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Zusammenfassung

Inkonsistenzmaße in abstrakten Argumentationsgraphen dienen der Quantifizie-
rung der Inkonsistenz, die in Graphen vorhanden ist, welche die Beziehungen zwi-
schen Argumenten darstellen. Zur Bewertung der Eigenschaften von Inkonsistenz-
maßen gibt es verschiedene Ansätze, darunter die Prüfung der Konformität mit
Rationalitätspostulaten, die Analyse ihrer Expressivität, die Berechnung ihrer Re-
chenkomplexität sowie deskriptive Bewertungen. Ziel dieser Bachelorarbeit ist es,
einen umfassenden Überblick über den aktuellen Stand der Inkonsistenzmaße in
abstrakten Argumentationsgraphen zu geben und gleichzeitig eine tiefere, bisher
unerforschte Perspektive durch die Untersuchung der Eigenschaften der Inkonsis-
tenzmaße auf der Ebene von Rationalitätspostulaten und deskriptiven Bewertungen
zu bieten. Um dies zu erreichen, werden die notwendigen Präliminarien vorgestellt,
gefolgt von einer gründlichen Analyse der Inkonsistenzmaße, wobei dessen Stärken
und Schwächen hervorgehoben werden. Anschließend werden 18 Rationalitätspos-
tulate für abstrakte Argumentationsgraphen untersucht, von denen 6 neu formu-
liert worden sind und auf etablierten Konzepten der klassischen Logik aufbauen.
Abschließend werden die Konformität der Inkonsistenzmaße mit den Rationali-
tätspostulaten überprüft, und dessen Ergebnisse diskutiert. Obwohl die Ergebnisse
je nach Schwerpunkt der Inkonsistenzmaßnahmen variieren, sticht das Distance-
based Measure, als sehr feingranulares Maß hervor.

Abstract

Inconsistency measurements in abstract argument graphs are concerned with quan-
tifying the inconsistency that exists in graphs which represent the relationships be-
tween arguments. To evaluate the properties of inconsistency measurements vari-
ous approaches have been proposed including the examination of compliance with
rationality postulates, the analysis of their expressivity characteristics, the calcula-
tion of their computational complexities as well as descriptive evaluations. The aim
of this Bachelor thesis is, to present a comprehensive overview of the current state of
inconsistency measures in abstract argument graphs, while offering a deeper, previ-
ously unexplored perspective through an investigation of their characteristics along
the dimension of rationality postulates and descriptive evaluations. To achieve this,
the necessary preliminaries are presented, followed by a thorough analysis and a
detailed breakdown of each inconsistency measure, highlighting its strengths and
weaknesses. Afterwards, 18 rationality postulates for abstract argument graphs, 6
of which are newly formulated, while building upon established concepts in classi-
cal logic, are examined. Finally, we check for compliance of the inconsistency mea-
sures with the rationality postulates and discuss those findings. Even though results
vary based on the focus of the inconsistency measures, the Distance-based Measure
stands out as a very fine-granular measure.

v





Contents

1 Introduction 1

2 Preliminaries 3
2.1 Argument Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Subsidiary Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Standard and Strong Equivalence . . . . . . . . . . . . . . . . . . . . . 8

3 Inconsistency Measures 11
3.1 Graph Extension Measures . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 PreferredCount . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.2 NonGroundedCount . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.3 UnstableCount . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.4 NaiveExtensionCount . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.5 PreferredExtensionCount . . . . . . . . . . . . . . . . . . . . . 20

3.2 Graph Structure Measures . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.1 Drastic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.2 WeightedInSum . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.3 WeightedOutSum . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.4 CycleCount . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.5 WeightedCycleCount . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.6 WeightedComponentCount . . . . . . . . . . . . . . . . . . . . 29
3.2.7 Connectance Measure . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.8 In-degree Measure . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.9 Distance-based Measure . . . . . . . . . . . . . . . . . . . . . . 32

4 Analysis 35
4.1 Rationality Postulates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Basic Postulates . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1.2 Expansion Postulates . . . . . . . . . . . . . . . . . . . . . . . . 38
4.1.3 Structural Postulates . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.4 Strong Equivalence Postulates . . . . . . . . . . . . . . . . . . 40
4.1.5 Additivity Postulates . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.6 Cyclicality Postulates . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Compliance of Inconsistency Measures with Rationality Postulates . 43
4.2.1 Basic Postulate Propositions and Proofs . . . . . . . . . . . . . 45
4.2.2 Expansion Postulate Propositions and Proofs . . . . . . . . . . 51
4.2.3 Strong Equivalence Postulate Propositions and Proofs . . . . . 57
4.2.4 Additivity Postulate Propositions and Proofs . . . . . . . . . . 69
4.2.5 Cyclicaltiy Postulate Propositions and Proofs . . . . . . . . . . 73

vii



5 Conclusion 78
5.1 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

viii



List of Figures

1 Argument graph A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Argument graphs B, C, and D . . . . . . . . . . . . . . . . . . . . . . 4
3 Argument graphs C ′, E, F , and H . . . . . . . . . . . . . . . . . . . . 5
4 Argument graphs J , J∼=, and J ′ . . . . . . . . . . . . . . . . . . . . . . 5
5 Argument graph K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
6 Implications between semantics . . . . . . . . . . . . . . . . . . . . . . 7
7 Argument graphs L, L′, and L′′ . . . . . . . . . . . . . . . . . . . . . . 10
8 Argument graphs M , N , and O . . . . . . . . . . . . . . . . . . . . . . 12
9 Argument graphs P and its induced subgraphs . . . . . . . . . . . . . 17
10 Argument graphs Q, R, and R−1 . . . . . . . . . . . . . . . . . . . . . 23
11 Argument graph S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
12 Argument graph T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
13 Argument graph T ′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
14 Argument graphs U and V . . . . . . . . . . . . . . . . . . . . . . . . . 50
15 Argument graphs L1 and L′

1 . . . . . . . . . . . . . . . . . . . . . . . . 59
16 Argument graphs L2 and L′

2 . . . . . . . . . . . . . . . . . . . . . . . . 60
17 Argument graphs L3, L4, LgK

3,4, L5, and LgK
5 . . . . . . . . . . . . . . . 62

18 Argument graphs L6 and L′
6 . . . . . . . . . . . . . . . . . . . . . . . . 62

19 Argument graphs L7 and L′
7 . . . . . . . . . . . . . . . . . . . . . . . . 64

20 Argument graphs L8 and L′
8 . . . . . . . . . . . . . . . . . . . . . . . . 65

21 Argument graphs L9 and L′
9 . . . . . . . . . . . . . . . . . . . . . . . . 66

22 Argument graph A+ V . . . . . . . . . . . . . . . . . . . . . . . . . . 70
23 Argument graphs W , Y , and W + Y . . . . . . . . . . . . . . . . . . . 71
24 Argument graphs Z and A+ Z . . . . . . . . . . . . . . . . . . . . . . 72

ix



List of Tables

1 Semantics of argument graph B . . . . . . . . . . . . . . . . . . . . . . 8
2 Semantics of argument graph F . . . . . . . . . . . . . . . . . . . . . . 8
3 Semantics of argument graph L′ . . . . . . . . . . . . . . . . . . . . . 9
4 Semantics of argument graph J . . . . . . . . . . . . . . . . . . . . . . 9
5 Semantics of argument graph J ′ . . . . . . . . . . . . . . . . . . . . . . 9
6 Semantics of argument graph M . . . . . . . . . . . . . . . . . . . . . 12
7 Semantics of argument graph N . . . . . . . . . . . . . . . . . . . . . . 13
8 Semantics of argument graph O . . . . . . . . . . . . . . . . . . . . . . 13
9 Semantics of argument graph E . . . . . . . . . . . . . . . . . . . . . . 14
10 Semantics of argument graph A . . . . . . . . . . . . . . . . . . . . . . 15
11 Semantics of argument graph M +A . . . . . . . . . . . . . . . . . . . 16
12 Semantics of argument graph H . . . . . . . . . . . . . . . . . . . . . . 16
13 Semantics of argument graph P . . . . . . . . . . . . . . . . . . . . . . 18
14 Overview of rationality postulates and their sets . . . . . . . . . . . . 36
15 Satisfaction and violation of the inconsistency measure postulates . . 43
16 Semantics of argument graph D . . . . . . . . . . . . . . . . . . . . . . 51
17 Semantics of argument graph L . . . . . . . . . . . . . . . . . . . . . . 54
18 Semantics of argument graph L6 . . . . . . . . . . . . . . . . . . . . . 63
19 Semantics of argument graph L′

6 . . . . . . . . . . . . . . . . . . . . . 63
20 Semantics of argument graph L5 . . . . . . . . . . . . . . . . . . . . . 63
21 Semantics of argument graph L8 . . . . . . . . . . . . . . . . . . . . . 65
22 Semantics of argument graph L′

8 . . . . . . . . . . . . . . . . . . . . . 66
23 Semantics of argument graph M + C ′ . . . . . . . . . . . . . . . . . . 68
24 Semantics of argument graph A+ V . . . . . . . . . . . . . . . . . . . 70
25 Semantics of argument graph W . . . . . . . . . . . . . . . . . . . . . 71
26 Semantics of argument graph Y . . . . . . . . . . . . . . . . . . . . . . 71
27 Semantics of argument graph W + Y . . . . . . . . . . . . . . . . . . . 72
28 Semantics of argument graph T ′

4 . . . . . . . . . . . . . . . . . . . . . 74

x



1 Introduction

Argumentation is defined as the interaction of different arguments for or against
some conclusion [47], where an argument is an entity that represents a position,
claim, or assertion [46]. As an example, consider the following arguments which
are assigned the labels a and b.

a = "Wind turbines should be installed in coastal regions to maximize wind energy."
b = "Wind turbines should not be installed in coastal regions because they disrupt

the coastal ecosystem and tourism."

One of the ways in which arguments can be represented is through the utiliza-
tion of an abstract argumentation framework or argument graph [17]. An argument
graph consists of nodes, where each node represents an individual argument. The
connections between nodes, called arcs, denote when one argument is in conflict
with another argument or even with itself [10]. The arcs are directional to show
which argument is attacking which [18]. Figure 1 shows the arguments a and b from
above, pictured as an argument graph where a attacks b, and b attacks a.

a b

Figure 1: Argument graph A.

In argument graph A, conflict is represented through a attacking b, and b attacking
a. Each argument disputes the validity of the other by disagreeing with each other
on the installation of wind turbines with opposing reasons. Conflicts such as the
one described for argument graph A, contribute to inconsistency.

Inconsistency refers to the fact that it is not possible to accept all the arguments
simultaneously without running into contradictions [40]. In graph A all arguments
cannot hold simultaneously - the graph is inconsistent. Beyond just identifying in-
consistency, it is possible to measure the degree to which it occurs through inconsis-
tency measures which quantify the degree of inconsistency in an argument graph
[40].

Argument graphs and the quantification of inconsistency in them are relevant in
the field of artificial intelligence (AI) [8]. By analyzing argument graphs for incon-
sistencies, AI systems can detect conflicting information and assess the strength and
validity of different arguments [33]. This leads to more reliable AI systems that can
handle conflicting data [2]. Additionally, the characteristics of inconsistency mea-
sures are crucial where characteristics refer to their features or properties.

The characteristics of inconsistency measures can be examined formally from
many different dimensions, through rationality postulates [38], expressivity [37],
computational complexity [39], but also qualitatively through descriptive evalua-
tion [1]. They influence the reliability and robustness of AI systems because they
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determine how inconsistency is quantified and addressed. Moreover, each feature
of an inconsistency measure is specifically designed to address distinct challenges
and requirements encountered by AI systems, enabling it to be adapted to a specific
context and goals of the application. For instance, decision-making in the medical
field may require fine-grained inconsistency detection, while a robotic control sys-
tem may prioritize a faster inconsistency detection. In its entirety, the characteristics
of inconsistency measures determine how well the system can manage conflicts and
adapt to specific decision-making contexts.

The goal of this thesis is to present a comprehensive overview of the current state
of inconsistency measures in argument graphs within abstract argumentation, while
offering a deeper, previously unexplored perspective through an examination along
the dimension of rationality postulates and descriptive evaluation. Specifically, this
thesis aims to answer the question what characteristics the inconsistency measures
in argument graphs in abstract argumentation fulfill. The investigation of charac-
teristics is done by determining what rationality postulates of inconsistency defined
by [24], [1], [39], and [40] including six novel principles, Penalty, Free-Node Dilu-
tion, p-Exchange, g-Exchange, s-Exchange, and naive-Exchange, inspired by [35],
[28] as well as, [9], [30], and [19], respectively, the measures fulfill. Additionally, the
individual strengths and weaknesses of the measures are considered as descriptive
evaluation. Due to the absence of existing papers on the strengths and weaknesses
of the measures, and the diversity of the measures, the methodology will involve
a detailed deconstruction of the measures, with conclusions drawn based on this
analysis.

To summarize, this thesis contributes by examining inconsistency measures in
argument graphs, analyzing their properties through rationality postulates, includ-
ing six newly introduced ones, as well as by considering their strengths and weak-
nesses. The results of this thesis therefore include a classification of inconsistency
measures based on their adherence to rationality postulates, highlighting which
measures satisfy which principles. Additionally, the descriptive evaluation reveals
their strengths and weaknesses, offering a deeper understanding of their role in ab-
stract argumentation. These findings contribute to a more structured understanding
of inconsistency measurements in abstract argumentation graphs.

In this section (Section 1) we have started with establishing the goal of this thesis
and the research context by introducing and linking together the concepts of ar-
gument graphs, inconsistency measures and their characteristics. In Section 2, the
Preliminaries, we examine argument graphs in greater detail, consider subsidiary
definitions fundamental for this thesis, explore semantics for abstract argumenta-
tion graphs, and introduce the concept of strong equivalence. In Section 3, we in-
spect the inconsistency measures and their qualitative characteristics individually.
This is followed by an analysis in Section 4 where the rationality postulates are in-
vestigated. We also assess the compliance of the inconsistency measures with the
postulates. Finally, Section 5 concludes.
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2 Preliminaries

Given the limited body of works on inconsistency measures in argument graphs in
abstract argumentation so far, the foundation of this thesis is built upon works by
Hunter [24] and Amgoud and Ben-Naim [1]. However, other literature such as [30]
by Oikarinen and Woltran, central to four postulates proposed in this thesis, and
[39] by Thimm which gives valuable insight into the characteristics of inconsistency
measures, are relevant as well.

Likewise, it is important to highlight that this thesis is focused on abstract argu-
mentation, where arguments are treated as atomic units. Atomic units refer to the
fact that they cannot be further divided [10]. The emphasis is placed on the relation-
ships between the arguments, without the need to examine their internal structure,
such as premises or conclusions, as required in logic-based argumentation [24].

To fully grasp the concepts presented in this thesis, some preliminaries are essen-
tial which are given in the following sections.

2.1 Argument Graphs

In 1995, Dung introduced the concept of an abstract argumentation graph (hereafter
occasionally referred to as argument graph or graph) in [17] which offers a formal
reasoning framework, enabling the definition of specific semantics for argument
acceptance, conflict resolution, and consistency.

Definition 2.1 A (directed) graph is the ordered pair G = (A,R) where A is the finite
set of nodes and R ⊆ A×A is the set of directed arcs [21].

Definition 2.2 An argument graph is a directed graph G = (A,R) where A is a non-
empty set of nodes representing arguments, and R is the set of arcs (R ⊆ A × A)
representing the relationships between these arguments [24].

Let Nodes(G) be the set of nodes A in G and let Arcs(G) be the set of arcs R in
G. Each element a, b, c, . . . ∈ A is called an argument. The ordered pair (a, b) ∈ R
represents a (direct) attack where a attacks b. The direct attack is characterized by an
arrow connecting two nodes, without any node in between. With an indirect attack
we distinguish a second type of attack. An attack (a, d) is considered an indirect
attack on d if a is at least 2n+1 for n ∈ Z+ arcs away from d [1]. The number of arcs
must be odd because a chain of attacks or arcs consists of an alternating pattern of
attacks and defenses, starting with an attack. In order for the chain to be considered
an attack, it has to end with an attack. It also cannot be one arc because that describes
a direct attack.

Example 2.1 Consider argument graphs B and C in Figure 2. In both of these
graphs (c, b) is a direct attack, where c is the direct attacker of b. An indirect attack,
(d, b) can be seen in argument graph C where d is the indirect attacker, three arcs
away from b.

3



b c

b c

a

e

d

b

a

c

Figure 2: Argument graph B (left), C (middle), and D (right).

Definition 2.3 In a graph G = (A,R) we call an attack (a, b) ∈ R a self-attack or
loop if a = b. We call a node a ∈ A, disconnected or isolated if ∀b ∈ A, (a, b) /∈
R and (b, a) /∈ R.

Definition 2.4 Let S ⊆ A represent a set of arguments. S is said to attack an argu-
ment a ∈ A if and only if (iff) there exists an argument b ∈ S such that (s.t.) b attacks
a. Conversely, S defends an argument a ∈ S iff for every argument b ∈ A, if b attacks
a, it follows that S attacks b [24].

Definition 2.5 We consider an argument graph G = (A,R) consistent iff R = ∅. G is
defined as inconsistent iff R ̸= ∅. A set of arguments S ⊆ A is inconsistent, denoted,
S |=⊥ iff ∃a, b ∈ S s.t. (a, b) ∈ R.

2.2 Subsidiary Definitions

In this section we look at the underlying concepts used throughout this thesis.

Definition 2.6 In a graph G = (A,R), Indegree(G, a) is the number of incoming
arcs to a node a ∈ A. The Outdegree(G, a) is the number of outgoing arcs from a
node a ∈ A [23].

Example 2.2 Consider graph C in Figure 2. Indegree(C, b) = 2 and Outdegree(C, b)
= 1.

Definition 2.7 G1 is a subgraph of a graph G2, denoted G1 ⊆ G2, iff

1. Nodes(G1) ⊆ Nodes(G2) and

2. Arcs(G1) ⊆ Arcs(G2) ∩ (Nodes(G1)× Nodes(G1)) [24].

Definition 2.8 Let N ⊆ Nodes(G). G′ is an induced subgraph of G iff

1. G′ ⊆ G,

2. Nodes(G′) = N , and

3. Arcs(G′) = Arcs(G) ∩ (N ×N) [24].

Example 2.3 In Figure 2 and 3, C ′ ⊆ C. In Figure 2, D is an induced subgraph of C.
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Definition 2.9 A complete graph is a graph where every pair of distinct nodes is con-
nected by a unique arc and every node has a loop [16].

Definition 2.10 An inverse graph G−1 is a new graph that has the same nodes as the
original graph G but the direction of all arcs is reversed [21]. The direction of loops
remains unchanged.

Definition 2.11 In a graph G = (A,R) a path from argument a to b is a sequence
⟨a0, . . . , an⟩ of arguments from A s.t. a0 = a, an = b, for any 0 ≤ i < n, (ai, ai+1) ∈ R,
and for all i ̸= j, ai ̸= aj . A cycle is a path ⟨a0, . . . , an⟩ s.t. (an, a0) ∈ R. A cycle is
elementary iff there does not exist a cycle ⟨b0, . . . , bm⟩ s.t. {b0, . . . , bm} ⊂ {a0, . . . , an}.
[1].

Definition 2.12 A graph is acyclic iff it does not contain any cycle [16].

a

b

x y

b

a

c e f

g

Figure 3: Argument graphs C ′ (left) E (middle left), F (middle right), and H (right).

Example 2.4 Figure 3 shows a complete graph E, graph F = D−1 where D is in
Figure 2, an elementary cycle H , and an acyclic graph C ′.

Definition 2.13 A graph G is isomorphic with graph G′, denoted G ∼= G′, iff there
exists a bijection φ s.t. when any two nodes a, b in G are adjacent, meaning they are
connected by an arc, their corresponding nodes φ(a), φ(b) are also adjacent in the
graph G′ [23].

c b a

f e

d c b a

Figure 4: Argument graphs J (right), J∼= (middle), and J ′ (right).

Example 2.5 From the argument graphs in Figure 4, J ∼= J∼= , where the shaded
nodes indicate the to each other corresponding and adjacent nodes.
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Definition 2.14 An undirected graph is the ordered pair Gun = (A,R) where A is the
finite set of nodes and R ⊆ (A × A) the set of undirected arcs [23]. A component of
Gun is a maximal subset of A s.t. any two nodes in the subset are connected by a
path in Gun [16].

Definition 2.15 A component G′ of a directed graph G is a set of nodes s.t. G′ is a
component of the induced undirected graph Gun, where Gun is obtained from G by
replacing each directed arc with an undirected arc [26].

a

b

c d

e

Figure 5: Argument graph K.

Example 2.6 Argument graph K in Figure 5 consists of two components, one com-
posed of arguments a, b, and c, and the other of d and e. Argument graphs J and J ′

in Figure 4 embody graphs with one component each.

Definition 2.16 Two graphs G1 = (A1,R1) and G2 = (A2,R2) are disjoint iff A1 ∩
A2 = ∅ [24]. The combination of the two disjoint graphs G1 and G2 is denoted with
G1 +G2 = (A1 ∪ A2,R1 ∪R2).

Definition 2.17 For a graph G = (A,R),

• the addition of a arc r = (a, b) /∈ R to graph G is denoted by G + {r} =
(A,R∪ {r}) = (A,R∪ {(a, b)}) and

• the addition of an isolated node a /∈ A where ∀b ∈ A, (a, b) /∈ R and (b, a) /∈ R,
to graph G, is denoted by G ∪ {a} = (A ∪ {a},R).

2.3 Semantics

Intuitively, an argument is considered acceptable if it withstands the attacks against
it. The process of determining whether an argument is acceptable is called argu-
ment evaluation. There are various methods for argument evaluation, known as
argumentation semantics [18]. In this thesis, extension-based semantics are signifi-
cant.

Extension-based semantics, initially proposed by Dung [17], provide a framework
for evaluating arguments through the usage of extensions. The aim of extension-
based semantics is to determine which arguments can be collectively accepted, given
their interactions. Extensions are sets of arguments that satisfy specific criteria within
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a graph. The criteria that a set of arguments must meet to be considered acceptable
are specified by acceptability semantics [18]. For example, conflict-free semantics
gives rise to conflict-free extensions, and similarly, admissible semantics lead to ad-
missible extensions. Each extension therefore represents a consistent viewpoint, re-
flecting a set of arguments that can coexist without contradiction according to the
given rules.

The extensions prevalent in this thesis are conflict-free, admissible, complete, pre-
ferred, grounded, stable, and naive extensions. The dependencies of these exten-
sions can be seen in Figure 6, where for illustration purposes, if an extension is
preferred, then it is also a complete, admissible, and conflict-free.

Definition 2.18

1. A set of arguments S ⊆ A is conflict-free iff there does not exist a, b ∈ S s.t. a
attacks b [17].

2. A set of arguments S ⊆ A is admissible iff S is conflict-free and for all a ∈ S, a
is defended by S [17].

3. A set of arguments S ⊆ A is a complete extension iff S is admissible and each
argument a ∈ A, which is defended by S, belongs to S [17].

4. A set of arguments S ⊆A is a preferred extension iff it is a maximal (with respect
to (w.r.t.) ⊆) complete extension [17].

5. A set of arguments S ⊆ A is a grounded extension iff it is a minimal (w.r.t. ⊆)
complete extension [17].

6. A set of arguments S ⊆ A is a stable extension iff it is a preferred extension and
S attacks all the arguments in A \ S [17].

7. A set of arguments S ⊆ A is a naive extension, iff it is conflict-free and maximal
(w.r.t. ⊆) [1].

conflict-free admissible complete grounded

preferred stablenaive

Figure 6: Implications between semantics.

The empty set is always conflict-free and admissible [17]. This is because the
empty set contains no arguments, meaning it has no arguments that attack each
other or themselves, allowing it to be considered defended. The grounded extension
is always unique [24].
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Example 2.7 Table 1 shows the extensions of argument graph B in Figure 2 under
different semantics. Sets with conflict, in this case only {b, c}, are not included.

Set(B) Conflict-free Admissible Complete Preferred Grounded Stable Naive
∅ ✓ ✓

{b} ✓ ✓
{c} ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Semantics of argument graph B.

Example 2.8 Table 2 shows the extensions of argument graph F in Figure 3 under
different semantics. Once again, the sets with conflict, {a, b}, {b, c}, and {a, b, c} are
excluded.

Set(F ) Conflict-free Admissible Complete Preferred Grounded Stable Naive
∅ ✓ ✓ ✓ ✓

{a} ✓ ✓
{b} ✓ ✓ ✓ ✓ ✓ ✓
{c} ✓

{a, c} ✓ ✓ ✓ ✓ ✓ ✓

Table 2: Semantics of argument graph F .

Note that in Table 1, the empty set is not a complete extension, while it is one in
Table 2. This is a consequence of the presence of unattacked arguments. If there
are unattacked arguments present, ∅ is not considered because there exists at least
one argument that can form part of an admissible set by being conflict-free and not
needing defense. Since in F every argument is attacked, ∅ is a complete extension.

2.4 Standard and Strong Equivalence

As argumentation is a dynamic process, it is significant to understand how incorpo-
rating new information impacts existing argument graphs. This is addressed by the
concept of strong equivalence between argument graphs, succeeding the notion of
standard equivalence [30].

Definition 2.19 Two argument graphs G and G′ are (standard) equivalent to each
other w.r.t. a semantics σ (denoted G ≡σ G′), iff σ(G) = σ(G′) holds [6].

Standard equivalence, which requires two argument graphs to produce the same
extensions, only ensures that two graphs produce the same extensions in their cur-
rent state, but it does not account for how they behave when new information is
introduced. This is illustrated in Example 2.9.
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Example 2.9 Consider argument graph C ′ in Figure 3 and L′ in Figure 7. Both
of these graphs have {b} as their preferred (p), grounded (g), and stable (s) ex-
tension as visible in Tables 1 and 3, respectively, and therefore C ′ ≡σ L′ where
σ ∈ {p, g, s}. Note that for graph C ′, we refer to Table 1 belonging to graph B
in Figure 2, because B ∼= C ′. Thus, while the labels of the extensions are differ-
ent the underlying structure and relationships are preserved. Suppose a node c
is added to both graphs which attacks b, forming the graphs J = (A ∪ {c},R ∪
{(c, b)}), where A,R are from graph C ′ and, J ′ = (A ∪ {c},R ∪ {(c, b)}), where
A,R are from graph L′. The graphs labeled J and J ′ are depicted in Figure 4 and
their semantics are in Table 4 and 5, respectively. The preferred and grounded ex-
tension is {a, c} in J but {c} in J ′. Similarly, {a, c} is a stable extension in J but
there no stable extension in J ′. This shows that even though C ′ and L′ are standard
equivalent to each other w.r.t. preferred, grounded and stable semantics, they are
not equivalent to each other under those semantics as new information is added.

Set(L′) Conflict-free Admissible Complete Preferred Grounded Stable Naive
∅ ✓ ✓
{a}
{b} ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 3: Semantics of argument graph L′.

Set(J ) Conflict-free Admissible Complete Preferred Grounded Stable Naive
∅ ✓ ✓

{a} ✓
{b} ✓ ✓
{c} ✓ ✓

{a, c} ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 4: Semantics of argument graph J .

Set(J ′) Conflict-free Admissible Complete Preferred Grounded Stable Naive
∅ ✓ ✓

{a}
{b} ✓ ✓
{c} ✓ ✓ ✓ ✓ ✓ ✓

Table 5: Semantics of argument graph J ′.

Unlike the standard notion of equivalence, strong equivalence demands that G
and G′, produce the same set of extensions even when conjoined with any arbitrary
graph G′′ [30].
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Definition 2.20 Two argument graphs G and G′ are strongly equivalent to each other
w.r.t. a semantics σ (denoted G ≡σ

s G′), iff for any argument graph G′′, σ(G ∪G′′) =
σ(G′ ∪G′′) holds [30].

To check whether two graphs are strongly equivalent, Oikarinen and Woltran [30]
introduce the idea of kernels. In σ-kernels certain redundant attacks are removed re-
ducing the complexity of the graph while simultaneously preserving the key struc-
tural elements of the semantics σ. In the context of this thesis, only the kernels for
preferred, grounded and stable extensions are relevant; the p-kernel, g-kernel and
the s-kernel, respectively. Note that the p-kernel, referred to as a-kernel in other
works, serves as a uniform characterization of four different semantics, including
preferred and admissible [30].

Definition 2.21 For an argumentation graph G = (A,R), Oikarinen and Woltran
[30] define the

• p-kernel of G as GpK = (A,RpK), where RpK = R \ {(a, b) | a ̸= b, (a, a) ∈
R, {(b, a), (b, b)} ∩ R ̸= ∅},

• g-kernel of G as GgK = (A,RgK), where RgK = R \ {(a, b) | a ̸= b, (b, b) ∈
R, {(a, a), (b, a)} ∩ R ̸= ∅}, and

• s-kernel of G as GsK = (A,RsK), where RsK = R \ {(a, b) | a ̸= b, (a, a) ∈ R}.

a b a b a b

Figure 7: Argument graphs L (left), L′ = LpK = LsK (middle), and L′′ = LgK (right).

Example 2.10 Consider an argument graph L = (A,R) in Figure 7 where A = {a, b}
and R = {(a, a), (a, b), (b, a)}. By definition, the self-attack (a, a) remains in the
graph for all kernels. For each kernel we iterate trough the Arcs(L) and remove the
those that violate the respective semantics according to Definition 2.21.

• p-kernel: For (a, b), a ̸= b, (a, a) ∈ R, and {(b, a), (b, b)} ∩ R ̸= ∅. Therefore
(a, b) is removed. For (b, a), b ̸= a, (b, b) /∈ R s.t. (b, a) is not redundant. It
follows LpK = ((a, b), {(a, a), (b, a)}) = L′ in Figure 7.

• g-kernel: Since for (a, b), a ̸= b, (b, b) /∈ R we keep (a, b) in the graph. (b, a)
is removed because b ̸= a, (a, a) ∈ R, and {(b, b), (a, b)} ∩ R ̸= ∅. This results
LgK = ((a, b), {(a, a), (a, b)}) = L′′ in Figure 7.

• s-kernel: For (a, b), a ̸= b and (a, a) ∈ R. Hence, (a, b) is discarded. As for
(b, a), a ̸= b, but (b, b) /∈ R. Therefore, the attack stays. It follows that LsK =
((a, b), {(a, a), (b, a)}) = L′ in Figure 7.
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Oikarinen and Woltran [30] establish that the σ-kernels of two arguments graphs
G and G′ can be utilized to determine strong equivalence between graphs G and
G′ w.r.t. a semantics σ. In other words, strong equivalence is reduced to kernel
equivalence as visible in the following Theorem.

Theorem 2.1 [30]

G ≡p
s G′ ⇔ GpK = G′pK.

G ≡g
s G′ ⇔ GgK = G′gK.

G ≡s
s G

′ ⇔ GsK = G′sK.

Naive extensions on the other hand, do not require kernels. Two graphs G and
G′ are strongly equivalent under naive semantics, where σ = naive, if they have the
same arguments and the same naive extensions, Extensionn(G) [19].

Theorem 2.2 [19]

G ≡naive
s G′ ⇔ Nodes(G) = Nodes(G′) and Extensionn(G) = Extensionn(G).

3 Inconsistency Measures

In this section we consider the inconsistency measures proposed by Hunter [24]
and Amgoud and Ben-Naim [1]. Each measure is comprehensively explained and
rationales behind the specific calculation methods are detailed. Moreover, insight is
given into the interpretation of the inconsistency measures, including the implica-
tions of high and low values, where applicable. Based on this in-depth analysis, the
strengths and weaknesses of each inconsistency measure are considered, providing
a perspective not yet explored.

The inconsistency measures have been grouped into Graph Extension Measures,
referring to measures make use of the semantics presented in Section 2.3, and Graph
Structure Measures which are based on the structure of the argument graph.

3.1 Graph Extension Measures

Graph extension measures evaluate inconsistencies using extensions and therefore
are closely tied to the semantics they utilize. Two argument graphs may appear to
be identically inconsistent, under one semantics but different under another.

In this section we analyze and interpret the graph extension measures, Preferred-
Count, NonGroundedCount, and UnstableCount proposed by Hunter [24], as well
as NaiveExtensionCount and PreferredExtensionCount formulated by Amgoud and
Ben-Naim [1]1.

1NaiveExtensionCount and PreferredExtensionCount were renamed for the sake of clarity. Amgoud
and Ben-Naim [1] refer to them collectively as "Extension-based measures".

11



3.1.1 PreferredCount

PreferredCount (Ipr) counts the number of preferred extensions, Extensionp(G), in a
graph G and subtracts one.

Ipr(G) = |Extensionp(G)| − 1

By quantifying the number of preferred extensions, the measure identifies the
number of maximal (w.r.t. ⊆) admissible [17] sets of arguments. Each of these sets re-
solve the conflicts present in the graph by providing a selection of arguments that do
not attack one another and are defended, and cannot be extended any further with-
out losing their admissibility. Multiple preferred extensions may exist in a graph,
representing different defended viewpoints. Although, for a definitive resolution,
one preferred extensions must ultimately be selected. In other words, Preferred-
Count returns the number of resolutions that coexist, with one subtracted.

One is subtracted from the preferred extension quantity s.t. a single preferred ex-
tension results in an inconsistency value of 0. The measure value 0 does not indicate
the absence of inconsistency in the graph, rather it signifies that there is only a sin-
gle coherent way of resolving the conflict, namely by accepting the arguments in the
only preferred extension.

Consequently, the higher the PreferredCount, the more diverging viewpoints or
resolutions exist, and the lower the measure, the less diverging viewpoints exist.

x a

a b

c

Figure 8: Argument graphs M (left), N (middle), and O (right).

Example 3.1 Observe the consistent argument graph M in Figure 8. Table 6 which
summerizes the semantics for the graph, shows that M has only one preferred ex-
tension {x}. It follows Ipr(M ) = 1− 1 = 0. This is to be interpreted s.t. there is only
one choice, which is to accept argument x.

Set(M ) Conflict-free Admissible Complete Preferred Grounded Stable Naive
∅ ✓ ✓

{x} ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 6: Semantics for argument graph M .
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Example 3.2 Consider argument graph N in Figure 8 which attacks itself. As visible
in Table 7, it has only one preferred extension, namely the empty set. Hence, Ipr(N )
= 1 − 1 = 0. We can interpret this result as that there is only one course of action,
which is not to accept any argument.

Set(N ) Conflict-free Admissible Complete Preferred Grounded Stable Naive
∅ ✓ ✓ ✓ ✓ ✓ ✓

{a}

Table 7: Semantics for argument graph N .

Examples 3.1 and 3.2 display that despite argument graph N being inconsistent
and M consistent, both argument graphs have a PreferredCount of 0. This suggests
that PreferredCount, indicates the number of additional sets available for resolving
conflicts alongside a selected set, rather than providing information about the over-
all inconsistency of the graph. Additionally, it is visible that PreferredCount does
not distinguish between a non-empty preferred extension and an empty preferred
extension. Example 3.3 presents a case where multiple preferred extensions exist in
an argument graph, offering multiple ways of resolving conflict.

Example 3.3 Take into account argument graph O in Figure 8. According to Table 8
it has three preferred extensions {a}, {b}, and {c}, implying that the selection of one
of these resolves the conflict in the graph. Ipr(O) = 3−1 = 2. We interpret this result
s.t. there are two additional sets, alongside our selected one, that we can choose to
resolve the conflict in the graph.

Set(O) Conflict-free Admissible Complete Preferred Grounded Stable Naive
∅ ✓ ✓ ✓ ✓

{a} ✓ ✓ ✓ ✓ ✓ ✓
{b} ✓ ✓ ✓ ✓ ✓ ✓
{c} ✓ ✓ ✓ ✓ ✓ ✓

Table 8: Semantics for argument graph O.

Apart from the distinct focus of PreferredCount which does not necessarily distin-
guish between consistent and inconsistent graphs, the measure also does not always
account for differing levels of conflict because it does not consider the structure of
the graph. For instance, consider graphs B in Figure 2 and E in Figure 3 with the
semantics of B in Table 1 and those of E in Table 9. Both graphs have two arguments
where graph B is a simple graph with one direct attack, and graph E is a complete
graph with maximal conflict. Yet, Ipr(B) = Ipr(E) = 1− 1 = 0.

However, this measure does not only have disadvantages. By quantifying the
preferred extensions this measure already provides a fine granular assessment of
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the different viewpoints. This makes it especially useful as a guiding resolution
strategy. Knowing that a graph has many preferred extensions can be utilized to
prompt further analysis such as the application of other inconsistency measures or
criteria which may function as tie-breakers to select among the alternatives [45].

Set(E) Conflict-free Admissible Complete Preferred Grounded Stable Naive
∅ ✓ ✓ ✓ ✓ ✓ ✓

{x}
{y}

Table 9: Semantics of argument graph E.

3.1.2 NonGroundedCount

NonGroundedCount (Ingr) counts the nodes in a graph G, Nodes(G), that are not
in the grounded extension, Extensiong(G), and not attacked by a member of the
grounded extension denoted by Attacked(G).

Ingr(G) = |Nodes(G) \ (Extensiong(G) ∪ Attacked(G))|

where Attacked(G) = {b | (a, b) ∈ Arcs(G) and a ∈ Extensiong(G)}

As stated in Section 2.3, a grounded extension is a unique minimal (w.r.t ⊆) set of
arguments that can be defended without contradiction. As the grounded extension
captures the arguments in the argument graph, most of the arguments should either
be attacked, excluded, or included in the grounded extension.

NonGroundedCount quantifies how many arguments in the graph are left unre-
solved by the grounded extension, where unresolved corresponds to the fact that
the argument is neither considered acceptable nor directly attacked. The arguments
that remain outside of this coverage imply potential inconsistencies. In other words,
the measure reflects the spread of alternative viewpoints by examining how many
extensions deviate from the minimal grounded extension. Consequently, a higher
NonGroundedCount means more arguments are neither accepted nor rejected, in-
dicating inconsistency, and a lower NonGroundedCount signifies that most argu-
ments are effectively addressed.

Similarly to PreferredCount, a NonGroundedCount value of 0 does not neces-
sarily suggest that the graph is consistent. Rather, it means that the every argu-
ment in the graph is either included in the grounded extension or is attacked by the
grounded extension. This means all arguments are addressed in some way, either by
acceptance, as is the case in Example 3.4 or by being attacked as visible in Example
3.5. Example 3.6 demonstrates a case where the NonGroundedCount is not 0.
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Example 3.4 Given the semantics of argument graph M in Figure 8 in Table 6:
Extensiong(M ) = {x}, Attacked(M ) = ∅, and Nodes(M ) = {x}.

Ingr(M) = |Nodes(M) \ (Extensiong(M) ∪ Attacked(M))|
= |{x} \ ({x} ∪ ∅)|
= |{x} \ {x}| = |∅| = 0

Example 3.5 Examine argument graph B in Figure 2 together with Table 1:
Extensiong(B) = {c}, Attacked(B) = {b}, and Nodes(B) = {b, c}.

Ingr(B) = |Nodes(B) \ (Extensiong(B) ∪ Attacked(B))|
= |{b, c} \ ({c} ∪ {b})|
= |{b, c} \ {b, c}| = |∅| = 0

Example 3.6 Consider argument graph A in Figure 1 as well as Table 10:
Extensiong(A) = ∅, Attacked(A) = ∅, and Nodes(A) = {a, b}.

Ingr(A) = |Nodes(A) \ (Extensiong(A) ∪ Attacked(A))|
= |{a, b} \ (∅ ∪ ∅)|
= |{a, b} \ ∅| = |{a, b}| = 2

The NonGroundedCount of 2 signifies that there are 2 unresolved arguments with
conflict in the graph, namley a and b.

Set(A) Conflict-free Admissible Complete Preferred Grounded Stable Naive
{} ✓ ✓ ✓ ✓
{a} ✓ ✓ ✓ ✓ ✓ ✓
{b} ✓ ✓ ✓ ✓ ✓ ✓

Table 10: Semantics for argument graph A.

When the NonGroundedCount measure quantifies the number of arguments that
are left unaddressed by the grounded extension, it does so, without necessarily ac-
counting for the component structure of the graph. In turn, if many arguments fall
outside the grounded extension, this may indicate that some areas of the graph are
isolated from the set of justified arguments. This is apparent in Graph M + A con-
sisting of graphs M and A in Figures 8 and 1, respectively. Based on the semantics
in Table 11 we compute:

Ingr(A+M) = |Nodes(A+M) \ (Extensiong(A+M) ∪ Attacked(A+M))|
= |{a, b, x} \ ({x} ∪ ∅)|
= |{a, b, x} \ {x}| = |{a, b}| = 2.
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This result reflects the fact that nodes a and b, make up a component that is dis-
connected from x. While NonGroundedCount does not always offer insight into
component structure it can help to identify potential gaps in the information repre-
sented within the argument graphs and pave the way for the application of other
inconsistency measures.

Set(M+A) Conflict-free Admissible Complete Preferred Grounded Stable Naive
∅ ✓ ✓
{a} ✓ ✓
{b} ✓ ✓
{x} ✓ ✓ ✓ ✓

{a, x} ✓ ✓ ✓ ✓ ✓ ✓
{b, x} ✓ ✓ ✓ ✓ ✓ ✓

Table 11: Semantics of argument graph M +A.

Although the NonGroundedCount is based on the grounded extension, the most
cautious and well-founded extension [17], the dependency on this extension also
can be problematic. For instance, in some graphs the grounded extension may
be empty, making the measure unstable or less meaningful. This is because Non-
GroundedCount relies on arguments outside the grounded extension, and if the
grounded extension is empty, then all arguments will be counted in the measure,
making it meaningless. For illustration, refer to argument graph H in Figure 3 and
its semantics in Table 12 which shows that the grounded extension is ∅, excluding
all arguments in the graph, e, f , and g s.t.

Ingr(H) = |Nodes(H) \ (Extensiong(H) ∪ Attacked(H))|
= |{e, f, g} \ (∅ ∪ ∅)|
= |{e, f, g} \ ∅| = |{e, f, g}| = 3.

This result merely reflects the total number of nodes in H . Likewise, any com-
plete graph with three nodes would receive a NonGroundedCount of 3, since its
grounded extension is the empty set.

Set(H) Conflict-free Admissible Complete Preferred Grounded Stable Naive
∅ ✓ ✓ ✓ ✓ ✓
{e} ✓ ✓
{f} ✓ ✓
{g} ✓ ✓

Table 12: Semantics of argument graph H .
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3.1.3 UnstableCount

UnstableCount (Inst) returns the minimum number of arguments that need to be re-
moved to obtain a stable extension. As defined in Section 2.3, a set of arguments
S ⊆ A is a stable extension iff it is a preferred extension and S attacks all the argu-
ments outside of itself.

To obtain UnstableCount we list the Nodes of G, and then examine different sub-
sets N ⊆ Nodes(G) as candidates for removal. For each set N , we remove those
nodes from G to obtain the induced subgraph Induced(G,N) which consists of the
nodes Nodes(G) \ N and all the attacks between them that were present in G. Fi-
nally, for each induced subgraph, we determine if it has at least one stable extension,
denoted Extensions(G). Among all the sets N for which the induced subgraph has a
stable extension we identify the one(s) with the smallest number of arguments, |N |.
The measure Inst(G) is equal to this smallest number.

Inst(G) = min {|N | | Extensions(Induced(G,N)) ̸= ∅ s.t. N ⊆ Nodes(G)}

The idea behind this measure is to assess how far away the graph is from being
stable by quantifying the minimal modification necessary to achieve this. A low
UnstableCount indicates that the graph is close to being stable. In contrast, a higher
value implies that a large number of arguments must be removed to obtain stability.
Analogous to the previous inconsistency measures, and as visible in Example 3.7,
an UnstableCount of 0 does not necessarily signify that the graph is free of inconsis-
tency, it merely implies that there already exists a stable extension in the graph.

a b

a b b a

Figure 9: Argument graph P (above), Induced(P, ∅) (left), Induced(P, {a}) (middle),
and Induced(P, {b}) (right).

Example 3.7 Consider argument graph P in Figure 9. The subsets are N = ∅, {a}, {b},
and {a, b}. The induced subgraphs for these are depicted in Figure 9. For the in-
duced subgraph Induced(P, ∅) consider the semantics in Table 13. The semantics for
the graphs Induced(P, {a}) and Induced(P, {b}) correspond to the semantics in for
graphs N and M in Tables 7 and 6, respectively, as they are isomorphic to each other.

N = ∅ : Extensions(Induced(P, ∅)) = Extensions({a, b}) = ∅
N = {a} : Extensions(Induced(P, {a})) = Extensions({b}) = ∅
N = {b} : Extensions(Induced(P, {b})) = Extensions({a}) = {a}

N = {a, b} : Extensions(Induced(P, {a, b})) = Extensions(∅) = ∅
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The smallest non-empty subset that satisfies the stability condition is N = {b} with
{a}. |N | = 1. It follows, Inst(P ) = 1. Hence, the minimal removal of 1 argument,
would result in a stable extension.

Set(P ) Conflict-free Admissible Complete Preferred Grounded Stable Naive
∅ ✓ ✓ ✓ ✓ ✓
{a} ✓ ✓
{b}

Table 13: Semantics of argument graph P .

Example 3.8 Consider argument graph B in Figure 2. The semantics for B are evi-
dent in Table 1. The semantics for Induced(B, {b}) and Induced(B, {c}), are equiva-
lent to the semantics in Table 6 since the induced graphs correspond to graph M in
Figure 8.

N = ∅ : Extensions(Induced(B, ∅)) = Extensions({b, c}) = {c}

Since N = ∅ already results in the graph with a stable extension, it is not necessary
to remove any arguments and to make the graph stable. It follows that Inst(B) = 0.

UnstableCount is advantageous because it provides a clear measure of inconsis-
tency by identifying how much of the graph must be altered to regain stability. Since
the measure explicitly identifies the minimum number of arguments to remove, it
suggests a direct way to make the graph stable.

One weakness in UnstableCount is that it only states how many arguments need
to be removed but not why the graph is unstable or how strongly unstable it is.
This is illustrated in Example 3.9. This example also displays how UnstableCount
neglects the structure of the graph. The facts that acyclic graphs always have at least
one stable extension [17] and that in an odd cycle no stable extension exists [34] show
that the structural properties of a graph such as the presence or absence of cycles
directly influence whether a stable extension can exist, impacting UnstableCount.

Example 3.9 Take into account graph H in Figure 3. For the graphs Induced(H, {e}),
Induced(H, {f}), and Induced(H, {g}) consider the semantics of graph M in Ta-
ble 6 since each induced subgraph is isomorphic to M . Similarly, for the graphs
Induced(H, {e, f}), Induced(H, {e, g}), and Induced(H, {f, g}) consider the seman-
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tics in Table 1. Lastly, for Induced(H, ∅) the semantics are displayed in Table 12.

N = ∅ : Extensions(Induced(H, ∅)) = Extensions({e, f, g}) = ∅
N = {e} : Extensions(Induced(H, {e})) = Extensions({f, g}) = {f}
N = {f} : Extensions(Induced(H, {f})) = Extensions({e, g}) = {g}
N = {g} : Extensions(Induced(H, {g})) = Extensions({e, f}) = {e}

N = {e, f} : Extensions(Induced(H, {e, f})) = Extensions({g}) = {g}
N = {e, g} : Extensions(Induced(H, {e, g})) = Extensions({f}) = {f}
N = {f, g} : Extensions(Induced(H, {f, g})) = Extensions({e}) = {e}

N = {e, f, g} : Extensions(Induced(H, {e, f, g})) = Extensions(∅) = ∅

Among all the sets N we identify, |N | = {f} = {g} = {e} as the ones with the
smallest number of arguments, with one stable extension. Therefore, Inst(H) = 1.
As apparent, there are multiple ways to remove arguments and restore stability,
but no more detail is given by UnstableCount. The instability stemming from the
cyclic nature of H which has an odd number of nodes is also not addressed by this
measure.

3.1.4 NaiveExtensionCount

The NaiveExtensionCount (In) counts the number of naive extensions in a graph G,
Extensionn(G), adds the number of self attacks, selfAttacks(G), and subtracts one.

In(G) = |Extensionn(G)|+ |selfAttacks(G)| − 1

One is subtracted to account for the case of empty attack relations s.t. if there
are no attacks, the graph receives an inconsistency measure of 0 [1] as illustrated in
Example 3.10. Note, that as with the previous extension-based inconsistency mea-
sures, a NaiveExtensionCount of 0 does not necessarily equate to a consistent graph.
However, unlike the previous measures, self-attacks are added because their exclu-
sion would lead to misleading inconsistency values [1]. To exemplify, consider con-
sistent graph M and self-attacking graph N in Figure 8, which without the inclusion
of self-attacks, would receive the same NaiveExtensionCount.

Example 3.10 Examine graphs N and M in Figure 8. Graph N has one naive exten-
sion, namely the empty set, as visible in Table 7 as well as one self-attack. Hence,
In(N) = 1 + 1 − 1 = 1. Graph M also has one naive extension as apparent in Table
6, but no self-attack. It follows, In(M) = 1 + 0− 1 = 0.

The idea of this measure is that if there exist multiple extensions in the graph this
indicates the presence of inconsistency in the graph, where the higher the quan-
tity of extensions in the graph, the greater the inconsistency [1]. More specifically,
NaiveExtensionCount serves as a measure of the diversity of acceptable viewpoints
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within an argumentation graph. The higher the number of naive extensions, the
more different sets of arguments can exist without conflict between them. Likewise,
the lower the number of naive extensions the less sets of arguments can exist with-
out conflict between them.

Example 3.11 Take graph B in Figure 2 as the subject of study. B has no self-attacks,
and according to Table 1, it has two naive extensions. Thus, In(B) = 2 + 0 − 1 = 1.
Now consider graph E in Figure 3 and its semantics in Table 9. Because it is a com-
plete graph, there exists no conflict free set, except for the empty set. Additionally,
two self-attacks are visible s.t. In(E) = 1 + 2− 1 = 2. The increased conflict in E in
contrast to B is reflected in the NaiveExtensionCount.

However, it needs to be acknowledged that by definition, naive extensions only
require conflict-freeness and not admissibility. This means that while more naive
extensions imply many conflict-free groups of arguments, they do not imply that
these sets are fully defended from attacks of arguments outside. Another weakness
of this measure is that two graphs with the identical total number of naive exten-
sions and self-attacks will have an indistinguishable NaiveExtensionCount, even if
their structure and the way the inconsistency manifests are very different. This can
be observed in argument graph O in Figure 8, whose semantics are in Table 8 and
graph E in Figure 3, for which we computed In(E) = 2 in Example 3.11. Graph
O has three naive extensions and no self-attacks s.t. In(O) = 3 + 0 − 1 = 2. Even
though graph O is a cyclic graph and E is complete graph, they receive the same
NaiveExtensionCount.

Yet, this measure also has advantages. Among them is the inclusion of self-attacks
as those are inherently problematic [13]. Furthermore, NaiveExtensionCount pro-
vides a differentiated view on inconsistency, because unlike other measures which
capture only semantic or structural information, NaiveExtensionCount considers
both, the presence of naive extensions and self-attacking arguments, capturing mul-
tiple dimensions of inconsistency.

3.1.5 PreferredExtensionCount

The measure PreferredExtensionCount (Ip) quantifies the number of preferred exten-
sions in graph G, Extensionp(G), adds number of self-attacks, selfAttacks(G) and
subtracts one.

Ip(G) = |Extensionp(G)|+ |selfAttacks(G)| − 1

This measure is similar to NaiveExtensionCount, because it counts the (preferred)
extensions, adds the self-attacks and subtracts one. Once again, one is subtracted to
account for the case of empty attack relations [1], which is illustrated in Example
3.12. However, we emphasize once more, that a PreferredExtensionCount of 0 does
not necessarily indicate that the graph is consistent. As in the NaiveExtensionCount,
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the self-attacks are added because they are inherently inconsistent and therefore
increase the inconsistency value.

The number of preferred extensions can be interpreted as how many maximal
(w.r.t. ⊆) defended viewpoints exist within an argument graph. Since the number of
preferred extensions refers to the number of maximal (w.r.t. ⊆) admissible sets, this
measure is even stricter than the NaiveExtensionCount, which focuses on maximal
(w.r.t. ⊆) conflict-free sets only.

It is apparent that PreferredExtensionCount also shares similarities with Preferred-
Count in Section 3.1.1, which quantifies the number of preferred extensions and
subtracts one. A high PreferredExtensionCount indicates that the argument graph
supports many defensible viewpoints without any strong consensus. In contrast, a
low PreferredExtensionCount suggests that the graph has fewer defensible perspec-
tives, indicating a higher level of agreement among the arguments.

Example 3.12 Consider argument graphs M and N in Figure 8. M has no self-
attacks and one preferred extension according to Table 6. Ip(M) = 1 + 0 − 1 = 0.
Graph N has one preferred extension according to Table 7, and one self-attack. It
follows, Ip(N) = 1 + 1− 1 = 1. N is more inconsistent than M .

Strengths of this measure include its focus on preferred extensions as these are
maximal admissible sets, meaning they include as many defensible arguments as
possible. By counting those, PreferredExtensionCount reflects the degree of frag-
mentation in justifiable viewpoints within the argument graph. Therefore this mea-
sure is useful in identifying graphs where consensus is difficult to reach. Further-
more, PreferredExtensionCount shares the advantage with NaiveExtensionCount of
capturing inconsistency along the dimensions of semantics and structure through
the inclusion of the self-attacks.

As a drawback, we caution that a large number of preferred extensions does not
necessarily mean the graph is highly inconsistent but that there are multiple rea-
sonable viewpoints rather than outright conflicts, which may lead to an overesti-
mation of inconsistency. Similarly, a smaller number of preferred extensions does
not necessarily mean that the graph is more consistent. Example 3.13 illustrates an
underestimation of inconsistency.

Example 3.13 Observe graph H in Figure 3, which is considered inconsistent as an
odd elementary cycle with no self-attacks [7]. However, according to Table 12 it has
only one empty preferred extension s.t. Ip(V ) = 1 + 0− 1 = 0. H receives the same
measure as M from Example 3.12 despite important structural differences.

Lastly, like PreferredCount, PreferredExtensionCount is unable to differentiate
between a graph that has an empty preferred extension and one that has a non-
empty preferred extension. In Example 3.12 {x} for graph M , and ∅ for graph H
in Example 3.13 are not distinguished. Yet, an empty preferred extension typically
indicates that no arguments can be collectively accepted, suggesting a higher level
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of inconsistency within the graph whereas a non-empty preferred extension means
there is at least one coherent set of acceptable arguments.

3.2 Graph Structure Measures

Graph structure measures evaluate inconsistencies by considering the structure of
the graph, where structure refers to the patterns of the nodes, the arcs that connect
them, and the properties that emerge from them, such as cycles. Depending on what
different structural features these measures assess they can be coarse or fine-grained.

In this section we examine the graph structure measures, Drastic, WeightedIn-
Sum, WeightedOutSum, CycleCount, WeightedCycleCount, WeightedComponent-
Count proposed by Hunter [24], as well as the Connectance Measure, the In-degree
Measure and the Distance-based Measure formulated by Amgoud and Ben-Naim
[1] 2.

3.2.1 Drastic

If an argument graph G has no attacks, Drastic (Idr) returns 0, otherwise it returns 1.
Thus, it analyzes the connectivity of a graph through binary classification without
quantifying the amount of conflict.

Idr(G) =

{
0 if Arcs(G) = ∅
1 otherwise

Example 3.14 For graphs B and C in Figure 2, Idr(B) = Idr(C) = 1. Graph M in
Figure 8 has a drastic value of Idr(M) = 0.

The fact that this measure assigns all graphs that have at least one attack a value
of 1, and does not quantify the amount of conflict for each graph, implies that it
lacks depth to a great extent. Drastic also cannot take into account the structure
of the graph, such as elementary cycles and complete graphs which always receive
an inconsistency value of 1 [24], nor the type of attacks including indirect attacks,
self-attacks, and direct attacks.

Despite the fact that this measure has many weaknesses, it is still a useful measure
and can function as an initial screening for a system. For example, when dealing
with large argument graphs, this measure could be used to quickly assess whether
deeper, more computationally intensive analysis is required or not. If a graph has
empty attack relations, the system can skip unnecessary computational complexity,
making decision-making faster and more resource-efficient.

2Please note that in measures like the Connectance Measure, the word "Measure" is part of their origi-
nal name. In contrast, other measures, such as Drastic, do not include "Measure" in their name.
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3.2.2 WeightedInSum

WeightedInSum (Iwin) sums up the reciprocal of the indegree for every node in an
arbitrary graph G.

Iwin(G) =
∑

a∈Nodes(G) s.t. Indegree(G,a)≥1

1

Indegree(G, a)

The indegree must be greater or equal to one because nodes that have an indegree
of zero, would be computed as 1

0 which is mathematically undefined. By invert-
ing the indegree, weight is placed onto arguments that are less attacked, making
them have a higher contribution to the overall inconsistency. The rationale is that
if an argument is attacked by fewer arguments, it might be more reliable or stable,
which is why such attacks should contribute more to the inconsistency, in contrast
to arguments that are heavily under attack and therefore more likely to be rejected.

The WeightedInSum measure captures the distribution of attacks by focusing
more on the sparsely attacked arguments. If this measure is high, many arguments
have a low indegree, which in turn indicates that the conflict is more wide spread.
If the measure is low, few arguments have a high indegree with the implication that
the conflict is more concentrated.

Example 3.15 Examine graphs R and Q in Figure 10. Iwin(R) = 1
3 ≈ 0.33 and

Iwin(Q) = 1 + 1 + 1 + 1 = 4. These values reflect the fact that the attacks in graph R
are more concentrated than the ones in Q.

If the indegree for every node were to be summed up without weight, nodes
with a high number of incoming attacks would contribute more to the inconsis-
tency measure value. This could lead to a disproportionate influence of the overall
inconsistency measure, by nodes that have a high number of attackers and may lead
to the belief that the inconsistency is more significant than it actually is. By giving
less weight to arguments that have a high number of attackers the WeightedInSum
measure reduces this effect and introduces an additional layer of granularity. This
strength illustrated in Example 3.16.

a b

e d

a

b

cd a

b

cd

Figure 10: Argument graphs Q (left), R (middle), and R−1 (right).

Example 3.16 Consider graph R in Figure 10. With the exclusion of weights, sum-
ming up the indegree of every node would result in an inconsistency value of 3 since
Indegree(R, a) = 3. In comparison, the WeightedInSum measure utilizes weights
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and assigns Iwin(R) = 1
3 ≈ 0.33. The exclusion of weights makes it seem like

there exists a significant inconsistency in R, because of a’s large contribution. In
the WeightedInSum measure a’s contribution is reduced to 1

3 . The weight in the
WeightedInSum measures prevents the domination of the inconsistency value by a.

This described effect makes the measure especially useful in graphs that have
nodes that receive many attacks. Another advantage of the weight is that since the
measure reduces the impact of outliers, it makes the inconsistency value more com-
parable across different argument graphs. By downplaying extreme values, this
approach helps in standardizing inconsistency measurements, allowing for more
meaningful cross-graph comparisons. However, this also means that arguments
with many attacks are given less weight, which can lead to an underestimation of
the overall inconsistency in the graph. Since attacks are the source of conflict in
argument graphs, reducing their influence might obscure the true level of inconsis-
tency. As a result, while the measure offers greater generalization, it may fail to fully
capture the complexity of inconsistency in cases where the conflict is concentrated
in a few highly attacked arguments.

While this measure quantifies the dispersion of conflict, it has the disadvantage
that it cannot necessarily distinguish between a complete graph, for which Iwin = 1
always [24] and an arbitrary graph for which it is also possible to take the value 1.
This is visible in graphs B in Figure 2 and graph E in Figure 3 where B is an acyclic
graph and E a complete graph and Iwin(B) = Iwin(E) = 1.

3.2.3 WeightedOutSum

WeightedOutSum (Iwout) sums up the reciprocal of the outdegree for every node in
an arbitrary graph G.

Iwout(G) =
∑

a∈Nodes(G) s.t. Outdegree(G,a)≥1

1

Outdegree(G, a)

Similar to the WeightedInSum measure the outdegree must be greater or equal to
one because nodes that have an outdegree of zero, would be mathematically unde-
fined with 1

0 . Once again, there is a weight placed using inversion, however, it is
placed on attackers. Arguments with a higher outdegree, meaning that they attack
more arguments, contribute less to the inconsistency. At the same time, arguments
with a lower outdegree, meaning they attack fewer arguments, contribute more to
the inconsistency. More weight is given to arguments that are less engaged in at-
tacking other arguments. The intuition behind the weight is that arguments that
attack only a few others are more focused and significant. Conversely, if an argu-
ment attacks many others, then each individual attack is less prominent in driving
the inconsistency.

A high value of WeightedOutSum suggests that, on average, many arguments
are involved in only a few attacks, implying that there are more focused points of
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conflict. Conversely, a low value of the measure tends to indicate that attackers
target many different arguments. This reflects a more interconnected network where
conflicts are broadly distributed.

Example 3.17 Observe graphs R and R−1 in Figure 10. Iwout(R) = 1 + 1 + 1 = 3
and Iwout(R−1) = 1

3 ≈ 0.33. The higher measure of 3 for R suggests that many
different nodes are engaging in attacks, which signals the localized inconsistency
present in the graph. In contrast, the lower measure of 0.33 in R−1 implies that
different arguments are targeted indicating a more spread conflict.

WeightedOutSum is able to distinguish between a scenario where many different
arguments are making only a few attacks versus a scenario where a single argument
makes many attacks. This can provide insight into how the conflicts are distributed
within the graph. The WeightedOutSum measure therefore is useful to identify ar-
guments that attack many other arguments, and are disproportionately influential
in driving inconsistency. WeightedOutSum also shares the advantage with Weighte-
dInSum of downplaying extreme values but in regards to outgoing attacks.

Nevertheless, similar to WeightedInSum, the measure can oversimplify inconsis-
tency because it does not differentiate between complete graphs which always re-
ceive a WeightedOutSum value of 1 [24] and an arbitrary graph that is not complete
and also is able to receive a value of 1. To exemplify observe argument graph B in
Figure 2 and complete graph E in Figure 3 for both of which Iwout(B) = Iwout(E)
= 1.

3.2.4 CycleCount

The number of cycles, Cycles(G), in an arbitrary graph G is quantified by CycleCount
(Icc).

Icc(G) = |Cycles(G)|

A larger number of cycles often signifies greater complexity within the graph and
can hint at a more a difficult resolution too as the acceptance of arguments is ques-
tionable [7] [13]. Additionally, the high number of cycles in a graph may indicate a
higher connectivity which in turn could suggest that the validity of one argument
might be directly tied to others in a cyclical manner. CycleCount therefore provides
insight into problematic or self-reinforcing conflicts through quantifying the pres-
ence of cycles.

Based on this, a higher number of cycles points towards more inconsistency preva-
lent in the graph while a lower CycleCount value suggests less disagreement exists
w.r.t. cycles presence. Note that CycleCount of 0 does not indicate the absence of
inconsistency, merely the absence of cycles.

Example 3.18 For graph B in Figure 2 Icc(B) = 0, as no cycle exists in the graph. For
graph C in the same Figure, Icc(C) = 1, because there exists one cycle in the graph.
Icc(Q) = 1 for graph Q in Figure 10 where Q is an elementary cycle.
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The advantage of this measure is its simplicity and focus on cycles. However,
through its focus, other forms of inconsistency in an acylic graph may not be de-
tected. For instance, for acyclic argument graphs R and R−1 in Figure 10 Icc(R) =
Icc(R

−1) = 0, even though there exists differently distributed inconsistency in these
graphs.

CycleCount also does not differentiate between graphs that have one cycle and
those that consist of an elementary cycle only. This is significant because elementary
cycles may influence the evaluation of argument strength and the overall coherence
of the graph differently than a more complex graph with a cycle. Furthermore,
albeit the fact that CycleCount always returns a value of Icc(G) = 2n − 1 where
n = |Nodes(G)| > 0 for complete graphs [24], this value is not exclusively reserved
for complete graphs.

Another disadvantage of CycleCount lies in its lack of depth within its scope.
As way of explanation, the measure does not distinguish between cycles of dif-
ferent lengths. For example for graphs Q and H in Figure 10 and 3, respectively,
Icc(Q) = Icc(H) = 1, even though Q consists of only an elementary cycle of four
nodes while H is an elementary cycle of odd length with three nodes. Cycle length
is important because it affects argumentation semantics, determining whether con-
flicts can be resolved or lead to paradoxes [3] [7]. This is especially the case for odd
cycles that prevent any argument from being clearly defended. Although Cycle-
Count is a structural measure, meaning that it discards semantics, the information
on cycles it returns (fails to return) can(not) further be used s.t. the observations with
regard to semantics remain valid.

3.2.5 WeightedCycleCount

WeightedCycleCount (Iwcc) takes the reciprocal of the number of nodes involved in a
cycle C in graph G, and for all cycles in G, Cycles(G), sums up the result.

Iwcc(G) =


0, if Cycles(G) = ∅,∑
C∈Cycles(G)

1

|C|
, otherwise.

We extended this measure by incorporating the case Cycles(G) = ∅. The objective is
that graphs with no cycles should not receive a mathematically undefined result but
a WeightedCycleCount of 0. While this measure only is meaningful for graphs that
have cycles, the inclusion of acyclic graphs through the addition of this case, allows
for comparisons between cyclic and acyclic graphs as required in Section 4.2.

This measure accounts for the presence and size of cycles, but in a way s.t. graphs
with larger cycles, meaning cycles with more nodes, contribute less to the inconsis-
tency. By using the reciprocal, the measure gives more weight to smaller cycles. The
idea behind the higher contribution of smaller cycles is that they only involve fewer
arguments. As each argument is tightly connected to others in a direct way, this
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creates a stronger local inconsistency [1]. When a cycle involves many arguments,
each argument is less directly entangled with the others in the cycle. Thus, its effect
on inconsistency is considered weaker.

A high WeightedCycleCount therefore means that the graph has small cycles,
while a low value of this measure means that there are typically fewer larger cy-
cles.

Example 3.19 Refer to graph A in Figure 1, that consists of an elementary cycle with
two nodes s.t. Iwcc(A) = 1

2 = 0.50. For graph Q, an elementary cycle with four nodes
in Figure 10, Iwcc(Q) = 1

4 = 0.25. It is visible that since graph A involves less nodes
in the cycle, has a higher measure than Q, reflecting the tighter attack loop that exists
in A.

Hunter [24] generalizes the WeightedCycleCount for a complete graph G where
Nodes(G) = n and n > 0. For each non-empty subset of nodes, a cycle is con-
stituted. For each k where 1 ≤ k ≤ n, there are n!

k!(n−k)! subsets of cardinality k,
and each of these contributes 1

k to the sum. Hence, the WeightedCycleCount for a
complete graph is

Iwcc(G) =
n∑

k=1

[
1

k
× n!

k!(n− k)!

]
.

Example 3.20 For a complete graph E in Figure 3 for which n = 2,

Iwcc(E) =

[
1

1
× 2!

1!(2− 1)!

]
+

[
1

2
× 2!

2!(2− 2)!

]
=

[
1× 2

1× 1

]
+

[
1

2
× 2

2× 1

]
= [1× 2] +

[
1

2
× 1

]
=

5

2
= 2.50.

One strength exhibited by WeightedCycleCount is the fact that it is sensitive to the
size of cycles. This aligns with the idea that smaller cycles are considered more con-
flicting [1]. The incorporation of cycle size also reduces the risk of overestimating
inconsistency in cases where cycles occur due to the debate’s interconnected struc-
ture rather than logical conflict. A structural cycle occurs when the attack-relations
are cyclic simply because the discussion is complex and many arguments happen
to relate to one another. Such a cycle does not necessarily mean that the positions
cannot be reconciled as it just reflects the connected nature of the discussion. This is
especially the case in larger cycles.
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To illustrate this point, consider graph S in Figure 11 and by way of example the
arguments assigned to it. The cycle consisting of nodes a1, b1, a2, and b2 is structural
because each argument shifts the debate’s framing from prioritizing wind energy, to
prioritizing stability, to investing in nuclear energy, without directly refuting factual
claims. In contrast the cycle consisting of the nodes a3 and b3 is due to logical conflict
because the arguments contradict each other’s empirical claims on property value
decline. In this example it is evident that the larger cycle in the graph is due to the
interconnected structure of the debate. The CycleCount measure from the previous
section gives a misleading impression of the inconsistency with Icc(S) = 2. Weight-
edCycleCound adresses this weakness by assigning Iwcc(S) =

1
2 + 1

4 = 3
4 = 0.75.

a1

a3b3

b2 a2

b1

a1: "Governments should prioritize wind energy
investments to phase out fossil fuels, as they are a
scalable and renewable technology."
a2: "Grid modernization should be the focus to enable
renewable integration, not delaying wind projects."
a3: "Wind projects create long-term jobs, tax revenue,
and infrastructure, with studies showing no decline in
property values."
b1: "Policymakers must prioritize grid stability over
rapid renewable adoption since irregular sources like
wind risk blackouts."
b2: "Investments should target proven industries like
nuclear first, not speculative grid upgrades for wind."
b3: "Data confirms that wind turbines reduce property
values by 10–20% in nearby areas, outweighing short-
term economic gains."

Figure 11: Argument graph S.

While WeightedCycleCount, takes into account the length of cycles, note that it
does not differentiate between odd and even cycles, whose importance we have
discussed in Section 3.2.4 under CycleCount. Among its disadvantages also is its
exclusive focus on cycles. All argument graphs that do not have cycles get an incon-
sistency measure of 0. It follows automatically then that this measure does not take
into account the structure of the graph. For instance, consider graph C in Figure
2 where, Iwcc(C) = 1

2 = 0.50, because there exist two nodes involved in one cy-
cle in the graph. However, WeightedCycleCount disregards the inconsistency from
attacks (d, e), (e, c), and (c, b) as well as the indirect attack (d, b), and focuses exclu-
sively on the cycle between nodes a and b. This can be misleading, since graph A
with Iwcc(A) = 0.50 as shown in Example 3.19, has the same inconsistency measure
of C, despite its different structure as an elementary cycle.
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3.2.6 WeightedComponentCount

WeightedComponentCount (Iwco) takes the sum of the cardinality of each component
X in the graph G from all components in the graph, Components(G), subtracts one,
and squares it.

Iwco(G) =
∑

X∈Components(G)

(|X| − 1)2

The subtraction of one from the quantity of nodes in the component is to ensure
that the component is connected, because for n nodes where n ≥ 1, we need at least
n − 1 arcs s.t. there exists a minimally connected component [16]. Additionally, the
subtraction ensures that a single disconnected node does not contribute to the incon-
sistency. The result of this cardinality is squared for each component to amplify the
impact of larger components, since they represent inconsistency in larger clusters
that is more difficult to resolve.

Overall, the WeightedComponentCount aims to measure how the nodes are dis-
tributed among the connected components in a graph while emphasizing the impact
of larger components, which are more significant for inconsistency. By giving more
weight to larger connected components, it also assesses whether the graph is mostly
a single connected unit or split into many smaller, disconnected parts.

Example 3.21 Consider graphs B and C in Figure 2, each consisting of one compo-
nent. Iwco(B) = (2 − 1)2 = 1 and Iwco(C) = (5 − 1)2 = 16. The WeightedCompo-
nentCount of 1 for B suggests that the graph consists of a smaller component. The
value of 16 from graph C indicates the existence of a larger connected component.
The larger value shows that the graph has more structure and greater connectivity
compared to graph B.

Example 3.22 Observe graph K in Figure 5. It consists of two components, hence,
Iwco(K) = (3 − 1)2 + (2 − 1)2 = 4 + 1 = 5. In comparison to graph C mentioned
in Example 3.21, it has relatively simple structure. Although it consists of one more
component than B, its components are not complex, which is why it does not con-
tribute as much to the inconsistency.

Unlike other measures, this measure considers components of the graphs, where
as the number of larger components increases, the graph becomes more inconsistent.
Another strength of this measure is that it distinguishes between components s.t. a
graph with a larger component and several smaller components will be assigned a
higher inconsistency value than a graph consisting of smaller components only. As
an example, observe argument graphs T and T ′ in Figures 12 and 13 which both
have eight nodes. Graph T consists of five smaller components with Iwco(T ) =
(3× (2− 1)2) + (2× (1− 12)) = 3 while graph T ′ consists of one larger component
and four smaller components s.t. Iwco(T

′) = (4− 1)2 + (4× (1− 1)2) = 9. As visible
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the quadratic growth connected to component size, provides a smooth, non-linear
penalty for component size.

While the subtraction of one from the number of nodes in each component en-
sures that an isolated node does not contribute to inconsistency, this measure also
automatically discards isolated nodes that have a self-attack and therefore would
contribute to inconsistency. However, we also accentuate that whether an isolated
node with a self-attack should contribute to an inconsistency value or not is debat-
able [5] [32] [13].

Another weakness of this measure is the fact that it only depends on the size of
each component. It does not capture other factors such as the structure of the graph
and therefore does not discern between elementary cyles and complete graphs that
have the same number of nodes. This disregard of structural information can lead to
misleading results when evaluating consistency. To illustrate, consider graph A, an
elementary cycle in Figure 1 and graph E, a complete graph in Figure 3, where for
complete graphs it always holds that Iwco(G) = (n− 1)2 where n = |Nodes(G)| > 0
[24]. Both graphs consist of one component with two nodes and therefore receive
an equal inconsistency value of Iwco(A) = Iwco(E) = (2 − 1)2 = 1, despite their
structural differences.

3.2.7 Connectance Measure

The Connectance Measure (Icon), quantifies the number of attacks in a graph G =
(A,R), by counting the arcs.

Icon(G) = |R|

The idea behind this measure is that inconsistencies stem from attacks [1]. The
higher the Connectance Measure the more attacks exist in the graph and the more
conflict is present.

Example 3.23 Take into account graphs B and C in Figure 2. Icon(B) = 1 because
there exists only one attack going from node c to b and Icon(C) = 5 based on the five
direct attacks. It is visible that the indirect attack (d, b) of graph C is ignored, and
that the measure only counts direct attacks.

As inconsistencies stem from attacks, the Connectance Measure is a very natural
and straightforward measure. Additionally it is easy to interpret and able to distin-
guish a consistent graph with no attacks from an inconsistent graph by definition
with a Connectance Measure value of 0. However, this measure has more weak-
nesses than it has strengths.

Firstly, it does not take into account indirect attacks as shown in Example 3.23, nor
does it distinguish between direct attacks and self-attacks. For illustration purposes,
observe graph N in Figure 8, which has the same Connectance Measure value of 1 as
B from Example 3.23, even though B has a direct attack and N has one self-attack.
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This is misleading because according to Beuselinck et al. [12] there is a significant
difference between an argument attacking itself and an argument that is attacked by
another argument. A self-attack indicates an internal contradiction, whereas an ex-
ternal attack reflects a typical adversarial relationship between different arguments.
This implies that the arc-counting measure oversimplifies the situation, missing the
structural differences that have important implications for the evaluation of argu-
ments in the graph.

The measure further lacks depth in that it does not consider the structure of the
graph as it does not distinguish between elementary cycles, acyclic and complete
graphs. One such situation can be seen in graph E in Figure 3, and Q in Figure
10, where E is a complete graph and Q is an elementary cycle. Since for complete
graphs, it stands that Icon(G) = n2 where n = |Nodes(G)| > 0 [24], Icon(E) = Icon(Q)
= 4. Both types of graphs have the same number of arcs, but the complete graph
represents a much more complex and contentious scenario than the elementary cy-
cle. The measure treats them as equivalent, missing crucial information about how
the arguments are interacting.

3.2.8 In-degree Measure

The In-degree Measure (I ind) counts the number of arguments a ∈ A attacked in a
graph G = (A, R).

I ind(G) = |{a ∈ A | ∃(x, a) ∈ R}|

The quantification of attacked arguments, reflects the level of inconsistency in the
graph because attacked arguments represent points of conflict. If many arguments
are attacked, this suggests that a significant portion of the graph is involved in dis-
agreements. Thus, a higher value of this measure indicates that the graph is the
more inconsistent while a lower value implies a more consistent graph [1].

Example 3.24 Consider graphs B and C in Figure 2. I ind(B) = 1 as only argument
b is attacked and I ind(C) = 4 since four arguments are attacked. The indirect attack
(d, b) in C is not taken into account.

As attacked arguments represent points of disagreement, the measure directly
highlights the degree of conflict. An advantage of this straightforward approach
is that it avoids being misleading, since an attacked argument clearly signals a
challenge to its validity. Additionally the In-degree Measure is able to differenti-
ate between consistent and inconsistent graphs because a consistent graph always
receives an In-degree Measure of 0 while an inconsistent graph cannot receive such
value. While this measure can serve as a baseline indicator in that it can quickly flag
whether a graph has potential issues, it also has disadvantages.

As visible in Example 3.24, the In-degree Measure does not consider indirect at-
tacks. It also does not differentiate between different types of attacks such as direct
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attacks and self-attacks. A case like this can be seen with graphs B in Figure 2 and
N in Figure 8 where I ind(B) = I ind(N ) = 1, even though graph B has a direct attack
and N has a self-attack. We have underscored the significance of the distinction
between direct and self-attacks under the Connectance Measure in Section 3.2.7.

Furthermore, the simplicity of this measure comes with the cost of disregarding
the structure of the graph. As such, the In-degree Measure is unable to distinguish
between graphs with structural differences. In fact, any two graphs that have the
same number of attacked arguments receive the same inconsistency measure. Exam-
ple 3.25 portrays such a situation where an elemenatary cycle and a complete graph
receive an identical In-degree measure as for both it holds that I ind(G) = |Nodes(G)|
[1].

Example 3.25 Consider graph E in Figure 3 and graph A in Figure 1 where E is a
complete graph and A is an elementary cycle. In both of these graphs two nodes are
attacked. Thus, I ind(E) = I ind(A) = 2.

3.2.9 Distance-based Measure

The Distance-based Measure (Idb) is different to all previously mentioned measures
in that it is the only measure that takes into account indirect attacks. It is calculated
in several steps.

In a graph G = (A,R), for any pair of nodes a, b ∈ A, we determine whether there
exists a path between them. The length of the shortest path, indicating the number
of arcs from node a to b, is termed the distance and is represented as d(a, b). Each
distance is computed differently depending on factors such as whether a node is
reachable or not and other relevant criteria, summarized below [1].

1. If node b is reachable from node a then d(a, b), the smallest number of arcs
from node a to b, is the shortest distance between them.

2. If node b is not reachable from a, suggesting that no path exists between them,
then d(a, b) = k where k = |A|+1, since the longest path in an argument graph
is |A| − 1 and the length of the longest cycle is |A|.

3. If a = b, meaning that we are considering the path from a node to itself, then
d(a, b) is the length of the shortest elementary cycle in which a is involved in.
If a is not be involved in any cycle, d(a, b) = k.

The global distance, GD(G), is defined as the sum of all the distances between all
node pairs in the graph.

GD(G) =
∑
a∈A

∑
b∈A

d(a, b)

The global distance provides a value of how interconnected the graph is through the
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summation of all the shortest path between all pairs of nodes, while also taking into
account unreachable nodes and self-attacks. The lower the global distance, the more
connected is the graph while the higher the global distance, the more the arguments
are isolated.

Afterwards we calculate the lower (min) and upper (max) bounds for the global
distance, which can be interpreted as the range within which the global distance of
an argument graph falls.

min ≤ GD(G) ≤ max where max = n2 × (n+ 1), min = n2, n = |A|

The global distance is maximal when G is consistent, meaning there are no arcs
between the nodes [1]. This is because there are n2 ordered pairs of nodes, where
each node is unreachable for every other node including itself. All of these pairs
have a distance of k = n+ 1 s.t. max = n2 × (n+ 1). Similarly, the global distance is
minimal in the case of a complete graph [1] where there exist n2 arcs of length 1.

Finally, Idb can be calculated using the global distance and the upper and lower
bounds. The distance-based measure evaluates how close the global distance of an
argument graph is to the upper bound. The closer it is to the upper bound the less
inconsistent is the graph, and the closer it is to the lower bound the more disagree-
ment exists in the graph [1]. The underlying idea is that the closer the nodes are,
meaning the smaller the distance between them, the more they attack each other.
Conversely, the further apart they are, the less they attack each other, resulting in
less disagreement.

Idb(G) =
max− GD(G)

max−min

The measure Idb ranges from 0 to 1. The closer Idb is to 0 the less inconsistent is
the graph where 0 describes a consistent graph. And the closer Idb is to 1 the more
inconsistent is the graph where 1 represents a complete graph [1]. Amgoud and
Ben-Naim further show that for an elementary cycle G it holds that Idb(G) ∈ (12 , 1]
and that for an acyclic graph G′, Idb(G

′) ∈ [0, 12). The fact that the Distance-based
Measure ranges from 0 to 1 and always assigns consistent graphs a measure of 0
and maximally inconsistent graphs a value of 1, and also reserves ranges of certain
values of acyclic graphs and elementary cycles, is beneficial for comparisons across
different graphs.

Example 3.26 Analyze argument graph D in Figure 2. We consider all pairs of
nodes to calculate the global distance GD(D). Starting with node b we see that c
is not reachable from b, hence, d(b, c) = k = |A| + 1 = 3 + 1 = 4. We see that a
is reachable from b with one arc and therefore d(b, a) = 1. Going from b to b, b is
involved in an elementary cycle with a which takes two arcs thus, d(b, b) = 2. Con-
tinuing with c, it is visible that b is reachable from c with one arc, s.t. d(c, b) = 1.
Node a also is reachable from c with two arcs with one going over b, thus, d(c, a)
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= 2. From c to c, it is evident that c is not involved in an elementary cycle, therefore
d(c, c) = k = 4. Observe the last node a. Node c is not reachable from a, hence, d(a,
c) = k = 4. Node b is reachable from a with one arc, thus d(a, b) = 1. Finally going
from a to a, since a is involved in an elementary cycle of two arcs, d(a, a) = 2.

GD(D) = d(b, c) + d(b, a) + d(b, b) + d(c, b) + d(c, a) + d(c, c)

+ d(a, c) + d(a, b) + d(a, a)

= 4 + 1 + 2 + 1 + 2 + 4 + 4 + 1 + 2 = 21

max = n2 × (n+ 1) = 32 × (3 + 1) = 9× 4 = 36

min = n2 = 32 = 9

min ≤ GD(D) ≤ max = 9 ≤ 21 ≤ 36

Idb(D) =
max− GD(D)

max−min
=

36− 21

36− 9
=

5

9
≈ 0.56

The value of 0.56 implies that disagreement is present in the graph to an extent.
Since the value is closer to one than it is to zero, graph D is slightly more inconsistent
than consistent.

Example 3.27 Take into account graph N in Figure 8, that consists of only one node
a with a self-attack.

GD(N) = d(a, a) = 1

max = n2 × (n+ 1) = 12 × (1 + 1) = 2

min = n2 = 12 = 1

min ≤ GD(N) ≤ max = 1 ≤ 1 ≤ 2

Idb(N) =
max− GD(N)

max−min
=

2− 1

2− 1
=

1

1
= 1

The measure of 1 suggests that the compete graph N is maximally inconsistent.

A strength of the Distance-based Measure is the fact that it considers direct and
indirect attacks. Additionally, the measure considers all shortest paths in a graph,
which allows for a more detailed assessment of graphs based on their level of incon-
sistency. For instance, two graphs could have the same number of direct attacks, but
one might have more indirect attack chains, making it more conflicting. These two
graphs would receive different measures from the Distance-based Measure while
other more simple measures such as the Connectance Measure might treat them as
equally conflicting.

While the Distance-based Measure gives insight into the connectivity of the graph,
the inclusion of distances over all pairs of nodes might obscure the fact that not all
indirect attacks contribute equally as hinted at by [27] and [22]. Typically, longer in-
direct attacks might have diminishing effects, yet the measure does not take this into
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account. Instead, it weighs all indirect attacks uniformly, potentially overestimating
their impact.

An advantage of this measure is that it treats smaller cycles as highly conflict-
ing. Amgoud and Ben-Naim [1] consider conflict in a larger cycle weaker than in
a smaller cycle because in larger cycles the conflict is distributed or diluted across
many arguments, while in smaller cycles the conflict is concentrated among few ar-
guments. Example 3.28 showcases this with two differently sized elementary cycles.

Example 3.28 Observe two elementary cycles A in Figure 1 and Q in Figure 10.

GD(A) = d(a, a) + d(a, b) + d(b, b) + d(b, a)

= 1 + 2 + 2 + 1 = 6

max = n2 × (n+ 1) = 22 × (2 + 1) = 4× 3 = 12

min = n2 = 22 = 4

min ≤ GD(A) ≤ max = 4 ≤ 8 ≤ 12

Idb(A) =
max− GD(A)

max−min
=

12− 6

12− 4
=

3

4
= 0.75

GD(Q) = d(a, a) + d(a, b) + d(a, d) + d(a, e) + d(b, a) + d(b, b) + d(b, d) + d(b, e)

+ d(d, a) + d(d, b) + d(d, d) + d(d, e) + d(e, a) + d(e, b) + d(e, d) + d(e, e)

= 4× (1 + 2 + 3 + 4) = 40

max = n2 × (n+ 1) = 42 × (4 + 1) = 16× 5 = 80

min = n2 = 42 = 16

min ≤ GD(Q) ≤ max = 16 ≤ 40 ≤ 80

Idb(Q) =
max− GD(Q)

max−min
=

80− 40

80− 16
=

5

8
≈ 0.63

As visible, the larger cycle Q receives a smaller inconsistency value than the smaller
cycle A. And for both elementary cycles it holds that Idb(A), Idb(Q) ∈ (12 , 1].

4 Analysis

In the following, we examine 18 rationality postulates for inconsistency measures in
abstract argumentation graphs. These rationality postulates, also referred to as prin-
ciples or postulates, have been proposed to give general guidelines on how inconsis-
tency measures should behave in certain scenarios [38]. They provide a structured
framework for assessing the measures, ensuring that they are meaningful, reliable,
and applicable across different contexts.
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To enhance readability in Section 4.1 and amid the numerous proofs in Section 4.2,
in which we investigate which of the principles are satisfied or violated by the incon-
sistency measures, we have organized and labeled the postulates into the following
sets visible in Table 14. The sets are explained in the table. The newly formulated
principles are Penalty, Free-Node Dilution, p-Exchange, g-Exchange, s-Exchange,
and naive-Exchange.

Postulate Set Included Postulates Explanation

Basic

• Consistency

• Normalization

• Contradiction

Ensure fundamental
coherence and stan-
dardization of the
measures.

Expansion

• Monotonicity

• Freeness

• Penalty

• Free-Node Dilution

Deal with the effects of
adding new elements
such as arguments or
arcs to graphs to ensure
that measures respond
appropriately to struc-
tural expansions.

Structural
• Inversion

• Isomorphic Invariance

Ensure that evaluations
of the measures are de-
termined by the struc-
tural properties of the
graph.

Strong Equivalence

• p-Exchange

• g-Exchange

• s-Exchange

• naive-Exchange

Focus on the preserva-
tion of strong equiva-
lence under the corre-
sponding semantics.

Additivity
• Disjoint Additivity

• Super Additivity

Ensure that evaluations
account for the combi-
nation and separation
of argument graphs.

Cyclicality

• Reinforcement

• Cycle Precedence

• Size Sensitivity

Concentrate on acyclic
graphs and/or elemen-
tary cycles.

Table 14: Overview of rationality postulates and their sets.
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4.1 Rationality Postulates

In this section, we explain each principle, discuss its relevance, and explore its un-
derlying idea. Where applicable, we also interpret the implications of a principle
being satisfied or violated.

4.1.1 Basic Postulates

The first principle, Consistency [24] or Agreement [1], originally proposed by Hunter
and Konieczny [25], states that any graph that contains no attacks, receives an in-
consistency measure of 0. This ensures that consistent graphs, receive a minimal
inconsistency value of 0 and that they have a strictly positive inconsistency value
[39]. It is therefore considered a minimal requirement for any reasonable inconsis-
tency measure and is satisfied by all known concrete approaches [40].

Principle 1. Consistency/Agreement: If Arcs(G) = ∅, then I(G) = 0.

The second principle, Normalization [40], states that the inconsistent measure
should be between 0 and 1, or take these values. This postulate is useful because
it ensures that the values of the inconsistency measures are easy to interpret and to
compare to each other, even when the argument graphs have different sizes [39].
However, Thimm also declares that this principle is usually regarded as optional
based on the fact that many measures tend to assess inconsistency absolutely and
not relatively [39]. This distinction, originally made in [20] states that absolute mea-
sures disregard the size of the argument graph, thus answering the question “How
much inconsistency is in the argument graph?" while relative measures quantify the
inconsistency in the graph w.r.t. the graph size, answering the question “How in-
consistent is the argument graph?” [11].

Principle 2. Normalization: 0 ≤ I(G) ≤ 1 where 0 represents complete consistency
and 1 represents complete inconsistency.

The third principle, Contradiction [39], states that an arbitrary graph G is maxi-
mally inconsistent, with an inconsistency measure of 1, iff every possible non-empty
subset S of its arguments A is also inconsistent, where the entailment of inconsis-
tency, denoted with |=⊥, holds iff ∃a, b ∈ S s.t. (a, b) ∈ R. The inconsistency of every
subset of arguments refers to the idea that every argument is attacked by every other
argument including itself, in other words, A is totally inconsistent, essentially de-
scribing a complete graph. Since Contradiction requires every non-empty subset of
the arguments to be inconsistent, it captures an extreme case where no meaningful
argumentation is possible and sets a boundary for when an argumentation graph
is completely unreliable, and needs to be modified or repaired. This postulate is an
extension of the Normalization principle, and only is reasonable if Normalization
applies [39]. It extends Normalization by giving a precise meaning to when an ar-
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gumentation graph reaches maximal inconsistency, transforming the abstract idea
of normalization, which establishes a bounded scale for the measures, into a struc-
tural rule based on subsets of arguments.

Principle 3. Contradiction: I(G) = 1 ⇔ ∀S ⊆ A, S ≠ ∅, and S |=⊥.

4.1.2 Expansion Postulates

The fourth principle, Monotonicity [24] states that the addition of arguments (and
attacks) to an argument graph, cannot decrease the inconsistency value. This postu-
late aligns with the natural intuition that adding more conflicting information could
only increase or preserve the level of inconsistency, not reduce it. Measures that sat-
isfy Monotonicity are considered to behave in a rational and predictable way. Mea-
sures that do not satisfy this principle have counter-intuitive behavior, and could
give rise to misleading or unexpected results.

Principle 4. Monotonicity: If G ⊆ G′, then I(G) ≤ I(G′).

The fifth principle, Freeness [24] or Dummy, [1] states that adding arguments that
do not interact with the other arguments, do not modify the inconsistency value.
The idea behind this principle is that disconnected nodes do not participate in in-
consistencies and should not contribute to having a certain inconsistency value [35].
Measures should only quantify inconsistency that arises from actual conflicts in the
argumentation structure [39]. Measures that satisfy Freeness therefore are focused
on the actual conflicting relationships between arguments, and not influenced by
irrelevant factors. Additionally, if an inconsistency measure satisfies this principle,
it can be considered intuitive because it acknowledges that the inconsistency of a
graph is as large as before when a new isolated argument is introduced. Measures
that do not satisfy this principle can be considered counter-intuitive.

Principle 5. Freeness/Dummy: If Nodes(G) = Nodes(G′) \ {A} and Arcs(G) = Arcs(G′),
then I(G) = I(G′).

The sixth principle, Penalty, inspired by [35], is the counterpart of Freeness [36]
and states that adding a new arc, r to an arbitrary argument graph G must increase
the inconsistency value. The addition of the arc r to graph G is denoted with +
and formally defined in Defition 2.17 in Section 2.2. This postulate aligns with the
understanding that introducing more arcs, representing attacks, makes the argu-
ment graph more inconsistent. While the violation of this postulate can hint at the
misleading nature of an inconsistency measure, it also may be that the measure’s
focus is on semantics where the acceptability of an argument does not change with
the addition of an attack or that its focus is on structural properties that do not in-
volve attacks. This implies that the violation of this postulate is only problematic
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if the inconsistency measure claims to capture inconsistency while basing itself on
attacks of arguments, but does not adhere to Penalty. In turn, the satisfaction of
this measure implies that the measure concentrates on attack-based conflict, and is
predictable. Penalty thus can serve as a guideline for designing well-behaved in-
consistency measures that focus specifically on direct attacks between arguments.

Principle 6. Penalty: I(G) < I(G+ {r}) where r is an arc.

The seventh principle, Free-Node Dilution, inspired by [28], states that adding a
new disconnected node a, meaning a node which is not attacked and does not attack
other arguments or itself, to an arbitrary graph G should not increase the inconsis-
tency value, where the addition of the node a to a graph G is denoted utilizing ∪
and formally defined in Definition 2.17 in Section 2.2. Applying the idea of [39], it
can be claimed that this principle serves as a weaker version of Freeness. Free-Node
Dilution is relevant because it takes into account the dilution of inconsistency. Un-
like Freeness, it address the case of a possible decrease in the inconsistency value
after the addition of a disconnected node, given that the measure quantifies relative
inconsistency [39].

Principle 7. Free-Node Dilution: I(G) ≥ I(G ∪ {a}) where a is a disconnected node.

4.1.3 Structural Postulates

The eighth principle, Inversion [24], states that if G−1 is a graph G with its attacks
inverted, where self-attacks remain the same, they both have the same inconsistency
value. With this postulate it is ensured that the inconsistency is a structural property
of the argument graph, and not only relating to the direction of attacks. Measures
that satisfy this principle therefore treat the inconsistency as a property of the over-
all structure of the graph and not only tied to the attack direction, in constrast to
measures that do not satisfy this postulate. However, a violation of this principle
might be justified in contexts where the direction of attacks is relevant.

Principle 8. Inversion: If G−1 is the inversion of G, then I(G) = I(G−1).

The ninth principle, Isomorphic Invariance [24] or Anonimity [1], states that if
two graphs G and G′ are isomorphic, they have the same inconsistency value. This
postulate is useful in that it ensures that the measures are not affected by the label
or representation of the graph, but the underlying structure of the graph. Hence,
measures that satisfy this principle suggest that they consider the structure of the
argumentation graphs and not on the specific labels or names of the arguments. In-
consistency measures that violate this postulate do not follow abstraction [41].

Principle 9. Isomorphic Invariance/Anonymity: If G ∼= G′, then I(G) = I(G′).
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4.1.4 Strong Equivalence Postulates

Principles ten to thirteen, inspired by [9], [30], and [19], state that if two argument
graphs G and G′ are strongly equivalent to each other w.r.t. semantics σ where, σ is
preferred (p), grounded (g), stable (s), or naive (naive), their inconsistency remains
the same. Recall that strong equivalence refers to the fact that the extensions of ar-
gument graphs G and G′ stay constant even if for each argument graph an arbitrary
graph G′′ is added. The idea behind this principle is that replacing a consistent
part of the argument graph G with an equivalent subgraph G′ or vice versa should
preserve equality between the inconsistency measures, even in the presence of new
information. This in turn is based on the idea that exchanging consistent parts of
information with equivalent ones should not change the inconsistency value [39].
Inconsistency measures that satisfy these principles, either respect the semantics σ
of the argument graph, or are so broad s.t. they do not take the semantics into ac-
count. Measures that violate these postulates indicate that they tend to focus on
other semantics or could be considering structural differences.

Principle 10. p-Exchange: If G ≡p
s G′, then I(G) = I(G′).

Principle 11. g-Exchange: If G ≡g
s G′, then I(G) = I(G′).

Principle 12. s-Exchange: If G ≡s
s G

′, then I(G) = I(G′).

Principle 13. naive-Exchange: If G ≡naive
s G′, then I(G) = I(G′).

4.1.5 Additivity Postulates

The fourteenth principle, Disjoint Additivity [24] claims that if two graphs G1 and
G2 are disjoint then the inconsistency of their combined graph, denoted, G1 + G2

with + indicating their combination as defined in Definition 2.16 in Section 2.2, is
the sum of their inconsistency values. This ensures that the the disjoint components
can be assessed independently, which simplifies the process of evaluating inconsis-
tency. Moreover, measures that fulfill this principle enable us to understand how
different components contribute to the total inconsistency in the overall graph since
conflicts in G1 are quantified separately from conflicts in G2. Additionally this pos-
tulate shows us that the combination of graphs G1 and G2 does not create additional
conflicts. Inconsistency measures that violate Disjoint Additivity, suggest that the
combination of the two graphs, introduces new conflicts or dependencies, which
the measures is sensitive to, or that the measure’s focus does not allow for an inde-
pendent treatment of the graphs.

Principle 14. Disjoint Additivity: If G1 and G2 are disjoint, then I(G1 + G2) =
I(G1) + I(G2).
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The fifteenth principle, Super Additivity [24], states that the inconsistency value
of a joint graph G1+G2 is greater or equal to the addition of the inconsistency values
of G1 and G2, thereby strengthening the principle of Monotonicity [35]. The princi-
ple of Super Additivity acknowledges that new conflicts can arise from interactions
between previously separated graphs. This postulate further is relevant because it
ensures that the inconsistency measure behaves predictably when argument graphs
are combined. If two separate argument graphs are inconsistent, combining them
should logically result in a greater or equal level of inconsistency, and this should be
reflected in the measure. Thus, measures that fulfill this postulate acknowledge that
the union of two graphs might introduce additional inconsistencies beyond those
present in the individual graphs.

Principle 15. Super Additivity: I(G1 +G2) ≥ I(G1) + I(G2).

4.1.6 Cyclicality Postulates

The sixteenth principle, Reinforcement [1], only is applicable to acyclic graphs that
have the same number of nodes and arcs. It states that an acyclic graph that has indi-
rect attacks is considered more conflicting than an acyclic one containing only direct
attacks [1]. This is due to the nature of indirect attacks. The chaining of attacks
creates a broader conflict because it implies a more complex relationship between
arguments. In contrast, direct attacks only represent one-to-one conflicts. Hence,
this postulate suggests that not only the structure of the attack relations matters, but
the number of attacks as well because even when two graphs have the same number
of arguments and the same number of direct attacks, the presence of indirect attacks
can intensify the overall conflict. It is apparent that Reinforcement is most relevant
when measuring inconsistency in graphs where indirect attacks matter. If a measure
satisfies Reinforcement, it tends to capture both direct and indirect conflicts, mak-
ing it sensitive to structural complexity. If a measure does not satisfy this rationality
postulate, it may underestimate inconsistency because it disregards indirect attacks.

Principle 16. Reinforcement: For two acyclic argumentation graphs G = (A,R)
and G′ = (A′,R′) s.t. A = A′ = {a0, ...an, b0....bn} with n ≥ 3,R = {(ai, bi)
| i ∈ {0, ..., n − 1}}, and R′ = {(ai, ai+1) | i ∈ {0, ..., n − 1}}, it holds true that
I(G′) > I(G).

To exemplify, we present the case, n = 3, of two graphs T and T ′ constructed in
accordance with the Reinforcement postulate’s criteria in the following example.

Example 4.1 For T = (A,R) and T ′ = (A′,R′) to fulfill Reinforcement criteria, they
must be acyclic, have the same number of arcs and the same number of nodes, where
each graph must have a minimum of eight nodes with n = 3, where the nodes of
both graphs have to be grouped in {a0, a1, ..., a3} and {b0, b1, ..., b3}. This results in
the following nodes for both graphs A = A′ = {a0, a1, a2, a3, b0, b1, b2, b3}. These
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grouped nodes follow special attack patterns. For T , R = {(ai, bi) | i ∈ {0, ..., 3 −
1}} = {(a0, b0), (a1, b1), (a2, b2)}. And for T ′, R′ = {(ai, ai+1) | i ∈ {0, ..., 3 − 1}}
the attack pattern makes sure that there exists at least one indirect attack. Thus, the
attacks of T ′ are R′ = {(a0, a1), (a1, a2), (a2, a3)}, where the indirect attack is (a0, a3).
Figure 12 shows the constructed graph T and Figure 13 depicts T ′.

b0 a0 b1 a1 b2 a2 b3 a3

Figure 12: Argument graph T .

a3 a2 a1 a0 b0 b1 b2 b3

Figure 13: Argument graph T ′.

The following principles involve cycles with the seventeenth postulate, Cycle
Precedence [1], ensuring that an argumentation graph consisting of an elementary
cycle is more inconsistent than an acyclic graph. This is because an overwhelming
weight is given to the cycle that represents a deadlock, instead of the inconsistency
caused by direct attacks suggesting open conflict [1]. Amgoud and Ben-Naim [1]
further illustrate that, according to Cycle Precedence, more weight is given to incon-
sistency in the cycle s.t. an acyclic graph with 100 direct attacks would be considered
less inconsistent than an elementary cycle with 10 attacks. Inconsistency measures
that satisfy this postulate assign higher inconsistency value to cycles, which aligns
with the intuition that circular arguments are problematic [1] [3]. Measures that do
not fulfill this postulate tend not to focus on cycles, meaning they treat cyclic and
acyclic argument graphs equally and/or prioritize other aspects.

Principle 17. Cycle Precedence: For all argumentation graphs G = (A,R) and G′ =
(A′,R′), if G is acyclic and G′ is an elementary cycle, then I(G) < I(G′).

The eighteenth principle, Size Sensitivity [1], proposes that an inconsistency mea-
sure could take the sizes of cycles into account where the larger the cycle, the less
severe the inconsistency. The idea is that, the less arguments are needed to produce a
cycle, the more strong the disagreement [1] and the more difficult it is to resolve con-
flicts. For instance, a cycle of length 2 is more conflicting than a cycle of length 1000
according to a measure that satisfies this principle [1]. If an inconsistency measures
fulfills this postulate it is likely that it is sensitive to the size of cycles. Measures that
do not satisfy this principle might not consider cycles or focus on acyclic aspects.

Principle 18. Size Sensitivity: For all elementary cycles G = (A,R) and G′ = (A′,R′),
if |A′| < |A|, then I(G) < I(G′).
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4.2 Compliance of Inconsistency Measures with Rationality Postulates

For each inconsistency measure in Section 3, we check whether it satisfies the prin-
ciples in Section 4.1 or not. For improved readability, the proofs outlined in the
following sections are organized according to the sets of postulates and will follow
the order of the rationality postulates. For each proof, we first present the inconsis-
tency measures that satisfy the principle, followed by the remaining measures, in
the order in which they were proposed.

Table 15 summarizes the results of which principles are satisfied or violated by
the inconsistency measures, where for each measure the checkmark (✓) indicates the
satisfaction and the cross ( ) symbolizes the violation of the principle. The proofs for
the satisfaction or violation of the principles, that were conducted in this thesis are
indicated by green and red colored symbols, respectively. Those measures whose
compliance has been shown before have been marked correspondingly with [24],
[1], [29], and [38], and are not colored. The results in the table are discussed below.

We want to emphasize once more, that we have grouped the postulates based on
their structural characteristics for organizational purposes. However, in the discus-
sion of our results below, we deliberately omit this grouping, as it does not directly
contribute to the analysis or interpretation of our findings.

Principle Ipr Ingr Inst In Ip Idr Iwin Iwout Icc Iwcc Iwco Icon I ind Idb
Consistency ✓[24] ✓[24] ✓[24] ✓[1] ✓[1] ✓[24] ✓[24] ✓[24] ✓[24] ✓[24] ✓[24] ✓[1] ✓[1] ✓[1]

Normalization ✓[38] ✓
Contradiction ✓
Monotonicity [24] [24] [24] ✓[24] ✓[24] ✓[24] ✓[24] ✓[24] ✓[24] ✓ ✓
Freeness ✓[24] ✓[24] ✓[24] ✓[1] ✓[1] ✓[24] ✓[24] ✓[24] ✓[24] ✓[24] ✓[24] ✓[1] ✓[1]

3

Penalty ✓ ✓
Free-Node Dilution✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Inversion [24] [24] [24] ✓[29] [29] ✓[24] [24] [24] ✓[24] ✓[24] ✓[24] ✓[29] [29] ✓[29]

Isomorphic Invar. ✓[24] ✓[24] ✓[24] ✓[1] ✓[1] ✓[24] ✓[24] ✓[24] ✓[24] ✓[24] ✓[24] ✓[1] ✓[1] ✓[1]

p-Exchange ✓ ✓ ✓ ✓ ✓
g-Exchange ✓ ✓ ✓ ✓
s-Exchange ✓ ✓ ✓
naive-Exchange ✓ ✓ ✓
Disjoint Additivity [24] ✓[24] ✓[24] [24] ✓[24] ✓[24] ✓[24] ✓[24] ✓[24] ✓ ✓
Super Additivity [24] [24] [24] [24] [24] [24] ✓[24] ✓[24] [24]

Reinforcement [1] [1] ✓ [1] [1] ✓[1]

Cycle Precedence ✓ [1] [1] ✓ ✓ [1] [1] ✓[1]

Size Sensitvity [1] [1] ✓ [1] [1] ✓[1]

Table 15: Satisfaction (✓) and violation ( ) of the inconsistency measure postulates.

3We disprove Amgoud and Ben-Naim’s claim in [1], that Idb satisfies Freeness.
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Since Consistency is the only generally accepted postulate and minimal require-
ment for an inconsistency measure [39], it is satisfied by all inconsistency measures.
Normalization, regarded as an optional principle, as many measures tend to as-
sess inconsistency absolutely and not relatively [39] is fulfilled by Idr and Idb only.
However, it needs to be stated that Idr only adheres to Normalization because of its
simplicity as it can only take two values 0 and 1, while Idb satisfies Normalization
because it is normalized with upper and lower boundaries. In fact, Idr and Idb sat-
isfy more postulates than any other inconsistency measure, with Idr complying with
11 out of 18 principles, and Idb adhering 10 out of 18 postulates. Yet, the fulfillment
of postulates by Idr is based on the coarseness of the measure while the satisfaction
of more principles by Idb is based on its fine-granular nature. Contradiction, only is
satisfied by Idb, implying that the Distance-Based Measure is the only inconsistency
measure that assigns 1 to a maximally inconsistent argument graph while ensur-
ing that no other argument graph, unless it is maximally inconsistent, can receive a
value of 1. We reiterate that Contradiction only makes sense, when Normalization
is fulfilled [39] since it specifies the maximum value of Normalization reserved for
the complete graph.

Monotonicity, also one of the least disputed postulates in literature [38], is sat-
isfied by all structural inconsistency measures, except for Idb. The measure Idb is
non-monotonic because when new arguments or attacks are added, especially dis-
connected ones, the overall distance in the graph increases due to the normalization,
which may increase the measure. Monotonicity also is violated by all extension-
based measures. However, we emphasize that this is due to the inherent non-
monotonicity of extension-based semantics, as new information might actually re-
duce inconsistency by resolving a conflict [4]. Freeness is satisfied by all inconsis-
tency measures which can be attributed to its foundational nature, that irrelevant
information should not influence the inconsistency, except for Idb. Penalty, comple-
mentary to Freeness [35], is satisfied only by Icon and Idb. This can be attributed to
the fact that they consider each arc individually, ensuring that the introduction of a
new arc, influences, but does not negate or replace the existence of another. While
Iwin and Iwout also directly consider arcs through the examination of in- and out-
degrees, respectively, the influence of new arcs may be reduced through weights.
Free-Node Dilution, which demands that the addition of an isolated node should
not increase the measure, is satisfied by all inconsistency measures.

From the extension-based measures only In satisfies Inversion, due to its straight-
forward counting mechanism and simplicity as one of the weakest extensions along
with conflict-freeness [14]. From the structure-based measures only Iwin, Iwout, and
I ind do not satisfy Inversion. This is related to the fact that they all consider the
(weighted) in- or out-degrees which naturally change with Inversion. All inconsis-
tency measures adhere to the principle of Isomorphic Invariance, which means that
these measures are not dependent on specific labels or representations.

All postulates related to strong equivalence are satisfied by Idr and In. For Idr this
is once more attributed to its uncomplicated nature. In contrast, In adheres to the
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strong equivalence postulates because it focuses on maximal (w.r.t. ⊆) conflict-free
extensions which are always preserved under strong equivalence [30][19]. Since p-
Exchange preserves preferred extensions, it is satisfied by Ipr and Ip. Similarly, Ingr
complies with g-Exchange based on the maintenance of the grounded extension.
The same holds for Inst w.r.t s-Exchange. Counter-intuitively, Inst also complies
with the p-Exchange because under strong equivalence w.r.t. preferred semantics,
the graphs must not only have the same preferred extensions but also require the
same minimal modifications to achieve stability. Other than Idr, most structural
measures do not satisfy the strong equivalence postulates. The exceptions are Iwco
and I ind. WeightedComponentCount conforms to naive-Exchange based on the fact
that the criteria for strong equivalence under naive semantics conserves the compo-
nents, their quantity and the included arguments. The In-degree Measure, which
quantifies the attacked arguments, honors g-Exchange based on the preservation of
attack relations w.r.t. the grounded extension.

The only structure-based measures which do not adhere to Disjoint Additivity are
Idr, which can be traced back to its binary nature, and Idb, where with the partition
or addition of disjoint graphs new distances are created that are accounted for in the
measure. The only extension-based measures that do not violate Disjoint Additivity
are Ingr and Inst because they are defined in such a way that when the graph is
partitioned into disjoint parts, the extensions themselves split or add accordingly.
Super Additivity only is satisfied by Icc and Iwcc, which focus on cycles.

Idb is the only measure that satisfies all three principles, Reinforcement, Cycle
Precedence, and Size Sensitivity. Since Reinforcement deals with acyclic graphs, the
only other inconsistency measure that adheres to it is Iwco. However, it should be
noted that the satisfaction of Reinforcement is also tied to the many restrictions and
criteria of Reinforcement. These also are part of why other inconsistency measures
do not comply with it. Similarly, Icc and Iwcc which focus on cycles, comply with
Cycle Precedence, because the principles compares an acyclic and an elementary
cycles, s.t. Cycle Precedence holds immediately. Cycle Precedence also is fulfilled
by Ingr, the only extension-based measure that fulfills a postulate related to cycles,
based on the fact that cycles cause all arguments in the graph to be non-grounded
[7]. As for Size Sensitivity, it is satisfied by Iwcc since it, along with Idb, is the only
measure that takes the size of cycles into account.

4.2.1 Basic Postulate Propositions and Proofs

Proposition 4.1 Normalization is satisfied by Idb but not by Ipr, Ingr, Inst, In, Ip, Iwin,
Iwout, Icc, Iwcc, Iwco, Icon, and I ind.

Proof.
• (Idb) According to Amgoud and Ben-Naim [1], for an argumentation graph

G = (A,R), global distance GD(G) = max iff R = ∅ and GD(G) = min iff
R = A×A. For Idb(G) = max− GD(G)

max−min the following shows that for its endpoints
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Idb ∈ [0, 1] applies:

Maximal GD(G) : Idb(G) =
max−max

max−min
= 0

Minimal GD(G) : Idb(G) =
max−min

max−min
= 1

Since GD(G) ∈ [min,max], (max− GD(G)) ∈ [max−max,max−min]. Given
that max−min > 0, it follows that Idb = max− GD(G)

max−min ∈ [0, 1].

For the following proofs consider graph O in Figure 8 as well as its semantics in
Table 8, unless mentioned otherwise.

• (Ipr) Ipr(O) = 3− 1 = 2 s.t. Ipr /∈ [0, 1].

• (Ingr) Consider argument graph A in Figure 1. As calculated in Example 3.6,
Ingr(A) = 2 s.t. Ingr /∈ [0, 1].

• (Inst) Consider argument graph H + N which consists of graphs H in Figure
3 and N in Figure 8. For graph H consider the semantics in Table 12 and for
graph N the semantics are depicted in Table 7. For the induced graph where
one node attacks the other, observe the semantics in Table 1, and for an isolated
node the semantics are available in Table 6 given their isomorphism.

N = ∅ : Extensions(Induced(H +N, ∅)) = Extensions({e, f, g, a}) = ∅
N = {e} : Extensions(Induced(H +N, {e})) = Extensions({f, g, a}) = ∅
N = {f} : Extensions(Induced(H +N, {f})) = Extensions({e, g, a}) = ∅
N = {g} : Extensions(Induced(H +N, {g})) = Extensions({e, f, a}) = ∅
N = {a} : Extensions(Induced(H +N, {a})) = Extensions({e, f, g}) = ∅

N = {e, f} : Extensions(Induced(H +N, {e, f})) = Extensions({g, a}) = ∅
N = {e, g} : Extensions(Induced(H +N, {e, g})) = Extensions({f, a}) = ∅
N = {a, e} : Extensions(Induced(H +N, {a, e})) = Extensions({f, g}) = {f}
N = {f, g} : Extensions(Induced(H +N, {f, g})) = Extensions({a, e}) = ∅
N = {f, a} : Extensions(Induced(H +N, {f, a})) = Extensions({e, g}) = {g}
N = {g, a} : Extensions(Induced(H +N, {g, a})) = Extensions({f, e}) = {e}

N = {e, f, g} : Extensions(Induced(H +N, {e, f, g})) = Extensions({a}) = ∅
N = {e, f, a} : Extensions(Induced(H +N, {e, f, a})) = Extensions({g}) = {g}
N = {f, g, a} : Extensions(Induced(H +N, {f, g, a})) = Extensions({e}) = {e}
N = {e, a, g} : Extensions(Induced(H +N, {e, a, g})) = Extensions({f}) = {f}

N = {e, f, g, a} : Extensions(Induced(H +N, {e, f, g, a})) = Extensions(∅) = ∅

N = {a, e} = {f, a} = {g, a} are the smallest sets that result in stable exten-
sions and Inst = |N | = {a, e} = {f, a} = {g, a} = 2 s.t. Inst /∈ [0, 1].
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• (In) In(O) = 3 + 0− 1 = 2 s.t. In /∈ [0, 1].

• (Ip) Ip(O) = 3 + 0− 1 = 2 s.t. Ip /∈ [0, 1].

Consider graph C in Figure 2 as a counterexample in the subsequent proofs for
each measure unless stated otherwise.

• (Iwin) Iwin(C) = 1 + 1 + 1 + 1
2 = 7

2 = 3.50 s.t. Iwin /∈ [0, 1].

• (Iwout) Iwout(C) = 5× 1 = 5 s.t. Iwout /∈ [0, 1].

• (Icc) For this measure consider graph L in Figure 7. Icc(L) = 2 s.t. Icc /∈ [0, 1].

• (Iwcc) For this measure once more consider graph L in Figure 7. Iwcc(L) =
1 + 1

2 = 3
2 = 1.50 s.t. Iwcc /∈ [0, 1].

• (Iwco) Iwco(C) = (5− 1)2 = 16 s.t. Iwco /∈ [0, 1].

• (Icon) Icon(C) = 5 s.t. Icon /∈ [0, 1].

• (I ind) I ind(C) = 4 s.t. I ind /∈ [0, 1]. □

Proposition 4.2 Contradiction is satisfied by Idb but not by Ipr, Ingr, Inst, In, Ip, Idr,
Iwin, Iwout, Icc, Iwcc, Iwco, Icon, and I ind.

Proof.
• (Idb) In the following we prove that Idb = 1 ⇔ ∀S ⊆ A, S ≠ ∅, and S |=⊥

holds in both directions.

⇐ Recall that Contradiction requires that every possible non-empty subset
S of arguments in the argumentation graph is inconsistent. The smallest
non-empty subset in a graph would be single nodes. For each and every
one of them to be considered inconsistent, they have to be self-attacking.
For every subset to be considered inconsistent there needs to be attacks
between every pair of nodes as well. The result is a complete graph.
For a complete graph G = (A,R) with n = |A| where n ≥ 1 it holds that
|R| = n2 by definition. It follows that GD(G) = n2, and max = n2×(n+1)
and min = n2. Thus it holds that

Idb(G) =
max− GD(G)

max−min
=

n2 × (n+ 1)− n2

n2 × (n+ 1)− n2
= 1.

⇒ If for a graph G = (A,R), Idb(G) = 1 then, max− GD(G) = max−min
because max and min are constants. Therefore it must hold that GD(G) =
min. According to [1] the global distance is at a minimum iff R = A×A
which only is the case in a complete graph.
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Unless mentioned otherwise, for the following proofs consider argument graph
E in Figure 3 and its semantics in Table 9. Every possible set of arguments, {x},
{y}, and {x, y} is inconsistent, thus E satisfies the conditions of Contradiction and
should receive an inconsistency measure of 1. The following counterexamples show
that this is not the case.

• (Ipr) The following counterexamples show that Ipr violates Contradiction.

⇐ Ipr(E) = 1− 1 = 0 ̸= 1.
⇒ Consider the semantics of graph A from Figure 1 in Table 10. Ipr(A) =

2 − 1 = 1 but argument graph A is not a complete graph and therefore
does not fulfill the conditions of Contradiction.

• (Ingr) In the following we prove that Ingr does not satisfy Contradiction.

⇐
Ingr(E) = |Nodes(E) \ (Extensiong(E) ∪ Attacked(E))|

= |{x, y} \ (∅ ∪ ∅)|
= |{x, y} \ ∅| = |{x, y}| = 2 ̸= 1.

⇒ Consider the graph B + N consisting of two disjoint components, B in
Figure 2 and N in Figure 8, and their Semantics in Table 1 and 7, respec-
tively.

Ingr(B +N) = |Nodes(B +N) \ (Extensiong(B +N) ∪ Attacked(B +N))|
= |{b, c, a} \ ({c} ∪ {b})|
= |{b, c, a} \ {c, b}| = |{a}| = 1.

Ingr(B +N) = 1 but B +N is not a complete graph.

• (Inst) The following counterexamples show that Inst violates Contradiction.

⇐

N = ∅ : Extensions(Induced(E, ∅)) = Extensions({x, y}) = ∅
N = {x} : Extensions(Induced(E, {x})) = Extensions({y}) = ∅
N = {y} : Extensions(Induced(E, {y})) = Extensions({x}) = ∅

N = {x, y} : Extensions(Induced(E, {x, y})) = Extensions(∅) = ∅

Since all arguments have to be removed, Inst(E) = 2 ̸= 1.
⇒ As calculated in Example 3.7, Inst(P ) = 1 but argument graph P in Figure

9 is not a complete graph and therefore does not fulfill the conditions of
Contradiction.

• (In) The following counterexamples show that In violates Contradiction.

⇐ In(E) = 1 + 2− 1 = 2 ̸= 1.
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⇒ As visible from the semantics in Table 10, In(A) = 2 + 0 − 1 = 1 but
argument graph A in Figure 1 is not a complete graph and therefore does
not fulfill the conditions of Contradiction.

• (Ip) The following counterexamples show that Ip violates Contradiction.

⇐ Ip(E) = 1 + 2− 1 = 2 ̸= 1.
⇒ As observable from the semantics in Table 10, Ip(A) = 2 + 0 − 1 = 1 but

argument graph A in Figure 1 is not a complete graph and therefore does
not fulfill the conditions of Contradiction.

• (Idr) In the following we prove that Idr = 1 ⇔ ∀S ⊆ A, S ≠ ∅, and S |=⊥ only
holds in the direction ⇐. Therefore, Idr does not satisfy Contradiction.

⇐ For any complete graph G = (A,R), R ̸= ∅ by definition. It follows that
Idr(G) = 1.

⇒ For graph B in Figure 2, Idr(B) = 1. Yet, B is not a complete graph and
therefore does not fulfill the conditions of Contradiction.

• (Iwin) In the following we prove that Iwin = 1 ⇔ ∀S ⊆ A, S ≠ ∅, and S |=⊥
only holds in the direction ⇐. Therefore, Iwin does not satisfy Contradiction.

⇐ Suppose an arbitrary complete graph G has n nodes where n ≥ 1. Since
G is a complete graph every node is attacked by every node including
itself. Thus, for every node a in the complete graph G, Indegree(a, G) = n
s.t.

Iwin(G) =
∑

a∈Nodes(G) s.t. Indegree(G,a)≥1

1

Indegree(G, a)

Iwin(G) = n× 1

n
= 1.

⇒ Iwin(B) = 1 but argument graph B in Figure 2 is not a complete graph
and therefore does not fulfill the conditions of Contradiction.

• (Iwout) In the following we prove that Iwout = 1 ⇔ ∀S ⊆ A, S ≠ ∅, and S |=⊥
only holds in the direction ⇐. Therefore Iwout does not satisfy Contradiction.

⇐ Suppose an arbitrary complete graph G has n nodes where n ≥ 1. Since G
is a complete graph every node attacks every node including itself. Thus,
for a node a in the complete graph G, Outdegree(a, G) = n, s.t.

Iwout(G) =
∑

a∈Nodes(G) s.t. Outdegree(G,a)≥1

1

Outdegree(G, a)

Iwout(G) = n× 1

n
= 1.

⇒ Iwout(B) = 1 but argument graph B in Figure 2 is not a complete graph
and therefore does not fulfill the conditions of Contradiction.
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• (Icc) The following counterexamples show that Icc violates Contradiction.

⇐ Icc(E) = 3 ̸= 1.
⇒ Icc(A) = 1 but argument graph A in Figure 1 is not a complete graph and

therefore does not fulfill the conditions of Contradiction.

• (Iwcc) The following counterexamples show that Iwcc violates Contradiction.

⇐ Iwcc(E) = 1 + 1 + 1
2 = 5

2 = 2.50 ̸= 1.
⇒ Iwcc(P ) = 1 but argument graph P in Figure 9 is not a complete graph

and therefore does not fulfill the conditions of Contradiction.

a b

e d q r

Figure 14: Argument graphs U (left) and V (right).

• (Iwco) The following counterexamples show that Iwco violates Contradiction.

⇐ Consider complete graph U in Figure 14. Iwco(U) = (4− 1)2 = 9 ̸= 1.
⇒ Iwco(B) = (2−1)2 = 1 but argument graph B in Figure 2 is not a complete

graph and therefore does not fulfill the conditions of Contradiction.

• (Icon) The following counterexamples show that Icon violates Contradiction.

⇐ Icon(E) = 4 ̸= 1.
⇒ Icon(B) = 1 but argument graph B in Figure 2 is not a complete graph

and therefore does not fulfill the conditions of Contradiction.

• (I ind) The following counterexamples show that I ind violates Contradiction.

⇐ I ind(E) = 2 ̸= 1.
⇒ I ind(B) = 1 but argument graph B in Figure 2 is not a complete graph

and therefore does not fulfill the conditions of Contradiction. □
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4.2.2 Expansion Postulate Propositions and Proofs

Proposition 4.3 Montonicity is satisfied by Icon and I ind but not by In, Ip, and Idb.

Proof.
• (Icon) Recall that for a graph G = (A,R), Icon(G) = |R|. For G ⊆ G′, it

holds by definition that A ⊆ A′ and R ⊆ R′. It follows automatically that
Icon(G) = |R| ≤ |R′| = Icon(G

′).

• (I ind) Recall that the In-degree Measure quantifies the number of attacked ar-
guments. It holds that G ⊆ G′ s.t. if we add arcs and/or nodes to G, we
construct G′. We distinguish between the following cases.

– We add arguments to G to construct G′:

* If the new argument is not attacked I ind remains unchanged.

* If the new argument is attacked, I ind increases.

– We add arcs to G to construct G′:

* If the arc targets an argument that is already attacked I ind remains
the same.

* If the arc newly attacks an argument I ind increases.

In all cases it holds that I ind(G) ≤ I ind(G
′).

• (In) Consider an argument graph consisting of the components V in Figure
14 and C ′ in Figure 3, V + C ′ and another graph, V + P consisting of the
graphs V in Figure 14 and P from 9. The newly formed graph V + C ′ has
four naive extensions {r, a}, {r, b}, {q, a}, {q, b} and no self-attacks. In contrast,
V + P has two naive extensions {a, q}, {a, r} and one self-attack. It is visible
that Ip(V + C ′) = 4 + 0 − 1 = 3 ≰ 2 = 2 + 1 − 1 = Ip(V + C ′) although
V + C ′ ⊆ V + P .

• (Ip) Consider graphs A in Figure 1 and D in Figure 2 and their semantics in
Table 10 and 16. A ⊆ D but Ip(A) = 2 + 0− 1 = 1 ≰ 0 = 1 + 0− 1 = Ip(D).

• (Idb) In the proof for Freeness under Proposition 4.4, below, we calculate
Idb(V ) = 0.75 ≤ 0.37 ≈ Idb(V

′) although V ⊆ V ′.

Set(D) Conflict-free Admissible Complete Preferred Grounded Stable Naive
∅ ✓ ✓

{a} ✓ ✓
{b} ✓ ✓
{c} ✓ ✓

{a, c} ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 16: Semantics of argument graph D.
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Proposition 4.4 Freeness is not satisfied by Idb.

Proof.
• (Idb) As a counterexample, consider graph V in Figure 14 with Idb(V ) = 0.75

as calculated in Example 3.28 with isomorphic graph A in Figure 1. Suppose
a disconnected new node a is added to V . Let V ∪ a be denoted as V ′. Graph
V ′ now has n = 3 nodes s.t. max = n2 × (n + 1) = 32 × (3 + 1) = 36 and
min = n2 = 32 = 9. The global distance of the new graph is GD(V ′) =
2× (1 + 2 + 4) + (3× 4) = 26.

Idb(V
′) =

max− GD(V ′)

max−min
=

36− 26

36− 9
=

10

27
≈ 0.37.

Nodes(V ) = Nodes(V ′) \ {a} and Arcs(V ) = Arcs(V ′), but Idb(V ) = 0.75 ̸=
0.37 ≈ Idb(V

′). □

Proposition 4.5 Penalty is satisfied by Icon and Idb but not by Ipr, Ingr, Inst, In, Ip,
Idr, Iwin, Iwout, Icc, Iwcc, Iwco, and I ind.

Proof.
• (Icon) For an arbitrary graph G = (A,R) with |R| = n arcs, Icon(G) = n where

n ∈ Z, n ≥ 0. If an arc r is added that attacks any node in G, Icon(G + {r}) =
n+ 1 > n = Icon(G).

• (Idb) Recall the global distance GD(G) is the sum of lengths of the shortest
paths between any pair of arguments in the argument graph which is calcu-
lated based on the following rules.

1. If node b is reachable from node a then d(a, b) is the shortest distance
between them, the smallest number of arcs from node a to b.

2. If node b is not reachable from a, then d(a, b) = k = |A|+ 1.

3. If a = b, then d(a, b) is the length of the shortest elementary cycles in
which a is involved in. If a is not be involved in any cycles, d(a, b) = k.

Observe an arbitrary graph G = (A,R) where an arbitrary arc r = (x, y) is
added, resulting in the new graph G + {r}. We distinguish between the fol-
lowing cases:

– Node y was not reachable from x s.t. d(x, y) = k where k ∈ Z, k > 1.
With the added arc r, y becomes reachable for x and now it holds that
d(x, y) = 1. This results in GD(G + {r}) = GD(G) − k + 1. If for other
nodes, the additional arc adds a shorter path, it may be that their distance
decrease as well. It applies that GD(G) > GD(G+ {r}).
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– Node y was already reachable for x with a path of length p ∈ Z, p > 1
resulting in d(x, y) = p. However, with the added arc (x, y) a shorter
path with length 1 now exists. This decreases the global distance by p and
adds 1 to it. The new global distance is GD(G + {r}) = GD(G) − p + 1.
Once again, it is also possible that through r other paths are shortened,
further decreasing the global distance. GD(G) > GD(G+ {r}) holds.

– Adding r = (x, y) closes a cycle of length s where 1 < s < k. In this
case for every node involved in the cycle, d(x, y) where x = y, will be
reduced from k to the length of the elementary cycle s. The result will be
a decreased global distance GD(G+{r}) = GD(G)− (s×k)+(s× s). As
previously stated, if other paths are affected by this added arc, the global
distance may even decrease more. GD(G) > GD(G+ {r}) holds.

– A self-attack r = (x, y) where x = y is added. Before the self-attack,
d(x, x) = k if it is not involved in any elementary cycle, and d(x, x) = s
where 1 < s < k is the length of the elementary cycle x is involved in.
After the added arc, the distance decreases to d(x, x) = 1. With that the
global distance has either decreased by k or s and increased by 1. The
new global distance therefore would be GD(G + {r}) = GD(G) − k + 1
or GD(G + {r}) = GD(G) − s + 1. In either case it holds that GD(G) >
GD(G+ {r}) holds.

As visible, the addition of an arbitrary arc r always shortens at least one path.
Since the number of nodes n = |A| is constant, max = n2 × (n+ 1) and min =
n2 also remain constant. It follows that the only thing that changes in the
distance based measure is the global distance. As we have shown GD(G) >
GD(G+ {r}) holds. Therefore it also holds that

Idb(G) =
max− GD(G)

max−min
<

max− GD(G+ {r})
max−min

= Idb(G+ {r}).

• (Ipr) Analyze argument graph M in Figure 8 and its semantics in Table 6.
Ipr(M) = 1 − 1 = 0. Suppose an arc r = (x, x) is added. The resulting
graph is isomorphic to graph N in Figure 8 whose semantics are in Table 7.
Ipr(M + {r}) = 1− 1 = 0. It is visible that Ipr(M) ≮ Ipr(M + {r}).

• (Ingr) Analyze graph A in Figure 1. As calculated in Example 3.6, Ingr(A) =
2. Suppose an arc r = (a, a) is added to graph A, with the resulting graph
Ingr(A+ {r}) equating graph L in Figure 7 whose semantics are in Table 17.

Ingr(A+ {r}) = |Nodes(L) \ (Extensiong(L) ∪ Attacked(L)|
= |{b, a} \ (∅ ∪ ∅)|
= |{b, a} \ ∅| = |{a, b}| = 2.

Thus, Ingr(A) = 2 ≮ 2 = Ingr(A+ {r}).
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Set(L) Conflict-free Admissible Complete Preferred Grounded Stable Naive
∅ ✓ ✓ ✓ ✓
{a}
{b} ✓ ✓ ✓ ✓ ✓ ✓

Table 17: Semantics of argument graph L.

• (Inst) Observe argument graph B in Figure 2. As calculated in Example 3.8,
Inst(B) = 0. Let graph B + {r} be graph B where an arc r = (b, b) is added.
The resulting graph is isomorphic to graph L′ in Figure 7 whose semantics are
in Table 3.

N = ∅ : Extensions(Induced(B + {r}, ∅)) = Extensions({b, c}) = {c}

Since N = ∅ already has a stable extension {c} it holds that Inst(B + {r}) = 0.
Consequently, Inst(B) = 0 ≮ 0 = Inst(B + {r}).

• (In) For argument graph B in Figure 2 according to its semantics in Table 1,
In(B) = 2 + 0 − 1 = 1. Assume an arc r = (b, b) is added. The resulting
graph B + {r} is isomorphic to graph L′ whose semantics are available in
Table 3. Since B + {r} now also a self-attack, In(B + {r}) = 1 + 1 − 1 = 1.
In(B) = 1 ≮ 1 = In(B + {r}).

• (Ip) Consider argument graph L′ in Figure 7 and its semantics in Table 3.
Ipr(L

′) = 1 + 1 − 1 = 1. Suppose an arc r = (a, b) is added. For the re-
sulting graph L′+ {r}, which is identical to graph L in the same Figure whose
semantics are in Table 17, the following holds: Ipr(L

′ + {r}) = 1 + 1 − 1 = 1.
Ipr(L

′) = 1 ≮ 1 = Ipr(L
′ + {r}).

• (Idr) Examine argument graph B in Figure 2 as a counterexample. Idr(B) = 1.
After the addition of one arc r = (b, c), it remains that Idr(B + {r}) = 1. As
such, Idr(B) = 1 ≮ 1 = Idr(B + {r}).

• (Iwin) Analyze graph K in Figure 5. Iwin(K) = 1 + 1
2 = 3

2 = 1.50. If an arc
r = (d, a) is added, Iwin(K + {r}) = 1 + 1

3 = 4
3 ≈ 1.33. Iwin(K) = 1.50 ≮

1.33 ≈ Iwin(K + {r}).

• (Iwout) Once again, observe graph K in Figure 5. Iwout(K) = 3 × 1 = 3. If
an arc r = (c, d) is added then Iwout(K + {r}) = 1 + 1 + 1

2 = 5
2 = 2.50.

Iwin(K) = 3 ≮ 2.50 = Iwin(K + {r}).

• (Icc and Iwcc) Take into account graph K in Figure 5 as a counterexample
once more. Icc(K) = Iwcc(K) = 0. If an arc r = (c, d) is added, Icc(K +
{r}) = Iwcc(K + {r}) = 0. It follows, Icc(K) = 0 ≮ 0 = Icc(K + {r}) and
Iwcc(K) = 0 ≮ 0 = Iwcc(K + {r}).
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• (Iwco) See graph K in Figure 5 yet again. As calculated in Example 3.22,
Iwco(K) = 5. If an arc r = (c, b) is added to K, Iwco(K + {r}) = (3− 1)2 +(2−
1)2 = 5 and Iwco(K) = 5 ≮ 5 = Iwco(K + {r}).

• (I ind) Consider graph B in Figure 2. I ind(B) = 1. When an arc r = (b, b) is
added, I ind(B + {r}) = 1, s.t. I ind(B) = 1 ≮ 1 = I ind(B + {r}). □

Proposition 4.6 Free-Node Dilution is satisfied by Ipr, Ingr, Inst, In, Ip, Idr, Iwin, Iwout,
Icc, Iwcc, Iwco, Icon, I ind, and Idb.

Proof.
• (Ipr) According to Collary 12 from Dung [17] every argumentation graph has

at least one preferred extension. Consider a graph G that has n preferred ex-
tensions, Extensionp(G), where n ∈ Z, n ≥ 1. Ipr(G) = n − 1. Suppose a new
disconnected node a is added to G and a new graph G ∪ {a} is formed. Then
each existing preferred extension in G, is expanded by {a} resulting in the fol-
lowing n extensions: Extensionp(G) ∪ {a}. Therefore the number of preferred
extensions remains the same, and it holds that Ipr(G) = Ipr(G ∪ {a}) = n− 1.
Thus, Ipr(G) ≥ Ipr(G ∪ {a}).

• (Ingr) According to Hunter [24], Ingr satisfies Disjoint Additivity. Suppose for
a graph G, Ingr(G) = n where n ∈ Z, n ≥ 0. For a disconnected new node a, it
always holds that Ingr(({a}, ∅)) = 0.

Ingr(G) = |Nodes(G) \ (Extensiong(G) ∪ Attacked(G)|
= |{a} \ (a ∪ ∅)|
= |{a} \ {a}| = |∅| = 0

Since disjoint additivity applies it is valid to claim Ingr(G + {a}) = Ingr(G) +
Ingr({a}) = n+ 0 = n. Thus, Ingr(G) ≥ Ingr(G ∪ {a}) holds.

• (Inst) Hunter [24] has proven that Disjoint Additivty is met by Inst. Thus,
when a disconnected new node a is added to an arbitrary graph G, it follows
that Inst(G + {a}) = Inst(G) + Inst(({a}, ∅)). Suppose Inst(G) = n where n ∈
Z, n ≥ 0. For a single node a it holds that Inst(({a}, ∅)) = 0, since N = ∅
already results in a stable extension.

N = ∅ : Extensions(Induced({a}, ∅)) = Extensions({a}) = {a}

Thus, Inst(G+ {a}) = Inst(G) = n and Inst(G) ≥ Inst(G ∪ {a}) is satisfied.

• (In) Consider an arbitrary graph G that has n naive extensions where n ∈
Z, n ≥ 1 and m self attacks where m ∈ Z,m ≥ 0. In(G) = n+m− 1. Suppose
a new node a is added to G. Node a is disconnected and by definition conflict-
free and therefore does not introduce any new conflicts. Each existing naive
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extension in G, Extensionn(G), is expanded by a resulting in Extensionn(G)
∪ {a}. Therefore the number of naive extensions remains the same, and as
the self-attacks remain constant, it holds that In(G ∪ {a}) = n + m − 1 and
In(G) ≥ In(G ∪ {a}).

• (Ip) For Ipr we have already established that Ipr(G) ≤ Ipr(G ∪ {a}) holds
further above. Recall that Ip = Ipr + |selfAttacks(G)| holds. Since after, the
addition of an arbitrary new disconnected node a the number of self-attacks
in the graph G remains constant, Ip(G) ≥ Ip(G ∪ {a}) holds by extension.

• (Idr) For an arbitrary graph G = (A,R), there exists two cases in the Drastic
measure:

– R ≠ ∅ s.t. Idr(G) = 1. If a new disconnected node a is added, it does not
remove or add to the arcs in the graph and it remains that R ̸= ∅. Hence,
Idr(G ∪ {a}) = 1.

– R = ∅ s.t. Idr(G) = 0. If a new disconnected node a is added, it does not
add or remove any arc to the graph. It therefore holds that R = ∅ and
Idr(G ∪ {a}) = 0.

We derive that Idr(G) ≥ Idr(G ∪ {a}) holds for all cases.

• (Iwin) Suppose a disconnected new node a is added to a graph G with Iwin(G) =
n where n ∈ R and n > 0. Since argument a has no attacks it does not
contribute to Iwin(G) s.t. Iwin(G ∪ {a}) = n remains unchanged. Iwin(G) ≥
Iwin(G ∪ {a}) holds.

• (Iwout) Similar to Iwin, the addition of a new node a has no outgoing attacks
s.t. it does not contribute to Iwout(G) = n where n ∈ R and n > 0. It follows
that Iwout(G+ {a}) = n. As a result Iwout(G) ≥ Iwout(G ∪ {a}) is satisfied.

• (Icc) When a disconnected new node a is added to an arbitrary graph G with
n cycles where n ∈ Z, n ≥ 0, it will not introduce or remove any new cycles
to graph, as it does not introduce or remove any arcs that are part of the cycle,
nor creates a new cycle. Hence, Icc(G) = Icc(G ∪ {a}) = n and Icc(G) ≥
Icc(G ∪ {a}).

• (Iwcc) We differentiate between two cases:

– Suppose an arbitrary graph G no cycle. Then, Iwcc(G) = 0 and it remains
Iwcc(G ∪ {a}) = 0 if a disconnected node a is added to G, as it does not
create a cycle.

– Now assume that G has n cycles where n ∈ Z, n ≥ 1, and each cycle Ci

where i = {1, 2, ..., n} involves m = |Ci| nodes where m ∈ Z, n ≥ 1. If a
disconnected new node a is added to G, it will not modify the number of
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cycles, the number of nodes involved in a cycle nor create new cycles s.t.
G ∪ {a} will still have n cycles and m nodes involved in these cycles.

Iwcc(G) =
∑

C∈Cycles(G)

1

|C|

=

n∑
i=1

1

|Ci|
= Iwcc(G ∪ {a})

Hence, Iwcc(G) ≥ Iwcc(G ∪ {a}) is proven.

• (Iwco) Recall that

Iwco(G) =
∑

X∈Components(G)

(|X| − 1)2.

If for an arbitrary graph G, for which Iwco(G) = n where n ∈ Z, n ≥ 0, a
disconnected new node a is added, a will represent a new component. But
since Iwco({a}) = (1 − 1)2 = 0, a will not contribute to Iwco(G) s.t. Iwco(G) =
Iwco(G ∪ {a}) = n will hold. It applies that Iwco(G) ≥ Iwco(G ∪ {a}).

• (Icon) Suppose a graph G = (A,R) has n = |R| arcs where n ∈ Z, n ≥ 0.
Icon(G) = n as Icon = |R|. Suppose a new disconnected node a is added
to graph G forming the graph G ∪ {a} = (A ∪ {a},R). Since the addition
of the node does not modify the arcs R, Icon(G) = Icon(G ∪ {a}) = n and
Icon(G) ≥ Icon(G ∪ {a}) is satisfied.

• (I ind) Visualize an arbitrary graph G = (A,R) with n attacked nodes where
n ∈ Z, n ≥ 0. Since I ind counts the number of attacked nodes in the graph,
I ind(G) = n. The addition of a disconnected new node a in G, does not modify
the attacks present s.t. G ∪ {a} = (A ∪ {a},R). Therefore, it remains that
I ind(G) = I ind(G ∪ {a}) = n. I ind(G) ≥ I ind(G ∪ {a}) holds.

• (Idb) We refer to the proof of Amgoud and Ben-Naim in [1] under Theorem 6
as it is applicable here.

4.2.3 Strong Equivalence Postulate Propositions and Proofs

Proposition 4.7 p-Exchange is satisfied by Ipr, Inst, In, Ip, and Idr. This postulate is
not satisfied by Ingr, Iwin, Iwout, Icc, Iwcc, Iwco, Icon, I ind, and Idb.

Proof.
• (Ipr) Two argument graphs G and G′ are strongly equivalent to each other

under preferred semantics iff GpK = G′pK. The p-kernel only removes at-
tacks unrelated to the preferred extensions, ensuring that the Extensionp(G)
= Extensionp(G

′). Since Ipr = |Extensionp(G
′)| − 1, it follows that if G ≡p

s G′

then Ipr(G) = Ipr(G
′).
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• (Inst) Consider two graphs G = (A,R) and G′ = (A,R′) s.t. GpK = G′pK and
as a result G ≡p

s G′. Recall the construction of the p-kernel of G as GpK =
(A,RpK), where RpK = R \ {(a, b) | a ̸= b, (a, a) ∈ R, {(b, a), (b, b)} ∩ R ≠ ∅}.
We also established that

Inst(G) = min {|N | | Extensions(Induced(G,N)) ̸= ∅ s.t. N ⊆ Nodes(G)}

where for any subset N ⊆ A, the induced subgraph Induced(G,N) is the in-
duced subgraph with nodes A \N . In other words Inst(G) captures the mini-
mum number of arguments to be removed from G to obtain a stable extension.
By definition of the p-kernel construction, G and G′ only differ in the removal
of extra attacks, specifically (a, b) where a has a self-attack (a, a) ∈ R and
where b is involved in attacks, {(b, a), (b, b)} ∩R ̸= ∅. Since the differences be-
tween G and G′ stem solely from attacks originating from self-attacking argu-
ments, which cannot be part of a stable extension because they are not conflict-
free, it holds that for any N ⊆ A, Induced(G,N)pK = Induced(G′, N)pK.
Therefore, Induced(G,N) has a stable extension iff Induced(G′, N) does, mean-
ing that the sets NG = {N ⊆ A | Extensions(Induced(G,N)) ̸= ∅} and NG′ =
{N ⊆ A | Extensions(Induced(G′, N)) ̸= ∅} are identical. It follows that if
G ≡p

s G′, then Inst(G) = min{|N ||N ∈ NG} = min{|N ||N ∈ NG′} = Inst(G
′)

holds.

• (In) According to [30], conflict-freeness is preserved for two graphs G and G′

where G ≡p
s G′. Recall that In(G) = |Extensionn(G)| + |selfAttacks(G)| −

1. Since Extensionn(G) includes the maximal (w.r.t. ⊆) conflict-free sets, and
conflict-freeness is preserved, it holds that |Extensionn(G)| = |Extensionn(G

′)|.
Additionally, self-attacks are not removed for the p-kernel construction s.t.
|selfAttacks(G)| = |selfAttacks(G′)| by definition. As result, if G ≡p

s G′, then
In(G) = In(G

′).

• (Ip) We have already established above that if G ≡p
s G′ then Ipr(G) = Ipr(G

′) =
|Extensionp(G)| − 1. We can express Ip in terms of Ipr:

Ip = |Extensionp(G)|+ |selfAttacks(G)| − 1

Ip = Ipr(G) + |selfAttacks(G)|.

For GpK = G′pK to hold, G and G′ must have identical self-attacks s.t. under
equality of Ipr(G) and the number of self-attacks it follows that if G ≡p

s G′ then
Ip(G) = Ip(G

′).

• (Idr) Suppose that G ≡p
s G′ holds for two graphs G = (A,R) and G′ = (A,R′).

By definition, Nodes(G) = Nodes(G′) and Arcs(G) ̸= Arcs(G′). Consider the
following cases of attack relations:

– R = ∅ and R′ = ∅: Both graphs do not have any attacks s.t. Idr(G) =
Idr(G

′) = 0.
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– R ̸= ∅ and R′ ̸= ∅: Since G ≡p
s G′, GpK = G′pK must hold, which means

that except for the attacks redundant to the preferred extensions, G and
G′ both have at least one attack. As a result, Idr(G) = Idr(G

′) = 1.

– R ≠ ∅ and R′ = ∅: To see that this case is contradictory analyze the
graphs G = (A,R) and G′ = (A, ∅). Since G′ contains no attacks, G′pK =
G′ = (A, ∅). However, because R ≠ ∅, G has at least one attack in its
kernel GpK. Hence, under these attack conditions it cannot hold that
GpK ̸= G′pK s.t. G ̸≡p

s G′ in first place.

The cases above show that if G ≡p
s G′ then Idr(G) = Idr(G

′) holds.

Unless mentioned otherwise, for the following proofs consider argument graph L
and its p-kernel LpK, as well as another graph L′ which is the p-kernel of itself, which
we label L′pK, all of which are displayed in Figure 7. Since LpK = L′pK, it holds that
L ≡p

s L′. The semantics of L and L′ are listed in Tables 17 and 3, respectively.

• (Ingr) L ≡p
s L′ but Ingr(L) = 2 ̸= 0 = Ingr(L

′).

Ingr(L) = |Nodes(L) \ (Extensiong(L) ∪ Attacked(L))|
= |{a, b} \ (∅ ∪ ∅)|
= |{a, b} \ ∅| = |{a, b}| = 2

Ingr(L
′) = |Nodes(L′) \ (Extensiong(L

′) ∪ Attacked(L′))|
= |{a, b} \ ({b} ∪ {a})|
= |{a, b} \ {a, b}| = |∅| = 0

• (Iwin) L ≡p
s L′ but Iwin(L) =

1
2 + 1 = 3

2 = 1.50 ̸= 0.50 = 1
2 = Iwin(L

′).

• (Iwout) L ≡p
s L′ but Iwout(L) =

1
2 + 1 = 3

2 = 1.50 ̸= 2 = 1 + 1 = Iwout(L
′).

• (Icc) L ≡p
s L′ but Icc(L) = 2 ̸= 1 = Icc(L

′).

• (Iwcc) L ≡p
s L′ but Iwcc(L) =

1
2 + 1 = 3

2 = 1.50 ̸= 1 = Iwcc(L
′).

• (Iwco) For the following proof consider argument graph L1 and its p-kernel
LpK
1 , as well as another graph L′

1 and its p-kernel, L′pK
1 in Figure 15. Since

LpK
1 = L′pK

1 , it holds that L1 ≡p
s L′

1. However, Iwco(L1) = (2 − 1)2 = 1 ̸= 0 =
0 + 0 = (1− 1)2 + (1− 1)2 = Iwco(L

′
1).

a b a b

Figure 15: Argument graphs L1 (left) and L′
1 = LpK

1 = L′pK
1 (right).

• (Icon) L ≡p
s L′ but Icon(L) = 3 ̸= 2 = Icon(L

′).
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• (I ind) For the following proof consider argument graph L2 and its p-kernel
LpK
2 , as well as another graph L′

2 and its p-kernel, L′pK
2 in Figure 16. Since

LpK
2 = L′pK

2 , it holds that L2 ≡p
s L′

2. Yet, I ind(L2) = 3 ̸= 2 = I ind(L
′
2).

a b c a b c

Figure 16: Argument graphs L2 (left) and L′
2 = LpK

2 = L′pK
2 (right).

• (Idb) It holds that L ≡p
s L′. However, the global distances for the graphs are

different with GD(L) = 1 + 1 + 1 + 2 = 5 and GD(L′) = 1 + 3 + 1 + 3 = 8.
Since both graphs have the same number of nodes it holds for both that max =
22 × (2 + 1) = 12 and min = 22 = 4.

Idb(G) =
max− GD(G)

max−min

Idb(L) =
12− 5

12− 4
=

7

8
≈ 0.88 ̸= 0.50 =

1

2
=

12− 8

12− 4
= Idb(L

′).

□

Proposition 4.8 g-Exchange is satisfied by Ingr, In, Idr, and I ind but not by Ipr, Ip,
Inst, Iwin, Iwout, Icc, Iwcc, Iwco, Icon, and Idb.

Proof.
• (Ingr) Recall that Ingr, counts the arguments not in the grounded extension and

not attacked by a member of the grounded extension:

Ingr(G) = |Nodes(G) \ (Extensiong(G) ∪ Attacked(G))|

where Attacked(G) = {b | (a, b) ∈ Arcs(G) and a ∈ Extensiong(G)}. Consider
two graphs G and G′ with G ≡g

s G′, requiring GgK = G′gK, s.t. Extensiong(G) =
Extensiong(G’) and Nodes(G) = Nodes(G’). Since Attacked(G) depends on
the grounded extension, Extensiong(G), and the attack relations, we check
whether the g-kernel construction changes the set of Attacked(G) or not. As es-
tablished in Section 2.4, the g-kernel is constructed as GgK = (A,RgK), where
RgK = R \ {(a, b) | a ̸= b, (b, b) ∈ R, {(a, a), (b, a)} ∩ R ̸= ∅}. In other words,
we remove (a, b) if

– a and b are self-attacking (case 1), or

– b is self-attacking, and b also attacks a (case 2), or

– a and b are self-attacking, and b also attacks a (case 3).
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The first case is equivalent to two self-attacking arguments with no arc be-
tween them, because self-attacking arguments a, b /∈ Extensiong(G). Based
on the definiton of Attacked(G) above, the arc (a, b) does not contribute to
Attacked(G). For the second case, it holds that a /∈ Extensiong(G) as it is at-
tacked and b /∈ Extensiong(G) because it is self-attacking. It follows that (a, b)
does not contribute to Attacked(G) as well. Similarly, for the combination of
cases 1 and 2, illustrated in case 3 it holds that a, b /∈ Extensiong(G) and there-
fore the arc (a, b) does not contribute to Attacked(G). Hence, Attacked(G)
= Attacked(GgK) holds. Given that GgK = G′gK it follows that Attacked(G)
= Attacked(GgK) = Attacked(G′gK) = Attacked(G′). We have shown that the
g-kernel construction, preserves the Nodes(G), Extensiong(G), selfAttacks(G)
and Attacked(G). Therefore, it holds that Ingr(G) = Ingr(G

′) if G ≡g
s G′.

• (In) According to [30], conflict-freeness is preserved for two graphs G and G′

where G ≡g
s G′. Recall that In(G) = |Extensionn(G)| + |selfAttacks(G)| −

1. Since Extensionn(G) includes the maximal (w.r.t. ⊆) conflict-free sets, and
conflict-freeness is preserved, it holds that Extensionn(G) = Extensionn(G

′).
Additionally, self-attacks are not removed for the g-kernel construction mean-
ing that for GgK = G′gK to hold, selfAttacks(G) = selfAttacks(G′) must also
hold. As result, if G ≡g

s G′ then In(G) = In(G
′).

• (Idr) Suppose that G ≡g
s G′ holds for two graphs G = (A,R) and G′ = (A,R′).

By definition, Nodes(G) = Nodes(G′) and Arcs(G) ̸= Arcs(G′). We distinguish
between the following attack cases:

– R = ∅ and R′ = ∅: Since both graphs have no attacks, it follows that
Idr(G) = Idr(G

′) = 0.

– R ̸= ∅ and R′ ̸= ∅: G and G′ both have at least one attack by definition
s.t. Idr(G) = Idr(G

′) = 1.

– R ≠ ∅ and R′ = ∅: To see that this case is contradictory analyze the
graphs G = (A,R) and G′ = (A, ∅). Since G′ contains no attacks, G′gK =
G′ = (A, ∅). However, because R ≠ ∅, G has at least one attack in its
kernel GgK. It holds that GgK ̸= G′gK s.t. G ≡g

s G′ cannot hold.

The cases show that if G ≡g
s , it also holds that Idr(G) = Idr(G

′).
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a b a b g-kernel a b

a b g-kernel a b

Figure 17: Argument graphs L3 (upper left), L4 (upper middle), and their
g-kernel LgK

3,4 = LgK
3 = LgK

4 (upper right) as well as L5 (lower
left) and its g-kernel LgK

5 (lower right).

• (I ind) Recall how for a graph G the g-kernel is constructed: GgK = (A,RgK),
where RgK = R \ {(a, b) | a ̸= b, (b, b) ∈ R, {(a, a), (b, a)} ∩ R ̸= ∅}. We iterate
through all the attack removal cases:

– R = ∅: I ind(G) = I ind(G
′) = 0

– R ≠ ∅: we remove (a, b) if

* a and b are self-attacking, or

* a and b are self-attacking, and b also attacks a, or

* b is self-attacking, and b also attacks a.

It is visible that for all cases, the arguments a and b remain attacked before and
after the removal of redundant attacks. We have illustrated this in Figure 17,
where the kernels of the graphs are in the same line of the graphs, shaded in
gray. This showcases that the construction of the g-kernel preserves the num-
ber of attacked arguments. Since G ≡g

s G′, GgK = G′gK must hold, which in
turn also means that all nodes that have at least one attack in G also have at
least one attack in G′. Since I ind(G) quantifies the number of attacked argu-
ments, it follows that I ind(G) = I ind(G

′) also holds.

a bc a bc

Figure 18: Argument graphs L6 (left) and L′
6 = LgK

6 = L′gK
6 (right).

• (Ipr and Ip) Consider the following counterexample with argument graph L6

and another graph L′
6 in Figure 18, as well as their semantics in Tables 18 and

19, respectively. Their g-kernels LgK
6 = L′gK

6 s.t. L6 ≡g
s L′

6 holds are in the
same Figure. But Ipr(L6) = 2 − 1 = 1 ̸= 0 = 1 − 1 = Ipr(L

′
6). Similarly,

Ip(L6) = 2 + 1− 1 = 2 ̸= 1 = 1 + 1− 1 = Ip(L
′
6).
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Set(L6) Conflict-free Admissible Complete Preferred Grounded Stable Naive
∅ ✓ ✓ ✓ ✓

{a} ✓ ✓ ✓ ✓ ✓ ✓
{b} ✓ ✓ ✓ ✓ ✓
{c}

Table 18: Semantics of argument graph L6.

Set(L′
6) Conflict-free Admissible Complete Preferred Grounded Stable Naive

∅ ✓ ✓ ✓ ✓
{a} ✓ ✓
{b} ✓ ✓ ✓ ✓ ✓
{c}

Table 19: Semantics of argument graph L′
6.

• (Inst) Consider graph L5 and its g-Kernel LgK
5 in Figure 17. Observe another

graph P in Figure 9 which is the g-kernel of itself, which we label P gK. LgK
5 =

P gK holds. We have calculated in Example 3.7 that Inst(P ) = 1. We calculate
Inst(L5) = 0 based on the semantics of L5 in Table 20.

N = ∅ : Extensions(Induced(L5, ∅)) = Extensions({a, b}) = {a}

L5 ≡g
s P , but Inst(L5) = 0 ̸= 1 = Inst(P ).

Set(L5) Conflict-free Admissible Complete Preferred Grounded Stable Naive
∅ ✓ ✓ ✓ ✓

{a} ✓ ✓ ✓ ✓ ✓ ✓
{b}

Table 20: Semantics of argument graph L5.

For the following proofs, unless mentioned otherwise, consider argument graph
L in Figure 7 and its g-kernel LgK, as well as another graph L′′ and which its own
g-kernel which we label L′′gK. Since LgK = L′′gK, it holds that L ≡g

s L′′.

• (Iwin) L ≡g
s L′′ but Iwin(L) = 1 + 1

2 = 3
2 = 1.50 ̸= 2 = 1 + 1 = Iwin(L

′′).

• (Iwout) L ≡g
s L′′ but Iwout(L) = 1 + 1

2 = 3
2 = 1.50 ̸= 0.50 = 1

2 = Iwout(L
′′).

• (Icc) L ≡g
s L′′ but Icc(L) = 2 ̸= 1 = Icc(L

′′).

63



• (Iwcc) L ≡g
s L′′ but Iwcc(L) = 1 + 1

2 = 3
2 = 1.50 ̸= 1 = Iwcc(L

′′).

a b c a b c

Figure 19: Argument graphs L7 (left) and L′
7 = LgK

7 = L′gK
7 (right).

• (Iwco) Consider the graph L7 and its g-kernel LgK
7 , and L′

7 and its g-kernel
L′gK
7 in Figure 19. L7 ≡g

s L′
7 but Iwco(L7) = (2 − 1)2 + (1 − 1)2 = 1 ̸= 0 =

(1− 1)2 + (1− 1)2 + (1− 1)2 = Iwco(L
′
7).

• (Icon) L ≡g
s L′′ but Icon(L) = 3 ̸= 2 = Icon(L

′′).

• (Idb) L ≡g
s L′′ and as calculated in the proof for Idb under Proposition 4.7,

Idb(L) =
7
8 ≈ 0.88. As for L′′, GD(L′′) = 1+3+1+3 = 8, max = 22×(2+1) =

12, and min = 22 = 4.

Idb(G) =
max− GD(G)

max−min

Idb(L) =
7

8
≈ 0.88 ̸= 0.50 =

1

2
=

12− 8

12− 4
= Idb(L

′′).

□

Proposition 4.9 s-Exchange is satisfied by Inst, In and Idr. The measures Ipr, Ip, Ingr,
Idr, Iwin, Iwout, Icc, Iwcc, Iwco, Icon, I ind, and Idb violate s-Exchange.

Proof.
• (Inst) For graphs G and G′ it holds that GsK = G′sK s.t. G ≡s

s G′. Recall the s-
kernel construction: GsK = (A,RsK), where RsK = R \ {(a, b) | a ̸= b, (a, a) ∈
R}. Also recall that Inst is the smallest number of nodes N ⊆ A that must be re-
moved so that the induced subgraph Induced(G,N) has at least one stable ex-
tension, if the graph does not have one already. Since G and G′ have the same
s-kernel it also holds that for every subset N of nodes, the induced subgraphs
Induced(G,N) and Induced(G′, N) have the same s-kernel. Since the exis-
tence of a stable extension in an argument graph depends on its s-kernel, it fol-
lows that Extensions(Induced(G,N)) ̸= ∅ iff Extensions(Induced(G′, N)) ̸= ∅.
Now assume that Inst(G) = n where n ∈ Z, n ≥ 1, meaning there exists a
subset N ⊆ A with |N | = n s.t. Induced(G,N) has a stable extension. Since
G ≡s

s G′, Induced(G,N)sK = Induced(G′, N)sK, and thus Induced(G,N) and
Induced(G′, N) have identical stable extensions. This implies that Inst(G

′) also
has a stable extension, and therefore Inst(G

′) ≤ n must hold. Now suppose
Inst(G

′) = m where m ∈ Z, m ≥ 1. Then it must also hold that Inst(G) ≤ m.
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Combining these assumptions results in Inst(G) ≤ Inst(G
′) ≤ n = Inst(G)

and it follows that Inst(G
′) = n. Similarly, if we start with Inst(G

′) = m, the
same applies: Inst(G

′) ≤ Inst(G) ≤ m = Inst(G
′), resulting in Inst(G) = m.

Inst(G) = Inst(G
′) holds if G ≡s

s G
′.

• (In) According to [30], conflict-freeness is preserved for two graphs G and G′

where G ≡s
s G′. Recall that In(G) = |Extensionn(G)| + |selfAttacks(G)| −

1. Since Extensionn(G) includes the maximal (w.r.t. ⊆) conflict-free sets, and
conflict-freeness is preserved, it holds that Extensionn(G) = Extensionn(G

′).
Additionally, self-attacks are not removed for the s-kernel construction mean-
ing that for GsK = G′sK to hold, selfAttacks(G) = selfAttacks(G′) must hold.
As result, if G ≡s

s G
′ then In(G) = In(G

′).

• (Idr) Suppose that G ≡s
s G

′ holds for two graphs G = (A,R) and G′ = (A,R′).
By definition, Nodes(G) = Nodes(G′) and Arcs(G) ̸= Arcs(G′). We distinguish
between the following attack cases:

– R = ∅ and R′ = ∅: Idr(G) = Idr(G
′) = 0, by definition.

– R ≠ ∅ and R′ ̸= ∅: G and G′ both have at least one attack s.t. Idr(G) =
Idr(G

′) = 1.

– R ̸= ∅ and R′ = ∅: This case is contradictory. Analyze the graphs G =
(A,R) and G′ = (A, ∅). Since G′ contains no attacks, G′sK = G′ = (A, ∅).
However, because R ≠ ∅, G has at least one attack in its kernel GsK. It
holds that GsK ̸= G′sK s.t. G ≡s

s G
′ cannot hold.

The valid cases show that if G ≡s
s, it also holds that Idr(G) = Idr(G

′).

a bc a bc

Figure 20: Argument graphs L8 (left) and L′
8 = LsK

8 = L′sK
8 (right).

• (Ipr and Ip) Observe argument graphs L8 and L′
8, their semantics in Table 21

and 22 respectively, and their s-kernels LsK
8 = L′sK

8 in Figure 20 s.t. L8 ≡s
s L′

8

holds. But Ipr(L8) = 1 − 1 = 0 ̸= 1 = 2 − 1 = Ipr(L
′
8). Similarly, Ip(L8) =

1 + 1− 1 = 1 ̸= 2 = 2 + 1− 1 = Ip(L
′
8).

Set(L8) Conflict-free Admissible Complete Preferred Grounded Stable Naive
∅ ✓ ✓ ✓ ✓

{a} ✓ ✓
{b} ✓ ✓ ✓ ✓ ✓
{c}

Table 21: Semantics of argument graph L8.
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Set(L′
8) Conflict-free Admissible Complete Preferred Grounded Stable Naive

∅ ✓ ✓ ✓ ✓
{a} ✓ ✓ ✓ ✓ ✓
{b} ✓ ✓ ✓ ✓ ✓
{c}

Table 22: Semantics of argument graph L′
8.

For the following proofs, unless mentioned otherwise, consider argument graph
L in Figure 7 and its s-kernel LsK, as well as another graph L′ in the same Figure,
which is the s-kernel of itself, and which we label L′sK. Their semantics are visible
in Table 17 and 3, respectively. Since LsK = L′sK, it holds that L ≡s

s L
′. The compu-

tations for the following proofs are equivalent to those in the corresponding proofs
under Proposition 4.7.

• (Ingr) L ≡s
s L

′ but Ingr(L) = 2 ̸= 0 = Ingr(L
′).

• (Iwin) L ≡s
s L

′ but Iwin(L) = 1.50 ̸= 0.50 = Iwin(L
′).

• (Iwout) L ≡s
s L

′ but Iwout(L) = 1.50 ̸= 2 = Iwout(L
′).

• (Icc) L ≡s
s L

′ but Icc(L) = 2 ̸= 1 = Icc(L
′).

• (Iwwc) L ≡s
s L

′ but Iwcc(L) = 1.50 ̸= 1 = Iwcc(L
′).

a b c a b c

Figure 21: Argument graphs L9 (left) and L′
9 = LsK

9 = L′sK
9 (right).

• (Iwco) For the following proof consider argument graph L9 in Figure 21 and its
s-kernel LsK

9 , as well as another graph L′
9 and its s-kernel, L′sK

9 . Since LsK
9 =

L′sK
9 , it holds that L9 ≡s

s L′
9. However, Iwco(L9) = (3 − 1)2 = 4 ̸= 1 =

(1− 1)2 + (2− 1)2 = Iwco(L
′
9).

• (Icon) L ≡s
s L

′ but Icon(L) = 3 ̸= 2 = Icon(L
′).

• (I ind) Recall graphs L9 and L′
9 from the counterexample for Iwco. L9 ≡s

s L′
9

but I ind(L9) = 3 ̸= 2 = Iwco(L
′
9).

• (Idb) L ≡s
s L

′, but Idb(L) =
7
8 ≈ 0.88 ̸= 0.50 = Idb(L

′) □
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Proposition 4.10 naive-Exchange is satisfied by In, Idr and Iwco. It is not satisfied by
Ipr, Ip, Ingr, Inst, Iwin, Iwout, Icc, Iwcc, Icon, I ind, and Idb.

Proof.
• (In) Recall that In = |Extensionn(G)|+ |selfAttacks(G)| − 1 and that naive ex-

tensions are maximal (w.r.t. ⊆) conflict-free extensions. For two graphs G =
(A,R) and G′ = (A,R′), G ≡naive

s G′ holds, if the graphs have the same argu-
ments and naive extensions. Hence, by definition for two graphs G ≡naive

s G′,
it holds that Extensionn(G) = Extensionn(G

′) and Nodes(G) = Nodes(G′).
We consider the self-attacks. Suppose for contradiction that there exists an ar-
gument a ∈ A s.t. (a, a) ∈ R but (a, a) /∈ R′. In G, {a} is not conflict-free
due to the self-attack and in G′, {a} is conflict-free because there is no self-
attack. If {a} is a naive extension in G′, it cannot be one in G, contradicting the
equality of naive extensions. If {a} is not a naive extension in G′, there must
exist a larger conflict-free set S that includes {a} in G′. However, in G, any
set containing a is not conflict-free. This leads to a contradiction once more.
Therefore, it must hold that (a, a) ∈ R ⇔ (a, a) ∈ R′ and that G and G′ must
have the same self-attacks. Consequently, it holds that if G ≡naive

s G′ then
In(G) = In(G

′).

• (Idr) Suppose that for G = (A,R) and G′ = (A,R′), Nodes(G) = Nodes(G′)
and Extensionn(G) = Extensionn(G) s.t. G ≡naive

s G′ holds. We distinguish
between the following attack cases:

– R = ∅ and R′ = ∅: By definition Idr(G) = Idr(G
′) = 0.

– R ≠ ∅ and R′ ̸= ∅: By definition Idr(G) = Idr(G
′) = 1.

– R ≠ ∅ and R′ = ∅: To see that this case is contradictory analyze the
graphs G = (A,R) and G′ = (A, ∅). Since G′ has empty attack relations,
every subset A is conflict-free, resulting in the naive extension {A}. As
R ̸= ∅ in G, there exists at least one attack (a, b) ∈ R, where a, b ∈ A s.t.
{a, b} is not conflict-free. Therefore, {A} cannot be a naive extension in G.
This in turn means that G and G′ do not have the same naive extensions.
It follows that G ̸≡naive

s G′ holds.

The valid cases show that if G ≡naive
s , it also holds that Idr(G) = Idr(G

′).

• (Iwco) Assume that G ≡naive
s G′ holds for two graphs G and G′. Strong equiva-

lence demands that both graphs have the same arguments and same maximal
(w.r.t. ⊆) conflict-free sets. For each component, Iwco sums up (n − 1)2 where
n ≥ 1 is the number of nodes. Since the number of nodes n is constant under
strong equivalence, we check whether for G and G′ the number of compo-
nents as well as their size remain the same or not under G ≡naive

s G′. Let the
components of G partition A into disjoint subsets C1, C2, . . . , Ck where k ∈ Z,
k > 0. Clearly any G is the union of its disjoint components Ci for i ≥ 1. Since
these components do not attack each other, the naive extension for the entire
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graph is Extensionn(G) = {S1∪S2∪ ...∪Sk|Si ∈ Extensionn(G(Ci))}, reflecting
that each component Ci contributes independently to naive extensions. Now
consider the following contradictions:

– Assume that G has more components than G′. Then, the naive extensions
of G would be would be formed from different component choices than
those of G′. This would result in Extensionn(G) ̸= Extensionn(G′), contra-
dicting our assumption. Therefore, G and G′ must have the same number
of components.

– Suppose, that one component in G contains more or fewer arguments
than the corresponding component in G′. Then, the set of maximally
conflict-free subsets would be different in that component. This would
lead to Extensionn(G) ̸= Extensionn(G′), contradicting our assumption
once more. Thus, each corresponding component in G and G′ must have
the same number of arguments.

Since the number of nodes n, as well as the number of components and their
sizes are equal to each other for the graphs G and G′, under the condition
G ≡naive

s G′, and Iwco sums up (n − 1)2 where n ≥ 1 is the number of nodes,
for each component, it holds that Iwco(G) = Iwco(G

′).

For the following proofs, unless mentioned otherwise, consider the following ar-
gument graphs M+A consisting of graph M in Figure 8 and A in Figure 1 and graph
M +C ′ consisting of components M , and C ′ in Figure 3. Both graphs have the same
naive extensions {a, x} and {b, x} and the same arguments s.t. M+A ≡naive

s M+C ′.
The semantics of M +A are available in Table 11 and the semantics of graph M +C ′

are apparent in Table 23.

Set(M+C′) Conflict-free Admissible Complete Preferred Grounded Stable Naive
∅ ✓ ✓

{a} ✓
{b} ✓ ✓
{x} ✓ ✓ ✓ ✓
{a, x} ✓ ✓
{b, x} ✓ ✓ ✓ ✓ ✓ ✓

Table 23: Semantics of argument graph M + C ′.

• (Ipr and Ip) M + A ≡naive
s M + U but Ipr(M + A) = 2− 1 = 1 ̸= 0 = 1− 1 =

Ipr(M + C ′), and Ip(M +A) = 2 + 0− 1 = 1 ̸= 0 = 1 + 0− 1 = Ip(M + C ′).

• (Ingr) For the graphs L and L′ in Figure 7, L ≡naive
s L′ because the graphs

have the same arguments and naive extensions as visible in Tables 17 and 3,
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respectively. But Ingr(L) = 2 ̸= 0 = Ingr(L
′) as calculated in the the proof for

Ingr under Proposition 4.7.

• (Inst) For the graphs L5 in Figure 17 and P in Figure 9, L5 ≡naive
s P since the

graphs have the same arguments and naive extensions apparent in Table 13
and 20. Yet, Inst(L5) = 0 ̸= 1 = Inst(P ) as calculated in the proof for Inst under
Proposition 4.8.

• (Iwin) M +A ≡naive
s M +C ′ but Iwin(M +A) = 1+1 = 2 ̸= 1 = Iwin(M +C ′).

• (Iwout) M+A ≡naive
s M+C ′ but Iwout(M+A) = 1+1 = 2 ̸= 1 = Iwout(M+C ′).

• (Icc) M +A ≡naive
s M + C ′ but Icc(M +A) = 1 ̸= 0 = Icc(M + C ′).

• (Iwcc) M +A ≡naive
s M +C ′ but Iwcc(M +A) = 1

2 = 0.50 ̸= 0 = Iwcc(M +C ′).

• (Icon) M +A ≡naive
s M + C ′ but Icon(M +A) = 2 ̸= 1 = Icon(M + C ′).

• (I ind) M +A ≡naive
s M + C ′ but I ind(M +A) = 2 ̸= 1 = I ind(M + C ′).

• (Idb) M + A ≡naive
s M + C ′. We compute the global distances fpr the graphs

s.t. GD(M + A) = (3 × 4) + (2 × (1 + 2 + 4)) = 26 and GD(M + C ′) =
(1 + 4 + 4) + (2 × (3 × 4)) = 33. Since both graphs have the same quantity of
nodes, max = 32 × (3 + 1) = 9× 4 = 36 and min = 32 = 9.

Idb(G) =
max− GD(G)

max−min

Idb(M +A) =
36− 26

36− 9
=

10

27
≈ 0.37 ̸= 0.11 ≈ 1

9
=

36− 33

36− 9
= Idb(M + C ′)

□

4.2.4 Additivity Postulate Propositions and Proofs

Proposition 4.11 Disjoint Additivity is satisfied by Icon and I ind but not by In, Ip,
and Idb.

Proof.
• (Icon) Consider two arbitrary graphs G1 = (A1,R1) and G2 = (A2,R2) that

are disjoint. Suppose G1 has n arcs and G2 has m arcs where for both n,m ∈
Z, n,m ≥ 0 s.t. Icon(G1) = |R1| = n and Icon(G2) = |R2| = m. Since A1∩A2 =
∅, their union, G1 + G2 = (A1 ∪ A2,R1 ∪ R2), also does not share any arcs
across G1 and G2 s.t. R1 ∩ (A1 × A2) = ∅ and R2 ∩ (A2 × A1) = ∅ hold.
Given that no new arcs are added between G1 and G2 when the graph is joint,
Icon(G1 + G2) = |R1 ∪ R2| = |R1| + |R2| = n + m. It automatically follows
that Icon(G1 +G2) = Icon(G1) + Icon(G2).
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• (I ind) Once again consider two arbitrary graphs G1 = (A1,R1) and G2 =
(A2,R2) that are disjoint. Suppose G1 has n attacked nodes and G2 has m at-
tacked nodes where for both n,m ∈ Z, n,m ≥ 0. I ind(G1) = n and I ind(G2) =
m. Since A1∩A2 = ∅, their union, G1+G2 = (A1∪A2,R1∪R2), also does not
share any arcs across G1 and G2 s.t. R1∩(A1×A2) = ∅ and R2∩(A2×A1) = ∅
hold. Given that no new attacks are added between G1 and G2, the num-
ber of attacked arguments is simply the summation of the quantity of at-
tacked arguments in G1 and G2 s.t. I ind(G1 + G2) = n + m. It holds that
I ind(G1 +G2) = I ind(G1) + I ind(G2).

a b q r

Figure 22: Argument graph A+ V .

• (In) Observe graph A in Figure 1, whose semantics are available in Table 10.
In(A) = 2 + 0 − 1 = 1. Now visualize graph A being joint with disjoint (and
isomorphic) graph V in Figure 14, for which In(V ) = 2 + 0− 1 = 1. The joint
graph A + V is visible in Figure 22. In(A + V ) = 4 + 0 − 1 = 3 based on the
semantics in Table 24. We show that In does not comply with Disjoint Addi-
tivity as In(A) + In(V ) = 1 + 1 = 2 ̸= 3 = In(A+ V ).

Set(A+ V ) Conflict-free Admissible Complete Preferred Grounded Stable Naive
∅ ✓ ✓ ✓ ✓

{a} ✓ ✓ ✓
{b} ✓ ✓ ✓
{q} ✓ ✓ ✓
{r} ✓ ✓ ✓

{a, q} ✓ ✓ ✓ ✓ ✓ ✓
{a, r} ✓ ✓ ✓ ✓ ✓ ✓
{b, q} ✓ ✓ ✓ ✓ ✓ ✓
{b, r} ✓ ✓ ✓ ✓ ✓ ✓

Table 24: Semantics of argument graph A+ V .

• (Ip) Once again examine graph A in Figure 1 and another graph V , visible
in Figure 14 as counterexamples. Since both graphs are isomorphic to each
other, Ip(A) = Ip(V ) = 2 + 0 − 1 = 1 according to the semantics in Table
10. Now observe the joint graph A + V in Figure22, consisting of the disjoint
components. Based on Table 24, Ip(A+V ) = 4+0−1 = 3. But In(A)+In(V ) =
1 + 1 = 2 ̸= 3 = In(A+ V ).
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• (Idb) Take into account the following counterexample once more involving
graphs A and V in Figure 1 and 14, respectively. Given that both graphs are
isomorphic to each other, Idb(A) = Idb(V ) = 0.75 as computed in Example
3.28. Observe their joint graph A+ V in Figure 22. GD(A+ V ) = 4× (1 + 2 +
5 + 5) = 52. As n = 4, max = 42 × (4 + 1) = 80 and min = 42 = 16.

Idb(A+ V ) =
max− GD(A+ V )

max−min
=

80− 52

80− 16
=

7

16
≈ 0.44

Idb(A) + Idb(V ) = 0.75 + 0.75 = 1.504 ̸= 0.44 ≈ Idb(A+ V )

□

Proposition 4.12 Super Addivity is not satisfied by In, Ip, Icon, I ind, and Idb.

Proof.
• (In) Consider argument graphs W , Y and their joint graph W + Y in Fig-

ure 23 and their semantics available in Table 25, 26, and 27, respectively, as
counterexamples. In(W ) = 1 + 1 − 1 = 1, In(Y ) = 1 + 1 − 1 = 1, and
In(W + Y ) = 1 + 1− 1 = 1 s.t. In(W + Y ) = 1 ≱ 2 = 1 + 1 = In(W ) + In(Y ).

ba ca cba

Figure 23: Argument graphs W (left), Y (middle), and W + Y (right).

Set(W ) Conflict-free Admissible Complete Preferred Grounded Stable Naive
∅ ✓ ✓

{a}
{b} ✓ ✓ ✓ ✓ ✓ ✓

Table 25: Semantics of argument graph W .

Set(Y ) Conflict-free Admissible Complete Preferred Grounded Stable Naive
∅ ✓ ✓
{a}
{c} ✓ ✓ ✓ ✓ ✓ ✓

Table 26: Semantics of argument graph Y .

4This result in itself is contradictory, as the Distance-Based Measure cannot exceed 1.
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Set(W + Y ) Conflict-free Admissible Complete Preferred Grounded Stable Naive
∅ ✓ ✓
{a}
{b} ✓ ✓
{c} ✓ ✓

{b, c} ✓ ✓ ✓ ✓ ✓ ✓

Table 27: Semantics of argument graph W + Y .

• (Ip) Consider argument graph A in Figure 1, B in Figure 2, and the merged
graph A+B, equivalent to graph D in Figure 2 as a counterexample. Their se-
mantics are available in Table 10, 1, and 16, respectively. Ip(A) = 2+0−1 = 1,
Ip(B) = 1 + 0 − 1 = 0, and Ip(A + B) = 1 + 0 − 1 = 0. It is apparent that
Ip(A+B) = 0 ≱ 1 = 1 + 0 = Ip(A) + Ip(B).

• (Icon) Analyze the following counterexample with argument graph C ′ in Fig-
ure 3 and L′ in Figure 7. Icon(C

′) = 1 and Icon(L
′) = 2. For the joint graph

C ′ + L′ it holds that Icon(C
′ + L′) = 2 s.t. Icon(C

′ + L′) = 2 ≱ 3 = 1 + 2 =
Icon(C

′) + Icon(L
′).

c db c dba

Figure 24: Argument graphs Z (left) and A+ Z (right).

• (I ind) Observe the following counterexample, with two graphs A in Figure 1
and Z in Figure 24. The joint graph A + Z is visible in Figure 24. I ind(A) = 2
and I ind(Z) = 3. However, I ind(A + Z) = 4. Clearly, I ind(A + Z) = 4 ≱ 5 =
2 + 3 = I ind(A) + I ind(Z).

• (Idb) Take into account the following counterexample with graph A in Figure
1, B in Figure 2 and their joint graph A + B, which is equivalent to graph
D in Figure 2. In Example 3.28 it was computed that Idb(A) = 0.75 and in
Example 3.26 it was calculated that Idb(D) = 5

9 ≈ 0.56. We calculate Idb(B):
GD(B) = 1+(3×3) = 10. As n = 2, max = 22×(2+1) = 12 and min = 22 = 4.

Idb(B) =
max− GD(B)

max−min
=

12− 10

12− 4
=

1

4
= 0.25

Idb(A+B) ≈ 0.56 ≱ 1 = 0.75 + 0.25 = Idb(A) + Idb(B).

□
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4.2.5 Cyclicaltiy Postulate Propositions and Proofs

Proposition 4.13 Reinforcement is satisfied by Iwco but not by Ipr, Ingr, Inst, Idr, Iwin,
Iwout, Icc, and Iwcc.

Proof.
• (Iwco) Consider two graphs G and G′ which satisfy all the criteria of the Re-

inforcement principle as defined in Section 4.1.6. Recall that Iwco is defined
as the following where |X| is the number of nodes in a component X in the
graph G.

Iwco(G) =
∑

X∈Components(G)

(|X| − 1)2

First, consider graph G in which the nodes are paired as (ai, bi) where i ∈
{0, ..., n− 1} and n ≥ 3 according to Reinforcement. This means that only two
types of nodes exist in G: pairs of nodes and individual disconnected nodes.
The contribution from each paired component in the graph is (|X| − 1)2 =
(2 − 1)2 = 1. For the disconnected nodes the WeightedComponentCount is
always zero, because (|X| − 1)2 = (1 − 1)2 = 0. The total value of Iwco(G)
is expressed as the summation of 1’s proportional to the number of paired
components in G. In terms of n, the WeightedComponentCount in G is:

Iwco(G) =
n−1∑
i=0

1 = n.

Now observe graph G′ with the attack pattern (ai, ai + 1) where i ∈ {0, ..., n−
1}, as determined by the Reinforcement postulate. With the attack relation, it
is ensured, that the graph contains one large component with n+1 nodes that
are connected and form one component, while the rest of nodes are discon-
nected nodes. As mentioned above, the disconnected nodes do not contribute
because they amount to 0. The contribution from the larger component in G′,
with n + 1 nodes, is (n + 1 − 1)2 = n2. As a result the WeightedComponent-
Count for G′ is:

Iwco(G
′) = n2.

Since Iwco(G) = n < n2 = Iwco(G
′) always holds, Reinforcement is fulfilled.

• (Ipr) If for two graphs G and G′ the conditions of Reinforcement are satis-
fied, G and G′ must be acyclic. Recall that Ipr counts the number of preferred
extensions and subtracts one. Since the graphs G and G′ are acyclic and ev-
ery acyclic graph has exactly one preferred extension [17] [15], it follows that
for any graph that satisfies the criteria of Reinforcement, Ipr(G) = Ipr(G

′) =
1− 1 = 0 s.t. Ingr(G) = 0 ≮ 0 = Ingr(G

′).
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For the following proofs consider graphs T in Figure 12 and T ′ in Figure 13 as
counterexamples which fulfill the requirements of Reinforcement.

• (Ingr) Since Disjoint Additivity holds for Ingr, the graphs T and T ′ can be di-
vided into their disjoint components. First observe graph T which consists of
three pairs of nodes isomorphic to graph B in Figure 2 and two disconnected
nodes isomorphic to graph M in Figure 8. We have already calculated Ingr = 0
for graphs B and M in Examples 3.5 and 3.4, respectively, s.t.

Ingr(T ) =
∑

i∈{0,1,2}

Ingr(({ai, bi}, {(ai, bi)})) + Ingr(({a3}, ∅)) + Ingr(({b3}, ∅))

= (3× 0) + 0 + 0 = 0.

Graph T ′ also consists of disconnected nodes and a larger component consist-
ing of four nodes,

(({a0, a1, a2, a3}, {(a0, a1), (a1, a2), (a2, a3)})),

which we label T ′
4 for readability. Given, that for the disconnected nodes

Ingr = 0, we calculate Ingr(T
′
4), based on the semantics in Table 28, followed

by Ingr(T
′).

Ingr(T
′
4) = |Nodes(T ′

4) \ (Extensiong(T
′
4) ∪ Attacked(T ′

4))|
= |{a0, a1, a2, a3} \ ({a0, a2} ∪ {a1, a3})|
= |{a0, a1, a2, a3} \ {a0, a1, a2, a3}| = |∅| = 0

Ingr(T
′) =

∑
i∈{0,1,2,3}

Ingr(({bi}, ∅)) + Ingr(T
′
4)

= 0 + (4× 0) = 0

In total, Ingr(T ) = 0 ≮ 0 = Ingr(T
′).

Set(T ′
4) Conflict-free Admissible Complete Preferred Grounded Stable Naive

∅ ✓ ✓
{a0} ✓ ✓
{a1} ✓
{a2} ✓
{a3} ✓

{a0, a2} ✓ ✓ ✓ ✓ ✓ ✓ ✓
{a0, a3} ✓ ✓
{a1, a3} ✓ ✓

Table 28: Semantics of graph T ′
4.
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• (Inst) As Disjoint Additivity holds for Inst, T and T ′ are divided into their
components to facilitate calculations. Graph T consists of three pairs of nodes,
isomorphic to B for which we have calculated Inst = 0 in Example 3.8. T
further consists of two disconnected nodes, where under the proof for Inst in
Proposition 4.6, we have computed that Inst = 0 for a disconnected node. We
calculate Inst(T ).

Inst(T ) =
∑

i∈{0,1,2}

Inst(({ai, bi}, {(ai, bi)})) + Inst(({a3}, ∅)) + Inst(({b3}, ∅))

= (3× 0) + 0 + 0 = 0

Graph T ′ also consists of disconnected nodes and a larger component consist-
ing of four nodes,

(({a0, a1, a2, a3}, {(a0, a1), (a1, a2), (a2, a3)})),

which we have labeled T ′
4 as above. Given, that for the disconnected nodes

Inst = 0, we calculate Inst(T
′
4), followed by Inst(T

′).

N = ∅ : Extensions(Induced(T ′
4, ∅)) = Extensions({a0, a1, a2, a3}) = {a0, a2}

Since N = ∅ already results in a stable extension {a0, a2}, Inst(T
′
4) = 0.

Inst(T
′) =

∑
i∈{0,1,2,3}

Inst(({bi}, ∅)) + Inst(T
′
4)

= (4× 0) + 0 = 0

For both graphs T and T ′ no arguments have to be removed to obtain a stable
extension. Thus, Inst(T ) = 0 ≮ 0 = Inst(T

′).

• (Idr) Both T and T ′ contain attacks s.t. Idr(T ) = 1 ≮ 1 = Idr(T
′).

• (Iwin) Iwin(T ) = 3× 1 = 3. Iwin(T
′) = 3× 1 = 3. Consequently, Iwin(T ) = 3 ≮

3 = Iwin(T
′).

• (Iwout) Iwout(T ) = 3 × 1 = 3 and Iwout(T
′) = 3 × 1 = 3. It is visible that

Iwout(T ) = 3 ≮ 3 = Iwout(T
′).

• (Icc and Iwcc) Both graphs T and T ′ are acyclic as required by the reinforce-
ment principle. Consequently, Icc(T ) = Icc(T

′) = 0. Then Icc(T ) = 0 ≮ 0 =
Icc(T

′). Similarly, Iwcc(T ) = Iwcc(T
′) = 0. Thus Iwcc(T ) = 0 ≮ 0 = Iwcc(T

′). □
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Proposition 4.14 Ingr, Icc, and Iwcc satisfy Cycle Precedence while the measures Ipr,
Inst, Idr, I in, Iwin, Iwout, and Iwco do not.

Proof.
• (Ingr) Consider an acyclic graph G = (A,R). Since G is acyclic, there are

no cycles of attacks, meaning that every argument is either in the grounded
extension, Extensiong(G), or attacked by some argument in the grounded ex-
tension. Suppose that there exists an argument a ∈ A \ Extensiong(G) that
is not attacked by any member of Extensiong(G). This leads to the following
cases:

– If a is unattacked, it must belong to Extensiong(G), contradicting a /∈
Extensiong(G).

– If a is attacked, the attacker b must either be

* in Extensiong(G), contradicting our statement, or

* outside Extensiong(G), which also is contradicting because argument
b would be defended by Extensiong(G), indicating that a is defended
by Extensiong(G).

As both cases lead to contradictions, no such a exists. Consequently, in an
acyclic graph, the number of arguments not in Extensiong(G) and not attacked
by Extensiong(G) is always 0. Now consider an elementary cycle G′. Given
that G′ is an elementary cycle there are no unattacked arguments. This in turn
means that the empty set always satisfies the conditions for being a complete
extension. Since the grounded extension is the minimal (w.r.t. ⊆) complete
extension, it follows automatically that ∅ is the unique grounded extension in
every elementary cycle. Given that Extensiong(G

′) = ∅, we compute Ingr(G
′):

Ingr(G
′) = |Nodes(G′) \ (Extensiong(G

′) ∪ Attacked(G′))|
=

∣∣{Nodes(G′)} \ (∅ ∪ ∅)
∣∣

=
∣∣{Nodes(G′)} \ ∅

∣∣ = |Nodes(G′)|.

It follows that Ingr(G) = |Nodes(G)| ≥ 1. It holds that Ingr(G) = 0 < 1 ≤
Ingr(G

′) for an acyclic graph G and an elementary cycle G′.

• (Icc) By definition, it holds that for an acyclic graph G, Icc(G) = 0 and for a
graph G′ consisting of an elementary cycle Icc(G

′) = 1. So, Icc(G) = 0 < 1 =
Icc(G

′) applies.

• (Iwcc) For an acyclic graph G, Iwcc(G) = 0. For a graph G′ consisting of an
elementary cycle with n nodes where n ∈ Z, n ≥ 1, Iwcc(G

′) = 1
n . It follows

that Iwcc(G) = 0 < 1
n = Iwcc(G

′).
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• (Ipr) Consider acyclic graph B in Figure 2 and its semantics in Table 1 and an
elementary cycle N in Figure 8 and its semantics in Table 7 as a counterexam-
ple. Ipr(N) = 1− 1 = 0 ≮ 0 = 1− 1 = Ipr(B).

• (Inst) Consider the acyclic graph B in Figure 2 and the elementary cycle H in
Figure 3 as a counterexample. As calculated in Examples 3.8 and 3.9, Inst(B) =
0 and Inst(H) = 1, respectively, s.t. Inst(B) = 0 ≮ 1 = Inst(H).

• (Idr) Consider the acyclic graph B in Figure 2 and elementary cycle H in Fig-
ure 3. Idr(J) = 1 ≮ 1 = Idr(H).

• (Iwin, Iwout, and Iwco) Observe these counterexamples with the acyclic graph
J in Figure 4 and elementary cycle A in Figure 1. Iwin(J) = 1 + 1 = 2 ≮
2 = 1 + 1 = Iwin(A), Iwout(J) = 1 + 1 = 2 ≮ 2 = 1 + 1 = Iwout(A), and
Iwco(J) = (3− 1)2 = 4 ≮ 1 = (2− 1)2 = Iwco(A). □

Proposition 4.15 Size Sensitivity is fulfilled by Iwcc but not by Ipr, Ingr, Inst, Idr, Iwin,
Iwout, Icc, and Iwco.

Proof.
• (Iwcc) Consider two elementary cycles G = (A,R) and G′ = (A′,R′) where

|A′| < |A|. Iwcc(G) =
∑

C∈Cycles(G)
1
|C| where |C| ≥ 1 is the number of nodes

involved in the cycle C. Thus, Iwcc(G) = 1
|A| and Iwcc(G′) = 1

|A′| . Since |A′| <
|A|, it follows that Iwcc(G) = 1

|A| <
1

|A′| = Iwcc(G′).

• (Ipr) Analyze graph N in Figure 8 and graph H in Figure 3, and their se-
mantics in Table 7 and 12, respectively. Both graphs are elementary cycles s.t.
|Nodes(N )| = 1 < 3 = |Nodes(H)|. However, Ipr(N) = 1 − 1 = 0 ≯ 0 =
1− 1 = Ipr(H).

Unless mentioned otherwise, for the following proofs observe graph A in Figure
1 and graph H in Figure 3. Both graphs are elementary cycles and |Nodes(A)| = 2 <
3 = |Nodes(H)|. The semantics of H are in Table 12.

• (Ingr) As computed in Example 3.6 Ingr(A) = 2. We calculate Ingr(H):

Ingr(H) = |Nodes(H) \ (Extensiong(H) ∪ Attacked(H))|
= |{e, f, g} \ (∅ ∪ ∅)|
= |{e, f, g} \ ∅| = |{e, f, g}| = 3.

As visible, Ingr(A) = 2 ≯ 3 = Ingr(H).

77



• (Inst) In Example 3.9 we have shown that Inst(H) = 1. For graph N in Figure
8, whose semantics are in Table 7, we compute that Inst(N) = 1.

N = ∅ : Extensions(Induced(N, ∅)) = Extensions({a}) = ∅
N = {a} : Extensions(Induced(N, {a})) = Extensions(∅) = ∅

It holds that Inst(N) = 1 ≯ 1 = Inst(H).

• (Idr) Idr(A) = 1 ≯ 1 = Idr(H).

• (Iwin) Iwin(A) = 2× 1 = 2 ≯ 3 = 3× 1 = Iwin(H).

• (Iwout) Iwout(A) = 2× 1 = 2 ≯ 3 = 3× 1 = Iwout(H).

• (Icc) Icc(A) = 1 ≯ 1 = Icc(H).

• (Iwco) Iwco(A) = (2− 1)2 = 1 ≯ 4 = (3− 1)2 = Iwco(H). □

5 Conclusion

The objective of this Bachelor thesis was to give an overview of the inconsistency
measures in argument graphs in abstract argumentation proposed in literature [24]
[1] until now, while offering a deeper and unexplored perspective of their charac-
teristics through descriptive evaluation and the utilization of rationality postulates.
In regards to descriptive evaluation, we provided detailed explanations for 14 in-
consistency measures, and considered their strengths and weaknesses. As for the
evaluation based on rationality postulates, we examined 18 rationality postulates
[24] [1] [39] [40], six of which, namely Penalty, Free-Node Dilution, p-Exchange,
g-Exchange, s-Exchange, and naive-Exchange, we formulated in the context of ab-
stract argumentation, inspired by [35], [28] as well as, [9] and [30], respectively. Fi-
nally, for inconsistency measures, whose compliance with the rationality postulates
had not been previously established, we presented proofs to demonstrate the satis-
faction or violation with these postulates. We summarized our findings in Table 15
and discussed them, including those that have been showed before in [24], [1], [29],
and [38].

In the following sections we briefly summarize our results and point to directions
towards possible future work.

5.1 Summary of Results

Results of the descriptive evaluation show that while in general, the extension-
based measures provide a structured, semantics-driven evaluation of inconsistency,
the strengths and weaknesses of these measures especially vary depending on the
chosen semantics, as different semantics capture distinct aspects of argumentation.
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Likewise, the strengths and weaknesses of the graph structure measures depend
on which structural aspects they focus on. Measures that emphasize cycles such as
CycleCount or WeightedCycleCount, for instance, only focus on circular inconsis-
tencies to different extents and may overlook other structural issues. Despite the
different focuses of all the measures, the Distance-based Measure stands out as an
especially fine-granular measure. This is because it considers direct and indirect
attacks, incorporates every node and arc into the measure including disconnected
nodes, is normalized ranging from 0 to 1, where 0 and 1 are exclusivity reserved for
a consistent and a maximally inconsistent graph, respectively, and reserves a certain
range of values for cyclic and acyclic graphs.

Concerning the fulfillment of principles, our findings are summarized in Table
15 and discussed in detail below it, in Section 4.2. Overall, it is apparent that
the compliance or noncompliance for each inconsistency measure varies. How-
ever, all inconsistency measures adhere to Consistency, Isomorphic Invariance and
Free-Node Dilution. It is also visible that the Distance-Based Measure is the only
measure that satisfies Reinforcement, Cycle Precedence and Size Sensitivity, simul-
taneously as well as Contradiction. Conversely, Freeness is satisfied by all mea-
sures except for the Distance-Based Measure. For the principles related to strong
equivalence, each extension-based measure focusing on semantics σ, where σ is
preferred, grounded, stable, or naive, satisfies its respective σ-Exchange. Neverthe-
less, other measures also satisfy certain σ-Exchange postulates, including the two
graph structure-based measures, WeightedComponentCount and In-degree Mea-
sure, which satisfy σ-Exchange under grounded and naive semantics, respectively.

The findings in this thesis also entail that the satisfaction of many rationality pos-
tulates is not a sufficient criterion for evaluating an inconsistency measure. To il-
lustrate why a comparison based solely on the number of satisfied postulates is not
a valid assessment, consider the Drastic and Distance-based Measure, which each
satisfy 11 and 10, respectively, out of 18 principles. However, Drastic is a simple
binary measure, while the Distance-based measure is a very fine-granular measure,
as described above. This implies that Drastic’s compliance with most postulates is
based on the coarseness of the measure rather than its features. This example also
highlights that considering only adherence to rationality postulates, without assess-
ing the measure’s strengths and weaknesses, omits critical insights. Additionally, a
quantitative assessment of satisfied postulates would disregard the different natures
of the principles. It would be misleading to consider the satisfaction of postulates
like Consistency and Normalization equivalent to the fulfillment of principles that
focus on strong equivalence.

In Summary, we conclude that the strengths and weaknesses and the compliance
or noncompliance of the inconsistency measures with the rationality postulates tend
to vary, as each measure captures different aspects of inconsistency in argument
graphs to various extents. We emphasize that this diverse nature does not mean that
a single measure is more superior than another; rather, their usefulness depends on
the specific context and the properties being analyzed. This highlights the impor-
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tance of considering multiple measures to gain a comprehensive understanding of
inconsistency within argument graphs. While we reformulated six postulates for
inconsistency measurements in abstract argumentation graphs, these observations
highlight the need for further exploration of rationality postulates in inconsistency
measurement.

5.2 Future Work

So far, only limited work exists on inconsistency measures in abstract argument
graphs, namely [24] and [1]. As such, many areas of investigation are still open,
including the development of further inconsistency measures in abstract argument
graphs. To gain more perspectives of the characteristics of inconsistency measures,
future work also may consist of the consideration and proposition of more rational-
ity postulates for abstract argumentation graphs to assess the inconsistency mea-
sures in this thesis even more comprehensively.

However, as more measures and postulates are proposed, Thimm [39] warns that
more different measures yield different assessments of how inconsistent an argu-
ment graph is, depending on which rationality postulates they satisfy or violate,
creating ambiguity in what it means for an argument graph to be more or less in-
consistent. One area of extension therefore could be the identification of a minimal
and natural set of postulates that uniquely define a good inconsistency measure [39].
In the context of this thesis, one starting approach would be taking into account the
mutual exclusivity of the rationality postulates. The identification of which postu-
lates cannot hold together would allow for the definition of classes of inconsistency
measures, leading to a minimal foundational set of postulates to make inconsistency
measures more rigorous.

Moreover, future work may incorporate an analysis of the computational com-
plexity of the inconsistency measures listed in this thesis. Prior studies such as
[43], [39], [42], and [44], have explored the computational complexity of other in-
consistency measures in different contexts, providing important information about
the practicality and extent of applicability of the measure by revealing whether the
computation of inconsistency measures can be performed efficiently [31].

Another direction of future work may involve capturing the expressivity of the
inconsistency measures in this thesis, as in [37] and [39]. Expressivity quantifies to
which extent a given inconsistency measure is capable to distinguish between dif-
ferent inconsistent graphs, complementing rationality postulates that tend to focus
on single aspects [37].
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