
Faculty of Mathematics and Computer Science Artificial Intelligence Group

Federated Learning with Dataset
Condensation on Resource-Limited

Devices

Bachelor’s Thesis
in partial fulfillment of the requirements for

the degree of Bachelor of Science (B.Sc.)
in Informatik

submitted by
Pascal Grosmann

First examiner: Prof. Dr. Matthias Thimm
Artificial Intelligence Group

Advisor: M.Sc. Niklas Sturm
secunet Security Networks AG

Statement

Ich erkläre, dass ich die Bachelorarbeit selbstständig und ohne unzulässige Inan-
spruchnahme Dritter verfasst habe. Ich habe dabei nur die angegebenen Quellen
und Hilfsmittel verwendet und die aus diesen wörtlich oder sinngemäß entnom-
menen Stellen als solche kenntlich gemacht. Die Versicherung selbstständiger Ar-
beit gilt auch für enthaltene Zeichnungen, Skizzen oder graphische Darstellungen.
Die Bachelorarbeit wurde bisher in gleicher oder ähnlicher Form weder derselben
noch einer anderen Prüfungsbehörde vorgelegt und auch nicht veröffentlicht. Mit
der Abgabe der elektronischen Fassung der endgültigen Version der Bachelorarbeit
nehme ich zur Kenntnis, dass diese mit Hilfe eines Plagiatserkennungsdienstes auf
enthaltene Plagiate geprüft werden kann und ausschließlich für Prüfungszwecke
gespeichert wird.

Yes No

I agree to have this thesis published in the library. ⊠ □

I agree to have this thesis published on the webpage of
the artificial intelligence group. ⊠ □

The thesis text is available under a Creative Commons
License (CC BY-SA 4.0). ⊠ □

The source code is available under a GNU General Public
License (GPLv3). ⊠ □

The collected data is available under a Creative Commons
License (CC BY-SA 4.0). ⊠ □

. .
(Place, Date) (Signature)

iii

Zusammenfassung

Um die Sicherheit von Federated Learning zu verbessern, wird in dieser Arbeit eine
Kombination von Federated Learning mit Dataset Condensation vorgeschlagen. Dies
ist eine Technik, die die Informationen eines großen Datensatzes in einen kleinern
synthetisiert. Wir evaluieren die Leistung eines durch Federated Learning trainiertem
neuronalem Netzes mit und ohne Dataset Condensation in Bezug auf ihre Genau-
igkeit untersucht. Außerdem vergleichen wir die vorgeschlagene Methode Dataset
Condensation mit Differentiable Siamese Augmentation in einer nicht verteilten trainier-
ten Umgebung. Wir kommen zu dem Schluss, dass Dataset Condensation in beiden
Umgebungen ähnlich gut abschneidet.

Abstract

To increase the security in a Federated Learning environment this work proposes a
combination of Federated Learning with Dataset Condensation. A technique to synthe-
size the information of a large dataset into a smaller dataset. We evaluate federated-
trained models with and without Dataset Condensation with good performance but
not similar accurate results. Further, we compare the accuracy of the proposed al-
gorithm with Dataset Condensation with Differentiable Siamese Augmentation in a non-
federated environment. And conclude that Dataset Condensation performs simi-
larly in both environments. The code is available at1.

1https://github.com/PaGro94/Federated-Learning-with-Dataset-Condensation

v

Acknowledgment

First, I would like to thank Prof Dr Matthias Thimm, the Chair of Artificial Intelli-
gence at the FernUniversität in Hagen, for his support of my Bachelor thesis.

Special thanks are due to my supervisor Niklas Sturm. His expertise, support and
constructive feedback were of great value to the success of this thesis. I appreci-
ate the patience and encouragement with which he guided me through the research
process.

I would also like to thank my employer, secunet Security Networks AG, for pro-
viding the hardware and the opportunity to write my bachelor’s thesis as part of
my work. Without this support, it would not have been possible to carry out the
necessary experiments and analyses.

Many thanks to my best friend Timm Hess for the professional exchange, helpful
comments and for helping me with syntax and grammar.

Last but not least, I would also like to thank my family and friends who have sup-
ported and encouraged me throughout my studies.

vii

Contents

1 Introduction 1
1.1 Motivation and Problem Specification 1
1.2 Research Question and Objectiv . 2

2 Background 3
2.1 Federated Learning . 3
2.2 Dataset Condensation . 5

3 Implementation 7
3.1 Federated Learning with Dataset Condensation preoptimized on a

preoptimized Dataset and with Differentiable Augmentation 7
3.2 Federated Learning with Dataset Condensation through Differentiable

Augmentation . 9
3.3 Algorithm . 10

4 Experiment and Evaluation 13

5 Related Work 20

6 Conclusion 21

7 Further Work 22

viii

List of Figures

1 Federated Learning Concept . 4
2 Dataset Condensation Concept . 5
3 Differentiable Siamese Augmentation Image Transformation Process 6
4 Concept of Federated Learning with Dataset Condensation preopti-

mized on a preoptimized Dataset and with Differentiable Augmenta-
tion . 9

5 Concept of Federated Learning with Dataset Condensation through
Differentiable Augmentation . 10

6 Results of synthetic FL and synthetic FL-DC 16
7 Results preoptimized FL and preoptimized FL-DC 17
8 Results all methods for ipc 10 . 18

List of Tables

1 Results of all Experiments . 15
2 Results Dataset Condensation with and without Federated Learning 19

ix

1 Introduction

In the last years, there has been an increasing demand for more technical and orga-
nizational measurements regarding the protection of data in Europe2. Traditionally
in the field of machine learning the data used for training is collected in one place.
Transferring the date of each participant to that central point consumes time and
bandwidth and puts the data on transport at risk of being interfered [MMRH17,
LYZY20]. To meet data protection regulations, the field of machine learning must
adapt and develop strategies to maintain the confidentiality and authenticity of their
data especially if it is of a sensitive or private nature.

As an approach to meet this requirement Federated Learning (FL) [MMRH17] could
be the solution. In FL a neural network model is centrally distributed to all its partic-
ipants. Each participant (referred to as client) will train the model given by a central
point (referred to as server) on its locally stored datasets. Therefore only the model
parameters of each client have to be shared with the server for a global optimiza-
tion over all client model parameters. Another factor is, that using the distributed
computing power of all participants reduces the need for a powerful central point
to train the model as it is common in centralized machine learning.

Transferring the gradients between clients and a server is a potential risk for data
leakage because it is possible to gain information about the used training data through
them [ZLH19]. These attacks could happen as a membership inference attack [SDO+19].
Another approach that protects against these attacks is to modify the datasets used
for training. Because of the distortion or modification of data, it makes backpropa-
gating to gain information about the used data more difficult or potentially blocks it
completely. In this regard, the most common solution is Differential Privacy (DP)
[DMNS06, ACG+16] by adding noise to the training dataset. As an alternative to
that Dataset Condensation (DC) [ZMB21] condenses a large dataset into a small
synthetic dataset used for the training process. The smaller dataset reduces the time
needed for each training epoch. All three methods (FL, DP, and DC) are good protec-
tion against attacks like the model inversion attack [FJR15] because there is no training
data transferred between endpoints.

1.1 Motivation and Problem Specification

Working with embedded and distributed systems like the NVIDIA Jetson3 devices
raises the question of how to use all participants and their computing power. Es-
pecially when using Artificial Intelligence (AI) embedded creates the opportunity to
also train on each device locally instead of transferring the collected data from one
device to a server. Federated Learning [MMRH17] (in Section 2.1 explained and

2https://gdpr-info.eu/art-32-gdpr/
3https://www.nvidia.com/en-gb/autonomous-machines/embedded-systems/jetson-xavier-nx

1

shown in Figure 1) is the common solution to this problem. As delineated previ-
ously there are attacks using the model parameters to gain information about used
training data. Federated Learning is more vulnerable to attacks like these because,
after each training epoch, the model parameters of each participating client are sent
to the server for optimization.

As an added layer of protection encryption methods can be used to protect the mes-
sage transfer between client and server [MMRH17]. To protect against data leakage
or even other clients if there are multiple parties involved in the training process a
modification or distortion of the data used for training is helpful. Differential Pri-
vacy is a solution that modifies the training data [DMNS06, ACG+16]. DP is already
used successfully on federated trained models [MRTZ18]. But as outlined previ-
ously Dataset Condensation [ZMB21, ZB21] with the smaller synthetic dataset might
be a better solution by using less computing power and time. As an algorithm that
modifies the training dataset itself and therefore distorts possible sensitive and pri-
vate data before the network interacts with the data, it provides an added layer of
protection like DP. The synthetic dataset of DC is created through an optimization
step that updates the synthetic set itself. One of the algorithms used for this opti-
mization is Differentiable Siamese Augmentation (DSA) [ZB21]. It uses an image
transformation based on a Differentiable Augmentation [ZLL+20]. The combination
of DC with Federated Learning is a fairly new subject of research. It is still a broadly
unexplored field and will be the focus of our work.

1.2 Research Question and Objectiv

The main objective of this work is to analyze the efficacy and viability of combin-
ing Federated Learning with Dataset Condensation. Analyzing if this approach is a
valid way to increase the dataprotection of Federated Learning can not be the first
step and therefore we only focus on the accuracy of the proposed combination of
Federated Learning with Dataset Condensation.
The training will happen on NVIDIA Jetsons as client devices to limit the comput-
ing power of each client. This limitation is to simulate a small or mobile device as a
client as it is common in an embedded system to have these restrictions. Therefore
is the computing effort a side factor we keep in mind for our decisions but it is not
a goal we research in this thesis.
A secondary goal is to compare a federated-trained model with DC with a non-
federated-trained model with DC. This will provide information on how accurate
Dataset Condensation is in a Federated Learning environment. That leads us to the
research question.

Research-Question: Are federated-trained models with Dataset Condensation as
accurate as those without Dataset Condensation and does Federated Learning re-
duce the accuracy of Dataset Condensation?

2

2 Background

The main concepts behind our work are Federated Learning (FL) and Dataset Con-
densation (DC). This chapter is dedicated to explaining these concepts.

2.1 Federated Learning

Federated Learning was developed to be able to train a neural network on several
devices simultaneously while benefiting globally from their training [MMRH17].
All participating devices are clients to a server handling the consolidation between
them. This communication is iteratively happening for a given number of rounds
(referred to as communication rounds). The current communication round is repre-
sented as t. Therefore each k client sends its weights θkt+1 (shown in Figure 1 as
the θA, θB , θC) after completing a number of local epochs of training to the server.
The consolidation can be represented by different methods like e. g. Federated Av-
eraging (Fed-Avg) [MMRH17], SCAFFOLD [KKM+21], or Fed-Dyn [AZN+21].
We are using the method of Fed-Avg in all our experiments. Each client k is using
nk data points for its training and the sum of all nk is n. θkt+1 is the weight sent to the
server by client k in communication round t. Fed-Avg is averaging over the weight
θkt+1 of each client k with the factor of nk

n . This method is declared as:

θt+1 ←
K∑
k=1

nk

n
θkt+1 (1)

The θt+1 of 1 is in our Figure 1 represented as θAvg. The equation of Fed-Avg is in
Algorithm 1 integrated in Line 8

This paradigm already has great advantages over normal cloud-based machine learn-
ing setups. The main advantages of Federated Learning [MMRH17] are:

• The data stays local in the system of the participants.

• Every client benefits from the knowledge generated through all participants
and their data.

• The amount of shared data between the client and server is reduced by only
transferring the model parameters (representing the weights) between them.

As a drawback, we do get slightly worse results through Federated Learning as the
Averaging step is constantly lowering the performance of the best-classifying clients
to increase the performance of the less accurate classifying clients. But the benefits
outweigh that drawback.

3

Therefore Federated Learning is a suitable method for our concept increasing the
protection of the sensitive data used for training. Because it decreases the amount
of data shared to only the model parameters itself and no datasets used for training
or testing.

Figure 1: This graphic visualizes the communication between all clients and the
server. Each client is transmitting its weight θ to the server for consoli-
dation. The server sends after the averaging of all weights the new aver-
aged weight θAvg to each client. It is also shown that the original dataset is
stored with each client locally.

4

2.2 Dataset Condensation

Dataset Condensation (DC)[ZMB21, ZB21] is an algorithm to reduce the training
set size into a smaller but comparable informative dataset. Figure 2 a. visualizes
the goal of creating a synthetic training set that is comparable accurate as the same
network trained with the original training set.

Figure 2: This graphic is from Zhao et al. paper about DC [ZMB21, p.2 Figure 1].
Part (a) shows the goal of a comparable result with both the original and
the synthetic set used in a shared network for training. Part (b) shows the
optimization process of the synthetic set through a matching loss function.

The DC concept proposed by Zhao et al. [ZB21] starts with initializing the syn-
thetic training set S. This is archived by randomly selecting a given number of im-
ages per class (ipc) of the original training set T (as shown in our Algorithm 1 Lines
19 to 21).

The variation of DC (Datatset Condensation with Differentiable Siamese Augmentation
[ZB21]) we use in this thesis in performing a Differentiable Augmentation (Dif-
fAugment) [ZLL+20] to improve the performance. DiffAugment modify the images
with a randomly selected modification from a set of transformations A(S). These
are color jittering, cropping, flipping, cutting out, rotating, and scaling.
Differentiable Siamese Augmentation (DSA) is a variation of DiffAugment where
the goal is to train a shared network of a synthetic and the original set. To guarantee
that their loss functions are of the same loss landscape the augmentation step has to
be identical. Therefore we use ω in Aω(S) and Aω(T) as a parameter to represent
the same to transformation used to modify S and S.
The following step of the algorithm of DSA proposed by Zhao et al. [ZB21] are done
in every training round. The network ϕθ is shared throughout the whole training
process and therefore used for training on both the synthetic and the original training
set.

5

1. This part of the training process has the goal to optimize the synthetic training
set S itself and not the weight θ of the network ϕθ. To archive this optimization
of S the network will be trained on both the original set T and the synthetic
set S but without updating θ.
As above described, we use identical augmentations on T and S . The result-
ing loss functions LT and LS of T and S can be declared as:

LT (ϕθ(A(T)), θ)
LS(ϕθ(A(S)), θ)

To match the resulting loss functions they use the vectors of their gradients
represented as ∇θLT and ∇θLS . The matching loss is a minimizing problem
with a distance function D(·, ·) representing the cosine distance between two
the gradients vectors∇θLT and∇θLS and can be declared as:

min
S

D(∇θL(S, θt),∇θL(S, θt)) (2)

With the distance function, they update the synthetic set (for the next part
marked as S∗). This step is visualized in Figure 2 b and the transformations of
images in S throughout the whole process are exemplarily shown in Figure 3.

2. After this optimization step, there is another training step. This training set
uses the newly updated synthetic set S∗ to train the network but with the
intention to update the weight θS of the network ϕθ. The new θS is used in the
next optimization step (Step 1.) for both trainings with T and S .

Transforming the images of a training dataset is a way to improve security as it is
more difficult to recreate the original data out of the images especially because the
transformations are done multiple times with a randomly selected method.

Figure 3: This image is a modified version of Zhao et al. image in their paper about
DSA [ZB21, p.9 Figure 6]. It visualizes the change of the images through
the transformation process with each round of Differentiable Augmenta-
tion the image is more distorted due to the additional transformation.

6

3 Implementation

This chapter is focused on the proposed method of Federated Learning with Dataset
Condensation (FL-DC). The implementation of our work is publicly available on
Github4. Parts of it are based on the work of Zhao et al. [ZMB21, ZB21] on Dataset
Condensation. Their source code is also available on Github5. We use the Flower6

framework that is an implementation of Federated Learning among other program-
ming languages for Python working with the Python-library PyTorch. This thesis is
focused on the method Federated Averaging (Fed-Avg) a FL algorithm proposed
by McMahan et al. in their first paper on the subject [MMRH17]. The Flower imple-
mentation is based on their work.
To optimize the synthetic training set created through Dataset Condensation we use
the method of Differentiable Augmentation (DiffAugment) [ZLL+20, KAH+20,
ZZC+20, TTN+21] as an image transformation algorithm (as outlined in Section
2.2). Our proposed concept of Dataset Condensation is split into two different
approaches outlined in the following sections. The main difference between both
Federated Learning with Dataset Condensation (FL-DC) algorithms is the input
dataset with one is a random selection of images from the original dataset and a
through Dataset Condensation with Differentiable Siamese Augmentation preoptimized
dataset.

3.1 Federated Learning with Dataset Condensation preoptimized on a
preoptimized Dataset and with Differentiable Augmentation

The concept uses a preoptimized synthetic training set as the input training set cre-
ated through Dataset Condensation with Differentiable Siamese Augmentation
[ZB21] (Section 2.2). The preoptimized dataset is in our experiments globally pre-
pared and distributed to all clients. This is only done for testing purposes to reduce
the computing time because each client already has the prepared data and does not
have to preoptimize its dataset.

In the next part we describe how the preoptimization of the synthetic dataset is
happening for more information on the algorithm see Section 2.2. The preoptimized
synthetic dataset was a random selection of a given number of images per class
(referred to as ipc) of the original training set. Both the original and the synthetic
training sets were used to train simultaneously a shared network. As we are using
the variation of DC with DSA in both trainings the same image transformations are
used. To guarantee that both resulting loss functions are of the same loss landscape
the Differentiable Augmentation has to be identical in both trainings.
The optimization is a minimization problem of the distance between the vectors of

4https://github.com/PaGro94/Federated-Learning-with-Dataset-Condensation
5https://github.com/VICO-UoE/DatasetCondensation
6https://fower.dev

7

gradients of both loss functions (as shown in equation 2). The distance function was
then used to update the synthetic dataset.
After the synthetic set optimization, training with the newly updated synthetic set
is happening to update the weights of the network for the next round of synthetic
set optimization.

Through the above-outlined concept, the optimized and updated synthetic train-
ing set is the input of our proposed algorithm. We use datasets that are already
created and uploaded7 by Zhao et al. the authors of this concept of DSA [ZB21].

The preoptimized synthetic training set is stored with each participating client lo-
cally. Each client will be trained for a number of local epochs with the synthetic set
while using again a Differntiable Augmentation function on the images. These image
transformations are randomly selected out of the following list: color jittering, crop-
ping, flipping, cutting out, rotating, and scaling. They preserve the semantics of the
input [ZB21]. The implementation is based on the work of Zhao et al. about DiffAug-
ment [ZLL+20]. Therefore it has to be said: “that all the standard data augmentation
methods for images are differentiable and can be implemented as differentiable lay-
ers. Thus, we [Zhao et al.] implement them as differentiable functions for deep
neural network training and allow the error signal to be backpropagated to the syn-
thetic images.”[ZB21, p.4]
After the local epochs are trained each client suggests its model parameters to the
server for a consolidation. The server uses the algorithm of Fed-Avg [MMRH17]
proposed by McMahan et al. a description of this concept is further explained in Sec-
tion 2.1. This process will be repeated for a given number of communication rounds.
Figure 4 shows the described concept with the changes compared to typical Feder-
ated Learning marked with a red box.

7https://drive.google.com/drive/folders/1Dp6V6RvhJQPsB-2uZCwdlHXf1iJ9Wb_g

8

Figure 4: This graphic visualizes the communication between all clients and the
server. Each client is transmitting its weight θ to the server for consolida-
tion. The server sends after the averaging of all weights the new averaged
weight θAvg to each client. It is also shown that the preoptimized synthetic
dataset is stored with each client locally.

3.2 Federated Learning with Dataset Condensation through
Differentiable Augmentation

The second approach selects randomly a given number of images per class images
per class (ipc) from the original training set and creates a new synthetic training set
with these images. In contrast to the previous method, there is no optimization step
happening before our training process as it was in the previous approach. Original
and synthetic data are stored locally with each client (as shown in Figure 5 with
the difference compared to Federated Learning and our first proposed approach
marked with a red box). The Federated Learning is also handled by the same Fed-Avg
[MMRH17] algorithm as it is in the method above. As well as each client is using
Differentiable Augmentation [ZLL+20] to transform the images before each local train-
ing epoch. Therefore the only difference between both methods is the pre-learned
and optimized versus a non-optimized synthetic dataset used for training.

The using the non-optimized synthetic set reduces the computing effort needed to
create the pre-learned and optimized synthetic training set drastically. This opti-
mization step is not only the training of the synthetic set but also training on the
original dataset without even taking the optimization step of the matching loss
function itself into account. Working with resource-limited client devices benefits

9

greatly from less expensive computing tasks. To use these pre-optimized train-
ing sets means either creating them locally on each client device from their stored
datasets or computing them centrally in one place. But the latter is against our goal
of minimizing the sensitive and private data transferred between clients and a cen-
tral server.

Figure 5: This graphic visualizes the communication between all clients and the
server. Each client is transmitting its weight θ to the server for consoli-
dation. The server sends after the averaging of all weights the new aver-
aged weight θAvg to each client. It is also shown that the original and the
synthetic dataset are stored with each client locally.

3.3 Algorithm

In this section, we explain all the important steps of our source code. The applica-
tion is also outlined as pseudo-code in the Figure below as Algorithm 1.
The first tasks are to start the server (the procedure Server Execution handling the
server is shown in Algorithm 1 in Line 1).

Based on the operating mode there are different datasets to load (as shown in Algo-
rithm 1 as the procedure Initialize Client in Line 16).
We differentiate between the approaches outlined in the Section 3.1 Federated Learn-
ing with Dataset Condensation on a preoptimized Dataset and with Differntiable
Augmentation (preoptimized FL-DC) and in Section 3.2 Federated Learning with
Dataset Condensation through Differentiable Augmentation (synthetic FL-DC).
The preoptimized FL-DC uses the by Zhao et al. [ZB21] published dataset available

10

at8. For the FL-DC method, we have to load the original dataset and select randomly
a given number of images per class (ipc) from that dataset and create a new synthetic
set with the selected images.

For every communication roundt ∈ (1, . . . , T) the server asked all clients for their
updated model parameters. Each client then trains on its synthetic set for a given
number of local epochs E (this process is shown in the Algorithm 1 as the procedure
Client Update in Line 9). During each epoch, the client uses Differentiable Augmen-
tation A(S) by choosing single or multiple(depending on the given settings) trans-
formations from a given list randomly. The transformation is randomly selected for
each image. After all local epochs, the client k sends its weight θkt+1 to the server for
a federated averaging process as shown in Equation 1 and Line 8 in the Algorithm 1.
The averaged weights θt+1 are sent back to each client for another communication
round until the number of given communication rounds T is reached.

8https://drive.google.com/drive/folders/1Dp6V6RvhJQPsB-2uZCwdlHXf1iJ9Wb_g

11

Algorithm 1 Federated Learning with Dataset Condensation:
ipc is the number of images per class selected from the original dataset.
T is the original dataset and S is the synthetic dataset.
C is the number of image classes in T and S.
B is the batch size.
T is the number of communication rounds and E is the number of local epochs.
θt is the averaged weight distributed by the server to each client after the communi-
cation round with t ∈ 1, . . . , T .
θkt are the weights of Client k.
nk is the number of images in S of Client k.
n is the sum of all nk.
A is a set of image transformations.
ϕθ is the network with weights θ.
L is the loss function of ϕθ trained with A(S).
η is the learning rate.
∇θL is the vector of gradients of L.
mode is the operation mode of this algorithm mode ∈ [’preoptimized synthetic set’, ’syn-
thetic set’]

1: procedure Server Execution
2: initialize θ0 with random weights
3: for each round k ∈ K in parallel do
4: Initialize Client(k, mode, dataset)
5: for each round t ∈ (1, . . . , T) do
6: for each round k ∈ K in parallel do
7: θkt+1 ← Client Update(k, θt)
8: θt+1 ←

∑K
k=1

nk
n θkt+1

9: procedure Client Update(k, θ)
10: B ← (split S into batches of size B)
11: for each i from 1 to E do
12: for batch b ∈ B do
13: for each (x, y) ∈ b do
14: g ← g +∇θL(ϕθ(A(S)), θ)
15: θ ← θ − η · g

return θ to server

16: procedure Initialize Client(k, mode, dataset)
17: if mode is ’preoptimized synthetic dataset’ then
18: S ← load(preoptimized synthetic dataset)
19: else if mode is ’synthetic dataset’ then
20: T ← load(original dataset)
21: S ← get random ipc · C · ((x, y) ∈ T)

12

4 Experiment and Evaluation

For comparability we have tried to create an environment as close as possible to
the work of Zhao et al. [ZB21]. As input data for our Federated Learning with
Dataset Condensation preoptimized on a preoptimized Dataset and with Differ-
entiable Augmentation (preoptimized FL-DC) algorithm we use his prepared syn-
thetic datasets available at9. Our experiments are structured as follows:

Model: We use the same network with the same configurations as Zhao et al. [ZB21]
uses in their experiments with Differentiable Siamese Augmentation as default and it
is the best-performing network in their experiments. A ConvNet based on the net-
work proposed by Gidaris and Komodakis [GK18]. It has 3 identical convolutional
blocks with 128 filters, ReLu activation, instance normalization and average pool-
ing. Behind the convolutional blocks is a linear classifier. All network parameters
are randomly initialized with a Kaiming initialization.

Datasets: We use the following four datasets to evaluate our proposed methods.

• MNIST [LBBH98] containing 10 image classes and 60,000 images for the train-
ing process with 10,000 reserved for testing.

• FashionMNIST [XRV17] with also a 60,000 image large training set and 10,000
images for testing classifiered into 10 image classes.

• CIFAR10 classifiers also into 10 image classes with 50,000 images reserved for
training and a 10,000 image test set.

• CIFAR100 [Kri09] is 60,000 images large with 50,000 of them for training and
10,000 for testing. It is the only one with more the 10 classes it contains 100
image classes.

For all of the datasets there are pre-learned and optimized synthetic training sets
available10 created with the method from Zhao et al. paper about DSA [ZB21] con-
taining 1, 10, 50 images per class (IPC) except for the CIFAR100 set with contains only
1 and 10 IPC due to the longer computing time to create the dataset.

As Hardware: we use three NVIDIA Jetson Xavier NX11 devices to simulate the
clients. They have an 8GB 128-bit LPDDR4x RAM configuration and a 384-core
NVIDIA Volta GPU with 48 Tensor Cores. They have a 256 GB NVMe M.2 Storage
mounted.
The Server was hosted on a MacBook Pro12 with an Apple M1 CHip from 2020 and

9https://drive.google.com/drive/folders/1Dp6V6RvhJQPsB-2uZCwdlHXf1iJ9Wb_g
10https://drive.google.com/drive/folders/1Dp6V6RvhJQPsB-2uZCwdlHXf1iJ9Wb_g
11https://www.nvidia.com/en-gb/autonomous-machines/embedded-systems/jetson-xavier-nx/
12https://support.apple.com/kb/SP824?locale=en_US

13

with a 16GB RAM. With macOS in the Version of Ventura 13.4.1 as the operating
system.

Configurations: The major hyperparameter used in our experiments is ipc that
parameter refers to the number of images per class in each training set randomly
selected from the original training set. The ipc is either 1, 10, or 50. There is one
exception the training with preoptimized data created by Zhao et al. [ZB21] during
his experiments with DSA contains no dataset for CIFAR100 with an ipc of 50 due
to the long computing time (this set has 100 classes compare to 10 classes in all the
other datasets).
We could have created the data ourselves but that would be against the resource lim-
itation perspective for our client devices and then we had to do all preoptimizations
by ourselves to ensure the same configurations for all experiments. Because the al-
gorithm Federated Learning with Dataset Condensation through Differentiable
Augmentation (synthetic FL-DC) is not depending on the preoptimized datasets
we tested for this algorithm with CIFAR100 and an ipc of 50. To be able to compare
at least for this algorithm an ipc of 50 consistently.
For all experiments unless otherwise declared we use 100 communication rounds and
10 local epochs. The learning rate is 0.01 as well as the batch size is set to 256. Both
the batch size and the learning rate are based on Zhao et al. [ZB21] experiments. We
have pretested with the Adaptive Moment Estimation (ADAM) optimizer with worse
results. Therefore we use for every training, the optimizer Stochatic Gradient De-
cent (SGD).
These parameters have been selected to be as close as possible comparable to Zhao
et al. [ZB21] experiments. We get overall good results in our experiments with these
configurations but it is possible to achieve better results by optimizing for a specific
algorithm or dataset. This would deviate from our goal test of how synthetic FL-DC
and preoptimized FL-DC react to a broad set of dataset with generalized configura-
tions. Not to create the best possible result for each dataset.

As Baseline we used the Fed-Avg algorithm with the original training set. Due to
the long computing time of this setup, we reduced the local epochs to 3 (even with
the shortened local training rounds the baseline is about ten times the computing
time than or slowest experiment). As a secondary baseline, we did all experiments
with both approaches the preoptimized (referred to as preoptimized FL) and the
non-preoptimized with only the ipc as the training set (referred to as synthetic FL).

Experiments:
Our first method uses the training set preoptimized through DSA by Zhao et al.13

[ZB21] uses the same DiffAugment as optimizer. This formula will be referenced as
preoptimized FL-DC (delineated in Section 3.1).

13https://drive.google.com/drive/folders/1Dp6V6RvhJQPsB-2uZCwdlHXf1iJ9Wb_g

14

The other approach uses a set containing the randomly selected images per class
and uses DiffAugment to transform the data while training on them. The method
will be referenced as synthetic FL-DC (Section 3.2).

Table 1: This table shows the mean and standard derivation of all experiments
sorted by the datasets and methods used. Every algorithm was trained with
an ipc of 1, 10, and 50 with the exception of CIFAR100 with an ipc of 1 and
10 for the algorithms using a preoptimized dataset. The Baseline has no ipc
therefore is only on result per dataset visible.

Comparison synthetic training set: As in Figure 6 visible synthetic FL-DC is over-
all better than without the transformation of DiffAugment. The training with an ipc
of 1 performed as expected significantly lower than with an ipc of 10. But for the
amount of information available to train on the results for ipc 1 are really good. Nev-
ertheless, the computing time between an ipc of 1 and 10 even compared to 50 is not
a reason to lose on performance at all. I would recommend not train with an ipc of 1
if the used devices and your goals allow for a longer computing time or power. The
results of synthetic FL are in most cases as expected, not as good as with Differentiable
Augmentation. The training curve of synthetic FL is more consistent and has limited
variations. It reaches earlier the peak of its learning progress. We suspect this could
come from the small dataset with no variations in it. The data of synthetic FL-DC has
many variations throughout each training process.

15

Figure 6: The graphs show the results for an ipc of 1, 10, and 50. Each graph rep-
resents a dataset. We used the datasets MNIST FashionMNIST, CIFAR10,
and CIFAR100.

Comparison preoptimized training set: Figure 7 illustrates that preoptimized FL-
DC performs in all experiments better than preoptimized FL. Equivalent to the exper-
iments with the no preoptimized set there is a visible difference between the FL-DC
and the FL algorithm. In the preoptimized approaches there is a more consistent
benefit of the Differntiable Augmentation shown. Regarding the experiments with an
IPC of 1, there is also a significantly poorer performance visible. But with the pre-
optimized dataset and a significantly longer training time due to the pretraining it
might be inevitable to use a lower ipc.

16

Figure 7: The graphs show the results for an ipc of 1, 10, and 50 with the exception
of the dataset CIFAR100 where we only have an ipc of 1 and 10. Each
graph represents a dataset. We used the datasets MNIST FashionMNIST,
CIFAR10, and CIFAR100.

Comparison between synthetic and preoptimized sets as well as the baseline:
The next figure shows all means over all experiments with an ipc of 10 for all four
methods (Figure 8). This visualization underlines the Differentiable Augmentation
does not reduce the information gained out of the training set. Because synthetic
FL-DC is equally accurate as the version without DiffAugment. Unexpected is that
there is no improvement visible through the preoptimized dataset. Only the use of
DiffAugment creates slightly better results. This raises the question if the preopti-
mization is worth the time and effort needed to create the preoptimized sets.
If compared to the baseline Fed-Avg algorithm (shown in the Table 1) trained on the
original datasets the preoptimized FL-DC is at least for the MNIST dataset nearly as
accurate as the baseline. Trained on the CIFAR10 and CIFAR100 datasets all of our
methods are recognizing images less accurate but this was expected especially for
the CIFAR100 dataset. As it is more complex due to the 100 class compared to 10 in
the other datasets.

17

Figure 8: The graphic shows the results for an ipc 10. Each group of bars represents
a dataset. We used the datasets MNIST FashionMNIST, CIFAR10, and CI-
FAR100.

Comparison of FL-DC with Differentiable Siamese Augmentation: The Table
2 shows the results of Zhao et al.[ZB21] in the column labeled DSA. The values for
CIFAR100 are only mentioned in their text and not shown in any of their graphics,
this is the reason why there is no standard deviation value shown.
Our preoptimized FL-DC outperforms in only one occasion but the majority of our
result with this method is similar to the DSA results. The synthetic FL-DC algorithm
has only one similar result. Therefore we can conclude the preoptimized FL-DC al-
gorithm is the best performing method and is in a Federated Learning environment
similar accurate as without it.

18

Table 2: This table shows the mean and standard derivation of our experiments with
a preoptimized dataset. They are sorted by the datasets and methods used.
Every algorithm was trained with an ipc of 1, 10, and 50 with the exception
of CIFAR100 with an ipc of 1 and 10. The Baseline has no ipc therefore is
only on result per dataset visible. The values for the method DSA are from
Zhao et al. paper on DSA[ZB21, p.6] from their Table 1 and for CIFAR100
from the text on the same page.

19

5 Related Work

We would like to mention some research that is not part of this thesis but is closely
connected to our work. In the following, we explore Federated Learning via Synthetic
Data, Kernel Inducing Points, and Differential Privacy with Federated Learning and ex-
plain why we decided not to use these approaches.

Federated Learning via Synthetic Data is a method proposed by Goetz and Tewari
[GT20] about an FL system that uses not the model parameters but the data itself as
a smaller synthetic data to update a centrally trained network. The synthesizing
step is happening through a modified version of Dataset Distillation by Wang et al.
[WZTE20]. This work is quite similar to this thesis in regard to the used methods of
Federated Learning and a version of condensing a dataset into a smaller synthetic set
of data. The Dataset Condensation we use is inspired by the method of Dataset Distil-
lation [WZTE20] as outlined by Zhao et al. in his work which [ZB21] is the base for
our approach. The important difference is that Goetz and Tewari are transferring a
modified version of the data itself to a server which we want to avoid to minimize
the possibility of data leakage.

Kernel Inducing Points (KIP) by Nguyen et al. [NCL21] is yet another approach
based on Dataset Distillation using an ϵ-approximation on the dataset with Kernel-
Ridge-Regession to create a synthetic dataset b. Dong et al. have compared KIP with
DSA in their paper on Dataset Condensation [DZL22]. But the overall performance
of Differntiable Siamese Augmentation was better than Kernel Inducing Points there-
fore we have been focused on DSA as the algorithm we use in this thesis. Different
Dataset Distillation methods combined with Federated Learning could very well be
the subject of future work as an alternative to DC.

Differential Privacy with Federated Learning (DP-FL) [MRTZ18] is an alterna-
tive solution for Federated Learning [MMRH17] with a dataset modifying algorithm.
Differential Privacy (DP) [DMNS06, ACG+16] is a paradigm to improve security of
data. DP adds noise to the data used for training to create more security against at-
tacks like the model-inversion attack [FJR15] or membership interference attack [SDO+19].
Because of our goal to work with resource-limited devices as it is a usual use case
in an embedded system using the whole dataset as it is in DP-FL the case was less
interesting for us to work with. The benefits of a smaller dataset as it is in a Dataset
Condensation or Dataset Distillation the case was an interesting way to reduce the
computing power and time needed for the training process.

20

6 Conclusion

Both of the suggested methods FFederated Learning with Dataset Condensation preopti-
mized on a preoptimized Dataset and with Differentiable Augmentation (preoptimized FL-
DC) and Federated Learning with Dataset Condensation through Differentiable Augmenta-
tion (synthetic FL-DC) are performing overall good. In both cases is the information
gained from the training set not significantly reduced by the image transformations
of the Differentiable Augmentation algorithm. The preoptimized FL-DC is more ac-
curate than synthetic FL-DC. We question the benefit gained through the preopti-
mization. The time needed to preoptimize could be used to train with a higher ipc.
Because a higher ipc is more accurate we would suggest not doing a preoptimiza-
tion.
Compared to the results of Zhao et al. [ZB21] experiments it is to say that the Fed-
erated training is not a loss of accuracy.
In comparison with our baseline, the Federated Averaging algorithm on the origi-
nal dataset only the preoptimized FL-DC was able to archive similar accurate results.
Overall we are surprised how well both the synthetic FL-DC and preoptimized FL-DC
worked.

As Research-Question we asked:

Are federated-trained models with Dataset Condensation as accurate as those with-
out Dataset Condensation and does Federated Learning reduce the accuracy of Dataset
Condensation?

Therefore we can conclude that the second part of our research question can be
answered with No, Federated Learning does not reduce the accuracy of Dataset
Condensation.
We conclude that based on our experiments Federated Learning with Dataset Con-
densation is not similar accurate as Federated Learning without it.

21

7 Further Work

It could be possible to improve the results by changing some parts of our exper-
iments. Therefore we suggest changing the network used for training, (e.g. the
ResNet [HZRS15] might be a good solution as it is often used for Federated Learn-
ing). Choosing a different Federated Learning algorithm like e.g.SCAFFOLD [KKM+21]
or textitFed-Dyn [AZN+21] could impact the results for the better.

From the perspective of resource limitation, we do not suggest to step away from
working with preoptimized datasets and exploring other image transformations or
working with Dataset Distillation. Without preoptimization, a higher ipc could be a
way to improve the results. As our experiments show a better result with a higher
ipc.
More complex datasets like the ImageNet [DDS+09] might be a step too early es-
pecially because our methods performed therefore to poorly with the 100 classes
dataset CIFAR100.

A focus on the in our introduction mentioned data protection is at this state to early.
We recommend first increasing the accuracy of Federated Learning with Dataset
Condensation.

22

References

[ACG+16] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya
Mironov, Kunal Talwar, and Li Zhang. Deep learning with differential
privacy. In Proceedings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS ’16, page 308–318. Association
for Computing Machinery, 2016.

[AZN+21] Durmus Alp Emre Acar, Yue Zhao, Ramon Matas Navarro, Matthew
Mattina, Paul N. Whatmough, and Venkatesh Saligrama. Federated
learning based on dynamic regularization, 2021.

[DDS+09] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
Imagenet: A large-scale hierarchical image database. In 2009 IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 248–255, 2009.

[DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Cal-
ibrating noise to sensitivity in private data analysis. 2006.

[DZL22] Tian Dong, Bo Zhao, and Lingjuan Lyu. Privacy for free: How does
dataset condensation help privacy?, 2022.

[FJR15] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inver-
sion attacks that exploit confidence information and basic countermea-
sures. In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, page 1322–1333. Association for Comput-
ing Machinery, 2015.

[GK18] Spyros Gidaris and Nikos Komodakis. Dynamic few-shot visual learn-
ing without forgetting, 2018.

[GT20] Jack Goetz and Ambuj Tewari. Federated learning via synthetic data,
2020.

[HZRS15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep resid-
ual learning for image recognition, 2015.

[KAH+20] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehti-
nen, and Timo Aila. Training generative adversarial networks with lim-
ited data, 2020.

[KKM+21] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J.
Reddi, Sebastian U. Stich, and Ananda Theertha Suresh. SCAFFOLD:
Stochastic controlled averaging for federated learning, 2021.

[Kri09] Alex Krizhevsky. Learning multiple layers of features from tiny images.
2009.

23

[LBBH98] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[LYZY20] Lingjuan Lyu, Han Yu, Jun Zhao, and Qiang Yang. Threats to feder-
ated learning. In Qiang Yang, Lixin Fan, and Han Yu, editors, Federated
Learning, volume 12500 of Lecture Notes in Computer Science, pages 3–16.
Springer International Publishing, 2020.

[MMRH17] H Brendan McMahan, Eider Moore, Daniel Ramage, and Seth Hamp-
son. Communication-efficient learning of deep networks from decen-
tralized data. 2017.

[MRTZ18] H. Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang.
Learning differentially private recurrent language models, 2018.

[NCL21] Timothy Nguyen, Zhourong Chen, and Jaehoon Lee. Dataset meta-
learning from kernel ridge-regression, 2021.

[SDO+19] Alexandre Sablayrolles, Matthijs Douze, Yann Ollivier, Cordelia
Schmid, and Hervé Jégou. White-box vs black-box: Bayes optimal
strategies for membership inference, 2019.

[TTN+21] Ngoc-Trung Tran, Viet-Hung Tran, Ngoc-Bao Nguyen, Trung-Kien
Nguyen, and Ngai-Man Cheung. On data augmentation for gan train-
ing. IEEE Transactions on Image Processing, 30:1882–1897, 2021.

[WZTE20] Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A. Efros.
Dataset distillation, 2020.

[XRV17] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a novel
image dataset for benchmarking machine learning algorithms, 2017.

[ZB21] Bo Zhao and Hakan Bilen. Dataset condensation with differentiable
siamese augmentation, 2021.

[ZLH19] Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients,
2019.

[ZLL+20] Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song Han. Differ-
entiable augmentation for data-efficient gan training. In Conference on
Neural Information Processing Systems (NeurIPS), 2020.

[ZMB21] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensa-
tion with gradient matching, 2021.

[ZZC+20] Zhengli Zhao, Zizhao Zhang, Ting Chen, Sameer Singh, and Han
Zhang. Image augmentations for gan training, 2020.

24

Statement
Ich erkläre, dass ich die Bachelorarbeit selbstständig und ohne unzulässige Inan spruchnahme Dritter verfasst habe. Ich habe dabei nur die angegebenen Quellen
und Hilfsmittel verwendet und die aus diesen wörtlich oder sinngemäß entnom
menen Stellen als solche kenntlich gemacht. Die Versicherung selbstständiger Ar
beit gilt auch für enthaltene Zeichnungen, Skizzen oder graphische Darstellungen. Die Bachelorarbeit wurde bisher in gleicher oder ähnlicher Form weder derselben
noch einer anderen Prüfungsbehörde vorgelegt und auch nicht veröffentlicht. Mit
der Abgabe der elektronischen Fassung der endgültigen Version der Bachelorarbeit
nehme ich zur Kenntnis, dass diese mit Hilfe eines Plagiatserkennungsdienstes auf
enthaltene Plagiate geprüft werden kann und ausschließlich für Prüfungszwecke
gespeichert wird.

I agree to have this thesis published in the library.

I agree to have this thesis published on the webpage of
the artificial intelligence group.

The thesis text is available undera Creative Commons
License (CC BY-SA 4.0).

The source code is available under a GNU General Public
License (GPLv3).

The collected data is available under a Creative Commons
License (CC BY-SA 4.0).

Frakfutsm Mein,2t4,02).
(Place, Date)

Yes No

(Signature)

iii

