
Faculty of Mathematics and Computer Science Artificial Intelligence Group

An empirical correlation analysis of ranking
semantics for abstract argumentation

frameworks

Bachelor’s Thesis
in partial fulfillment of the requirements for

the degree of Bachelor of Science (B.Sc.)
in Informatik

submitted by
Marcell Jawhari

First examiner: Univ.-Prof. Dr. Matthias Thimm
Artificial Intelligence Group

Advisor: Dr. Kai Sauerwald
Artificial Intelligence Group

Statement

I declare that I have written the bachelor�s thesis independently and without unautho-
rized use of third parties. I have only used the indicated resources and I have clearly
marked the passages taken verbatim or in the sense of these resources as such. The as-
surance of independent work also applies to any drawings, sketches or graphical repre-
sentations. The work has not previously been submitted in the same or similar form to
the same or another examination authority and has not been published. By submitting
the electronic version of the final version of the bachelor�s thesis, I acknowledge that
it will be checked by a plagiarism detection service to check for plagiarism and that it
will be stored exclusively for examination purposes.

I explicitly agree to have this thesis published on the webpage of the artificial intelli-
gence group and endorse its public availability.

Software created for this work has been made available as open source; a correspond-
ing link to the sources is included in this work. The same applies to any research data.

. .
(Place, Date) (Signature)

2

Streifing, 12.08.2025

Zusammenfassung

Traditionelle extensionsbasierte Semantiken in der abstrakten Argumentation bieten
nur eine binäre Klassifizierung von Argumenten. Rangsemantiken stellen eine nuan-
ciertere Alternative dar, indem sie jedem Argument einen Stärkewert zuweisen, was
für viele Anwendungen entscheidend ist.

Diese Arbeit präsentiert eine empirische Korrelationsanalyse prominenter Rangseman-
tiken, darunter die diskussionsbasierte (Dbs), kategorisierungsbasierte (Cat), seriali-
sierbarkeitsbasierte (Ser) und probabilistische Ansätze. Die von diesen Semantiken
erzeugten Ranglisten wurden auf Benchmark-Datensätzen der International Compe-
tition on Computational Models of Argumentation (ICCMA) mittels Kendall-Tau und
Spearman-Rho verglichen.

Die Ergebnisse zeigen eine geringe Gesamtkorrelation, was auf eine erhebliche kon-
zeptionelle Vielfalt hindeutet. Der Grad der Übereinstimmung hängt entscheidend von
den strukturellen Eigenschaften des Frameworks ab, insbesondere vom Vorhandensein
von Zyklen und der Angriffsdichte. Dies belegt, dass es keine universell überlegene
Semantik gibt. Die Auswahl muss sich am Kontext der Anwendung orientieren, und
diese Arbeit liefert eine empirische Evidenz als Entscheidungshilfe.

Abstract

Traditional extension-based semantics in abstract argumentation offer only a binary
classification of arguments. Ranking-based semantics provide a more nuanced alterna-
tive by assigning a strength score to each argument, which is crucial for many applica-
tions.

This thesis presents an empirical correlation analysis of prominent ranking seman-
tics, including Discussion-based (Dbs), Categoriser-based (Cat), Serialisability-based
(Ser), and Probabilistic approaches. The rankings produced by these semantics were
compared on benchmark datasets from the International Competition on Computa-
tional Models of Argumentation (ICCMA) using Kendall’s Tau and Spearman’s Rho.

The findings show a low overall correlation, indicating significant conceptual diver-
sity. The level of agreement is critically dependent on the framework’s structural prop-
erties, particularly the presence of cycles and attack density. In other words, which
method you choose depends on the specific type of argumentation framework you’re
working with. The selection must be informed by the application’s context, and this
work gives evidence to help choose.

3

Contents

1 Introduction 2

2 Preliminaries 3
2.1 Dung’s abstract argumentation framework 3
2.2 Extension-based semantics . 6
2.3 Ranking semantics . 9

2.3.1 Discussion-based ranking semantics 10
2.3.2 Categoriser-based ranking semantics 12
2.3.3 Probabilistic ranking semantics . 13
2.3.4 Serialisability-based ranking semantics 16

3 Methodology 18
3.1 Research questions . 19
3.2 Datasets . 19
3.3 Experimental procedure . 19
3.4 Comparison metrics . 20
3.5 Analysis plan . 22

4 Implementation details 22
4.1 Framework parsing and representation 22
4.2 Semantics implementation . 23

4.2.1 Discussion-based ranking semantics 23
4.2.2 Categoriser-based ranking semantics 25
4.2.3 Probabilistic ranking semantics . 26
4.2.4 Serialisability-based ranking semantics 32

4.3 Experimental harness and automation . 34

5 Experimental setup 35

6 Results 36
6.1 Overall correlation . 37
6.2 Impact of framework structure . 38
6.3 Impact of framework density . 39

7 Discussion 41

8 Conclusion 42

1

1 Introduction

Abstract argumentation frameworks, introduced by Dung in 1995, serve as a founda-
tional formalism for representing argumentative scenarios [Dun95]. These frameworks
model arguments as nodes in a directed graph, with directed edges representing at-
tacks between arguments. This abstraction provides a versatile tool for reasoning with
conflicting information and has been applied in fields such as decision-making, legal
reasoning, and multi-agent systems [Dun95, Del17]. One critical aspect of analyzing
abstract argumentation frameworks is the evaluation of arguments based on their ac-
ceptability or plausibility.

In a debate, the goal is often to identify sets of arguments that can be collectively
deemed acceptable, balancing coherence and defense against opposition. This pursuit
leads to the concept of the preferred extension, which identifies maximal admissible
sets of arguments. An admissible set is one that is conflict-free and where every argu-
ment in the set is defended against attacks from arguments outside the set.

Building on the foundation described above, the stable extension semantics extends
the notion of conflict-freeness by requiring that every argument outside the extension
is attacked by at least one argument within it. This ensures that stable extensions not
only defend themselves but also actively counter opposing arguments. Together, these
semantics provide a systematic method for determining sets of arguments that can be
considered acceptable within the framework. However, they ultimately offer a binary
analysis, classifying arguments as either acceptable or not, without accounting for vary-
ing degrees of plausibility or strength.

While the extension-based semantics have proven effective in many applications,
their binary nature limits their ability to provide detailed insights into the relative
strength or plausibility of arguments. To address this limitation, ranking semantics
have been developed [ABN13, PLZL14, TCR18, BT22]. Unlike traditional extension-
based semantics, ranking semantics assign a plausibility rank to each argument, en-
abling a more nuanced analysis of argumentation frameworks. This approach is partic-
ularly valuable in scenarios where a fine-grained assessment of arguments is necessary,
such as prioritizing competing claims or evaluating argument strength within complex
systems.

This bachelor thesis focuses on conducting an empirical correlation analysis of se-
lected ranking semantics. The research involves implementing selected ranking se-
mantics and comparing their outputs using quantitative measures, such as Kendall’s
Tau coefficient [Ken38] and Spearman’s Rho coefficient [Spe04], on datasets derived
from the International Competition on Computational Models of Argumentation (IC-
CMA) 1. The study aims to provide valuable insights into the comparative behavior
of ranking semantics, supporting more informed decisions about their application in
argumentation-based reasoning tasks.

Our results show that correlations between ranking semantics vary significantly de-
pending on the structural properties of the argumentation framework. In acyclic frame-

1ICCMA Website: http://argumentationcompetition.org

2

works, most semantics produce highly similar rankings, while in cyclic and dense
frameworks the agreement drops substantially. Among the tested approaches, the
probabilistic and discussion-based semantics often align most closely, whereas serialisability-
based semantics diverge more strongly in dense settings.

The remainder of this thesis is structured as follows. Section 2 introduces the theoret-
ical background and formal definitions. Section 3 presents the datasets, experimental
setup, and evaluation metrics. Section 4 describes the implementation details for each
ranking semantics. Section 6 reports the empirical findings, and Section 7 discusses
their implications. Finally, Section 8 summarizes the findings and outlines directions
for future research.

2 Preliminaries

In many fields, such as legal reasoning, artificial intelligence, and decision-making, the
ability to evaluate conflicting arguments systematically is crucial. However, real-world
argumentative scenarios often involve complex interactions and dependencies between
arguments, making informal reasoning insufficient. This need for a formal and system-
atic approach to analyzing argumentation led to the development of Dung’s abstract
argumentation framework [Dun95], which has since become a cornerstone in the study
of formal argumentation.

2.1 Dung’s abstract argumentation framework

Dung’s work on argumentation frameworks has significantly shaped the study of for-
mal argumentation, providing a foundational approach to understanding and analyz-
ing the acceptability of arguments. Published in 1995, Dung’s theory introduces a
highly abstract yet versatile framework that models arguments and their interactions
through directed graphs [Dun95]. The central objective of this framework is to formal-
ize the notion of argument acceptability, a concept critical for resolving conflicts and
supporting reasoning in fields such as artificial intelligence, law, and decision-making.
By focusing on the relationships between arguments, rather than their internal struc-
ture, Dung’s approach enables a general analysis applicable across diverse contexts.

Definition 2.1.1 (Argumentation Framework (AF)) An argumentation framework (AF) is
formally defined as a pair AF = (A,R), where:

• A is a finite set of arguments, and

• R ⊆ A×A is a binary relation representing attacks between arguments.

In this framework, arguments are treated as abstract entities, and the relation R en-
codes the directed edges in a graph, where (a, b) ∈ R signifies that argument a attacks

3

argument b. This abstraction allows the framework to generalize over diverse applica-
tion domains, focusing solely on the structure of argumentation rather than the internal
content of arguments. The power of this model lies in its simplicity and its ability to
capture the essence of argumentative interactions through such minimal components.

Example 2.1.1.1 Consider a debate about choosing a mode of transportation:

• Argument a: "Taking the car is faster than public transport."

• Argument b: "Using the car is bad for the environment."

These arguments can be represented in an abstract argumentation framework, where:

• a attacks b: The argument about speed challenges the environmental concerns by priori-
tizing time.

• b attacks a: The environmental concerns question whether speed should be the primary
consideration.

This forms a straightforward framework with two arguments attacking each other. It can be
formalized as AF = (A,R), where:

• A = {a, b}, the set of arguments, and

• R = {(a, b), (b, a)}, the attack relation.

This interaction is visualized in Figure 1, where nodes represent arguments and edges depict the
attack relations between them.

a b

Figure 1: Graph representation of the argumentation framework.

Definition 2.1.2 (Defense) Given an argumentation framework AF = (A,R), a set of argu-
ments S ⊆ A defends an argument a ∈ A if and only if for every argument c ∈ A such that c
attacks a, there exists an argument b ∈ S such that b attacks c.

The concept of defense is crucial in evaluating argumentation frameworks, as it helps
determine which arguments can withstand attacks through the support of other argu-
ments. This forms the basis for many semantics that assess argument acceptability. As
noted by Delobelle [Del17], the principle of defense can be intuitively captured by the
adage: "my enemy’s enemy is my friend", emphasizing the strategic nature of argu-
mentative interactions.

Definition 2.1.3 (Attack Sequence) Given an argumentation framework AF = (A,R), an
attack sequence for an argument a ∈ A is a finite sequence of arguments (a1, a2, . . . , an) such
that:

4

• a1 = a,

• For all i where 2 ≤ i ≤ n, (ai, ai−1) ∈ R.

The length of an attack sequence is defined as the number of arguments in the sequence, i.e., n.

Paths in an argumentation framework help us analyze the influence of arguments
over others, whether directly or indirectly. By examining the number of attack steps
along a path, we can determine whether an argument ultimately acts as an attacker or
a defender, reinforcing the dynamic interplay of argumentation.

Definition 2.1.4 (Attacker and Defender Classification) Given an argumentation frame-
work AF = (A,R) and a path (a0, a1, . . . , an) from a0 to an, we classify a0 as follows:

• If n is 1, a0 is a direct attacker of an.

• If n is 2, a0 is a direct defender of an.

• If n is odd, a0 is an indirect attacker of an.

• If n is even, a0 is a indirect defender of an.

The classification follows from the alternating nature of attack sequences in argumen-
tation frameworks, where every successive attack reverses the argumentative stance.

Definition 2.1.5 (Rooted Path and Root Arguments) A path (a0, a1, . . . , an) in an argu-
mentation framework AF = (A,R) is called a rooted path if a0 is not attacked by any argu-
ment in A, i.e.,

∀x ∈ A, (x, a0) /∈ R.

The argument a0 is referred to as a root argument of the path.
Furthermore:

• If n is odd, a0 is called an attack root, meaning it ultimately acts as an attacker of an.

• If n is even, a0 is called a defense root, meaning it ultimately acts as a defender of an.

To evaluate arguments systematically within Dung’s abstract argumentation frame-
work, it is necessary to determine which arguments can be considered collectively ac-
ceptable. This process involves identifying subsets of arguments that satisfy specific
criteria related to conflict resolution and defense. Extension-based semantics were de-
veloped to formalize these notions, providing a structured way to classify arguments
based on their interactions.

5

2.2 Extension-based semantics

Dung’s work introduced several semantics for defining acceptable subsets of argu-
ments, known as extension, within an argumentation framework:

Definition 2.2.1 (Conflict-freeness) A set of argument S ⊆ A is conflict-free if no argument
in S attacks another argument in S.

This property ensures coherence among the selected arguments.

Definition 2.2.2 (Admissibility) A set S ⊆ A is admissible if:

• S is conflict-free, and

• For every a ∈ S, if b ∈ A attacks a, then there exists c ∈ S such that c attacks b.

An admissible set builds on conflict-freeness by requiring that each argument in S is
defended by S against all attacks.

Example 2.2.2.1 (Admissibility vs. conflict-freeness) Consider an argumentation frame-
work AF = (A,R), where:

• A = {a, b, c} is the set of arguments, and

• R = {(a, c), (c, b)} is the attack relation.

This framework is illustrated in Figure 2.

a c b

Figure 2: Argumentation framework for the Admissibility vs. conflict-freeness exam-
ple.

The conflict-free sets of arguments in this framework are:

∅, {a}, {b}, {c}, {a, b}.

Let us evaluate their admissibility:

• {}: This set is conflict-free and trivially admissible.

• {a}: This set is conflict-free and admissible because a is not attacked by any argument.

• {b}: This set is conflict-free but not admissible because b is attacked by c and is not able
to defend itself.

• {c}: This set is conflict-free but not admissible because c is attacked by a and is not able
to defend itself.

6

• {a, b}: This set is conflict-free (since a and b do not attack each other) and admissible
because while b is attacked by c, a defends b by attacking c.

Thus, the admissible sets are:
{}, {a}, {a, b}.

While conflict-freeness ensures coherence among selected arguments and admissibil-
ity builds on this by requiring defense against external attacks, these properties serve
as the foundation for defining acceptable sets of arguments within an argumentation
framework. Dung formalized this idea further by introducing different types of ex-
tensions, each offering a unique perspective on argument acceptability. These include
the preferred extension, which maximizes admissibility; the stable extension, which
emphasizes external dominance; and the grounded extension, which provides a con-
servative baseline of acceptability.

Definition 2.2.3 (Preferred extension) A set of arguments S ⊆ A is a preferred extension
if:

• S is admissible, and

• S is maximal with respect to set inclusion, meaning there is no admissible set T such that
S ⊂ T .

Preferred extensions are significant because they represent the broadest perspective
of defensible arguments within an argumentation framework. By including all admis-
sible arguments that can coexist without conflict, preferred extensions aim to capture
comprehensive sets of arguments that are collectively acceptable. This makes them par-
ticularly useful in scenarios where maximal defensibility is desirable, such as in legal
reasoning or collaborative decision-making.

Definition 2.2.4 (Stable extension) A set of arguments S ⊆ A is a stable extension if:

• S is conflict-free, and

• Every argument not in S is attacked by at least one argument in S.

Stable extensions emphasize the idea of dominance, ensuring that all arguments out-
side the extension are countered. This property makes stable extensions particularly
appealing in adversarial settings, such as debates or negotiations, where the goal is to
eliminate opposition.

However, stable extensions may not always exist in an argumentation framework
[Dun95], which is a limitation that motivates the exploration of alternative semantics.
The following example illustrates a scenario where no stable extension can be found.

7

Example 2.2.4.1 (Framework without stable extensions) Consider a simple cyclic argu-
mentation framework AF = (A,R), where A = {a, b, c} and R = {(a, b), (b, c), (c, a)}, as
illustrated in Figure 3.

a b

c

Figure 3: A simple 3-cycle argumentation framework with no stable extension.

In this framework, no stable extension exists. To be stable, a set must be conflict-free and must
attack every argument outside the set. The conflict-free sets are {}, {a}, {b}, and {c}.

• The empty set {} does not attack a, b, or c.

• The set {a} does not attack b.

• The set {b} does not attack c.

• The set {c} does not attack a.

Since none of the conflict-free sets attack all arguments outside of them, there is no stable exten-
sion for this framework.

Definition 2.2.5 (Characteristic function) Let AF = (A,R) be an argumentation frame-
work. The characteristic function FAF : 2A → 2A is defined as:

FAF (S) = {a ∈ A | S defends a}

Definition 2.2.6 (Grounded extension [Dun95]) The grounded extension of an argumen-
tation framework AF , denoted GEAF , is the least fixed point of its characteristic function FAF .

The grounded extension always exists and is unique for any argumentation frame-
work [Dun95].

The characteristic function FAF plays a central role in abstract argumentation by
using the concept of defense. It evaluates the interactions between arguments and
identifies which arguments can withstand attacks when supported by a given set S.
This function serves as the foundation for defining various extensions, including the
grounded extension. The grounded extension, as the smallest fixed point of FAF , pro-
vides a conservative and uncontroversial set of acceptable arguments. By iteratively
applying FAF , it ensures that only arguments that are either unchallenged or success-
fully defended are included. This makes the grounded extension particularly valuable
in applications requiring a cautious or minimal approach to argumentation, such as
legal reasoning or safety-critical systems. Its guaranteed existence and uniqueness fur-
ther enhance its utility as a baseline for reasoning within argumentation frameworks.

8

2.3 Ranking semantics

While extension-based semantics, such as preferred, stable, and grounded extensions,
provide structured ways to evaluate abstract argumentation frameworks, they are in-
herently binary in nature. These approaches classify arguments as either acceptable or
unacceptable, offering no further differentiation within the set of acceptable arguments
or between those considered unacceptable. This limitation is particularly problematic
in complex argumentation scenarios, where arguments may vary significantly in their
plausibility, strength, or degree of acceptability [Dun95]. For example, two arguments
might both belong to a preferred extension, but one may be much stronger than the
other based on additional contextual factors.

Ranking semantics were developed to address these shortcomings by providing a
more nuanced evaluation of arguments. Instead of categorising arguments into binary
outcomes, ranking semantics assign a relative degree of plausibility or strength to each
argument [Del17]. This allows for finer-grained analyses, enabling comparisons be-
tween all arguments within an argumentation framework. As a result, ranking seman-
tics are particularly useful in applications where detailed prioritization or weighting
of arguments is necessary, such as decision support systems, multi-agent negotiations,
and legal reasoning.

Definition 2.3.1 (Ranking-based semantics [ABN13]) A ranking-based semantics S for
an abstract argumentation framework AF = (A,R) is a function

S : (A,R) 7→⪰S
AF

that assigns a preorder ⪰S
AF over the set of arguments A, where for every a, b ∈ A, the following

relations hold:

• a ≻S
AF b if argument a is strictly more acceptable than argument b.

• a ⪰S
AF b if argument a is at least as acceptable as argument b.

• a ≃S
AF b if arguments a and b are equally acceptable.

These relations are all transitive, meaning that if a ⪰S
AF b and b ⪰S

AF c, then a ⪰S
AF c for all

a, b, c ∈ A.

The definition above establishes the fundamental structure of ranking-based seman-
tics in abstract argumentation. Unlike extension-based semantics, which classify argu-
ments into accepted or rejected sets, ranking-based semantics introduce a finer-grained
evaluation by ordering arguments according to their relative acceptability.

With this foundational understanding in place, we now introduce our example ar-
gumentation framework AFex, illustrated in Figure 4, which will serve as the basis for
illustrating the application of different ranking-based semantics.

9

a b c

d e f

g h

Figure 4: Example argumentation framework AFex

2.3.1 Discussion-based ranking semantics

The Discussion-based ranking semantics (Dbs) [ABN13] assigns a ranking to argu-
ments based on the number of attacks and defense paths leading to them within an ar-
gumentation framework. It relies on the concepts of attack sequences (Definition 2.1.3)
and discussion counts defined below.

Definition 2.3.2 (Discussion Count) Let AF = (A,R) be an argumentation framework,
a ∈ A, and i ∈ N \ {0}. We define the discussion count at step i for argument a as:

Disi(a) =

(
−N if i is even
N if i is odd

where N is the number of attack sequences for a in AF of length i. The full discussion count for
a is the vector Dis(a) = ⟨Dis1(a),Dis2(a), . . . ⟩.

Definition 2.3.3 (Discussion-based ranking semantics) The Discussion-based ranking
semantics (Dbs) associates to any argumentation framework AF = (A,R) a ranking ⪰Dbs

AF on
A such that ∀a, b ∈ A:

a ⪰Dbs
AF b if and only if Dis(b) ⪰lex Dis(a)

where ⪰lex is the lexicographical order. That is, a ⪰Dbs
AF b iff either Dis(a) = Dis(b) or there

exists i ≥ 1 such that Disi(a) < Disi(b) and for all j < i, Disj(a) = Disj(b).

Example 2.3.3.1 (Dbs calculation for AFex) Let us calculate the ranking for the argumen-
tation framework AFex (illustrated in Figure 4). We compute the Discussion count vector
Dis(x) = ⟨Dis1(x),Dis2(x), . . . ⟩ for each argument x. The presence of the cycle means the
vectors for d, g, h will be infinite, so we compute the first few steps for comparison.

• Dis(a) = ⟨0, 0, 0, . . . ⟩

10

• Dis(b) = ⟨1, 0, 0, . . . ⟩

• Dis(c) = ⟨2,−1, 0, . . . ⟩

• Dis(d) = ⟨2,−1, 2,−3, 1, . . . ⟩

• Dis(e) = ⟨1, 0, 0, . . . ⟩

• Dis(f) = ⟨0, 0, 0, . . . ⟩

• Dis(g) = ⟨1,−2, 3,−1, 2, . . . ⟩

• Dis(h) = ⟨2,−3, 1,−2, 3, . . . ⟩

We compare these vectors using lexicographical order, where smaller values at the first differing
index indicate a higher (better) rank.

• Rank 1: Arguments a and f have the vector ⟨0, 0, . . . ⟩, which is the smallest. Thus,
a ≃Dbs

AF f .

• Rank 2: Next, we compare arguments whose vectors start with 1: g and (b, e).

– Dis(g) = ⟨1,−2, . . . ⟩
– Dis(b, e) = ⟨1, 0, . . . ⟩
– At the second index, −2 < 0, so the vector for g is smaller. This means g is ranked

higher.

• Rank 3: The arguments (b, e) with vector ⟨1, 0, . . . ⟩ are next.

• Rank 4: Now we compare the arguments whose vectors start with 2: h, c, and d.

– Dis(h) = ⟨2,−3, . . . ⟩
– Dis(c) = ⟨2,−1, . . . ⟩
– Dis(d) = ⟨2,−1, . . . ⟩
– At the second index, −3 is the smallest value, so h is ranked highest within this

group.

• Rank 5: We compare the remaining arguments, c and d.

– Dis(c) = ⟨2,−1, 0, . . . ⟩
– Dis(d) = ⟨2,−1, 2, . . . ⟩
– Their vectors match until the third index, where 0 < 2. The vector for c is smaller,

so c is ranked higher.

• Rank 6: The last remaining argument is d.

The final ranking, derived from this step-by-step comparison, is:

a ≃Dbs
AF f ≻Dbs

AF g ≻Dbs
AF b ≃Dbs

AF e ≻Dbs
AF h ≻Dbs

AF c ≻Dbs
AF d

11

2.3.2 Categoriser-based ranking semantics

The Categoriser-based semantics (Cat) [PLZL14] evaluates the acceptability of argu-
ments based on their relationships within the argumentation graph. It assigns a strength
value to each argument, considering both the support it receives from other arguments
and the attacks it faces. This is achieved by defining a system of equations for the
strength values.

Definition 2.3.4 (Categoriser function) Given an argumentation framework AF = (A,R),
the categoriser function Cat : A → [0, 1] assigns a value to each argument a ∈ A defined by
the following system of equations:

Cat(a) =

(
1 if R−(a) = ∅

1
1+

P
b∈R−(a) Cat(b) otherwise

where R−(a) denotes the set of arguments that attack a.

The function assigns a value of 1 to an argument with no attackers, representing
maximal strength. If an argument is attacked, its strength is calculated as the inverse
of 1 plus the sum of the strength values of its attackers. This definition captures the
principle that an argument is strengthened by having weak attackers and weakened
by having strong attackers. It’s important to note that the Categoriser function is well-
defined for all argumentation frameworks, meaning a unique solution for the strength
values exists. This is guaranteed as the function is a contraction mapping, ensuring
convergence to a unique fixed point [PLZL14].

Definition 2.3.5 (Categoriser-based ranking semantics) The Categoriser-based ranking se-
mantics associates to any argumentation framework AF = (A,R) a ranking ⪰Cat

AF on A such
that for all a, b ∈ A:

a ⪰Cat
AF b if and only if Cat(a) ≥ Cat(b).

Example 2.3.5.1 (Cat calculation for AFex) Consider the argumentation framework AFex

from Figure 4. The Cat semantics calculates the strength of each argument as follows:

• Cat(a) = 1 (no attackers)

• Cat(b) = 1
1+Cat(a) =

1
1+1 = 0.5

• Cat(c) = 1
1+Cat(b)+Cat(f)

• Cat(d) = 1
1+Cat(a)+Cat(g)

• Cat(e) = 1
1+Cat(a) = 0.5

• Cat(f) = 1

12

• Cat(g) = 1
1+Cat(h)

• Cat(h) = 1
1+Cat(d)+Cat(e)

To solve for Cat(c), Cat(d), Cat(g) and Cat(h), we must solve a system of equations. By
substituting the known values and simplifying, we get:

Cat(d) =
1

2 + Cat(g)

Cat(g) =
1

1 + Cat(h)

Cat(h) =
1

1.5 + Cat(d)

Solving this system yields the approximate values: Cat(d) ≈ 0.38, Cat(g) ≈ 0.65, and
Cat(h) ≈ 0.53. And Cat(c) = 1

1+0.5+1 = 0.4. The final ranking is:

a ≃Cat
AF f ≻Cat

AF g ≻Cat
AF h ≻Cat

AF b ≃Cat
AF e ≻Cat

AF c ≻Cat
AF d

2.3.3 Probabilistic ranking semantics

The Probabilistic ranking semantics (Pro) [TCR18] relies on probabilistic argumenta-
tion frameworks where each argument is assigned a probability of being present or
absent. The overall acceptability of an argument is then determined by evaluating its
likelihood of being accepted across various possible subgraphs of the framework, each
weighted by its probability of occurrence.

Definition 2.3.6 (Probabilistic argumentation framework) A probabilistic argumenta-
tion framework (PAF) is a triple PAF = (A,R, P) where:

• (A,R) is an abstract argumentation framework, and

• P : A → [0, 1] is a function that assigns a probability to each argument a ∈ A, repre-
senting the probability that a is present in the argumentation framework.

For the purpose of ranking, we assume a uniform probability p is assigned to all argu-
ments. Assuming the presence of each argument is probabilistically independent, this
induces a probability distribution over all possible subsets of arguments (subgraphs).

Definition 2.3.7 (Subgraph and its probability) Given a set of arguments X ⊆ A, the in-
duced subgraph is AFX = (X,R ∩ (X ×X)). The probability of any specific subgraph AFX

occurring is given by:
P (X) =

Y

a∈X
P (a) ·

Y

a/∈X
(1− P (a))

When using a uniform probability p, this simplifies to:

P (X) = p|X| · (1− p)|A\X|

13

Example 2.3.7.1 Consider a simple framework AF = ({a, b}, {(b, a)}) and let p = 0.5. There
are four possible subgraphs:

1. AF∅ (empty set): P (∅) = (0.5)0 · (0.5)2 = 0.25. The grounded extension is ∅.

2. AF{a} (a is present): P ({a}) = (0.5)1 · (0.5)1 = 0.25. The grounded extension is {a}.

3. AF{b} (b is present): P ({b}) = (0.5)1 · (0.5)1 = 0.25. The grounded extension is {b}.

4. AF{a,b} (both present): P ({a, b}) = (0.5)2 · (0.5)0 = 0.25. The grounded extension is
{b}.

The probability of acceptance for an argument is then calculated by summing the
probabilities of all subgraphs in which that argument is accepted.

Definition 2.3.8 (Probability of acceptance) Let σ be a classical semantics and ◦ be an in-
ference mode. The probability of acceptance for an argument a in a PAF is the sum of the
probabilities P (X) for all subgraphs AFX where a is accepted:

PPAF
◦,σ (a) =

X

a∈X⊆A,AFX |=◦
σa

P (X)

Continuing our example, the acceptance probabilities for a and b are:

• Argument a: Is accepted only in AF{a}, so its acceptance probability is 0.25.

• Argument b: Is accepted in AF{b} and AF{a,b}, so its acceptance probability is
0.25 + 0.25 = 0.50.

The probabilistic ranking semantics formalizes this idea.

Definition 2.3.9 (Probabilistic ranking semantics) Let AF = (A,R) be an argumenta-
tion framework, p ∈ [0, 1] be a uniform probability assigned to all arguments, σ ∈ {co,gr,pr}
be a classical semantics (complete, grounded or preferred), and ◦ ∈ {s,c} be an inference mode
(skeptical or credulous). The probabilistic ranking semantics Gσ,◦,p is defined for every argu-
ment a ∈ A as:

Gσ,◦,p
AF (a) = P

AF [p]
◦,σ (a)

where PAF [p]
◦,σ (a) denotes the probability of acceptance of argument a in the probabilistic frame-

work AF [p]. The ranking ≥Pro
AF is then derived such that for any two arguments a, b ∈ A:

a ≥Pro
AF b if and only if Gσ,◦,p

AF (a) ≥ Gσ,◦,p
AF (b)

A higher score (probability of acceptance) indicates a greater level of acceptability,
suggesting that the argument is robustly accepted across many varying topological sce-
narios. Conversely, a low score implies the argument is frequently rejected, even when
some of its attackers might be absent. For the purpose of ranking, a common choice for
p is 0.5, and often grounded credulous semantics (gr, c) is used for calculation, though
the framework is flexible.

14

Example 2.3.9.1 (Pro calculation for AFex) Consider the argumentation framework AFex

from Figure 4. To calculate the probabilistic ranking semantics, let’s assume a uniform probabil-
ity p = 0.5 for the presence of each argument and use the grounded credulous (gr, c) semantics
for acceptance within subgraphs. With 8 arguments in AFex, there are 28 = 256 possible sub-
graphs. The probability of any specific subgraph occurring (given that each argument’s presence
is independent and has a probability of 0.5) is (0.5)8 = 1/256 = 0.00390625.

The calculation involves the following conceptual steps:

1. Enumerate all 28 subgraphs of AFex. (The detailed enumeration and grounded extension
for each non-empty subgraph can be found in Appendix 8.)

2. For each subgraph, determine the set of accepted arguments under the grounded seman-
tics.

3. For each argument x ∈ {a, b, c, d, e, f, g, h}, count the number of subgraphs in which x
is accepted. Let this be count(x).

4. The probability score for each argument x is then Ggr,c,0.5
AFex

(x) = count(x)× (0.5)8.

Based on the analysis of all 256 subgraphs, the acceptance counts for each argument are as
follows:

• Argument a: accepted in 128 subgraphs.

• Argument b: accepted in 64 subgraphs.

• Argument c: accepted in 48 subgraphs.

• Argument d: accepted in 32 subgraphs.

• Argument e: accepted in 64 subgraphs.

• Argument f : accepted in 128 subgraphs.

• Argument g: accepted in 80 subgraphs.

• Argument h: accepted in 80 subgraphs.

Using these counts, the probability scores Ggr,c,0.5
AFex

(x) are:

• G(a) = 128× (1/256) = 0.5

• G(b) = 64× (1/256) = 0.25

• G(c) = 48× (1/256) = 0.1875

• G(d) = 32× (1/256) = 0.125

• G(e) = 64× (1/256) = 0.25

• G(f) = 128× (1/256) = 0.5

15

• G(g) = 80× (1/256) = 0.3125

• G(h) = 80× (1/256) = 0.3125

Ranking arguments based on these scores (higher score means more acceptable), we get the
following ranking for AFex under the Probabilistic semantics with p = 0.5 and grounded cred-
ulous acceptance:

a ≃Pro
AFex

f ≻Pro
AFex

g ≃Pro
AFex

h ≻Pro
AFex

b ≃Pro
AFex

e ≻Pro
AFex

c ≻Pro
AFex

d

For any given classical semantics σ (eg. admissible, complete, grounded, ideal, pre-
ferred and stable), we derive a corresponding probabilistic ranking semantic, which
we denote as Proσ. For example probabilistic-grounded (Prog) refers to the ranking
derived from using the grounded semantics (σ = gr) within the probabilistic frame-
work. This approach enables a detailed empirical comparison not only between the
foundational ranking methods (Cat, Dbs, Ser) but also among the different flavors of
the probabilistic approach itself.

2.3.4 Serialisability-based ranking semantics

The Serialisability-based ranking semantics (Ser) [BT22] ranks arguments based on
the "effort" required to include them in an admissible set. This effort is measured by the
minimum number of steps in a constructive process where admissible sets are built by
iteratively adding "initial sets" from a progressively simplified argumentation frame-
work. The fewer steps an argument requires to be included as part of such a final
accepted group, the higher its rank.

The formalisation of this ranking approach relies on the following key concepts:

Definition 2.3.10 (Initial Set [XC18]) For an argumentation framework AF = (A,R), a set
S ⊆ A with S ̸= ∅ is called an initial set if S is admissible and there is no admissible set
S′ ⊂ S with S′ ̸= ∅. Let IS(AF) denote the set of all initial sets of AF.

Initial sets are described as the "smallest units within an admissible set, which still
maintain admissibility". They represent foundational, self-defending groups of argu-
ments. An argument that is part of an initial set of the original framework can be con-
sidered to resolve its acceptance conflicts largely "by itself" within that minimal group.

Definition 2.3.11 (Reduct [BBU20]) For an argumentation framework AF = (A,R) and a
set S ⊆ A, the reduct of S with respect to AF is AFS = AF |A\(S∪S+)

The reduct AFS represents the remaining argumentation scenario after the argu-
ments in set S (and those they attack, S+) are considered accepted and thus removed
from the framework. It is in this simplified framework that subsequent initial sets are
identified.

16

Definition 2.3.12 (Serialisation Sequence [BT22]) A serialisation sequence for an argu-
mentation framework AF = (A,R) is a sequence F = (S1, ..., Sn with S1 ∈ IS(AF) and for
each 2 ≤ i ≤ n we have Si ∈ IS(AFS1∪...∪Si−1).

A serialisation sequence therefore outlines a constructive method for forming a larger
admissible set E = S1 ∪ ... ∪ Sn. The existence of such a sequence can characterize the
admissibility of the set E.

The rank is determined by the serialisation index:

Definition 2.3.13 (Serialisation Index [BT22]) For an argumentation framework AF = (A,R)
and an argument a ∈ A, the serialisation index serAF (a) is defined as:

serAF (a) = min{n | (S1, . . . , Sn) is a serialisation sequence and a ∈ Sn}

with min ∅ = ∞. An argument a having serAF (a) = n means that n is the shortest se-
quence length where a is part of the n-th (last added) initial set. A lower index means a better
rank. Arguments that cannot be part of such an Sn (i.e., are not credulously accepted via this
constructive process) get an index of ∞.

Definition 2.3.14 (Serialisability-based ranking semantics [BT22]) The Serialisability-
based ranking semantics (Ser) associates to any argumentation framework AF = (A,R) a
ranking ⪰Ser

AF on A such that for all a, b ∈ A:

a ⪰Ser
AF b if and only if serAF (a) ≤ serAF (b).

Example 2.3.14.1 (Ser calculation for AFex) Consider AFex from Figure 4.

1. Arguments with serAFex(x) = 1: These are arguments that are part of an initial set of
AFex itself.

• {a} is an initial set (unattacked, admissible, minimal non-empty). So, serAFex(a) =
1.

• {f} is an initial set (unattacked, admissible, minimal non-empty). So, serAFex(f) =
1.

No other single argument forms an initial set.

2. Arguments with serAFex(x) = 2: These arguments x must be in an initial set S2 of a
reduct AFS1 , where S1 is an initial set from step 1.

• Let S1 = {a}. The reduct is AF {a} = AF |A\({a}∪{b,d,e}) = AF |{c,f,g,h}. The
attacks within this reduct are (f, c) and (h, g).

• In AF {a}, h is unattacked. Thus, {h} is an initial set of AF {a}.

• Therefore, via the serialisation sequence ({a}, {h}), we find h ∈ S2. So, serAFex(h) =
2.

• (Note: {f} is also an initial set in AF {a}, but ser(f) = 1 is already minimal.)

17

3. Arguments with serAFex(x) = ∞: We evaluate why other arguments cannot achieve a
finite, low serialisation index.

• Arguments b, d, e: These are directly attacked by a. Since ser(a) = 1, if S1 = {a}
is the first step in a serialisation, b, d, e become part of S+

1 (attacked by S1) and are
removed in the reduct AF {a}. They cannot then appear in S2 or any subsequent
Sn of such a sequence. No other choice for S1 (like {f}) makes them part of an Sn.
Thus, serAFex(b) = ∞, serAFex(d) = ∞, serAFex(e) = ∞.

• Argument c: Attacked by f (where ser(f) = 1) and by b (where ser(b) = ∞). If
S1 = {f}, then c ∈ S+

1 and is removed. Thus, serAFex(c) = ∞.

• Argument g: Attacked by h. We found ser(h) = 2 via sequence S1 = {a}, S2 =
{h}. In this path, after S1 and S2 are accepted, g is in S+

2 (attacked by S2) and
thus removed in the next reduct AF {a,h}. It cannot appear in an S3 of this se-
quence. Exploring other sequences does not yield a finite n where g ∈ Sn. Thus,
serAFex(g) = ∞.

The serialisation indices are:

• serAFex(a) = 1

• serAFex(f) = 1

• serAFex(h) = 2

• serAFex(b) = ∞

• serAFex(c) = ∞

• serAFex(d) = ∞

• serAFex(e) = ∞

• serAFex(g) = ∞

The final ranking (lower index is better) is:

a ≃Ser
AFex

f ≻Ser
AFex

h ≻Ser
AFex

b ≃Ser
AFex

c ≃Ser
AFex

d ≃Ser
AFex

e ≃Ser
AFex

g

3 Methodology

This chapter details the systematic methodology employed to conduct the empirical
correlation analysis of ranking-based semantics for abstract argumentation frameworks.
The primary objective is to create a clear, reproducible, and robust experimental design
that allows for a quantitative comparison of the selected semantics. This involves the
implementation of the semantics, the selection of appropriate datasets, the definition of
the experimental procedure, and the choice of statistical metrics for measuring correla-
tion.

18

3.1 Research questions

The methodology is specifically designed to address the following research questions
that arise from the thesis objectives:

1. RQ1: Quantitative Correlation: To what degree do the argument rankings pro-
duced by Discussion-based (Dbs), Categoriser-based (Cat), Serialisability-based
(Ser), and the various instantiations of probabilistic semantics (Proa, Proc,...)
correlate with one another when applied to a diverse set of standard benchmark
argumentation frameworks?

2. RQ2: Influence of Structural Properties: Are there identifiable structural proper-
ties of argumentation frameworks (e.g., the presence of cycles, density of attacks)
that systematically influence the level of agreement or disagreement between spe-
cific pairs of semantics?

3. RQ3: Conceptual Interpretation: What can the empirical correlation scores re-
veal about the underlying conceptual similarities and divergences of these se-
mantics?

3.2 Datasets

To ensure the results are both generalizable and computationally feasible, this study uti-
lizes two distinct collections of argumentation frameworks: a set of established, large-
scale benchmarks and a custom-generated set of smaller frameworks.

The first collection consists of benchmark argumentation frameworks from the In-
ternational Competition on Computational Models of Argumentation (ICCMA). The
ICCMA datasets are the de facto standard for empirical evaluation in argumentation,
ensuring our results are comparable to other research in the field. For this thesis, the
specific dataset used was the main track from the ICCMA 2023.

To facilitate a complete pairwise comparison across all semantics, including the com-
putationally intensive ones, a second collection of smaller frameworks was generated
using methods from the TweetyProject. This dataset was specifically designed to en-
sure that the "slow" semantics (such as Serialisability-based and probabilistic-preferred)
could complete their calculations within the established timeout, allowing for a com-
prehensive analysis across all implemented methods on a shared set of frameworks.
All frameworks from both collections were parsed directly from the standard .af file
format.

3.3 Experimental procedure

The empirical analysis follows a precise, automated workflow for each argumentation
framework (AF) in the selected dataset. The procedure is as follows:

1. Input: An argumentation framework AF = (A,R) is loaded from the benchmark
dataset.

19

2. Ranking Computation: For the given AF , the ranking of all arguments A is com-
puted using each of the implemented semantics: (Dbs, Cat, Ser, Proa, Proc, Prog,
Proi, Prop, Pros).

3. Pairwise Comparison: All unique pairs of semantics are formed for comparison.

4. Correlation Calculation: For each pair, the two corresponding argument rank-
ings are compared using standard statistical correlation coefficients. The specific
metrics used are defined in Section 3.4.

5. Data Logging: The results are systematically stored, recording the name of the
AF , the pair of semantics being compared, and the resulting correlation coeffi-
cients.

6. Iteration: Steps 1-5 are repeated for every argumentation framework in the se-
lected benchmark collection.

3.4 Comparison metrics

To quantitatively compare the outputs of the different ranking semantics, standard sta-
tistical measures of rank correlation were employed. The specific metrics used are
Kendall’s Tau coefficient and Spearman’s Rho coefficient.

Definition 3.4.1 (Kendall’s Tau coefficient (τ) [Ken38]) Given a set of n items, the Kendall’s
Tau coefficient is defined as:

τ =
Nc −Nd
1
2n(n− 1)

where Nc is the number of concordant pairs and Nd is the number of discordant pairs.

This metric measures the ordinal association between two rankings. A pair of argu-
ments is concordant if their relative ordering is the same in both rankings and discor-
dant if their relative ordering is different. A value of +1 indicates perfect agreement, -1
indicates perfect disagreement, and 0 indicates independence.

Example 3.4.1.1 (Kendall’s Tau Calculation) Consider two semantics producing the follow-
ing rankings for arguments {a, b, c, d}:

• Ranking 1: a ≻ b ≻ c ≻ d

• Ranking 2: a ≻ c ≻ b ≻ d

There are 4×3
2 = 6 unique pairs of arguments: (a,b), (a,c), (a,d), (b,c), (b,d), and (c,d). We check

each for concordance:

• (a,b): Concordant (a is ranked higher than b in both)

• (a,c): Concordant (a is ranked higher than c in both)

20

• (a,d): Concordant (a is ranked higher than d in both)

• (b,c): Discordant (b > c in Ranking 1, but c > b in Ranking 2)

• (b,d): Concordant (b is ranked higher than d in both)

• (c,d): Concordant (c is ranked higher than d in both)

Here, Nc = 5 and Nd = 1. The calculation is:

τ =
5− 1

6
=

4

6
≈ 0.67

Definition 3.4.2 (Spearman’s Rho coefficient (ρ) [Spe04]) For a set of n items, the Spear-
man’s Rho coefficient is defined as:

ρ = 1− 6
Pn

i=1 d
2
i

n(n2 − 1)

where di is the difference between the ranks of item i in the two rankings.

This metric measures how similarly two rankings order the same set of items based
on how high or low each item appears in both lists. If items that are ranked high in one
list also tend to be ranked high in the other (and vice versa), the coefficient will be close
to +1. If the rankings are in opposite order, the coefficient will be close to -1, and if there
is no clear relationship, it will be around 0.

Example 3.4.2.1 (Spearman’s Rho Calculation) Using the same rankings from Example 3.4.1.1,
we first assign numerical ranks and find the differences:

Argument Rank 1 Rank 2 Difference (di) d2i
a 1 1 0 0
b 2 3 -1 1
c 3 2 1 1
d 4 4 0 0
Total

P
d2i = 2

With n = 4 and
P

d2i = 2, the calculation is:

ρ = 1− 6× 2

4(42 − 1)
= 1− 12

4(15)
= 1− 12

60
= 1− 0.2 = 0.8

These coefficients were calculated for every pair of semantics (S1, S2) on each argu-
mentation framework AF by comparing the rankings ⪰S1

AF and ⪰S2
AF .

21

3.5 Analysis plan

The raw correlation data logged during the experimental procedure were aggregated
and analyzed to answer the research questions.

1. Overall correlation analysis: For each of the six pairs of semantics, the mean,
median, and standard deviation of both Kendall’s τ and Spearman’s ρ coefficients
were calculated across all tested argumentation frameworks. The results were
represented in a correlation matrix to provide a clear, high-level overview of the
general agreement between the semantics.

2. Sub-group analysis: To address RQ2, the dataset was partitioned based on key
structural properties (e.g., cyclic vs. acyclic). The average correlation scores were
computed independently for these subgroups to determine if specific topologies
influenced the agreement between semantics.

3. Interpretation: Finally, the quantitative findings were interpreted in the context
of the theoretical descriptions from Section 2. Consistently high correlations be-
tween a pair of semantics suggested a deep conceptual similarity, while low or
volatile correlations highlighted fundamental differences in their evaluation prin-
ciples. This analysis formed the core of the discussion section.

4 Implementation details

The empirical analysis described in this thesis was carried out using a custom software
solution implemented in Python 3 and is available on GitHub2. The implementation
was designed to be modular, efficient, and robust, leveraging well-established scien-
tific computing libraries to handle graph-based data and numerical calculations. The
project is structured around a central execution script (run_semantics.py) that or-
chestrates the parsing of argumentation frameworks, the calculation of rankings for
multiple semantics, and the final aggregation of correlation results.

The core components of the implementation are: the argumentation framework parser,
the individual semantics modules, and the experimental harness responsible for execu-
tion and data logging.

4.1 Framework parsing and representation

Argumentation frameworks are parsed from the standard .af file format using a parser
module (util/af_parser.py). This module reads the file line by line, processing the
paf header to initialize the set of arguments and subsequent lines to define the attack
relations.

2https://github.com/marcelljawhari/ArgRankLab/

22

The library used for representing the argumentation frameworks is NetworkX. Each
framework is loaded into a networkx.DiGraph object, which provides a good foun-
dation for graph-based operations. In line with the parser’s implementation, all argu-
ment identifiers are handled as strings to prevent potential uncertainty with integer-
based indexing.

4.2 Semantics implementation

The ranking semantics selected for this study were implemented in their own respec-
tive modules, ensuring clear separation of concerns. This modular design allows each
semantic to be handled independently, as detailed in the following subsections.

4.2.1 Discussion-based ranking semantics

The Discussion-based ranking semantics (Dbs) was implemented in semantics/db
s.py.

Algorithmic approach
A naive implementation that recursively enumerates all attack paths for each argument
would be computationally infeasible. The number of paths in a graph, particularly
one containing cycles, can grow exponentially with the path length, making such an
approach impractical for all but the smallest frameworks.

To ensure scalability, our implementation uses a method based on linear algebra,
which is analytically equivalent to the path-counting definition of Dbs.

To efficiently count all paths of a given length ending at an argument, we can count
the paths starting from that argument in a graph where all attack directions are re-
versed. This corresponds to using the transpose of the adjacency matrix (MT). The
total number of attack paths of length k ending at an argument ai is therefore the sum
of the i-th row in the matrix (MT)k.

The calculation of discussion vector components proceeds iteratively. For acyclic
frameworks, the powers of the adjacency matrix will eventually become the zero ma-
trix, providing a natural termination point for the algorithm. For cyclic frameworks,
however, the vectors are potentially infinite. To guarantee termination in all cases, the
calculation is bounded by a maximum path length. A well-justified heuristic for this
bound is the number of arguments, |A|. This limit guarantees that all simple paths
(which have a maximum length of |A| − 1) and all paths that traverse cycles with a
length up to |A| are included in the calculation. While rankings can theoretically change
at path lengths greater than |A|, this bound provides a comprehensive finite basis for
comparison and ensures a deterministic result for every framework. The procedure is
detailed in Algorithm 1.

23

Algorithm 1 Discussion-based Semantics (Dbs)
Require: An argumentation framework AF = (A,R).
Ensure: A ranking ≥Dbs

AF over A.
1: if A = ∅ then return empty ranking
2: end if
3: max_len ← |A|
4: M ← Adjacency matrix of AF
5: MT ← MT

6: for all argument a ∈ A do
7: Dis(a) ← ⟨⟩ ▷ Initialize empty vector
8: end for
9: Mpower ← MT

10: for k ← 1 to max_len do
11: for all argument ai ∈ A do
12: Nk(ai) ←

P|A|
j=1(Mpower)i,j ▷ Sum of i-th row

13: if k is odd then
14: score ← Nk(ai)
15: else
16: score ← −Nk(ai)
17: end if
18: Append score to Dis(ai)
19: end for
20: if Mpower is the zero matrix then break
21: end if
22: Mpower ← Mpower ·MT

23: end for
24: Rank arguments A using lexicographical comparison on the computed vectors

Dis(a).

Implementation details
The implementation of Algorithm 1 leverages the scipy.sparse library to represent
the adjacency matrix. This is crucial for scalability. For a framework with millions of
arguments, a dense matrix would be prohibitively large in terms of memory, whereas
a sparse matrix stores only the non-zero entries (the attacks). The CSR (Compressed
Sparse Row) format is used specifically for its efficiency in the matrix multiplication
that forms the core operation of the algorithm’s main loop.

The final step involves a lexicographical sort of the computed discussion vectors.
Arguments with identical vectors are considered equally acceptable and are grouped
into sets in the final ranking.

24

4.2.2 Categoriser-based ranking semantics

he Categoriser-based ranking semantics (Cat) was implemented in the semantics/
cat.py module.

Algorithmic approach
The categoriser function, as defined in the preliminaries, creates a system of interdepen-
dent, non-linear equations for all arguments in the framework. A naive approach, such
as looping through arguments and repeatedly substituting values, would be inefficient.
Instead, we use a vectorized iterative method that solves for all argument strengths si-
multaneously. This approach is guaranteed to converge to a unique solution because
the categoriser function is a contraction mapping on the space of possible strength as-
signments. A contraction mapping is a function that, when applied repeatedly, brings
points closer together, eventually converging to a single, unique fixed point. This prop-
erty, established by the Banach fixed-point theorem, ensures that an iterative update
process will yield a stable and unique vector of argument strengths. [Ban22]

The algorithm begins with an initial strength vector (e.g., all zeros) and iteratively
refines it using the update rule derived from the definition. The process continues un-
til the change between consecutive strength vectors falls below a predefined tolerance
threshold, which means that we reached convergence. The procedure is detailed in
Algorithm 2.

Algorithm 2 Categoriser-based Semantics (Cat)
Require: An argumentation framework AF = (A,R), tolerance tol, max iterations

max_iter.
Ensure: A ranking ≥Cat

AF over A.
1: if A = ∅ then return empty ranking
2: end if
3: M ← Adjacency matrix of AF
4: MT ← MT ▷ Transpose for efficient attacker calculations
5: S ← zero vector of size |A| ▷ Initialize strengths vector
6: for k ← 1 to max_iter do
7: Sold ← S
8: attacker_sums ← MT · Sold ▷ Vectorized sum of attacker strengths
9: S ← 1/(1 + attacker_sums) ▷ Vectorized update rule

10: if max(|S − Sold|) < tol then ▷ Check for convergence
11: break
12: end if
13: end for
14: Create ranking ≥Cat

AF by sorting arguments A in descending order of their strengths
in S.

25

Implementation details
The implementation of Algorithm 2 is designed for efficiency by leveraging the NumPy
and SciPy libraries. Instead of a Python loop over individual arguments, the strength
vector for all arguments is updated in a single vectorized operation in each iteration.

The core of this efficiency lies in the use of a transposed adjacency matrix, represented
as a scipy.sparse.csr_array. A sparse matrix-vector product (MT @ Sold) com-
putes the sum of attacker strengths for every argument simultaneously. This is sub-
stantially more efficient than iterating through each argument and its attackers in pure
Python, as it delegates the computationally intensive loops to optimized, low-level C
code within the NumPy/SciPy backend.

Convergence is checked by calculating the difference between the new and old strength
vectors, and if it is less than the tolerance threshold convergence is reached. Once the
strengths have converged, the final ranking is constructed by sorting the arguments
based on their strength scores, grouping arguments whose scores differ by less than the
tolerance value.

4.2.3 Probabilistic ranking semantics

The implementation of probabilistic ranking semantics is divided into two distinct
strategies, reflecting the underlying computational complexity of the different classical
semantics. For semantics where the probability of acceptance is tractable to compute
directly (admissible and stable), an analytical approach is used. For computationally
hard semantics (grounded, complete, preferred, and ideal), the implementation uses a
function that dynamically chooses between an exact calculation for small graphs and a
Monte Carlo simulation for larger ones.

Analytical implementation
For the admissible and stable semantics, determining the probability of an argument’s
acceptance can be done without simulation. This is inspired by the work of Fazzinga
et al. [FFP+13], which shows these problems are manageable. Our implementation
calculates the probability that a singleton set containing just the argument in question,
{a}, satisfies the semantic’s criteria.

Admissible semantics (ProbAdmissible) The score for an argument a is its
probability of being an admissible set on its own. This probability is the product of
three independent events: (1) argument a must exist, (2) the set {a} must be conflict-
free, and (3) {a} must be defended from all its potential attackers. The probability of
defense against an attacker b is the probability that b does not exist, or that b exists and
is attacked by a. The full procedure is detailed in Algorithm 3.

26

Algorithm 3 Analytical Admissible Probability
Require: An argumentation framework AF = (A,R), uniform probability p.
Ensure: A score for each argument a ∈ A.

1: for all argument a ∈ A do
2: Pexists ← p
3: if AF contains self-attack (a, a) then
4: Pcf ← 0
5: else
6: Pcf ← 1
7: end if
8: Pdefended ← 1
9: for all attacker b of a do

10: if AF contains attack (a, b) then
11: Pdefense_vs_b ← (1− p) + p ▷ b not exist OR (b exists AND a attacks b)
12: else
13: Pdefense_vs_b ← (1− p) ▷ b must not exist
14: end if
15: Pdefended ← Pdefended × Pdefense_vs_b
16: end for
17: score(a) ← Pexists × Pcf × Pdefended
18: end for
19: return scores

Stable semantics (ProbStable) The score for an argument a is its probability
of forming a stable extension on its own. For {a} to be stable, it must be conflict-free
and must attack every other argument that exists in the framework. Calculating this
involves multiplying many small probabilities, which can lead to floating-point under-
flow. To ensure numerical stability, the implementation calculates the log-probability
instead. The final score is the sum of the log-probabilities of each necessary event, as
detailed in Algorithm 4.

27

Algorithm 4 Analytical Stable Log-Probability
Require: An argumentation framework AF = (A,R), uniform probability p.
Ensure: A log-score for each argument a ∈ A.

1: for all argument a ∈ A do
2: if AF contains self-attack (a, a) then
3: log-score(a) ← −∞
4: continue
5: end if
6: logP_exists ← log(p)
7: Nnon-attacked ← |{d ∈ A \ {a} | (a, d) /∈ R}|
8: logP_attacks_all ← Nnon-attacked × log(1− p) ▷ All non-attacked args must not

exist
9: log-score(a) ← logP_exists + logP_attacks_all

10: end for
11: return log-scores

Exact and simulation-based framework
For computationally hard semantics, a more general approach is required. The im-
plementation uses a function that selects the best strategy based on the framework’s
size. The final score for an argument is derived from the set of credulously accepted
arguments within each subgraph. This set is determined by finding all extensions and
taking their union, a baseline approach known as Exhaustive Extension Enumeration
(EEE) [BTCV25].

Exact Calculation For small frameworks where the total number of subgraphs
(2|A|) is manageable (e.g., less than the number of samples intended for simulation),
an exact calculation is performed. The algorithm iterates through every possible sub-
graph, calculates its exact probability of occurring, determines the credulously accepted
arguments within it, and adds that probability to each accepted argument’s total score.
This provides a perfect, deterministic result without approximation.

Monte Carlo Simulation For larger frameworks where enumerating all subgraphs
is infeasible, the system falls back to a Monte Carlo simulation. It generates a large
number of random subgraphs based on the existence probability p for each argument.
For each sample, it finds the accepted arguments and counts their occurrences. The final
score for an argument is its total acceptance count divided by the number of samples,
providing an estimate of its true acceptance probability. The dual-strategy approach is
formalized in Algorithm 5.

28

Algorithm 5 Probabilistic Semantics (General Method)
Require: AF = (A,R), probability p, samples Ns.
Ensure: A score for each argument a ∈ A.

1: Initialize scores for all a ∈ A to 0.
2: if 2|A| < Ns then ▷ Use Exact Calculation
3: for all subgraph AFX of AF do
4: P (X) ← p|X| · (1− p)|A\X|

5: E ← FindCredulouslyAccepted(AFX)
6: for all argument a ∈ E do
7: score(a) ← score(a) + P (X)
8: end for
9: end for

10: else ▷ Use Monte Carlo Simulation
11: Initialize counts for all a ∈ A to 0.
12: for i ← 1 to Ns do
13: AX ← {a ∈ A | random() < p}
14: AFX ← subgraph induced by AX

15: E ← FindCredulouslyAccepted(AFX)
16: for all argument a ∈ E do
17: count(a) ← count(a) + 1
18: end for
19: end for
20: for all argument a ∈ A do
21: score(a) ← count(a)/Ns

22: end for
23: end if
24: return scores

Extension-finding algorithms
The core of the simulation framework is the ‘FindCredulouslyAccepted‘ method used
in Algorithm 5, which is implemented differently for each semantic.

Grounded The grounded extension is found using an iterative algorithm that cal-
culates the least fixed point of the characteristic function.

29

Algorithm 6 Find Grounded Extension
Require: A subgraph AFX = (AX , RX).
Ensure: The grounded extension Egr of AFX .

1: Egr ← ∅
2: loop
3: Enew ← Egr

4: D ← {a ∈ AX | a is defended by Egr} ▷ Apply characteristic function
5: Egr ← D
6: if Egr = Enew then ▷ Fixpoint reached
7: return Egr

8: end if
9: end loop

Complete All complete extensions are enumerated using a SAT solver. The prop-
erties of a complete extension are encoded as a Boolean formula, and the solver finds
all satisfying models.

Algorithm 7 Find All Complete Extensions
Require: A subgraph AFX = (AX , RX).
Ensure: The set of all complete extensions Eco of AFX .

1: Eco ← ∅
2: CNF ← EncodeCompleteSemantics(AFX)
3: solver ← InitializeSATsolver(CNF)
4: while solver.solve() do
5: M ← solver.getModel()
6: E ← DecodeModelToExtension(M)
7: Add E to Eco
8: solver.addClause(¬M) ▷ Add blocking clause to find next solution
9: end while

10: return Eco

Preferred The preferred extensions are found by first generating all complete ex-
tensions and then filtering that set to keep only those that are not a strict subset of any
other extension.

30

Algorithm 8 Find All Preferred Extensions
Require: A subgraph AFX = (AX , RX).
Ensure: The set of all preferred extensions Epr of AFX .

1: Eco ← FindAllCompleteExtensions(AFX) ▷ Using Algorithm 7
2: Epr ← ∅
3: for all E1 ∈ Eco do
4: isMaximal ← true
5: for all E2 ∈ Eco do
6: if E1 ̸= E2 and E1 ⊂ E2 then
7: isMaximal ← false
8: break
9: end if

10: end for
11: if isMaximal then
12: Add E1 to Epr
13: end if
14: end for
15: return Epr

Ideal The ideal extension is found using the Conflict-Driven Ideal Search (CDIS)
algorithm [TCV+21], which computes the ideal extension directly without the need to
first enumerate all preferred extensions.

31

Algorithm 9 Find Ideal Extension (CDIS Algorithm from [TCV+21])
Require: A subgraph AFX = (AX , RX).
Ensure: The ideal extension Eid of AFX .

1: ▷ Phase 1: Compute Preferred Super-Core
2: P ← AX

3: loop
4: S ← FindAdmissibleAttacker(P,AFX) ▷ SAT query to find admissible set S

attacking P
5: if S = ∅ then
6: break
7: end if
8: P ← P \ {a ∈ P | ∃s ∈ S, (s, a) ∈ RX}
9: end loop

10: ▷ Phase 2: Compute largest admissible subset of P
11: AFP ← subgraph induced by P
12: loop
13: U ← {a ∈ AFP | a is not defended by AFP }
14: if U = ∅ then
15: break
16: end if
17: Remove arguments in U from AFP

18: end loop
19: Eid ← remaining arguments in AFP

20: return Eid

4.2.4 Serialisability-based ranking semantics

The implementation of the Serialisability-based ranking semantics (Ser) is based on
the methods described by Bengel and Thimm [BT23]. It is implemented in the semant
ics/ser.py module and delegates the most computationally expensive task, finding
initial sets, to a boolean satisfiability (SAT) solver.

Algorithmic approach
The algorithm determines an argument’s serialisation index by recursively construct-
ing valid serialisation sequences. The main procedure explores the tree of possible
sequences, where each node represents the choice of an initial set from the current state
of the argumentation framework.

The search begins by finding all initial sets of the original framework; any argument
within these sets is assigned a serialisation index of 1. For each of these initial sets, a
recursive exploration begins. In each step, the framework is simplified by computing
the reduct with respect to the set of arguments already accepted in the current sequence.
The algorithm then finds the initial sets of this new, smaller framework and assigns the
current step number as the index for any arguments found.

32

To manage the complexity of this search, the algorithm incorporates a critical prun-
ing optimization. Before exploring a branch of the search tree (i.e., before computing
the initial sets of a reduct), it first checks if any remaining arguments in that branch
could possibly achieve a better (lower) serialisation index than one already found for
them in a previous branch. If no improvement is possible, the entire branch is aban-
doned, significantly reducing the number of required computations. This recursive,
pruning-based search is detailed in Algorithm 10.

Algorithm 10 Recursive Serialisation Index Search
Require: An accepted set Saccepted, current step k.

Global: Full framework AF , indices map ser_indices, max depth dmax.
1: procedure EXPLORESEQUENCES(Saccepted, k)
2: if k > dmax then return
3: end if
4: Sattacked ← all arguments attacked by Saccepted

5: Areduct ← A \ (Saccepted ∪ Sattacked)
6: if ∀a ∈ Areduct, ser_indices[a] ≤ k then return
7: end if ▷ Pruning step
8: AFreduct ← subgraph induced by Areduct

9: IS ← FindInitialSetsSAT(AFreduct) ▷ Using Algorithm 11
10: if IS = ∅ then return
11: end if
12: for all Snew ∈ IS do
13: for all argument a ∈ Snew do
14: ser_indices[a] ← min(ser_indices[a], k)
15: end for
16: EXPLORESEQUENCES(Saccepted ∪ Snew, k + 1)
17: end for
18: end procedure

Implementation details
The most challenging part of the algorithm is finding all initial sets (minimal non-empty
admissible sets) of a given framework, which is delegated to the PySAT library with
the Glucose4 solver. This is handled by a dedicated function that follows a multi-stage
query process to ensure both admissibility and minimality.

First, the properties of a non-empty admissible set are encoded into a conjunctive
normal form (CNF) formula. The main SAT solver is then used to find a model for this
formula, which corresponds to an admissible set. To guarantee this set is minimal, a
second, temporary SAT query is performed. This check determines if any proper subset
of the found set is also admissible. If no such subset exists, the original set is confirmed
to be an initial set, and a "blocking clause" is added to the main solver to prevent finding
this same set again. If a smaller admissible subset does exist, the current set is discarded
as non-minimal, and a different blocking clause is added to guide the search towards

33

other solutions. This procedure, detailed in Algorithm 11, is repeated until all initial
sets have been enumerated.

Algorithm 11 Finding Initial Sets via SAT
Require: An argumentation framework AFX .
Ensure: A list of all initial sets IS of AFX .

1: IS ← ∅
2: Cbase ← EncodeAdmissible(AFX)
3: Add clause to Cbase to ensure non-emptiness.
4: Smain ← InitializeSolver(Cbase)
5: while Smain.solve() do
6: M ← Smain.getModel()
7: Sadm ← DecodeModelToExtension(M)
8: isMinimal ← true
9: if |Sadm| > 1 then

10: Cmin ← Cbase

11: Add clauses to Cmin to search for a proper subset of Sadm.
12: Stemp ← InitializeSolver(Cmin)
13: if Stemp.solve() then
14: isMinimal ← false ▷ A smaller admissible set was found
15: end if
16: end if
17: if isMinimal then
18: Add Sadm to IS
19: end if
20: Add blocking clause ¬M to Smain to find a new solution.
21: end while
22: return IS

4.3 Experimental harness and automation

The main script, run_semantics.py, serves as the experimental harness. It auto-
mates the entire analysis pipeline:

1. File discovery: It recursively finds all .af files within the specified benchmark
directories.

2. Timeout management: Since some frameworks in our benchmarks are still too
large to calculate our semantics on within a reasonable timeframe, a timeout of
(600 seconds) is enforced. If a calculation exceeds this limit, the process is ter-
minated, and the framework is marked as a timeout case to be skipped in future
runs.

3. Correlation and aggregation: After calculating the rankings for a framework, the

34

script uses thes scipy.stats library to compute Kendall’s tau and Spearman’s
rho for all pairs of semantics. The results are saved to individual CSV files.

5 Experimental setup

All experiments were conducted on a machine equipped with an AMD Ryzen 9 5900X
processor and 32 GB of memory, running the Linux Mint 22.1 operating system.

The implementation, as described in Section 4, was executed using Python version
3.12.3. The primary libraries leveraged for the analysis include NetworkX 3.5, NumPy
2.2.6, SciPy 1.15.3, pandas 2.3.0, and PySAT 1.8.dev17 for the SAT-based computations.

The empirical evaluation utilized two distinct benchmark collections to accommo-
date the varying computational demands of the semantics. Due to the high complexity
of the slow semantics (Ser, Proc, etc.), the experimental procedure was partitioned. To
provide a clear overview of their scale and structural properties, key statistics for both
datasets are summarized in Table 1 and Table 2.

Metric Value

Total Frameworks 329

Arguments (|A|)
Min 100
Max 2,500,000
Mean 29,790.98
Median 796

Attacks (|R|)
Min 101
Max 23,429,120
Mean 1,002,470.24
Median 22,512

Mean Density 0.1405

Cyclicity
Cyclic Frameworks 314
Acyclic Frameworks 15

Table 1: Statistical overview of the ICCMA 2023 benchmark dataset.

35

Metric Value

Total Frameworks 82

Arguments (|A|)
Min 4
Max 100
Mean 32.61
Median 28

Attacks (|R|)
Min 0
Max 1,026
Mean 244.50
Median 67

Mean Density 0.1537

Cyclicity
Cyclic Frameworks 50
Acyclic Frameworks 32

Table 2: Statistical overview of the Tweety-generated benchmark dataset.

The partitioning was as follows:

• The fast semantics (Cat, Dbs, Pros, Proa) were evaluated on the full set of bench-
marks, which includes both the main track of the ICCMA 2023 and a second col-
lection of smaller frameworks.

• The slow semantics (Ser, Proc, Proi, Prog, Prop) were evaluated exclusively
on the second collection, which was generated using methods from the Tweet-
yProject to ensure that computations could complete within the established 600-
second timeout.

This design allows for a broad comparison of fast semantics on standard, large-scale
benchmarks, while still enabling a feasible comparison across all semantics on a set of
smaller, more manageable frameworks.

6 Results

This section presents the findings of the correlation analysis. The results are derived
from the experimental procedure detailed in Section 3, using the setup described in
Section 5. The primary goal is to provide a data-driven answer to the research questions
concerning the degree of correlation between the selected ranking semantics (RQ1) and
the influence of structural properties on their agreement (RQ2).

36

The results are presented as correlation matrices showing the average Kendall’s tau
coefficients. These tables represent a hybrid analysis. Comparisons between pairs of
fast semantics (Cat, Dbs, Proa, and Pros) were conducted across the entire benchmark
collection. In contrast, any comparison involving at least one slow semantic (e.g., Ser,
Prop) was performed exclusively on the smaller, Tweety-generated dataset to ensure
computational feasibility. For both fast and slow semantics, the tables also indicate the
total number of AFs used in each comparison, which differ from the counts in Tables 1
and 2 due to some AFs reaching the timeout limit.

The corresponding data for Spearman’s rho, along with median and standard devia-
tion values, were found to be highly consistent with these findings and are available in
the appendix.

6.1 Overall correlation

The primary analysis was conducted on the Tweety-generated dataset, as this was the
collection where all implemented semantics could be run, allowing for a complete pair-
wise comparison. Tables 3, 4 and 5 show the average and median Kendall’s tau corre-
lation between all pairs of semantics along with the standard deviation.

Cat Dbs Ser Proa Proc Prog Proi Prop Pros

Cat 1.000 0.279 0.246 0.086 0.257 0.270 0.276 0.216 0.017
Dbs 0.279 1.000 0.250 0.098 0.258 0.237 0.235 0.224 0.017
Ser 0.246 0.250 1.000 0.237 0.162 0.212 0.153 0.159 0.101
Proa 0.086 0.098 0.237 1.000 0.204 0.187 0.196 0.206 0.155
Proc 0.257 0.258 0.162 0.204 1.000 0.251 0.235 0.489 0.042
Prog 0.270 0.237 0.212 0.187 0.251 1.000 0.279 0.287 0.042
Proi 0.276 0.235 0.153 0.196 0.235 0.279 1.000 0.258 0.062
Prop 0.216 0.224 0.159 0.206 0.489 0.287 0.258 1.000 0.053
Pros 0.017 0.017 0.101 0.155 0.042 0.042 0.062 0.053 1.000

Table 3: Overall Hybrid Analysis (Fast-vs-Fast on 298 AFs, others on 65 Tweety AFs) -
Kendall’s Tau (τ) (Average)

The data in Table 3 shows a range of correlations. The highest average correlation
is observed between the probabilistic-complete (Proc) and probabilistic-preferred
(Prop) semantics, with a Kendall’s τ of 0.489. A notable, though more moderate, pos-
itive correlation is also present between the Cat and Dbs semantics (τ = 0.279). Con-
versely, several semantic pairs exhibit minimal correlation. The probabilistic-stable
(Pros) semantics, for instance, shows a very low average correlation with both Cat
(τ = 0.017) and other probabilistic semantics like probabilistic-ideal (Proi) (τ = 0.062).

Table 5 details the consistency of these relationships. The correlation between probabilistic-
grounded (Prog) and probabilistic-preferred (Prop) is the most varied, exhibiting the
highest standard deviation at 0.382. In contrast, the relationship between Dbs and
probabilistic-stable (Pros) semantics is highly consistent, showing the lowest stan-

37

Cat Dbs Ser Proa Proc Prog Proi Prop Pros

Cat 1.000 0.166 0.141 0.025 0.147 0.147 0.138 0.071 0.001
Dbs 0.166 1.000 0.167 0.034 0.123 0.124 0.116 0.112 0.005
Ser 0.141 0.167 1.000 0.149 0.033 0.118 0.074 0.064 0.073
Proa 0.025 0.034 0.149 1.000 0.074 0.073 0.068 0.124 0.075
Proc 0.147 0.123 0.033 0.074 1.000 0.121 0.086 0.409 0.022
Prog 0.147 0.124 0.118 0.073 0.121 1.000 0.124 0.133 -0.007
Proi 0.138 0.116 0.074 0.068 0.086 0.124 1.000 0.109 0.019
Prop 0.071 0.112 0.064 0.124 0.409 0.133 0.109 1.000 0.011
Pros 0.001 0.005 0.073 0.075 0.022 -0.007 0.019 0.011 1.000

Table 4: Overall Hybrid Analysis (Fast-vs-Fast on 298 AFs, others on 65 Tweety AFs) -
Kendall’s Tau (τ) (Median)

Cat Dbs Ser Proa Proc Prog Proi Prop Pros

Cat 0.000 0.293 0.342 0.216 0.353 0.365 0.356 0.359 0.148
Dbs 0.293 0.000 0.338 0.218 0.341 0.347 0.357 0.343 0.134
Ser 0.342 0.338 0.000 0.309 0.333 0.327 0.327 0.330 0.241
Proa 0.216 0.218 0.309 0.000 0.350 0.313 0.312 0.332 0.262
Proc 0.353 0.341 0.333 0.350 0.000 0.366 0.375 0.287 0.261
Prog 0.365 0.347 0.327 0.313 0.366 0.000 0.371 0.382 0.240
Proi 0.356 0.357 0.327 0.312 0.375 0.371 0.000 0.354 0.257
Prop 0.359 0.343 0.330 0.332 0.287 0.382 0.354 0.000 0.244
Pros 0.148 0.134 0.241 0.262 0.261 0.240 0.257 0.244 0.000

Table 5: Overall Hybrid Analysis (Fast-vs-Fast on 298 AFs, others on 65 Tweety AFs) -
Kendall’s Tau (τ) (Standard Deviation)

dard deviation at 0.134.
Finally, a comparison between the average (Table 3) and median (Table 4) values re-

veals that median correlations are frequently lower than their corresponding averages.
For example, the Cat and Dbs pairing has an average correlation of 0.279 but a median
of just 0.166.

6.2 Impact of framework structure

Beyond the overall summary, the analysis also investigated how correlations behave
within specific subsets of argumentation frameworks, specifically comparing acyclic
and cyclic graphs. This reveals that the presence of cycles is a critical factor influencing
the relationships between the semantics.

In acyclic frameworks, as detailed in Table 7, the correlations between many of the
semantics are notably strong. A very high level of agreement is observed between the
Cat, Dbs and probabilistic-admissible (Proa) semantics, with the correlation between
Cat and Dbs reaching 0.862. Among the other probabilistic semantics, the relation-

38

Cat Dbs Ser Proa Proc Prog Proi Prop Pros

Cat 1.000 0.230 0.072 0.034 0.077 0.120 0.127 0.046 -0.003
Dbs 0.230 1.000 0.076 0.046 0.092 0.091 0.088 0.072 -0.000
Ser 0.072 0.076 1.000 0.105 0.042 0.120 0.043 0.055 0.061
Proa 0.034 0.046 0.105 1.000 0.056 0.055 0.073 0.079 0.145
Proc 0.077 0.092 0.042 0.056 1.000 0.093 0.055 0.417 0.009
Prog 0.120 0.091 0.120 0.055 0.093 1.000 0.111 0.100 0.004
Proi 0.127 0.088 0.043 0.073 0.055 0.111 1.000 0.078 0.028
Prop 0.046 0.072 0.055 0.079 0.417 0.100 0.078 1.000 0.013
Pros -0.003 -0.000 0.061 0.145 0.009 0.004 0.028 0.013 1.000

Table 6: Cyclic Hybrid Analysis (Fast-vs-Fast on 275 AFs, others on 45 Tweety AFs) -
Kendall’s Tau (τ) (Average)

Cat Dbs Ser Proa Proc Prog Proi Prop Pros

Cat 1.000 0.862 0.637 0.713 0.663 0.607 0.611 0.599 0.252
Dbs 0.862 1.000 0.643 0.716 0.633 0.565 0.567 0.564 0.231
Ser 0.637 0.643 1.000 0.532 0.430 0.420 0.401 0.392 0.190
Proa 0.713 0.716 0.532 1.000 0.536 0.482 0.473 0.491 0.277
Proc 0.663 0.633 0.430 0.536 1.000 0.604 0.642 0.651 0.115
Prog 0.607 0.565 0.420 0.482 0.604 1.000 0.657 0.710 0.128
Proi 0.611 0.567 0.401 0.473 0.642 0.657 1.000 0.662 0.139
Prop 0.599 0.564 0.392 0.491 0.651 0.710 0.662 1.000 0.144
Pros 0.252 0.231 0.190 0.277 0.115 0.128 0.139 0.144 1.000

Table 7: Acyclic Hybrid Analysis (Fast-vs-Fast on 23 AFs, others on 20 Tweety AFs) -
Kendall’s Tau (τ) (Average)

ship between probabilistic-complete (Proc) and probabilistic-preferred (Prop) is also
strong, with a τ of 0.651.

This landscape of high agreement shifts significantly when cycles are introduced
(Table 6). The strong correlation between Cat and Dbs, for example, plummets from
0.862 in acyclic graphs to just 0.230 in cyclic ones. Similarly, the correlation between
probabilistic-ideal (Proi) and probabilistic-grounded (Prog) drops dramatically, from
0.657 to 0.111. While the link between the probabilistic-complete and probabilistic-
preferred semantic also weakens, it remains the most robust among the probabilistic
approaches in cyclic frameworks, with a τ of 0.417.

6.3 Impact of framework density

Further dissecting the data, the analysis considered the impact of framework density
by comparing sparse graphs (where the number of attacks is low relative to the number
of arguments) against dense graphs. This reveals how the level of interconnectedness
affects semantic agreement across all framework types.

39

Cat Dbs Ser Proa Proc Prog Proi Prop Pros

Cat 1.000 0.196 0.792 0.067 0.533 0.510 0.523 0.496 0.027
Dbs 0.196 1.000 0.789 0.072 0.518 0.501 0.523 0.493 0.024
Ser 0.792 0.789 1.000 0.566 0.413 0.399 0.445 0.377 0.272
Proa 0.067 0.072 0.566 1.000 0.457 0.420 0.362 0.365 0.144
Proc 0.533 0.518 0.413 0.457 1.000 0.539 0.433 0.581 0.137
Prog 0.510 0.501 0.399 0.420 0.539 1.000 0.535 0.576 0.236
Proi 0.523 0.523 0.445 0.362 0.433 0.535 1.000 0.533 0.237
Prop 0.496 0.493 0.377 0.365 0.581 0.576 0.533 1.000 0.277
Pros 0.027 0.024 0.272 0.144 0.137 0.236 0.237 0.277 1.000

Table 8: Sparse Hybrid Analysis (Fast-vs-Fast on 143 AFs, others on 7 Tweety AFs) -
Kendall’s Tau (τ) (Average)

Cat Dbs Ser Proa Proc Prog Proi Prop Pros

Cat 1.000 0.321 0.052 0.030 0.049 0.063 0.111 0.016 0.007
Dbs 0.321 1.000 0.063 0.035 0.065 0.057 0.077 0.048 0.005
Ser 0.052 0.063 1.000 0.099 0.054 0.178 0.055 0.079 0.060
Proa 0.030 0.035 0.099 1.000 0.051 0.042 0.076 0.076 0.214
Proc 0.049 0.065 0.054 0.051 1.000 0.078 0.039 0.410 -0.002
Prog 0.063 0.057 0.178 0.042 0.078 1.000 0.074 0.072 0.016
Proi 0.111 0.077 0.055 0.076 0.039 0.074 1.000 0.059 0.048
Prop 0.016 0.048 0.079 0.076 0.410 0.072 0.059 1.000 0.001
Pros 0.007 0.005 0.060 0.214 -0.002 0.016 0.048 0.001 1.000

Table 9: Dense Hybrid Analysis (Fast-vs-Fast on 98 AFs, others on 30 Tweety AFs) -
Kendall’s Tau (τ) (Average)

In sparse frameworks, as detailed in Table 8, the correlations present a complex pic-
ture. Surprisingly, the non-probabilistic Serialisability-based (Ser) semantics shows a
very strong positive correlation with both Cat (τ = 0.792) and Dbs (τ = 0.789). Fur-
thermore, many probabilistic semantics show moderate to strong positive correlations
with each other in this setting, such as between probabilistic-preferred (Prop) and
probabilistic-grounded (Prog) (τ = 0.576).

This pattern changes dramatically in dense frameworks (Table 9). The strong pos-
itive correlations involving the Ser semantics disappear entirely, with its correlation
to Cat plummeting to just 0.052. The correlations between many probabilistic seman-
tics also weaken considerably; for instance, the relationship between Proa and Proi
drops from 0.362 to a near-zero correlation of 0.076. Meanwhile, the correlation be-
tween Cat and Dbs (τ = 0.321) becomes more pronounced in dense graphs, while the
strong link between probabilistic-complete (Proc) and probabilistic-preferred (Prop)
weakens but remains significant (τ = 0.410).

40

7 Discussion

These results quantify the relationships between key ranking semantics. This section
interprets these findings to answer the research questions posed in Section 3, exploring
the conceptual similarities and divergences of the semantics and the significant influ-
ence of framework topology on their agreement.

The first finding, in response to RQ1, is that the overall correlation between most
pairs of semantics is generally low. As shown in Table 3, the majority of average
correlation scores are below 0.3, indicating that choosing a ranking semantics is not
trivial and significantly impacts argument evaluation. The most notable exception
is the strong correlation between the probabilistic-complete (Proc) and probabilistic-
preferred (Prop) semantics (τ = 0.489). This result is makes sense, as preferred exten-
sions are defined as the maximal complete extensions. A similar, though more mod-
erate, correlation is observed between probabilistic-grounded (Prog) and probabilistic-
complete (Proc) semantics (τ = 0.251), which is also expected, as the grounded exten-
sion is the minimal complete extension.

Regarding RQ2, the analysis reveals that framework structure is an important factor
in the level of agreement between semantics. The contrast between acyclic (Table 7)
and cyclic (Table 6) frameworks is particularly clear. In acyclic graphs, the absence
of cyclical dependencies simplifies the argumentative structure, leading to a high de-
gree of consensus. One of our most interesting findings was how closely the Cat and
Dbs semantics agreed in frameworks without any cycles, showing a Kendall’s Tau cor-
relation of 0.862. This is surprising because the two methods evaluate arguments in
fundamentally different ways. The Categoriser-based (Cat) semantics takes a local ap-
proach by primarily considering the strength of an argument’s immediate attackers ,
whereas the Discussion-based (Dbs) semantics uses a global perspective that accounts
for all the long attack and defense chains. The introduction of cycles, however, funda-
mentally breaks this consensus, with the Cat and Dbs correlation plummeting to 0.230.
This drop shows that the two semantics deal with cycles and mutual attacks in very
different ways.

The impact of framework density also reveals important behavioral patterns. The
analysis of sparse versus dense graphs (Tables 8 and 9) highlights the unique nature of
the Serialisability-based (Ser) semantics. Its very strong correlation with Cat (τ = 0.792)
and Dbs (τ = 0.789) in sparse frameworks is interesting because Ser’s constructive,
global logic for building admissible sets is conceptually different from the more local
attacker-based logic of Cat and the path-counting, global logic of Dbs. A possible ex-
planation is that in sparse graphs with fewer complex interactions, the way Ser builds
admissible sets ends up producing results similar to these simpler evaluations. This
alignment vanishes in dense frameworks, where the complexity of constructing admis-
sible sets increases and Ser’s correlation with Cat drops to just 0.052. Furthermore,
the effect of density is not uniform: the Cat and Dbs correlation strengthens in dense
graphs, whereas the link between Proc and Prop, while still strong, weakens from 0.581
in sparse graphs to 0.410 in dense ones.

41

Finally, these empirical results provide some insight into RQ3 on how these seman-
tics can be interpreted. The general lack of high correlation suggests that there is no
single, monolithic concept of "argument strength." Instead, each semantic formalizes a
different, intuition about what makes an argument plausible. This is particularly evi-
dent in the probabilistic approaches. The analytical methods (Proa and Pros), which
calculate the probability of a single argument forming an extension, show weak cor-
relation with the Monte Carlo-based methods (Prog, P roc, P rop, P roi), which evaluate
an argument’s acceptance within the context of entire sampled subgraphs. Some of the
gap might also be due to the inaccuracy of Monte Carlo simulations, which only sample
frameworks instead of checking them all. More research is needed here, for example
by running Monte Carlo simulations for all probabilistic semantics using all exactyl the
same set of samples. The moderate correlation between the local, iterative approach of
Cat and the global, path-based logic of Dbs shows that they capture related, but still
different, aspects of how an argument has influence.

The structural analysis gives further insight. In acyclic graphs, where the argument
structure is straightforward, many semantics end up agreeing, showing that different
ways of judging argument strength can lead to similar results. Adding cycles and
higher density makes each semantic reveal its own distinct way of evaluating argu-
ments. The behavior of the Ser semantics is a key example: its strong alignment with
local semantics in sparse graphs suggests its constructive nature is conceptually close
to simpler methods in low-complexity scenarios, but it follows a much more distinct
logic as the graph becomes more interconnected.

8 Conclusion

This thesis conducted an empirical correlation analysis to investigate the relationships
between ranking-based semantics in abstract argumentation. By implementing a suite
of semantics, including discussion-based, categoriser-based, serialisability-based, and
various instantiations of probabilistic semantics, and applying them to a diverse col-
lection of benchmark datasets, this work provides a quantitative foundation for under-
standing their comparative behaviour.

The findings offer answers to the initial research questions. In response to RQ1, the
analysis confirms that the overall correlation between most semantics is low, with most
average Kendall’s τ scores falling below 0.3. This highlights their conceptual differ-
ences and shows that the choice of a ranking semantic is a critical decision with sig-
nificant consequences for argument evaluation. The main exceptions were the strong
correlation between probabilistic-complete and probabilistic-preferred semantics (τ =
0.489) and the moderate correlation between probabilistic-grounded and probabilistic-
complete semantics (τ = 0.251). These results empirically support the close theoretical
relationships where preferred and grounded semantics are the maximal and minimal
forms of complete semantics, respectively.

Answering RQ2, the study demonstrated that framework topology has a big in-
fluence on semantic agreement. Cycles turned out to be a main reason for differ-

42

ences, drastically lowering the correlation of many pairs, such as Cat and Dbs. Frame-
work density also revealed significant shifts in semantic alignment. Most notably, the
Serialisability-based (Ser) semantics showed a very strong correlation with the more
locally-focused Cat and Dbs semantics in sparse frameworks, an alignment that com-
pletely disappeared in dense graphs. Finally, regarding RQ3, the results show that
while the semantics differ in complex cases, their strong agreement in simpler, acyclic
graphs suggests they share a common basis for judging strength when the structure is
clear.

The primary contribution of this work is the empirical evidence that there is no "one-
size-fits-all" ranking semantics. For practitioners, this implies that the selection of a
semantics should be a conscious choice informed by the expected structure of the ar-
gumentation scenario and the specific notion of "argument strength" required for the
application.

This research also opens several directions for future work. One interesting finding
is the strong agreement between the globally constructive Ser semantics, the locally fo-
cused Cat, and the globally path-based Dbs semantics in sparse frameworks. An agree-
ment that disappears completely in dense graphs. This pattern deserves deeper theo-
retical study. Future work could also include a wider range of semantics or try different
ways of measuring correlation. Another important step would be to explore whether
the differences in rankings seen here matter in real-world uses, to see which approaches
are the most useful in specific domains. In addition, more research is needed on the role
of Monte Carlo simulation accuracy, for example by running all probabilistic semantics
using Monte Carlo (even those currently calculated analytically) with exactly the same
set of samples to make their results more comparable.

43

References

[ABN13] Leila Amgoud and Jonathan Ben-Naim. Ranking-based semantics for ar-
gumentation frameworks. In International Conference on Scalable Uncertainty
Management, pages 134–147. Springer, 2013.

[Ban22] Stefan Banach. Sur les opérations dans les ensembles abstraits et leur ap-
plication aux équations intégrales. Fundamenta mathematicae, 3(1):133–181,
1922.

[BBU20] Ringo Baumann, Gerhard Brewka, and Markus Ulbricht. Revisiting the
foundations of abstract argumentation–semantics based on weak admissi-
bility and weak defense. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 2742–2749, 2020.

[BT22] Lydia Blümel and Matthias Thimm. A ranking semantics for abstract ar-
gumentation based on serialisability. In Computational Models of Argument,
pages 104–115. IOS Press, 2022.

[BT23] Lars Bengel and Matthias Thimm. Towards parallelising extension construc-
tion for serialisable semantics in abstract argumentation. In Proceedings of the
20th International Conference on Principles of Knowledge Representation and Rea-
soning, pages 732–736, 2023.

[BTCV25] Lars Bengel, Matthias Thimm, Federico Cerutti, and Mauro Vallati. Algo-
rithms for computing the set of acceptable arguments. International Journal
of Approximate Reasoning, page 109478, 2025.

[Del17] Jérôme Delobelle. Ranking-based Semantics for Abstract Argumentation. PhD
thesis, Université d’Artois, 2017.

[Dun95] Phan Minh Dung. On the acceptability of arguments and its fundamental
role in nonmonotonic reasoning, logic programming and n-person games.
Artificial intelligence, 77(2):321–357, 1995.

[FFP+13] Bettina Fazzinga, Sergio Flesca, Francesco Parisi, et al. On the complexity of
probabilistic abstract argumentation. In IJCAI, pages 898–904, 2013.

[Ken38] Maurice G Kendall. A new measure of rank correlation. Biometrika, 30(1-
2):81–93, 1938.

[PLZL14] Fuan Pu, Jian Luo, Yulai Zhang, and Guiming Luo. Argument ranking with
categoriser function. In Knowledge Science, Engineering and Management: 7th
International Conference, KSEM 2014, Sibiu, Romania, October 16-18, 2014. Pro-
ceedings 7, pages 290–301. Springer, 2014.

[Spe04] Charles Spearman. The proof and measurement of association between two
things. The American Journal of Psychology, 15(1):72–101, 1904.

44

[TCR18] Matthias Thimm, Federico Cerutti, and Tjitze Rienstra. Probabilistic graded
semantics. In Computational Models of Argument, pages 369–380. IOS Press,
2018.

[TCV+21] Matthias Thimm, Federico Cerutti, Mauro Vallati, et al. Skeptical reason-
ing with preferred semantics in abstract argumentation without computing
preferred extensions. In IJCAI, pages 2069–2075, 2021.

[XC18] Yuming Xu and Claudette Cayrol. Initial sets in abstract argumentation
frameworks. Journal of Applied Non-Classical Logics, 28(2-3):260–279, 2018.

45

Appendix

Grounded Extensions for All Non-Empty Subgraphs of AFex

This appendix presents the grounded extensions for all 255 non-empty subgraphs of
the example argumentation framework AFex. (defined in Section 4). The results are
grouped by the number of arguments in each subgraph. The notation GE stands for
Grounded Extension.

Subgraph GE Subgraph GE Subgraph GE
Subgraphs of Size 1 (8 entries)
a a b b c c
d d e e f f
g g h h
Subgraphs of Size 2 (28 entries)
a,b a a,c a,c a,d a
a,e a a,f a,f a,g a,g
a,h a,h b,c b b,d b,d
b,e b,e b,f b,f b,g b,g
b,h b,h c,d c,d c,e c,e
c,f f c,g c,g c,h c,h
d,e d,e d,f d,f d,g g
d,h d e,f e,f e,g e,g
e,h e f,g f,g f,h f,h
g,h h
Subgraphs of Size 3 (56 entries)
a,b,c a,c a,b,d a a,b,e a
a,b,f a,f a,b,g a,g a,b,h a,h
a,c,d a,c a,c,e a,c a,c,f a,f
a,c,g a,c,g a,c,h a,c,h a,d,e a
a,d,f a,f a,d,g a,g a,d,h a,h
a,e,f a,f a,e,g a,g a,e,h a,h
a,f,g a,f,g a,f,h a,f,h a,g,h a,h
b,c,d b,d b,c,e b,e b,c,f b,f
b,c,g b,g b,c,h b,h b,d,e b,d,e
b,d,f b,d,f b,d,g b,g b,d,h b,d
b,e,f b,e,f b,e,g b,e,g b,e,h b,e
b,f,g b,f,g b,f,h b,f,h b,g,h b,h
c,d,e c,d,e c,d,f d,f c,d,g c,g
c,d,h c,d c,e,f e,f c,e,g c,e,g
c,e,h c,e c,f,g f,g c,f,h f,h
c,g,h c,h d,e,f d,e,f d,e,g e,g
d,e,h d,e d,f,g f,g d,f,h d,f
d,g,h ∅ e,f,g e,f,g e,f,h e,f
e,g,h e,g f,g,h f,h
Subgraphs of Size 4 (70 entries)
a,b,c,d a,c a,b,c,e a,c a,b,c,f a,f
a,b,c,g a,c,g a,b,c,h a,c,h a,b,d,e a

Continued on next page

46

Subgraph GE Subgraph GE Subgraph GE
a,b,d,f a,f a,b,d,g a,g a,b,d,h a,h
a,b,e,f a,f a,b,e,g a,g a,b,e,h a,h
a,b,f,g a,f,g a,b,f,h a,f,h a,b,g,h a,h
a,c,d,e a,c a,c,d,f a,f a,c,d,g a,c,g
a,c,d,h a,c,h a,c,e,f a,f a,c,e,g a,c,g
a,c,e,h a,c,h a,c,f,g a,f,g a,c,f,h a,f,h
a,c,g,h a,c,h a,d,e,f a,f a,d,e,g a,g
a,d,e,h a,h a,d,f,g a,f,g a,d,f,h a,f,h
a,d,g,h a,h a,e,f,g a,f,g a,e,f,h a,f,h
a,e,g,h a,h a,f,g,h a,f,h b,c,d,e b,d,e
b,c,d,f b,d,f b,c,d,g b,g b,c,d,h b,d
b,c,e,f b,e,f b,c,e,g b,e,g b,c,e,h b,e
b,c,f,g b,f,g b,c,f,h b,f,h b,c,g,h b,h
b,d,e,f b,d,e,f b,d,e,g b,e,g b,d,e,h b,d,e
b,d,f,g b,f,g b,d,f,h b,d,f b,d,g,h b
b,e,f,g b,e,f,g b,e,f,h b,e,f b,e,g,h b,e,g
b,f,g,h b,f,h c,d,e,f d,e,f c,d,e,g c,e,g
c,d,e,h c,d,e c,d,f,g f,g c,d,f,h d,f
c,d,g,h c c,e,f,g e,f,g c,e,f,h e,f
c,e,g,h c,e,g c,f,g,h f,h d,e,f,g e,f,g
d,e,f,h d,e,f d,e,g,h e,g d,f,g,h f
e,f,g,h e,f,g
Subgraphs of Size 5 (56 entries)
a,b,c,d,e a,c a,b,c,d,f a,f a,b,c,d,g a,c,g
a,b,c,d,h a,c,h a,b,c,e,f a,f a,b,c,e,g a,c,g
a,b,c,e,h a,c,h a,b,c,f,g a,f,g a,b,c,f,h a,f,h
a,b,c,g,h a,c,h a,b,d,e,f a,f a,b,d,e,g a,g
a,b,d,e,h a,h a,b,d,f,g a,f,g a,b,d,f,h a,f,h
a,b,d,g,h a,h a,b,e,f,g a,f,g a,b,e,f,h a,f,h
a,b,e,g,h a,h a,b,f,g,h a,f,h a,c,d,e,f a,f
a,c,d,e,g a,c,g a,c,d,e,h a,c,h a,c,d,f,g a,f,g
a,c,d,f,h a,f,h a,c,d,g,h a,c,h a,c,e,f,g a,f,g
a,c,e,f,h a,f,h a,c,e,g,h a,c,h a,c,f,g,h a,f,h
a,d,e,f,g a,f,g a,d,e,f,h a,f,h a,d,e,g,h a,h
a,d,f,g,h a,f,h a,e,f,g,h a,f,h b,c,d,e,f b,d,e,f
b,c,d,e,g b,e,g b,c,d,e,h b,d,e b,c,d,f,g b,f,g
b,c,d,f,h b,d,f b,c,d,g,h b b,c,e,f,g b,e,f,g
b,c,e,f,h b,e,f b,c,e,g,h b,e,g b,c,f,g,h b,f,h
b,d,e,f,g b,e,f,g b,d,e,f,h b,d,e,f b,d,e,g,h b,e,g
b,d,f,g,h b,f b,e,f,g,h b,e,f,g c,d,e,f,g e,f,g
c,d,e,f,h d,e,f c,d,e,g,h c,e,g c,d,f,g,h f
c,e,f,g,h e,f,g d,e,f,g,h e,f,g
Subgraphs of Size 6 (28 entries)
a,b,c,d,e,f a,f a,b,c,d,e,g a,c,g a,b,c,d,e,h a,c,h
a,b,c,d,f,g a,f,g a,b,c,d,f,h a,f,h a,b,c,d,g,h a,c,h
a,b,c,e,f,g a,f,g a,b,c,e,f,h a,f,h a,b,c,e,g,h a,c,h
a,b,c,f,g,h a,f,h a,b,d,e,f,g a,f,g a,b,d,e,f,h a,f,h

Continued on next page

47

Subgraph GE Subgraph GE Subgraph GE
a,b,d,e,g,h a,h a,b,d,f,g,h a,f,h a,b,e,f,g,h a,f,h
a,c,d,e,f,g a,f,g a,c,d,e,f,h a,f,h a,c,d,e,g,h a,c,h
a,c,d,f,g,h a,f,h a,c,e,f,g,h a,f,h a,d,e,f,g,h a,f,h
b,c,d,e,f,g b,e,f,g b,c,d,e,f,h b,d,e,f b,c,d,e,g,h b,e,g
b,c,d,f,g,h b,f b,c,e,f,g,h b,e,f,g b,d,e,f,g,h b,e,f,g
c,d,e,f,g,h e,f,g
Subgraphs of Size 7 (8 entries)
a,b,c,d,e,f,g a,f,g a,b,c,d,e,f,h a,f,h a,b,c,d,e,g,h a,c,h
a,b,c,d,f,g,h a,f,h a,b,c,e,f,g,h a,f,h a,b,d,e,f,g,h a,f,h
a,c,d,e,f,g,h a,f,h b,c,d,e,f,g,h b,e,f,g
Subgraphs of Size 8 (1 entries)
a,b,c,d,e,f,g,h a,f,h

Comprehensive Correlation Results

Cat Dbs Ser Proa Proc Prog Proi Prop Pros

Cat 1.000 0.279 0.246 0.086 0.257 0.270 0.276 0.216 0.017
Dbs 0.279 1.000 0.250 0.098 0.258 0.237 0.235 0.224 0.017
Ser 0.246 0.250 1.000 0.237 0.162 0.212 0.153 0.159 0.101
Proa 0.086 0.098 0.237 1.000 0.204 0.187 0.196 0.206 0.155
Proc 0.257 0.258 0.162 0.204 1.000 0.251 0.235 0.489 0.042
Prog 0.270 0.237 0.212 0.187 0.251 1.000 0.279 0.287 0.042
Proi 0.276 0.235 0.153 0.196 0.235 0.279 1.000 0.258 0.062
Prop 0.216 0.224 0.159 0.206 0.489 0.287 0.258 1.000 0.053
Pros 0.017 0.017 0.101 0.155 0.042 0.042 0.062 0.053 1.000

Table 11: Overall Hybrid Analysis (Fast-vs-Fast on 298 AFs, others on 65 Tweety AFs) -
Kendall’s Tau (τ) (Average)

Cat Dbs Ser Proa Proc Prog Proi Prop Pros

Cat 1.000 0.166 0.141 0.025 0.147 0.147 0.138 0.071 0.001
Dbs 0.166 1.000 0.167 0.034 0.123 0.124 0.116 0.112 0.005
Ser 0.141 0.167 1.000 0.149 0.033 0.118 0.074 0.064 0.073
Proa 0.025 0.034 0.149 1.000 0.074 0.073 0.068 0.124 0.075
Proc 0.147 0.123 0.033 0.074 1.000 0.121 0.086 0.409 0.022
Prog 0.147 0.124 0.118 0.073 0.121 1.000 0.124 0.133 -0.007
Proi 0.138 0.116 0.074 0.068 0.086 0.124 1.000 0.109 0.019
Prop 0.071 0.112 0.064 0.124 0.409 0.133 0.109 1.000 0.011
Pros 0.001 0.005 0.073 0.075 0.022 -0.007 0.019 0.011 1.000

Table 12: Overall Hybrid Analysis (Fast-vs-Fast on 298 AFs, others on 65 Tweety AFs) -
Kendall’s Tau (τ) (Median)

48

Cat Dbs Ser Proa Proc Prog Proi Prop Pros

Cat 0.000 0.293 0.342 0.216 0.353 0.365 0.356 0.359 0.148
Dbs 0.293 0.000 0.338 0.218 0.341 0.347 0.357 0.343 0.134
Ser 0.342 0.338 0.000 0.309 0.333 0.327 0.327 0.330 0.241
Proa 0.216 0.218 0.309 0.000 0.350 0.313 0.312 0.332 0.262
Proc 0.353 0.341 0.333 0.350 0.000 0.366 0.375 0.287 0.261
Prog 0.365 0.347 0.327 0.313 0.366 0.000 0.371 0.382 0.240
Proi 0.356 0.357 0.327 0.312 0.375 0.371 0.000 0.354 0.257
Prop 0.359 0.343 0.330 0.332 0.287 0.382 0.354 0.000 0.244
Pros 0.148 0.134 0.241 0.262 0.261 0.240 0.257 0.244 0.000

Table 13: Overall Hybrid Analysis (Fast-vs-Fast on 298 AFs, others on 65 Tweety AFs) -
Kendall’s Tau (τ) (Standard Deviation)

Cat Dbs Ser Proa Proc Prog Proi Prop Pros

Cat 1.000 0.323 0.270 0.095 0.296 0.298 0.309 0.238 0.011
Dbs 0.323 1.000 0.275 0.109 0.300 0.269 0.265 0.251 0.013
Ser 0.270 0.275 1.000 0.247 0.175 0.213 0.163 0.179 0.088
Proa 0.095 0.109 0.247 1.000 0.228 0.204 0.226 0.237 0.134
Proc 0.296 0.300 0.175 0.228 1.000 0.272 0.259 0.545 0.038
Prog 0.298 0.269 0.213 0.204 0.272 1.000 0.307 0.315 0.029
Proi 0.309 0.265 0.163 0.226 0.259 0.307 1.000 0.286 0.066
Prop 0.238 0.251 0.179 0.237 0.545 0.315 0.286 1.000 0.056
Pros 0.011 0.013 0.088 0.134 0.038 0.029 0.066 0.056 1.000

Table 14: Overall Hybrid Analysis (Fast-vs-Fast on 298 AFs, others on 65 Tweety AFs) -
Spearman’s Rho (ρ) (Average)

Cat Dbs Ser Proa Proc Prog Proi Prop Pros

Cat 1.000 0.219 0.191 0.032 0.223 0.204 0.198 0.090 0.001
Dbs 0.219 1.000 0.249 0.043 0.183 0.189 0.154 0.162 0.001
Ser 0.191 0.249 1.000 0.182 0.053 0.140 0.093 0.089 0.068
Proa 0.032 0.043 0.182 1.000 0.105 0.130 0.110 0.181 0.078
Proc 0.223 0.183 0.053 0.105 1.000 0.172 0.111 0.498 0.006
Prog 0.204 0.189 0.140 0.130 0.172 1.000 0.185 0.185 -0.006
Proi 0.198 0.154 0.093 0.110 0.111 0.185 1.000 0.157 0.006
Prop 0.090 0.162 0.089 0.181 0.498 0.185 0.157 1.000 0.011
Pros 0.001 0.001 0.068 0.078 0.006 -0.006 0.006 0.011 1.000

Table 15: Overall Hybrid Analysis (Fast-vs-Fast on 298 AFs, others on 65 Tweety AFs) -
Spearman’s Rho (ρ) (Median)

49

Cat Dbs Ser Proa Proc Prog Proi Prop Pros

Cat 0.000 0.302 0.373 0.241 0.372 0.389 0.369 0.377 0.174
Dbs 0.302 0.000 0.366 0.246 0.356 0.368 0.378 0.360 0.162
Ser 0.373 0.366 0.000 0.357 0.363 0.348 0.362 0.361 0.291
Proa 0.241 0.246 0.357 0.000 0.393 0.342 0.336 0.374 0.311
Proc 0.372 0.356 0.363 0.393 0.000 0.380 0.397 0.284 0.317
Prog 0.389 0.368 0.348 0.342 0.380 0.000 0.384 0.402 0.278
Proi 0.369 0.378 0.362 0.336 0.397 0.384 0.000 0.365 0.304
Prop 0.377 0.360 0.361 0.374 0.284 0.402 0.365 0.000 0.293
Pros 0.174 0.162 0.291 0.311 0.317 0.278 0.304 0.293 0.000

Table 16: Overall Hybrid Analysis (Fast-vs-Fast on 298 AFs, others on 65 Tweety AFs) -
Spearman’s Rho (ρ) (Standard Deviation)

Cat Dbs Ser Proa Proc Prog Proi Prop Pros

Cat 1.000 0.230 0.072 0.034 0.077 0.120 0.127 0.046 -0.003
Dbs 0.230 1.000 0.076 0.046 0.092 0.091 0.088 0.072 -0.000
Ser 0.072 0.076 1.000 0.105 0.042 0.120 0.043 0.055 0.061
Proa 0.034 0.046 0.105 1.000 0.056 0.055 0.073 0.079 0.145
Proc 0.077 0.092 0.042 0.056 1.000 0.093 0.055 0.417 0.009
Prog 0.120 0.091 0.120 0.055 0.093 1.000 0.111 0.100 0.004
Proi 0.127 0.088 0.043 0.073 0.055 0.111 1.000 0.078 0.028
Prop 0.046 0.072 0.055 0.079 0.417 0.100 0.078 1.000 0.013
Pros -0.003 -0.000 0.061 0.145 0.009 0.004 0.028 0.013 1.000

Table 17: Cyclic Hybrid Analysis (Fast-vs-Fast on 275 AFs, others on 45 Tweety AFs) -
Kendall’s Tau (τ) (Average)

Cat Dbs Ser Proa Proc Prog Proi Prop Pros

Cat 1.000 0.147 0.044 0.019 0.051 0.060 0.096 0.033 -0.001
Dbs 0.147 1.000 0.037 0.025 0.079 0.082 0.082 0.068 0.001
Ser 0.044 0.037 1.000 0.084 0.019 0.088 0.016 0.045 0.074
Proa 0.019 0.025 0.084 1.000 0.001 0.040 0.043 0.073 0.070
Proc 0.051 0.079 0.019 0.001 1.000 0.088 0.047 0.386 0.014
Prog 0.060 0.082 0.088 0.040 0.088 1.000 0.056 0.086 -0.007
Proi 0.096 0.082 0.016 0.043 0.047 0.056 1.000 0.060 0.022
Prop 0.033 0.068 0.045 0.073 0.386 0.086 0.060 1.000 0.011
Pros -0.001 0.001 0.074 0.070 0.014 -0.007 0.022 0.011 1.000

Table 18: Cyclic Hybrid Analysis (Fast-vs-Fast on 275 AFs, others on 45 Tweety AFs) -
Kendall’s Tau (τ) (Median)

50

Cat Dbs Ser Proa Proc Prog Proi Prop Pros

Cat 0.000 0.242 0.180 0.094 0.152 0.234 0.216 0.135 0.072
Dbs 0.242 0.000 0.178 0.107 0.125 0.169 0.187 0.123 0.072
Ser 0.180 0.178 0.000 0.176 0.165 0.188 0.133 0.154 0.149
Proa 0.094 0.107 0.176 0.000 0.221 0.136 0.141 0.193 0.241
Proc 0.152 0.125 0.165 0.221 0.000 0.188 0.167 0.194 0.164
Prog 0.234 0.169 0.188 0.136 0.188 0.000 0.208 0.204 0.127
Proi 0.216 0.187 0.133 0.141 0.167 0.208 0.000 0.140 0.174
Prop 0.135 0.123 0.154 0.193 0.194 0.204 0.140 0.000 0.130
Pros 0.072 0.072 0.149 0.241 0.164 0.127 0.174 0.130 0.000

Table 19: Cyclic Hybrid Analysis (Fast-vs-Fast on 275 AFs, others on 45 Tweety AFs) -
Kendall’s Tau (τ) (Standard Deviation)

Cat Dbs Ser Proa Proc Prog Proi Prop Pros

Cat 1.000 0.276 0.086 0.038 0.106 0.141 0.154 0.062 -0.009
Dbs 0.276 1.000 0.089 0.054 0.127 0.118 0.115 0.095 -0.007
Ser 0.086 0.089 1.000 0.097 0.044 0.105 0.048 0.071 0.052
Proa 0.038 0.054 0.097 1.000 0.064 0.056 0.095 0.103 0.123
Proc 0.106 0.127 0.044 0.064 1.000 0.117 0.068 0.478 0.008
Prog 0.141 0.118 0.105 0.056 0.117 1.000 0.136 0.125 -0.011
Proi 0.154 0.115 0.048 0.095 0.068 0.136 1.000 0.101 0.036
Prop 0.062 0.095 0.071 0.103 0.478 0.125 0.101 1.000 0.020
Pros -0.009 -0.007 0.052 0.123 0.008 -0.011 0.036 0.020 1.000

Table 20: Cyclic Hybrid Analysis (Fast-vs-Fast on 275 AFs, others on 45 Tweety AFs) -
Spearman’s Rho (ρ) (Average)

Cat Dbs Ser Proa Proc Prog Proi Prop Pros

Cat 1.000 0.194 0.059 0.022 0.070 0.090 0.123 0.039 -0.001
Dbs 0.194 1.000 0.056 0.035 0.105 0.115 0.106 0.096 0.000
Ser 0.059 0.056 1.000 0.069 0.020 0.069 0.022 0.074 0.079
Proa 0.022 0.035 0.069 1.000 0.013 0.026 0.086 0.115 0.069
Proc 0.070 0.105 0.020 0.013 1.000 0.124 0.022 0.455 0.001
Prog 0.090 0.115 0.069 0.026 0.124 1.000 0.080 0.130 -0.006
Proi 0.123 0.106 0.022 0.086 0.022 0.080 1.000 0.103 0.033
Prop 0.039 0.096 0.074 0.115 0.455 0.130 0.103 1.000 0.018
Pros -0.001 0.000 0.079 0.069 0.001 -0.006 0.033 0.018 1.000

Table 21: Cyclic Hybrid Analysis (Fast-vs-Fast on 275 AFs, others on 45 Tweety AFs) -
Spearman’s Rho (ρ) (Median)

51

Cat Dbs Ser Proa Proc Prog Proi Prop Pros

Cat 0.000 0.260 0.236 0.127 0.202 0.284 0.244 0.172 0.108
Dbs 0.260 0.000 0.226 0.143 0.178 0.229 0.236 0.172 0.108
Ser 0.236 0.226 0.000 0.229 0.209 0.199 0.187 0.206 0.213
Proa 0.127 0.143 0.229 0.000 0.286 0.187 0.188 0.262 0.292
Proc 0.202 0.178 0.209 0.286 0.000 0.234 0.216 0.204 0.226
Prog 0.284 0.229 0.199 0.187 0.234 0.000 0.249 0.250 0.163
Proi 0.244 0.236 0.187 0.188 0.216 0.249 0.000 0.180 0.229
Prop 0.172 0.172 0.206 0.262 0.204 0.250 0.180 0.000 0.186
Pros 0.108 0.108 0.213 0.292 0.226 0.163 0.229 0.186 0.000

Table 22: Cyclic Hybrid Analysis (Fast-vs-Fast on 275 AFs, others on 45 Tweety AFs) -
Spearman’s Rho (ρ) (Standard Deviation)

Cat Dbs Ser Proa Proc Prog Proi Prop Pros

Cat 1.000 0.862 0.637 0.713 0.663 0.607 0.611 0.599 0.252
Dbs 0.862 1.000 0.643 0.716 0.633 0.565 0.567 0.564 0.231
Ser 0.637 0.643 1.000 0.532 0.430 0.420 0.401 0.392 0.190
Proa 0.713 0.716 0.532 1.000 0.536 0.482 0.473 0.491 0.277
Proc 0.663 0.633 0.430 0.536 1.000 0.604 0.642 0.651 0.115
Prog 0.607 0.565 0.420 0.482 0.604 1.000 0.657 0.710 0.128
Proi 0.611 0.567 0.401 0.473 0.642 0.657 1.000 0.662 0.139
Prop 0.599 0.564 0.392 0.491 0.651 0.710 0.662 1.000 0.144
Pros 0.252 0.231 0.190 0.277 0.115 0.128 0.139 0.144 1.000

Table 23: Acyclic Hybrid Analysis (Fast-vs-Fast on 23 AFs, others on 20 Tweety AFs) -
Kendall’s Tau (τ) (Average)

Cat Dbs Ser Proa Proc Prog Proi Prop Pros

Cat 1.000 1.000 0.535 0.814 0.706 0.591 0.620 0.646 0.059
Dbs 1.000 1.000 0.535 0.752 0.706 0.591 0.620 0.553 0.124
Ser 0.535 0.535 1.000 0.505 0.346 0.337 0.298 0.270 0.016
Proa 0.814 0.752 0.505 1.000 0.552 0.449 0.468 0.478 0.126
Proc 0.706 0.706 0.346 0.552 1.000 0.830 0.810 0.800 0.025
Prog 0.591 0.591 0.337 0.449 0.830 1.000 0.941 0.876 -0.011
Proi 0.620 0.620 0.298 0.468 0.810 0.941 1.000 0.800 -0.063
Prop 0.646 0.553 0.270 0.478 0.800 0.876 0.800 1.000 -0.003
Pros 0.059 0.124 0.016 0.126 0.025 -0.011 -0.063 -0.003 1.000

Table 24: Acyclic Hybrid Analysis (Fast-vs-Fast on 23 AFs, others on 20 Tweety AFs) -
Kendall’s Tau (τ) (Median)

52

Cat Dbs Ser Proa Proc Prog Proi Prop Pros

Cat 0.000 0.215 0.294 0.270 0.341 0.383 0.381 0.407 0.403
Dbs 0.215 0.000 0.279 0.253 0.374 0.416 0.419 0.425 0.350
Ser 0.294 0.279 0.000 0.339 0.441 0.454 0.469 0.471 0.357
Proa 0.270 0.253 0.339 0.000 0.358 0.388 0.402 0.398 0.423
Proc 0.341 0.374 0.441 0.358 0.000 0.418 0.395 0.382 0.392
Prog 0.383 0.416 0.454 0.388 0.418 0.000 0.380 0.350 0.375
Proi 0.381 0.419 0.469 0.402 0.395 0.380 0.000 0.356 0.372
Prop 0.407 0.425 0.471 0.398 0.382 0.350 0.356 0.000 0.378
Pros 0.403 0.350 0.357 0.423 0.392 0.375 0.372 0.378 0.000

Table 25: Acyclic Hybrid Analysis (Fast-vs-Fast on 23 AFs, others on 20 Tweety AFs) -
Kendall’s Tau (τ) (Standard Deviation)

Cat Dbs Ser Proa Proc Prog Proi Prop Pros

Cat 1.000 0.882 0.684 0.770 0.724 0.650 0.657 0.635 0.253
Dbs 0.882 1.000 0.695 0.769 0.691 0.608 0.604 0.601 0.244
Ser 0.684 0.695 1.000 0.583 0.470 0.455 0.423 0.423 0.167
Proa 0.770 0.769 0.583 1.000 0.597 0.538 0.520 0.540 0.263
Proc 0.724 0.691 0.470 0.597 1.000 0.621 0.687 0.695 0.105
Prog 0.650 0.608 0.455 0.538 0.621 1.000 0.690 0.744 0.119
Proi 0.657 0.604 0.423 0.520 0.687 0.690 1.000 0.703 0.133
Prop 0.635 0.601 0.423 0.540 0.695 0.744 0.703 1.000 0.137
Pros 0.253 0.244 0.167 0.263 0.105 0.119 0.133 0.137 1.000

Table 26: Acyclic Hybrid Analysis (Fast-vs-Fast on 23 AFs, others on 20 Tweety AFs) -
Spearman’s Rho (ρ) (Average)

Cat Dbs Ser Proa Proc Prog Proi Prop Pros

Cat 1.000 1.000 0.647 0.898 0.850 0.757 0.821 0.802 0.075
Dbs 1.000 1.000 0.656 0.907 0.850 0.757 0.821 0.714 0.119
Ser 0.647 0.656 1.000 0.595 0.459 0.475 0.458 0.415 0.008
Proa 0.898 0.907 0.595 1.000 0.620 0.524 0.545 0.570 0.134
Proc 0.850 0.850 0.459 0.620 1.000 0.916 0.895 0.904 0.037
Prog 0.757 0.757 0.475 0.524 0.916 1.000 0.976 0.934 -0.038
Proi 0.821 0.821 0.458 0.545 0.895 0.976 1.000 0.850 -0.105
Prop 0.802 0.714 0.415 0.570 0.904 0.934 0.850 1.000 0.008
Pros 0.075 0.119 0.008 0.134 0.037 -0.038 -0.105 0.008 1.000

Table 27: Acyclic Hybrid Analysis (Fast-vs-Fast on 23 AFs, others on 20 Tweety AFs) -
Spearman’s Rho (ρ) (Median)

53

Cat Dbs Ser Proa Proc Prog Proi Prop Pros

Cat 0.000 0.191 0.282 0.257 0.306 0.362 0.366 0.410 0.434
Dbs 0.191 0.000 0.258 0.255 0.347 0.396 0.416 0.423 0.382
Ser 0.282 0.258 0.000 0.364 0.452 0.468 0.501 0.491 0.405
Proa 0.257 0.255 0.364 0.000 0.349 0.375 0.403 0.408 0.464
Proc 0.306 0.347 0.452 0.349 0.000 0.411 0.375 0.368 0.453
Prog 0.362 0.396 0.468 0.375 0.411 0.000 0.358 0.348 0.423
Proi 0.366 0.416 0.501 0.403 0.375 0.358 0.000 0.330 0.419
Prop 0.410 0.423 0.491 0.408 0.368 0.348 0.330 0.000 0.438
Pros 0.434 0.382 0.405 0.464 0.453 0.423 0.419 0.438 0.000

Table 28: Acyclic Hybrid Analysis (Fast-vs-Fast on 23 AFs, others on 20 Tweety AFs) -
Spearman’s Rho (ρ) (Standard Deviation)

Cat Dbs Ser Proa Proc Prog Proi Prop Pros

Cat 1.000 0.196 0.792 0.067 0.533 0.510 0.523 0.496 0.027
Dbs 0.196 1.000 0.789 0.072 0.518 0.501 0.523 0.493 0.024
Ser 0.792 0.789 1.000 0.566 0.413 0.399 0.445 0.377 0.272
Proa 0.067 0.072 0.566 1.000 0.457 0.420 0.362 0.365 0.144
Proc 0.533 0.518 0.413 0.457 1.000 0.539 0.433 0.581 0.137
Prog 0.510 0.501 0.399 0.420 0.539 1.000 0.535 0.576 0.236
Proi 0.523 0.523 0.445 0.362 0.433 0.535 1.000 0.533 0.237
Prop 0.496 0.493 0.377 0.365 0.581 0.576 0.533 1.000 0.277
Pros 0.027 0.024 0.272 0.144 0.137 0.236 0.237 0.277 1.000

Table 29: Sparse Hybrid Analysis (Fast-vs-Fast on 143 AFs, others on 7 Tweety AFs) -
Kendall’s Tau (τ) (Average)

Cat Dbs Ser Proa Proc Prog Proi Prop Pros

Cat 1.000 0.076 0.934 0.013 0.253 0.253 0.294 0.410 0.001
Dbs 0.076 1.000 0.934 0.021 0.253 0.189 0.294 0.410 0.001
Ser 0.934 0.934 1.000 0.527 0.187 0.116 0.099 0.011 0.011
Proa 0.013 0.021 0.527 1.000 0.314 0.162 0.015 0.162 0.095
Proc 0.253 0.253 0.187 0.314 1.000 0.382 0.263 0.559 -0.132
Prog 0.253 0.189 0.116 0.162 0.382 1.000 0.421 0.621 -0.015
Proi 0.294 0.294 0.099 0.015 0.263 0.421 1.000 0.448 -0.077
Prop 0.410 0.410 0.011 0.162 0.559 0.621 0.448 1.000 -0.095
Pros 0.001 0.001 0.011 0.095 -0.132 -0.015 -0.077 -0.095 1.000

Table 30: Sparse Hybrid Analysis (Fast-vs-Fast on 143 AFs, others on 7 Tweety AFs) -
Kendall’s Tau (τ) (Median)

54

Cat Dbs Ser Proa Proc Prog Proi Prop Pros

Cat 0.000 0.256 0.228 0.205 0.408 0.428 0.418 0.472 0.175
Dbs 0.256 0.000 0.233 0.183 0.422 0.434 0.418 0.474 0.149
Ser 0.228 0.233 0.000 0.409 0.521 0.543 0.485 0.546 0.468
Proa 0.205 0.183 0.409 0.000 0.374 0.396 0.441 0.461 0.232
Proc 0.408 0.422 0.521 0.374 0.000 0.408 0.505 0.416 0.550
Prog 0.428 0.434 0.543 0.396 0.408 0.000 0.418 0.452 0.497
Proi 0.418 0.418 0.485 0.441 0.505 0.418 0.000 0.422 0.490
Prop 0.472 0.474 0.546 0.461 0.416 0.452 0.422 0.000 0.488
Pros 0.175 0.149 0.468 0.232 0.550 0.497 0.490 0.488 0.000

Table 31: Sparse Hybrid Analysis (Fast-vs-Fast on 143 AFs, others on 7 Tweety AFs) -
Kendall’s Tau (τ) (Standard Deviation)

Cat Dbs Ser Proa Proc Prog Proi Prop Pros

Cat 1.000 0.232 0.812 0.069 0.567 0.547 0.524 0.508 0.019
Dbs 0.232 1.000 0.803 0.079 0.556 0.547 0.523 0.510 0.017
Ser 0.812 0.803 1.000 0.590 0.401 0.398 0.434 0.356 0.228
Proa 0.069 0.079 0.590 1.000 0.497 0.459 0.368 0.376 0.086
Proc 0.567 0.556 0.401 0.497 1.000 0.554 0.440 0.607 0.055
Prog 0.547 0.547 0.398 0.459 0.554 1.000 0.567 0.586 0.204
Proi 0.524 0.523 0.434 0.368 0.440 0.567 1.000 0.560 0.198
Prop 0.508 0.510 0.356 0.376 0.607 0.586 0.560 1.000 0.250
Pros 0.019 0.017 0.228 0.086 0.055 0.204 0.198 0.250 1.000

Table 32: Sparse Hybrid Analysis (Fast-vs-Fast on 143 AFs, others on 7 Tweety AFs) -
Spearman’s Rho (ρ) (Average)

Cat Dbs Ser Proa Proc Prog Proi Prop Pros

Cat 1.000 0.106 0.982 0.017 0.371 0.283 0.324 0.554 -0.001
Dbs 0.106 1.000 0.982 0.029 0.371 0.286 0.324 0.554 -0.001
Ser 0.982 0.982 1.000 0.635 0.319 0.187 0.093 0.009 0.008
Proa 0.017 0.029 0.635 1.000 0.425 0.243 0.043 0.267 0.080
Proc 0.371 0.371 0.319 0.425 1.000 0.404 0.311 0.586 -0.292
Prog 0.283 0.286 0.187 0.243 0.404 1.000 0.511 0.723 0.002
Proi 0.324 0.324 0.093 0.043 0.311 0.511 1.000 0.571 -0.130
Prop 0.554 0.554 0.009 0.267 0.586 0.723 0.571 1.000 -0.140
Pros -0.001 -0.001 0.008 0.080 -0.292 0.002 -0.130 -0.140 1.000

Table 33: Sparse Hybrid Analysis (Fast-vs-Fast on 143 AFs, others on 7 Tweety AFs) -
Spearman’s Rho (ρ) (Median)

55

Cat Dbs Ser Proa Proc Prog Proi Prop Pros

Cat 0.000 0.271 0.230 0.223 0.381 0.395 0.419 0.493 0.186
Dbs 0.271 0.000 0.239 0.204 0.392 0.395 0.419 0.492 0.162
Ser 0.230 0.239 0.000 0.453 0.551 0.559 0.495 0.569 0.505
Proa 0.223 0.204 0.453 0.000 0.352 0.370 0.441 0.480 0.287
Proc 0.381 0.392 0.551 0.352 0.000 0.395 0.502 0.411 0.603
Prog 0.395 0.395 0.559 0.370 0.395 0.000 0.397 0.478 0.536
Proi 0.419 0.419 0.495 0.441 0.502 0.397 0.000 0.412 0.525
Prop 0.493 0.492 0.569 0.480 0.411 0.478 0.412 0.000 0.539
Pros 0.186 0.162 0.505 0.287 0.603 0.536 0.525 0.539 0.000

Table 34: Sparse Hybrid Analysis (Fast-vs-Fast on 143 AFs, others on 7 Tweety AFs) -
Spearman’s Rho (ρ) (Standard Deviation)

Cat Dbs Ser Proa Proc Prog Proi Prop Pros

Cat 1.000 0.321 0.052 0.030 0.049 0.063 0.111 0.016 0.007
Dbs 0.321 1.000 0.063 0.035 0.065 0.057 0.077 0.048 0.005
Ser 0.052 0.063 1.000 0.099 0.054 0.178 0.055 0.079 0.060
Proa 0.030 0.035 0.099 1.000 0.051 0.042 0.076 0.076 0.214
Proc 0.049 0.065 0.054 0.051 1.000 0.078 0.039 0.410 -0.002
Prog 0.063 0.057 0.178 0.042 0.078 1.000 0.074 0.072 0.016
Proi 0.111 0.077 0.055 0.076 0.039 0.074 1.000 0.059 0.048
Prop 0.016 0.048 0.079 0.076 0.410 0.072 0.059 1.000 0.001
Pros 0.007 0.005 0.060 0.214 -0.002 0.016 0.048 0.001 1.000

Table 35: Dense Hybrid Analysis (Fast-vs-Fast on 98 AFs, others on 30 Tweety AFs) -
Kendall’s Tau (τ) (Average)

Cat Dbs Ser Proa Proc Prog Proi Prop Pros

Cat 1.000 0.256 0.040 0.037 0.022 0.043 0.102 0.010 0.018
Dbs 0.256 1.000 0.055 0.026 0.065 0.051 0.078 0.033 0.009
Ser 0.040 0.055 1.000 0.082 0.021 0.138 0.032 0.067 0.060
Proa 0.037 0.026 0.082 1.000 0.000 0.033 0.051 0.064 0.068
Proc 0.022 0.065 0.021 0.000 1.000 0.089 0.018 0.362 0.007
Prog 0.043 0.051 0.138 0.033 0.089 1.000 0.041 0.056 -0.010
Proi 0.102 0.078 0.032 0.051 0.018 0.041 1.000 0.056 0.023
Prop 0.010 0.033 0.067 0.064 0.362 0.056 0.056 1.000 -0.011
Pros 0.018 0.009 0.060 0.068 0.007 -0.010 0.023 -0.011 1.000

Table 36: Dense Hybrid Analysis (Fast-vs-Fast on 98 AFs, others on 30 Tweety AFs) -
Kendall’s Tau (τ) (Median)

56

Cat Dbs Ser Proa Proc Prog Proi Prop Pros

Cat 0.000 0.233 0.131 0.079 0.104 0.175 0.176 0.100 0.091
Dbs 0.233 0.000 0.114 0.095 0.105 0.168 0.188 0.118 0.088
Ser 0.131 0.114 0.000 0.191 0.169 0.193 0.140 0.146 0.147
Proa 0.079 0.095 0.191 0.000 0.228 0.133 0.145 0.205 0.324
Proc 0.104 0.105 0.169 0.228 0.000 0.172 0.134 0.181 0.174
Prog 0.175 0.168 0.193 0.133 0.172 0.000 0.141 0.193 0.138
Proi 0.176 0.188 0.140 0.145 0.134 0.141 0.000 0.113 0.187
Prop 0.100 0.118 0.146 0.205 0.181 0.193 0.113 0.000 0.144
Pros 0.091 0.088 0.147 0.324 0.174 0.138 0.187 0.144 0.000

Table 37: Dense Hybrid Analysis (Fast-vs-Fast on 98 AFs, others on 30 Tweety AFs) -
Kendall’s Tau (τ) (Standard Deviation)

Cat Dbs Ser Proa Proc Prog Proi Prop Pros

Cat 1.000 0.381 0.067 0.030 0.065 0.067 0.144 0.021 -0.001
Dbs 0.381 1.000 0.080 0.035 0.089 0.068 0.097 0.063 -0.006
Ser 0.067 0.080 1.000 0.089 0.057 0.156 0.062 0.105 0.056
Proa 0.030 0.035 0.089 1.000 0.052 0.028 0.094 0.097 0.223
Proc 0.065 0.089 0.057 0.052 1.000 0.094 0.046 0.460 -0.007
Prog 0.067 0.068 0.156 0.028 0.094 1.000 0.092 0.089 -0.005
Proi 0.144 0.097 0.062 0.094 0.046 0.092 1.000 0.075 0.062
Prop 0.021 0.063 0.105 0.097 0.460 0.089 0.075 1.000 -0.001
Pros -0.001 -0.006 0.056 0.223 -0.007 -0.005 0.062 -0.001 1.000

Table 38: Dense Hybrid Analysis (Fast-vs-Fast on 98 AFs, others on 30 Tweety AFs) -
Spearman’s Rho (ρ) (Average)

Cat Dbs Ser Proa Proc Prog Proi Prop Pros

Cat 1.000 0.318 0.055 0.044 0.027 0.073 0.155 0.029 0.018
Dbs 0.318 1.000 0.051 0.021 0.094 0.076 0.097 0.066 0.000
Ser 0.055 0.051 1.000 0.064 0.031 0.119 0.036 0.089 0.062
Proa 0.044 0.021 0.064 1.000 -0.009 0.018 0.092 0.093 0.081
Proc 0.027 0.094 0.031 -0.009 1.000 0.097 0.013 0.444 -0.003
Prog 0.073 0.076 0.119 0.018 0.097 1.000 0.068 0.091 -0.029
Proi 0.155 0.097 0.036 0.092 0.013 0.068 1.000 0.095 0.045
Prop 0.029 0.066 0.089 0.093 0.444 0.091 0.095 1.000 -0.014
Pros 0.018 0.000 0.062 0.081 -0.003 -0.029 0.045 -0.014 1.000

Table 39: Dense Hybrid Analysis (Fast-vs-Fast on 98 AFs, others on 30 Tweety AFs) -
Spearman’s Rho (ρ) (Median)

57

Cat Dbs Ser Proa Proc Prog Proi Prop Pros

Cat 0.000 0.243 0.190 0.114 0.150 0.230 0.213 0.133 0.140
Dbs 0.243 0.000 0.157 0.135 0.149 0.229 0.233 0.169 0.137
Ser 0.190 0.157 0.000 0.243 0.208 0.198 0.199 0.196 0.211
Proa 0.114 0.135 0.243 0.000 0.289 0.182 0.190 0.282 0.356
Proc 0.150 0.149 0.208 0.289 0.000 0.222 0.183 0.186 0.238
Prog 0.230 0.229 0.198 0.182 0.222 0.000 0.189 0.238 0.171
Proi 0.213 0.233 0.199 0.190 0.183 0.189 0.000 0.157 0.243
Prop 0.133 0.169 0.196 0.282 0.186 0.238 0.157 0.000 0.205
Pros 0.140 0.137 0.211 0.356 0.238 0.171 0.243 0.205 0.000

Table 40: Dense Hybrid Analysis (Fast-vs-Fast on 98 AFs, others on 30 Tweety AFs) -
Spearman’s Rho (ρ) (Standard Deviation)

58

