) gilt dann:

stx(U17) = {{a3}} und
stx(U17↓S) = {{a1, a2}, {a3}}.

Allerdings gilt auch

{S ∩ S′ | S′ ∈ stx(U17)} = {{a3}} ≠ stx(U17↓S).

Dies zeigt, dass stx das Postulat der Mengendirektionalität im Allgemeinen nicht er-
füllt.

5.7 Dichtheit

Die nächste zu überprüfende Eigenschaft ist die Dichtheit. Die Definition der Dichtheit
aus Definition 2.21 soll zunächst auch für iSetAFs erweitert werden.

Definition 5.11 (Dichtheit für iSetAFs). Eine Menge von Extensionen S = {S1, . . . , Sn}
mit n ∈ N und S1, . . . , Sn ∈ σx(U) heißt dicht gdw. gilt: Sei S ∈ S und S ∪ {a} /∈ S mit
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a ∈ (A ∪A?) \ S, dann folgt, dass es ein b ∈ S gibt, das nicht gemeinsam mit a in einer
beliebigen Extension aus S vorkommen kann.

Eine Semantik σx erfüllt Dichtheit gdw. die Menge σx(U) für jedes iSetAF dicht ist.

Entsprechend dieser herkömmlichen, aber für iSetAFs erweiterten Definition der
Dichtheit lässt sich zeigen, dass diese Eigenschaft lediglich von der x-grundierten Se-
mantik erfüllt wird.

Theorem 5.7. Die Semantik grx für iSetAFs erfüllt Dichtheit.

Beweis. Sei S ∈ grx(U) und a ∈ (A ∪ A?) \ S, sodass {S ∪ a} /∈ grx(U). Da die x-grun-
dierte Semantik eindeutig bestimmt ist, kann es trivialerweise keine Menge S′ ∈ grx(U)
mit S′ ̸= S geben, was die Dichtheit beweist.

Die restlichen Semantiken für iSetAFs erfüllen Dichtheit in der Regel nicht, wie das
nachfolgende Gegenbeispiel zeigt.

a1 a2

a3

Abbildung 28: iSetAF U18 zu Beispiel 5.4. Abbildung in Anlehnung an Dvořák, Fandin-
no und Woltran [DFW19].

Beispiel 5.8. Sei σ18 = {cfx, adx, cox, prx, stx}. Für das in Abbildung 28 dargestellte
iSetAF U18 ist die Menge {a1, a2} ∈ σ18(U18) und die Menge {a1, a2, a3} /∈ σ18(U18).
Würde eine Semantik aus σ18 nun Dichtheit erfüllen, müsste entweder {a1, a3} /∈
σ18(U18) oder {a1, a2} /∈ σ18(U18) gelten. Es gilt allerdings {a1, a3}, {a1, a2} ∈ σ18(U18).

Damit die Dichtheit zumindest für einige Semantiken erfüllt wird, lässt sich die
Definition der Dichtheit auf iSetAFs übertragen, indem auch Mengenangriffe sinnge-
mäß berücksichtigt werden. Dafür müssen statt einzelner Argumente auch Argument-
mengen, die gemeinsam einen Mengenangriff bilden, berücksichtigt werden. Eine sol-
che Argumentmenge soll als zusammengehörige Menge wie folgt definiert werden:

Definition 5.12 (Zusammengehörige Menge). Sei U = (A,A?,R,R?) ein iSetAF. Eine
Menge B ⊆ A ∪A? wird als zusammengehörige Menge bezeichnet,

• falls |B| = 1 oder

• falls |B| > 1, dann muss B einen zusammengehörigen Mengenangriff darstellen.
Das heißt, es existiert ein Angriff (B, c) ∈ R ∪ R? für ein beliebiges Argument
c ∈ A ∪A?, sodass B und c in einer Angriffsbeziehung stehen.
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Zudem wird für die Definition der Dichtheit, bei der auch Mengenangriffe berück-
sichtigt werden können, die Menge Pairs(S) benötigt, die wie folgt definiert wird.

Definition 5.13 (Pairs(S)). Sei S = {S1, . . . , Sn} mit n ∈ N und S1, . . . , Sn ∈ S eine
Menge von Extensionen. Zudem seien B,B′ ⊆ S zwei zusammengehörige Mengen
einer Extension mit S ∈ S. Definiere

Pairs(S) = {(B,B′) | {B ∪B′} ⊆ S, S ∈ S}.

Pairs(σx) bezeichnet somit genau die Menge zweier zusammengehöriger Mengen,
die gemeinsam in einer beliebigen Extension in σx vorkommen. Zwei zusammengehö-
rige Mengen sind nicht Teil von Pairs(σx), wenn ein Konflikt zwischen beiden Mengen
besteht. Ein solcher Konflikt kann beispielsweise ein Angriff einer Menge auf ein Ar-
gument der anderen Menge sein.

Unter Berücksichtigung von zusammengehörigen Mengen lässt sich nun auch der
Begriff der Mengendichtheit analog der Dichtheit formulieren.

Definition 5.14 (Mengendichtheit). Eine Menge von Extensionen S = {S1, . . . , Sn}mit
n ∈ N und S1, . . . , Sn ∈ σx(U) heißt mengendicht gdw. gilt: Sei S ∈ S und S ∪ {a} /∈ S
mit a ∈ (A ∪ A?) \ S, dann folgt, dass es eine zusammengehörige Menge B ⊆ S gibt,
sodass (B, {a}) /∈ Pairs(S).

Eine Semantik σx erfüllt Mengendichtheit gdw. die Menge σx(U) für jedes iSetAF
mengendicht ist.

Mit Hilfe dieser neuen Definition lässt sich nun zeigen, dass sich iSetAFs bzgl. der
Mengendichtheit genauso verhalten wie AFs bzgl. der Dichtheit.

Theorem 5.8. Die Semantiken cfx, grx und stx für iSetAFs erfüllen Mengendichtheit.

Beweis. Sei U = (A,A?,R,R?) ein iSetAF.

• cfx: Sei S ∈ cfx(U) und a ∈ (A ∪ A?) \ S, sodass {S ∪ a} /∈ cfx(U). Daraus folgt
direkt, dass es eine Menge B ⊆ S geben muss, sodass für x = w ein sicherer
Mengenangriff (B, a) ∈ R oder ({a}, b) ∈ R mit b ∈ B erfolgt und für x = s ein
beliebiger Angriff (B, a) ∈ R ∪ R? oder ({a}, b) ∈ R ∪ R? mit b ∈ B erfolgt. Damit
gilt aber auch (B ∪ {a}) /∈ Pairs(cfx(U)), was die Mengendichtheit beweist.

• grx: Sei S ∈ grx(U) und a ∈ (A ∪ A?) \ S, sodass {S ∪ a} /∈ grx(U). Da die x-
grundierte Semantik eindeutig bestimmt ist, kann es trivialerweise keine Menge
S′ ∈ grx(U) mit S′ ̸= S geben, was die Mengendichtheit beweist.

• stx: Sei S ∈ stx(U) und a ∈ (A ∪A?) \ S, sodass {S ∪ a} /∈ stx(U).

– Fall 1 mit x = w und a ∈ A: Da S ∈ stw(U), wird jedes b ∈ A \ S von einer
Menge C ⊆ S angegriffen. Angenommen, es gilt (C, {a}) ∈ Pairs(stw(U))
und es gibt eine beliebige Extension {C ∪ ... ∪ a} ∈ stw(U). Dann greift auch
in diesem Fall die Menge C das Argument a an, weshalb diese Extension
weder w-konfliktfrei noch w-stabil sein kann. Dies führt zum Widerspruch
und die Mengendichtheit ist erfüllt.
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– Fall 2 mit x = w und a ∈ A?: Per Definition muss ein unsicheres Argument
außerhalb von S nicht zwingend angegriffen werden. Wenn aber {S ∪ a} /∈
stw(U) gilt, dann muss es einen Mengenangriff (C, a) ∈ R geben mit C ⊆ S.
Würde es einen solchen Angriff nicht geben, müsste folglich {S∪a} ∈ stw(U)
gelten. Der Beweis lässt sich analog Fall 1 fortsetzen.

– Fall 3 mit x = s: Da S ∈ sts(U) gilt, wird jedes b ∈ (A ∪ A?) \ S von einer
Menge C ⊆ S angegriffen. Der Beweis lässt sich analog Fall 1 fortsetzen.

– Fall 4 mit ({a}, a) ∈ R: Für den Fall, dass a sich selbst attackiert, folgt direkt,
dass es keine Extension in stx(U) geben kann, die a enthält.

Damit erfüllt stx folglich Mengendichtheit.

Die weiteren Semantiken adx, cox und prx erfüllen die Eigenschaft der Mengendicht-
heit im Allgemeinen nicht. Nachfolgend soll ein Gegenbeispiel der Mengendichtheit
für prx aufgezeigt werden. Da jede x-präferierte Extension auch eine x-vollständige
und eine x-zulässige Extension ist, ist die Mengendichtheit auch für diese Semantiken
im Allgemeinen nicht erfüllt.

a1

a2

a3

a4

a5

a6

a7 a8

Abbildung 29: iSetAF U19 zu Beispiel 5.9. Eigene Darstellung.

Beispiel 5.9. Für das iSetAF U19 aus Abbildung 29 gilt:

• Die Menge {a1, a2, a3, a4} ist x-präferiert in U19. Kein weiteres Argument wird
x-verteidigt und es gibt keine echte Obermenge in U19, die größer ist.

• Die Menge {a1, a2, a3, a4} ∪ {a8} ist hingegen nicht x-präferiert, da der Angriff
({a7}, a8) nicht verteidigt wird.
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• Allerdings gilt: {a1, a2, a6, a8} ∈ prx(U19) und auch {a3, a4, a5, a8} ∈ prx(U19).
Somit steht weder die Menge {a1, a2} noch die Menge {a3, a4}mit a8 in Konflikt.
Dies widerspricht der Definition der Mengendichtheit.

5.8 Konfliktsensitivität

Das nächste zu prüfende Postulat ist die Konfliktsensitivität, die zunächst auf iSetAFs
übertragen wird.

Definition 5.15 (Konfliktsensitivität für iSetAFs). Eine Menge von Extensionen S =
{S1, . . . , Sn} mit n ∈ N und S1, . . . , Sn ∈ σx(U) heißt konfliktsensitiv gdw. für alle
Paare Si, Sj ∈ S mit i, j ∈ {1, . . . , n} gilt: Wenn Si ∪ Sj /∈ S, dann folgt, dass es ein
a ∈ Si und ein b ∈ Sj gibt, sodass ({a}, {b}) /∈ Pairs(σx(U)).

Eine Semantik σx erfüllt Konfliktsensitivität gdw. die Menge σx(U) für jedes iSetAF
konfliktsensitiv ist.

Proposition 5.4. Die Semantik grx für iSetAFs erfüllt Konfliktsensitivität.

Beweis. Da es keine zwei unterschiedliche x-grundierte Extensionen S, S′ ∈ grx(U) in
U mit S ̸= S′ geben kann, wird die Konfliktsensitivität trivialerweise erfüllt.

Ähnlich wie bei der bereits gezeigten Dichtheit kann auch diese herkömmliche De-
finition für die meisten Semantiken nicht verwendet werden, da Mengenangriffe nicht
korrekt berücksichtigt werden, wie das nachfolgende Beispiel zeigt.

Beispiel 5.10. Sei σ20 = {cfx, adx, cox, prx, stx}. Für das in Abbildung 28 dargestellte
iSetAF U20 gilt {a1, a2}, {a2, a3}, {a1, a3} ∈ σ20(U20). Die Vereinigung zweier dieser Ex-
tensionen ist hingegen selbst keine Extension. Es gilt {a1, a2, a3} /∈ σ20(U20). Würde ei-
ne Semantik aus σ20 nun Konfliktsensitivität erfüllen, müsste entweder ({a1}, {a3}) /∈
Pairs(σ20(U20)), ({a1}, {a2}) /∈ Pairs(σ20(U20)) oder ({a2}, {a3}) /∈ Pairs(σ20(U20))
gelten. Dies ist jedoch nicht erfüllt.

Mit dem Gegenbeispiel wurde gezeigt, dass die Semantiken cfx, adx, cox, prx und stx
die Konfliktsensitivität im Allgemeinen nicht erfüllen. Lediglich die Semantik grx er-
füllt diese Eigenschaft trivialerweise.

Ähnlich wie bei der Dichtheit soll an dieser Stelle eine für iSetAFs angepasste Kon-
fliktsensitivität definiert werden, die auch Mengenangriffe sinngemäß berücksichtigen
kann. Dies ist die Mengenkonfliktsensitivität. Zur Vorbereitung auf die Definition und die
nachfolgenden Beweise soll zunächst gezeigt werden, dass sich die Vereinigung zweier
x-zulässiger Mengen selbst gegen alle Angreifer x-verteidigt. Das nachfolgende Lemma
wird in Anlehnung an Dunne et al. [DDLW15] formuliert, wobei zusätzlich Mengenan-
griffe berücksichtigt werden können und somit eine Anwendung für iSetAFs möglich
ist.

Lemma 5.1. Sei U = (A,A?,R,R?) ein iSetAF und S1, S2 ⊆ A ∪A? mit S1, S2 ∈ adx(U)
zwei in U x-zulässige Mengen, die sich jeweils selbst in U x-verteidigen. Dann folgt für
die Vereinigung S1 ∪ S2, dass sich diese in U selbst x-verteidigt.
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Beweis. Die Mengen S1 und S2 x-verteidigen sich jeweils selbst gegen alle möglichen
Mengenangriffe in U . Angenommen, die Menge S3 = S1 ∪ S2 x-verteidigt sich nicht
selbst gegen alle Mengenangriffe auf S3. Dann gibt es für x = w einen Mengenangriff
(B, a) ∈ R bzw. für x = s einen Mengenangriff (B, a) ∈ R ∪ R? mit a ∈ S3 und B ⊆
A∪A?, der nicht von S3 verteidigt wird. Sei die Einschränkung a ∈ S1 gegeben. Da sich
S3 nicht gegen den Angriff (B, a) x-verteidigen kann, kann sich auch S1 nicht gegen
diesen Angriff x-verteidigen, was im Widerspruch zur Annahme der x-Zulässigkeit
von S1 steht. Gleiches lässt sich auch für ein a ∈ S2 zeigen. Somit folgt direkt, dass die
Annahme widerlegt ist und sich S3 selbst gegen alle Mengenangriffe auf S3 verteidigt.

Mit Hilfe von Lemma 5.1 lässt sich nun auch das nachfolgende Lemma schließen.

Lemma 5.2. Für die Vereinigung S1 ∪ S2 zweier x-zulässiger Mengen S1, S2 ⊆ A ∪ A?

gilt: Ist S1 ∪ S2 x-konfliktfrei in U , dann ist S1 ∪ S2 auch x-zulässig in U .

Beweis. Gemäß Lemma 5.1 verteidigt sich die Vereinigung S1 ∪ S2 selbst gegen alle
Mengenangriffe. Da bereits angenommen wurde, dass S1 ∪ S2 x-konfliktfrei ist, folgt,
dass S1 ∪ S2 ∈ adx(U).

An dieser Stelle lässt sich nun auch der bereits erwähnte Begriff der Mengenkonflikt-
sensitivität definieren.

Definition 5.16 (Mengenkonfliktsensitivität). Eine Menge von Extensionen S =
{S1, . . . , Sn} mit n ∈ N und S1, . . . , Sn ∈ S heißt mengenkonfliktsensitiv gdw. für alle
Paare Si, Sj ∈ S mit i, j ∈ {1, . . . , n} gilt: Wenn Si ∪ Sj /∈ S, dann folgt, dass es zwei
zusammengehörige Mengen B ⊆ Si und B′ ∈ Sj gibt, sodass (B,B′) /∈ Pairs(S).

Eine Semantik σx erfüllt Mengenkonfliktsensitivität gdw. die Menge σx(U) für jedes
iSetAF mengenkonfliktsensitiv ist.

Diese angepasste Definition der herkömmlichen Konfliktsensitivität wird nun von
den meisten Semantiken erfüllt, wie nachfolgend gezeigt wird.

Theorem 5.9. Die Semantiken cfx, adx, prx, grx und stx erfüllen Mengenkonfliktsensi-
tivität.

Beweis. Sei U = (A,A?,R,R?) ein iSetAF.

• cfx: Seien S1, S2 ∈ cfx(U) und S1 ∪S2 /∈ cfx(U). Angenommen, cfx ist nicht men-
genkonfliktsensitiv, dann gilt für alle A,B ⊆ S1∪S2, dass (A,B) ∈ Pairs(cfx(U)).
Daraus folgt aber, dass jede Menge A∪B x-konfliktfrei ist und damit gilt S1∪S2 ∈
cfx(U). Dies führt zum Widerspruch. Somit ist cfx mengenkonfliktsensitiv.

• adx: Seien S1, S2 ∈ adx(U) und S1∪S2 /∈ adx(U). Angenommen, adx ist nicht men-
genkonfliktsensitiv, dann gilt für alle A,B ⊆ S1∪S2, dass (A,B) ∈ Pairs(adx(U)).
Daraus folgt aber, dass jede Menge A∪B x-konfliktfrei ist und damit gilt S1∪S2 ∈
cfx(U). Da aber nun S1 und S2 jeweils x-zulässig sind und S1 ∪ S2 x-konfliktfrei
ist, folgt nach Lemma 5.2, dass S1 ∪ S2 auch x-zulässig ist. Dies führt zum Wider-
spruch. Somit ist adx mengenkonfliktsensitiv.
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• prx: Seien S1, S2 ∈ prx(U) und S1∪S2 /∈ prx(U). Angenommen, prx ist nicht men-
genkonfliktsensitiv, dann gilt für alle A,B ⊆ S1∪S2, dass (A,B) ∈ Pairs(prx(U)).
Daraus folgt, dass jede Menge A ∪ B x-konfliktfrei ist und damit gilt S1 ∪ S2 ∈
cfx(U). Gemäß dem letzten Beweis für adx folgt direkt, dass S1 ∪ S2 ∈ adx(U).
Wegen S1 ∪ S2 /∈ prx(U) und S1 ∪ S2 ∈ adx(U) muss es eine echte Obermen-
ge S3 ⊃ S1 ∪ S2 geben, die x-präferiert ist. Da aber auch S3 ⊃ S1 und S3 ⊃ S2

gilt, können S1 und S2 nicht x-präferiert sein, was direkt zum Widerspruch führt.
Somit ist prx mengenkonfliktsensitiv.

• grx: Da die x-grundierte Semantik eindeutig bestimmt ist, kann es trivialerweise
keine zwei Mengen S1, S2 ∈ grx(U) mit S1 ̸= S2 geben, weshalb die Mengenkon-
fliktsensitivität erfüllt ist.

• stx: Seien S1, S2 ∈ stx(U) und S1 ∪ S2 /∈ stx(U). Angenommen, stx ist nicht men-
genkonfliktsensitiv, dann gilt für alle A,B ⊆ S1∪S2, dass (A,B) ∈ Pairs(stx(U)).
Daraus folgt, dass jede Menge A ∪ B x-konfliktfrei ist und damit gilt S1 ∪ S2 ∈
cfx(U). Gemäß dem Beweis für adx folgt direkt, dass S1 ∪ S2 ∈ adx(U). Da mit S1

eine x-stabile Extension existiert, kann ausgeschlossen werden, dass das iSetAF
keine x-stabile Extension besitzt. Wegen S1 ∪ S2 /∈ stx(U) muss es für x = w ein
Argument c ∈ A bzw. für x = s ein Argument c ∈ A ∪ A? geben, das weder in
S1 ∪S2 enthalten ist, noch von S1 ∪S2 attackiert wird. Dann gilt aber auch c /∈ S1,
c /∈ S2, c /∈ S+

1 und c /∈ S+
2 , woraus sich auch S1, S2 /∈ stx(U) ergibt. Dies führt

zum Widerspruch und damit ist stx mengenkonfliktsensitiv.

Die Semantik cox erfüllt Mengenkonfliktsensitivität im Allgemeinen nicht, wie das
nachfolgende Beispiel zeigt.

Beispiel 5.11. Für das iSetAF U21 aus Abbildung 30 gilt:

• {a1, a2}, {a3} ∈ cox(U21) und

• {a1, a2, a3} /∈ cox(U21).

• Allerdings gilt auch {a1, a2, a3, a6} ∈ cox(U21).

Das heißt, ({a1}, {a3}), ({a2}, {a3}), ({a1, a2}, {a3}) ∈ Pairs(cox(U21)) und es gibt keine
zwei Teilmengen von {a1, a2, a3} die in einem Konflikt zueinander stehen.

5.9 Modularisierung

Um die Modularisierung untersuchen zu können, muss zunächst der Begriff des Re-
dukts für iSetAFs definiert werden. Eine ähnliche Definition für SetAFs wurde bereits
von Dvořák et al. veröffentlicht [DKUW24]. Diese soll entsprechend erweitert wer-
den, sodass zusätzlich auch unvollständiges Wissen berücksichtigt werden kann. Dabei
wird zudem eine schwache und eine starke Ausprägung berücksichtigt.
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Abbildung 30: iSetAF U21 zu Beispiel 5.11. Eigene Darstellung.

Definition 5.17 (x-Redukt eines iSetAFs). Das schwache bzw. starke Redukt US,x eines
iSetAFs U bzgl. einer Menge S ⊆ A ∪A? ist wie folgt definiert: US,x = (A′,A′?,R′,R′?)
mit

• A′ = A \ (S ∪ S+,x),

• A′? = A? \ (S ∪ S+,x),

• R′ = {({B \ S}, a) | (B, a) ∈ R, B ⊆ A′ ∪A′?, a ∈ A′ ∪A′? und B ∩ S+,x = ∅} und

• R′? = {({B \ S}, a) | (B, a) ∈ R?, B ⊆ A′ ∪A′?, a ∈ A′ ∪A′? und B ∩ S+,x = ∅}.

Das heißt, es wird nur der Teilgraph von U betrachtet, aus dem alle Argumente aus
S und alle Argumente, die von S x-attackiert werden, entfernt wurden. Der Grund für
die Berücksichtigung von Angriffen der Art ({B \ S}, a) ist, dass Mengenangriffe, die
zum Teil aus Argumenten aus S bestehen, auch im Redukt weiterhin eine Bedrohung
darstellen (vgl. Beispiel 5.12). Die Bedingung B ∩ S+,x = ∅ sorgt zudem dafür, dass
genau die Mengenangriffe nicht mehr als Bedrohung im Redukt angesehen werden,
deren Argumente zumindest teilweise bereits von S x-attackiert wurden (vgl. ebenfalls
Beispiel 5.12). Das heißt, die Angriffsbeziehung verfällt im Redukt.

a1 a2 a3

a4 a5 a6

Abbildung 31: iSetAF U22 zu Beispiel 5.12. Eigene Darstellung.
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a1 a2 a3

a4 a5 a6

US,w
22

a1 a2 a3

a4 a5 a6

US,s
22

Abbildung 32: Redukte US,w
22 bzw. US,s

22 des iSetAFs U22 zu Beispiel 5.12 mit S =
{a2, a4}. Eigene Darstellung.

Beispiel 5.12. Für das in Abbildung 31 dargestellte iSetAF U22 und eine Menge S =

{a2, a4} ist das Redukt US,w
22 bzw. US,s

22 in Abbildung 32 dargestellt. Für beide Reduk-
te fällt auf, dass der Mengenangriff ({a2, a3}, a6) durch den Mengenangriff ({a3}, a6)
weiterhin im Redukt als Bedrohung angesehen wird. Da das Argument a2 bereits in
der Menge S enthalten und damit akzeptiert ist, kann der Mengenangriff durch die
weitere Akzeptanz von a3 eine Bedrohung für a6 sein.

Für eine Menge S′ = {a1} ist das Redukt US′,w
22 bzw. US′,s

22 in Abbildung 33 dargestellt.
Für das starke Redukt fällt auf, dass der Mengenangriff ({a2, a3}, a6) durch den Angriff
von S auf a2 entfällt und keine Bedrohung mehr im Redukt darstellt. Beim schwachen
Redukt hingegen wird a2 von S nur unsicher angegriffen. Ein solcher Angriff wird
nicht als Bedrohung angesehen, weshalb der Angriff ({a2, a3}, a6) weiterhin im Redukt
bestehen bleibt.

a1 a2 a3

a4 a5 a6

US′,w
22

a1 a2 a3

a4 a5 a6

US′,s
22

Abbildung 33: Redukte US′,w
22 bzw. US′,s

22 des iSetAFs U22 zu Beispiel 5.12 mit S′ = {a1}.
Eigene Darstellung.

Für eine x-konfliktfreie Menge lassen sich nun die folgenden Eigenschaften in Bezug
auf deren Redukt feststellen.
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Lemma 5.3. Sei U ein iSetAF und S ∈ A∪A? mit S ∈ cfx(U) eine x-konfliktfreie Menge
in U . Wenn zudem S′ ∈ cfx(U

S,x) gilt und S′ kein Argument aus S angreift, dann folgt,
dass auch S ∪ S′ ∈ cfx(U) gilt.

Beweis. Die Menge S ist x-konfliktfrei in U und im x-Redukt US,x werden alle Argu-
mente entfernt, die von S angegriffen werden oder in S enthalten sind. Das heißt, jedes
im x-Redukt verbliebene Argument wird nicht von S angegriffen. Die Menge S′ ist im
x-Redukt x-konfliktfrei und damit auch trivialerweise in U . Ein Angriff von S′ auf ein
Argument aus S ist per Voraussetzung ausgeschlossen. Da weder S die Menge S′ an-
greift, noch S′ die Menge S angreift, folgt, dass die Vereinigung beider x-konfliktfreien
Mengen S ∪ S′ ebenfalls x-konfliktfrei sein muss.

Lemma 5.4. Sei U ein iSetAF und S ∈ A ∪A? mit S ∈ cow(U), dann folgt,

1. dass es im w-Redukt US,w kein Argument geben kann, das nicht sicher angegrif-
fen wird und

2. dass grw(US,w) = {∅}.

Beweis. 1. Sei US,w = (A′,A′?,R′,R′?) das w-Redukt von U bzgl. S. Angenommen,
es gibt ein Argument a ∈ A′ ∪A′?, das im w-Redukt nicht angegriffen wird. Dann
gibt es in U entweder gar keinen Mengenangriff auf a oder es gibt einen sicheren
Mengenangriff (B, a) ∈ R mit B ⊆ (A ∪ A?) \ S. Wäre B ⊆ S, würde a von S
angegriffen werden, weshalb a nicht im Redukt enthalten sein könnte. Da somit
B ̸⊆ S und B ̸⊆ (A′ ∪A′?) gelten, folgt, dass B von S angegriffen wird. In beiden
Fällen, wird a dann aber von S stark verteidigt und wegen S ∈ cow(U) gilt a ∈ S
und somit a /∈ US,w. Dies führt zum Widerspruch.

Für den Fall, dass es ein a ∈ A′ ∪A′? gibt, das im w-Redukt unsicher angegriffen
wird, muss a nicht verteidigt werden, weil unsichere Angriffe nicht als Bedro-
hung angesehen werden. Damit würde ebenfalls a ∈ S und a /∈ US,w gelten, was
zum Widerspruch führt.

2. Aus Lemma 5.4 Punkt 1 folgt bereits, dass es keine Argumente in US,w geben
kann, die nicht sicher angegriffen werden. Damit kann es im w-Redukt auch kei-
ne Argumente geben, die von der leeren Menge schwach verteidigt werden. Die
einzige schwach grundierte Extension im w-Redukt ist damit die leere Menge.

Aus Lemma 5.4 lässt sich folgende Proposition folgern.

Proposition 5.5. Sei U ein iSetAF und S ∈ A ∪A?. Es gilt S ∈ cow(U) gdw. S ∈ adw(U)
und grw(U

S,w) = {∅}.

Beweis. Für die erste Richtung gilt: Sei S ∈ cow(U), dann folgt per Definition direkt
S ∈ adw(U) und gemäß Lemma 5.4 Punkt 2 folgt zudem grw(U

S,w) = {∅}.

74



Für die zweite Richtung gilt: Sei S ∈ adw(U) und grw(U
S,w) = {∅}, dann verteidigt

S alle Angriffe auf S. Angenommen, es gilt S /∈ cow(U), dann gibt es ein Argument
a ∈ A∪A?, das schwach von S verteidigt wird. Das heißt, das Argument a wird entwe-
der nicht angegriffen, unsicher angegriffen oder sicher angegriffen. Wird a nicht oder
nur unsicher in U angegriffen, wird dieses Argument in US,w von der leeren Menge
verteidigt und es folgt a ∈ S′ mit S′ ∈ grx(U

S,w), was zum Widerspruch führt. Für
den Fall, dass a sicher angegriffen und von S in U verteidigt wird, gibt es einen Men-
genangriff (B, a) ∈ R mit B ⊆ A und einen verteidigenden Mengenangriff (C, b) ∈ R

mit C ⊆ S und b ∈ B. Da somit b von S angegriffen wird, kann b nicht im w-Redukt
US,w enthalten sein. Somit entfällt per Definition des w-Redukts aber auch der gesam-
te Angriff (B, a) in US,w. Es folgt, dass a in US,w unangegriffen ist und damit a ∈ S′

mit S′ ∈ grx(U
S,w) gelten muss, was ebenfalls zum Widerspruch führt. Damit muss

S ∈ cow(U) gelten.

Mit Hilfe des x-Redukts lässt sich nun auch die Modularisierung auf iSetAFs wie
folgt übertragen.

Definition 5.18 (Modularisierung für iSetAFs). Eine Semantik σx erfüllt Modularisie-
rung gdw. für alle iSetAFs U gilt: Wenn S ∈ σx(U) und S′ ∈ σx(U

S,x), dann gilt
S ∪ S′ ∈ σx(U).

Das heißt, wenn es eine Extension in U und eine weitere Extension im Redukt von
U bzgl. S gibt, so ist auch die Vereinigung dieser beiden Mengen eine Extension des
originalen iSetAFs U .

Theorem 5.10. Die Semantiken für iSetAFs adw, cow, prw, grw, stw und sts erfüllen Mo-
dularisierung.

Beweis. Sei U = (A,A?,R,R?) ein iSetAF.

• adw: Sei S ∈ adw(U) und S′ ∈ adw(U
S,w). Da S schwach zulässig in U ist, werden

alle Angriffe auf Argumente aus S auch von S schwach verteidigt. Da S keines
der im w-Redukt verbliebenen Argumente S sicher angreift, kann S von diesen
ebenfalls nicht sicher angegriffen werden, da sich S ansonsten gegen den Angriff
verteidigen würde. Es folgt, dass es keinen Angriff von Argumenten aus S′ auf
Argumente aus S gibt. Gemäß Lemma 5.3 folgt direkt, dass S ∪ S′ ∈ cfw(U) gilt.
Es bleibt zu zeigen, dass S ∪ S′ sich selbst verteidigt.

Angenommen, es gibt eine Menge B ⊆ A ∪ A?, die ein Argument a ∈ S ∪ S′

w-attackiert. Sei a ∈ S, dann folgt wegen S ∈ adw(U) direkt, dass der Angriff von
S und somit auch von S ∪ S′ verteidigt wird. Für den Fall a ∈ S′ folgt wegen
S′ ∈ adw(U

S,w), dass alle Angriffe innerhalb des w-Redukts auch schwach vertei-
digt werden. Angriffe von außerhalb des w-Redukts auf S′ werden von S sicher
angegriffen und verteidigen damit den Angriff. Es folgt S ∪ S′ ∈ adw(U).

• cow: Sei S ∈ cow(U) und S′ ∈ cow(U
S,w), dann folgt gemäß dem ersten Be-

weis S ∪ S′ ∈ adw(U). Nach Lemma 5.4 Punkt 1 gilt grw(U
S,w) = {∅} und
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grw((U
S,w)S

′,w) = {∅}. Es folgt grw(US ∪S′,w) = {∅} und gemäß Proposition 5.5
folgt schlussendlich S ∪ S′ ∈ cow(U).

• prw: Sei S ∈ prw(U) und S′ ∈ prw(U
S,w). Angenommen, es gilt S′ ̸= {∅}. S′ wird

in U nicht von S verteidigt, da wegen der schwachen Präferiertheit ansonsten
S′ ⊆ S gelten würde und S′ nicht in US,w enthalten wäre. Daraus folgt, dass sich
S′ selbst in U verteidigt. Dann wäre S allerdings nicht schwach präferiert in U ,
weil es eine größere Menge S ∪ S′ gibt, die ebenfalls in U zulässig ist. Dies steht
im Widerspruch zur Annahme. Somit kann nur S′ = {∅} gelten. Trivialerweise ist
S∪∅ = S und damit ist auch {S∪∅} ∈ prw(U). Damit erfüllt prw Modularisierung.

• grw: Sei S ∈ grw(U), dann gilt auch S ∈ cow(U) und es folgt nach Lemma 5.4
Punkt 2, dass {∅} im Redukt US,w die einzige schwach grundierte Extension ist.
Trivialerweise ist S ∪ ∅ = S und damit ist auch {S ∪ ∅} ∈ grw(U). Damit erfüllt
grw Modularisierung.

• stw: Sei S ∈ stw(U) und S′ ∈ stw(U
S,w). Da S schwach stabil in U ist, folgt

S ∪ S+,w ⊇ A. Alle sicheren Argumente sind entweder in S oder werden von
S sicher angegriffen. Das heißt, im w-Redukt von U bzgl. S können nur unsichere
Argumente enthalten sein, die von S nicht sicher angegriffen werden. Für jedes
Argument a ∈ S′ gilt zudem a ∈ A? \ S. Weil alle Argumente aus S′ unsicher
sind, folgt, dass die Vereinigung S ∪ S′ schwach konfliktfrei ist, da ein Konflikt,
bezogen auf die schwache Konfliktfreiheit, nur zwischen sicheren Argumenten
entstehen kann. Zudem ist S ∪ S′ auch schwach zulässig, da S bereits alle An-
griffe auf S verteidigt und es keine weiteren Angriffe auf S′ gibt, die verteidigt
werden müssen. Es folgt, dass S ∪ S′ ∈ stw(U) gilt, da alle sicheren Argumente
bereits von S sicher angegriffen werden.

• sts: Sei S ∈ sts(U), dann gilt S∪S+,s = A∪A?. Es gibt somit keine verbleibenden
Argumente in adw(U

S,w). Somit erfüllt sts Modularisierung trivialerweise.

Für die Semantiken cfx, ads, cos, prs sowie grs ist die Eigenschaft der Modularisie-
rung aufgrund der Definition der starken Verteidigung nicht gegeben. Wird ein Argu-
ment von einer Menge S schwach angegriffen, wird dieser Angriff als Bedrohung ange-
sehen und dieses Argument ist im s-Redukt von U bzgl. S nicht mehr enthalten. Aller-
dings kann durch diesen schwachen Angriff kein Argument verteidigt werden, weil für
die Verteidigung von Argumenten zwingend ein sicherer Angriff erfolgen muss. Nach-
folgend sollen Gegenbeispiele für die Nichterfüllung der Modularisierung aufgezeigt
werden.

Beispiel 5.13. Für das in Abbildung 34 dargestellte iSetAF U23 gilt:
Sei S = {a4}, dann ist S ∈ cfx(U23). Weiter ist S+,x = ∅ und damit wird im x-

Redukt US,x
23 lediglich das Argument a4 und der Angriff ({a3}, a4) entfernt. Damit ist

{a3} ∈ cfx(U
S,x
23 ), aber S ∪ {a3} /∈ cfx(U23). Dies widerspricht der Definition der Mo-

dularisierung.
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a1

a2

a3 a4

Abbildung 34: iSetAF U23 zu Beispiel 5.13. Eigene Darstellung.

Beispiel 5.14. In Fortsetzung zu Beispiel 5.13 sei U23 das iSetAF aus Abbildung 34 und
σ23 eine Menge von Semantiken mit σ23 = {ads, cos, prs, grs}. Dann gilt:

Sei S = {a1, a2}, dann ist S ∈ σ23(U23). Weiter ist S+,s = {a3} und damit besteht
das s-Redukt US,s

23 nur aus dem Argument a4 und enthält keine Angriffe. Damit ist
{a4} ∈ σ23(U

S,s
23 ), aber S ∪{a4} /∈ σ23(U23). Dies widerspricht der Definition der Modu-

larisierung.

5.10 Ergebnisse

In diesem Kapitel wurde untersucht, welche Eigenschaften das in Abschnitt 4 neu de-
finierte Framework iSetAF erfüllt und welche dieser Eigenschaften nicht erfüllt wer-
den. Im Fokus standen dabei die folgenden Eigenschaften: Syntaxunabhängigkeit, I-
Maximalität, Enthaltung, Direktionalität, Dichtheit, Konfliktsensitivität und Modulari-
sierung.

Einige dieser Eigenschaften wurden bereits in früheren Arbeiten für klassische AFs,
SetAFs oder auch für extensionsbasierte iAFs untersucht. Eine Übersicht dieser bishe-
rigen Ergebnisse ist in Unterabschnitt 5.2 dargestellt.

Es wurde gezeigt, dass sich jedes AF, SetAF und iAF als Spezialfall eines iSetAFs
auffassen lässt. Beispielsweise kann ein SetAF als iSetAF modelliert werden, indem
man auf unsichere Argumente und Angriffe verzichtet. Daraus ergibt sich unmittelbar:
Wenn eine bestimmte Eigenschaft bereits für AFs, SetAFs oder iAFs nicht erfüllt ist,
kann diese auch für iSetAFs nicht erfüllt sein.

Anschließend wurden die Eigenschaften einzeln betrachtet. Dabei musste die her-
kömmliche Definition aller Eigenschaften für AFs angepasst werden, sodass die Postu-
late auch auf iSetAFs anwendbar waren. Nach dieser Anpassung konnten die folgen-
den Postulate ohne weitere Konflikte direkt auf iSetAFs angewendet werden:

• Syntaxunabhängigkeit: Es wurde gezeigt, dass das Postulat sowohl von beiden
Ausprägungen aller betrachteten Semantiken erfüllt ist. Dies deckt sich mit den
Ergebnissen für klassische AFs.

• I-Maximalität: Die Ergebnisse stimmen größtenteils mit denen für klassische AFs
überein. Eine Ausnahme bildet die schwache Ausprägung der stabilen Semantik,
die das Postulat nicht erfüllt.
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• Enthaltung: Grundsätzlich decken sich die Ergebnisse mit den Ergebnissen für
klassische AFs. Lediglich die schwache Ausprägung der vollständigen Semantik
erfüllt das Postulat nicht.

• Modularisierung: Es wurde gezeigt, dass sich die Ergebnisse der schwachen Aus-
prägung der Semantiken mit den Ergebnissen für klassische AFs decken. Die star-
ke Ausprägung der Semantiken erfüllt die Modularisierung hingegen grundsätz-
lich nicht und ist nur für die stark stabile Semantik trivialerweise erfüllt.

Die Eigenschaften Direktionalität, Dichtheit und Konfliktsensitivität wurden von vie-
len Semantiken trotz Anpassung nicht erfüllt und entsprachen aufgrund der Besonder-
heiten von iSetAFs auch nicht mehr dem ursprünglichen Sinn der Postulate. Da die-
se Eigenschaften jedoch wünschenswert sind, wurden neue angepasste Postulate ein-
geführt: Mengendirektionalität, Mengendichtheit und Mengenkonfliktsensitivität. Der
ursprüngliche Sinn der Eigenschaften wurde dabei wiederhergestellt. Dies führte zu
folgenden Ergebnissen:

• Mengendirektionalität: Wird Direktionalität im klassischen AF erfüllt, so wird
auch das angepasste Postulat Mengendirektionalität von beiden Ausprägungen
der jeweiligen Semantik erfüllt.

• Mengendichtheit: Wird das Postulat Dichtheit von einer Semantik für AFs erfüllt,
so erfüllen sowohl die schwache als auch die starke Ausprägung der jeweiligen
Semantik das angepasste Postulat Mengendichtheit.

• Mengenkonfliktsensitivität: Wird das Postulat Konfliktsensitivität von einer Se-
mantik für AFs erfüllt, so erfüllen auch die beiden Ausprägungen der jeweiligen
Semantik das angepasste Postulat Mengenkonfliktsensitivität.

Zur Veranschaulichung der Ergebnisse werden in den folgenden Tabellen (Tabelle 5
und Tabelle 6) die Erfüllungen der Postulate für die schwache und starke Ausprägung
der betrachteten Semantiken zusammengefasst.

Die Untersuchung der Eigenschaften zeigt, dass iSetAFs in weiten Teilen dem ur-
sprünglichen Framework AF von Dung ähnelt und sich viele Eigenschaften durch ge-
zielte Anpassungen übertragen lassen. Insgesamt erhält man durch die Einführung von
iSetAFs weitaus mehr Möglichkeiten, reale Argumentationen zu modellieren, behält
aber gleichzeitig die meisten der wünschenswerten Eigenschaften bei.
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cfw cfs adw ads cow cos
Syntaxunabhängigkeit ✓ ✓ ✓ ✓ ✓ ✓

I-Maximalität ✗ ✗ ✗ ✗ ✗ ✗

Enthaltung ✓ ✓ ✓ ✓ ✗ ✓

Direktionalität ✓ ✓ ✗ ✗ ✗ ✗

Mengendirektionalität ✓ ✓ ✓ ✓ ✓ ✓

Dichtheit ✗ ✗ ✗ ✗ ✗ ✗

Mengendichtheit ✓ ✓ ✗ ✗ ✗ ✗

Konfliktsensitivität ✗ ✗ ✗ ✗ ✗ ✗

Mengenkonfliktsensitivität ✓ ✓ ✓ ✓ ✗ ✗

Modularisierung ✗ ✗ ✓ ✗ ✓ ✗

Tabelle 5: Übersicht der Erfüllung von Postulaten für iSetAFs durch Semantiken (Teil
1). Eigene Darstellung.

prw prs grw grs stw sts
Syntaxunabhängigkeit ✓ ✓ ✓ ✓ ✓ ✓

I-Maximalität ✓ ✓ ✓ ✓ ✗ ✓

Enthaltung ✗ ✗ ✓ ✓ ✗ ✗

Direktionalität ✓ ✓ ✓ ✓ ✗ ✗

Mengendirektionalität ✓ ✓ ✓ ✓ ✗ ✗

Dichtheit ✗ ✗ ✓ ✓ ✗ ✗

Mengendichtheit ✗ ✗ ✓ ✓ ✓ ✓

Konfliktsensitivität ✗ ✗ ✓ ✓ ✗ ✗

Mengenkonfliktsensitivität ✓ ✓ ✓ ✓ ✓ ✓

Modularisierung ✓ ✗ ✓ ✗ ✓ ✓

Tabelle 6: Übersicht der Erfüllung von Postulaten für iSetAFs durch Semantiken (Teil
2). Eigene Darstellung.
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6 Komplexität von vervollständigungsbasierten iSetAFs

Nachdem iSetAFs als neue Erweiterung der AFs in Abschnitt 4 formal eingeführt wur-
den, soll in diesem Kapitel die Komplexität von Schlussfolgerungsproblemen unter-
sucht werden. Die Analyse der Komplexität von Schlussfolgerungsproblemen spielt
eine zentrale Rolle in der formalen Argumentation. Diese gibt Aufschluss darüber, wie
aufwendig es ist, Entscheidungen über die Akzeptanz eines Argumentes bzw. einer
Menge von Argumenten zu treffen.

Mit der Einführung von iSetAFs wurden zwei Konzepte kombiniert: Mengenangrif-
fe und unvollständiges Wissen. Diese Kombination erweitert den Ausdrucksgehalt des
Frameworks, erhöht aber potenziell auch die Komplexität der Schlussfolgerungspro-
bleme. Die Komplexität klassischer AFs wurde bereits umfassend von Baroni et al.
[BGGVdT18] analysiert. Für SetAFs (Dvořák et al., Bikakis et al. [DKUW24, BCD+21])
und iAFs (Baumeister et al. [BNR18]) existieren ebenfalls detaillierte Untersuchungen.
Wie sich jedoch die Kombination beider Erweiterungen auf die Komplexität auswirkt,
ist bislang ungeklärt. Ziel dieses Kapitels ist es daher, die Komplexität von Schlussfol-
gerungsproblemen für iSetAFs zu untersuchen. Dabei werden insbesondere die Ent-
scheidungsprobleme CRED (leichtgläubige Akzeptanz), SKEP (skeptische Akzeptanz)
und VER (Verifikation) für die verschiedenen Semantiken betrachtet.

Nach einer kurzen Einführung in die Komplexitätstheorie werden zunächst die re-
levanten Entscheidungsprobleme algorithmisch dargestellt. Da bereits Modgil und
Bench-Capon [MBC11] gezeigt haben, wie sich SetAFs in polynomieller Zeit in AFs
umformen lassen, soll dieser Ansatz auch zur Bestimmung der Komplexität für iSetAFs
verfolgt werden. Dafür soll untersucht werden, ob sich iSetAFs in polynomieller Zeit in
iAFs umwandeln lassen, sodass sich auch deren Komplexitätseigenschaften übertragen
lassen. Abschließend werden die Ergebnisse zusammengefasst.

Sofern nicht anders erwähnt, sei auch für dieses Kapitel stets σ ∈ {cf, ad, co, pr, gr, st}
eine beliebige Semantik und U = (A,A?,R,R?) ein iSetAF.

6.1 Komplexitätstheorie

Die Komplexitätstheorie untersucht den Ressourcenverbrauch von Algorithmen bei
der Lösung von Problemen. Dabei unterscheidet man grundsätzlich zwischen Zeit- und
Platzkomplexität. In dieser Arbeit liegt der Fokus auf der Zeitkomplexität, die der Fra-
ge nachgeht, wie viel Rechenzeit ein Algorithmus benötigt, um ein gegebenes Schluss-
folgerungsproblem zu lösen. Schlussfolgerungsprobleme sind dabei immer genau sol-
che Probleme, die sich mit Ja oder Nein beantworten lassen. Die Probleme werden da-
für in sogenannte Komplexitätsklassen eingeteilt. Eine der grundlegendsten Klassen
ist P, die alle Probleme umfasst, die durch einen deterministischen Algorithmus in po-
lynomieller Zeit gelöst werden können. Die Laufzeit von Problemen in P liegt somit
maximal bei O(nk), wobei n die Eingabegröße und k ∈ N eine Konstante ist.

Eine weitere wichtige Komplexitätsklasse ist die Klasse NP. Diese entspricht der
Menge aller Entscheidungsprobleme, die in nichtdeterministischer polynomieller Zeit
lösbar sind. Ein Problem in NP lässt sich wie folgt lösen:
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1. Rate eine mögliche Lösung des Problems.

2. Überprüfe durch einen deterministischen Algorithmus in polynomieller Zeit, ob
die geratene Lösung korrekt ist.

Neben P und NP existieren noch weitere Komplexitätsklassen. Beispielsweise ist
coNP die Klasse der Probleme, deren Komplement in NP liegt. Eine weitere wichtige
Klasse ist ΣP

2 , die Probleme umfasst, die durch einen nichtdeterministischen Algorith-
mus mit Zugriff auf ein NP-Orakel in polynomieller Zeit gelöst werden können. Das
heißt, ein Problem in ΣP

2 lässt sich wie folgt lösen:

1. Rate eine mögliche Lösung des Problems.

2. Überprüfe durch einen Algorithmus der Komplexitätsklasse NP, ob die geratene
Lösung korrekt ist.

Eine weitere Komplexitätsklasse, die im Rahmen dieser Arbeit verwendet wird, ist
die Klasse ΠP

2 . Diese enthält alle Probleme, deren Komplement in ΣP
2 liegt.

Darüber hinaus ist die sogenannte Reduktion ein wichtiger Begriff der Komplexitäts-
theorie. Ist es möglich, ein Problem R auf ein anderes Problem R′ abzubilden, sodass
eine Lösung für R′ automatisch auch eine Lösung für R liefert, wird das Problem R
auf R′ reduziert. Dies ist ein wichtiges Konzept im Rahmen dieser Arbeit, da auf diese
Weise auch die Laufzeiten übertragen werden können, sofern sich das Problem R in
polynomieller Zeit auf das Problem R′ abbilden lässt.

Sei nachfolgend C eine beliebige Komplexitätsklasse. Lassen sich nun alle Probleme
einer Klasse C auf ein bestimmtes Problem R′ abbilden, dann ist R′ C-schwer. Wenn R′

weiterhin selbst in C liegt, ist dieses Problem C-vollständig. Die Begriffe C-schwer und
C-vollständig (kurz C-c) lassen sich unter anderem auf alle genannten Komplexitäts-
klassen P, NP, ΣP

2 und ΠP
2 anwenden.

6.2 Schlussfolgerungsprobleme

Einige der Schlussfolgerungsprobleme wurden bereits in Abschnitt 3 und Abschnitt 4
in Kürze vorgestellt. Diese Probleme sollen an dieser Stelle als algorithmische Problem-
stellungen dargestellt werden.

Bezogen auf ein SetAF M = (A,R) kann zunächst zwischen einer leichtgläubigen
(credulous) und einer skeptischen (skeptical) σ-Schlussfolgerung unterschieden werden
(vgl. Abschnitt 3). Mit Hilfe der leichtgläubigen σ-Schlussfolgerung lässt sich für ein
Argument a ∈ A schließen, dass es mindestens eine σ-Extension in M gibt, die das
Argument a enthält. Als algorithmische Problemstellung lässt sich Definition 3.5 aus
Abschnitt 3 wie folgt darstellen:

CREDσ

Eingabe: SetAF M = (A,R), Argument a ∈ A

Ausgabe: JA, falls es eine σ-Extension S ⊆ A gibt, sodass a ∈ S. Sonst NEIN.
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Mit Hilfe der skeptischen σ-Schlussfolgerung hingegen lässt sich für ein Argument
a ∈ A schließen, dass jede σ-Extension in M das Argument a enthält. Algorithmisch
lässt sich Definition 3.6 aus Abschnitt 3 wie folgt darstellen:

SKEPσ

Eingabe: SetAF M = (A,R), Argument a ∈ A

Ausgabe: JA, falls für jede σ-Extension S ⊆ A gilt, dass a ∈ S. Sonst NEIN.

Neben den bereits gezeigten Schlussfolgerungsproblemen für SetAFs soll zudem das
Verifikationsproblem eingeführt werden. Beim Verifikationsproblem geht es darum, zu
entscheiden, ob eine gegebene Menge von Argumenten eine σ-Extension in einem be-
stimmten SetAF darstellt oder nicht. Algorithmisch sieht das Problem wie folgt aus:

VERσ

Eingabe: SetAF M = (A,R), Argumentmenge S ⊆ A

Ausgabe: JA, falls S eine σ-Extension in M ist. Sonst NEIN.

Die für SetAFs genannten Schlussfolgerungsprobleme CREDσ, SKEPσ sowie das Ve-
rifikationsproblem VERσ lassen sich allerdings nicht direkt auf vervollständigungsba-
sierte iSetAFs übertragen, weshalb zusätzlich zwischen möglichen (possible) und not-
wendigen (necessary) σ-Schlussfolgerungen unterschieden werden muss, wie es bereits
in Abschnitt 4 in Definition 4.7 definiert wurde.

Für CREDσ lässt sich die Problemstellung, bezogen auf eine mögliche σ-Schlussfol-
gerung, wie folgt algorithmisch darstellen:

p-CREDσ

Eingabe: iSetAF U = (A,A?,R,R?), Argument a ∈ A ∪A?

Ausgabe: JA, falls es für eine Vervollständigung von U eine σ-Extension S ⊆
A ∪A? gibt, sodass a ∈ S. Sonst NEIN.

Analog zur möglichen Schlussfolgerung lässt sich auch eine notwendige Variante
definieren. Bezogen auf eine notwendige σ-Schlussfolgerung sieht die Problemstellung
folgendermaßen aus:

n-CREDσ

Eingabe: iSetAF U = (A,A?,R,R?), Argument a ∈ A ∪A?

Ausgabe: JA, falls es für jede Vervollständigung von U eine σ-Extension S ⊆
A ∪A? gibt, sodass a ∈ S. Sonst NEIN.
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Für die skeptische Schlussfolgerung SKEPσ lässt sich die Problemstellung analog for-
mulieren. Zunächst wird der Fall einer möglichen skeptischen σ-Schlussfolgerung be-
trachtet:

p-SKEPσ

Eingabe: iSetAF U = (A,A?,R,R?), Argument a ∈ A ∪A?

Ausgabe: JA, falls es eine Vervollständigung von U gibt, sodass für jede σ-
Extension S ⊆ A ∪A? dieser Vervollständigung gilt, dass a ∈ S. Sonst NEIN.

Im Gegensatz dazu erfordert die notwendige skeptische σ-Schlussfolgerung, dass
das Argument in jeder Vervollständigung und jeder σ-Extension enthalten ist:

n-SKEPσ

Eingabe: iSetAF U = (A,A?,R,R?), Argument a ∈ A ∪A?

Ausgabe: JA, falls für jede Vervollständigung von U und jede σ-Extension S ⊆
A ∪A? dieser Vervollständigung gilt, dass a ∈ S. Sonst NEIN.

Schließlich wird das Verifikationsproblem VERσ betrachtet, bei dem überprüft wird,
ob eine Menge von Argumenten in einer Vervollständigung bzw. allen Vervollständi-
gungen akzeptiert wird. Für eine mögliche σ-Schlussfolgerung ergibt sich folgende Pro-
blemstellung:

p-VERσ

Eingabe: iSetAF U = (A,A?,R,R?), Argumentmenge S ⊆ A ∪A?

Ausgabe: JA, falls es eine Vervollständigung von U gibt, sodass S eine σ-
Extension in dieser Vervollständigung ist. Sonst NEIN.

Für die notwendige verifizierende σ-Schlussfolgerung ergibt sich entsprechend:

n-VERσ

Eingabe: iSetAF U = (A,A?,R,R?), Argumentmenge S ⊆ A ∪A?

Ausgabe: JA, falls S eine σ-Extension in jeder Vervollständigung von U ist.
Sonst NEIN.

Mit Hilfe der Schlussfolgerungsprobleme lassen sich schließlich Aussagen über die
Akzeptanz von einzelnen Argumenten oder Mengen von Argumenten treffen. Die Kom-
plexitätseigenschaften dieser Probleme sollen im nachfolgenden Unterkapitel genauer
untersucht werden.
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6.3 Übertragung von Komplexitätseigenschaften

Nachdem die Schlussfolgerungsprobleme in Unterabschnitt 6.2 algorithmisch darge-
stellt wurden, soll in diesem Unterkapitel die Komplexität dieser Problemstellungen
untersucht werden.

Zunächst lässt sich leicht feststellen, dass sich jedes iAF zugleich auch als iSetAF
darstellen lässt, wie Proposition 5.3 aus Abschnitt 5 bereits gezeigt hat. Insbesondere
lässt sich auf diese Weise jedes iAF zu einem iSetAF umformen, wie das nachfolgende
Beispiel zeigt.

Beispiel 6.1. Sei I5 = (A5,A?
5 ,R5,R?

5) ein iAF mit:

• A5 = {a1, a2, a3}

• A?
5 = {a4, a5}

• R5 = {(a1, a2), (a4, a2), (a3, a5)}

• R?
5 = {(a4, a1)}

Dann lässt sich daraus analog Proposition 5.3 das entsprechende iSetAF UI5 =
(AI5 ,A

?
I5
,RI5 ,R

?
I5
) ableiten mit:

• AI5 = {a1, a2, a3}

• A?
I5

= {a4, a5}

• RI5 = {({a1}, a2), ({a4}, a2), ({a3}, a5)}

• R?
I5

= {({a4}, a1)}

Mit dieser Erkenntnis lässt sich direkt folgern, dass alle genannten Problemstellun-
gen für iSetAFs mindestens genauso schwer sein müssen, wie die entsprechenden Pro-
blemstellungen für iAFs, da sich jedes iAF auch als iSetAF darstellen lässt.

An dieser Stelle stellt sich die Frage, ob auch die umgekehrte Richtung gilt: Lassen
sich die Problemstellungen für iSetAFs auf diejenigen für iAFs reduzieren? Falls dies
der Fall ist, wäre die Komplexität der Probleme für iSetAFs mit der Komplexität der
entsprechenden Probleme für iAFs identisch. Dies würde die zu Beginn getroffene An-
nahme widerlegen, dass die Kombination zweier Erweiterungen für AFs potenziell zu
einer höheren Komplexität führt.

Damit die Problemstellungen für iSetAFs auf die Problemstellungen für iAFs redu-
ziert werden können, muss gezeigt werden, dass ein iSetAF in polynomieller Zeit in ein
iAF umgewandelt werden kann, ohne die semantischen Eigenschaften zu verlieren. Ein
ähnlicher Ansatz, ein SetAF in polynomieller Zeit in ein AF umzuwandeln, wurde be-
reits von Modgil und Bench-Capon [MBC11] vorgestellt. Deren Vorgehen führte neue
Hilfsargumente ein, um schließlich die Mengenangriffe zu eliminieren. Analog können
aber auch die Mengenangriffe von iSetAFs eliminiert werden, um iAFs zu erhalten.
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Die Idee von Modgil und Bench-Capon war es, für jedes bestehende Argument ei-
nes Mengenangriffs ein weiteres Hilfsargument hinzuzufügen. Zudem wurde für je-
den Mengenangriff ebenfalls ein zusätzliches Argument hinzugefügt, das diese An-
griffsbeziehung repräsentiert. Ein ähnlicher Ansatz soll nun auch für iSetAFs verfolgt
werden. Nachfolgend ist in Algorithmus 1 eine mögliche Konstruktion für iSetAFs al-
gorithmisch im Pseudocode dargestellt.

Algorithmus 1 Transformation iSetAF in iAF
1: Eingabe: iSetAF U = (A,A?,R,R?)
2: Ausgabe: iAF IU = (AU ,A

?
U ,RU ,R

?
U )

3: AU ← A ▷ Initialisiere AU mit den Argumenten aus A
4: A?

U ← A? ▷ Initialisiere A?
U mit den Argumenten aus A?

5: RU ← ∅ ▷ Leere Angriffsrelation für RU

6: R?
U ← ∅ ▷ Leere Angriffsrelation für R?

U

7: for (S, b) in R ∪ R? do
8: AU ← AU ∪ {h(S,b)} ▷ Hilfsargument für jeden Mengenangriff
9: for a in S do

10: AU ← AU ∪ {ha} ▷ Hilfsargument für jedes Argument aus S
11: RU ← RU ∪ {(a, ha), (ha, h(S,b))} ▷ Füge die Angriffsrelationen hinzu
12: end for
13: end for
14: for (S, b) in R do
15: RU ← RU ∪ {(h(S,b), b)} ▷ Angriffsrelation für sichere Angriffe
16: end for
17: for (S, b) in R? do
18: R?

U ← R?
U ∪ {(h(S,b), b)} ▷ Angriffsrelation für unsichere Angriffe

19: end for
20: Ergebnis: IU = (AU ,A

?
U ,RU ,R

?
U ) ▷ Ausgabe des transformierten iAFs

Der Algorithmus macht deutlich, dass sich ein iSetAF in maximal polynomieller Zeit
in ein iAF transformieren lässt. Seien n = |A ∪A?| und m = |R ∪ R?|. Sei zudem n+m
die gesamte Eingabelänge des Algorithmus, dann ergeben sich folgende Laufzeiten:

Initialisieren von AU und A?
U O(n)

Erste Schleife O(n ·m)
Zweite Schleife O(m)
Dritte Schleife O(m)

Dabei ist zu beachten, dass es auch iSetAFs gibt, für die |R ∪ R?| = |R| gilt, falls
es keine unsicheren Angriffe gibt. Entsprechend kann es auch iSetAFs geben, die nur
unsichere Angriffe enthalten, weshalb die Laufzeit der zweiten und dritten Schleife bei
O(m) liegt. Offensichtlich beträgt die Gesamtlaufzeit des Algorithmus O(n · m) und
erfolgt damit in polynomieller Zeit.
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Die zuvor algorithmisch dargestellte Transformation von iSetAFs in iAFs soll nun
formal definiert werden.

Definition 6.1 (Transformierte iSetAFs). Sei U = (A,A?,R,R?) ein iSetAF. Das dazu-
gehörige transformierte iSetAF IU = (AU ,A

?
U ,RU ,R

?
U ) stellt ein iAF dar und wird wie

folgt definiert:

• AU = A ∪ {ha | a ∈ S, (S, b) ∈ R ∪ R?} ∪ {h(S,b) | (S, b) ∈ R ∪ R?}

• A?
U = A?

• RU = {(a, ha) | a ∈ S, (S, b) ∈ R ∪ R?} ∪ {(ha, h(S,b)) | a ∈ S, (S, b) ∈ R ∪ R?} ∪
{(h(S,b), b) | (S, b) ∈ R}

• R?
U = {(h(S,b), b) | (S, b) ∈ R?}

Auf diese Weise lässt sich für jedes iSetAF ein entsprechendes iAF konstruieren. Im
Folgenden werden die Bezeichnungen der unterschiedlichen Argumenttypen wie folgt
unterschieden:

• Argumente vom Typ a: Standardargumente,

• Argumente vom Typ ha: Standard-Hilfsargument,

• Argumente vom Typ h(S,b): Angriffs-Hilfsargument.

In Abschnitt 4, Abbildung 12 wurden die unterschiedlichen Mengenangriffe von iSe-
tAFs dargestellt. Diese sind nochmals in Abbildung 35 zu finden. Die unterschiedlichen
Arten von Mengenangriffen von iSetAFs können nun entsprechend Definition 6.1 in
iAFs transformiert werden. Die transformierten iSetAFs können Abbildung 36 entnom-
men werden. Es ist offensichtlich, dass keine Mengenangriffe mehr vorhanden sind und
es sich um iAFs handelt. Zudem lässt sich leicht feststellen, dass das Argument a1 in
allen sechs iAFs nur dann angegriffen wird, wenn die Argumente a2 und a3 beide ak-
zeptiert sind und zudem auch der Angriff (hr, a1) gültig ist. Für den Fall, dass a2 oder
a3 nicht akzeptiert sind, wird in jeder Konstellation das Argument hr angegriffen und
damit wird das Argument a1 nicht attackiert und kann akzeptiert werden.

Um zu zeigen, dass die Transformation ohne Verlust von semantischen Eigenschaf-
ten erfolgt, soll zunächst die transformierte Vervollständigung eingeführt werden. Dies ist
eine Vervollständigung des transformierten iSetAFs, die dieselben semantischen Eigen-
schaften hat, wie die entsprechende Vervollständigung des ursprünglichen iSetAFs.
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Abbildung 35: Mögliche Mengenangriffe mit unvollständiger Information über Argu-
mente oder Angriffe. Dargestellt sind sechs iSetAFs U2 bis U7, die jeweils
unterschiedliche unvollständige Teilkomponenten besitzen. Eigene Dar-
stellung.

Definition 6.2 (Transformierte Vervollständigung). Seien

• U = (A,A?,R,R?) ein iSetAF,

• IU = (AU ,A
?
U ,RU ,R

?
U ) das dazugehörige transformierte iSetAF (ein iAF) und

• U∗ = (A∗,R∗) eine Vervollständigung (SetAF) von U mit A ⊆ A∗ ⊆ (A∪A?) und
R ∩ (2A

∗ ×A∗) ⊆ R∗ ⊆ (R ∪ R?) ∩ (2A
∗ ×A∗).

Dann lässt sich die transformierte Vervollständigung vom SetAF U∗ wie folgt bestim-
men:

I∗→U∗ = (B, T )

mit
B = {AU ∪ (A?

U ∩A∗)}

und
T = {(c, d) | c, d ∈ B, (c, d) ∈ RU} ∪ {(h(S,a), a) | S ⊆ B, (S, a) ∈ R∗}.

Die transformierte Vervollständigung enthält somit immer alle Hilfsargumente, Ar-
gumente, die in der Vervollständigung des iSetAFs enthalten sind sowie alle sicheren
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Abbildung 36: Ergebnisse der Transformation der iSetAFs aus Abbildung 35 in die ent-
sprechenden iAFs, wobei für r = ({a2, a3}, a1) gilt. Eigene Darstellung.
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Angriffe zwischen diesen. Weiterhin sind für alle Mengenangriffe (S, a) der Vervoll-
ständigung des iSetAFs entsprechende Angriffe (h(S,a), a) des Hilfsarguments auf das
Argument a enthalten.

Die Definition der transformierten Vervollständigung soll nachfolgend an einem Bei-
spiel verdeutlicht werden.

Beispiel 6.2. Für das in Abbildung 37 dargestellte iSetAF U7 ist U∗
7 eine mögliche Ver-

vollständigung. Weiterhin lässt sich das iSetAF U7 zu einem iAF transformieren. Dieses
transformierte iSetAF IU7 ist der Übersicht halber ebenfalls in Abbildung 37 abgebil-
det. Entsprechend der Definition 6.2 lässt sich dann die transformierte Vervollständi-
gung I∗→U∗

7
ableiten. Dabei gilt für dieses Beispiel r = ({a2, a3}, a1). Die transformierte

Vervollständigung I∗→U∗
7

enthält:

• Alle sicheren Argumente von IU7 :

{a1, hr, ha2 , ha3}.

• Alle unsicheren Argumente von IU7 , die auch in der Vervollständigung U∗
7 vor-

kommen:
{a3}.

• Alle bedingt sicheren Angriffe von IU7 zwischen Argumenten, die in I∗→U∗
7

ent-
halten sind:

{(a3, ha3), (ha2 , hr), (ha3 , hr)}.

Der unsichere Angriff (hr, a1) von IU7 ist in der transformierten Vervollständigung
nicht enthalten, weil der entsprechende Mengenangriff ({a2, a3}, a1) von U7 ebenfalls
nicht in dessen Vervollständigung U∗

7 enthalten ist.

Für das eben gezeigte Beispiel ist {a1, a3} die grundierte Extension von U∗
7 . Für die

transformierte Vervollständigung I∗→U∗
7

ist {a1, ha2 , a3} die grundierte Extension und es
gilt {a1, a3} ⊆ {a1, ha2 , a3}. Dies verdeutlicht den Erhalt der semantischen Eigenschaf-
ten, was nachfolgend gezeigt werden soll. Zuvor soll allerdings noch die transformierte
Menge eingeführt werden, durch die sich insbesondere auch σ-Extensionen transfor-
mieren lassen.

Definition 6.3 (Transformierte Menge). Seien

• U = (A,A?,R,R?) ein iSetAF,

• IU = (AU ,A
?
U ,RU ,R

?
U ) das dazugehörige transformierte iSetAF (ein iAF),

• S ⊆ A ∪A? eine Menge von Argumenten aus U ,

• U∗ = (A∗,R∗) eine Vervollständigung (SetAF) von U und

• I∗→U∗ = (B, T ) die transformierte Vervollständigung bzgl. U∗.
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a1

a2 a3
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U∗
7

a1
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ha2 ha3

a2 a3

IU7

a1
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ha2 ha3
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I∗↓U∗
7

Abbildung 37: In der oberen Reihe ist das iSetAF U7 sowie eine mögliche Vervollständi-
gung U∗

7 abgebildet. In der unteren Reihe ist das transformierte iSetAF
IU7 sowie die zu U∗

7 gehörige transformierte Vervollständigung I∗↓U∗
7

dar-
gestellt, vgl. Beispiel 6.2. Eigene Darstellung.
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Definiere die bzgl. S transformierte Menge wie folgt:

S′
→S = S ∪HS ∪H ′

S ,

wobei S Standardargumente, HS Angriffs-Hilfsargumente und H ′
S Standard-Hilfsar-

gumente sind, die wie folgt definiert sind:

HS = {h(C,a) | C ⊆ S},
H ′

S = {ha | h(C,a) ∈ HS oder a ∈ A?
U , a ̸∈ B}.

Mit Hilfe der soeben eingeführten transformierten Menge lassen sich nun alle Men-
gen von Argumenten aus einem iSetAF in eine gleichbedeutende Menge von Argumen-
ten im transformierten iSetAF umwandeln. Hintergrund der Einführung dieser Defini-
tion ist, dass nun gezeigt werden kann, dass es für jede σ-Extension S einer Vervollstän-
digung eines iSetAFs eine entsprechende Menge S′ gibt, sodass S′ eine σ-Extension
einer Vervollständigung des transformierten iSetAFs ist. Dies zeigt das nachfolgende
Theorem 6.1.

Theorem 6.1. Sei U = (A,A?,R,R?) ein iSetAF, IU = (AU ,A
?
U ,RU ,R

?
U ) das dazugehö-

rige transformierte iSetAF, S ⊆ (A ∪A?) eine Menge von Argumenten aus U und S′
→S

die bzgl. S transformierte Menge. Dann gilt:

1. S′
→S ist eine mögliche σ-Extension in IU gdw. S eine mögliche σ-Extension in U

ist.

2. S′
→S ist eine notwendige σ-Extension in IU gdw. S eine notwendige σ-Extension

in U ist.

Beweis. Sei U∗ eine Vervollständigung von U und I∗→U∗ = (B, T ) die zugehörige trans-
formierte Vervollständigung und damit auch eine Vervollständigung von IU . Es wird
für alle Semantiken gezeigt, dass

S′
→S = S ∪HS ∪H ′

S

mit HS = {h(C,d) | C ⊆ S} und H ′
S = {ha | h(C,a) ∈ HS oder a ∈ A?

U , a ̸∈ B} eine
mögliche σ-Extension in IU ist, wenn S eine mögliche σ-Extension in U ist.

Zunächst sollen dafür die angreifenden und angegriffenen Mengen für die einzelnen
Teilmengen von S′

→S in der Vervollständigung I∗→U∗ bestimmt werden. Berücksichtigt
werden dabei somit nur Argumente, die in der Vervollständigung I∗→U∗ enthalten sind:

S+ = {hb | hb ∈ B, b ∈ S},
H+

S = {d | h(C,d) ∈ B, C ⊆ S, (h(C,d), d) ∈ T},
H ′+

S = {h(F,g) | F ̸⊆ S, f ∈ F, hf ∈ H ′
S},

S− = {h(D,e) | h(D,e) ∈ B, e ∈ S},
H−

S = {hc | h(C,d) ∈ B, C ⊆ S, c ∈ C},
H ′−

S = {i | h(C,i) ∈ B, C ⊆ S}.
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Insbesondere fällt auf, dass es per Definition keine Selbstangriffe auf Argumente ge-
ben kann. Insgesamt gilt dann:

(S′
→S)

+ = S+ ∪H+
S ∪H ′+

S ,

(S′
→S)

− = S− ∪H−
S ∪H ′−

S .

Nachfolgend sollen nun die Semantiken einzeln betrachtet werden.

• cf : Da S eine mögliche cf -Extension ist, gibt es eine Vervollständigung U∗ von
U , sodass S ∈ cf(U∗). Zu zeigen ist, dass es keine Angriffe innerhalb von S′

→S

in I∗→U∗ gibt. Dafür werden die drei Teilmengen, aus denen sich S′
→S zusammen-

setzt, einzeln betrachtet:

– S greift Argumente aus S+ an. S+ ist aber per Definition nicht in S′
→S ent-

halten. Es gilt S+ ∩H ′
S = {}.

– HS greift Argumente aus H+
S an. H+

S kann aber nicht in S′
→S enthalten sein.

Da S in U∗ konfliktfrei ist, kann es kein h(C,d) ∈ B geben mit C ⊆ S und
d ∈ S. Dies wäre ein Selbstangriff. Es gilt H+

S ∩ S = {}.
– Es gilt per Definition H ′+

S ∩ HS = {}, da H ′+
S alle Angriffs-Hilfsargumente

h(F,g) mit F ̸⊆ S enthält, während HS genau die Angriffs-Hilfsargumente
mit F ⊆ S enthält.

Damit ist gezeigt, dass keine der drei Teilmengen von S′
→S ein weiteres Argument

innerhalb dieser Menge angreift. Damit gilt S′
→S ∈ cf(I∗→U∗).

• ad: Da S eine mögliche ad-Extension ist, gibt es eine Vervollständigung U∗ von U ,
sodass S ∈ ad(U∗). Zu zeigen ist, dass S′

→S konfliktfrei in I∗→U∗ ist und dass sich
die Menge S′

→S gegen alle Angreifer verteidigt.

Da S zulässig in U∗ ist, ist S konfliktfrei in U∗. Es wurde bereits gezeigt, dass
daraus S′

→S ∈ cf(I∗→U∗) folgt. Es bleibt zu zeigen, dass alle Argumente aus S′
→S

von S′
→S verteidigt werden. Dafür werden die drei Teilmengen, aus denen sich

S′
→S zusammensetzt, einzeln betrachtet:

– Ein Standardargument j ∈ S wird nur von Angriffs-Hilfsargumenten h(F,j)
angegriffen. Weil S konfliktfrei ist, gilt für F allerdings F ̸⊆ S. Daraus folgt
direkt h(F,j) ∈ H ′+

S und alle Angriffe auf S werden durch H ′
S verteidigt.

– Ein Angriffs-Hilfsargument h(C,d) ∈ HS wird nur von Standard-
Hilfsargumenten hc mit c ∈ C und C ⊆ S angegriffen. Daraus folgt, dass
c ∈ S und damit ist hc ∈ S+ enthalten. Alle Angriffe auf HS werden durch
S verteidigt.

– Es gilt H ′−
S = H+

S . Damit werden alle Argumente, die ein Argument aus H ′
S

angreifen, von HS attackiert. Alle Argumente aus H ′
S werden somit vertei-

digt.
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Damit ist gezeigt, dass keine der drei Teilmengen von S′
→S angegriffen wird, ohne

dass dieser Angriff von S′
→S verteidigt wird. Damit gilt S′

→S ∈ ad(I∗→U∗).

• co: Da S eine mögliche co-Extension ist, gibt es eine Vervollständigung U∗ von
U , sodass S ∈ co(U∗). Zu zeigen ist, dass S′

→S zulässig in I∗→U∗ ist und dass die
Menge S′

→S keine weiteren Argumente verteidigt.

Da S vollständig in U∗ ist, ist S konfliktfrei und zulässig in U∗. Es wurde be-
reits gezeigt, dass daraus S′

→S ∈ ad(I∗→U∗) folgt. Es bleibt zu zeigen, dass alle
Argumente, die von S′

→S verteidigt werden, in S′
→S liegen. Angenommen, dies

gilt nicht, dann gibt es ein Argument aus B \ S′
→S , das von S′

→S verteidigt wird.
Dieses Argument kann für die drei Argumenttypen einzeln betrachtet werden:

– Sei k ∈ B \ S′
→S ein Standardargument, das von S′

→S verteidigt wird. Für
den Fall, dass k allein dadurch verteidigt wird, dass k unattackiert ist, folgt
direkt, dass k dann auch in U∗ unattackiert ist. Damit kann aber die Menge
S in U∗ nicht vollständig sein, was zum Widerspruch führt. Für den Fall,
dass k attackiert wird, gibt es ein Angriffs-Hilfsargument h(J,k), das von ei-
nem Standard-Hilfsargument hm ∈ S′

→S mit m ∈ J angegriffen wird und
damit k verteidigt. Dann folgt aber auch, dass es ein Angriffs-Hilfsargument
h(G,m) ∈ S′

→S mit G ⊆ S geben muss. Übertragen auf die Vervollständigung
U∗ muss es somit einen Mengenangriff (G,m) mit G ⊆ S geben, der den
Mengenangriff (J, k) verteidigt. Dann verteidigt S aber auch das Argument
k in U∗. Daraus folgt, dass S in U∗ aber nicht vollständig ist, was zum Wi-
derspruch führt.

– Sei hk ∈ B \ S′
→S ein Standard-Hilfsargument, das von S′

→S verteidigt
wird. Für den Fall, dass hk allein dadurch verteidigt wird, dass hk unatta-
ckiert ist, folgt direkt per Definition, dass hk ∈ H ′

S ⊆ S′
→S . Dies führt zum

Widerspruch, da per Annahme hk ∈ B \ S′
→S gilt. Für den Fall, dass hk

attackiert wird, gibt es ein Standardargument k, das von einem Angriffs-
Hilfsargument h(G,k) ∈ S′

→S mit G ⊆ S angegriffen und damit verteidigt
wird. Wegen h(G,k) ∈ S′

→S mit G ⊆ S folgt direkt, dass bereits per Definiti-
on hk ∈ S′

→S gilt. Dies führt ebenfalls zum Widerspruch, da per Annahme
hk ∈ B \ S′

→S gilt.

– Sei h(K,n) ∈ B \ S′
→S ein Angriffs-Hilfsargument, das von S′

→S verteidigt
wird. Der Fall, dass h(K,n) allein dadurch verteidigt wird, dass hk unatta-
ckiert ist, existiert nicht, da Angriffs-Hilfsargumente per Definition immer
mindestens einen Angreifer haben. Somit wird h(K,n) attackiert. Gilt zudem
K ⊆ S, dann folgt direkt h(K,n) ∈ HS ⊆ S′

→S , was im Widerspruch zur
Annahme steht. Gilt für h(K,n) hingegen K ̸⊆ S und für ein k ∈ K zudem
hk ∈ HS , dann folgt direkt, dass h(K,n) ∈ H ′+

S gilt und damit von S′
→S an-

gegriffen wird. Gilt für h(K,n) weiterhin K ̸⊆ S, aber es gibt kein k ∈ K
mit hk ∈ HS , dann kann h(K,n) aber nur vom Standardargument k verteidigt
werden. Wegen K ̸⊆ S und k ∈ K gilt k ̸∈ S und damit auch k ̸∈ S′

→S . Alle
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Fälle stehen im Widerspruch zu der Annahme, dass h(K,n) von S′
→S vertei-

digt wird.

Damit ist gezeigt, dass S′
→S ∈ co(I∗→U∗) in allen Fällen gelten muss.

• gr: Da S eine mögliche gr-Extension ist, gibt es eine Vervollständigung U∗ von U ,
sodass S ∈ gr(U∗). Zu zeigen ist, dass S′

→S vollständig in I∗→U∗ ist und dass S′
→S

minimal ist.

Da S grundiert in U∗ ist, ist S vollständig in U∗. Es wurde bereits gezeigt, dass
daraus S′

→S ∈ co(I∗→U∗) folgt. Es bleibt zu zeigen, dass es keine kleinere Menge
S′′ ⊂ S′

→S gibt, die ebenfalls vollständig in I∗→U∗ ist. Angenommen, es existiert ein
Argument aus S′

→S , das nicht in S′′ ⊂ S′
→S enthalten ist und S′′ ist grundiert in

I∗→U∗ . Dieses Argument muss dann einem der drei unterschiedlichen Argument-
typen entsprechen:

– Sei k ein Standardargument, mit k ∈ S′
→S und S′′ = S′

→S \{k} die grundierte
Extension in I∗→U∗ . Angewendet auf U∗ würde dies aber bedeuten, dass S \k
grundiert ist. Dies steht im Widerspruch dazu, dass S grundiert ist.

– Sei hk ein Standard-Hilfsargument, mit hk ∈ S′
→S und S′′ = S′

→S \ {hk} die
grundierte Extension in I∗→U∗ . Per Definition muss es dann ein h(C,k) ∈ S′

→S

geben und damit gilt auch h(C,k) ∈ S′′. Das Argument h(C,k) ∈ S′′ verteidigt
dann aber wiederum das Argument hk, weshalb S′′ nicht vollständig sein
kann. Dies steht im Widerspruch zur Annahme, dass S′′ grundiert ist.

– Sei h(K,n) ein Angriffs-Hilfsargument, mit h(K,n) ∈ S′
→S und h(K,n) ̸∈ S′′. Da

es für jedes k ∈ K einen Angreifer hk gibt und weil S′
→S vollständig ist, muss

es in S′
→S die dazugehörigen Verteidiger k geben. Damit sind alle Standar-

dargumente k aber auch in S′′ enthalten und verteidigen h(K,n), weshalb S′′

nicht vollständig sein kann. Auch dies steht im Widerspruch zur Annahme.

• pr: Da S eine mögliche pr-Extension ist, gibt es eine Vervollständigung U∗ von U ,
sodass S ∈ pr(U∗). Zu zeigen ist, dass S′

→S vollständig in I∗→U∗ ist und dass S′
→S

maximal ist.

Da S präferiert in U∗ ist, ist S vollständig in U∗. Es wurde bereits gezeigt, dass
daraus S′

→S ∈ co(I∗→U∗) folgt. Es bleibt zu zeigen, dass es keine größere Menge
S′′ ⊃ S′

→S gibt, die ebenfalls vollständig in I∗→U∗ ist. Angenommen, es existiert ein
weiteres Argument aus B \ S′

→S , das von S′
→S verteidigt wird. Dieses Argument

muss dann einem der drei unterschiedlichen Argumenttypen entsprechen:

– Sei k ∈ B \ S′
→S ein Standardargument, mit k ̸∈ S′

→S und S′′ = S′
→S ∪

{k} eine präferierte Extension in I∗→U∗ . Dann verteidigt S′
→S das Argument

k. Angewendet auf U∗ würde dies aber bedeuten, dass S das Argument k
verteidigt und S somit nicht vollständig ist. Dies steht im Widerspruch dazu,
dass S präferiert ist.
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– Sei hk ∈ B \ S′
→S ein Standard-Hilfsargument, mit hk ̸∈ S′

→S und S′′ =
S′
→S ∪ {hk} eine präferierte Extension in I∗→U∗ . Für den Fall, dass hk von

S′′ dadurch verteidigt wird, dass hk nicht attackiert wird, folgt direkt, dass
hk bereits per Definition in S′

→S enthalten sein muss. Andernfalls muss es
ein h(C,k) ∈ S′′ geben, das ebenfalls in S′

→S liegt und das Argument hk ver-
teidigt. Daraus folgt aber auch direkt, dass bereits hk ∈ S′

→S gelten muss,
was im Widerspruch zur Annahme steht. Somit kann es kein Standard-
Hilfsargument geben, das von S′

→S verteidigt wird und noch nicht in S′
→S

enthalten ist.

– Sei h(K,n) ∈ B \ S′
→S ein Angriffs-Hilfsargument, mit h(K,n) ̸∈ S′

→S und
h(K,n) ∈ S′′. Da es für jedes k ∈ K einen Angreifer hk gibt und weil S′′

per Annahme vollständig ist, muss es in S′′ die dazugehörigen Verteidiger k
geben. Diese sind folglich dann auch in S′

→S enthalten. Daraus folgt direkt,
dass h(K,n) ∈ S′

→S gelten muss, weshalb S′
→S bereits maximal ist.

Damit ist gezeigt, dass S′
→S ∈ pr(I∗→U∗) in allen Fällen gelten muss.

• st: Da S eine mögliche st-Extension ist, gibt es eine Vervollständigung U∗ von U ,
sodass S ∈ st(U∗). Zu zeigen ist, dass S′

→S konfliktfrei in I∗→U∗ ist und dass jedes
Argument entweder in der Menge S′

→S enthalten ist oder von dieser angegriffen
wird.

Da S stabil in U∗ ist, ist S konfliktfrei in U∗. Es wurde bereits gezeigt, dass daraus
S′
→S ∈ cf(I∗→U∗) folgt. Es bleibt zu zeigen, dass jedes Argument entweder in S′

→S

liegt oder von S′
→S angegriffen wird. Dafür werden wieder die drei unterschied-

lichen Argumenttypen betrachtet:

– Standardargumente: Da S in U∗ stabil ist, gibt es für jedes Argument d ̸∈ S
einen Mengenangriff (C, d) mit C ⊆ S auf das Argument d. Dann gilt für
das Argument d in I∗→U∗ aber direkt per Definition d ∈ H+

S . Somit wird d
von S′

→S angegriffen.

– Standard-Hilfsargumente: Da S in U∗ stabil ist, gibt es für jedes Argument
d ̸∈ S einen Mengenangriff (C, d) mit C ⊆ S auf das Argument d. Per
Definition folgt direkt, dass hd ∈ H ′

S ⊆ S′
→S gilt. Für alle Argumente

s ∈ S gilt ebenfalls per Definition hs ∈ S+. Diese werden somit angegrif-
fen. Es bleibt der Fall, dass ein Argument a ∈ A?

U als unsicheres Argu-
ment nicht in der Vervollständigung I∗→U∗ enthalten ist. Dann ist das zuge-
hörige Standard-Hilfsargument ha per Definition in S′

→S . Somit liegen alle
Standard-Hilfsargumente entweder in S′

→S oder werden von dieser Menge
attackiert.

– Angriffs-Hilfsargumente: Gilt für ein Angriffs-Hilfsargumente h(C,d) C ⊆ S,
dann folgt per Definition, dass h(C,d) ∈ S′

→S gilt. Gilt hingegen C ̸⊆ S und
gibt es ein c ∈ C mit hc ∈ HS , dann folgt direkt h(C,d) ∈ H ′+. Gilt C ̸⊆ S und
gibt es kein c ∈ C mit hc ∈ HS , dann folgt, dass das Standardargument c
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nicht von S′
→S angegriffen wird. Andernfalls wäre hc per Definition in S′

→S

enthalten. Dann folgt aber auch für U∗, dass c ̸∈ S und c ist unangegriffen.
Dies steht im Widerspruch dazu, dass S in U∗ stabil ist. Damit werden alle
Angriffs-Hilfsargumente entweder von S′

→S angegriffen oder sind in dieser
Menge enthalten.

Damit ist gezeigt, dass S′
→S ∈ st(I∗→U∗) in allen Fällen gelten muss.

Die Gegenrichtung der Äquivalenz von Theorem 6.1, Punkt 1 erfolgt mit einer ana-
logen Argumentation wie der soeben gezeigte Beweis. Für die Konfliktfreiheit gilt bei-
spielsweise:

Sei S eine beliebige Menge von Argumenten aus U und sei S′
→S = S ∪ HS ∪ H ′

S

die bzgl. S transformierte Menge entsprechend Definition 6.3. Sei S′
→S eine mögliche

konfliktfreie Menge in IU . Es ist zu zeigen, dass dann auch S eine mögliche konflikt-
freie Menge in U ist. Betrachtet man alle Angriffs-Hilfsargumente h(B,c) ∈ HS ⊆ S′

→S ,
fällt auf, dass diese nur in S′

→S enthalten sein können, wenn B ⊆ S gilt. Da S′
→S ei-

ne mögliche konfliktfreie Menge ist, kann jedes Argument c, das von einem Angriffs-
Hilfsargument h(B,c) ∈ HS angegriffen wird, nicht in S′

→S und damit auch nicht in S
enthalten sein. Angenommen, es gibt keine Vervollständigung vom iSetAF U , in der S
konfliktfrei ist. Dann gibt es einen Mengenangriff (D, e), wobei für jedes d ∈ D auch
d ∈ S und zudem e ∈ S gilt. Daraus folgt per Definition Definition 6.3, dass die Men-
ge D aber auch in S′

→S enthalten ist. Zudem gilt e ∈ S′
→S und es gibt ein Angriffs-

Hilfsargument h(D,e) ∈ S′
→S . Wegen des Angriffs (h(D,e), e) in IU folgt aber direkt, dass

S′
→S nicht konfliktfrei sein kann. Dies führt zum Widerspruch zur Annahme, weshalb

S in U eine mögliche konfliktfreie Menge sein muss.
Aufgrund der strukturellen Ähnlichkeit und der Länge des Beweises wird im Rah-

men dieser Arbeit auf eine ausführliche Darstellung der weiteren Beweise verzichtet.
Dies betrifft insbesondere auch Theorem 6.1, Punkt 2, deren Gültigkeit sich in analoger
Weise zu den bereits gezeigten Beweisen nachvollziehen lässt.

Zum besseren Verständnis wird nachfolgend noch ein Beispiel gegeben.

Beispiel 6.3. Für das in Abbildung 38 dargestellte iSetAF U24 ist das transformierte iSe-
tAF IU24 in Abbildung 39 abgebildet. In Abbildung 40 ist eine Vervollständigung vom
iSetAF U24 dargestellt. Für diese Vervollständigung lässt sich die transformierte Ver-
vollständigung entsprechend Definition 6.2 bilden. Diese transformierte Vervollständi-
gung I∗U∗

24
ist in Abbildung 41 abgebildet. Es ist leicht nachzuvollziehen, dass es sich

hierbei tatsächlich auch um eine korrekte Vervollständigung von IU24 handelt. Zum
Vergleich ist nun in Tabelle 7 anschaulich dargestellt, welche Mengen S bzw. S′

→S in
U∗
24 bzw. I∗U∗

24
einer σ-Extension entsprechen und welche dieser nicht entsprechen. Ge-

mäß Theorem 6.1 gilt immer: Wenn S ∈ σ(U∗
24), dann gilt auch S′

→S ∈ σ(I∗U∗
24
).
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a

b

c d

e

Abbildung 38: iSetAF U24 zu Beispiel 6.3. Eigene Darstellung.

a ha h({a,b},c)

b hb
c

hc

h({c},e)

e

h({d},c)

h({c},d)

hd

d

Abbildung 39: Transformiertes iSetAF IU24 zu Beispiel 6.3. Eigene Darstellung.
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a

b

c d

e

Abbildung 40: Eine Vervollständigung U∗
24 vom iSetAF U24 aus Abbildung 39 zu Bei-

spiel 6.3. Eigene Darstellung.

a ha h({a,b},c)

b hb
c

hc

h({c},e)

e

h({d},c)

h({c},d)

hd

d

Abbildung 41: Transformierte Vervollständigung IU∗
24

bzgl. der Vervollständigung U∗
24

aus Abbildung 40 zu Beispiel 6.3. Eigene Darstellung.
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S ∈ σ(U∗
24) S′

→S ∈ σ(IU∗
24
)

cf
{a, e} ✓ {a, e} ✓

{a, b} ✓ {a, b, h({a,b},c), hc} ✓

{a, b, c} ✗ {a, b, c, h({a,b},c), h({c},e), h({c},d), hc} ✗

ad
{d} ✓ {d, h({d},c), hc} ✓

{a, b} ✓ {a, b, h({a,b},c), hc} ✓

{e} ✗ {e} ✗

co
{a, b, d, e} ✓ {a, b, d, e, h({a,b},c), h({d},c), hc} ✓

{a, b, d} ✗ {a, b, d, h({a,b},c), h({d},c), hc} ✗

pr
{a, b, d, e} ✓ {a, b, d, e, h({a,b},c), h({d},c), hc} ✓

{d, e} ✗ {d, e, h({d},c), hc} ✗

gr
{a, b, d, e} ✓ {a, b, d, e, h({a,b},c), h({d},c), hc} ✓

{a, b} ✗ {a, b, h({a,b},c), hc} ✗

st
{a, b, d, e} ✓ {a, b, d, e, h({a,b},c), h({d},c), hc} ✓

{a, b, e} ✗ {a, b, e, h({a,b},c), hc} ✗

Tabelle 7: Dargestellt sind unterschiedliche Mengen S bzw. S′
→S , für die jeweils angege-

ben wird, ob diese in U∗
24 bzw. I∗U∗

24
einer σ-Extension entsprechen oder nicht.

Dabei wird zwischen den Semantiken cf, ad, co, pr, gr und st unterschieden.
Eigene Darstellung zu Beispiel 6.3.

Durch Theorem 6.1 wird deutlich, wie sich die Schlussfolgerungsprobleme für iSe-
tAFs auf die entsprechenden Schlussfolgerungsprobleme für iAFs reduzieren lassen.
Um ein Schlussfolgerungsproblem für iSetAFs zu lösen, wird das dazugehörige trans-
formierte iSetAF bestimmt. Anschließend lässt sich das Problem leicht auf dieses iAF
übertragen und lösen. Insbesondere gilt für p-CREDσ, s-CREDσ, p-SKEPσ und n-
SKEPσ, dass die Antwort JA ausgegeben wird, sofern das in der Eingabe übergebene
Argument a in einer bzw. jeder Vervollständigung des transformierten iSetAFs IU Teil
einer bzw. jeder σ-Extension ist. Ansonsten lautet die Antwort NEIN.

Für die Probleme p-VERσ und n-VERσ hingegen wird die Antwort JA ausgegeben,
sofern die bzgl. S (Eingabe) transformierte Menge S′

→S eine σ-Extension in einer bzw.
jeder Vervollständigung des transformierten iSetAFs IU ist. Ansonsten lautet die Ant-
wort NEIN.

6.4 Ergebnisse

Nachdem in Unterabschnitt 6.3 gezeigt wurde, dass sich jedes iSetAF durch Eliminieren
von Mengenangriffen zu einem iAF transformieren lässt, ohne dabei die semantischen
Eigenschaften zu verlieren, sollen in diesem letzten Unterkapitel die Komplexitätsei-
genschaften von iSetAFs dargestellt werden. Diese Komplexitätseigenschaften lassen
sich direkt von den Eigenschaften von iAFs übernehmen. Die Schlussfolgerungsproble-
me p-CREDσ, s-CREDσ, p-SKEPσ und n-SKEPσ wurden für iAFs bereits von Baumeis-
ter, Neugebauer und Rothe [BNR18] untersucht. Die Verifikationsprobleme p-VERσ
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und n-VERσ wurden ebenfalls von Baumeister et al. [BNRS18] für iAFs untersucht.
Die Ergebnisse lassen sich direkt auf iSetAFs übertragen und werden in Tabelle 8 dar-
gestellt. Insbesondere heißt ein Schlussfolgerungsproblem trivial, wenn die Antwort
unabhängig von der Eingabe immer JA bzw. immer NEIN lautet.

p-CREDσ n-CREDσ p-SKEPσ n-SKEPσ p-VERσ n-VERσ

cf in P in P trivial trivial in P in P
ad NP-c ΠP

2 -c trivial trivial in P in P
co NP-c ΠP

2 -c NP-c coNP-c in P in P
pr NP-c ΠP

2 -c ΠP
3 -c ΠP

2 -c ΠP
2 -c coNP-c

gr NP-c coNP-c NP-c coNP-c in P in P
st NP-c ΠP

2 -c ΠP
2 -c coNP-c in P in P

Tabelle 8: Komplexität der Schlussfolgerungsprobleme von iSetAFs, die von aus Ergeb-
nissen der Komplexitätsuntersuchung für iAFs aus den Arbeiten von Bau-
meister, Neugebauer und Rothe bzw. Baumeister et al. [BNR18, BNRS18]
übernommen wurden.
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7 Zusammenfassung

Ziel dieser Arbeit war die Entwicklung einer neuen Erweiterung der herkömmlichen
abstrakten Argumentationsgraphen (AFs) von Dung [Dun95]. Diese Erweiterung ist
das iSetAF (unsichere Argumentationsgraphen mit Mengenangriffen), das den Um-
gang sowohl mit Mengenangriffen als auch mit unsicherer Information in einem ein-
heitlichen Modell ermöglichen sollte.

Ausgangspunkt dieser Arbeit waren dabei die klassischen von Dung eingeführten
AFs, die es ermöglichen, Entscheidungsprozesse maschinell zu verarbeiten. Zudem
dienten zwei bestehende Erweiterungen dieser AFs als Grundlage der im Rahmen die-
ser Arbeit zu entwickelnden Erweiterung: Argumentationsgraphen mit Mengenangrif-
fen (SetAFs) von Nielsen und Parsons [NP06] und unvollständige Argumentationsgra-
phen (iAFs) von Coster Marquis et al. sowie Baumeister et al. [CMDK+07, BNRS18].

All diese Frameworks erweitern die herkömmlichen AFs und ermöglichen die Mo-
dellierung zusätzlicher realweltlicher Szenarien. Allerdings gibt es auch Szenarien, in
denen die Existenz von einzelnen Argumenten oder Mengenangriffen nicht sicher an-
genommen werden kann. Solche Szenarien konnten bislang nicht modelliert werden.
Die Motivation war daher, diese Lücke zu schließen, indem sowohl Elemente aus An-
sätzen zur Modellierung von Mengenangriffen als auch solche zur Behandlung von
unvollständigem Wissen in einem weiteren Framework, dem iSetAF, integriert werden.

Im Rahmen der Arbeit wurde zunächst das iSetAF formal definiert. Dieses wurde
als ein Tupel U = (A,A?,R,R?) definiert, das aus sicheren Argumenten A, unsicheren
Argumenten A? sowie bedingt sicheren Mengenangriffen R und unsicheren Mengen-
angriffen R? besteht. Dabei ist ein bedingt sicherer Mengenangriff immer genau dann
gültig, wenn alle Argumente der angreifenden Menge gültig sind. Für unsichere Argu-
mente und Angriffe kann nicht mit Sicherheit entschieden werden, ob diese gültig sind
oder nicht. Es kann somit unterschiedliche Konstellationen geben.

Zur Auswertung und Entscheidungsfindung bzgl. solcher iSetAFs wurden anschlie-
ßend zwei unterschiedliche Ansätze verfolgt. Dies war zum einen ein vervollständi-
gungsbasierter Ansatz, ähnlich wie es bereits von Baumeister et al. [BNRS18] für iAFs
gezeigt wurde. Zum anderen wurde ein extensionsbasierter Ansatz verfolgt, ähnlich
wie es in der Arbeit von Mailly [Mai21] für iAFs gezeigt wurde.

Die Idee des vervollständigungsbasierten Ansatzes war es, alle möglichen Konstel-
lationen des unsicheren Wissens durch Vervollständigungen zu berücksichtigen. Dabei
ist eine Vervollständigung ein vom iSetAF abgeleitetes SetAF, bei dem kein unsiche-
res Wissen mehr enthalten ist. Auf Basis dieser Vervollständigungen ließen sich Aus-
sagen über mögliche und notwendige σ-Extensionen treffen. Eine Menge von Argu-
menten bildet dabei genau dann eine mögliche σ-Extension, wenn sie in mindestens
einer Vervollständigung des iSetAFs als σ-Extension akzeptiert wird. Eine notwendige
σ-Extension liegt hingegen vor, wenn eine Menge von Argumenten in jeder möglichen
Vervollständigung eine σ-Extension darstellt. Eine weitere Unterteilung erfolgte in eine
leichtgläubige und eine skeptische Schlussfolgerung, wodurch insgesamt vier Schluss-
folgerungsprobleme entstanden. Zusätzlich wurde noch das Verifikationsproblem be-
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trachtet, bei dem Schlussfolgerungen für ganze Mengen getroffen werden konnten. Mit
Hilfe dieser Probleme war es somit möglich, Aussagen über einzelne Argumente oder
Mengen von Argumenten in den iSetAFs zu treffen. Beispielsweise lässt sich für ein ein-
zelnes Argument schließen, dass es in jeder Vervollständigung Teil jeder σ-Extension
ist. Für dieses Argument kann dann sicher angenommen werden, dass es in jedem Fall
gültig und damit akzeptiert ist.

Für die Schlussfolgerungsprobleme wurde anschließend die Komplexität analysiert,
da fraglich war, ob sich die Komplexität der Probleme erhöht, wenn sich die Aussage-
kraft des gesamten Frameworks erhöht. Tatsächlich zeigte sich, dass jedes iAF gleich-
zeitig auch ein iSetAF darstellt und sich zudem jedes iSetAF mittels Hilfsargumenten
in polynomieller Zeit in ein iAF umwandeln lässt. Aus diesem Grund ließen sich auch
die Komplexitätseigenschaften direkt von iAFs auf iSetAFs übertragen, da sich die Pro-
bleme für iSetAFs auf die Probleme für iAFs abbilden ließen. Die Ergebnisse der Kom-
plexitätsbetrachtung wurden in Tabelle 8 in Abschnitt 6 dargestellt.

Der Nachteil des vervollständigungsbasierten Ansatzes war jedoch, dass immer al-
le Vervollständigungen berücksichtigt werden mussten, um Aussagen über das iSetAF
treffen zu können. Die Anzahl der Vervollständigungen steigt allerdings exponentiell
mit der Anzahl unsicherer Argumente und Angriffe. Aus diesem Grund wurde noch
ein zweiter Ansatz verfolgt, der extensionsbasierte Ansatz. Bei diesem ging es darum,
Aussagen über Mengen von Argumenten treffen zu können, ohne dass alle Vervoll-
ständigungen berücksichtigt werden mussten. Dafür wurden die klassischen Semanti-
ken für AFs neu definiert und an das neue iSetAF angepasst. Dabei wurde jeweils eine
schwache (w) und eine starke (s) Variante jeder Semantik definiert, wobei die schwache
Ausprägung widerspiegelt, dass nur sichere Angriffe als Bedrohung angesehen wer-
den, während in der starken Ausprägung auch unsichere Angriffe als Bedrohung an-
gesehen und ggf. verteidigt werden müssen.

Neben der Definition dieser Semantiken wurden auch verschiedene Eigenschaften
aus der Literatur untersucht, die als wünschenswert für Argumentationsframeworks
angenommen wurden. Untersucht wurden dabei die Eigenschaften Syntaxunabhän-
gigkeit, I-Maximalität, Enthaltung, Direktionalität, Dichtheit, Konfliktsensitivität und
Modularisierung. Diese Postulate wurden angepasst, um auch Mengenangriffe zu be-
rücksichtigen. Um auch die Besonderheiten von iSetAFs zu berücksichtigen und da-
bei den ursprünglichen Sinn der Postulate beizubehalten, mussten die Direktionalität,
Dichtheit und Konfliktsensitivität abgeändert werden und es wurden die Eigenschaf-
ten Mengendirektionalität, Mengendichtheit und Mengenkonfliktsensitivität definiert.

Während die Syntaxunabhängigkeit unverändert analog der Ergebnisse für AFs auch
für iSetAFs galt, konnte für die Mengendirektionalität, Mengendichtheit bzw. Mengen-
konfliktsensitivität gezeigt werden, dass diese Eigenschaften von den Semantiken für
iSetAFs genau dann erfüllt sind, wenn die klassischen Postulate Direktionalität, Dicht-
heit bzw. Konfliktsensitivität von den entsprechenden Semantiken für AFs erfüllt sind.

Auch die Postulate I-Maximalität und Enthaltung stimmten, bezogen auf iSetAFs,
größtenteils mit den Ergebnissen von klassischen AFs überein. Für die I-Maximalität
kam es lediglich bei der schwach stabilen Semantik und für die Enthaltung bei der
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schwach vollständigen Semantik zu Abweichungen. Bei der Modularisierung hingegen
stimmte lediglich die schwache Ausprägung aller Semantiken mit den Ergebnissen von
AFs überein. Bis auf die stark stabile Semantik erfüllten die starken Ausprägungen die
Modularisierung grundsätzlich nicht. Eine genaue Übersicht der Ergebnisse wurde in
Tabelle 5 und Tabelle 6 in Abschnitt 5 dargestellt.

Die vorliegende Arbeit zeigt, dass iSetAFs eine bedeutende Erweiterung klassischer
Argumentationsframeworks darstellen, die es ermöglichen, unsichere Informationen
und Mengenangriffe in einem einheitlichen Modell zu integrieren, ohne dabei die Kom-
plexität der Schlussfolgerungsprobleme zu erhöhen. Zudem bleiben die wünschens-
werten Eigenschaften für die meisten Semantiken für extensionsbasierte iSetAFs ent-
sprechend der Ergebnisse für die herkömmlichen AFs erhalten.

Zum Abschluss dieser Arbeit folgt nun noch ein Fazit sowie ein Ausblick auf mögli-
che weitere Forschungsthemen.

7.1 Fazit

Die vorliegende Arbeit hat gezeigt, dass die klassischen abstrakten Argumentations-
graphen von Dung in ihrer herkömmlichen Form nicht ausreichen, um komplexe, mit
Unsicherheit behaftete Entscheidungsprozesse realitätsnah abzubilden. Durch die Ein-
führung von iSetAFs konnten sowohl Mengenangriffe als auch unvollständiges Wissen
in einem einzigen Modell kombiniert werden.

Durch den vervollständigungsbasierten Ansatz lassen sich Schlussfolgerungen für
die Akzeptanz einzelner Argumente oder Mengen von Argumenten ableiten. In-
teressant sind dabei insbesondere die notwendigen σ-Schlussfolgerungen für Men-
gen von Argumenten, da diese in jedem Fall gemeinsam akzeptiert werden können.
Dabei ist die Existenz der weiteren unsicheren Argumente irrelevant. Mögliche σ-
Schlussfolgerungen hingegen dienen nur als erste Einschätzung über die Akzeptanz
von Argumenten oder Mengen von Argumenten. Diese Schlussfolgerungen unterlie-
gen selbst einer gewissen Unsicherheit und hängen von der Existenz weiterer Argu-
mente in der Realität ab. Das heißt, es bleibt weiterhin unklar, ob eine Menge tatsächlich
eine zu akzeptierende Extension bildet oder nicht.

Allerdings führt der vervollständigungsbasierte Ansatz in Szenarien mit hoher Unsi-
cherheit und mit vielen Argumenten zu einer erheblichen Steigerung der Berechnungs-
aufwände, da die Anzahl der Vervollständigungen exponentiell mit der Anzahl unsi-
cherer Komponenten wächst.

Um den letztgenannten Nachteil zu umgehen, ist der extensionsbasierte Ansatz eine
gute Alternative, da sämtliche Berechnungen unmittelbar auf dem iSetAF durchgeführt
werden können, ohne Vervollständigungen bilden zu müssen. Insbesondere können
die Extensionen direkt aus dem iSetAF abgeleitet werden. Durch die Abgrenzung der
Semantiken in eine schwache und eine starke Ausprägung, lassen sich zwei Arten von
Extensionen direkt aus dem iSetAF ableiten:
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• Extensionen, die in gewissen Situationen gültig sind. Bei der schwachen Aus-
prägung werden unsichere Argumente oder Angriffe nicht als Angreifer wahr-
genommen. Diese Extensionen sind somit gültig, sofern potenziell angreifende
unsichere Elemente in der Realität nicht existieren.

• Extensionen, die in jedem Fall gültig sind. Bei der starken Ausprägung werden
alle Angriffe verteidigt, sodass eine solche Extension zwingend gültig ist, unab-
hängig davon, ob unsichere Argumente oder unsichere Angriffe tatsächlich exis-
tieren oder nicht.

Es lassen sich somit, ähnlich wie beim vervollständigungsbasierten Ansatz, immer
Extensionen finden, die in einer bestimmten Situation akzeptabel sind und Extensio-
nen, die immer akzeptabel sind.

Der Nachteil des extensionsbasierten Ansatzes ist jedoch, dass dabei nicht jede mögli-
che Konstellation von Argumenten berücksichtigt werden kann. Es werden immer alle
unsicheren Argumente und unsicheren Angriffe in Kombination entweder als unbe-
drohlich oder bedrohlich angesehen. Dabei kann nicht zwischen unsicheren Argumen-
ten unterschieden werden, die mit hoher Wahrscheinlichkeit existieren und unsicheren
Argumenten, die mit geringer Wahrscheinlichkeit existieren.

7.2 Ausblick

Die Ergebnisse dieser Arbeit bieten viele Möglichkeiten für weiterführende For-
schungsarbeiten. Zukünftige Ansätze könnten das Framework dahingehend erweitern,
dass auch Angriffe auf Mengen explizit zugelassen werden. Einen ähnlichen Ansatz
verfolgten bereits Dimopoulos et al. [DDK+23], bei dem eine ähnliche Form von iSe-
tAFs eingeführt wurde, bei der allerdings nur Angriffe unsicher sein konnten. Argu-
mente waren dabei nicht mit unsicherem Wissen behaftet.

Ein weiterer vielversprechender Forschungsansatz besteht darin, Wahrscheinlichkei-
ten bei der Modellierung unvollständiger Information zu berücksichtigen. Auf diese
Weise ließe sich für unsichere Argumente oder Angriffe abschätzen, wie wahrschein-
lich deren Existenz tatsächlich ist. Solche probabilistischen Argumentationsgraphen
wurden bereits von Li, Oren und Norman eingeführt [LON11], wobei sich diese nur
auf die klassischen AFs von Dung beziehen.

Eine weitere Möglichkeit ist die Erweiterung der Semantiken. In dieser Arbeit wur-
den lediglich die Standard-Semantiken von Dung im Rahmen des extensionsbasierten
Ansatzes neu definiert. Mittlerweile existieren jedoch zahlreiche weitere Semantiken,
die sich ebenfalls für die Anwendung auf iSetAFs neu definieren lassen, was Aufga-
be zukünftiger Arbeiten sein könnte. Beispielsweise könnten die semi-stabile Semantik
von Caminada [Cam06], die ideale Semantik von Dung et al. [DMT07] oder die stage-
Semantik von Verhej [Ver96] so angepasst werden, dass diese mit Mengenangriffen und
unsicherem Wissen kompatibel sind.

Darüber hinaus wäre auch eine Untersuchung weiterer Eigenschaften denkbar. Ne-
ben den in dieser Arbeit ausgewählten Eigenschaften gibt es noch zahlreiche weitere
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wünschenswerte Eigenschaften. Beispielsweise wurden von Dvořák et al. [DKUW24]
bereits weitere Eigenschaften wie die Naivität (naivety), die Widereinsetzung (reinstate-
ment) oder die Widerstandsfähigkeit (crash-resistence) in Bezug auf SetAFs untersucht.
Die Untersuchung der Erfüllung bzw. Nichterfüllung dieser Eigenschaften für iSetAFs
könnte Ziel weiterer Forschungsansätze sein.

Letztlich wäre auch eine praktische Implementierung und Evaluation in realen Sze-
narien ein denkbarer nächster Schritt. Auf diese Weise ließen sich die theoretischen
Erkenntnisse dieser Arbeit in die praktische Anwendung überführen. Zudem könn-
te der Mehrwert des Frameworks für die maschinelle Entscheidungsunterstützung in
komplexen, mit Unsicherheit behafteten Umgebungen praktisch getestet werden.
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