
Fakultät für Mathematik und Informatik Artificial Intelligence Group

Implementing Serialization Sequences of
Abstract Argumentation Frameworks

using Answer Set Programming

Bachelorarbeit
zur Erlangung des Grades einer Bachelor of Science (B.Sc.)

im Studiengang Informatik

vorgelegt von
Ulrich Karkmann

Erstgutachter: Prof. Dr. Matthias Thimm
Artificial Intelligence Group

Betreuer: Lars Bengel
Artificial Intelligence Group

Zusammenfassung

Eine einfache und leistungsfähige Methode zur Darstellung und Analyse menschli-
cher Argumentation bieten abstrakte Argumentationsgraphen. Die Argumente bil-
den die Knoten des Graphen, zwischen denen gerichtete Kanten die Widerlegung
eines Arguments durch ein anderes repräsentieren. Diejenigen Mengen von Argu-
menten, die sich innerhalb eines Graphen durchsetzen, werden als Extensionen be-
zeichnet, wobei es verschiedene Arten zur Bestimmung von Extensionen gibt. Die
Argumente bestimmter Extensionen lassen sich in eine Folge von initialen Mengen,
die jeweils die Lösung eines lokalen Konflikts repräsentieren, serialisieren. Damit
werden die initialen Mengen so in eine Reihenfolge gebracht, dass sie der menschli-
chen Art entspricht, sequentiell zu argumentieren. Die Serialisierung kann die Über-
zeugungskraft einer Argumentation verbessern und zum Vergleich verschiedener
Argumentationen herangezogen werden. Die Berechnung solcher Extensionen und
ihrer Serialisierungen ist ein nichtdeterministisches kombinatorisches Problem. Ein
Programmierparadigma, das für die Lösung solcher Probleme konzipiert wurde,
ist in Gestalt des Answer Set Programming (ASP) realisiert. In der vorliegenden
Arbeit werden ASP-Kodierungen zur Berechnung verschiedener Arten von initia-
len Mengen und von Serialisierungssequenzen für serialisierbare Semantiken vor-
gestellt und diskutiert. Diese ASP-Kodierungen werden anhand verschiedener Bei-
spiele von abstrakten Argumentationsgraphen hinsichtlich ihrer Korrektheit und
Laufzeit miteinander verglichen. Im Ergebnis stimmen die vom ASP-Solver aus-
gegebenen Serialisierungssequenzen mit denen der Java-Implementierung in jeder
Semantik überein. Der wesentliche Faktor in Bezug auf die Laufzeit ist die An-
zahl der Argumente des jeweiligen Argumentationsgraphen für jede Semantik. Der
ASP-Solver ist bei fünf Semantiken schneller und in den verbleibenden zwei Se-
mantiken langsamer als die Java-Implementierung. Mit Blick auf die lösbare Größe
eines Argumentationsgraphen ist die Laufzeit der maßgebliche Faktor für die Java
-Implementierung, wohingegen der ASP-Solver durch die Größe des zur Verfügung
stehenden Speichers begrenzt sein kann.

Abstract

Abstract argumentation frameworks offer a simple and powerful method for repre-
senting and analyzing human argumentation. The arguments form the nodes of the
framework, between which directed edges represent the refutation of one argument
by another. The sets of arguments that prevail within a framework are called exten-
sions, and there are different ways of determining extensions. The argumentation
of certain extensions can be serialized into a sequence of initial sets, each represent-
ing a solution to a local conflict. The initial sets are arranged in an order that cor-
responds to the human way of arguing sequentially. Serialization can improve the

v

persuasiveness of an argumentation and can be used to compare different argumen-
tations. The calculation of such extensions and their serializations is a nondetermin-
istic combinatorial problem. A programming paradigm that was designed to solve
such problems is realized in the form of Answer Set Programming (ASP). In this
thesis, ASP encodings for computing different types of initial sets and serialization
sequences for semantics that can be serialized are presented and discussed. These
ASP encodings are compared with a Java implementation for the same task in terms
of correctness and runtimes using various example argumentation frameworks. As
a result, both solvers show the same serialization sequences for the argumentation
frameworks tested in each of the semantics. The main parameter affecting runtime
for all semantics and both solvers is the argument count of the argumentation frame-
work to be solved. The ASP solver is faster than the Java solver in five semantics,
while it is slower in the remaining two semantics. With respect to the solvable size
of an argumentation framework, for the Java solver the runtime is the main limiting
factor, whereas the ASP solver may be primarily limited by the available memory.

vi

Contents

1. Introduction 1

2. Background 2
2.1. Abstract Argumentation Frameworks 2

2.1.1. Extension-based Semantics . 3
2.1.2. Serialization of Argumentation Semantics 6

2.2. Answer Set Programming . 12
2.2.1. Basic Syntax and Semantics . 12
2.2.2. Grounding . 16

2.3. Related Work . 17

3. ASP Encodings for Initial Sets 17
3.1. Initial Sets . 17

3.1.1. Admissibility . 18
3.1.2. Minimality . 19

3.2. Unattacked Initial Sets . 23
3.3. Unchallenged Initial Sets . 24
3.4. Challenged Initial Sets . 27

4. ASP Encodings for Serialization Sequences 27
4.1. Admissible Sets . 28
4.2. Complete Semantics . 31
4.3. Stable Semantics . 32
4.4. Preferred Semantics . 32
4.5. Grounded Semantics . 34
4.6. Strongly Admissible Semantics . 35
4.7. Unchallenged Semantics . 35

5. Evaluation 38
5.1. Experimental Setup . 39
5.2. Experiment 1: Runtime Dependence of Argument Count 39
5.3. Experiment 2: Runtime Dependence of Density 45
5.4. Experiment 3: Standard Deviation of Runtimes 45
5.5. Experiment 4: Ratio of Solving Time 47

6. Future Work 47

7. Conclusion 48

A. Complete ASP Encodings 53
A.1. Initial Sets . 53
A.2. Unattacked Initial Sets . 56
A.3. Unchallenged Initial Sets . 57

vii

A.4. Challenged Initial Sets . 62
A.5. Serialization Sequence for Admissible Sets 67
A.6. Serialization Sequence for Complete Semantics 71
A.7. Serialization Sequence for Stable Semantics 75
A.8. Serialization Sequence for Preferred Semantics 79
A.9. Serialization Sequence for Grounded Semantics 85
A.10.Serialization Sequence for Strongly Admissible Semantics 88
A.11.Serialization Sequence for Unchallenged Semantics 90

B. Java Code 97
B.1. Computing Serialization Sequences . 97
B.2. Generating Sample Argumentation Frameworks 97

viii

1. Introduction

An important way to describe and follow individual conclusions is to argue, i.e. to
present arguments for or arguments against a certain position. In areas like knowl-
edge representation, reasoning and explainable artificial intelligence it is crucial to
make decisions coherent and transparent. Especially in domains where decisions or
conclusions must be revisable, e.g. if they are relevant to security or ethics, traceabil-
ity of arguments become essential. Various models have been proposed to represent
human reasoning in computer science [4], where abstract argumentation frameworks
have proven to be a simple and powerful representation for explaining the accep-
tance of arguments. Abstract argumentation frameworks are directed graphs with
single arguments as nodes, where the edge between two arguments represents the
invalidation of one argument by the other. Sets of arguments representing a (coher-
ent) point of view are called extensions, that can identify the outcome(s) of a dis-
cussion represented by an argumentation framework. The abstract way to compute
the extension of a given argumentation framework is defined by the corresponding
semantics, with a variety of different semantics available.

Unfortunately, the explanatory power of those semantics does not satisfy the hu-
man need to consider arguments in a particular sequential order. To compensate
for this disadvantage, the concept of serialization was proposed [24, 27], in which the
desired extension is constructed step by step starting from the argumentation frame-
work with a subset of arguments, so-called initial sets. Initial sets are minimal (with
respect to set inclusion) acceptable sets of arguments, that represent a single solved
issue within an argumentation framework [24]. Each initial set can be considered as
a single step within a sequential argumentation. They are selected iteratively from
the original framework and its induced reducts. Merging all initial sets of a particu-
lar serialization sequence leads to the desired extension. This allows to ‘follow’ the
argumentation with respect to the corresponding extension and is also suitable for
comparing different argumentation frameworks [5].

The computation of such serialization sequences is a nondeterministic and com-
plex combinatorial task, for which Answer Set Programming (ASP) is likely to be
suitable. ASP is based on a declarative programming paradigm without any control
structures. While traditional imperative programming is mainly based on control
structures such as conditional loops, variable assignments and I/O statements, a
declarative program does not provide the algorithmic way to find a solution, but
rather defines what counts as a solution to the problem. In logical programming
such as ASP, this is done through the process of automated reasoning, where the
programming system searches for solutions in a knowledge base that satisfy the
given conditions [21]. In particular, ASP can be well suited to solve complex combi-
natorial problems if the human description of the problem comes close to the facts,
rules and constraints used for programming1. In contrast to imperative program-
ming languages, the program in such cases can be relatively short and is easier to

1Therefore some authors refer to ‘modelling’ instead of ‘programming’ [18].

1

understand.
The aim of this bachelor thesis is to combine the described task and the corre-

sponding programming paradigm to provide an implementation for the compu-
tation of serialization sequences of abstract argumentation frameworks using ASP.
The ASP encoding is expected to come closer to the logical description of the struc-
tures of abstract argumentation frameworks and the considered semantics than the
encoding of an imperative programming language. To what extend these expecta-
tions can actually be fulfilled will be shown in this thesis.

First, the theoretical background of abstract argumentation frameworks and seri-
alizable semantics is described in Section 2. The properties and conditions required
to determine the serialization sequences of each suitable semantics are shown in
preparation for their implementation. Some properties and limitations of ASP are
described to understand the encodings, which are described in detail in Section 3
for initial sets and in Section 4 for serialization sequences. In Section 5 the ASP
encodings are evaluated against an implementation in Java with respect to cor-
rectness and runtime. Some suggestions for improving the results of this thesis
through future work are presented in Section 6. Finally, the result are summarized
and discussed in Section 7. The complete encodings are detailed in the Appendix
and are also available online a https://github.com/ukarkmann /ASP-encoding-
for-serialization-sequences.

2. Background

This section first describes the basic properties of abstract argumentation frame-
works, some of their extension-based semantics, and the concept of serialization se-
quences. This is the basis for the ASP code to be implemented and at the same time
describes the objective of this thesis. We then briefly describe some of the features
and limitations of ASP to help readers who are not familiar with ASP understand
the code.

2.1. Abstract Argumentation Frameworks

Abstract argumentation frameworks [11] consist of a finite set of arguments and
a single attack relation between two arguments, thus spanning a directed graph
with the arguments as nodes and the relation as directed edges. There is no inner
structure of the arguments to be considered.

Definition 1 An abstract argumentation framework is a pair AF = (A,≻) with A as the
set of arguments and ≻ the binary attack relation with ≻⊆ A×A.

We have a ≻ b when a attacking b with a, b ∈ A (and a ̸≻ b when a not attacking
b, respectively). The symbol ≻ can also be used to illustrate an attack between two
sets of arguments S1 ≻ S2 if a ∈ S1, b ∈ S2 and a ≻ b. Having defined the syntax for

2

abstract argumentation frameworks, the next step is to select an appropriate seman-
tics. It turns out to be a rather complex problem with several reasonable solutions
possible [10, 8, 19, 7].

Among such proposed semantics, only the so-called extension-based semantics
will be considered here, which define specific subsets of arguments within the ar-
gumentation framework (extensions), that are accepted within the argumentation
framework and considered to be ‘meaningful’ from a human perspective [1]. A
single extension can be interpreted as a particular (coherent) position taken in a dis-
cussion. Depending on the type of extension there can be more than one such set for
a single argumentation framework.

2.1.1. Extension-based Semantics

The basic idea of extension-based semantics is that an argument a rules out an ar-
gument b in case of a ≻ b (including self-attacking a ≻ a and pairwise attacking
a ≻ b ∧ b ≻ a). A large number of sets and extensions have been defined, of which
only some of the most important are described here and whose definitions have
been adopted from [4, 11]. First of all, any extension must reasonably be conflict-free,
i.e. there must be no attacks (= relations) within an extension, which leads to the
definition of conflict-free sets:

Definition 2 Let AF = (A,≻) be an argumentation framework and S ⊆ A, then S is a
conflict-free set iff for all a, b ∈ S it holds that a ̸≻ b.

For further discussions it is useful to define the set of arguments S+
AF which are

attacked by at least one argument of S and the set of arguments S−AF which are
attacking at least one argument of S:

Definition 3 Let AF = (A,≻) be an argumentation framework and S ⊆ A, then we define

S+
AF := {b ∈ A | ∃a ∈ S : a ≻ b}

S−AF := {b ∈ A | ∃a ∈ S : b ≻ a}

For each conflict-free set S it follows S ∩ S+
AF = ∅ and S ∩ S−AF = ∅, as otherwise

S would not be conflict-free. Being conflict-free is a necessary but not a sufficient
condition for an extension, since arguments in a conflict-free set S can be attacked
from external arguments b ∈ A \ S. This leads to the concept of ’defending’ an
argument by (other) arguments. As there is only the attack relation, the defense
can be realized by attacking all attackers. An argument a is defended by a set S iff
all arguments attacking a are attacked by arguments from S. Arguments that are
not attacked at all within an argumentation framework are at least defended by the
empty set. The set of arguments defended by a set S is given by the characteristic
function ∆AF (S):

3

Definition 4 Let AF = (A,≻) be an argumentation framework. The characteristic func-
tion ∆AF of AF is the function ∆AF : 2A → 2A defined as ∆AF (S) := {a ∈ A | a is
defended by S }.

Both conflict-freeness and defence lead to the definition of an admissible set.

Definition 5 Let AF = (A,≻) be an argumentation framework and S ⊆ A, then S is an
admissible set iff S is conflict-free and a is defended by S for all a ∈ S.

Equivalent to this definition, a set S is admissible iff it is conflict-free and S− ⊆ S+.
Therefore the empty set is always admissible and S ⊆ ∆AF (S). Furthermore, an
admissible set remains admissible if a defended argument is added; admissibility
also remains, if two admissible sets are merged and their union is conflict-free [4].

Admissibility is the minimum property of any extension-based semantics, i.e. that
all other semantics described below require admissibility. Since A is finite and the
inclusion of defended arguments does not alter admissibility, collecting all defended
arguments of an admissible set must come to an end. This motivates the definition
of complete semantics:

Definition 6 Let AF = (A,≻) be an argumentation framework and S ⊆ A, then S is a
complete extension iff S is admissible and contains each a ∈ A, that is defended by S.

From this definition it follows for a complete extension S that S = ∆AF (S). There
can be complete extensions that are proper subsets of another complete extension,
or conversely, that are proper supersets of other complete extensions, which leads
to the definition of preferred semantics:

Definition 7 Let AF = (A,≻) be an argumentation framework and S ⊆ A, then S is a
preferred extension iff S is complete and there exists no complete S′ ⊆ A with S ⊊ S

′ .

As the empty set is always admissible, one can start from the empty set, add all de-
fended arguments to obtain a complete extension, and take the ’maximal’ complete
extension (with respect to set inclusion) as the preferred extension. Therefore, each
argumentation framework AF must have at least one preferred extension. From a
human perspective, each preferred extension represents a set of arguments that can-
not be extended by other arguments. In particular, admissibility is lost when two
different preferred extensions are merged. Finally, if we want to obtain an even
stronger extension, we can additionally require attacking every external argument,
which leads to the definition of a stable semantics:

Definition 8 Let AF = (A,≻) be an argumentation framework and S ⊆ A, then S is a
stable extension iff for each a ∈ A \ S there exists b ∈ S with b ≻ a.

This definition is equivalent to Sst ∪ S+
st = A with Sst being a stable extension. It

should be noted that a stable extension does not necessarily exist for an argumenta-
tion framework. Furthermore, we can define the sets of the extensions described for
a specific argumentation framework AF.

4

Definition 9 Let AF = (A,≻) be an argumentation framework and S ⊆ A, then

cf(AF) := {S | S is conflict-free in AF}
ad(AF) := {S | S is admissible in AF}
co(AF) := {S | S is complete in AF}
pr(AF) := {S | S is preferred in AF}
st(AF) := {S | S is stable in AF}

These sets can be ordered with respect to set inclusion:

Proposition 1 Let AF = (A,≻) be an argumentation framework, then the following holds

cf(AF) ⊇ ad(AF) ⊇ co(AF) ⊇ pr(AF) ⊇ st(AF).

While a preferred extension represents the maximal set (with respect to set inclu-
sion) of arguments of a particular viewpoint, the grounded extension Sgr represents
a kind of minimal compromise, i.e. the set of arguments accepted by all different
(complete) extensions.

Definition 10 Let AF = (A,≻) be an argumentation framework and S ⊆ A, then S is
the grounded extension iff S is complete and there exists no complete S‘ ⊆ A with S‘ ⊊ S.

Sgr is defined as such a ‘minimal’ complete extension that has no other complete
extension as a subset. Every argumentation framework has exactly one grounded
extension (which could be the empty set if no argument is generally accepted). This
is equivalent to the intersection of all complete extensions

Sgr = Sco1 ∩ Sco2 ... ∩ Scon

and also corresponds to the so-called minimal fixpoint of the characteristic func-
tion, where the characteristic function is repeatedly applied to its result, starting
with the empty set:

Sgr =
⋃∞

i=1∆
i
AF (∅)

Finally, we should mention the strongly admissible semantics (sa) [2, 9], since we
will also refer to this semantics later:

Definition 11 Let AF = (A,≻) be an argumentation framework and S ⊆ ad(AF) an
admissible set, then S is a strongly admissible extension iff S = ∅ or each a ∈ S is
defended by some strongly admissible S‘ ⊆ S \ {a}.

5

a b

c

d

e

Figure 1: Example AF1 of an abstract argumentation framework.

Example 1 Figure 1 shows an example of an abstract argumentation framework with AF :=
(A,≻), A := {a, b, c, d, e} and ≻:= {(b, a), (b, c), (b, d), (b, e), (c, b), (c, d), (d, b), (e, b)}.
The corresponding extensions are

ad(AF) = {∅, {b}, {c}, {e}, {a, e}, {a, c}, {c, e}, {a, c, e}}
co(AF) = {∅, {b}, {a, c, e}}
pr(AF) = {{b}, {a, c, e}}
st(AF) = {{b}, {a, c, e}}
gr(AF) = {∅}
sa(AF) = {∅}

2.1.2. Serialization of Argumentation Semantics

The concept of serialization was motivated by the observation, that each admissi-
ble set of an argumentation framework can be constructed from minimal acceptable
sets of arguments in a step by step process, starting from the original argumenta-
tion framework. Such sets are non-empty minimal admissible sets and called initial
sets, which each represents a single solved issue within an argumentation frame-
work. The construction starts with the choice of a first initial set S1, which is then
‘substracted’ from the argumentation framework resulting in a so-called S-reduct.
All arguments from S1 and from S+

1 are removed from the original argumentation
framework to yield the first S-reduct. Then the next initial set S2 is chosen from the
first S-reduct and the process of recursively selecting an initial set from the preced-
ing S-reduct creates a finite sequence of initial sets S1, S2.... The union of the sets of
a sequence is always an admissible set.

As mentioned, an initial set is defined as an admissible set that is non-empty and
minimal with respect to set inclusion [27]:

6

a b

c

d

e

reduct
====⇒ a c d

Figure 2: Construction of S-reduct AFS
1 with S = {e}

.

Definition 12 Let AF = (A,≻) be an argumentation framework and S ∈ ad(AF), then
S is an initial set iff S ̸= ∅ and there exists no S′ ∈ ad(AF) with S′ ̸= ∅ and S′ ⊂ S.

Example 2 For the argumentation framework shown in Figure 1 the initial sets are {b}, {c}
and {e}, since these sets are those elements from ad(AF), that are non-empty and minimal
with respect to set inclusion (see Example 1).

The S-reduct mentioned above is denoted AFSi and is derived from the argumen-
tation framework AF and a subset Si of its arguments. We make use of a projection
of AF onto X ⊆ A, defined as the argumentation framework, which only contains
the arguments from X and the relevant relations:

Definition 13 Let AF = (A,≻) be an argumentation framework and X ⊆ A, then the
projection of AF onto X is defined as AF |X := (X,≻ ∩(X ×X))

Now the S-reduct AFS is defined as the projection of AF onto A \ (S ∪ S+) such
that the reduct does not contain the arguments from S and the arguments attacked
S+ attacked by S [3]:

Definition 14 Let AF = (A,≻) be an argumentation framework and S ⊆ A, then the
S-reduct is defined as AFS := AF |A\(S∪S+)

Example 3 Figure 2 shows the construction of the S-reduct AFS
1 with S = {e}. Since e

attacks b, these two arguments (and all corresponding relations) are deleted from AF1. The
arguments a, c and d remain in the S-reduct AFS

1 with the only attack c ≻ d left.

The observation, that each admissible set can be obtained by recursively selecting
an initial set from the last S-reduct, can be derived from the following theorem [24]:

Theorem 1 Let AF = (A,≻) be an argumentation framework and S ⊆ A. S is admissible
iff either

S = ∅ or

S = S1 ∪ S2, whereas S1 is an initial set in AF and S2 is admissible in AFS1 .

7

A similar observation was made for the grounded semantics, since the grounded
extension of an argumentation framework can be constructed by recursively select-
ing all non-attacked arguments from the preceding reduct [27]. This motivated the
construction of other extension-based semantics via a recursive selection process,
which was eventually called serialization sequence. A serialization sequence of an
abstract argumentation framework with respect to a particular semantics is a se-
quence of initial sets whose union is equal to the corresponding extension. In other
words, a serialization sequence is an ordered decomposition of an extension by ini-
tial sets, computed from the argumentation framework itself. The selection process
terminates, if a specific termination condition is met. Depending on the semantics to
be serialized, different types of initial sets are used and different termination condi-
tions apply. Since more than one initial set can be selected at each step, the process
is non-deterministic.

The set of all initial sets of AF is denoted as is(AF). We will need three classes of
initial sets for serialization, is ̸← (unattacked), is ̸↔ (unchallenged) and is↔ (challenged).
The unattacked initials sets contain only arguments, which are not attacked at all.
The unchallenged initial sets contain only arguments that are attacked by non-initial
sets and the challenged initials sets are attacked by another initial set.

Definition 15 Let AF = (A,≻) be an argumentation framework and S an initial set then

is ̸←(AF) := {S | S− = ∅}

is ̸↔(AF) := {S | S− ̸= ∅, ∄S′ ∈ is(AF) with S
′ ≻ S}

is↔(AF) := {S | ∃S′ ∈ is(AF) with S‘ ≻ S}

Example 4 For the argumentation framework shown in Figure 3 there are five initial sets:
{a}, {b}, {d}, {f} and {g}. The argument g is not attacked at all and therefore belongs to
is ̸←(AF2), the arguments d and f belong to is ̸↔(AF2) since they are only attacked by {e}
(which is not an initial set due to the undefeated attack from c). {a} and {b} are admissible
and attack each other, so that they belong to is↔(AF2).

An important property of unattacked initial sets for their computation is that they
always contain exactly one argument:

Proposition 2 It holds that, if S ∈ is ̸←(AF) then |S| = 1.

Each initial set is non-empty and therefore must contain at least one argument.
Sets with more than one unattacked argument cannot be minimal, since such sets
can always be decomposed into sets containing single unattacked arguments.

Having defined initial sets and the S-reduct, a serialization sequence for admissi-
ble sets can be obtained by repeatedly selecting an initial set from the last S-reduct
starting with the original argumentation framework:

(AF, ∅) S1∈is(AF)−−−−−−−→ (AFS1 , S1)
S2∈is(AFS1)−−−−−−−−→ (AFS1∪S2 , S1 ∪ S2)...

8

d e f

c

a b

g

Figure 3: Example AF2 of an abstract argumentation framework.

Definition 16 Let AF = (A,≻) be an argumentation framework. A sequence S =
(S1, .., Sn) is a serialization sequence iff S1 ∈ is(AF) and Si ∈ is(AFS1∪...∪Si−1) for all
i = 2, .., n. The set Ŝ = S1 ∪ ... ∪ Sn is called the extension induced by S .

The above definition describes the serialization sequence for admissible sets. If
we reduce the selectable initial sets to unattacked initial sets and additionally re-
quire that the selection continues until no more unattacked initial set is left in the
last S-reduct, the resulting serialization sequence represents the grounded extension
of the argumentation framework. To put this more generally, we can chose the type
of initial set to select and define the condition under which the selection ends. For-
mally, the selection is performed by a selection function called α and the process
terminates if the termination function called β becomes 1.

Definition 17 Let U be the universal set of all arguments. The selection function α is
defined as α : 22

U ×22U ×22U → 22
U with α(X,Y, Z) ⊆ X∪Y ∪Z for all X,Y, Z ⊆ U .

The different types of initial sets (see Definition 15) are assigned to the three
parameters of the selection function, such that it selects subsets of initial sets for
the construction of the serialization sequence. Therefore α(X,Y, Z) has the form
α(is ̸←(AF), is̸↔(AF), is↔(AF)).

The termination function β can take 0 or 1 as value with 1 indicating the end of
the selection process:

Definition 18 The termination function β is defined as β : (2U ×2U ×U)×2U → {0, 1}.

Each step of a serialization can be understood as a transition from one serialization
state to another serialization state, where the serialization state is defined as a pair
(AF, S) with S ⊆ A. Each step is guided by α with respect to the selection of the
initial set and by β with respect to termination in case β is 1. A finite number of
consecutive transitions from one serialization state (AF, S) to another serialization

9

state (AF ′, S′) is denoted as (AF, S) ⇝α (AF ′, S′). If β terminates the process at
the last state, then (AF, S)⇝α,β (AF ′, S′). Now serializability of a semantics can be
defined:

Definition 19 A semantic σ is serializable by the selection function α and the termina-
tion function β iff for all argumentation frameworks AF we have that σ(AF) = {S |
(AF, ∅)⇝α,β (AF ′, S)}.

Depending on the semantics to be serialized, the types of initial sets that can be
selected and the condition to terminate the construction differ. Not every extension-
based semantics can be serialized, but those described here can [24].

Theorem 2 Let AF = (A,≻) be an argumentation framework and S an initial set.

Admissible semantics is serializable with

αadm(X,Y, Z) = X ∪ Y ∪ Z and βadm(AF, S) = 1.

Complete semantics is serializable with

αadm and βco(AF, S) = 1 if is ̸←(AF) = ∅, 0 otherwise.

Preferred semantics serializable with

αadm and βco(AF, S) = 1 if is(AF) = ∅, 0 otherwise.

Stable semantics is serializable with

αadm and βst(AF, S) = 1 if AF = (∅, ∅), 0 otherwise.

Grounded semantics is serializable with

αgr(X,Y, Z) = X and βco.

Strongly admissible semantics is serializable with

αgr and βadm.

A particular semantics, the unchallenged semantics (uc), is defined solely by its
serialization sequence [6]:

Definition 20 Let AF = (A,≻) be an argumentation framework, S ⊆ A and (S1, .., Sn)
be a serialization sequence with S = S1 ∪ ... ∪ Sn. Then S is an unchallenged extension
(S ∈ uc(AF)) iff for all Si it holds that Si ∈ is ̸←(AFS1∪...∪Si−1) ∪ is ̸↔(AFS1∪...∪Si−1)
and it holds that is ̸←(AFS1∪...∪Sn) ∪ is ̸↔(AFS1∪...∪Sn) = ∅.

To summarize, the corresponding selectable initials sets and termination condi-
tions of each serializable semantics are listed in Table 1.

Example 5 Figure 4 shows an example of serialization of the argumentation framework
given in Figure 1 for a preferred extension with {e}, {a} and {c} as exemplified initial sets
subsequently chosen, resulting in the serialization sequence ({e}, {a}, {c}). This is not the
only solution, since other serialization sequences are possible here, e.g. ({c}, {a}, {e}).

10

Semantics Selectable initial sets Termination condition
ad is(AF) after each step
co is(AF) is ̸←(AF) = ∅
pr is(AF) is(AF) = ∅
st is(AF) AF = (∅, ∅)
gr is ̸←(AF) is ̸←(AF) = ∅
sa is ̸←(AF) after each step
uc (is ̸←(AF) ∪ is ̸↔(AF)) (is ̸←(AF) ∪ is ̸↔(AF)) = ∅

Table 1: Selectable initial sets and termination conditions for serializable semantics.

a b

c

d

e

reduct
====⇒ a c d reduct

====⇒ c d reduct
====⇒ ∅

selected initial sets: {e}, {a}, {c}

Figure 4: Example of serialization sequence for a preferred extension.

11

2.2. Answer Set Programming

Answer Set Programming (ASP) is a declarative programming paradigm that is
used primarily for knowledge representation and reasoning. One of the advantages
of ASP is its so called “elaboration-tolerance” [16]. This means that the human de-
scription of a problem comes close to the ASP encoding, and the ASP encoding is
therefore comparatively short. Additionally, minor changes to the underlying prob-
lem require only minor changes in the ASP encoding. Due to its purely declara-
tive nature, an ASP encoding for a given problem is the same as the corresponding
knowledge base, which consists (mainly) of rules, where facts and constraints are spe-
cial rules. The knowledge base is processed by the so-called ASP-Solver. This solver
generates the so-called stable models or answer sets, which are the minimal models
(with respect to set inclusion) that satisfy the given knowledge base. ASP allows
the use of default negation, thus enabling non-monotonic reasoning. Unlike Prolog,
ASP is not able to handle infinite search spaces, which is not necessary for the pur-
pose of this work, since we only deal with finite sets. On the other hand, ASP can
provide all answer sets in one step.

The knowledge base consists of a set of rules of the form

H1, ..,Hi : −B1, .., Bj , not C1, .., not Ck

where ‘not’ represents default negation. The rule is - under the so-called closed world
assumption - equivalent to the propositional logic formula

H1 ∨ .. ∨Hi ← B1 ∧ .. ∧Bj ,¬C1 ∧ .. ∧ ¬Ck

H1, ..,Hi is the head of a rule, B1, .., Bj , not C1, .., not Ck is called the body of a rule
and describes the conditions under which the head becomes true. A fact is a rule
without a body (and therefore always true) and a constraint is a rule without a head
(and therefore always false). The individual symbols H , B and C are called atoms,
which can be predicates or comparisons containing terms with variables and con-
stants. An atom without variables is called a ground atom and an answer set of a
logic program is a set of ground atoms [21].

2.2.1. Basic Syntax and Semantics

For ASP programming, the integrated ASP system clingo (consisting of the grounder
gringo and the solver clasp, [17]), is available at the University of Potsdam2. This
section gives a brief overview of the syntax for the ASP solver clingo used for this
thesis, as far as it is necessary to understand the encodings presented here.

2https://potassco.org

12

Predicates and constants begin with lowercase letters, while variables begin with
uppercase letters. Each rule line must end with a period. The following code exam-
ples use abstract argumentation frameworks and simple extensions for demonstra-
tion. Applied to an argumentation framework AF := (A,≻), the facts are given as
the set A of arguments and the relation ≻. The property of being an element of a
certain set is described in ASP as a predicate with arity of one, e.g. ‘a’ is a constant
for a ∈ A and is encoded as an argument as

arg(a).

A binary relation is described with a predicate with arity of two, e.g. a ≻ b can be
encoded as

att(a,b).

Both correspond to the Aspartix-format [12], which is used for graph encoding. An
example of an abstract argumentation framework and its complete coding is shown
in Figure 5.

a c

b

arg(a).
arg(b).
arg(c).
att(a,b).
att(b,a).
att(c,b).

Figure 5: Encoding of an abstract argumentation framework.

Typically, facts are stored in a separate file, because the rules (without facts) are in-
tended to apply to different sets of facts (e.g. different argumentation frameworks).
Unlike Prolog, the order of the rules does not matter for the ASP solver and the an-
swer sets. Nevertheless, it has proven advantageous to divide the rules (logically)
into the parts: generating, defining and testing. In the first part, a set of solution
candidates is generated, then some auxiliary predicates are defined and finally the
solution candidates are tested with integrity constraints, eliminating all unwanted
solution candidates. The desired solution candidates are retained as answer sets and
passed on by the solver. The production of solution candidates with successively
elimination of all unwanted candidates, called “guess and check”, is the essential
functional principle of ASP.

The production of all possible subsets of a given set is particularly useful for find-
ing the extensions of an argumentation framework, since the extensions are subsets
of the set of arguments. The subsets of A for example can be constructed using the
two rules3

3These rules are from Aspartix (https://www.dbai.tuwien.ac.at/research/argumentation/aspartix/
dung.html) for use with clingo

13

in(X) :- not out(X), arg(X).

out(X) :- not in(X), arg(X).
(1)

where X is a variable and in(X) indicates that X is an element of the subset;
out(X) is an auxiliary predicate, that indicates that X is not an element of the sub-
set. These rules can be interpreted as propositional logic formulas:

in(X)← ¬ out(X) ∧ arg(X)

out(X)← ¬ in(X) ∧ arg(X)

Example 6 shows the construction of subsets of the set of arguments from the argu-
mentation framework in Figure 5. An alternative way to construct the same subsets
(without the auxiliary predicate out) is to use a so-called choice rule:

{ in(X) } :- arg(X). (2)

Example 6 For the AF in Figure 5, all eight subsets are given as ∅, {a}, {b}, {c}, {a, b},
{a, c}, {b, c}, {a, b, c}. The corresponding output of the ASP solver clingo with the encod-
ing in 1 or 2 with respect to the predicate in/1 is:

Answer 1:4

Answer 2:
in(a)
Answer 3:
in(b)
Answer 4:
in(c)
Answer 5:
in(a), in(b)
Answer 6:
in(a), in(c)
Answer 7:
in(b), in(c)
Answer 8:
in(a), in(b), in(c)

To obtain the conflict-free sets of AF , for example, we need to implement the
definition of conflict-freeness (Definition 2) with a constraint 3:

4An empty line as answer set represents the empty set.

14

:- in(X), in(Y), att(X,Y). (3)

This constraint is equivalent to the propositional logic formula:

false← in(X) ∧ in(Y) ∧ att(X,Y)

and falsifies all solutions with the property described by the constraint. Here solu-
tions with an attack relation within the considered subset are falsified and therefore
eliminated from the answer sets.

Example 7 For the AF in Figure 5, the five conflict-free sets are given as ∅, {a}, {b}, {c},
{a, c}. The constraint 3 excludes the answers 5, 7 and 8 .

The further coding to obtain all admissible sets of AF is shown in 4. The auxiliary
predicate attacked/15 is introduced to flag all arguments, that are attacked from
the corresponding subset. The auxiliary predicate not_defended/1 flags all argu-
ments, that are attacked by arguments, that are not attacked themselves. Finally, a
subset containing undefended arguments cannot be admissible and is falsified by
the last constraint.

attacked(X) :- in(Y), att(Y,X).

not_defended(X) :- att(Y,X), not attacked(Y).

:- in(X), not_defended(X).

(4)

ASP allows to determine the cardinality of a set and use it for further process-
ing. The following line flags an answer set with the predicate not_empty, if the
predicate in/1 holds for at least one element in the set.

not_empty :- { in(X) } > 0. (5)

Comment lines start with a “%”, alternatively comments can be embedded be-
tween “%*” and “*%”. Usually, the user of the program is not interested in the
complete answer sets, but in certain predicates of the answer sets. To restrict the
solver’s output to these predicates, the command #show pred/n. can be used,
where pred/n stands for the desired predicate and its arity n. There are other fea-
tures of clingo, such as placeholders, strong negation, directives, aggregates etc.,
that cannot be described here6.

5Predicates are used to be written as “name/n” where n is the arity of the predicate.
6See the ‘Potassco User Guide’ at https://github.com/potassco/guide/releases/ for further de-

tails of clingo

15

Source Code Output Grounder
arg(a). arg(b). arg(c). arg(a). arg(b). arg(c).
att(a,b). att(b,a). att(c,b). att(a,b). att(b,a). att(c,b).
in(X) :- not out(X), arg(X). in(a):-not out(a).

in(b):-not out(b).
in(c):-not out(c).

out(X) :- not in(X), arg(X). out(a):-not in(a).
out(b):-not in(b).
out(c):-not in(c).

:- in(X), in(Y), att(X,Y). :-in(b),in(a).
:-in(a),in(b).
:-in(b),in(c).

defeated(X) :- in(Y), att(Y,X). defeated(b):-in(a).
defeated(a):-in(b).
defeated(b):-in(c).

not_defended(X) :- att(Y,X), not defeated(Y). not_defended(b):-not defeated(a).
not_defended(a):-not defeated(b).
not_defended(b).

:- in(X), not_defended(X). :-not_defended(a),in(a).
:-in(b).

Table 2: Example of grounding the source code

2.2.2. Grounding

Although the internal operation of the ASP solver is not the focus of this thesis, some
aspects are roughly described here, which will be necessary to understand some lim-
itations arising for particular tasks later. An ASP solver works in two steps: first all
variables contained in the rules are exchanged by ground atoms (so-called ground-
ing), so that the resulting rules are variable-free and only contain ground atoms.
As all ground atoms are either true or false, the grounded rules are propositions in
first order logic. Those grounded rules are passed to the solver, that works similar
to a SAT-solver and determines those (minimal) interpretations (answer sets), that
correspond to the grounded rules .

Example 8 Table 2 shows the grounding of the argumentation framework of Figure 5 with
the rules 1, 3 and 4. The left column lists the knowledge base with the first two lines con-
taining the facts describing the argumentation framework. The right column shows the cor-
responding grounded rules. Note that the first two lines are already grounded in the source
code.

16

2.3. Related Work

Since the introduction of abstract argumentation frameworks by Dung [11], a great
amount of work has been published on related topics, particularly with regard to
extension based semantics of argumentation frameworks (see [1], for example). The
semantics ad, co, pr, st and gr were already defined in this first publication. The
strongly admissible semantics (sa) has been introduced by [2] and the unchallenged
semantics (uc) was recently introduced by [6, 24]. Initial sets as minimal non-empty
admissible sets for the construction of set-based extensions were introduced by [27].
The construction principle for initial sets described above, which will also be used
for the bachelor thesis, has been described in detail by [24]. In this work, it was also
proved that the extensions considered here for serialization are indeed serializable.

3. ASP Encodings for Initial Sets

Encodings for abstract argumentation frameworks in ASP, in particular for the com-
putation of extension-based semantics, have been published by Egly et al. [12] and
are also available as “ASPARTIX - Answer Set Programming Argumentation Rea-
soning Tool”7. However, the computation of initial sets and of serialization se-
quences is not covered in this collection. The published encodings for admissible
sets, for complete semantics and preferred semantics3 are quite straightforward and
were therefore (partly) used as a basis for the encodings considered here.

Since ASP code is a set of rules, we can partition an entire ASP program, with each
partition typically performing a specific task within the program. Therefore, in the
following we will describe the individual tasks of each partition with the applicable
rules and define the complete program as a union of these partitions, e.g. for the
two ASP encodings P1 and P2 their union is defined as P1 ∪ P2

8.
First, the encodings for initial sets are described, since these are the building

blocks of the serialization sequences. In the next section encodings for the serial-
ization sequences are presented. In all programs, the arguments belonging to the
solution, i.e. initial sets or serialization sequences, are specified with the predicate
in/1 or in/2, respectively. Therefore, it is convenient to restrict the output of the
ASP solver to these predicates with the rule #show in/1. or #show in/2.

3.1. Initial Sets

The goal of the ASP program in this section is to provide subsets of arguments that
are (plain) initial sets. As described in Section 2.1.2, initial sets are non-empty min-
imal admissible sets. Typically, the “guess and check”-paradigm is applied by first

7https://www.dbai.tuwien.ac.at/research/argumentation/aspartix/
8Although there is no formal order of the rules, their tasks must necessarily be described one after

the other. However, this should not be understood as if the ASP solver processes the rules in an orderly
manner.

17

generating all possible subsets as solution candidates, which are then each checked
for the desired property [14, 13]. Solution candidates that do not fulfil the desired
property are excluded from the answer sets. Since ASP-code looks unusual com-
pared to imperative programming languages, the code is first described in more
detail and later parts are more tightly bundled.

3.1.1. Admissibility

To generate all subsets of the set of arguments, we use a choice rule and define the
program Iguess:

Listing 1: The encoding Iguess to generate all subsets of arguments.
1 { in(X) } :- arg(X).

The unary relation in/1 indicates that the corresponding argument is an element
of the subset. The choice rule implies that each argument may or may not be an
element of a solution candidate, which means that every possible subset is a solution
candidate, including the empty set and the identity. By definition, every initial set
is non-empty, so empty sets must be excluded from the answer. This is achieved by
the program Inon_empty consisting of two rules:

Listing 2: The encoding Inon_empty to exclude empty solution candidates.
1 non_empty :- in(X).
2
3 :- not non_empty.

The first rule flags a solution candidate with the predicate non_empty if it con-
tains at least one argument. Therefore, only the empty subset is not flagged, which is
excluded by the second rule, a constraint. The next property of initial sets is admis-
sibility, which first requires that the set is conflict-free9. The program Icf excludes
all non conflict-free solution candidates:

Listing 3: The encoding Icf to exclude non-conflict-free solution candidates.
1 :- in(X),
2 in(Y),
3 att(X,Y).

If a solution candidate has an attack-relation between two of its arguments (rep-
resented by the variables X and Y), then it is not conflict-free and is ruled out by the
constraint shown. Idefence completes the admissibility check:

Listing 4: The encoding Idefence to exclude solution candidates with non-defended
arguments.

1 attacked(X) :- in(Y),
2 att(Y,X).
3

9For a better clarity, the body literals of the same rule are placed on top of each other.

18

4 :- att(Y,X),
5 in(X),
6 not attacked(Y).

The first rule of Idefence marks all arguments with the unary predicate attacked/1
that are attacked by the solution candidate (in other words, if the solution candidate
is S then attacked/1 represents S+). Since the solution candidate is conflict-free,
the marked arguments cannot be elements of the solution candidate. The second
rule is a constraint that excludes all solution candidates with non-defended argu-
ments. So far, all remaining solution candidates are non-empty and admissible. We
can therefore define the program Iadmissible that selects all non-empty admissible
sets as the union of the above programs:

Iadmissible := Iguess ∪ Inon_empty ∪ Icf ∪ Idefence (6)

3.1.2. Minimality

Now minimality is the last property to check. One suggestion for checking for min-
imality could be to reapply the “guess and check”-paradigm to the subsets of each
solution candidate. All proper subsets of each solution candidate are checked for ad-
missibility, and minimality of the solution candidate is confirmed if no non-empty
subset is admissible. The program P ′ implements this proposal by using the rules
for checking admissibility already presented (with the exception of the check for
conflict-freeness, since the subset of a conflict-free set is always conflict-free)10:

Listing 5: The encoding P ′ to generate subsets of solution candidates.
1 { sub(X) } :- in(X).
2
3 sub_non_empty :- sub(X).
4
5 :- not sub_non_empty
6
7 sub_attacked(X) :- sub(Y),
8 att(Y,X).
9

10 :- att(Y,X),
11 sub(X),
12 not sub_attacked(Y).

Unfortunately, the proposed program P ′ does not fulfil the desired task. The
choice rule that creates the subsets of each solution candidate does not generate
a solution candidate together with all subsets in the same answer, but rather pairs
of a solution candidate and only one corresponding subset. Example 9 illustrates
this behaviour of the ASP solver.

10For reasons of clarity, the treatment of the identity is not shown.

19

Example 9 For the argumentation framework in Figure 6 {a, b} is obviously not an initial
set, since it is not minimal with {a} as a non-empty admissible subset. The solution candi-
date {a, b} with the subset {a} is therefore excluded. However, the solution candidate {a, b}
with {b} as subset is not excluded, but confirms {a, b} as an initial set, since it only checks
{b} for admissibility.

a b

c

Figure 6: Example AF3 of an abstract argumentation framework.

Since minimality for the described algorithm requires that each subset is tested for
admissibility, it is not sufficient to perform a pairwise check. An alternative would
be to reason over the collection of answer sets, which is not possible within the ASP
program, but requires external post-processing. Another possibility could be to ap-
ply the so called “saturation technique”, which uses a disjunctive program that ex-
ploits the minimality criterion for answer sets. However, this technique is advanced
and not easily applicable; moreover, the use of default-negation within saturation
encodings is limited [22]. Since we make use of default-negations, it is not indicated
to use of the saturation technique here. Consequently, a solution within a single
ASP program requires a data structure that represents the subsets within the same
solution candidate. To check all subsets of the solution candidate 2n checks would
have to be performed (with cardinality n of the corresponding solution candidate),
which is not efficient. Instead, to check for minimality in polynomial time, we use
the following results [24]:

Proposition 3 Let AF = (A,≻) be an argumentation framework. To verify whether a set
S ⊆ A is an initial set, can be computed in polynomial time.

Proposition 4 Let AF = (A,≻) be an argumentation framework and S ⊆ A, S ∈
cf(AF) and a ∈ S. Deciding whether there is an admissible set S′ ⊆ S with a ∈ S′

can be computed in polynomial time.

The algorithm proposed in the proof of Proposition 3 works by checking subsets
of S, each decremented by one argument, for admissible sets. For each a ∈ S it is
checked whether the subset S \a contains an admissible set. If none of these subsets
contains an admissible subset, then S is an initial set (we have already shown that S
itself is admissible). To check for admissible subsets according to Proposition 4 the
non-defended arguments are gradually removed from the subset and checked for

20

admissibility (for proofs see [24]). The pseudocode for this algorithm is shown in
Algorithm 1.

Algorithm 1 Checking minimality of S
1: Input: AF = (A,≻), S ⊆ A,S ∈ cf(AF)
2: Output: YES iff S is minimal admissible, otherwise NO

3: for all a ∈ S do
4: S′ := S \ a
5: if S′ ̸= ∅ then
6: if S′ is admissible then
7: return NO

8: else
9: i = 0

10: S0 = S′

11: while Si ̸= ∅ do
12: i = i+ 1
13: Si = Si−1 ∩∆AF (Si−1)
14: if Si is admissible then
15: return NO

16: end if
17: end while
18: end if
19: end if
20: end for
21: return YES

To test the described subsets, an auxiliary data structure is required that allows
targeted access to the arguments individually and in an ordered manner. We use the
relation “<” already integrated in clingo, which allows the arguments to be sorted
alphabetically, used by Iorder

3:

Listing 6: The encoding Iorder to define an order over the arguments of the solution
candidates.

1 lt(X, Y) :- in(X),
2 in(Y),
3 X<Y.
4
5 nsucc(X, Z) :- lt(X, Y),
6 lt(Y, Z).
7
8 succ(X, Y) :- lt(X, Y),
9 not nsucc(X, Y).

10
11 ninf(X) :- lt(Y, X).

The first rule of the program Iorder defines a less-than relation (lt/2) over the
arguments of the solution candidate. Then the relation nsucc/2 denotes those pairs

21

of arguments that do not directly follow one another. The negation of nsucc/2 then
designates those arguments that follow one another directly and finally the fourth
rule with ninf/1 designates all those arguments that are not in first place in the
sequence, i.e. only the first argument does not have this predicate. This order is
then used to define subsets of the solution candidates in Isub (see lines 3-4 of the
pseudocode):

Listing 7: The encoding Isub to construct decremented subsets of the solution candi-
dates.

1 excl(X, 1) :- not ninf(X),
2 in(X).
3
4 excl(Y, No+1) :- excl(X, No),
5 in(Y),
6 succ(X, Y).
7
8 sub(X, No) :- in(X),
9 not excl(X, No),

10 cArg(C),
11 No = 1..C.
12
13 sub(X, No, 0) :- sub(X,No).

The predicate excl/2 lists all arguments in an ordered manner to define the sub-
sets decremented by one argument with the predicate sub/2. In sub/3, the pred-
icate sub/2 is extended by a third dimension, which represents the first “level” of
the algorithm described for Proposition 4 (corresponding to the variable i in line 12
of the pseudocode). Next, the subsets must be tested for admissibility by Isub_adm
(see lines 6 and 14 of the pseudocode), which works in part similarly to Iadm:

Listing 8: The encoding Isub_adm to check for admissibility of subsets.
1 sub_attacked(Y, No, Level):- sub(X, No, Level),
2 att(X, Y).
3
4 non_def(Y, No, Level) :- sub(Y, No, Level),
5 att(X, Y),
6 not sub_attacked(X, No, Level).
7
8 non_adm(No, Level) :- non_def(Y, No, Level).

The first rule corresponds to the first rule of Iadm. The body of the second rule
is similar to that of Iadm, but the rule is not a constraint but rather collects the non-
defended arguments of each subset. If a subset contains at least one non-defended
argument, it is flagged with non_adm/2 in the third rule. After collecting the non-
defended arguments, we can use Inext to define the corresponding subsubset that
does not contain the non-defended arguments (see line 13 of the pseudocode):

Listing 9: The encoding Inext to construct subsets with non-defended arguments.
1 card(C) :- { in(X) } == C.

22

2
3 sub(X, No, Level+1) :- sub(X, No, Level),
4 not non_def(X, No, Level),
5 card(C),
6 Level < C.

The first rule stores the number of arguments in the predicate card/1, since the
maximum level must be smaller than this value. Please note that the predicate
sub/3 in the body of the second rule (line 3) is required to ensure the so called
safety of the rule. Every rule of an ASP program must be safe in the sense that every
variable in that rule (especially those in the head and in negative literals) must occur
in at least one positive literal in the body of that rule [16].

Finally, if there is a non-empty admissible subset of the solution candidate, this
subset is not flagged by non_adm/2. In this case, the solution candidate cannot be
a minimal non-empty admissible set and thus must be excluded by a constraint in
Inon_min (lines 7 and 15 of the pseudocode):

Listing 10: The encoding Inon_min to exclude solution candidates with non-empty
admissible subset.

1 :- not non_adm(No, Level),
2 sub(X, No, Level).

The part Iminimality of the program that checks minimality can now be defined:

Iminimality := Iorder ∪ Isub ∪ Iadm_sub ∪ Inext ∪ Inon_min (7)

The complete ASP program for selecting initial sets Iinitial is:

Iinitial := Iadmissible ∪ Iminimality (8)

Unfortunately, the data structure needed to check for minimality requires com-
paratively high effort and leads to a longer encoding. In addition, the encoding
becomes more difficult to understand, so that the elaboration tolerance of ASP (see
Section 2.2) is partially lost.

3.2. Unattacked Initial Sets

For the algorithm for selecting unattacked initial sets, we take advantage of the
property that unattacked initial sets always have a cardinality of 1 (see Proposition
2). Following the “guess and check”-paradigm, the solution candidates are created
by Iguess (see Listing 1). Solution candidates with cardinality not equal to 1 and
solution candidates with attacked arguments are excluded by Iatt:

Listing 11: The encoding Iatt to exclude solution candidates with unsuitable se-
quence terms.

1 :- { in(X) } != 1.

23

2
3 :- in(X),
4 att(Y,X),
5 arg(Y).

The first rule of Iatt is a so called cardinality constraint, where the term { in(X) }
represents the cardinality of the set of atoms with the predicate in/1 in a solution
candidate. The program Iunattacked for selecting unattacked initial sets is defined as
follows:

Iunattacked := Iguess ∪ Iatt (9)

3.3. Unchallenged Initial Sets

Unchallenged initial sets are attacked, but not from another initial set. To select
unchallenged initial sets, we first take all initial sets (selected by Iinitial, see 8) and
exclude solution candidates that are not attacked at all or are attacked by another
initial set. The exclusion of unattacked sets is done by Iexcl_unatt:

Listing 12: The encoding Iexcl_unatt to exclude unattacked solution candidates.
1 in_attacked :- in(X),
2 att(Y,X),
3 arg(Y).
4
5 :- not in_attacked.

To check whether a solution candidate is attacked by another initial set, it must be
tested whether the “attacking set” is initial. Since the attacking set can be any set of
arguments (except for the solution candidate itself), one suggestion may be to check
all 2n − 1 subsets of arguments, which is not very efficient due to the exponential
number of subsets. Another suggestion could be to use the Algorithm 1, but this
algorithm is not applicable because it requires a conflict-free set as input, and we
cannot assume that the set of arguments is conflict-free. Instead, we could select
the maximum conflict-free sets (or all conflict-free sets) before algorithm 1 could be
applied. A conflict-free set is identical to a so called “independent set” of edges of a
graph, which is defined as a set of edges of which no two are adjacent. Finding the
maximum independent sets of a graph is the same as finding the so called “max-
imum cliques” of the complementary graph [25]. Both problems are NP-complete
[26], so that this approach is not necessarily better. However, the so called “Bron-
Kerbosch algorithm”, which solves this problem, has been reported to be the fastest
algorithm in practise [15]. This algorithm is not available for ASP and it is unclear
whether this would be more efficient in ASP than reasoning over all subsets. There-
fore, for better understanding, here a data structure is created within each solution
candidate that contains all subsets of the arguments.

Similar to Iorder in Listing 6, all arguments are ordered and numbered accordingly
(starting with 0) using Iorder_args:

24

arg a b c d
SetNo

ArgNo 0 1 2 3

subset

{a} 1 0 0 0 1
{b} 0 1 0 0 2
{a, b} 1 1 0 0 3
{b, c, d } 0 1 1 1 14

Table 3: Example of bit vectors to represent subsets.

Listing 13: The encoding Iorder_args to order and number the arguments.
1 a_lt(X,Y) :- arg(X),
2 arg(Y), X<Y.
3
4 a_nsucc(X,Z) :- a_lt(X,Y),
5 a_lt(Y,Z).
6
7 a_succ(X,Y) :- a_lt(X,Y),
8 not a_nsucc(X,Y).
9

10 a_ninf(X) :- a_lt(Y,X).
11
12 arg(X, 0) :- not a_ninf(X),
13 arg(X).
14
15 arg(Y, ArgNo+1) :- arg(X, ArgNo),
16 arg(Y),
17 a_succ(X, Y).

Now we assign each subset to a corresponding bit vector. The length of this vector
equals the argument count and each position within this vector refers to the corre-
sponding number of the argument. The value “1” indicates, that the corresponding
argument is an element of the subset, “0” means the opposite. Interpreted as a bit
value, the vector also represents the (consecutive) number of the corresponding sub-
set. Table 3 shows an example of such a bit vector. The bit vector and the required
relations are generated by the program Ibit:

Listing 14: The encoding Ibit generating the bit vectors representing subsets.
1 a_card(C) :- { arg(X) } == C.
2
3 a_set(1..SetNo) :- (2 ** C) - 1 == SetNo,
4 a_card(C).
5
6 a_vec(SetNo, 0, SetNo\2, SetNo/2) :-
7 a_set(SetNo).
8
9 a_vec(SetNo, ArgNo+1, Result\2, Result/2) :-

10 a_vec(SetNo, ArgNo, _, Result),
11 SetNo >= (2 ** (ArgNo+1)).

25

12
13 a_elem(SetNo, ArgNo) :- a_vec(SetNo, ArgNo, Rest, _),
14 Rest = 1.
15
16 a_sub(SetNo, SubSet) :- a_vec(SetNo, ArgNo, Rest, Result),
17 Rest = 1,
18 SubSet = 2 ** (ArgNo).
19
20 a_sub(SetNo, SubA+SubB) :- a_sub(SetNo, SubA),
21 a_sub(SetNo, SubB),
22 SubA != SubB,
23 SubA + SubB < SetNo.

The numbers of the subsets are stored in the predicate a_set/1 (with the maxi-
mum 2C −1, where C is number of arguments). With a_set/1 we can calculate the
bit vector a_vec by repeatedly divide the set number by 2. The rest of the division is
1 or 0 and assigns argument to the corresponding subset. The predicate a_elem/2
assigns set numbers to argument numbers, and the predicate a_sub/2 is used to
decide whether a set is a subsets of another set. With this data structure we can now
flag all subsets that are conflicting, non-admissible or non-minimal,which is done
by Iflag:

Listing 15: The encoding Iflag to flag non-initial subsets.
1 a_flag(SetNo) :- a_elem(SetNo, ArgNo1),
2 a_elem(SetNo, ArgNo2),
3 arg(X, ArgNo2),
4 arg(Y, ArgNo1),
5 att(X, Y).
6
7 a_attacked(SetNo, X) :- a_elem(SetNo, ArgNo),
8 arg(Y, ArgNo),
9 att(Y, X).

10
11 a_flag(SetNo) :- a_elem(SetNo, ArgNo),
12 arg(X, ArgNo),
13 att(Y,X),
14 not a_attacked(SetNo, Y).
15
16 a_flag(SetNo1) :- a_set(SetNo1),
17 a_set(SetNo2),
18 SetNo1 != SetNo2,
19 a_sub(SetNo1, SetNo2),
20 not a_flag(SetNo2).

Finally, the non-flagged subsets are assigned as initial sets and their elements are
assigned as elements of initial sets. If such an argument attacks the solution candi-
date, this answer set is excluded by Iini_att:

Listing 16: The encoding Iini_att to exclude solution candidates attacked by initial
sets.

1 iniSet(SetNo) :- a_set(SetNo),

26

2 not a_flag(SetNo).
3
4 elemIni(SetNo, X) :- iniSet(SetNo),
5 a_elem(SetNo, ArgNo),
6 arg(X, ArgNo).
7
8 :- elemIni(SetNo, X),
9 in(Y),

10 att(X,Y).

The complete encoding for unchallenged initial sets can be defined as:

Iunchallenged := Iinitial ∪ Iexcl_unatt ∪ Iorder_args ∪ Ibit ∪ Iflag ∪ Iini_att (10)

3.4. Challenged Initial Sets

Challenged initial sets are attacked from other initial sets. Apart from that, the com-
putation is the same as for unchallenged initial sets. Therefore, we only need to
change the last rule of program Iini_att, to obtain the program Inon_ini_att, which
excludes solution candidates that are not attacked by an initial set:

Listing 17: The encoding Inon_ini_att to exclude solution candidates not attacked by
initial sets.

1 iniSet(SetNo) :- a_set(SetNo),
2 not a_flag(SetNo).
3
4 elemIni(SetNo, X) :- iniSet(SetNo),
5 a_elem(SetNo, ArgNo),
6 arg(X, ArgNo).
7
8 ini_attack :- elemIni(SetNo, X),
9 in(Y),

10 att(X,Y).
11
12 :- not ini_attack.

The complete encoding for challenged initial sets can now be defined as:

Ichallenged := Iunchallenged \ Iini_att ∪ Inon_ini_att (11)

4. ASP Encodings for Serialization Sequences

In this section the encodings for the serialization sequences are presented with re-
spect to the described semantics.

Since a serialization sequence is an ordered set of initial sets, the solution can-
didates for serialization sequences must consist of ordered sets of subsets of argu-

27

ments (sequence terms11). Unlike Iguess (see Listing 1), the predicate representing
a solution candidate must be binary and specify the arguments of each sequence
term and its index in the sequence. As usual, the index is specified by ascending
integers starting with 1. The maximum length of a sequence (= maximum number
of sequence terms) is bounded by the number of arguments in the complete argu-
mentation framework, since each initial set must contain at least one argument.

The following subsections describe the programs for computing the serialization
sequences of the different semantics, starting with the serialization sequence for ad-
missible sets. Subsequently, the programs for the other semantics are described,
often using building blocks from the previous programs and/or slightly adapting
them.

4.1. Admissible Sets

The program to compute the serialization sequences for admissible sets requires to
generate sequences of initial sets. First the length of the sequence must be limited
to the number of arguments in the argumentation framework. Because initial sets
are non-empty, they must each contain at least one argument, so that the number of
initial sets in a sequence is limited by the number of arguments in the framework.
The program Pcount is used to determine this number and the corresponding indices:

Listing 18: The encoding Pcount to count arguments.
1 index(1..C) :- { arg(X) } == C.

The number of arguments is stored to the variable C and the rule assigns the
indices from 1 to C to the predicate index/1. The next part is the construction of
the reduct which is shown in program Preduct:

Listing 19: The encoding Preduct to construct the reducts of a sequence.
1 reduct(X, 1) :- arg(X).
2
3 collect(X, Step) :- in(X, Step).
4
5 collect(X, Step) :- in(Y, Step),
6 att(Y, X).
7
8 reduct(X, Step+1) :- reduct(X, Step),
9 not collect(X, Step),

10 index(Step).
11
12 att(X, Y, Step) :- reduct(X, Step),
13 reduct(Y, Step),
14 att(X,Y).

The reduct is represented by the predicate reduct/2. The first rule creates the
first reduct, which corresponds to the complete argumentation framework. The

11To avoid confusion, the initial sets that make up the serialization sequence are called “sequence
terms” and the arguments belonging to a sequence term are called “elements”.

28

arguments in the current sequence term (in/2, see below) and the arguments at-
tacked from arguments of the current sequence term are collected with the predicate
collect/2. All non-collected arguments of the current reduct are then assigned to
the next reduct. Finally, the attack-relation is defined for each reduct. Next the solu-
tion candidates are created by the program Pguess:

Listing 20: The encoding Pguess to generate sequences of sets of arguments.
1 { in(X, Step) } :- reduct(X, Step).

This choice rule generates sequences of subsets as solution candidates (similar
to Iguess, see Listing 1), which are represented by in/2, where Step specifies the
index within the sequence. The arguments for the solution candidates are taken
from the corresponding reduct. After the solution candidates have been created,
each sequence term is tested for non-emptiness and admissibility using the program
Padm:

Listing 21: The encoding Padm to exclude solution candidates with empty and non-
admissible sequence terms.

1 non_empty(Step) :- in(X, Step).
2
3 :- not non_empty(Step),
4 non_empty(Step+1),
5 index(Step).
6
7 :- in(X, Step),
8 in(Y, Step),
9 att(X, Y).

10
11 attacked(X, Step) :- in(Y, Step),
12 att(Y, X, Step).
13
14 :- att(Y, X, Step),
15 in(X, Step),
16 not attacked(Y, Step).

The first two rules exclude solution candidates with empty sequence terms that
are not at the end of the sequence. The third rule excludes solution candidates with
sequence terms, that are not conflict-free (similar to Icf in Listing 3). The fourth and
fifth rule exclude non-admissible solution candidates (see Idefence in Listing 4). As a
result, all remaining solution candidates have only non-empty admissible sequence
terms.

The minimality condition must be fulfilled by every sequence term, i.e. solution
candidates with at least one non-minimal sequence terms must be excluded. For
this purpose the program Iminimality (see Listing 7) is extended with an additional
dimension to represent the single sequence terms of a solution candidate (specified
by Step):

29

Listing 22: The encoding Porder to define an order over the arguments of the se-
quence terms.

1 lt(X, Y, Step) :- in(X, Step),
2 in(Y, Step),
3 X<Y.
4
5 nsucc(X, Z, Step) :- lt(X, Y, Step),
6 lt(Y, Z, Step).
7
8 succ(X, Y, Step) :- lt(X, Y, Step),
9 not nsucc(X, Y, Step).

10
11 ninf(X, Step) :- lt(Y, X, Step).

Listing 23: The encoding Psub to construct decremented subsets of the sequence
terms.

1 excl(X, 1, Step) :- not ninf(X, Step),
2 in(X, Step).
3
4 excl(Y, No+1, Step) :- excl(X, No, Step),
5 in(Y, Step),
6 succ(X, Y, Step).
7
8 sub(X, No, Step) :- in(X, Step),
9 not excl(X, No, Step),

10 in_index(No, Step).
11
12 sub(X, No, Step, 0) :- sub(X, No, Step).

Listing 24: The encoding Padm_sub to check for admissibility of subsets of sequence
terms.

1 sub_attacked(Y, No, Step, Level):-
2 sub(X, No, Step, Level),
3 att(X, Y, Step).
4
5 non_def(Y, No, Step, Level):- sub(Y, No, Step, Level),
6 att(X, Y, Step),
7 not sub_attacked(X, No, Step, Level).
8
9 non_adm(No, Step, Level):- non_def(Y, No, Step, Level).

Listing 25: The encoding Pnext to construct subsets with non-defended arguments.
1 sub(X, No, Step, Level+1):- sub(X, No, Step, Level),
2 not non_def(X, No, Step, Level),
3 in_card(C, Step),
4 Level < C.

Listing 26: The encoding Pnon_min to exclude solution candidates with non-empty
admissible subsets.

1 :- not non_adm(No, Step, Level),

30

2 sub(X, No, Step, Level).

For Psub (Listing 23) and Pnext (Listing 25) the indices and the cardinality of the
single sequence terms are needed, which is provided by Pcount_sub:

Listing 27: The encoding Pcount_sub to count the arguments of the sequence terms.
1 in_index(1..C, Step) :- { in(X, Step) } == C,
2 index(Step).
3
4 in_card(C, Step) :- { in(X, Step) } == C,
5 index(Step).

The part Pminimality of the program that checks minimality can now be defined:

Pminimality := Porder ∪ Psub ∪ Padm_sub ∪ Pnext ∪ Pnon_min ∪ Pcount_sub (12)

The following program PSerSeq_ad generates serialization sequences that consist
of initial sets, which is the serialization sequence for admissible sets:

PSerSeq_ad := Pcount ∪ Preduct ∪ Pguess ∪ Padm ∪ Pminimality (13)

4.2. Complete Semantics

A serialization sequence for complete semantics consists of initial sets with the re-
striction that the last reduct of the sequence must satisfy the termination condition.
The latter is is ̸←(AF) = ∅, i.e. there are no unattacked arguments in the reduct.
An suitable algorithm is to take the serialization sequences generated for admissi-
ble sets and exclude those solution candidates that do not satisfy the termination
condition. This is done by Pterm_co:

Listing 28: The encoding Pterm_co to exclude solution candidates not fulfilling the
termination condition for complete semantics.

1 flag(X, Step) :- reduct(X, Step),
2 reduct(Y, Step),
3 att(Y, X, Step).
4
5 non_terminate(Step) :- reduc(X, Step),
6 not flag(X, Step).
7
8 :- non_empty(Step),
9 not non_empty(Step+1),

10 non_terminate(Step+1),
11 Step > 0.
12
13 :- not non_empty(1),
14 non_terminate(1).

31

First, all attacked arguments in the reduct are flagged, non-flagged arguments
indicate unattacked initial sets. If there is no non-flagged argument in the reduct,
the termination condition is not met. The third rule excludes solution candidates
whose last reduct does not satisfy the termination condition. The forth rule is to
treat the empty set as a solution candidate.

The program PSerSeq_co for the complete semantics can be defined as follows:

PSerSeq_co := PSerSeq_ad ∪ Pterm_co (14)

4.3. Stable Semantics

The serialization sequence for stable semantics consists of initial sets that leave an
empty reduct, i.e. AF = ∅. The only difference from the code for complete semantics
is the termination condition, encoded by Pterm_st:

Listing 29: The encoding Pterm_st to exclude solution candidates not fulfilling the
termination condition for stable semantics.

1 :- not non_empty(Step),
2 reduct(X, Step).

The rule excludes all solution candidates with an argument in the last reduct. The
program PSerSeq_st for the stable semantics can be defined as follows:

PSerSeq_st := PSerSeq_ad ∪ Pterm_st (15)

4.4. Preferred Semantics

The serialization sequence for preferred semantics consists of initial sets with the
restriction that the last reduct of the sequence must not contain an initial set, i.e.
is(AF) = ∅. Other than for complete or stable semantics, the termination condition
requires reasoning over all subsets of the reduct. As with the computation of unchal-
lenged initial sets (see Section 3.3) Algorithm 1 is not applicable, since this requires
a conflict-free set as input and we can not assume here the reduct to be conflict-free.
As a consequence, a data structure containing all subsets of the reduct is needed for
each solution candidate. This is done similar to Iorder_out and Ibit with the distinc-
tion, that here subsets of the reducts need to be generated. First, the elements of the
reducts are ordered and numbered with the program Porder_reduct:

Listing 30: The encoding Porder_reduct to order and number the arguments of the
reducts.

1 r_lt(X, Y, Step) :- reduct(X, Step),
2 reduct(Y, Step),
3 X<Y.
4

32

5 r_nsucc(X, Z, Step) :- r_lt(X, Y, Step),
6 r_lt(Y, Z, Step).
7
8 r_succ(X, Y, Step) :- r_lt(X, Y, Step),
9 not r_nsucc(X, Y, Step).

10
11 r_ninf(X, Step) :- r_lt(Y, X, Step).
12
13 reduct(X, Step, 0) :- not r_ninf(X, Step),
14 reduct(X, Step).
15
16 reduct(Y, Step, ArgNo+1):- reduct(X, Step, ArgNo),
17 reduct(Y, Step),
18 r_succ(X, Y, Step).

Similar to Ibit a bit vector is needed, that represents the subsets of the reducts,
which is done by Pbit_pr:

Listing 31: The encoding Pbit_pr to generate bit vectors representing subsets of the
reducts.

1 r_card(C, Step) :- {reduct(X, Step)} == C,
2 card(Ca),
3 RStep = Ca + 1,
4 Step = 1..RStep.
5
6 binVec(SetNo, 0, SetNo\2, SetNo/2) :-
7 r_card(C, 2),
8 (2 ** C) - 1 = Max,
9 SetNo = 1..Max.

10
11 binVec(SetNo, ArgNo+1, Result\2, Result/2) :-
12 binVec(SetNo, ArgNo, _, Result),
13 SetNo >= (2 ** (ArgNo+1)).
14
15 r_set(1..MaxSet, Step) :- (2 ** C) - 1 == MaxSet,
16 r_card(C, Step).
17
18 r_elem(SetNo, ArgNo) :- binVec(SetNo, ArgNo, Rest, _),
19 Rest = 1.
20
21 r_elem(SetNo, ArgNo, Step) :- r_set(SetNo, Step),
22 r_elem(SetNo, ArgNo).

Other than with unchallenged initial sets we do not have to test for minimality
here. It is sufficient to check, whether the reduct contains any non-empty admis-
sible set. If this is the case, then the reduct must also contain an initial set. There-
fore, conflicting subsets and non-admissible subsets are flagged with the program
Pflag_pr:

Listing 32: The encoding Pflag_pr to flag non-admissible subsets of the reducts.
1 flag(SetNo, Step) :- r_elem(SetNo, ArgNo1, Step),
2 reduct(X, Step, ArgNo1),

33

3 r_elem(SetNo, ArgNo2, Step),
4 reduct(Y,Step,ArgNo2),
5 att(X,Y).
6
7 r_attacked(SetNo, X, Step) :- r_elem(SetNo, ArgNo, Step),
8 reduct(Y, Step, ArgNo),
9 att(Y, X, Step).

10
11 flag(SetNo, Step) :- r_elem(SetNo, ArgNo, Step),
12 reduct(X, Step, ArgNo),
13 att(Y, X, Step),
14 not r_attacked(SetNo, Y, Step).

Reducts with a non-flagged subset must contain an initial set. Solution candidates
with such a reduct at the last position cannot represent a serialization sequence for
pr and must be excluded. The same is true, if the solution candidate is the empty set
with a reduct containing an initial set. This is provided by the program Pterm_pr:

Listing 33: The encoding Pterm_pr to exclude solution candidates with improper last
reducts.

1 non_terminate(Step) :- r_set(SetNo, Step),
2 not flag(SetNo, Step).
3
4 :- non_empty(Step),
5 not non_empty(Step+1),
6 non_terminate(Step+1),
7 Step > 0.
8
9 :- not non_empty(1),

10 non_terminate(1).

The complete program for computing the serialization sequences of pr is defined
as follows:

PSerSeq_pr := PSerSeq_ad ∪ Porder_reduct ∪ Pbit ∪ Pflag ∪ Pterm_pr (16)

4.5. Grounded Semantics

Unlike the four previous semantics, the sequence terms of the serialization sequence
for the grounded semantics are unattacked initial sets. Since unattacked initial sets
are singletons, this reduces the algorithmic effort. To generate the solution candi-
dates we use of the already defined programs Pcount, Preduct and Pguess (see Listings
18, 19 and 20). The following program Pexcl is used to exclude unsuitable solution
candidates:

Listing 34: The encoding Pexcl to exclude unsuitable solution candidates for
grounded semantics.

1 non_empty(Step) :- in(X, Step).
2

34

3 :- not non_empty(Step),
4 non_empty(Step+1),
5 index(Step).
6
7 :- in(X, Step),
8 in(Y, Step),
9 X != Y.

10
11 :- in(X, Step),
12 att(Y, X, Step),
13 reduct(Y, Step).

The first two rules exclude solution candidates with ‘intermediate’ empty se-
quence terms (see Listing 21). The third rule excludes solution candidates with
non-singleton sequence terms and the last rule excludes solution candidates with
attacked arguments.

The termination condition is the same as for complete semantics, so we can take
the program Pterm_co. The program PSerSeq_gr for the grounded semantics can now
be defined:

PSerSeq_gr := Pcount ∪ Preduct ∪ Pguess ∪ Pexcl ∪ Pterm_gr (17)

4.6. Strongly Admissible Semantics

Similar to grounded semantics, the serialization sequence for strong admissible se-
mantics consists of unattacked initial sets. Unlike grounded semantics, there is no
termination condition to be computed. Therefore, the program PSerSeq_sa for the
strongly admissible semantics can be defined a follows:

PSerSeq_sa := Pcount ∪ Preduct ∪ Pguess ∪ Pexcl (18)

4.7. Unchallenged Semantics

The serialization sequence for the unchallenged semantics consists of non-challenged
initial sets. To obtain such sequences, sequences consisting of initial sets are first
generated using PSerSeq_ad (see 13). Subsequently, sequences containing challenged
terms must be excluded, i.e. that are attacked by initial sets. For this purpose, the
subsets of the reduct must be checked for being initial sets, using the data structure
of the bit vector already used for the unchallenged initial sets and the preferred se-
mantics (see Sections 3.3 and 4.4). To order and number the elements of the reduct,
we can use the already defined program Porder_reduct (see Listing 30). The program
for the bit vector Pbit_uc is slightly modified compared to Pbit_pr (see Listing 31) and
also allows to relate sets to its subsets (see program Ibit, Listing 14):

35

Listing 35: The encoding Pbit_uc for the bit vector used for unchallenged semantics.
1 binVec(SetNo, 0, SetNo\2, SetNo/2) :-
2 card(C),
3 (2 ** C) - 1 = Max,
4 SetNo = 1..Max.
5
6 binVec(SetNo, ArgNo+1, Result\2, Result/2) :-
7 binVec(SetNo, ArgNo, _, Result),
8 SetNo >= (2 ** (ArgNo+1)).
9

10 elem(SetNo, ArgNo) :- binVec(SetNo, ArgNo, Rest, _),
11 Rest = 1.
12
13 sub(SetNo, SubSet) :- binVec(SetNo, ArgNo, Rest, Result),
14 Rest = 1,
15 SubSet = 2 ** (ArgNo).
16
17 sub(SetNo, SubA+SubB) :- sub(SetNo, SubA),
18 sub(SetNo, SubB),
19 SubA != SubB,
20 SubA + SubB <= SetNo.
21
22 r_card(C, Step) :- { reduct(X, Step) } = C,
23 index(Step).
24
25 r_set(1..MaxSet, Step) :- (2 ** C) - 1 == MaxSet,
26 r_card(C, Step).
27
28 r_elem(SetNo, ArgNo, Step):- r_set(SetNo, Step),
29 elem(SetNo, ArgNo).
30
31 r_sub(SetNo, SubSet, Step):- r_set(SetNo, Step),
32 sub(SetNo, SubSet).

Those non-empty subsets of the reduct that are not conflict-free, not admissible,
or not minimal are flagged with the program Pflag_uc:

Listing 36: The encoding Pflag_uc to flag non-initial subsets of the reduct.
1 flag(SetNo, Step) :- r_elem(SetNo, ArgNo1, Step),
2 r_elem(SetNo, ArgNo2, Step),
3 reduct(X, Step, ArgNo2),
4 reduct(Y, Step, ArgNo1),
5 att(X, Y, Step).
6
7 r_attacked(SetNo, X, Step):- r_elem(SetNo, ArgNo, Step),
8 reduct(Y, Step, ArgNo),
9 att(Y, X, Step).

10
11 flag(SetNo, Step) :- r_elem(SetNo, ArgNo, Step),
12 reduct(X, Step, ArgNo),
13 att(Y, X, Step),
14 not r_attacked(SetNo, Y, Step).
15

36

16 flag(SetNo1, Step) :- r_set(SetNo1, Step),
17 r_set(SetNo2, Step),
18 SetNo1 != SetNo2,
19 r_sub(SetNo1, SetNo2, Step),
20 not flag(SetNo2, Step).

The non-flagged subsets are initial sets of the reduct. Terms attacked by non-
flagged subsets are challenged initial sets, which must be excluded with the pro-
gram Pexcl_cha (see similar Iini_att, Listing 16):

Listing 37: The encoding Pexcl_cha to exclude solution candidates with challenged
initials sets.

1 iniSet(SetNo, Step) :- r_set(SetNo, Step),
2 not flag(SetNo, Step).
3
4 elemIni(SetNo, X, Step):- iniSet(SetNo, Step),
5 r_elem(SetNo, ArgNo, Step),
6 reduct(X, Step, ArgNo).
7
8 :- elemIni(SetNo, X, Step),
9 in(Y, Step),

10 att(X,Y, Step).

The remaining sequence terms are unattacked or unchallenged initials sets. To
satisfy the termination condition, the reduct must not contain any unattacked or
unchallenged initial sets. This is checked with the program Pterm_uc:

Listing 38: The encoding Pterm_uc checking the termination condition for unchal-
lenged semantics.

1 r_sign(SetNo, Step) :- flag(SetNo, Step).
2
3 r_sign(SetNo1, Step) :- r_elem(SetNo1, ArgNo1, Step),
4 reduct(X, Step, ArgNo1),
5 att(Y, X, Step),
6 reduct(Y, Step, ArgNo2),
7 r_elem(SetNo2, ArgNo2, Step),
8 not flag(SetNo2, Step).
9

10 non_terminate(Step) :- r_set(SetNo, Step),
11 not r_sign(SetNo, Step).
12
13 :- non_empty(Step),
14 not non_empty(Step+1),
15 non_terminate(Step+1),
16 Step > 0.
17
18 :- not non_empty(1),
19 non_terminate(1).

In addition to the already flagged subsets of the reduct, those subsets that are
attacked by an initial set are also signed. All unsigned subsets are now unattacked or

37

unchallenged initial sets. If there is at least one such unsigned subset in the reduct,
the termination condition is not satisfied.

The complete program PSerSeq_uc for the unchallenged semantics can be defined
as follows:

PSerSeq_uc := PSerSeq_ad ∪ Porder_reduct ∪ Pbit_uc ∪ Pflag_uc ∪ Pexcl_cha ∪ Pterm_uc
(19)

5. Evaluation

In this section, the presented ASP encodings are compared with existing implemen-
tations for computing serialization sequences. This includes comparing the correct-
ness and runtimes of computing certain example argumentation frameworks for
each of the presented semantics (ad, co, pr, gr, st, sa and uc). So far, such encod-
ings are only available in Java from the “Tweety-Project” by Thimm [23], which is
also used here12. Regarding correctness, both solvers were compared to provide
the same serialization sequences. For this purpose, the serialization sequences of
various simple argumentation frameworks and the argumentation frameworks gen-
erated for the Subsection 5.2 were checked for consistency. Both solvers show the
same serialization sequences for the argumentation frameworks tested in each of
the semantics.

The further evaluation is carried out in terms of runtime, i.e. the runtimes for the
computation of serialization sequences of particular argumentation frameworks us-
ing Java or ASP are compared. This is done with regard to the different semantics,
the argument count of the argumentation framework and its density13. Further-
more, it is tested whether any individual properties of the argumentation frame-
works affect runtime. Besides, the runtimes of the ASP solver are analysed with
regard to the ratio of grounding and solving time to the total runtimes. Therefore,
the following experiments are conducted with each of the semantics mentioned:

1. Runtime dependence of argument count: computing serialization sequences
of argumentation frameworks with different argument counts and constant
density.

2. Runtime dependence of density: computing serialization sequences of argu-
mentation frameworks with different densities and constant argument count.

3. Standard deviation of runtimes: computing serialization sequences of various
argumentation frameworks with constant argument count and constant den-
sity.

12All specifications on Java classes given here refer to this collection
13The density of a graph is defined as the ratio between the number of edges and the maximum

number of edges.

38

4. Ratio of solving time: determine the ratio of solving time to the total runtimes
of the ASP solver.

5.1. Experimental Setup

The ASP encodings presented in the previous section are tested with the ASP solver
clingo, which has an integrated method for measuring runtime.

For Java, the “Tweety-Project” provides a reasoner class for each semantics to be
tested (e.g. SerializedAdmissibleReasoner for ad). Short Java classes with
the corresponding reasoner class have been implemented, which take the APX file
of the sample argumentation framework as an argument. The runtime of the Java
implementation was measured using the Java method System.nanoTime(). Al-
though this method does not provide the exact CPU time, it should be sufficient for
this work, as empirically the differences are less than one second. The code of the
Java class used is shown in the Appendix in Listing B.1 for admissible sets as an
example. The code for the other semantics was adapted by changing the reasoner.
The corresponding Java class was then exported and used as a JAR file. To ensure
comparability, all computations were performed on the same system (Fedora Linux
41, Workstation Edition, AMD Ryzen 7 3800X x 16, 32 GB RAM).

The sample argumentation frameworks were generated using the Tweety class
DungTheoryGenerator, which provides APX files, each representing a randomly
generated argumentation framework. This class allows customizing the argument
count with the parameter “numberOfArguments”, the density of the argumenta-
tion framework with the parameter “attackPropability’, self-attack avoidance and
enforcing a tree-shape of the argumentation framework. The last two parameters
were left at the default setting since they can be neglected for the purpose of this
work, i.e. self-attacks are avoided and tree-shape is not enforced. The code of the
Java class used is shown in the Appendix in Listing B.2.

5.2. Experiment 1: Runtime Dependence of Argument Count

To test the runtime dependence with respect the the argument count, argumentation
frameworks with 1 to 35 arguments and a constant density of 0.5 were generated.
Additionally, argumentation frameworks with 50, 100 ... 500 arguments of equal
density were generated. For each argument count four APX files were generated
and the runtimes were averaged over these samples. To keep the effort within a
reasonable range, the maximum runtime for each computation of a serialization
sequence was set to 20 minutes (1200 s).

The results are visualized in Figures 7, 8, 9 and 10 and in more detail listed in
the Tables 4, 5 and 6. As expected, the argument count turns out to be the most
important parameter influencing the runtime. The experiments showed that the
runtime of the Java solver increases sharply in the range of 16 to 23 arguments for
all semantics before reaching the timeout. Regarding the runtime of the Java solver,
the semantics can be divided into two groups: The semantics ad, co, gr, st and sa

39

0 5 10 15 20 25 30 35

0

200

400

600

800

1,000

1,200

argument count

ru
nt

im
e

[s
]

Java: ad
Java: co
Java: pr
ASP: ad
ASP: co
ASP: pr
ASP: uc

Figure 7: Dependence of runtimes from argument count for Java and ASP fro the
semantics ad, co and pr.

have similar runtimes, while the runtimes for pr and uc almost double. Both groups
exhibit a rather exponential behaviour (see Figure 9).

The runtimes of the ASP solver increase less with the argument count than the
Java solver, except for pr and uc. The semantics gr and sa have the shortest ASP
encoding and show a comparatively small increase compared to the Java solver,
so that samples with up to 400 (gr) and 450 (sa) arguments can be solved. For pr
and uc on the other hand, the process was already killed when the argumentation
framework had more than 12 or 8 arguments, respectively. This is most likely due
to the elaborate data structures required for processing these semantics. For the
semantics ad, co and st argumentation frameworks with up to 34 arguments can be
solved on the system used. It must be emphasized that the limiting factor here is
not time, but memory. The ASP solver is killed by the operating system due to lack
of memory when processing samples with more than 34 arguments. The memory
consumption of the ASP solver is quite high, likely due to the memory required for
grounding. For example, the memory consumption of the ASP solver for computing
the serialization sequences for ad is about 20.2 GB for 31 arguments and increases
almost linearly to 32.9 GB with 34 arguments.

40

0 100 200 300 400

0

200

400

600

800

1,000

1,200

argument count

ru
nt

im
e[

s]
Java: gr
Java: sa
ASP: gr
ASP: sa

Figure 8: Dependence of runtimes from argument count for gr and sa (Java and
ASP).

0 5 10 15 20 25 30 35

10−3

10−2

10−1

100

101

102

103

104

argument count

ru
nt

im
e[

s]

Java: ad
Java: pr
Java: gr
ASP: ad

Figure 9: Logarithmic dependence of runtime from argument count for Java (ad, pr,
gr) and ASP (ad).

41

Java ASP
Arg Count ad co st ad co st
1 0.01 0.01 0.01 < 0.01 < 0.01 < 0.01
2 0.02 0.02 0.02 < 0.01 < 0.01 < 0.01
3 0.02 0.02 0.02 < 0.01 < 0.01 < 0.01
4 0.01 0.01 0.01 0.01 0.01 0.01
5 0.02 0.02 0.02 0.02 0.02 0.02
6 0.02 0.02 0.02 0.03 0.04 0.03
7 0.02 0.02 0.02 0.08 0.08 0.08
8 0.02 0.02 0.02 0.16 0.16 0.15
9 0.03 0.03 0.03 0.29 0.30 0.29
10 0.03 0.03 0.03 0.58 0.57 0.58
11 0.04 0.04 0.04 1.04 0.93 1.02
12 0.05 0.05 0.05 1.76 1.67 1.76
13 0.07 0.07 0.07 2.88 2.46 2.73
14 0.12 0.12 0.12 3.91 3.53 3.73
15 0.22 0.23 0.23 5.86 5.36 5.61
16 0.52 0.52 0.53 8.54 7.31 8.34
17 1.01 1.01 1.01 11.89 9.76 11.15
18 4.02 4.02 4.06 15.76 13.27 15.62
19 14.03 14.03 14.03 20.82 17.46 20.36
20 50.81 51.06 51.06 30.35 24.02 27.62
21 104.56 104.56 104.06 37.62 30.04 36.40
22 318.88 315.01 316.88 50.66 37.93 46.92
23 1086.63 1104.38 1085.38 57.31 47.70 57.57
24

timeout timeout timeout

85.59 64.60 77.90
25 93.64 70.63 93.65
26 117.43 90.00 117.99
27 148.77 112.27 152.23
28 179.54 144.29 172.54
29 214.58 167.02 216.53
30 266.34 200.88 237.53
31 303.79 227.23 272.97
32 371.68 285.37 386.68
33 453.45 363.72 462.77
34 550.62 426.92 559.08
35 killed killed killed

Table 4: Average runtimes (in seconds) for ad, co and st with different argument
counts.

42

Java ASP
Arg Count pr uc pr uc
1 0.01 0.02 0.01 0.01
2 0.02 0.01 0.02 0.01
3 0.02 0.02 0.02 0.01
4 0.01 0.01 0.02 0.03
5 0.02 0.01 0.03 0.25
6 0.02 0.01 0.12 3.63
7 0.02 0.01 0.49 43.81
8 0.03 0.02 1.83 1134.41
9 0.03 0.02 6.27

killed

10 0.03 0.08 27.93
11 0.05 0.04 103.12
12 0.07 0.06 424.37
13 0.10 0.10

killed

14 0.19 0.18
15 0.39 0.39
16 1.05 1.01
17 2.02 2.01
18 8.29 8.26
19 30.05 29.55
20 105.35 110.35
21 205.35 207.85
22 722.52 718.49
23 timeout timeout

Table 5: Average runtimes (in seconds) for pr and uc with different argument counts.

43

0 100 200 300

10−3

10−2

10−1

100

101

102

103

argument count

ru
nt

im
e[

s]
ASP: ad
ASP: gr

Figure 10: Logarithmic dependence of runtime from argument count for ASP (ad
and gr).

Java ASP
Arg Count gr sa gr sa
1 0.02 0.01 < 0.01 < 0.01
5 0.01 0.01 < 0.01 < 0.01
10 0.02 0.07 < 0.01 < 0.01
15 0.21 0.21 0.01 0.01
20 51.30 50.80 0.03 0.02
25

timeout timeout

0.06 0.04
30 0.10 0.07
35 0.19 0.13
50 0.63 0.42
100 6.22 4.10
150 23.87 15.23
200 61.94 39.92
250 132.10 85.12
300 247.43 156.69
350 404.83 267.97
400

killed
416.04

450 647.95
500 killed

Table 6: Average runtimes (in seconds) for gr and sa with different argument counts.

44

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

20

40

60

80

100

120

140

160

argument count

ru
nt

im
e[

s] Java: ad
ASP: ad

Figure 11: Dependence of runtime from density for Java and ASP (both ad).

5.3. Experiment 2: Runtime Dependence of Density

To test the runtime dependence on the density of the argumentation frameworks,
25 APX files were generated with densities of 0.1, 0.2, 0.5 and 0.8, respectively, and
20 arguments each. The runtimes with equal density were averaged. The results are
shown in Figure 11 and in Table 7. The effect of density on the runtime is compar-
atively moderate. The runtime with the lowest density is longer for each semantics
and for Java as well as for ASP. For Java, the runtime drops to a broadly similar
level at higher densities, while for ASP, the runtime has a minimum at a density of
0.2 and increases again at higher densities.

5.4. Experiment 3: Standard Deviation of Runtimes

To determine whether individual properties of the argumentation frameworks (ex-
cept for the argument count and the density) affect runtime, 50 different sample APX
files were generated, each with 20 arguments and a density of 0.5. Table 8 shows the
mean runtimes and the corresponding standard deviations. The runtimes were rela-
tively constant within the same semantics, with a slightly higher standard deviation
for the ASP solver. Due to the small standard deviation, it is reasonable to neglect
the influence of individual properties of the argumentation frameworks on the run-
time for both solvers, if averaged over a sufficient number of instances.

45

Density
0.1 0.2 0.5 0.8

Java

ad 63.51 51.31 51.10 51.11
co 63.57 51.21 51.11 51.10
pr 145.24 112.97 104.45 114.85
gr 63.48 51.30 51.10 51.18
st 64.35 51.29 50.99 51.22
sa 62.70 51.35 50.97 51.07
uc 139.01 110.80 108.75 112.03

ASP

ad 147.87 19.22 28.32 37.98
co 81.25 16.47 23.10 32.43
pr killed
gr 0.13 0.02 0.03 0.04
st 80.33 18.27 27.47 38.77
sa 0.24 0.01 0.02 0.03
uc killed

Table 7: Average runtimes (in seconds) with different densities.

ad co pr gr st sa uc

Java
average runtime 50.94 50.98 106.62 50.98 50.98 51.03 106.52
standard deviation 0.31 0.14 7.57 0.32 0.32 0.12 7.63

ASP
average runtime 28.72 23.22 killed 0.03 27.51 0.02 killed
standard deviation 2.88 1.25 - < 0.01 2.49 < 0.01 -

Table 8: Average and standard deviations of runtimes (in seconds) of argumentation
frameworks of equal size.

46

0 5 10 15 20 25 30 35

0

10

20

30

40

argument count

[%
so

lv
in

g
ti

m
e]

ASP: ad
ASP: co

Figure 12: Percentage of solving time of ASP solver for ad and co.

5.5. Experiment 4: Ratio of Solving Time

As described in section 2.2.2 the ASP solver works in two consecutive steps, ground-
ing and solving. The grounding generally requires a longer part of the total runtime.
In addition to the total CPU time, the used ASP solver provides the time required
to solve the grounded rules (then the grounding time is the difference of the total
runtime and the solving time).

Figure 12 shows the percentage of the solving time for the semantics ad and co de-
pending on the argument count. Apart from the fact that the solving time is higher
for ad than for co, the data show a high variability and are therefore quite difficult to
interpret.

6. Future Work

In order to place the results obtained here on a solid foundation, the correctness
of the ASP encodings would have to be formally proven. So far, the correctness of
the developed encodings has only been verified empirically on the argumentation
frameworks from the evaluation.

Another goal for future work can focus on improving the runtime of the ASP
solver, especially for the semantics pr and uc. The main runtime issue is the need to
verify initial sets, which often requires to reason over all subsets of a given set. This

47

can be inefficient, when an exponential number of instances has to be checked. To
overcome this, the application of the saturation technique, as mentioned in Section
3.1.2, could possibly be a solution. This might be very difficult to implement, be-
cause the use of default negation is limited. The saturation technique would allow
to apply a second “guess and check” to reason over subsets of a solution candi-
date. Another possibility to improve the runtime for computing the serialization
sequences of uc could be to implement the Bron-Kerbosch algorithm in ASP, as men-
tioned in Section 3.3. This would allow to select conflict-free subsets of a given set
of arguments, which then could be used as input for the Algorithm 1. It should
be emphasized that it is not guaranteed, that these proposals will lead to an im-
provement of runtimes. A third suggestion to improve runtimes could be to use
metaprogramming, which has been particularly recommended for the multiple use
of the “guess and check” paradigm [20]. This would require an additional program-
ming language like Python, that is able to handle different ASP encodings on a meta
level.

7. Conclusion

Abstract argumentation frameworks are directed graphs used to represent human
reasoning, where the nodes represent arguments and directed edges represent the
refutation of one argument by another. Sets of arguments that represent a (coher-
ent) point of view are called extensions that can identify the outcome(s) of a dis-
cussion represented by an argumentation framework. The abstract way to compute
an extension is defined by the corresponding semantics, with a variety of different
semantics available. The minimum property of any extension is to be conflict-free
and admissible, i.e. that there are no conflicts within an extension and that every
argument of an extension is defended against external attacks. To satisfy the human
need to consider arguments in a sequential order, the concept of serialization was
proposed, in which the desired extension is constructed step by step using subsets
of arguments. These subsets are called initial sets and represent a single resolved lo-
cal issue. The serialization is possible for admissible sets (ad) and for the semantics
co, pr, gr, sa, st and uc.

In this thesis, ASP encodings to compute initial sets and their subtypes (unattacked,
unchallenged and challenged initials sets) and for the serialization sequences of ad,
co, pr, gr, sa, st and uc are presented and discussed. The advantages of ASP in be-
ing elaboration-tolerant and requiring comparatively short code could only be con-
firmed for the semantics gr and sa. In contrast, the computation of the other seman-
tics requires additional auxiliary data structures that are rather difficult to encode
and understand.

The encodings for serialization sequences are compared with an existing imple-
mentation in Java from the “Tweety-Project” in terms of correctness and runtime.
For this purpose, various example argumentation frameworks were generated and
tested with both solver types. In terms of correctness, both solvers yield equal re-

48

sults for all seven semantics. Regarding runtime, the argument count of the argu-
mentation framework is the most important parameter. The Java solver showed an
exponential behaviour for all semantics, so that argumentation frameworks with up
to 22 arguments for pr and uc and up to 23 arguments for ad, co, gr, sa and st could be
solved within the runtime limit of 20 min. The ASP solver showed an exponential
behaviour for pr and uc and was killed due to lack of memory for argumentation
frameworks with only 13 or 9 arguments, respectively. For the other semantics the
ASP solver was faster than the corresponding Java solver. The high memory con-
sumption of the ASP solver lead to an abort when processing argumentation frame-
works for ad, co and st with more than 34 arguments. For gr and sa argumentation
frameworks of up to 400 or 450 arguments, respectively, were solvable.

49

References

[1] P. Baroni, M. Caminada, and M. Giacomin. Abstract argumentation frame-
works and their semantics. Handbook of Formal Argumentation, pages 159–236,
2018.

[2] P. Baroni and M. Giacomin. On principle-based evaluation of extension-based
argumentation semantics. Artificial Intelligence, 171:675–700, 2007.

[3] G. Baumann, R. Brewka, and M. Ulbricht. Revisiting the foundations of abstract
argumentation–semantics based on weak admissibility and weak defense. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, (34):2742–2749, 2020.

[4] C. Beierle and G. Kern-Isberner. Methoden wissensbasierter Systeme. 6th edition,
2019.

[5] L. Bengel, J. Sander, and M. Thimm. Characterising Serialisation Equivalence
for Abstract Argumentation. Proceedings of the 27th European Conference on Arti-
ficial Intelligence (ECAI’24), 2024.

[6] L. Bengel and M. Thimm. Serialisable Semantics for Abstract Argumentation.
Computational Models of Argumentation: Proceedings of COMMA, pages 80–91,
2022.

[7] L. Blümel and M. Thimm. A Ranking Semantics for Abstract Argumentation
Based on Serialisability. Computational Models of Argument, pages 104–115, 2022.

[8] E. Bonzon, J. Delobelle, S. Konieczny, and N. Maudet. A Comparative Study of
Ranking-based Semantics for Abstract Argumentation. Proceedings of the 30th
AAAI Conference on Artificial Intelligence (AAAI’16), pages 914–920, 2016.

[9] M. Caminada. Strong Admissibility revisited. 2014.

[10] M. Caminada and D. M. Gabbay. A Logical Account of Formal Argumentation.
Studio Logica: An International Journal for Symbolic Logic, 93(2/3):109–145, 2009.

[11] P. Dung. On the Acceptability of Arguments and its Fundamental Role in Non-
monotonic Reasoning, Logic Programming and n-Person Games. Artificial In-
telligence, 77(2):321–358, 1995.

[12] U. Egly, S. A. Gaggl, and S. Woltran. Answer-set programming encodings
for argumentation frameworks. Argument and Computation 1.2, pages 147–177,
2010.

[13] T. Eiter, W. Faber, N. Leone, and G. Pfeifer. Declarative Problem-Solving Using the
DLV System, pages 79–103. Springer US, Boston, MA, 2000.

51

[14] T. Eiter and A. Polleres. Toward automated integration of guess and check
programs in Answer Set Programming: a meta-interpreter and applications.
Theory and Practice of Logic Programming, 6(1–2):23–60, 2006.

[15] D. Eppstein, M. Löffler, and D. Strash. Listing All Maximal Cliques in Large
Sparase Real-World Graphs. Journal of Experimental Algorithmics, 18:3.1–3.21,
2013.

[16] W. Faber. An Introduction to Answer Set Programming and Some of Its Extensions,
pages 149–185. Springer, 2020.

[17] M. Gebser, R. Kaminski, B. Kaufmann, M. Lindauer, M. Ostrowski, J. Romero,
T. Schaub, S. Thiele, and P. Wanko. Potassco User Guide. 2019.

[18] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Answer Set Solving in
Practise. Springer, 2022.

[19] A. Hunter and M. Thimm. Probabilistic Reasoning with Abstract Argumenta-
tion Frameworks. Journal of Artificial Intelligence Research, 59:565–611, 2017.

[20] R. Kaminsky, J. Romero, T. Schaub, and P. Wanko. How to Build Your Own ASP-
based System?!, pages 299–361. Number 23. 2023.

[21] V. Lifschitz. Answer Set Programming. Springer, 2019.

[22] C. Redl. Answer Set Programs with Queries over Subprograms. In M. Balduc-
cini and T. Janhunen, editors, Logic Programming and Nonmonotonic Reasoning,
Lecture Notes in Computer Science, 2017.

[23] M. Thimm. Tweety: A comprehensive collection of java libraries for logical
aspects of artificial intelligence and knowledge representation. Fourteenth In-
ternational Conference on the Principles of Knowledge Representation and Reasoning,
2014.

[24] M. Thimm. Revisiting initial sets in abstract argumentation. Argument & Com-
putation, 13(3):325–360, 2022.

[25] V. Turau and C. Weyer. Algorithmische Graphentheorie. de Gruyter, 4. edition,
2015.

[26] I. Wegener. Komplexitätstheorie. Springer, 2003.

[27] Y. Xu and C. Cayrol. Initial Sets in Abstract Argumentation Frameworks. Pro-
ceedings of the 1st Chinese Conference on Logic and Argumentation (CLAR’16), 2016.

52

A. Complete ASP Encodings

The following encodings are also available online at https://github.com/ukarkmann
/ASP-encoding-for-serialization-sequences.

A.1. Initial Sets

1 %%%
2 % ASP−Encoding f o r i n i t i a l s e t s
3 %%%
4

5 % Algorithm
6 %
7 % 0 . Generate s e t s of arguments as s o l u t i o n candidates
8 %
9 % 1 . Exclude non− i n i t i a l s o l u t i o n candidates

10 %
11 % 1 . 1 Exclude empty s e t
12 % 1 . 2 Exclude c o n f l i c t i n g s e t s
13 % 1 . 3 Exclude non−admiss ib le s e t s
14 % => Remaining s e t s are non−empty admiss ib le
15 % 1 . 4 Exclude non−minimal admiss ib le s e t s
16 %
17 % 1 . 4 . 1 Define subse ts decremented by one element
18 % 1 . 4 . 2 Define subsubsets by removing a l l non−defended arguments
19 % 1 . 4 . 3 Flag non−admiss ib le subse ts
20 % => Non−flagged subsets are admiss ib le
21 % 1 . 4 . 4 Exclude s o l u t i o n candidates with admiss ib le subset
22 %
23 % => Remaining s e t s are i n i t i a l s e t s
24 %
25 %%
26

27 % L i s t of p r e d i c a t e s
28 %
29 % arg/1 arguments of AF
30 % a t t /2 at tack − r e l a t i o n
31 % attacked /1 at tacked argument
32 % card/1 c a r d i n a l i t y of s o l u t i o n candidate
33 % e x c l /2 argument excluded from s e t
34 % in /1 argument of s o l u t i o n candidate
35 % l t /2 lower −than r e l a t i o n over arguments of s o l u t i o n candidate
36 % ninf /1 non− s m a l l e s t arguments of s o l u t i o n candidate
37 % non_adm/2 i n d i c a t e s non− a d m i s s i b i l i t y of subset
38 % non_def/3 non−defended argument of subset of s o l u t i o n candidate
39 % non_empty i n d i c a t e s non−emptyness of s o l u t i o n candidate
40 % nsucc/2 non−successor r e l a t i o n over arguments of s o l u t i o n candidate
41 % sub/2 argument of decremented s e t
42 % sub/3 argument of descending subsets
43 % sub_attacked /3 argument at tacked by subset
44 % succ /2 successor − r e l a t i o n over arguments of s o l u t i o n candidate
45

46 %%
47

48 % 0 . Generate s e t s of arguments as candidates f o r i n i t i a l s e t s
49

50 { in (X) } : − arg (X) .
51

52 % 1 . 1 Exclude empty s e t

53

53

54 non_empty : − in (X) .
55

56 : − not non_empty .
57

58 % 1 . 2 Exclude c o n f l i c t i n g s e t s
59

60 : − in (X) ,
61 in (Y) ,
62 a t t (X , Y) .
63

64 % 1 . 3 Exclude non−admiss ib le s e t s
65

66 % S e l e c t arguments at tacked by ’ in ’
67

68 at tacked (X) : − in (Y) ,
69 a t t (Y , X) .
70

71 % Exclude s e t s with non−defended arguments
72

73 : − a t t (Y , X) ,
74 in (X) ,
75 not at tacked (Y) .
76

77 % RESULT : Remaining s e t s are non−empty admiss ib le
78

79 % 1 . 4 Exclude non−minimal admiss ib le s e t s
80

81 % Define an order on each s e t with succ − r e l a t i o n
82

83 l t (X , Y) : − in (X) ,
84 in (Y) ,
85 X<Y .
86

87 nsucc (X , Z) : − l t (X , Y) ,
88 l t (Y , Z) .
89

90 succ (X , Y) : − l t (X , Y) ,
91 not nsucc (X , Y) .
92

93 ninf (X) : − l t (Y , X) .
94

95 % Define numbered arguments to be excluded
96

97 e x c l (X , 1) : − not n inf (X) ,
98 in (X) .
99

100 e x c l (Y , No+1) : − e x c l (X , No) ,
101 in (Y) ,
102 succ (X , Y) .
103

104 % 1 . 4 . 1 Define subsets decremented by one element
105

106 sub (X , No) : − in (X) ,
107 not e x c l (X , No) ,
108 card (C) ,
109 No = 1 . . C .
110

111 % Define f i r s t ’ l e v e l ’ of subsets
112

113 sub (X , No, 0) : − sub (X ,No) .
114

54

115 % S e l e c t arguments at tacked by ’ sub ’
116

117 sub_attacked (Y , No, Level) : − sub (X , No, Level) ,
118 a t t (X , Y) .
119

120 % S e l e c t non−defendet arguments of ’ sub ’
121

122 non_def (Y , No, Level) : − sub (Y , No, Level) ,
123 a t t (X , Y) ,
124 not sub_attacked (X , No, Level) .
125

126 % 1 . 4 . 2 Define subsubsets by removing non−defended arguments
127

128 card (C) : − { in (X) } == C.
129

130 sub (X , No, Level +1) : − sub (X , No, Level) ,
131 not non_def (X , No, Level) ,
132 card (C) ,
133 Level < C.
134

135 % 1 . 4 . 3 Flag non−admiss ib le subse ts
136

137 non_adm (No, Level) : − non_def (Y , No, Level) .
138

139

140 % 1 . 4 . 4 Exclude s o l u t i o n candidate with admiss ib le subset
141

142 : − not non_adm (No, Level) ,
143 sub (X , No, Level) .
144

145 #show in /1.

55

A.2. Unattacked Initial Sets

1 %%
2 % ASP−Encoding f o r unattacked i n i t i a l s e t s
3 %%
4

5 % Generate s e t s of arguments as s o l u t i o n candidates
6

7 { in (X) } : − arg (X) .
8

9

10 % Exclude s o l u t i o n candidates with c a r d i n a l i t y not 1
11

12 : − { in (X) } != 1 .
13

14 % Exclude s o l u t i o n candidates with at tacked arguments
15

16 : − in (X) ,
17 a t t (Y , X) ,
18 arg (Y) .
19

20 #show in /1.

56

A.3. Unchallenged Initial Sets

1 %%%
2 % ASP−Encoding f o r unchallenged i n i t i a l s e t s
3 %%%
4 %
5 % Algorithm
6 %
7 % 0 . Generate s e t s of arguments as s o l u t i o n candidates
8 %
9 % 1 . Each s o l u t i o n must be an i n i t i a l s e t

10 %
11 % 1 . 1 Exclude empty s e t
12 % 1 . 2 Exclude c o n f l i c t i n g s e t s
13 % 1 . 3 Exclude non−admiss ib le s e t s
14 % => Remaining s e t s are non−empty admiss ib le
15 % 1 . 4 Exclude non−minimal admiss ib le s e t s
16 %
17 % 1 . 4 . 1 Define subse ts decremented by one element
18 % 1 . 4 . 2 Define subsubsets by removing non−defended arguments
19 % 1 . 4 . 3 Flag non−admiss ib le subse ts
20 % => Non−flagged subsets are admiss ib le
21 % 1 . 4 . 4 Exclude s o l u t i o n candidates with admiss ib le subset
22 %
23 % => Remaining s e t s are i n i t i a l s e t s
24 %
25 % 2 . Exclude unattacked s e t s
26 %
27 % => Remaining s e t s are at tacked i n i t i a l s e t s
28 %
29 % 3 . Exclude s o l u t i o n candidates at tacked by i n i t i a l s e t s
30 %
31 % 3 . 1 Define a l l non−empty subsets of arguments
32 % 3 . 2 Flag non− i n i t i a l subse ts
33 % 3 . 2 . 1 Flag c o n f l i c t i n g subsets
34 % 3 . 2 . 2 Flag non−admiss ib le subse ts
35 % 3 . 2 . 3 Flag non−minimal subse ts
36 % => Non−flagged subsets are i n i t i a l s e t s
37 % 3 . 3 Exclude s o l u t i o n candidates at tacked by i n i t i a l s e t
38 %
39 %%
40

41 % L i s t of p r e d i c a t e s
42 %
43 % a_attacked /2 at tacked argument
44 % a_card/1 c a r d i n a l i t y of s e t of arguments
45 % a_elem/2 element of subset of arguments
46 % a _ f l a g /1 f l a g non− i n i t i a l subse ts
47 % a _ l t /2 lower −than r e l a t i o n over arguments
48 % a_nsucc/2 non−successor r e l a t i o n over arguments
49 % a_ninf /1 non− s m a l l e s t arguments
50 % a _ s e t /1 number of subset
51 % a_sub/2 subsets of arguments
52 % a_succ /2 non−successor r e l a t i o n over arguments
53 % a_vec/4 binary vec tor
54 % arg/1 arguments of AF
55 % arg/2 numbered argument of AF
56 % a t t /2 at tack − r e l a t i o n
57 % attacked /1 at tacked argument of s o l u t i o n candidate
58 % card/1 c a r d i n a l i t y of s o l u t i o n candidate
59 % elemIni /2 element of i n i t i a l s e t

57

60 % e x c l /2 argument excluded from s o l u t i o n candidate
61 % in /1 argument of s o l u t i o n candidate
62 % in_at tacked at tacked s o l u t i o n candidate
63 % i n i S e t /1 i n i t i a l s e t
64 % l t /2 lower −than r e l a t i o n over arguments of s o l u t i o n candidate
65 % ninf /1 non− s m a l l e s t arguments of s o l u t i o n candidate
66 % non_adm/2 i n d i c a t e s non− a d m i s s i b i l i t y of subset
67 % non_def/3 non−defended argument of subset of s o l u t i o n candidate
68 % non_empty non−empty s o l u t i o n candidate
69 % nsucc/2 non−successor r e l a t i o n over arguments of s o l u t i o n candidate
70 % sub/2 argument of decremented s o l u t i o n candidate
71 % sub/3 argument of descending subsets
72 % sub_attacked /3 argument at tacked by subset
73 % succ /2 successor − r e l a t i o n over arguments of s o l u t i o n candidate
74

75 %%
76

77 % 0 . Generate s e t s of arguments as s o l u t i o n candidates
78

79 { in (X) } : − arg (X) .
80

81 % 1 . Each s o l u t i o n must be an i n i t i a l s e t
82 % 1 . 1 Exclude empty s e t
83

84 non_empty : − in (X) .
85

86 : − not non_empty .
87

88 % 1 . 2 Exclude c o n f l i c t i n g s e t s
89

90 : − in (X) ,
91 in (Y) ,
92 a t t (X , Y) .
93

94 % 1 . 3 Exclude non−admiss ib le s e t s
95

96 % S e l e c t arguments at tacked by ’ in ’
97

98 at tacked (X) : − in (Y) ,
99 a t t (Y , X) .

100

101 % Exclude s e t s with non−defended arguments
102

103 : − a t t (Y , X) ,
104 in (X) ,
105 not at tacked (Y) .
106

107 % RESULT : Remaining s e t s are non−empty admiss ib le
108

109 % 1 . 4 Exclude non−minimal admiss ib le s e t s
110

111 % Define an order on each s e t with succ − r e l a t i o n
112

113 l t (X , Y) : − in (X) ,
114 in (Y) ,
115 X<Y .
116

117 nsucc (X , Z) : − l t (X , Y) ,
118 l t (Y , Z) .
119

120 succ (X , Y) : − l t (X , Y) ,
121 not nsucc (X , Y) .

58

122

123 ninf (X) : − l t (Y , X) .
124

125 % Define numbered arguments to be excluded
126

127 e x c l (X , 1) : − not n inf (X) ,
128 in (X) .
129

130 e x c l (Y , No+1) : − e x c l (X , No) ,
131 in (Y) ,
132 succ (X , Y) .
133

134 % 1 . 4 . 1 Define subsets decremented by one element
135

136 sub (X , No) : − in (X) ,
137 not e x c l (X , No) ,
138 card (C) ,
139 No = 1 . . C .
140

141 % Define f i r s t ’ l e v e l ’ of subse ts
142

143 sub (X , No, 0) : − sub (X ,No) .
144

145 % S e l e c t arguments at tacked by ’ sub ’
146

147 sub_attacked (Y , No, Level) : − sub (X , No, Level) ,
148 a t t (X , Y) .
149

150 % S e l e c t non−defendet arguments of ’ sub ’
151

152 non_def (Y , No, Level) : − sub (Y , No, Level) ,
153 a t t (X , Y) ,
154 not sub_attacked (X , No, Level) .
155

156 % 1 . 4 . 2 Define subsubsets by removing non−defended arguments
157

158 card (C) : − { in (X) } == C.
159

160 sub (X , No, Level +1) : − sub (X , No, Level) ,
161 not non_def (X , No, Level) ,
162 card (C) ,
163 Level < C.
164

165 % 1 . 4 . 3 Flag non−admiss ib le subse ts
166

167 non_adm (No, Level) : − non_def (Y , No, Level) .
168

169

170 % 1 . 4 . 4 Exclude s o l u t i o n candidate with admiss ib le subset
171

172 : − not non_adm (No, Level) ,
173 sub (X , No, Level) .
174

175 % RESULT : Remaining s e t s are i n i t i a l s e t s
176

177 % 2 . Exclude unattacked s e t s
178

179 in_a t tacked : − in (X) ,
180 a t t (Y , X) ,
181 arg (Y) .
182

183 : − not in_a t tacked .

59

184

185 % RESULT : Remaining s e t s are at tacked i n i t i a l s e t s
186

187 % 3 . Exclude s o l u t i o n candidates at tacked by i n i t i a l s e t s
188

189 % 3 . 1 Define a l l non−empty subsets
190

191 % Define an order over a l l arguments with succ − r e l a t i o n
192

193 a _ l t (X , Y) : − arg (X) ,
194 arg (Y) , X<Y .
195

196 a_nsucc (X , Z) : − a _ l t (X , Y) ,
197 a _ l t (Y , Z) .
198

199 a_succ (X , Y) : − a _ l t (X , Y) ,
200 not a_nsucc (X , Y) .
201

202 a_ninf (X) : − a _ l t (Y , X) .
203

204 % Each argument i s numbered accordingly
205

206 arg (X , 0) : − not a_ninf (X) ,
207 arg (X) .
208

209 arg (Y , ArgNo+1) : − arg (X , ArgNo) ,
210 arg (Y) ,
211 a_succ (X , Y) .
212

213 % Define numbered subsets and use binary vector of subset −number
214 % to ass ign arguments to the corresponding subset
215

216 % Number of subsets equals c a r d i n a l i t y of power− s e t
217 % = 2^ (c a r d i n a l i t y of s e t) , " 0 " corresponds to empty set ,
218 % maximum corresponds to i d e n t i t y
219

220 a_card (C) : − { arg (X) } == C.
221

222 a _ s e t (1 . . SetNo) : − (2 * * C) − 1 == SetNo ,
223 a_card (C) .
224

225 % C al c u l a te binary vec tor by repeatedly divide number by 2 .
226 % Rest i s 1 or 0 and ass igns argument to subset
227 % Resul t i s needed f o r the next d i v i s i o n
228

229 % S t a r t
230

231 a_vec (SetNo , 0 , SetNo \2 , SetNo /2) : −
232 a _ s e t (SetNo) .
233

234 % Next
235

236 a_vec (SetNo , ArgNo+1 , Resul t \2 , Resul t /2) : −
237 a_vec (SetNo , ArgNo , _ , Resul t) ,
238 SetNo >= (2 * * (ArgNo + 1)) .
239

240 % Define elements of subse ts
241

242 a_elem (SetNo , ArgNo) : − a_vec (SetNo , ArgNo , Rest , _) ,
243 Rest = 1 .
244

245 % Define subsets of out −subset (w/o empty s e t and i d e n t i t y)

60

246

247 a_sub (SetNo , SubSet) : − a_vec (SetNo , ArgNo , Rest , Resul t) ,
248 Rest = 1 ,
249 SubSet = 2 * * (ArgNo) .
250

251 a_sub (SetNo , SubA+SubB) : − a_sub (SetNo , SubA) ,
252 a_sub (SetNo , SubB) ,
253 SubA != SubB ,
254 SubA + SubB < SetNo .
255

256 % 3 . 2 Flag non− i n i t i a l subse ts
257

258 % 3 . 2 . 1 Flag c o n f l i c t i n g subsets
259

260 a _ f l a g (SetNo) : − a_elem (SetNo , ArgNo1) ,
261 a_elem (SetNo , ArgNo2) ,
262 arg (X , ArgNo2) ,
263 arg (Y , ArgNo1) ,
264 a t t (X , Y) .
265

266 % 3 . 2 . 2 Flag non−admiss ib le subse ts
267

268 a_at tacked (SetNo , X) : − a_elem (SetNo , ArgNo) ,
269 arg (Y , ArgNo) ,
270 a t t (Y , X) .
271

272 a _ f l a g (SetNo) : − a_elem (SetNo , ArgNo) ,
273 arg (X , ArgNo) ,
274 a t t (Y , X) ,
275 not a_at tacked (SetNo , Y) .
276

277 % 3 . 2 . 3 Flag non−minimal subse ts
278

279 a _ f l a g (SetNo1) : − a _ s e t (SetNo1) ,
280 a _ s e t (SetNo2) ,
281 SetNo1 != SetNo2 ,
282 a_sub (SetNo1 , SetNo2) ,
283 not a _ f l a g (SetNo2) .
284

285 % RESULT : Non−flagged subsets are i n i t i a l s e t s
286

287 % 3 . 3 Exclude s o l u t i o n candidates at tacked by i n i t i a l s e t
288

289 i n i S e t (SetNo) : − a _ s e t (SetNo) ,
290 not a _ f l a g (SetNo) .
291

292 elemIni (SetNo , X) : − i n i S e t (SetNo) ,
293 a_elem (SetNo , ArgNo) ,
294 arg (X , ArgNo) .
295

296 : − elemIni (SetNo , X) ,
297 in (Y) ,
298 a t t (X , Y) .
299

300 #show in /1.

61

A.4. Challenged Initial Sets

1 %%%
2 % ASP−Encoding f o r chal lenged i n i t i a l s e t s
3 %%%
4 %
5 % Algorithm
6 %
7 % 0 . Generate s e t s of arguments as s o l u t i o n candidates
8 %
9 % 1 . Each s o l u t i o n must be an i n i t i a l s e t

10 %
11 % 1 . 1 Exclude empty s e t
12 % 1 . 2 Exclude c o n f l i c t i n g s e t s
13 % 1 . 3 Exclude non−admiss ib le s e t s
14 % => Remaining s e t s are non−empty admiss ib le
15 % 1 . 4 Exclude non−minimal admiss ib le s e t s
16 %
17 % 1 . 4 . 1 Define subse ts decremented by one element
18 % 1 . 4 . 2 Define subsubsets by removing non−defended arguments
19 % 1 . 4 . 3 Flag non−admiss ib le subse ts
20 % => Non−flagged subsets are admiss ib le
21 % 1 . 4 . 4 Exclude s o l u t i o n candidates with admiss ib le subset
22 %
23 % => Remaining s e t s are i n i t i a l s e t s
24 %
25 % 2 . Exclude unattacked s e t s
26 %
27 % => Remaining s e t s are at tacked i n i t i a l s e t s
28 %
29 % 3 . Exclude s o l u t i o n candidates not at tacked by i n i t i a l s e t
30 %
31 % 3 . 1 Define a l l non−empty subsets of arguments
32 % 3 . 2 Flag non− i n i t i a l subse ts
33 % 3 . 2 . 1 Flag c o n f l i c t i n g subsets
34 % 3 . 2 . 2 Flag non−admiss ib le subse ts
35 % 3 . 2 . 3 Flag non−minimal subse ts
36 % => Non−flagged subsets are i n i t i a l s e t s
37 % 3 . 3 Exclude s o l u t i o n candidates not at tacked by i n i t i a l s e t
38 %
39 %%
40

41 % L i s t of p r e d i c a t e s
42 %
43 % a_attacked /2 at tacked argument
44 % a_card/1 c a r d i n a l i t y of s e t of arguments
45 % a_elem/2 element of subset of arguments
46 % a _ f l a g /1 f l a g non− i n i t i a l subse ts
47 % a _ l t /2 lower −than r e l a t i o n over arguments
48 % a_nsucc/2 non−successor r e l a t i o n over arguments
49 % a_ninf /1 non− s m a l l e s t arguments
50 % a _ s e t /1 number of subset
51 % a_sub/2 subsets of arguments
52 % a_succ /2 non−successor r e l a t i o n over arguments
53 % a_vec/4 binary vec tor
54 % arg/1 arguments of AF
55 % arg/2 numbered argument of AF
56 % a t t /2 at tack − r e l a t i o n
57 % attacked /1 at tacked argument of s o l u t i o n candidate
58 % card/1 c a r d i n a l i t y of s o l u t i o n candidate
59 % elemIni /2 element of i n i t i a l s e t

62

60 % e x c l /2 argument excluded from s o l u t i o n candidate
61 % in /1 argument of s o l u t i o n candidate
62 % in_at tacked at tacked s o l u t i o n candidate
63 % i n i _ a t t a c k i n d i c a t e s s o l u t i o n candidates at tacked by i n i t i a l s e t
64 % i n i S e t /1 i n i t i a l s e t
65 % l t /2 lower −than r e l a t i o n over arguments of s o l u t i o n candidate
66 % ninf /1 non− s m a l l e s t arguments of s o l u t i o n candidate
67 % non_adm/2 i n d i c a t e s non− a d m i s s i b i l i t y of subset
68 % non_def/3 non−defended argument of subset of s o l u t i o n candidate
69 % non_empty non−empty s o l u t i o n candidate
70 % nsucc/2 non−successor r e l a t i o n over arguments of s o l u t i o n candidate
71 % sub/2 argument of decremented s o l u t i o n candidate
72 % sub/3 argument of descending subsets
73 % sub_attacked /3 argument at tacked by subset
74 % succ /2 successor − r e l a t i o n over arguments of s o l u t i o n candidate
75

76 %%
77

78 % 0 . Generate s e t s of arguments as s o l u t i o n candidates
79

80 { in (X) } : − arg (X) .
81

82 % 1 . Each s o l u t i o n must be an i n i t i a l s e t
83 % 1 . 1 Exclude empty s e t
84

85 non_empty : − in (X) .
86

87 : − not non_empty .
88

89 % 1 . 2 Exclude c o n f l i c t i n g s e t s
90

91 : − in (X) ,
92 in (Y) ,
93 a t t (X , Y) .
94

95 % 1 . 3 Exclude non−admiss ib le s e t s
96

97 % S e l e c t arguments at tacked by ’ in ’
98

99 at tacked (X) : − in (Y) ,
100 a t t (Y , X) .
101

102 % Exclude s e t s with non−defended arguments
103

104 : − a t t (Y , X) ,
105 in (X) ,
106 not at tacked (Y) .
107

108 % RESULT : Remaining s e t s are non−empty admiss ib le
109

110 % 1 . 4 Exclude non−minimal admiss ib le s e t s
111

112 % Define an order on each s e t with succ − r e l a t i o n
113

114 l t (X , Y) : − in (X) ,
115 in (Y) ,
116 X<Y .
117

118 nsucc (X , Z) : − l t (X , Y) ,
119 l t (Y , Z) .
120

121 succ (X , Y) : − l t (X , Y) ,

63

122 not nsucc (X , Y) .
123

124 ninf (X) : − l t (Y , X) .
125

126 % Define numbered arguments to be excluded
127

128 e x c l (X , 1) : − not n inf (X) ,
129 in (X) .
130

131 e x c l (Y , No+1) : − e x c l (X , No) ,
132 in (Y) ,
133 succ (X , Y) .
134

135 % 1 . 4 . 1 Define subsets decremented by one element
136

137 sub (X , No) : − in (X) ,
138 not e x c l (X , No) ,
139 card (C) ,
140 No = 1 . . C .
141

142 % Define f i r s t ’ l e v e l ’ of subse ts
143

144 sub (X , No, 0) : − sub (X ,No) .
145

146 % S e l e c t arguments at tacked by ’ sub ’
147

148 sub_attacked (Y , No, Level) : − sub (X , No, Level) ,
149 a t t (X , Y) .
150

151 % S e l e c t non−defendet arguments of ’ sub ’
152

153 non_def (Y , No, Level) : − sub (Y , No, Level) ,
154 a t t (X , Y) ,
155 not sub_attacked (X , No, Level) .
156

157 % 1 . 4 . 2 Define subsubsets by removing non−defended arguments
158

159 card (C) : − { in (X) } == C.
160

161 sub (X , No, Level +1) : − sub (X , No, Level) ,
162 not non_def (X , No, Level) ,
163 card (C) ,
164 Level < C.
165

166 % 1 . 4 . 3 Flag non−admiss ib le subse ts
167

168 non_adm (No, Level) : − non_def (Y , No, Level) .
169

170

171 % 1 . 4 . 4 Exclude s o l u t i o n candidate with admiss ib le subset
172

173 : − not non_adm (No, Level) ,
174 sub (X , No, Level) .
175

176 % RESULT : Remaining s e t s are i n i t i a l s e t s
177

178 % 2 . Exclude unattacked s e t s
179

180 in_a t tacked : − in (X) ,
181 a t t (Y , X) ,
182 arg (Y) .
183

64

184 : − not in_a t tacked .
185

186 % RESULT : Remaining s e t s are at tacked i n i t i a l s e t s
187

188 % 3 . Exclude s o l u t i o n candidates at tacked by i n i t i a l s e t s
189

190 % 3 . 1 Define a l l non−empty subsets
191

192 % Define an order over a l l arguments with succ − r e l a t i o n
193

194 a _ l t (X , Y) : − arg (X) ,
195 arg (Y) , X<Y .
196

197 a_nsucc (X , Z) : − a _ l t (X , Y) ,
198 a _ l t (Y , Z) .
199

200 a_succ (X , Y) : − a _ l t (X , Y) ,
201 not a_nsucc (X , Y) .
202

203 a_ninf (X) : − a _ l t (Y , X) .
204

205 % Each argument i s numbered accordingly
206

207 arg (X , 0) : − not a_ninf (X) ,
208 arg (X) .
209

210 arg (Y , ArgNo+1) : − arg (X , ArgNo) ,
211 arg (Y) ,
212 a_succ (X , Y) .
213

214 % Define numbered subsets and use binary vector of subset −number
215 % to ass ign arguments to the corresponding subset
216

217 % Number of subsets equals c a r d i n a l i t y of power− s e t
218 % = 2^ (c a r d i n a l i t y of s e t) , " 0 " corresponds to empty set ,
219 % maximum corresponds to i d e n t i t y
220

221 a_card (C) : − { arg (X) } == C.
222

223 a _ s e t (1 . . SetNo) : − (2 * * C) − 1 == SetNo ,
224 a_card (C) .
225

226 % C al c u l a te binary vec tor by repeatedly divide number by 2 .
227 % Rest i s 1 or 0 and ass igns argument to subset
228 % Resul t i s needed f o r the next d i v i s i o n
229

230 % S t a r t
231

232 a_vec (SetNo , 0 , SetNo \2 , SetNo /2) : −
233 a _ s e t (SetNo) .
234

235 % Next
236

237 a_vec (SetNo , ArgNo+1 , Resul t \2 , Resul t /2) : −
238 a_vec (SetNo , ArgNo , _ , Resul t) ,
239 SetNo >= (2 * * (ArgNo + 1)) .
240

241 % Define elements of subse ts
242

243 a_elem (SetNo , ArgNo) : − a_vec (SetNo , ArgNo , Rest , _) ,
244 Rest = 1 .
245

65

246 % Define subsets of out −subset (w/o empty s e t and i d e n t i t y)
247

248 a_sub (SetNo , SubSet) : − a_vec (SetNo , ArgNo , Rest , Resul t) ,
249 Rest = 1 ,
250 SubSet = 2 * * (ArgNo) .
251

252 a_sub (SetNo , SubA+SubB) : − a_sub (SetNo , SubA) ,
253 a_sub (SetNo , SubB) ,
254 SubA != SubB ,
255 SubA + SubB < SetNo .
256

257 % 3 . 2 Flag non− i n i t i a l subse ts
258

259 % 3 . 2 . 1 Flag c o n f l i c t i n g subsets
260

261 a _ f l a g (SetNo) : − a_elem (SetNo , ArgNo1) ,
262 a_elem (SetNo , ArgNo2) ,
263 arg (X , ArgNo2) ,
264 arg (Y , ArgNo1) ,
265 a t t (X , Y) .
266

267 % 3 . 2 . 2 Flag non−admiss ib le subse ts
268

269 a_at tacked (SetNo , X) : − a_elem (SetNo , ArgNo) ,
270 arg (Y , ArgNo) ,
271 a t t (Y , X) .
272

273 a _ f l a g (SetNo) : − a_elem (SetNo , ArgNo) ,
274 arg (X , ArgNo) ,
275 a t t (Y , X) ,
276 not a_at tacked (SetNo , Y) .
277

278 % 3 . 2 . 3 Flag non−minimal subse ts
279

280 a _ f l a g (SetNo1) : − a _ s e t (SetNo1) ,
281 a _ s e t (SetNo2) ,
282 SetNo1 != SetNo2 ,
283 a_sub (SetNo1 , SetNo2) ,
284 not a _ f l a g (SetNo2) .
285

286 % RESULT : Non−flagged subsets are i n i t i a l s e t s
287

288 % 3 . 3 Exclude s o l u t i o n candidates not at tacked by i n i t i a l s e t
289

290 i n i S e t (SetNo) : − a _ s e t (SetNo) ,
291 not a _ f l a g (SetNo) .
292

293 elemIni (SetNo , X) : − i n i S e t (SetNo) ,
294 a_elem (SetNo , ArgNo) ,
295 arg (X , ArgNo) .
296

297 i n i _ a t t a c k : − elemIni (SetNo , X) ,
298 in (Y) ,
299 a t t (X , Y) .
300

301 : − not i n i _ a t t a c k .
302

303 #show in /1.

66

A.5. Serialization Sequence for Admissible Sets

1 %%%
2 % ASP−Encoding f o r s e r i a l i z a t i o n sequence of admiss ib le s e t s
3 %%%
4

5 % Algorithm
6 %
7 % 0 . Generate sequences of s e t s of arguments as s o l u t i o n candidates
8 % f o r s e r i a l i z a t i o n sequences .
9 %

10 % 1 . Each sequence term must be an i n i t i a l s e t
11 %
12 % 1 . 1 Exclude sequences with non− i n i t i a l terms
13 %
14 % 1 . 1 . 1 Exclude sequences with ’ intermediate ’ empty term
15 % 1 . 1 . 2 Exclude sequences with c o n f l i c t i n g term
16 % 1 . 1 . 3 Exclude sequences with non−admiss ib le term
17 % => Remaining sequences only have non−empty admiss ib le
18 % terms
19 % 1 . 1 . 4 Exclude sequences with non−minimal admiss ib le terms
20 %
21 % 1 . 1 . 4 . 1 Create subse ts decremented by one element
22 % 1 . 1 . 4 . 2 Define subsubsets by removing non−defended arguments
23 % 1 . 1 . 4 . 3 Flag non−admiss ib le subse ts
24 % => Non−flagged subsets are admiss ib le
25 % 1 . 1 . 4 . 4 Exclude sequences with admiss ib le subset
26 %
27 % => Remaining sequence terms are i n i t i a l s e t s
28 %
29 %%
30

31 % L i s t of p r e d i c a t e s
32 %
33 % arg/1 arguments of AF
34 % a t t /2 at tack − r e l a t i o n
35 % a t t /3 at tack − r e l a t i o n within reduct
36 % attacked /2 argument at tacked by sequence term
37 % c o l l e c t /2 argument outs ide reduct
38 % e x c l /3 argument excluded from term
39 % in /2 argument of sequence term
40 % index/1 index of sequence term
41 % in_card /2 c a r d i n a l i t y of sequence term
42 % in_index /2 index of arguments of sequence term
43 % l t /3 lower −than r e l a t i o n over arguments of sequence term
44 % ninf /2 non− s m a l l e s t arguments of sequence term
45 % non_adm/3 non− a d m i s s i b i l i t y of numbered subset of sequence term
46 % non_def/4 non−defended arguments of subset of sequence term
47 % non_empty/1 non−empty sequence term
48 % nsucc/3 non−successor r e l a t i o n over arguments of sequence term
49 % reduct /2 argument of reduct
50 % sub/3 argument of decremented term
51 % sub/4 argument of subset of sequence term
52 % sub_attacked /4 argument at tacked by subset of sequence term
53 % succ /3 successor − r e l a t i o n over arguments of sequence term
54

55 %%
56

57 % Get number of arguments
58

59 index (1 . . C) : − { arg (X) } == C.

67

60

61 % 0 . GENERATE sequences of s e t s of arguments as s o l u t i o n candidates
62 % f o r s e r i a l i z a t i o n sequences
63

64 { in (X , Step) } : − reduct (X , Step) .
65

66 % Get c a r d i n a l i t y of sequence terms
67

68 in_index (1 . . C, Step) : − { in (X , Step) } == C,
69 index (Step) .
70

71 in_card (C, Step) : − { in (X , Step) } == C,
72 index (Step) .
73

74 % Define reduct
75

76 % F i r s t reduct equals AF
77

78 reduct (X , 1) : − arg (X) .
79

80 % C o l l e c t arguments from sequence term
81

82 c o l l e c t (X , Step) : − in (X , Step) .
83

84 % C o l l e c t arguments at tacked by sequence term
85

86 c o l l e c t (X , Step) : − in (Y , Step) ,
87 a t t (Y , X) .
88

89 % Next reduct has a l l non− c o l l e c t e d arguments
90

91 reduct (X , Step +1) : − reduct (X , Step) ,
92 not c o l l e c t (X , Step) ,
93 index (Step) .
94

95 % . . and the r e l a t i o n s between contained arguments
96

97 a t t (X , Y , Step) : − reduct (X , Step) ,
98 reduct (Y , Step) ,
99 a t t (X , Y) .

100

101 % 1 . Each sequence term must be an i n i t i a l s e t
102 %
103 % 1 . 1 Exclude sequences with non− i n i t i a l term
104 %
105 % 1 . 1 . 1 Exclude sequences with ’ intermediate ’ empty term
106

107 non_empty (Step) : − in (X , Step) .
108

109 : − not non_empty (Step) ,
110 non_empty (Step +1) ,
111 index (Step) .
112

113 % 1 . 1 . 2 Exclude sequences with c o n f l i c t i n g terms
114

115 : − in (X , Step) ,
116 in (Y , Step) ,
117 a t t (X , Y) .
118

119 % 1 . 1 . 3 Exclude sequences with non−admiss ib le term
120

121 % S e l e c t arguments at tacked by term

68

122

123 at tacked (X , Step) : − in (Y , Step) ,
124 a t t (Y , X , Step) .
125

126 % Exclude sequences with non−defended arguments in term
127

128 : − a t t (Y , X , Step) ,
129 in (X , Step) ,
130 not at tacked (Y , Step) .
131

132 % RESULT : Remaining sequences only have non−empty admiss ib le terms
133

134 % 1 . 1 . 4 Exclude sequences with non−minimal admiss ib le term
135

136 % 1 . 1 . 4 . 1 Create subsets decremented by one element
137

138 % Define an order over ’ in ’ with succ − r e l a t i o n
139

140 l t (X , Y , Step) : − in (X , Step) ,
141 in (Y , Step) ,
142 X<Y .
143

144 nsucc (X , Z , Step) : − l t (X , Y , Step) ,
145 l t (Y , Z , Step) .
146

147 succ (X , Y , Step) : − l t (X , Y , Step) ,
148 not nsucc (X , Y , Step) .
149

150 ninf (X , Step) : − l t (Y , X , Step) .
151

152 % Define numbered arguments to be excluded
153

154 e x c l (X , 1 , Step) : − not n inf (X , Step) ,
155 in (X , Step) .
156

157 e x c l (Y , No+1 , Step) : − e x c l (X , No, Step) ,
158 in (Y , Step) ,
159 succ (X , Y , Step) .
160

161 % Define decremented s e t s (w/o excluded argument)
162

163 sub (X , No, Step) : − in (X , Step) ,
164 not e x c l (X , No, Step) ,
165 in_index (No, Step) .
166

167 % Define f i r s t ’ l e v e l ’ of subse ts
168

169 sub (X , No, Step , 0) : − sub (X , No, Step) .
170

171 % S e l e c t arguments at tacked by ’ sub ’
172

173 sub_attacked (Y , No, Step , Level) : −
174 sub (X , No, Step , Level) ,
175 a t t (X , Y , Step) .
176

177 % S e l e c t non−defended arguments of ’ sub ’
178

179 non_def (Y , No, Step , Level) : − sub (Y , No, Step , Level) ,
180 a t t (X , Y , Step) ,
181 not sub_attacked (X , No, Step , Level) .
182

183 % 1 . 1 . 4 . 2 Define subsubsets by removing a l l non−defended arguments

69

184

185 sub (X , No, Step , Level +1) : − sub (X , No, Step , Level) ,
186 not non_def (X , No, Step , Level) ,
187 in_card (C, Step) ,
188 Level < C.
189

190 % 1 . 1 . 4 . 3 Flag a l l non−admiss ib le subse ts
191

192 non_adm (No, Step , Level) : − non_def (Y , No, Step , Level) .
193

194

195 % 1 . 1 . 4 . 4 Exclude sequences with admiss ib le subset
196

197 : − not non_adm (No, Step , Level) ,
198 sub (X , No, Step , Level) .
199

200 #show in /2.

70

A.6. Serialization Sequence for Complete Semantics

1 %%
2 % ASP−Encoding f o r s e r i a l i z a t i o n sequence of complete semantics .
3 %%
4

5 % Algorithm
6 %
7 % 0 . Generate sequences of s e t s of arguments as s o l u t i o n candidates
8 % f o r s e r i a l i z a t i o n sequences .
9 %

10 % 1 . Each sequence term must be an i n i t i a l s e t
11 %
12 % 1 . 1 Exclude sequences with non− i n i t i a l terms
13 %
14 % 1 . 1 . 1 Exclude sequences with ’ intermediate ’ empty term
15 % 1 . 1 . 2 Exclude sequences with c o n f l i c t i n g term
16 % 1 . 1 . 3 Exclude sequences with non−admiss ib le term
17 % => Remaining sequences only have non−empty admiss ib le
18 % terms
19 % 1 . 1 . 4 Exclude sequences with non−minimal admiss ib le terms
20 %
21 % 1 . 1 . 4 . 1 Create subse ts decremented by one element
22 % 1 . 1 . 4 . 2 Define subsubsets by removing non−defended arguments
23 % 1 . 1 . 4 . 3 Flag non−admiss ib le subse ts
24 % => Non−flagged subsets are admiss ib le
25 % 1 . 1 . 4 . 4 Exclude sequences with admiss ib le subset
26 %
27 % => Remaining sequence terms are i n i t i a l s e t s
28 %
29 % 2 . Termination condi t ion : no unattacked arguments in reduct
30 %
31 % 2 . 1 Flag at tacked arguments
32 % 2 . 2 I n d i c a t e reducts conta in ing unattacked arguments
33 % 2 . 3 Exclude sequences with improper l a s t reduct
34 %
35 %%
36 %
37 % L i s t of p r e d i c a t e s
38 %
39 % arg/1 arguments of AF
40 % a t t /2 at tack − r e l a t i o n
41 % a t t /3 at tack − r e l a t i o n within reduct
42 % attacked /2 argument at tacked by sequence term
43 % c o l l e c t /2 argument outs ide reduct
44 % e x c l /3 argument excluded from term
45 % f l a g /2 at tacked arguments of reduct
46 % in /2 argument of sequence term
47 % index/1 index of sequence term
48 % in_card /2 c a r d i n a l i t y of sequence term
49 % in_index /2 index of arguments of sequence term
50 % l t /3 lower −than r e l a t i o n over arguments of sequence term
51 % ninf /2 non− s m a l l e s t arguments of sequence term
52 % non_adm/3 non− a d m i s s i b i l i t y of numbered subset of sequence term
53 % non_def/4 non−defended arguments of subset of sequence term
54 % non_empty/1 non−empty sequence term
55 % non_terminate /1 reduct with unattacked arguments
56 % nsucc/3 non−successor r e l a t i o n over arguments of sequence term
57 % reduct /2 argument of reduct
58 % sub/3 argument of decremented term
59 % sub/4 argument of subset of sequence term

71

60 % sub_attacked /4 argument at tacked by subset of sequence term
61 % succ /3 successor − r e l a t i o n over arguments of sequence term
62

63 %%
64

65 % Get number of arguments
66

67 index (1 . . C) : − { arg (X) } == C.
68

69 % 0 . GENERATE sequences of s e t s of arguments as s o l u t i o n candidates
70 % f o r s e r i a l i z a t i o n sequences
71

72 { in (X , Step) } : − reduct (X , Step) .
73

74 % Get c a r d i n a l i t y of sequence terms
75

76 in_index (1 . . C, Step) : − { in (X , Step) } == C,
77 index (Step) .
78

79 in_card (C, Step) : − { in (X , Step) } == C,
80 index (Step) .
81

82 % Define reduct
83

84 % F i r s t reduct equals AF
85

86 reduct (X , 1) : − arg (X) .
87

88

89 % C o l l e c t arguments from sequence term
90

91 c o l l e c t (X , Step) : − in (X , Step) .
92

93 % C o l l e c t arguments at tacked by sequence term
94

95 c o l l e c t (X , Step) : − in (Y , Step) ,
96 a t t (Y , X) .
97

98 % Next reduct has a l l non− c o l l e c t e d arguments
99

100 reduct (X , Step +1) : − reduct (X , Step) ,
101 not c o l l e c t (X , Step) ,
102 index (Step) .
103

104 % . . and the r e l a t i o n s between contained arguments
105

106 a t t (X , Y , Step) : − reduct (X , Step) ,
107 reduct (Y , Step) ,
108 a t t (X , Y) .
109

110 % 1 . Each sequence term must be an i n i t i a l s e t
111 %
112 % 1 . 1 Exclude sequences with non− i n i t i a l term
113 %
114 % 1 . 1 . 1 Exclude sequences with ’ intermediate ’ empty term
115

116 non_empty (Step) : − in (X , Step) .
117

118 : − not non_empty (Step) ,
119 non_empty (Step +1) ,
120 index (Step) .
121

72

122 % 1 . 1 . 2 Exclude sequences with c o n f l i c t i n g terms
123

124 : − in (X , Step) ,
125 in (Y , Step) ,
126 a t t (X , Y , Step) .
127

128

129 % 1 . 1 . 3 Exclude sequences with non−admiss ib le term
130

131 % S e l e c t arguments at tacked by element
132

133 at tacked (X , Step) : − in (Y , Step) ,
134 a t t (Y , X , Step) .
135

136 % Exclude sequences with non−defended arguments in term
137

138 : − a t t (Y , X , Step) ,
139 in (X , Step) ,
140 not at tacked (Y , Step) .
141

142 % RESULT : Remaining sequences only have non−empty admiss ib le terms
143

144 % 1 . 1 . 4 Exclude sequences with non−minimal admiss ib le term
145

146 % 1 . 1 . 4 . 1 Create subsets decremented by one element
147

148 % Define an order over ’ in ’ with succ − r e l a t i o n
149

150 l t (X , Y , Step) : − in (X , Step) ,
151 in (Y , Step) ,
152 X<Y .
153

154 nsucc (X , Z , Step) : − l t (X , Y , Step) ,
155 l t (Y , Z , Step) .
156

157 succ (X , Y , Step) : − l t (X , Y , Step) ,
158 not nsucc (X , Y , Step) .
159

160 ninf (X , Step) : − l t (Y , X , Step) .
161

162 % Define numbered arguments to be excluded
163

164 e x c l (X , 1 , Step) : − not n inf (X , Step) ,
165 in (X , Step) .
166

167 e x c l (Y , No+1 , Step) : − e x c l (X , No, Step) ,
168 in (Y , Step) ,
169 succ (X , Y , Step) .
170

171 % Define decremented s e t s (w/o excluded argument)
172

173 sub (X , No, Step) : − in (X , Step) ,
174 not e x c l (X , No, Step) ,
175 in_index (No, Step) .
176

177 % Define f i r s t ’ l e v e l ’ of subse ts
178

179 sub (X , No, Step , 0) : − sub (X , No, Step) .
180

181 % S e l e c t arguments at tacked by ’ sub ’
182

183 sub_attacked (Y , No, Step , Level) : −

73

184 sub (X , No, Step , Level) ,
185 a t t (X , Y , Step) .
186

187 % S e l e c t non−defended arguments of ’ sub ’
188

189 non_def (Y , No, Step , Level) : − sub (Y , No, Step , Level) ,
190 a t t (X , Y , Step) ,
191 not sub_attacked (X , No, Step , Level) .
192

193 % 1 . 1 . 4 . 2 Define subsubsets by removing non−defended arguments
194

195 sub (X , No, Step , Level +1) : − sub (X , No, Step , Level) ,
196 not non_def (X , No, Step , Level) ,
197 in_card (C, Step) ,
198 Level < C.
199

200 % 1 . 1 . 4 . 3 Flag non−admiss ib le subse ts
201

202 non_adm (No, Step , Level) : − non_def (Y , No, Step , Level) .
203

204

205 % 1 . 1 . 4 . 4 Exclude sequences with admiss ib le subset
206

207 : − not non_adm (No, Step , Level) ,
208 sub (X , No, Step , Level) .
209

210 % RESULT : Remaining sequence terms are i n i t i a l s e t s
211

212 % 2 . Termination condi t ion : no unattacked arguments in reduct
213

214 % 2 . 1 Flag at tacked arguments
215

216 f l a g (X , Step) : − reduct (X , Step) ,
217 reduct (Y , Step) ,
218 a t t (Y , X , Step) .
219

220 % 2 . 2 I n d i c a t e reducts conta in ing unattacked arguments
221

222 non_terminate (Step) : − reduct (X , Step) ,
223 not f l a g (X , Step) .
224

225 % 2 . 3 Exclude sequences with improper l a s t reduct
226

227 : − non_empty (Step) ,
228 not non_empty (Step +1) ,
229 non_terminate (Step +1) ,
230 Step > 0 .
231

232 % Exclude improper empty s e t
233

234 : − not non_empty (1) ,
235 non_terminate (1) .
236 #show in /2.

74

A.7. Serialization Sequence for Stable Semantics

1 %%%
2 % ASP−Encoding f o r s e r i a l i z a t i o n sequence of s t a b l e semantics
3 %%%
4

5 % Algorithm
6 %
7 % 0 . Generate sequences of s e t s of arguments as s o l u t i o n candidates
8 % f o r s e r i a l i z a t i o n sequences .
9 %

10 % 1 . Each sequence term must be an i n i t i a l s e t
11 %
12 % 1 . 1 Exclude sequences with non− i n i t i a l terms
13 %
14 % 1 . 1 . 1 Exclude sequences with ’ intermediate ’ empty term
15 % 1 . 1 . 2 Exclude sequences with c o n f l i c t i n g term
16 % 1 . 1 . 3 Exclude sequences with non−admiss ib le term
17 % => Remaining sequences only have non−empty admiss ib le
18 % terms
19 % 1 . 1 . 4 Exclude sequences with non−minimal admiss ib le terms
20 %
21 % 1 . 1 . 4 . 1 Create subse ts decremented by one element
22 % 1 . 1 . 4 . 2 Define subsubsets by removing non−defended arguments
23 % 1 . 1 . 4 . 3 Flag non−admiss ib le subse ts
24 % => Non−flagged subsets are admiss ib le
25 % 1 . 1 . 4 . 4 Exclude sequences with admiss ib le subset
26 %
27 % => Remaining sequence terms are i n i t i a l s e t s
28 %
29 % 2 . Termination condi t ion : l a s t reduct must be empty
30 %
31 %%
32

33 % L i s t of p r e d i c a t e s
34 %
35 % arg/1 arguments of AF
36 % a t t /2 at tack − r e l a t i o n
37 % a t t /3 at tack − r e l a t i o n within reduct
38 % attacked /2 argument at tacked by sequence term
39 % c o l l e c t /2 argument outs ide reduct
40 % e x c l /3 argument excluded from term
41 % in /2 argument of sequence term
42 % index/1 index of sequence term
43 % in_card /2 c a r d i n a l i t y of sequence term
44 % in_index /2 index of arguments of sequence term
45 % l t /3 lower −than r e l a t i o n over arguments of sequence term
46 % ninf /2 non− s m a l l e s t arguments of sequence term
47 % non_adm/3 non− a d m i s s i b i l i t y of numbered subset of sequence term
48 % non_def/4 non−defended arguments of subset of sequence term
49 % non_empty/1 non−empty sequence term
50 % nsucc/3 non−successor r e l a t i o n over arguments of sequence term
51 % reduct /2 argument of reduct
52 % sub/3 argument of decremented term
53 % sub/4 argument of subset of sequence term
54 % sub_attacked /4 argument at tacked by subset of sequence term
55 % succ /3 successor − r e l a t i o n over arguments of sequence term
56

57 %%
58

59 % Get number of arguments

75

60

61 index (1 . . C) : − { arg (X) } == C.
62

63 % 0 . GENERATE sequences of s e t s of arguments as s o l u t i o n candidates
64 % f o r s e r i a l i z a t i o n sequences
65

66 { in (X , Step) } : − reduct (X , Step) .
67

68 % Get c a r d i n a l i t y of sequence terms
69

70 in_index (1 . . C, Step) : − { in (X , Step) } == C,
71 index (Step) .
72

73 in_card (C, Step) : − { in (X , Step) } == C,
74 index (Step) .
75

76 % Define reduct
77

78 % F i r s t reduct equals AF
79

80 reduct (X , 1) : − arg (X) .
81

82

83 % C o l l e c t arguments from sequence term
84

85 c o l l e c t (X , Step) : − in (X , Step) .
86

87 % C o l l e c t arguments at tacked by sequence term
88

89 c o l l e c t (X , Step) : − in (Y , Step) ,
90 a t t (Y , X) .
91

92 % Next reduct has a l l non− c o l l e c t e d arguments
93

94 reduct (X , Step +1) : − reduct (X , Step) ,
95 not c o l l e c t (X , Step) ,
96 index (Step) .
97

98 % . . and the r e l a t i o n s between contained arguments
99

100 a t t (X , Y , Step) : − reduct (X , Step) ,
101 reduct (Y , Step) ,
102 a t t (X , Y) .
103

104 % 1 . Each sequence term must be an i n i t i a l s e t
105 %
106 % 1 . 1 Exclude sequences with non− i n i t i a l term
107 %
108 % 1 . 1 . 1 Exclude sequences with ’ intermediate ’ empty term
109

110 non_empty (Step) : − in (X , Step) .
111

112 : − not non_empty (Step) ,
113 non_empty (Step +1) ,
114 index (Step) .
115

116 % 1 . 1 . 2 Exclude sequences with c o n f l i c t i n g terms
117

118 : − in (X , Step) ,
119 in (Y , Step) ,
120 a t t (X , Y) .
121

76

122

123 % 1 . 1 . 3 Exclude sequences with non−admiss ib le term
124

125 % S e l e c t arguments at tacked by term
126

127 at tacked (X , Step) : − in (Y , Step) ,
128 a t t (Y , X , Step) .
129

130 % Exclude sequences with non−defended arguments in term
131

132 : − a t t (Y , X , Step) ,
133 in (X , Step) ,
134 not at tacked (Y , Step) .
135

136 % RESULT : Remaining sequences only have non−empty admiss ib le terms
137

138 % 1 . 1 . 4 Exclude sequences with non−minimal admiss ib le term
139

140 % 1 . 1 . 4 . 1 Create subsets decremented by one element
141

142 % Define an order over ’ in ’ with succ − r e l a t i o n
143

144 l t (X , Y , Step) : − in (X , Step) ,
145 in (Y , Step) ,
146 X<Y .
147

148 nsucc (X , Z , Step) : − l t (X , Y , Step) ,
149 l t (Y , Z , Step) .
150

151 succ (X , Y , Step) : − l t (X , Y , Step) ,
152 not nsucc (X , Y , Step) .
153

154 ninf (X , Step) : − l t (Y , X , Step) .
155

156 % Define numbered arguments to be excluded
157

158 e x c l (X , 1 , Step) : − not n inf (X , Step) ,
159 in (X , Step) .
160

161 e x c l (Y , No+1 , Step) : − e x c l (X , No, Step) ,
162 in (Y , Step) ,
163 succ (X , Y , Step) .
164

165 % Define decremented s e t s (w/o excluded argument)
166

167 sub (X , No, Step) : − in (X , Step) ,
168 not e x c l (X , No, Step) ,
169 in_index (No, Step) .
170

171 % Define f i r s t ’ l e v e l ’ of subse ts
172

173 sub (X , No, Step , 0) : − sub (X , No, Step) .
174

175 % S e l e c t arguments at tacked by ’ sub ’
176

177 sub_attacked (Y , No, Step , Level) : −
178 sub (X , No, Step , Level) ,
179 a t t (X , Y , Step) .
180

181 % S e l e c t non−defended arguments of ’ sub ’
182

183 non_def (Y , No, Step , Level) : − sub (Y , No, Step , Level) ,

77

184 a t t (X , Y , Step) ,
185 not sub_attacked (X , No, Step , Level) .
186

187 % 1 . 1 . 4 . 2 Define subsubsets by removing non−defended arguments
188

189 sub (X , No, Step , Level +1) : − sub (X , No, Step , Level) ,
190 not non_def (X , No, Step , Level) ,
191 in_card (C, Step) ,
192 Level < C.
193

194 % 1 . 1 . 4 . 3 Flag non−admiss ib le subse ts
195

196 non_adm (No, Step , Level) : − non_def (Y , No, Step , Level) .
197

198

199 % 1 . 1 . 4 . 4 Exclude sequences with admiss ib le subset
200

201 : − not non_adm (No, Step , Level) ,
202 sub (X , No, Step , Level) .
203

204 % 2 . Termination condi t ion : l a s t reduct must be empty
205

206 : − not non_empty (Step) ,
207 reduct (X , Step) .
208

209 #show in /2.

78

A.8. Serialization Sequence for Preferred Semantics

1 %%
2 % ASP−Encoding of s e r i a l i z a t i o n sequence f o r pre fer red semantics .
3 %%
4

5 % Algorithm
6 %
7 % 0 . Generate sequences of s e t s of arguments as s o l u t i o n candidates
8 % f o r s e r i a l i z a t i o n sequences
9 %

10 % 1 . Each sequence term must be an i n i t i a l s e t
11 %
12 % 1 . 1 Exclude sequences with non− i n i t i a l term
13 %
14 % 1 . 1 . 1 Exclude sequences with ’ intermediate ’ empty term
15 % 1 . 1 . 2 Exclude sequences with c o n f l i c t i n g term
16 % 1 . 1 . 3 Exclude sequences with non−admiss ib le term
17 % => Remaining sequences only have non−empty admiss ib le
18 % terms
19 % 1 . 1 . 4 Exclude sequences with non−minimal admiss ib le term
20 %
21 % 1 . 1 . 4 . 1 Create subse ts decremented by one element
22 % 1 . 1 . 4 . 2 Define subsubsets by removing non−defended arguments
23 % 1 . 1 . 4 . 3 Flag non−admiss ib le subse ts
24 % => Non−flagged subsets are admiss ib le
25 % 1 . 1 . 4 . 4 Exclude sequences with admiss ib le subset
26 %
27 % => Remaining sequence terms are i n i t i a l s e t s
28 %
29 % 2 . Termination condi t ion : no non−empty admiss ib le s e t in reduct
30 %
31 % 2 . 1 Create a l l non−empty subsets of reduct
32 % 2 . 2 Flag c o n f l i c t i n g subsets of reduct
33 % 2 . 3 Flag non−admiss ib le subse ts of reduct
34 % 2 . 4 I n d i c a t e reducts conta in ing admiss ib le s e t s
35 % 2 . 5 Exclude sequences with improper l a s t reduct
36 %
37 %%%
38

39 % L i s t of p r e d i c a t e s
40 %
41 % arg/1 arguments of AF
42 % a t t /2 at tack − r e l a t i o n
43 % a t t /3 at tack − r e l a t i o n within reduct
44 % attacked /2 argument at tacked by sequence term
45 % binvec /4 binary vec tor
46 % card/1 c a r d i n a l i t y of s e t of a l l arguments
47 % c o l l e c t /2 argument outs ide reduct
48 % e x c l /3 argument excluded from term
49 % f l a g /2 i n d i c a t e s c o n f l i c t i n g and non−admiss ib le subse ts
50 % in /2 argument of sequence element
51 % index/1 index of sequence term
52 % in_card /2 c a r d i n a l i t y of sequence term
53 % in_index /2 index of arguments of sequence term
54 % l t /3 lower −than r e l a t i o n over arguments of sequence term
55 % ninf /2 non− s m a l l e s t arguments of sequence term
56 % non_adm/3 non− a d m i s s i b i l i t y of numbered subset of sequence term
57 % non_def/4 non−defended arguments of subset of sequence term
58 % non_empty/1 non−empty sequence term
59 % non_terminate /1 reduct with non−empty admiss ib le subset

79

60 % nsucc/3 non−successor r e l a t i o n over arguments of sequnce term
61 % r_at tacked /3 argument at tacked by subset of reduct
62 % r_card /2 c a r d i n a l i t y of reduct
63 % r_elem/2 element of subset of reduct
64 % r_elem/3 element of subset of reduct
65 % r _ l t /3 Lower−than r e l a t i o n over arguments of reduct
66 % r _ n i n f /2 non− s m a l l e s t arguments of reduct
67 % r_nsucc /3 non−successor r e l a t i o n over arguments of reduct
68 % r _ s e t /2 numbered subset of reduct
69 % r_succ /3 successor − r e l a t i o n over arguments of reduct
70 % reduct /2 argument of reduct
71 % reduct /3 numbered argument of reduct
72 % sub/3 argument of decremented s e t
73 % sub/4 argument of subset of sequence term
74 % sub_attacked /4 argument at tacked by subset of sequence term
75 % succ /3 successor − r e l a t i o n over arguments of sequence term
76

77 %%%
78

79 % Get number of arguments
80

81 index (1 . . C) : − { arg (X) } == C.
82 card (C) : − { arg (X) } == C.
83

84

85 % 0 . Generate sequences of s e t s of arguments as s o l u t i o n candidates
86 % f o r s e r i a l i z a t i o n sequences
87

88 { in (X , Step) } : − reduct (X , Step) .
89

90 % Get c a r d i n a l i t y of sequence terms
91

92 in_index (1 . . C, Step) : − { in (X , Step) } == C,
93 index (Step) .
94

95 in_card (C, Step) : − { in (X , Step) } == C,
96 index (Step) .
97

98 % Define reduct
99

100 % F i r s t reduct equals AF
101

102 reduct (X , 1) : − arg (X) .
103

104

105 % C o l l e c t arguments from sequence term
106

107 c o l l e c t (X , Step) : − in (X , Step) .
108

109

110 % C o l l e c t arguments at tacked by sequence term
111

112 c o l l e c t (X , Step) : − in (Y , Step) ,
113 a t t (Y , X) .
114

115

116 % Next reduct has a l l non− c o l l e c t e d arguments
117

118 reduct (X , Step +1) : − reduct (X , Step) ,
119 not c o l l e c t (X , Step) ,
120 index (Step) .
121

80

122 % . . and the r e l a t i o n s between contained arguments
123

124 a t t (X , Y , Step) : − reduct (X , Step) ,
125 reduct (Y , Step) ,
126 a t t (X , Y) .
127

128 % 1 . Each sequence term must be an i n i t i a l s e t
129

130 % 1 . 1 Exclude sequences with non− i n i t i a l term
131

132 % 1 . 1 . 1 Exclude sequences with ’ intermediate ’ empty term
133

134 non_empty (Step) : − in (X , Step) .
135

136 : − not non_empty (Step) ,
137 non_empty (Step +1) ,
138 index (Step) .
139

140 % 1 . 1 . 2 Exclude sequences with c o n f l i c t i n g term
141

142 : − in (X , Step) ,
143 in (Y , Step) ,
144 a t t (X , Y) .
145

146

147 % 1 . 1 . 3 Exclude sequences with non−admiss ib le term
148

149 % S e l e c t arguments at tacked by term
150

151 at tacked (X , Step) : − in (Y , Step) ,
152 a t t (Y , X , Step) .
153

154 % Exclude sequences with non−defended arguments in term
155

156 : − a t t (Y , X , Step) ,
157 in (X , Step) ,
158 not at tacked (Y , Step) .
159

160 % RESULT : Remaining sequences only have non−empty admiss ib le terms
161 %
162 % 1 . 1 . 4 Exclude sequences with non−minimal admiss ib le term
163

164 % 1 . 1 . 4 . 1 Create subsets decremented by one element
165

166 % Define an order over ’ in ’ with succ − r e l a t i o n
167

168 l t (X , Y , Step) : − in (X , Step) ,
169 in (Y , Step) ,
170 X<Y .
171

172 nsucc (X , Z , Step) : − l t (X , Y , Step) ,
173 l t (Y , Z , Step) .
174

175 succ (X , Y , Step) : − l t (X , Y , Step) ,
176 not nsucc (X , Y , Step) .
177

178 ninf (X , Step) : − l t (Y , X , Step) .
179

180 % Define numbered arguments to be excluded
181

182 e x c l (X , 1 , Step) : − not n inf (X , Step) ,
183 in (X , Step) .

81

184

185 e x c l (Y , No+1 , Step) : − e x c l (X , No, Step) ,
186 in (Y , Step) ,
187 succ (X , Y , Step) .
188

189 % Define decremented s e t s (w/o excluded argument)
190

191 sub (X , No, Step) : − in (X , Step) ,
192 not e x c l (X , No, Step) ,
193 in_index (No, Step) .
194

195 % Define f i r s t ’ l e v e l ’ of subse ts
196

197 sub (X , No, Step , 0) : − sub (X , No, Step) .
198

199 % S e l e c t arguments at tacked by ’ sub ’
200

201 sub_attacked (Y , No, Step , Level) : −
202 sub (X , No, Step , Level) ,
203 a t t (X , Y , Step) .
204

205 % S e l e c t non−defended arguments of ’ sub ’
206

207 non_def (Y , No, Step , Level) : − sub (Y , No, Step , Level) ,
208 a t t (X , Y , Step) ,
209 not sub_attacked (X , No, Step , Level) .
210

211 % 1 . 1 . 4 . 2 Define subsubsets by removing a l l non−defended arguments
212

213 sub (X , No, Step , Level +1) : − sub (X , No, Step , Level) ,
214 not non_def (X , No, Step , Level) ,
215 in_card (C, Step) ,
216 Level < C.
217

218 % 1 . 1 . 4 . 3 Flag a l l non−admiss ib le subse ts
219

220 non_adm (No, Step , Level) : − non_def (Y , No, Step , Level) .
221

222

223 % 1 . 1 . 4 . 4 Exclude sequences with admiss ib le subset
224

225 : − not non_adm (No, Step , Level) ,
226 sub (X , No, Step , Level) .
227

228 % RESULT : Remaining sequence terms are i n i t i a l s e t s
229

230 % 2 . Termination condi t ion : no non−empty admiss ib le s e t in reduct
231

232 % 2 . 1 Create a l l non−empty subsets of reduct (inc luding i d e n t i t y)
233

234 % Store c a r d i n a l i t i e s of reducts
235

236 r_card (C, Step) : − { reduct (X , Step) } == C,
237 card (Ca) ,
238 RStep = Ca + 1 ,
239 Step = 1 . . RStep .
240

241 % Define an order on reduct with succ − r e l a t i o n
242

243 r _ l t (X , Y , Step) : − reduct (X , Step) ,
244 reduct (Y , Step) ,
245 X<Y .

82

246

247 r_nsucc (X , Z , Step) : − r _ l t (X , Y , Step) ,
248 r _ l t (Y , Z , Step) .
249

250 r_succ (X , Y , Step) : − r _ l t (X , Y , Step) ,
251 not r_nsucc (X , Y , Step) .
252

253 r _ n i n f (X , Step) : − r _ l t (Y , X , Step) .
254

255 % Each argument of reduct i s numbered accordingly
256

257 reduct (X , Step , 0) : − not r _ n i n f (X , Step) ,
258 reduct (X , Step) .
259

260 reduct (Y , Step , ArgNo+1): − reduct (X , Step , ArgNo) ,
261 reduct (Y , Step) ,
262 r_succ (X , Y , Step) .
263

264 % C al c u l a te binary vec tor by repeatedly divide number by 2 .
265 % ’ Rest ’ i s 1 or 0 and ass igns argument to subset .
266 % ’ Result ’ i s needed f o r the next d i v i s i o n
267

268 % S t a r t
269

270 binVec (SetNo , 0 , SetNo \2 , SetNo /2) : −
271 r_card (C, 2) ,
272 (2 * * C) − 1 = Max,
273 SetNo = 1 . . Max .
274

275 % Next
276

277 binVec (SetNo , ArgNo+1 , Resul t \2 , Resul t /2) : −
278 binVec (SetNo , ArgNo , _ , Resul t) ,
279 SetNo >= (2 * * (ArgNo + 1)) .
280

281 % Use binary vec tor to r e l a t e reduct −arguments to the corresponding subset
282

283 r _ s e t (1 . . MaxSet , Step) : − (2 * * C) − 1 == MaxSet ,
284 r_card (C, Step) .
285

286 % Rela te subsets to contained arguments
287

288 r_elem (SetNo , ArgNo) : − binVec (SetNo , ArgNo , Rest , _) ,
289 Rest = 1 .
290

291 % Rela te subsets of sequence elements to contained arguments
292

293 r_elem (SetNo , ArgNo , Step) : − r _ s e t (SetNo , Step) ,
294 r_elem (SetNo , ArgNo) .
295

296 % 2 . 2 Flag c o n f l i c t i n g subsets of reduct
297

298 f l a g (SetNo , Step) : − r_elem (SetNo , ArgNo1 , Step) ,
299 reduct (X , Step , ArgNo1) ,
300 r_elem (SetNo , ArgNo2 , Step) ,
301 reduct (Y , Step , ArgNo2) ,
302 a t t (X , Y) .
303

304 % 2 . 3 Flag non−admiss ib le subse ts of reduct
305

306 r_a t tacked (SetNo , X , Step) : − r_elem (SetNo , ArgNo , Step) ,
307 reduct (Y , Step , ArgNo) ,

83

308 a t t (Y , X , Step) .
309

310 f l a g (SetNo , Step) : − r_elem (SetNo , ArgNo , Step) ,
311 reduct (X , Step , ArgNo) ,
312 a t t (Y , X , Step) ,
313 not r_a t tacked (SetNo , Y , Step) .
314

315 % 2 . 4 I n d i c a t e reducts conta in ing admiss ib le s e t s
316

317 non_terminate (Step) : − r _ s e t (SetNo , Step) ,
318 not f l a g (SetNo , Step) .
319

320 % 2 . 5 Exclude sequences with improper l a s t reduct
321

322 : − non_empty (Step) ,
323 not non_empty (Step +1) ,
324 non_terminate (Step +1) ,
325 Step > 0 .
326

327 % Exclude improper empty s e t
328

329 : − not non_empty (1) ,
330 non_terminate (1) .
331

332 #show in /2.

84

A.9. Serialization Sequence for Grounded Semantics

1 %%
2 % ASP−Encoding f o r s e r i a l i z a t i o n sequence of grounded semantics .
3 %%
4

5 % Algorithm
6 %
7 % 0 . Generate sequences of s e t s of arguments as s o l u t i o n candidates
8 % f o r s e r i a l i z a t i o n sequences .
9 %

10 % 1 . Sequence elements must be unattacked i n i t i a l s e t s
11 %
12 % 1 . 1 Exclude sequences with ’ intermediate ’ empty term
13 % 1 . 2 Exclude sequences with more than one argument in term
14 % 1 . 3 Exclude sequences with at tacked arguments
15 %
16 % => Remaining sequence terms are unattacked i n i t i a l s e t s
17 %
18 % 2 . Termination condi t ion : no unattacked arguments in reduct
19 %
20 % 2 . 1 Flag at tacked arguments
21 % 2 . 2 I n d i c a t e reducts conta in ing unattacked arguments
22 % 2 . 3 Exclude sequences with improper l a s t reduct
23 %
24 %%
25 %
26 % L i s t of p r e d i c a t e s
27 %
28 % arg/1 arguments of AF
29 % a t t /2 at tack − r e l a t i o n
30 % a t t /3 at tack − r e l a t i o n within reduct
31 % c o l l e c t /2 argument outs ide reduct
32 % f l a g /2 at tacked argument of term
33 % in /2 argument of s o l u t i o n candidate
34 % index/1 index of sequence term
35 % non_empty/1 non−empty term
36 % non_terminate non−terminat ing reduct
37 % reduct /2 argument of reduct
38

39 %%
40

41 % Get number of arguments
42

43 index (1 . . C) : − { arg (X) } == C.
44

45 % 0 . GENERATE sequences of s e t s of arguments as s o l u t i o n candidates
46 % f o r s e r i a l i z a t i o n sequences .
47

48 { in (X , Step) } : − reduct (X , Step) ,
49 index (Step) .
50

51 % Define reduct
52

53 % F i r s t reduct equals AF
54

55 reduct (X , 1) : − arg (X) .
56

57

58 % C o l l e c t arguments from sequence term
59

85

60 c o l l e c t (X , Step) : − in (X , Step) ,
61 index (Step) .
62

63

64 % C o l l e c t arguments at tacked by sequence term
65

66 c o l l e c t (X , Step) : − in (Y , Step) ,
67 a t t (Y , X) ,
68 index (Step) .
69

70

71 % Next reduct has a l l non− c o l l e c t e d arguments
72

73 reduct (X , Step +1) : − reduct (X , Step) ,
74 not c o l l e c t (X , Step) ,
75 index (Step) .
76

77 % . . and the r e l a t i o n s between contained arguments
78

79 a t t (X , Y , Step) : − reduct (X , Step) ,
80 reduct (Y , Step) ,
81 a t t (X , Y) .
82

83 % 1 Sequence terms must be unattacked i n i t i a l s e t s
84

85 % 1 . 1 Exclude sequences with ’ intermediate ’ empty term
86

87 non_empty (Step) : − in (X , Step) .
88

89 : − not non_empty (Step) ,
90 non_empty (Step +1) ,
91 index (Step) .
92

93 % 1 . 2 Exclude sequences with more than one argument in term
94

95 : − in (X , Step) ,
96 in (Y , Step) ,
97 X != Y .
98

99 % 1 . 3 Exclude sequences with at tacked arguments
100

101 : − in (X , Step) ,
102 a t t (Y , X , Step) ,
103 reduct (Y , Step) .
104

105 % RESULT : Remaining sequence terms are unattacked i n i t i a l s e t s
106

107

108 % 2 . Termination condi t ion : no unattacked arguments in l a s t reduct
109

110 % 2 . 1 Flag at tacked arguments
111

112 f l a g (X , Step) : − reduct (X , Step) ,
113 reduct (Y , Step) ,
114 a t t (Y , X , Step) .
115

116 % 2 . 2 I n d i c a t e reducts conta in ing unattacked arguments
117

118 non_terminate (Step) : − reduct (X , Step) ,
119 not f l a g (X , Step) .
120

121 % 2 . 3 Exclude sequences with improper l a s t reduct

86

122

123 : − non_empty (Step) ,
124 not non_empty (Step +1) ,
125 non_terminate (Step +1) ,
126 Step > 0 .
127

128 % Exclude improper empty s e t
129

130 : − not non_empty (1) ,
131 non_terminate (1) .
132 #show in /2.

87

A.10. Serialization Sequence for Strongly Admissible Semantics

1 %%
2 % ASP−Encoding f o r s e r i a l i z a t i o n sequence of s t rong ly admiss ib le semantics .
3 %%
4

5 % Algorithm
6 %
7 % 0 . Generate sequences of s e t s of arguments as s o l u t i o n candidates
8 % f o r s e r i a l i z a t i o n sequences .
9 %

10 % 1 . Sequence elements must be unattacked i n i t i a l s e t s
11 %
12 % 1 . 1 Exclude sequences with ’ intermediate ’ empty term
13 % 1 . 2 Exclude sequences with more than one argument in term
14 % 1 . 3 Exclude sequences with at tacked arguments
15 %
16 % => Remaining sequence terms are unattacked i n i t i a l s e t s
17

18 %%
19 %
20 % L i s t of p r e d i c a t e s
21 %
22 % arg/1 arguments of AF
23 % a t t /2 at tack − r e l a t i o n
24 % a t t /3 at tack − r e l a t i o n within reduct
25 % c o l l e c t /2 argument outs ide reduct
26 % f l a g /2 at tacked argument of term
27 % in /2 argument of s o l u t i o n candidate
28 % index/1 index of sequence term
29 % non_empty/1 non−empty term
30 % reduct /2 argument of reduct
31

32 %%
33

34 % Get number of arguments
35

36 index (1 . . C) : − { arg (X) } == C.
37

38 % 0 . GENERATE sequences of s e t s of arguments as s o l u t i o n candidates
39 % f o r s e r i a l i z a t i o n sequences .
40

41 { in (X , Step) } : − reduct (X , Step) .
42

43 % Define reduct
44

45 % F i r s t reduct equals AF
46

47 reduct (X , 1) : − arg (X) .
48

49

50 % C o l l e c t arguments from sequence term
51

52 c o l l e c t (X , Step) : − in (X , Step) .
53

54

55 % C o l l e c t arguments at tacked by sequence term
56

57 c o l l e c t (X , Step) : − in (Y , Step) ,
58 a t t (Y , X) .
59

88

60

61 % Next reduct has a l l non− c o l l e c t e d arguments
62

63 reduct (X , Step +1) : − reduct (X , Step) ,
64 not c o l l e c t (X , Step) ,
65 index (Step) .
66

67 % . . and the r e l a t i o n s between contained arguments
68

69 a t t (X , Y , Step) : − reduct (X , Step) ,
70 reduct (Y , Step) ,
71 a t t (X , Y) .
72

73 % 1 Sequence terms must be unattacked i n i t i a l s e t s
74

75 % 1 . 1 Exclude sequences with ’ intermediate ’ empty term
76

77 non_empty (Step) : − in (X , Step) .
78

79 : − not non_empty (Step) ,
80 non_empty (Step +1) ,
81 index (Step) .
82

83 % 1 . 2 Exclude sequences with more than one argument in term
84

85 : − in (X , Step) ,
86 in (Y , Step) ,
87 X != Y .
88

89 % 1 . 3 Exclude sequences with at tacked arguments
90

91 : − in (X , Step) ,
92 a t t (Y , X , Step) ,
93 reduct (Y , Step) .
94

95 % RESULT : Remaining sequence terms are unattacked i n i t i a l s e t s
96

97 #show in /2.

89

A.11. Serialization Sequence for Unchallenged Semantics

1 %%%
2 % ASP−encoding of s e r i a l i z a t i o n sequence f o r unchallenged semantics
3 %%%
4

5 % Algorithm
6 %
7 % 0 . Generate sequences of s e t s of arguments as s o l u t i o n candidates
8 % f o r s e r i a l i z a t i o n sequences
9 %

10 % 1 . Each sequence term must be an i n i t i a l s e t
11 %
12 % 1 . 1 Exclude sequences with ’ intermediate ’ empty term
13 % 1 . 2 Exclude sequences with c o n f l i c t i n g term
14 % 1 . 3 Exclude sequences with non−admiss ib le term
15 % => Remaining sequence terms are non−empty admiss ib le
16 % 1 . 4 Exclude sequences with non−minimal admiss ib le term
17 %
18 % 1 . 4 . 1 Define subse ts decremented by one term
19 % 1 . 4 . 2 Define subsubsets by removing non−defended arguments
20 % 1 . 4 . 3 Flag non−admiss ib le subse ts
21 % => Non−flagged subsets are admiss ib le
22 % 1 . 4 . 4 Exclude sequences with admiss ib le subset
23 %
24 % => Remaining sequence terms are i n i t i a l s e t s
25 %
26 % 2 . Exclude sequences with chal lenged term (at tacked by i n i t i a l s e t)
27 %
28 % 2 . 1 Define a l l non−empty subsets of reduct
29 % 2 . 2 Flag non− i n i t i a l subse ts
30 % 2 . 3 . 1 Flag c o n f l i c t i n g subsets
31 % 2 . 3 . 2 Flag non−admiss ib le subse ts
32 % 2 . 3 . 3 Flag non−minimal subse ts
33 % => Non−flagged subsets are i n i t i a l s e t s
34 % 2 . 4 Exclude sequences with terms at tacked by non−flagged
35 % subsets
36 %
37 % => Remaining sequence terms are unattacked or unchallenged i n i t i a l s e t s
38 %
39 % 3 . Termination condi t ion : no unattacked or unchallenged i n i t i a l s e t in reduct
40 %
41 % 3 . 1 Sign f lagged subsets (unsigned subsets are i n i t i a l s e t s)
42 % 3 . 2 Sign a l l subse ts at tacked by non−signed subsets
43 % => Non−signed subsets are unattacked or unchallenged i n i t i a l s e t s
44 % 3 . 3 I n d i c a t e reducts conta in ing non−signed subsets
45 % 3 . 4 Exclude sequences with improper l a s t reduct
46

47 %%
48 %
49 % L i s t of p r e d i c a t e s
50 %
51 % arg/1 arguments of AF
52 % a t t /2 at tack − r e l a t i o n
53 % a t t /3 at tack − r e l a t i o n within reduct
54 % attacked /2 argument at tacked by sequence term
55 % binVec/4 binary vec tor
56 % card/1 c a r d i n a l i t y of s e t of a l l arguments
57 % c o l l e c t /2 argument outs ide reduct
58 % elem/2 r e l a t i o n of subse ts and contained arguments
59 % elemIni /3 argument of i n i t i a l s e t

90

60 % e x c l /3 argument excluded from s e t
61 % f l a g /2 f lagged subsets of reduct
62 % in /2 argument of sequence term
63 % index /1. index of sequence term
64 % i n i S e t /2 i n i t i a l s e t
65 % in_card /2 c a r d i n a l i t y of sequence term
66 % in_index /2 index of elements of sequence term
67 % l t /3 lower −than r e l a t i o n over arguments of sequence term
68 % ninf /2 non− s m a l l e s t arguments of sequence term
69 % non_adm/3 i n d i c a t e s non− a d m i s s i b l i t y of subset of sequence term
70 % non_def/4 mom−defended arguments of subset
71 % non_empty/1 non−emptiness of sequence term
72 % non_terminate /1 i n d i c a t e s non−terminat ing reducts
73 % nsucc/3 non−successor r e l a t i o n over arguments of sequence term
74 % r_at tacked /3 argument at tacked by subset of reduct
75 % r_card /2 c a r d i n a l i t y of reduct
76 % r_elem/3 r e l a t i o n of reduct −subset and contained arguments
77 % r _ l t /3 lower −than r e l a t i o n over arguments of reduct
78 % r _ n i n f /2 non− s m a l l e s t arguments of reduct
79 % r_nonIS/2 non− i n i t i a l s e t s of reduct
80 % r_nsucc /3 non−successor r e l a t i o n over arguments of reduct
81 % r _ s e t /2 numbered subset of reduct
82 % r_s ign /2 non− i n i t i a l s e t in reduct
83 % r_sub/3 r e l a t i o n of reduct −subsets and contained subsubsets
84 % r_succ /3 successor − r e l a t i o n over arguments of reduct
85 % reduct /2 argument of reduct
86 % reduct /3 numbered argument of reduct
87 % s e t /2 numbered subset of sequence term
88 % sub/2 r e l a t i o n of subsets to contained subsets
89 % sub/3 argument of decremented s e t
90 % sub/4 argument of subsubset
91 % sub_attacked /4 argument at tacked by subset of sequence term
92 % succ /3 successor − r e l a t i o n over arguments of sequence term
93

94 %%
95

96 % Get number of arguments
97

98 index (1 . . C) : − { arg (X) } == C.
99 card (C) : − { arg (X) } == C.

100

101

102 % 0 . Generate sequences of s e t s of arguments as s o l u t i o n candidates
103 % f o r s e r i a l i z a t i o n sequences
104

105 { in (X , Step) } : − reduct (X , Step) .
106

107 % Get c a r d i n a l i t y of sequence terms
108

109 in_index (1 . . C, Step) : − { in (X , Step) } == C,
110 index (Step) .
111

112 in_card (C, Step) : − { in (X , Step) } == C,
113 index (Step) .
114

115 % Define reduct
116

117 % F i r s t reduct equals AF
118

119 reduct (X , 1) : − arg (X) .
120

121 % C o l l e c t arguments from sequence term

91

122

123 c o l l e c t (X , Step) : − in (X , Step) .
124

125 % C o l l e c t arguments at tacked by sequence term
126

127 c o l l e c t (X , Step) : − in (Y , Step) ,
128 a t t (Y , X) .
129

130 % Next reduct has a l l non− c o l l e c t e d arguments
131

132 reduct (X , Step +1) : − reduct (X , Step) ,
133 not c o l l e c t (X , Step) ,
134 index (Step) .
135

136 % . . and the r e l a t i o n s between contained arguments
137

138 a t t (X , Y , Step) : − reduct (X , Step) ,
139 reduct (Y , Step) ,
140 a t t (X , Y) .
141

142 % 1 . Each sequence term must be an i n i t i a l s e t
143

144 % 1 . 1 Exclude sequences with non− i n i t i a l term
145

146 % 1 . 1 . 1 Exclude sequences with ’ intermediate ’ empty term
147

148 non_empty (Step) : − in (X , Step) .
149

150 : − not non_empty (Step) ,
151 non_empty (Step +1) ,
152 index (Step) .
153

154 % 1 . 1 . 2 Exclude sequences with c o n f l i c t i n g term
155

156 : − in (X , Step) ,
157 in (Y , Step) ,
158 a t t (X , Y) .
159

160

161 % 1 . 1 . 3 Exclude sequences with non−admiss ib le term
162

163 % S e l e c t arguments at tacked by term
164

165 at tacked (X , Step) : − in (Y , Step) ,
166 a t t (Y , X , Step) .
167

168 % Exclude sequences with non−defended arguments in term
169

170 : − a t t (Y , X , Step) ,
171 in (X , Step) ,
172 not at tacked (Y , Step) .
173

174 % RESULT : Remaining sequences only have non−empty admiss ib le terms
175 %
176 % 1 . 1 . 4 Exclude sequences with non−minimal admiss ib le term
177

178 % 1 . 1 . 4 . 1 Create subsets decremented by one term
179

180 % Define an order over ’ in ’ with succ − r e l a t i o n
181

182 l t (X , Y , Step) : − in (X , Step) ,
183 in (Y , Step) ,

92

184 X<Y .
185

186 nsucc (X , Z , Step) : − l t (X , Y , Step) ,
187 l t (Y , Z , Step) .
188

189 succ (X , Y , Step) : − l t (X , Y , Step) ,
190 not nsucc (X , Y , Step) .
191

192 ninf (X , Step) : − l t (Y , X , Step) .
193

194 % Define numbered arguments to be excluded
195

196 e x c l (X , 1 , Step) : − not n inf (X , Step) ,
197 in (X , Step) .
198

199 e x c l (Y , No+1 , Step) : − e x c l (X , No, Step) ,
200 in (Y , Step) ,
201 succ (X , Y , Step) .
202

203 % Define decremented s e t s (w/o excluded argument)
204

205 sub (X , No, Step) : − in (X , Step) ,
206 not e x c l (X , No, Step) ,
207 in_index (No, Step) .
208

209 % Define f i r s t ’ l e v e l ’ of subse ts
210

211 sub (X , No, Step , 0) : − sub (X , No, Step) .
212

213 % S e l e c t arguments at tacked by ’ sub ’
214

215 sub_attacked (Y , No, Step , Level) : −
216 sub (X , No, Step , Level) ,
217 a t t (X , Y , Step) .
218

219 % S e l e c t non−defended arguments of ’ sub ’
220

221 non_def (Y , No, Step , Level) : − sub (Y , No, Step , Level) ,
222 a t t (X , Y , Step) ,
223 not sub_attacked (X , No, Step , Level) .
224

225 % 1 . 1 . 4 . 2 Define subsubsets by removing a l l non−defended arguments
226

227 sub (X , No, Step , Level +1) : − sub (X , No, Step , Level) ,
228 not non_def (X , No, Step , Level) ,
229 in_card (C, Step) ,
230 Level < C.
231

232 % 1 . 1 . 4 . 3 Flag a l l non−admiss ib le subse ts
233

234 non_adm (No, Step , Level) : − non_def (Y , No, Step , Level) .
235

236

237 % 1 . 1 . 4 . 4 Exclude sequences with admiss ib le subset
238

239 : − not non_adm (No, Step , Level) ,
240 sub (X , No, Step , Level) .
241

242 % RESULT : Remaining sequence terms are i n i t i a l s e t s
243

244 % 2 . Exclude sequences with chal lenged term (at tacked by i n i t i a l s e t)
245

93

246 % 2 . 1 Define a l l non−empty subsets of reduct
247

248 % Define an order over reduct with succ − r e l a t i o n
249

250 r _ l t (X , Y , Step) : − reduct (X , Step) ,
251 reduct (Y , Step) ,
252 X<Y .
253

254 r_nsucc (X , Z , Step) : − r _ l t (X , Y , Step) ,
255 r _ l t (Y , Z , Step) .
256

257 r_succ (X , Y , Step) : − r _ l t (X , Y , Step) ,
258 not r_nsucc (X , Y , Step) .
259

260 r _ n i n f (X , Step) : − r _ l t (Y , X , Step) .
261

262 % Each argument of reduct i s numbered accordingly
263

264 reduct (X , Step , 0) : − not r _ n i n f (X , Step) ,
265 reduct (X , Step) .
266

267 reduct (Y , Step , ArgNo+1): − reduct (X , Step , ArgNo) ,
268 reduct (Y , Step) ,
269 r_succ (X , Y , Step) .
270

271 % C al c u l a te binary vec tor by repeatedly divide number by 2 .
272 % ’ Rest ’ i s 1 or 0 and ass igns argument to subset .
273 % ’ Result ’ i s needed f o r the next d i v i s i o n
274

275 % S t a r t
276

277 binVec (SetNo , 0 , SetNo \2 , SetNo /2) : −
278 card (C) ,
279 (2 * * C) − 1 = Max,
280 SetNo = 1 . . Max .
281

282 % Next
283

284 binVec (SetNo , ArgNo+1 , Resul t \2 , Resul t /2) : −
285 binVec (SetNo , ArgNo , _ , Resul t) ,
286 SetNo >= (2 * * (ArgNo + 1)) .
287

288 % Rela te subsets to contained arguments
289

290 elem (SetNo , ArgNo) : − binVec (SetNo , ArgNo , Rest , _) ,
291 Rest = 1 .
292

293 % Rela te subsets to contained subsets (w/o empty s e t)
294

295 sub (SetNo , SubSet) : − binVec (SetNo , ArgNo , Rest , Resul t) ,
296 Rest = 1 ,
297 SubSet = 2 * * (ArgNo) .
298

299 sub (SetNo , SubA+SubB) : − sub (SetNo , SubA) ,
300 sub (SetNo , SubB) ,
301 SubA != SubB ,
302 SubA + SubB <= SetNo .
303

304 % Use binary vec tor to r e l a t e reduct −arguments and subsubsets to the
305 % corresponding subset
306

307 r_card (C, Step) : − { reduct (X , Step) } = C,

94

308 index (Step) .
309

310 r _ s e t (1 . . MaxSet , Step) : − (2 * * C) − 1 == MaxSet ,
311 r_card (C, Step) .
312

313 % Rela te subsets of reduct to contained arguments f o r each step
314

315 r_elem (SetNo , ArgNo , Step) : − r _ s e t (SetNo , Step) ,
316 elem (SetNo , ArgNo) .
317

318 % Rela te subsets of reduct to contained subsets f o r each step
319

320 r_sub (SetNo , SubSet , Step) : − r _ s e t (SetNo , Step) ,
321 sub (SetNo , SubSet) .
322

323 % 2 . 2 Flag non− i n i t i a l subse ts
324 % 2 . 3 . 1 Flag c o n f l i c t i n g subsets
325

326 f l a g (SetNo , Step) : − r_elem (SetNo , ArgNo1 , Step) ,
327 r_elem (SetNo , ArgNo2 , Step) ,
328 reduct (X , Step , ArgNo2) ,
329 reduct (Y , Step , ArgNo1) ,
330 a t t (X , Y , Step) .
331

332 % 2 . 3 . 2 Flag non−admiss ib le subse ts
333

334 r_a t tacked (SetNo , X , Step) : − r_elem (SetNo , ArgNo , Step) ,
335 reduct (Y , Step , ArgNo) ,
336 a t t (Y , X , Step) .
337

338 f l a g (SetNo , Step) : − r_elem (SetNo , ArgNo , Step) ,
339 reduct (X , Step , ArgNo) ,
340 a t t (Y , X , Step) ,
341 not r_a t tacked (SetNo , Y , Step) .
342

343 % 2 . 3 . 3 Flag non−minimal subse ts
344

345 f l a g (SetNo1 , Step) : − r _ s e t (SetNo1 , Step) ,
346 r _ s e t (SetNo2 , Step) ,
347 SetNo1 != SetNo2 ,
348 r_sub (SetNo1 , SetNo2 , Step) ,
349 not f l a g (SetNo2 , Step) .
350

351 % RESULT : Non−flagged subsets are i n i t i a l s e t s
352

353 % 2 . 3 Exclude sequences with terms at tacked by non−flagged subsets
354

355 i n i S e t (SetNo , Step) : − r _ s e t (SetNo , Step) ,
356 not f l a g (SetNo , Step) .
357

358 elemIni (SetNo , X , Step) : − i n i S e t (SetNo , Step) ,
359 r_elem (SetNo , ArgNo , Step) ,
360 reduct (X , Step , ArgNo) .
361

362 : − elemIni (SetNo , X , Step) ,
363 in (Y , Step) ,
364 a t t (X , Y , Step) .
365

366 % RESULT : Remaining sequence terms are unattacked or unchallenged i n i t i a l s e t s
367

368 % 3 . Termination condi t ion : no unattacked or unchallenged i n i t i a l s e t in reduct
369 %

95

370 % 3 . 1 Sign f lagged subsets (unsigned subsets are i n i t i a l s e t s)
371

372 r_s ign (SetNo , Step) : − f l a g (SetNo , Step) .
373

374 % 3 . 2 Sign a l l subse ts at tacked by non−flagged subsets
375

376 r_s ign (SetNo1 , Step) : − r_elem (SetNo1 , ArgNo1 , Step) ,
377 reduct (X , Step , ArgNo1) ,
378 a t t (Y , X , Step) ,
379 reduct (Y , Step , ArgNo2) ,
380 r_elem (SetNo2 , ArgNo2 , Step) ,
381 not f l a g (SetNo2 , Step) .
382

383 % RESULT : Non−signed subsets are unattacked or unchallenged i n i t i a l s e t s
384

385 % 3 . 4 I n d i c a t e reducts conta in ing non−signed subsets
386

387 non_terminate (Step) : − r _ s e t (SetNo , Step) ,
388 not r_s ign (SetNo , Step) .
389

390 % 3 . 5 Exclude sequences with improper l a s t reduct
391

392 : − non_empty (Step) ,
393 not non_empty (Step +1) ,
394 non_terminate (Step +1) ,
395 Step > 0 .
396

397 % Exclude improper empty s e t
398

399 : − not non_empty (1) ,
400 non_terminate (1) .
401 #show in /2.

96

B. Java Code

B.1. Computing Serialization Sequences

1 package mytweety ;
2

3 import org . t w e e t y p r o j e c t . arg . dung . parser . ApxParser ;
4 import org . t w e e t y p r o j e c t . arg . dung . reasoner . s e r i a l i s a b l e . Ser ia l i sedAdmiss ib leReasoner ;
5 import org . t w e e t y p r o j e c t . arg . dung . syntax . DungTheory ;
6

7 import java . io . F i l e ;
8 import java . io . F i leReader ;
9 import java . io . IOException ;

10

11 publ ic c l a s s SerSeqAd {
12

13 publ ic s t a t i c void main (S t r i n g [] args) {
14

15 S t r i n g pathname = args [0] ;
16 F i l e i n p u t F i l e = new F i l e (pathname) ;
17 Fi leReader apxReader = n u l l ;
18 DungTheory af = n u l l ;
19 S t r i n g f i lename = n u l l ;
20 Ser ia l i sedAdmiss ib leReasoner reasoner = new Ser ia l i sedAdmiss ib leReasoner () ;
21

22 S t r i n g sequence ;
23

24 long star tTime = System . nanoTime () ;
25

26 t r y {
27 apxReader = new Fi leReader (i n p u t F i l e) ;
28 f i lename = i n p u t F i l e . getName () ;
29 af = new ApxParser () . parse (apxReader) ;
30 } ca tch (IOException e) {
31

32 e . p r i n t S t a c k T r a c e () ;
33 }
34

35 sequence = reasoner . getSequences (a f) . t o S t r i n g () ;
36

37 long endTime = System . nanoTime () ;
38 double durat ion = (endTime − star tTime) / 1 0 0 0 0 0 0 0 0 0 . 0 ;
39

40 System . out . p r i n t l n (f i lename + " : " + sequence) ;
41 System . out . p r i n t l n (f i lename + " : " + duration + " s ") ;
42 }
43 }

B.2. Generating Sample Argumentation Frameworks

1 package mytweety ;
2

3 import java . io . F i l e ;
4 import java . io . IOException ;
5

6 import org . t w e e t y p r o j e c t . arg . dung . u t i l . DefaultDungTheoryGenerator ;
7 import org . t w e e t y p r o j e c t . arg . dung . u t i l . DungTheoryGenerationParameters ;
8 import org . t w e e t y p r o j e c t . arg . dung . u t i l . DungTheoryGenerator ;
9 import org . t w e e t y p r o j e c t . arg . dung . w r i t e r . ApxWriter ;

10

97

11

12 publ ic c l a s s GenerateTestAF {
13

14 publ ic s t a t i c void main (S t r i n g [] args) throws IOException {
15

16 i n t [] s i z e s = { 1 0 , 20 , 30 , 4 0 } ;
17 double [] dens i ty = { . 5 } ;
18 i n t count = 4 ;
19 ApxWriter w r i t e r = new ApxWriter () ;
20 S t r i n g path = System . getProperty (" user . home ")
21 + F i l e . separa tor + " Dropbox "
22 + F i l e . separa tor + " Fernuni "
23 + F i l e . separa tor + " B a c h e l o r a r b e i t "
24 + F i l e . separa tor + " Evaluat ion "
25 + F i l e . separa tor + " D i f f S i z e 3 5 " ;
26 c r e a t e D i r (path) ;
27 DungTheoryGenerationParameters params = new DungTheoryGenerationParameters () ;
28

29 f o r (i n t j = 0 ; j < s i z e s . length ; j ++) {
30 params . numberOfArguments = s i z e s [j] ;
31 f o r (i n t k = 0 ; k < densi ty . length ; k++) {
32 params . a t t a c k P r o b a b i l i t y = dens i ty [k] ;
33 DungTheoryGenerator gen2 = new DefaultDungTheoryGenerator (params) ;
34 f o r (i n t i = 0 ; i < count ; i ++) {
35 F i l e f = new F i l e (path + F i l e . separa tor
36 + s i z e s [j] + " −" + densi ty [k]
37 + "AF" + i + " . apx ") ;
38 w ri t e r . wri te (gen2 . next () , f) ;
39 }
40 }
41 }
42

43 }
44

45 p r i v a t e s t a t i c void c r e a t e D i r (S t r i n g path) {
46 F i l e customDir = new F i l e (path) ;
47 customDir . mkdirs () ;
48 }
49 }

98

