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Zusammenfassung

Mit Serialisierung können zulässige Extensionen für abstrakte Argumentationsgraphen
konstruiert und gleichzeitig die Begründung von Argumenten nachvollziehbar gemacht
werden. Darüber hinaus ermöglicht es die Definition neuer Semantiken. In dieser Bache-
lorarbeit soll die herausgeforderte Semantik, welche mithilfe von Serialisierung unatta-
ckierte und herausgeforderte initiale Mengen ausschöpfend selektiert, definiert und un-
tersucht werden. Zur Untersuchung wird die herausgeforderte Semantik im Vergleich zu
anderen Semantiken charakterisiert. Weiter wird untersucht, welche gängige Prinzipien
für abstrakte Argumentationsgraphen die herausgeforderte Semantik erfüllt und welche
Rechenkomplexität gängige Probleme für abstrakte Argumentationsgraphen unter der
herausgeforderten Semantik haben.

Abstract

With serialisability admissible extensions for abstract argumentation frameworks can be
constructed while also making the justification of arguments reasonable. In addition, it
allows the definition of new semantics. In this bachelor thesis we want to define and
investigate the challenged semantics that exhaustively selects unattacked and challenged
initial sets via serialisability. For investigation, the challenged semantics is characterised
in comparison to other semantics. We further analyse which common principles for ab-
stract argumentation frameworks the challenged semantics satisfy as well as the compu-
tational complexity for common problems for abstract argumentation frameworks under
the challenged semantics.
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1 Introduction

In everyday life, people argue about every imaginable topic like politics, sports, weather
in many different ways. Argumentation can be seen as a social activity of critical thinking
aimed at justifying or challenging an opinion, through positive or negative interconnected
arguments and with the purpose of persuading an audience [32]. Due to the fact, that
the inferences on arguments of an argumentation can change drastically with every new
argument added, a relation can be seen to non-monotonic reasoning, a sub area of formal
logic, where new information can lead to different conclusions. Consider, for example,
following fictive argumentation on the introduction of a new management software:

A1 We are introducing a new digital administration system.

A2 The old system is still working and switching is too risky.

A3 The new system has been tested successfully and offers improved security.

A4 New systems tend to fail in practice.

Argument A1 is attacked by argument A2 that claims to stay at the current administra-
tion system. Arguments A2 and A3 mutually attack each other due to A2 questioning the
benefits of A3 and A3 invalidates A2, since the system is tested which lower the risks. In a
same way argument A3 attacks A4. Each new argument changes the viewpoint, whether
the introduction of a new management software is a good idea or causes problems, and
no final conclusion can be made, if personal factors are left out.

With his paper from 1995, Phan Minh Dung showed, that non-monotonic reasoning is
a form of argumentation by introducing a simple mathematical formalism for argumen-
tation, which represents a significant milestone in artificial intelligence [20]. Since then,
his formalism of Abstract Argumentation Frameworks (AAFs) has been subject of many
investigations and scientific papers and has found its way into various areas of artificial
intelligence systems such as chatbots [18] or in legal reasoning [28].

Dung’s approach is to abstract away from the content of arguments and concentrate on
the attacks between them, where an attack indicates that one argument challenges the
justification of another [20]. This allows to model an argumentation as a pair consisting
of a set of arguments and an attack relation. Besides that, this model of argumentation
can be presented as a directed graph, where arguments are the vertices and attacks are
the directed edges indicating the source and the destination of an attack. For instance,the
directed graph for the previous argumentation is depicted in Figure 1.

A1 A2 A3 A4

Figure 1: A formalisation of the example argumentation

Given an abstract argumentation framework, possible solutions in form of sets of argu-
ments can be evaluated. Important properties, that these solutions often should comply
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with, are conflict-freeness and admissibility [20]. While, for a considered set of argu-
ments, conflict-freeness requests no attacks between set members of a considered set of
arguments, admissibility refers to the ability to defend oneself. In this regard self defence
can be understood as follows: if an argument of the considered set is attacked, then this
attacker must itself be attacked either due to a mutual attack or through the attack of
another argument of the set.

Meanwhile, the idea of abstract argumentation frameworks has been expanded to over-
come limitations of the original model resulting from its simplicity. For example, the
Bipolar Argumentation Framework (BAF) adds a support relation that goes beyond de-
fence [17], the Weighted Argumentation Framework (WAF) adds weights to the attacks
and introduce an inconsistency budget that allows to neglect weak attacks [22] and the
Probabilistic Argumentation Frameworks (PrAF) suggests the use of probabilities for ar-
guments or attacks as a quantification of uncertainty regarding their presence [25][24].
Besides the abstract approach, ABA [30] and ASPIC+ [26] are examples for structured
argumentation, where arguments arise through derivation and attacks arise from rules
or conclusions. In this bachelor thesis, however, we only consider the original Abstract
Argumentation Framework from Dung.

As already mentioned before, the purpose of an argumentation is to convince an audi-
ence. In this regards, an audience has its own views and expectations of a solution, that
is maybe influenced by their social, cognitive, emotional or contextual situation [32]. An
argumentation on therapies for improving medical conditions of an human being is likely
to be handled with more skepticism than an argumentation about which film to see in
the cinema. In Abstract Argumentation Frameworks this can be modelled via semantics.
These semantics are the basis for evaluating Abstract Argumentation Frameworks by ap-
plying rules and conditions that affect the acceptance of arguments [20]. Generally, there
are three styles of semantics definitions, namely labeling-based [16], extension-based [5]
and ranking-based [1]. The labeling-based approach defines a set of labels and how they
are applied to arguments, while the extension-based characterises which properties a set
of arguments must fulfill in order to belong to a semantics [5]. A set that satisfies those
properties of a semantics is called an extension of that semantics. We will focus on the
extension-based approach in this bachelor thesis.

For Abstract Argumentation Frameworks, various semantics have already been pro-
posed. In his paper, for example, Dung already defined four semantics: grounded, com-
plete, preferred and stable [20]. The grounded semantics only take into account the
minimal acceptable (wrt. set inclusion) set of arguments and has exactly one extension
for an arbitrary abstract argumentation framework. For complete semantics an extension
includes all arguments it defends. An extension is a preferred extension if it is admissi-
ble and maximal (wrt. set inclusion). Moreover, if an extension is preferred and every
argument outside of the extension is attacked by that extension, it is stable. There are
further semantics from the literature like ideal [21], semi-stable [15], strong admissible
[5][14] and many others.

Motivated by the intention to decompose large extensions to better express the rea-
soning process why arguments may be contained in that extension, a non-deterministic,
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iterative approach called serialisability was formalised [29]. Basic concepts of serialis-
ability are initial sets and reduct. An initial set is a non-empty, admissible set that is
minimal wrt. set inclusion. Initial sets were introduced in [33] and further investigated in
[29]. They can be categorised totally into three types: unattacked initial sets that are not
attacked at all, unchallenged initial sets that are not attacked by other initial sets but by
other arguments and challenged initial sets that are in conflict with other initial sets [29].
Due to their properties, initial sets can be seen as a solution to a local conflict [29]. A
reduct can be characterised as a subframework of an abstract argumentation framework
AF derived in regards to a set S. It is obtained by removing S and all arguments S
attacks from AF [9]. The serialised extension construction itself is quite simple. Itera-
tively select an initial set of the current considered abstract argumentation framework,
then progress to the reduct corresponding to the selection until a certain termination
criteria is satisfied. This carries the idea that we first solve a small and local problem
and progress to a framework without the nodes already decided. Most of the common
admissibility-based semantics can be characterised by serialisation and it is also possible
to define new semantics through defining selection and termination on initial sets [29].

One of these semantics is the unchallenged semantics analysed in [11]. For the unchal-
lenged semantics only unattacked and unchallenged initial sets are allowed to be selected
and it will be iterated until none of these two types of initial sets can be found in the
remaining abstract argumentation framework. Since unchallenged initial sets do not con-
tradict any immediately acceptable arguments, it is reasonable in a general consensus to
accept them just as unattacked initial sets.

In this bachelor thesis we characterise the challenged semantics via serialisability and
afterwards analyse it in detail. Instead of unattacked and unchallenged initial sets the
challenged semantics exhaustively selects unattacked and challenged initial sets. In con-
trast to unattacked and unchallenged initial sets, that are by an general consensus ac-
ceptable, challenged initial sets describe contradictory positions. You can either accept
the one or the other. Challenged semantics can help to understand the effects of selecting
the one challenged initial set over the other or to put it another way, what is influenced
by the decision for one or the other side. To underline this, we will demonstrate the chal-
lenged semantics on the previous argumentation, without clarifying the mathematical
prerequisites at this point.

For the previous argumentation depicted in Figure 1, arguments A2 and A3 are chal-
lenged initial sets. Because we abstracted from the actual content, there is no bias, so
arguments A2 and A3 can be considered equally acceptable. The choice, which challenged
initial set we choose, directly influences the acceptance of arguments A1 and A4 If we
select A2 to accept, we have to reject A1 and A3 due to attacks of A2 and can then accept
argument A4, because there is nothing left, that attacks it. If we first select argument
A3, then arguments A2 and A4 are rejected and arguments A1 remains unattacked and
can thus be accepted, too.

That shows, that the acceptance of argument A1 or A4 is directly connected to the
conflict between arguments A2 and A3 Moreover, the selection of either argument A2 or
A3 leads to exclusive results (A1 is only acceptable after A3 has been accepted and A4 is
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only acceptable after A2 has been accepted). To conclude this in an informal way: You
can only have one thing and have to live with the consequences of your choice.

1.1 Related Work

Before presenting the research goals for this bachelor thesis, we discuss related work.
Semantics were introduced in various papers. An overview of many semantics is given in
[2]. It has to be noted, that we only consider semantics that are based on admissibility.
This is due to the fact, that challenged semantics is defined by serialisability, which itself
is inherently coupled to admissibility. Thus, the challenged semantics is not compared
against semantics like CF2 [4] or weak-admissibility [8]. Moreover, a principle based
analysis of semantics has been done, for example, in [5], [19] or [11]. The same holds
for studying the computational complexity. An overview is given in [23], while [29] and
[11] considers computational problems and their complexity related to serialisability and
serialisable semantics. In fact, this bachelor thesis shares similarities to [11] due to the
close relationship between unchallenged and challenged initial sets.

As we already know, serialisability is a formalisation that allows to construct exten-
sions of different semantics [29]. This was directly influenced by [33] where an iterative
approach is used by continuously applying the characteristic function, a function that
returns all defended arguments in regards to a set S, and adding defended arguments
to S starting at initial-like arguments or their interpretation of initial sets. Another
way to express semantics while giving the ability to define new semantics is presented
in [6] by SCC-Recursiveness. This approach defines a recursive algorithm which passes
through all strongly connected components (SCC) to construct extensions. Interestingly,
serialisability does not imply SCC-recursiveness and vice versa [11] and that although
every initial set of an abstract argumentation framework is also an initial set of a single
SCC and all conflicts in regards to initial sets are within a single SCC [29].

Other noteworthy work is the transfer of serialisability to ranking-semantics [13], the
characterising of serialisation equivalence [10] or the improvement of algorithms that
calculates the unchallenged semantics [12].

1.2 Research Questions and Structure of the Thesis

The term "analysis" is broad and unexplanatory. Therefore, we limit the scope of the
bachelor’s thesis by specifying concrete research questions.

Research Question 1. How can the challenged semantics be defined and how can it be
characterised in comparison to other common semantics?

Research Question 2. Which argumentation principles does the challenged semantics
satisfy?

Research Question 3. What is the computational complexity of common problems
w.r.t. challenged semantics in abstract argumentation frameworks?
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Since the research questions already implies a structure, the bachelor thesis is organised
as follows: In Section 2 the needed mathematical constructs and ideas such as Abstract
Argumentation Frameworks, Initial Sets, Reduct and Serialisability, as well as the con-
sidered principles are defined. Section 3 starts with the definition of the challenged
semantics followed by an example-driven analysis and a comparison to other semantics
based on the extensions. Section 4 and 5 analyses the challenged semantics in regards
of principle satisfaction and time complexity. In Section 6 we discuss and compare the
results of the previous Sections. Section 7 then present ideas for future work and the
thesis ends with a conclusion in Section 8.

2 Background

The following section gives a brief overview of definitions, concepts and notation on
which this bachelor thesis is based on. First, abstract argumentation frameworks are
introduced, along with semantics that allow the selection of admissible sets while consid-
ering specific constraints. Then, serialisation is presented, enabling the definition of new
semantics, such as the challenged semantics, which will be examined in this bachelor’s
thesis. Additionally, general principles are explained to facilitate an objective analysis.

2.1 Abstract Argumentation Frameworks

We first define Abstract Argumentation Frameworks and Semantics, as they are the es-
sential base constructs for this thesis.

Definition 1. An abstract argumentation framework is a tuple AF = (A,R), where A
is a finite set of arguments and R is a relation R ⊆ A×A. [20]

Each element (a, b) ∈ R, also written as aRb, expresses that argument a attacks argu-
ment b. This definition enables us to represent an abstract argumentation as a directed
graph. Most of the time we consider not just single arguments, but sets of arguments.
Therefore, for a set X ⊆ A we introduce AF |X = (X,R ∩X ×X) as the projection of
AF on X. Likewise, for a set S ⊆ A, we define

S+
AF = {a ∈ A | ∃b ∈ S : (b, a) ∈ R}

S−
AF = {a ∈ A | ∃b ∈ S : (a, b) ∈ R}.

The specification of the abstract argumentation framework is omitted when it is clear
which argumentation framework the set belongs to.

A set S attacks another set S′, if S′∩S+ ̸= ∅. A set S is defended by S′ if each attacker
b ∈ S− of S is attacked by S′. If there are no arguments a, b ∈ S with (a, b) ∈ R, we
say that S is conflict-free(cf). In addition, if S defends itself against all attackers, S is
admissible.

Definition 2. Let S ⊆ A be a set of arguments. S is admissible(ad) iff S is conflict-free
and S defends every a ∈ S.
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a

b c

d

Figure 2: Directed graph for AF2.

Example 1. Let AF2 be an abstract argumentation framework with A = {a, b, c, d} and
R = {(a, b), (a, d), (b, c), (d, b)}. The corresponding graph is shown in Figure 2.

Let S = {a, c} be a set of arguments of AF2. S is conflict-free, because there is no
attack between a and c. S also defends itself against all incoming attacks, since a defends
itself against the attack of d, and c by attacking b. Therefore, S is also admissible. The
same applies to S′ = {d, c}, where d defends itself against a, and also c by attacking b.

An admissible set is one valid solution in the context of the abstract argumentation
framework. The set of all admissible sets of an abstract argumentation framework will
be denoted as adm(AF). Semantics make it possible to select admissible sets, also called
extensions, under certain aspects and constraints [2].

Definition 3. An admissible set E is

• a complete(co) extension iff for all a ∈ A, if E defends a then a ∈ E,

• a grounded(gr) extension iff E is complete and there is no complete extension E′

for that E′ ⊊ E holds,

• a stable(st) extension iff E ∪ E+
AF = A,

• a preferred(pr) extension iff there is no admissible set E′ for that E ⊊ E′ holds,

• an ideal(id) extension iff E is the maximal admissible set with E ⊆ E′ for each
preferred extension E′,

• a semi-stable(sst) extension iff E ∪ E+
AF is maximal,

• a strongly admissible(sa) extension iff E = ∅ or each a ∈ E is defended by some
strongly admissible E′ ⊆ E \ a.

All specifications regarding the size or maximality/minimality of a set are to be un-
derstood in terms of set inclusion.

Example 2. Consider AF2 in Figure 2. The extensions of the given semantics are as
follows:
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Semantic Extensions
co {{a, c}, {d, c}, ∅}
gr {∅}
st {{a, c}, {d, c}}
pr {{a, c}, {d, c}}
id {∅}
sst {{a, c}, {d, c}}
sa {∅}

Table 1: Extensions of AF2 for different semantics.

2.2 Serialisability

Recent publications have introduced serialisability, a new approach for determining ex-
tensions of admissibility-based semantics [29]. The realization that initial sets are build-
ing blocks of admissibility-based semantics from [33] was a crucial observation.

Definition 4. Let AF = (A,R) be an abstract argumentation framework. A set S ⊆ A,
S ̸= ∅ is called an initial set iff S is admissible and there is no other S′ ̸= ∅ for that
S′ ⊊ S holds.

The set of all initial sets of an abstract argumentation framework is denoted as IS(AF ).
Furthermore, initial sets can be completely divided into three distinct categories [29].

Definition 5. Let AF = (A,R) be an abstract argumentation framework. An initial set
S ∈ IS(AF ) is

1. unattacked iff S− = ∅

2. unchallenged iff S− ̸= ∅ and there is no other S′ ∈ IS(AF ) that attacks S

3. challenged iff there another S′ ∈ IS(AF ) that attacks S.

In the following, unattacked, unchallenged, and challenged initial sets are represented
by IS↚(AF ), IS↮(AF ), and IS↔(AF ), respectively.

a

b c

d

e

f g

h

Figure 3: AF3 with unattacked, unchallenged and challenged initial sets
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f g

he

Figure 4: S-reduct AF
{b,d}
3

Example 3. Lets assume we have the argumentation framework AF3 shown in Figure 3.
Then we have IS(AF3) = {{b}, {d} {e, g}, {f, h}} with IS↚(AF3) = {d}, IS↮(AF3) = {b}
and IS↔(AF3) = {{e, g}, {f, h}}.

Another important concept is the S-reduct, or simply reduct [7]. It enables us to
remove a set S of arguments from an abstract argumentation framework as well as the
arguments attacked by S.

Definition 6. Let AF = (A,R) be an abstract argumentation framework and S ⊆ A a
set of arguments. The S-Reduct AFS is defined by AFS = (A′, R′) with A′ = A\(S∪S+)
and R′ = R ∩A′ ×A′.

Example 4. Consider AF3 and the set S = {b, d}. Since S attacks some arguments,
there is S+ = {a, c}. If we remove S and S+, then we are left with AF

{b,d}
3 = {e, f, g, h}

shown in Figure 4.

Serialisability combines initial sets with reducts in an iterative manner. Sequentially,
an initial set is selected from the graph under consideration and is then removed by
building the reduct, until no more initial sets remain. The selected initial sets represent
a serialisation sequence [13].

Definition 7. A serialisation sequence for an abstract argumentation framework AF is
a sequence S = (S1, . . . , Sn) for which S1 ∈ IS(AF ) holds and Si ∈ IS(AFS1∪···∪Si−1)
holds for all 2 ≤ i ≤ n.

Let S = (S1, . . . , Sn) be a serialisation sequence. We denote the set S = S1 ∪ · · · ∪Sn

as the S -induced set. Since we only select initial sets that are, by themselves, always
admissible, the set induced by S is also admissible [29]. Furthermore, every admissible,
non empty set can be expressed by at least one serialisation sequence while a serialisation
sequence induces exactly one admissible set [29].

Example 5. Lets assume we have AF3. IS(AF3) is shown in Example 3. We might pick
the unchallenged argument d first and add it to the serialisation sequence S1 = ({d}).
Now we reduce the graph. AF

{d}
3 is shown in Figure 5. For AF

{d}
3 the initial sets

are IS(AF
{d}
3 ) = {{b}, {e, g}, {f, h}}. We might now choose b as the next initial set:

S1 = ({d}, {b}). The reduct AF
{b,d}
3 is already shown in Figure 4 and has the intial

sets IS(AF {b,d}
3 ) = {{e, g}, {f, h}}. We might choose {f, h}. The serialisation sequence
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then is S1 = ({d}, {b}, {f, h}) and the reduct AF
{b,d,f,h}
3 has no more arguments and

therefore no more initial sets. The S1-induced set would be S1 = {b, d, f, h}. We would
get the same induced set S1 with the serialisation sequence S2 = ({b}, {d}, {f, h}).

a

b e

f g

h

Figure 5: Reduct AF
{d}
3

It is important to notice that the concept of serialisation does not make any suggestions
which initial set to choose. Therefore serialisability is a non-determinstic algorithm. This
is why Example 5 is in some kind a simplification, because it just look at one possible
path. Due to the fact, that building a reduct may influence the initial sets we might need
to look for every possible serialisation sequence to have a complete view.

Most of the shown semantics can also be characterised by serialisability.

Theorem 1. Let AF = (A,R) be an abstract argumentation framework and E ⊆ A.
Then E is

• a complete extension iff there is a serialisation sequence S = (S1, . . . , Sn) for
E = S1 ∪ · · · ∪ Sn and its hold that IS↚(AFS1∪···∪Sn),

• a grounded extension iff there is a serialisation sequence S = (S1, . . . , Sn) for
E = S1 ∪ · · · ∪ Sn and for all Si, i = 1, . . . , n it holds that Si ∈ IS↚(AFS1∪···∪Si−1)
and additionally IS↚(AFS1∪···∪Sn) = ∅ holds,

• a preferred extension iff there is a serialisation sequence S = (S1, . . . , Sn) for
E = S1 ∪ · · · ∪ Sn and it holds that IS(AFS1∪···∪Sn) = ∅,

• a stable extension iff there is a serialisation sequence S = (S1, . . . , Sn) for E =
S1 ∪ · · · ∪ Sn and it holds that AFS1∪···∪Sn = (∅, ∅).

Example 6. Consider again AF2 in Figure 2. The abstract argumentation framework
has IS(AF1) = {{a}, {d}}. We first take a look on the serialisation sequences for the
complete semantics(co). Since co does not give restrictions on which initial sets to choose
from, we start with {a}: Sco1 = ({a}). From AF

{a}
2 we can then choose IS↚({c}) and

get Sco1 = ({a}, {c}) and no more arguments in the reduct. For the second sequence,
we instead start with {d}: Sco2 = ({d}). In AF

{d}
2 the unattacked initial set IS↚({c})

remains: Sco2 = ({d}, {c}). With Sco3 = (∅) there is a third serialisation sequence that
fulfill all requirements set in theorem 1.

For the preferred semantics (pr) we also have Spr1 = ({a}, {c}) and Spr2 = ({d}, {c}),
but ∅ is not a valid solution for pr due to IS(AF2) ̸= ∅.
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With serialisablity we can also characterize new semantics like the unchallenged se-
mantics [11].

Definition 8. Let AF = (A,R) be an abstract argumentation framework. We say
that uc(AF) is the set containing all subsets S ⊆ A for which there exists a serialisation
sequence Suc = (S1, . . . , Sn) such that S = S1∪· · ·∪Sn and it holds that S1 ∈ IS↚(AF )∪
IS↮(AF ) and for all Si, i = 2, . . . , n that Si ∈ IS↚(AFS1∪···∪Si−1) ∪ IS↮(AFS1∪···∪Si−1)
and IS↚(AFS1∪···∪Sn) ∪ IS↮(AFS1∪···∪Sn) = ∅.

In the unchallenged semantics the selection of initial sets is restricted to unattacked and
unchallenged inital sets, until none of these can be further selected in the corresponding
reduct.

Example 7. We look again at AF3 in Figure 3. As in example 5 for Suc1 we can
first select {d} and then {b}. From AF

{d,b}
3 no more initial sets can be selected under

the constrains of the unchallenged semantics. Therefore, Suc1 = ({d}, {b}) The same
initial sets can be selected in other order leading to Suc2 = ({b}, {d}). Both serialisation
sequences induce the same set S1 = {b, d}.

2.3 Principles

Principles allow an objective analysis of semantics and help to make them compara-
ble. This chapter introduces principles from the literature that are considered in the
investigation of the challenged semantics. In particular, we define unattacked sets for
the introduction of directionality, give some additional definitions for the introduction of
SCC-Recursiveness [6] and specify Strong Admissibility below.

Definition 9. Let AF = (A,R) be an abstract argumentation framework. A set U ⊆ A
is called unattacked iff there is no a ∈ (A \ U) that attacks b ∈ U .

The set of unattacked sets of AF will be written as US(AF ).

Definition 10. Let AF = (A,R) be an abstract argumentation framework. A set S ⊆ A
is a strongly connected component of AF , if there is a directed path between any pair
a, b ∈ S in AF and there is no S′ ⊃ S with that property.

The set of strongly connected components for AF will be denoted as SSCsAF .

Example 8. Let us investigate AF3 from Figure 6 in terms of strongly connected compo-
nents. {a, b} is a strongly connected component, because there is a path from a to b and
vice versa. Another strongly connected component is {e, f, g, h}. Due to its circle shape
each argument has a path to each other. The argument d has only outgoing edges so that
it is not possible to reach d in any way, therefore it is a strongly connected component
on its own. Nearly the same holds for c, which does not have any outgoing edges so that
there is no path to other arguments. Hence, SSCsAF3 = {{a, b}, {c}, {d}, {e, f, g, h}}.

For the following concepts we need a slightly modified perspective for the set of at-
tackers of an given set S.
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f g

h

Figure 6: AF3 from Figure 3 reproduced for ease of reference.

Definition 11. Let AF = (A,R) be an abstract argumentation framework and S ⊆ A
be a set of arguments. We define: opAF (S) = {a ∈ A | a /∈ S ∧ aRS}

Therefore opAF (S) contains all attacked arguments of S that are not in S themselves.

Definition 12. Given an abstract argumentation framework AF = (A,R), a set E ⊆ A
of arguments and a strongly connected component S ∈ SSCsAF . We define:

• DAF (S,E) = {a ∈ S | (E ∩ opAF (S))Ra},

• PAF (S,E) = {a ∈ S | (E ∩ opAF (S)) ̸Ra ∧ ∃b ∈ (opAF (S) ∩ a−AF ) : E ̸Rb},

• UAF (S,E) = S \ (DAF (S,E) ∪ PAF (S,E)).

The function abbreviations D, P and U stand for defeated, provisionally defeated and
undefeated with respect to the set E composed of arguments we want to accept [6].
Defeated are therefore those arguments of the strongly connected component, that are
directly attacked by E from outside of S. Arguments of S are provisionally defeated if
they are attacked from outsite of S, but not by arguments of E. All remaining arguments
are undefeated, which means that they are not attacked by but instead defended by E.

With these functions it is possible to define a recursive algorithm to examine abstract
argumentation frameworks based on their strongly connected components [6].

Definition 13. Given an abstract argumentation framework AF = (A,R) and a set of
arguments C ⊆ A.

1. A function BF (AF,C) is called base function, if, given an argumentation frame-
work AF = (A,R) such that |SSCsAF | = 1 and a set C ⊆ A, we have that
BF (AF,C) ⊆ 2A,

2. Given a base function BF (AF,C), we define the function G FBF (AF,C) ⊆ 2A

as follows: for any E ⊆ A,E ∈ G F (AF,C) if and only if

• in case |SSCsAF | = 1, E ∈ BF (AF,C),

• otherwise, ∀S ∈ SSCsAF : E ∩ S ∈ G FBF (AF |S\DAF (S,E), UAF (S,E) ∩ C).
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The generic selection function G F allows us to select every possible strongly connected
component recursively under consideration of previously accepted arguments in E . This
is done with the help of graph projections on strongly connected components without
their defeated arguments. If the projection only contains a single strongly connected
component, the acceptable arguments of this component are evaluated with the base
function BF .

The next definition introduces strong defence which is essential for the Strong Admis-
sibility Principle.

Definition 14. Let AF = (A,R) be an argumentation framework and E ⊆ A is a set
of arguments. We say that an argument a ∈ A is strongly defended by E, written as
sd(a,E), iff ∀b ∈ A : bRa ⇒ ∃c ∈ E \ {a} : cRb and sd(c, E \ {a})

Now, we are in a position to specify the principles considered in this bachelor’s thesis
for analysing the challenged semantics.

We start by showing the Conflict-Freeness Principle that has a general purpose and
that every good semantics should satisfy.

Principle 1. A semantics σ satisfies the principle of Conflict-Freeness [5] iff for every
abstract argumentation framework AF , every E ∈ σ(AF ) is conflict-free with respect to
the attack relation.

This means that there are not attacks between arguments of any extension for an
arbitrary abstract argumentation framework AF .

The next principles deal with defence. For example, the following Admissibility Prin-
ciple deals with whether every extension of a semantics is always admissible.

Principle 2. A semantics σ satisfies the principle of Admissibility [5] iff for every abstract
argumentation framework AF , every E ∈ σ(AF ) is conflict-free and defends itself in AF .

In other words every extension of a semantics is an acceptable solution.

The Strong Admissibility Principle requires the stricter interpretation of strong defence.

Principle 3. A semantics σ satisfies the principle of Strong Admissibility [5] iff for every
abstract argumentation framework AF , for every E ∈ σ(AF ) and every a ∈ E it holds
that a ∈ E ⇒ sd(a,E).

Stated differently, every argument included in an extension of a semantics is at least
defended by another argument of the extension. Hence, an argument is justified not only
by itself, when it is attacked.

We also consider two attenuations of admissibility. The first one is the Reduct-
Admissibility Principle.

Principle 4. A semantics σ satisfies the principle of Reduct-Admissibility [19] iff for
every abstract argumentation framework AF and E ∈ σ(AF ) we have that ∀a ∈ E : if b
attacks a then b /∈

⋃
σ(AFE).
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The intuition behind the Reduct-Admissibility Principle is, that a set of arguments have
to defend itself only against arguments, that have a chance to be accepted [8]. While
the Reduct-Admissibility Principle states that the attacker of the extension may not be
accepted in the reduct, the upcoming Semi-Qualified Admissibility Principle states that
an extension only has to defend itself against arguments that are contained in at least
one extension of the semantics [19].

Principle 5. A semantics σ satisfies the principle of Semi-Qualified Admissibility [19] iff
for every abstract argumentation framework AF and E ∈ σ(AF ), we have that ∀a ∈ E,
if b attacks a and b ∈

⋃
σ(AF ) then ∃c ∈ E s.t. c attacks b.

The last defence-based principle is the Reinstatement Principle.

Principle 6. A semantics σ satisfies the principle of Reinstatement [5] iff for every
abstract argumentation framework AF = (A,R) and E ∈ σ(AF ) it is true that a ∈ E if
E defends some a ∈ A.

The idea behind this principle is, that every argument that is defended, should also be
accepted.

Extensions that contain as many arguments as possible are often desired. This is
expressed by the next principle.

Principle 7. A semantics σ satisfies the principle of I-Maximality [5] iff for every abstract
argumentation framework AF and E1, E2 ∈ σ(AF ), it is true that E1 ⊆ E2 ⇒ E1 = E2.

A semantics that satisfies this principle focuses only on solutions that are as compre-
hensive as possible.

The upcoming Directionality Principle describes, that the justification of an argument
should only depend on the justification of their ancestors and not on the justification of
their successors.

Principle 8. A semantics σ satisfies the principle of Directionality [5] iff for every ab-
stract argumentation framework AF = (A,R) and ∀U ∈ US(AF ) we have σ(AF,U) =
σ(AF |U ) with σ(AF,U) = {E ∩ U | E ∈ σ(AF )}

Sometimes, it may be desirable to refrain from making a definite decision about an
argument, especially when no clear justification can be found. This is formalised by the
next principle.

Principle 9. A semantics σ satisfies the principle of Allowing Abstention [3] iff for every
abstract argumentation framework AF and for every a ∈ A, if there exist two extensions
E1, E2 ∈ σ(AF ) such that a ∈ E1 and a ∈ E+

2 then there exists an extension E3 ∈ σ(AF )
such that a /∈ (E3 ∪ E+

3 ).

The idea behind the next principle is that the point of view of an abstract argumen-
tation framework can be merged with the point of view of the resulting reduct.

13



Principle 10. A semantics σ satisfies the principle of Modularization [7] iff for every
abstract argumentation framework AF it is true that E1 ∈ σ(AF ) ∧ E2 ∈ σ(AFE1) ⇒
E1 ∪ E2 ∈ σ(AF ).

Another principle we consider is the SCC-Recursiveness Principle. Extensions were
calculated on the basis of strongly connected components and their ancestors. SCC-
Recursiveness also allows to characterize new semantics via the definition of a base func-
tion [6].

Principle 11. A semantics σ satisfies the principle of SCC-Recursiveness [6] iff there is a
base function BF σ such that for every abstract argumentation framework AF = (A,R)
we have that σ(AF ) = G FBFσ(AF,A).

A SCC-Recursive semantics can be calculated by considering only the SCC itself and
the acceptance of arguments of ancestor SCCs.

To conclude the principles, we give a definition for the Naivety Principle.

Principle 12. A semantics σ satisfies the principle of Naivety [5] iff for every abstract
argumentation framework AF = (A,R), every E ∈ σ(AF ) is conflict-free and maximal
with respect to cf(AF ).

Simply put, a semantics that satisfies the Naivety principle neglects the idea of defence
and only considers maximal sets without mutually attacking arguments.

3 Characterising Challenged Semantics

In the following section the challenged semantics will be defined and analysed in com-
parison to other semantics.

3.1 Challenged semantics

With the knowledge from the background section it is possible to give a definition for
the challenged semantics.

Definition 15. Let AF = (A,R) be an abstract argumentation framework.
Let c(AF) be the set containing all subsets S ⊆ A for which there exists a serialisation
sequence S c = (S1, . . . , Sn) with S = S1 ∪ · · · ∪ Sn and it holds that S1 ∈ IS↚(AF ) ∪
IS↔(AF ) and for all Si, i = 2, . . . , n that Si ∈ IS↚(AFS1∪···∪Si−1) ∪ IS↔(AFS1∪···∪Si−1)
and IS↚(AFS1∪···∪Sn) ∪ IS↔(AFS1∪···∪Sn) = ∅.

In simple terms, the challenged semantics is defined by putting restrictions on seri-
alisation sequences. On the one hand only challenged initial sets as well as unattacked
initial sets are selected. On the other hand a serialisation sequence ends when no more
unattacked or challenged initial sets can be selected in the corresponding reduct. The
following examples illustrate the application of the challenged semantics.
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a b c d

Figure 7: AF4 with unattacked and challenged initial sets.

Example 9. Figure 7 shows the argumentation framework AF4 for this example.
In the beginning, the AF4 has an unattacked initial set IS↚(AF4) = {{a}} and the

challenged initial sets IS↔(AF4) = {{c}, {d}}. To begin with a serialisation sequence, we
could accept either one of them. If we accept {a} first, the challenged initial sets {c} and
{d} remain in the reduct AF {a}. The serialisation sequences then end by accepting one
of these initial sets, which leads to S 1 = ({a}, {c}) and S 2 = ({a}, {d}). Otherwise,
if we accept c first, only a remain in AF {c} ending in the serialisation sequence S 3 =
({c}, {a}). The last possible sequence begins with accepting d. In AF {d} the arguments
a and b are still present with a still being an unattacked initial set. After accepting a
the sequence S 4 = ({d}, {a}) ends.

The induced extensions for the sequences found are {a, c} and {a, d}.

Due to the fact that the challenged semantics is the central aspect of this thesis, let
us present another example.

Example 10. Consider the abstract argumentation framework AF5 from Figure 8a. We
have IS↚(AF5 = {b}) and IS↔(AF5) = ∅. Thus, we select argument b first. The reduct is
shown in 8b. Since IS↔(AF

{b}
5 ) = {{d, e}, {c}}, we can find two serialisation sequences:

S 1 = ({b}, {d, e})
S 2 = ({b}, {c}, {a})

Consequently, we have the challenged extensions c(AF5) = {{a, b, c}, {b, d, e}}.

b g c e a

f

d

(a) AF5

c e a

f

d

(b) AF
{b}
5

Figure 8: AF5 and reduct AF
{b}
5 from Example 8

.

Besides the definition of challenged semantics via serialisation sequences, it is also
possible to give a recursive definition, as the following theorem demonstrates.

Theorem 2. Let AF = (A,R) be an abstract argumentation framework and E ⊆ A. E
is an challenged extension of AF if and only if either
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• E = ∅ and IS↚(AF ) ∪ IS↔(AF ) = ∅ or

• E = E1∪E2, E1 ∈ IS↚(AF )∪ IS↔(AF ) and E2 is a challenged extension of AFE1.

Proof. This proof follows the general structure presented in [11], with modifications to
suit the context of the challenged semantics.

Let E be a challenged extension. If E = ∅, then we have IS↚(AF ) ∪ IS↔(AF ) = ∅
and the termination criteria of challenged semantics is met. Assume E ̸= ∅. Therefore
we have E1 ∈ IS↚(AF ) ∪ IS↔(AF ) such that E1 ⊆ E. We further need to show, that
E2 = E \E1 is a challenged extension of AFE1 . Let a ∈ E2 and let b1, . . . , bn ∈ A be the
attackers of a in AF . Due to E is a challenged extension, a must be defended by some
arguments c1, . . . , cn with ci attacks bi for i = 1, . . . , n (some ci are possibly identical).
Further assume, without loss of generality, c1, . . . , ck ∈ E1 for some k ≤ n. It follows,
that b1, . . . , bk are not in the reduct AFE1 since they are in E+

1 and a must only be
defended against bk+1, . . . , bn in AFE1 . As a consequence of E2 = E \E1 it applies that
ck+1, . . . , cn ∈ E2. Hence, a is defended by E2 in AFE1 and E2 is a challenged extension
in AFE1 .

We now investigate the other direction. If E = ∅ and IS↚(AF ) ∪ IS↔(AF ) = ∅, then
E is a challenged extension. Assume E = E1 ∪ E2, E1 ∈ IS↚(AF ) ∪ IS↔(AF ) and E2

is a challenged extension of AFE1 . We have to show that E is a challenged extension.
For this, let a ∈ E and let b1, . . . , bn ∈ A be the attackers of a in AF . If a ∈ E1 then
there are c1, . . . , cn with ci attacks bi for i = 1, . . . , n because E1 is per definition either
an unattacked or challenged initial set of AF . If a ∈ E2, suppose there is an attacker b
of a such that b is not attacked by any c ∈ E in AF . It follows that b is also in AFE1

and a is undefended by E2 in AFE1 , but this is a contradiction to the assumption that
E2 is a challenged extension in AFE1 .

3.2 Comparison to other Semantics

Now that the challenged semantics is defined, we compare it with other semantics by
looking at some examples.

a

b c

d

(a) AF2

a

b c

d

e

f g

h

(b) AF3

Figure 9: Reproduction of AF2 and AF3 for ease of reference.

Example 11. We first consider AF2 from Figure 9. Table 1 with extensions for the
different semantics for AF2 is reproduced here as Table 2 for clarity and the extensions
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for unchallenged and challenged semantics are added.
From the table it is visible that the challenged semantics has the same extensions

for AF2 as stable, preferred and semi-stable, but has different extensions as complete,
grounded, ideal, strongly admissible, and unchallenged. We could also see, that the chal-
lenged semantics is a subset of admissible and complete extension.

Semantics Extensions
ad {{a}, {a, c}, {d}, {d, c}, ∅}
co {{a, c}, {d, c}, ∅}
gr {∅}
st {{a, c}, {d, c}}
pr {{a, c}, {d, c}}
id {∅}
sst {{a, c}, {d, c}}
sa {∅}
uc {∅}
c {{a, c}, {d, c}}

Table 2: Extensions of different semantics for AF2 with unchallenged and challenged
semantics.

Example 12. Next, we consider AF3. The extensions for the semantics are as presented
in Table 3.

Here, the extensions of the challenged semantics differs from all others. It is noteworthy
that for both abstract argumentation frameworks c(AF3) ⊂ co(AF3) and c(AF3) ⊂
ad(AF3) also holds. It is also noticeable that the challenged extensions overlap with the
preferred, stable and semi-stable extensions.

Semantic Extensions

ad
{{b}, {d, f, h}, {b, d, e, g}, {d}, {b, d, f, h}, {b, d},
{e, g}, {f, h}, {b, e, g}, ∅, {d, e, g}, {b, f, h}}

co {{d, f, h}, {b, d, e, g}, {d}, {b, d, f, h}, {b, d}, {d, e, g}}
gr {{d}}
st {{b, d, e, g}, {b, d, f, h}}
pr {{b, d, e, g}, {b, d, f, h}}
id {{b, d}}
sst {{b, d, e, g}, {b, d, f, h}}
sa {{d}, ∅}
uc {{b, d}}
c {{d, f, h}, {d, e, g}}

Table 3: Extensions from different semantics for AF3
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Example 13. Let AF5 be the last abstract argumentation framework in consideration.
Table 4 show the extensions found for the different semantics. For AF5, the challenged
semantics share the same extensions for stable, preferred and semi-stable, and is a subset
of complete and admissible.

Semantic Extensions
ad {{b, c}, {b, d, e}, {d, e}, ∅, {b, c, a}, {b}}
co {{b, d, e}, {b}, {b, c, a}}
gr {{b}}
st {{b, d, e}, {b, c, a}}
pr {{b, d, e}, {b, c, a}}
id {{b}}
sst {{b, d, e}, {b, c, a}}
sa {{b}, ∅}
uc {{b, d, e}, {b}}
c {{b, d, e}, {b, c, a}}

Table 4: Extensions from different semantics for AF5

The comparison of the extensions of different semantics for some abstract argumenta-
tion frameworks offer first impressions regarding the application of the new semantics.
The observations from Example 11 to 13 lead to the upcoming theorems.

At first, it should be noted that the challenged semantics is not already characterised
by another semantic.

Theorem 3. Let AF=(A,R) be an argumentation framework. It does not hold in general
that c(AF ) = σ(AF ) for any semantics σ ∈ {ad, co, gr, st, pr, id, sst, sa, uc}.

Proof. If another semantics would characterize the challenged semantics, both seman-
tics would have the same extensions for any given abstract argumentation framework.
Example 12 shows, that the extensions of the challenged semantics differs from all the
other semantics considered in this thesis. Therefore, the challenged sematic is not already
characterised by another semantics.

Hence, it is interesting to analyse it further. We continue with the subset observations
for admissible and complete extensions.

Theorem 4. c(AF ) ⊆ ad(AF ) but not vice versa.

Proof. In [11] it is shown that serialisability implies the principle of admissibility. This
means, that every extension characterised by serialisability is admissible. Therefore,
c(AF ) ⊆ ad(AF ) follows.

Table 2 from Example 12 shows, that the other direction ad(AF ) ⊆ c(AF ) does not
hold. We have, for example, {a} ∈ ad(AF3) but {a} /∈ c(AF3).
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In other words it can be said that every challenged extension is admissible.
The examples, however, also show, that the challenged semantics is a subset or equal

to the complete semantics.

Theorem 5. c(AF ) ⊆ co(AF ) but not vice versa.

Proof. We want to proof this theorem in an constructive way by showing that we can
construct each serialisation sequence of the challenged semantics also with the com-
plete semantics. We start with c(AF ) ⊆ co(AF ) and have to differentiate between an
abstract argumentation framework with no selectable initial sets and abstract argumen-
tation frameworks with selectable initial sets. Afterwards it is shown, that the other
direction does not hold. For recap, the selection and termination criteria for complete
and challenged semantics are defined in Theorem 1 and Definition 15 respectively.

Let AF = (A,R) be an abstract argumentation framework. Further let IS↚(AF ) ∪
IS↔(AF ) = ∅. Let σ ∈ {c, co} be either the challenged or the complete semantics.
Since IS↚(AF ) ∪ IS↔(AF ) = ∅ the termination requirements for challenged semantics
is satisfied. From IS↚(AF ) ∪ IS↔(AF ) = ∅ follows IS↚(AF ) = ∅ and therefore the
requirements for complete semantics is also satisfied.

We now assume S ∈ IS↚(AF ) ∪ IS↔(AF ) instead, which is selectable for challenged
semantics. Due to IS↚(AF )∪ IS↔(AF ) ⊆ IS(AF ) = IS↚(AF )∪ IS↮(AF )∪ IS↔(AF ) we
can also select S for the complete semantics. Since the reduct AFS is also an abstract
argumentation framework, we can further do the same selection on every reduct produced.
The selection of an S ∈ IS↚(AF ) ∪ IS↔(AF ) is repeated until the termination criterion
for the challenged semantics is met. This is when IS↚(AF ) ∪ IS↔(AF ) = ∅ is reached.
As already shown above, we can then also terminate in σ(co).

Table 3 from Example 12 shows that the other direction co(AF ) ⊆ c(AF ) does not
hold. For example, there is {d} ∈ co(AF3) but {d} /∈ c(AF3).

The proof for Theorem 5 implies that ∅ may be a challenged extension.

Theorem 6. Given an abstract argumentation framework AF = (A,R) such that IS↚(AF )∪
IS↔(AF ) = ∅ holds. Then, ∅ is the challenged extension.

Proof. Assume an abstract argumentation framework AF = (A,R) such that IS↚(AF )∪
IS↔(AF ) = ∅ holds. We can thus only select ∅, progress to AF ∅ = AF and terminate,
since the termination criteria are satisfied.

It can therefore be concluded that there is always at least one extension for the chal-
lenged semantics.

Corollary 7. For any argumentation framework AF = (A,R), we have that c(AF ) ̸= ∅.

This seems reasonable since the termination requirements are trivially met without
any selection if there are no unattacked or challenged initial sets in the first considered
abstract argumentation framework.
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Finally, no clear patterns can be derived from the structure of the graphs that dictate
that the challenged semantics is equal to the complete or preferred semantics. If we, for
example, restrict the graphs to those without odd cycles, we find abstract argumentation
frameworks where c(AF ) = pr(AF ) (Example 11 with AF2) as well as c(AF ) ̸= pr(AF )
(Example 12 with AF3) hold. For c(AF ) ⊆ co(AF ) we find abstract argumentation
frameworks where c(AF ) ⊆ co(AF ) (Example 12 with AF3) holds and for c(AF ) =
co(AF ) we present Example 14.

a b c

Figure 10: AF7 withc(AF ) = co(AF ).

Example 14. Consider AF7 from Figure 10. We find one serialisation sequence S1 =
({c}, {a}) that induces the only challenged extension {a, c}. There is also just one com-
plete extension such that co(AF7) = {{a, c}}. Therefore, we have c(AF7) = co(AF7).

4 Principle-based Analysis of Challenged Semantics

The last section offered some first insights in the behaviour of challenged semantics. But
a comparison of semantics via examples offers only a subjective perspective. This is due
to the fact, that an example is only one instance and may or may not be a good choice
to show that certain properties hold or not. Principles allow an objective perspective
for the behaviour of semantics by taking all possible instances of abstract argumentation
frameworks in consideration under the principle rules [5]. In the following section, we
determine which principles are satisfied by the challenged semantics and which are not.

The Serialisability Principle itself satisfies some principles. Hence, if a semantics is
serialisable, it also satisfies the principles in the following proposition.

Proposition 8. The challenged semantics satisfies the principles Conflict-Freeness, Ad-
missibility and Modularization.

Proof. The challenged semantics is defined through serialisability. Satisfying Serialisabil-
ity implies directly the satisfaction of the principles Conflict-Freeness, Admissibility and
Modularization [11]. Therefore it follows, that the challenged semantics also satisfy these
principles.

From proposition 8 can directly be concluded the following corollary:

Corollary 9. The challenged semantics satisfies the Reduct-Admissibility and the Semi-
Qualified Admissibility Principles.

The satisfied principles are presented as the following theorems. We begin with the
Reinstatement Principle.

Theorem 10. The challenged semantics satisfies the Reinstatement Principle.
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Proof. Given an abstract argumentation framework AF = (A,R), a set E ⊆ A and E ∈
c(AF ). Let us assume that the challenged semantics does not satisfy the Reinstatement
Principle. Therefore, there is an argument a ∈ A that is defended by E but a /∈ E. If
a ∈ A is defended by E, a will be an unattacked initial set in AFE , because otherwise
AFE = (A′, R′) has b ∈ A′ with (b, a) ∈ R′, which is a contradiction since a is defended
by E. Consequently it has to be shown, that there are no unattacked initial sets in AFE

to conclude that the theorem holds.
Let us now assume there is an a ∈ IS↚(AFE). But then E can not be an extension

of the challenged semantics since it demands exhaustive selection of unattacked and
challenged initial sets by definition. It follows that IS↚(AFE) = ∅ and also that the
challenged semantics satisfies the Reinstatement Principle.

We continue with the Directionality Principle. To proof that the challenged semantics
is directional we show, that the challenged semantics satisfies the closure-property as it
is done for the unchallenged semantics in [11]. From Theorem 3 in [11] it then follows,
that the challenged semantics is directional. For this we switch to the formalisation of
serialisability used in [11]. The serialisation algorithm, however, is the same. First, we
evaluate the initial sets of an abstract argumentation framework, then we select one of
these initial sets and finally progress to the reduct. This is done iterative until eventually
some termination criteria are met.

We start by giving definitions for the terms state, selection function and termination
function from [29]. Then we give a definition for the challenged semantics in this for-
malisation. After that, we restate the definition of the closure-property and Theorem
3 from [11] for clarity, followed by a proof, that the challenged semantics satisfy the
closure-property.

Let A denote a universal set of arguments and AF denote the set of all abstract
argumentation frameworks.

Definition 16. A state T is a tuple T = (AF, S) with AF ∈ AF and S ⊆ A.

A state is used to represent the current abstract argumentation framework and the
already accepted arguments. The first state is always (AF, ∅) representing the original
graph without any selections.

Next we need a selection function that returns the initial sets of the current abstract
argumentation framework.

Definition 17. A selection function α is any function α : 2A × 2A × 2A → 2A with
α(X,Y, Z) ⊆ X ∪ Y ∪ Z for all X,Y, Z ⊆ A.

The selection function is applied as α(IS↚, IS↮, IS↔) to the abstract argumentation
framework. This allows for selecting an initial set from the current states abstract argu-
mentation framework and transition to the next state. Finally a termination function is
needed, that decides, if the construction of an extension is finished.

Definition 18. A termination function β is any function β : AF× 2A → {0, 1}.
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If the termination function evaluates to 1 the current state holds an extension but the
construction may be continued.

Selecting an initial argument will transition from one state to another via

(AF, S)
S′∈α(IS↚(AF ),IS↮(AF ),IS↔(AF ))−−−−−−−−−−−−−−−−−−−−−−→ (AFS′

, S ∪ S′).

It has to be noted that transition means selecting an intial set S′ from AF according to
α and step forward to the S′-reduct of AF . If there is a transition within finite steps
from state (AF, S) to (AF ′, S′), including no steps at all, we write (AF, S)⇝α (AF ′, S′)
and if (AF ′, S′) also met the termination criteria we write (AF, S)⇝α,β (AF ′, S′).

With this formalisation, the challenged semantics can be defined via a function αc as
selection function and a function βc as termination function.

Theorem 11. The challenged semantics is serialisable with

αc(X,Y, Z) = X ∪ Z and βc(AF, S) =

{
1, if IS↚(AF ) ∪ IS↔(AF ) = ∅
0, otherwise

It is easy to see, that this characterisation is equivalent to that of Definition 15, where
αc corresponds to the selection via S1 to Sn and βc corresponds to the exhaustive usage
check of unattacked and challenged initial sets in the final reduct.

We proceed to recall the Definition 12 for the closure-property and Theorem 3 from
[11] for clarity.

Definition 19. Let σ be serialisable with ασ and βσ. We say that σ is αβ-closed for
all argumentation frameworks AF ∈ AF if and only if, for every state (AF ′, S′) with
(AF, ∅)⇝ασ (AF ′, S′) we have that there exists some AF ′′ ∈ AF and some S′′ ⊆ A such
that (AF ′, S′)⇝ασ ,βσ (AF ′′, S′′).

The connection between αβ-closure and the Directionality Principle then follows in
Theorem 3 from [11].

Theorem 12. If a semantics σ is serialisable via ασ and βσ and is αβ-closed, then σ
satisfies directionality.

Finally, with all preparation done, we proof that challenged semantics is αcβc-closed.

Theorem 13. The challenged semantics is αcβc-closed.

Proof. The proof is adapted from [11]. Let AF = (A,R) be an abstract argumenta-
tion framework and S ⊆ A a set of arguments. We start with a transition (AF, ∅) ⇝α

(AF1, S1). Further assume βc(AF1, S1) = 0. It follows from the definition of βc, that
IS↚(AF1)∪IS↔(AF1) ̸= ∅. Consequently it holds that αc(IS

↚(AF1), IS
↮(AF1), IS

↔(AF1)) ̸=
∅ which in turn leads to the conclusion that there must be a transition to a state (AF2, S2).
Finally this demonstrates, that whenever we reach a state such that βc is false, we also
have the possibility to transition to another state.

Now we show, that there can only be a finite number of transitions until the termination
criteria is met. Due to the fact that, if we can not terminate, we can always select and
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therefore remove an initial set (and the rejected arguments attacked by the initial set) and
that initial sets can not be empty by definition, the abstract argumentation framework
shrinks with every transition. Consequently, since the abstract argumentation framework
is also finite, a state must be reached where no unattacked or challenged initial sets can
be found, e.g. the empty argumentation framework. Hence, every possible path will
terminate at some state. It follows that αc and βc are αβ-closed.

Finally, with Theorem 3 from [11], we can conclude, that the challenged semantics is
directional, because it is αβ-closed.

Theorem 14. The challenged semantics satisfies the Directionality Principle.

The other considered principles Strong Admissibility, Naivety, Allowing Abstention, I-
Maximality and SCC-Recursiveness are not satisfied by the challenged semantics, as the
following counterexamples show.

a b

Figure 11: AF8, a counterexample for Strong Admissibility and Allowing Abstention used
in Examples 15 and 17.

Example 15. Consider AF8 depicted in Figure 11 with two arguments attacking each
other. It applies that S = (a) is a serialisation sequence of AF8 and E = {a} is the
corresponding challenged extension. Since a defends itself against the attack of b there
is no set (E \ {a}) ⊆ A that strongly defends a.

The previous example is consequently a counterexample for the Strong Admissibility
Principle. This might result from the properties that comes with initial sets. Unattacked
initial sets may be strongly admissible, since they are not defending themself. But
challenged initial sets do not take strong admissibility into account and allow self defence.

Next, a counterexample for the Naivety Principle is shown.

a b

Figure 12: AF9, a counterexample for Naivety used in Example 16.

Example 16. Consider AF9 with two arguments. We have c(AF9) = {∅} but cf(AF9) =
{∅, a}. Therefore, c(AF9) is not maximal w.r.t cf(AF9).

It can be concluded that the challenged semantics does not satisfy the Naivety Prin-
ciple. While for a naive view the defence of arguments is not relevant, it is, however,
inevitably linked with the challenged semantics. The reason for this lies in the initial
sets the challenged semantics operates on, which need to be, by definition, admissible
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and thus defended. Moreover, the termination criteria does not consider if more naive
acceptable arguments are left in the reduct and breaks therefore the maximality criteria
of the Naivety Principle.

For the Allowing Abstention Principle a counterexample can also be found.

Example 17. Reconsider AF8 already presented for Example 15. It has two arguments
attacking each other. We have c(AF8) = {{a}, {b}} and therefore exactly two extensions.
We also have that a ∈ E1 and a ∈ E+

2 . Allowing Abstention further requires a third
extension with some requirements but there is clearly no third extension at all.

It follows that the challenged semantics does not satisfy the Allowing Abstention Prin-
ciple. This results from the exhaustive selection of unattacked and challenged initial sets
as part of the challenged semantics which clearly does not allowing abstention. Maybe
a more weak definition of the challenged semantics without exhaustive selection could
satisfy the Allowing Abstention Principle.

The fact that the challenged semantics does not satisfy the I-Maximality Principle is
demonstrated by the following counterexample.

ba c d

Figure 13: AF10, a counterexample for I-Maximality used in Example 18

Example 18. We assume AF10. We have c(AF10) = {{a}, {b}, {c, a}}. With E1 = {a}
and E2 = {c, a} we have E1 ⊂ E2 and therefore E1 ̸= E2.

Thus, the challenged semantics does not satisfy the I-Maximality Principle. A rea-
son for this is that the state of an initial set may not be retained as initial set during
reduction. For example, the extension {c, a} of AF10 is only induced by the sequence
S = ({c}, {a}) and there is no other serialisation sequence due to argument c switching
from challenged to unchallenged initial set after selecting a beforehand. Besides that,
this has already been mentioned in Proposition 4 in [29]. This combined with the non-
deterministic character of serialisability induces the violation of this principle. It happens
by considering different serialisation sequences on different reducts where the state as an
initial set of some arguments sometimes is and sometimes is not retained.

To show that SCC-Recursiveness is not satisfied, we first present two quite similar
abstract argumentation frameworks and calculate their challenged extensions in detail.
Then we point out that there can not be an BF c for calculating the extensions of the
challenged semantics for both abstract argumentation frameworks via SCC-Recursiveness
to conclude that no BF c exists.

Example 19. Let us assume we have the abstract argumentation framework AF11 de-
picted in Figure 14a and we want to investigate it in regards of the challenged semantics.
We have IS↚(AF11) = {{a}} and IS↔(AF11) = ∅. After selecting {a} we face the reduct
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(a) AF11.

c d e

gf

(b) Reduct AF
{a}
11 .

Figure 14: AF11 and the reduct AF
{a}
11 from Example 19.

AF
{a}
11 depicted in 14b. For the reduct IS↚(AF

{a}
11 ) ∪ IS↔(AF

{a}
11 ) = ∅ applies. Hence,

there is only one challenged extension and thus c(AF11) = {{a}}.

a b c d e

f g

(a) AF12.

c d e

gf

(b) Reduct AF
{a}
12 .

a b c

f g

(c) Reduct AF
{e}
12 .

c

gf

(d) Reduct AF
{{e,a}}
12 .

a

(e) Reduct AF
{d,f}
12 .

Figure 15: AF12 and the reducts AF
{a}
12 , AF {e}

12 , AF {{e,a}}
12 and AF

{d,f}
12 from Example

20.

Example 20. In this example the abstract argumentation framework AF12 from Figure
15a is investigated. The initial sets of the graph are IS↚(AF12) = {{a}} and IS↔(AF12) =
{{e}, {d, f}}. Consequently we have, at this point, at least three different serialisation
sequences to consider: S 1 = ({a}), S 2 = ({e}) and S 3 = ({d, f}). We follow the
sequence S 1 first and get the reduct AF

{a}
12 from Figure 15b. Since this reduct has

no more unattacked or challenged initial sets the sequence finishes. Next we follow the
sequence S 2. The reduct AF

{e}
12 is shown in Figure 15c. IS↚(AF

{e}
12 ) = {{a}} can be

found for this graph. Thus, we get S 2 = ({e}, {a}) and the resulting reduct AF
{{e,a}}
12

presented in Figure 15d has no more initial sets. Finally we follow the sequence S 3. The
reduct AF

{d,f}
12 is shown in Figure 15e. We have IS↚(AF

{d,f}
12 ) = {{a}}. After selecting

{a} for S 3 = ({d, f}, {a}) no more arguments remain. Therefore the extensions for the
challenged semantics are c(AF12) = {{a}, {a, d, f}, {a, e}}.

It is to be emphasised that the reducts AF {a}
11 from Figure 14b and AF

{a}
12 from Figure

15b are the same graph. This is important for the upcoming view on SCC-Recursiveness.
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Example 21. We now want to explore the AF11 and AF12 in terms of SCC-Recursiveness.
The abstract argumentation framework AF11 consists of three strongly connected com-
ponents SCCsAF11 = {{a}, {h}, {b, c, d, e, f, g}}. A defeat-graph consisting of the SCC-
components is always acyclic and is processed from outside in for SCC-Recursiveness [6].
We first have to consider

E ∩ {a} ∈ G FBF (AF11|{a}, {a}) (1)

as {a} is the first strongly connected component. Since c(AF11) = {{a}}, as shown in
Example 19, a base function BF c that calculates the challenged semantics in an SCC-
recursive way needs to evaluate to {a} for expression 1. Next, we have to consider {h}
as the second strongly connected component, but it is important to mention, that {h} is
defeated by the previously accepted a ∈ E. Therefore we have

E ∩ {h} ∈ G FBF (AF11|∅, ∅) (2)

as the second expression. Here, we can not select anything due to the empty projection,
but due to c(AF11) = {{a}} we do not want to select more arguments anyway. The
third strongly connected component is {b, c, d, e, f, g}. Note, that {b} is also defeated by
a ∈ E. We have to evaluate the expression

E ∩ {b, c, d, e, f, g} ∈ G FBF (AF11|{c,d,e,f,g}, {c, d, e, f, g}) (3)

where the projection itself consists of two strongly connected components. We therefore
have to consider

E ∩ {b, c, d, e, f, g} ∈ G FBF (AF11|{c,f,g}, {c, f, g}) (4a)

which needs to evaluate to ∅ for a base function BF c that calculates the same extensions
as the challenged semantics. The last expression to take into account is thus

E ∩ {b, c, d, e, f, g} ∈ G FBF (AF11|{d,e}, {d, e}) (4b)

and this expression also needs to evaluate to ∅.
Without giving a definition for BF c, let us assume, with the already gained knowl-

edge for AF11, there is a base function for the challenged semantics and check it against
the similar abstract argumentation framework AF12. Keep in mind that c(AF12) =
{{a}, {a, d, f}, {a, e}} ̸= {{a}} = c(AF11). For AF12, we have to consider the strongly
connected components SCCsAF12 = {{a}, {b, c, d, e, f, g}}. The first expression is there-
fore

E ∩ {a} ∈ G FBF (AF12|{a}, {a}) (5)

which is similar to expression 1. The argument a is in every extension of c(AF12) so
that function G FBF c must return {a} for expression 5. From AF11 we know, that the
assumed BF c will exactly do that, since AF11|{a} = AF12|{a}. The second strongly
connected component leads to

E ∩ {b, c, d, e, f, g} ∈ G FBF (AF12|{c,d,e,f,g}, {c, d, e, f, g}) (6)
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which is exactly the same as expression 3. Since {{c}} /∈
⋃

c(AF12) expression 6 can
safely be continued to

E ∩ {b, c, d, e, f, g} ∈ G FBF (AF12|{c,f,g}, {c, f, g}) (7a)

and

E ∩ {b, c, d, e, f, g} ∈ G FBF (AF12|{d,e}, {d, e}) (7b)

respectively. If this would not be the case and a BF c must also return {c} for expression
7a this would change expression 7b due to argument d would not be undefeated any more.

Note again that the expressions 4a and 4b are equivalent to 7a and 7b as their pro-
jections are equivalent (AF11|{c,f,g} = AF12|{c,f,g} and AF11|{d,e} = AF12|{d,e}, respec-
tively). Here, the function G FBF c must not only return ∅ but also {f} for expression
7a and accordingly for expression 7b it must return {d} when {f} is selected beforehand
and {e} alongside ∅. But when a BF c is capable of do so, then it would do so for AF11

as well. But then BF c(AF11) ̸= c(AF11) which is a contradiction to the assumption,
that BF c is the base function for SCC-Recursiveness that corresponds to the challenged
semantics.

Finally, from Example 21, it follows that c(AF ) = G FBF c(AF,A) does not hold and
a base function BF c can not exist. Thus, the challenged semantics does not satisfy
the SCC-Recursiveness Principle. Most likely this is due to the fact that the strongly
connected components build a partial order and the Directionality Principle directly
influenced SCC-Recursiveness [6]. This induces a processing order which is not compat-
ible with the non-deterministic character of serialisability for the challenged semantics.
Moreover, it can be observed that the projections of expressions 3 and 6 corresponds
with the reducts 14b and 15b in Figures 14 and 15. An induced challenged exten-
sion E for the corresponding serialisation sequences would be the same for both graphs
E(AF11) = E(AF12) = {{a}} if {a} must be chosen first to copy the order of SCC-
Recursiveness. But since the challenged semantics does not have such restrictions more
extensions can be found for AF12 which shows that the processing order is a problem for
satisfying this principle.

5 Complexity Analysis of Challenged Semantics

The previous sections show a characterisation of the challenged semantics for abstract
argumentation frameworks. In computer science, however, solving a problem is only one
aspect to consider. Often times it is quite similar important to know how efficiently a
solution can be computed. Most of the time the size of the input becomes the key factor
that determines how well an algorithm performs. Focal points of investigation are time
and space complexity [27].

In this bachelor thesis the time complexity of computing problems related to the chal-
lenged semantics for abstract argumentation frameworks is analysed. The results will
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not show exact measurements of time as this depends on aspects like hardware and im-
plementation that can vary. Instead, the result gives an upper bound for the time needed
in a worst case scenario in regards to the specific problem and the input. For this, each
problem will be classified with the help of known complexity classes.

The following decision problems are analysed [23]:

• Verc(AF,E): The Verification Problem answers the question whether the set
of arguments S is a challenged extension for the given abstract argumentation
framework AF .

• Exists¬∅c (AF ): The Existence Problem answers the question whether there is a
non empty challenged extension for a given abstract argumentation framework AF
or not.

• Skeptc(AF, a): The Skeptical Acceptance Problem answers the question whether
the argument a is skeptically accepted under the challenged semantics in the given
abstract argumentation framework AF or not. An argument a ∈ A for an abstract
argumentation framework AF = (A,R) is skeptically acceptable, if the argument
a is accepted in every extension of the considered semantics

• Credc(AF, a): The Credulous Acceptance Problem answers the question whether
the argument a is credulously accepted under the challenged semantics in the given
abstract argumentation framework AF or not. An argument a ∈ A is credulously
acceptable, if the argument a is accepted in at least one extension of the considered
semantics.

It has to be noted that Exists∅c(AF ) is not analysed. The answer to this problem
would be whether there is any challenged extension for a given abstract argumentation
framework AF or not. Due to Corollary 7, this problem is trivial.

Example 22. Recall AF12 from Figure 15. The challenged extensions of AF12 are
c(AF12) = {{a}, {a, d, f}, {a, e}}. We have a in each challenged extension of AF12.
Therefore a is skeptically acceptable under the challenged semantics for AF12, because
it appears in every set of c(AF12). In contrast, the arguments d, f, e and also a are
credulously acceptable, as they appear in at least one extension.

We now give a short introduction into the complexity classes used in this thesis. For
more information on those classes, please refer to [27] or [23]. With P (polynomial-time)
we denote the set of problems that are solvable in polynomial time. These problems are
considered to be efficiently solvable, even if the exponent is a large number. A subclass
of P is L (logarithmic space), which also limits the used space. The complexity class NP
(non-deterministic polynomial-time) includes problems, for which no polynomial time
algorithm is known, but for which a given solution or a potential witness can be verified
in polynomial time. The complexity class coNP consists of all decision problems, for
which the complement problem lies in NP. This means that if the answer to a problem
instance is "no", there is a witness that can be used to efficiently verify this. In this
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thesis we make use of oracle machines. Such an oracle machine, or simply oracle, allows
to provide an answer to a decision problem in a single computational step [23]. Oracles
are used in the classes ΠP

2 , ΣP
2 and PNP

∥ . ΠP
2 = coΣP

2 = coNPNP is the class of decision
problems that are in coNP with access to an NP-oracle, ΣP

2 = NPNP is the class of
decision problems that are in NP with access to a NP-oracle and PNP

∥ is the class of
decision problems that are in P with access to logarithmically many adaptive NP-oracle
calls [27].

For ease of reference we repeat the results for runtime complexity in regards to the
different initial sets from [29] in Table 5:

σ IS IS↚ IS↮ IS↔

Verσ in P in P coNP-c NP-c
Existsσ NP-c in P PNP

∥ -c NP-c
Credσ NP-c in P PNP

∥ -c NP-c
Skeptσ cpNP-c in P PNP

∥ -c coNP-c

Table 5: Repetition of Table 1 from [29]. Runtime complexity of decision problems with
regards to initial sets. Attached "-h" for hardness, attached "-c" for complete-
ness.

We start the complexity analysis with the Verification problem. All proofs are inspired
by [11].

Theorem 15. Verc(AF,E) is in ΣP
2 and coNP-hard.

Proof. To show the ΣP
2 -membership we start by guessing an integer k representing the

length of the serialisation sequence inducing E. For i = 1, . . . , k we iteratively guess
a set Si ⊆ A and verify that it is either an unattacked or a challenged initial set for
AFS1∪···∪Si−1 . The latter can be done in NP since verification of IS↔ is NP-complete,
while the former is not relevant as it is in P [29]. For AFS1∪···∪Sk we then verify that
no unattacked or challenged initial sets remain. The latter can be accomplished by an
NP-oracle. We have verified that E is a challenged extension when E = S1 ∪ · · · ∪ Sk

holds.
For coNP-hardness we reduce from the existence problem for challenged initial sets,

which has been proven to be NP-complete [29]. It is assumed that AF has no unattacked
initial sets. Then AF has a challenged initial set if and only if ∅ is not an challenged
extension.

Due to the guessing steps, the given algorithm for Verification is non-deterministic.
For the absence of further initial sets in the last reduct, we need to call an NP-oracle, since
we want to get an answer to the complement of the Existence-Problem for challenged
initials sets, which itself is a NP-Problem.

Next, we address the Existence problem.

Theorem 16. Exists¬∅c (AF ) is NP-complete.
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Proof. Since the challenged semantics terminates for every path as shown for the Di-
rectionality Principle in Theorem 13, we only need to find an unattacked or challenged
initial set in AF . For this problem the existence of unattacked initial sets can be ignored
since it is in P while verifying existence of a challenged initial set is in NP [29]. Therefore
it follows that Exists¬∅c (AF ) is in NP.

Since existence of unattacked initial sets is not relevant and existence of challenged
initial sets is NP-complete, it can be concluded directly, that Exists¬∅c is NP-hard and
hence NP-complete.

From the proof it can be seen that, if the abstract argumentation framework AF has
at least one unattacked initial set, the problem could be solved in polynomial time.

We progress to Skeptical- and Credulous Acceptance that questions the credibility of
single arguments.

Theorem 17. Skeptc(AF, a) is in ΠP
2 .

Proof. To show the ΠP
2 -membership we demonstrate that the complement problem ¬Skeptc

is in NPcoNP. ¬Skeptc is the problem that answers the question if an argument a is not
skeptically acceptable with regards to the challenged semantics in a given abstract ar-
gumentation framework AF . The following non-deterministic algorithm solves ¬Skeptc

in NPcoNP: We start by guessing an integer k representing the length of a serialisation
sequence. For i = 1, . . . , k we iteratively guess a set Si ⊆ A and verify that it is either
an unattacked or a challenged initial set for AFS1∪···∪Si−1 . The former can be done in P
while the latter is in NP [29]. For AFS1∪···∪Sk we then verify that no unattacked or chal-
lenged initial sets remain. The latter can be accomplished by an coNP-oracle. It follows
that E = S1∪· · ·∪Sk is a challenged extension. We have verified that a is not skeptically
acceptable under the challenged semantics for the abstract argumentation framework AF
when a /∈ E. Since this runs in NPcoNP, the original problem Skeptc(AF, a) is in ΠP

2 .

The last problem we consider is the Credulous Acceptance Problem.

Theorem 18. Credc(AF, a) is in ΣP
2 .

Proof. We again start by guessing an integer k representing the length of a serialisation
sequence. For i = 1, . . . , k we iteratively guess a set Si ⊆ A and verify that it is either
an unattacked or a challenged initial set for AFS1∪···∪Si−1 . The former can be done in
P while the latter is in NP [29]. For AFS1∪···∪Sk we then verify that no unattacked or
challenged initial sets remain. The latter can be accomplished by an coNP-oracle. It
follows that E = S1 ∪ · · · ∪ Sk is a challenged extension. We have verified that a is
credulously acceptable under the challenged semantics for the abstract argumentation
framework AF when a ∈ E.

Due to time constraints we could not provide proofs for the hardness of Skeptc(AF, a)
and Credc(AF, a). However, based on the results that are in line with the unchallenged
semantics, it is to be expected that the problems are ΠP

2 - and ΣP
2 -complete. Presumably,

the reductions from [11] for both problems can possibly be adapted to the challenged
semantics.
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6 Discussion

The results presented above form the basis for the following discussion guided by the
Research Questions.

The goals of Research Question 1 was a definition of the challenged semantics and a
comparison to other semantics. In Section 3 we characterised challenged semantics in
Definition 15 on the basis of serialisability. Theorem 2 also gives a recursive definition.
These definitions are possible since a non-empty admissible set can be written as the
union of pairwise disjoint initial sets as proposed in Corollary 1 from [29] based on the
idea of modularization from [7]. The comparison between extensions of the challenged
semantics and extensions of different semantics for some examples showed, that the chal-
lenged semantics forms a subset of the complete semantics, which itself is a subset of the
admissible semantics. This is reasonable, because as already mentioned, the challenged
semantics adds some further restrictions in terms of selection and termination compared
to the definition of the complete semantics. The last result in this regard are that there
is always at least one extension for the challenged semantics.

The focus of Research Question 2 is on the principle-based analysis of the challenged
semantics. Interestingly, serialisability implies the principles Conflict-Freeness, Admissi-
bility and Modularization [11]. Thus, the challenged semantics satisfies these principles by
definition. The challenged semantics also satisfies the Reinstatement Principle, which is
expected due to the subset relationship to the complete semantics. Then, the challenged
semantics satisfies the Directionality Principle. This has been proven via the closure-
property. It is, however, due to the dependencies between the selection and termination
criteria, expected that every path for the challenged semantics terminates.

There are, on the other hand, the principles Naivety, Strong Admissibility, Allowing
Abstention, I-Maximality and SCC-Recursiveness that are not satisfied by the challenged
semantics. Since conflict-freeness is a component of admissibility, it might have been
understandable that challenged semantics would satisfy the naivety principle. However,
challenged semantics only considers initial sets, which by definition also require defence.
This leads to the construction of sets that are not necessary maximal while being conflict-
free. The defence for Strong Admissibility, nevertheless, goes beyond the definition of
defence for inital sets, as it does not allow self defence. Therefore it is understandable
that the challenged semantics does not satisfy this principle. Equally understandable is
that the challenged semantics does not satisfy the I-Maximality Principle, since it is a
subset of the complete semantics that does not satisfy the I-Maximality Principle, either.
However, it was not necessarily expected that the challenged semantics would not satisfy
the SCC-Recursiveness Principle due to the observation from [29], that conflicting initial
sets are always within a singe strongly connected component.

To get an overall view, Table 6 shows the considered semantics and their satisfied prin-
ciples. A close connection can be seen between challenged and unchallenged semantics, as
their definitions are pretty close to each other. Due to the subset relationship to complete
semantics it is reasonable that the challenged semantics satisfies most of the principles
that the complete semantics satisfy. Only the possibility to abstain arguments is not
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Principle
σ

co gr st pr id sst uc6 c

Admissibility ✓1 ✓1 ✓1 ✓1 ✓1 ✓1 ✓ ✓

Strong Admissibility ✗1 ✓1 ✗1 ✗1 ✗1 ✗1 ✗ ✗

Reinstatement ✓1 ✓1 ✓1 ✓1 ✓1 ✓1 ✓ ✓

I-Maximality ✗1 ✓1 ✓1 ✓1 ✓1 ✓1 ✗ ✗

Directionality ✓1 ✓1 ✗1 ✓1 ✓1 ✗1 ✓ ✓

Allowing Abstention ✓3 ✗3? ✗3 ✗3 ✗3 ✗3 ✗ ✗

Modularization ✓2 ✓2 ✓2 ✓2 ? ? ✓ ✓

SCC-Recursiveness ✓5 ✓5 ✓5 ✓5 ? ? ✗ ✗

Naivety ✗2 ✗2 ✓2 ✗2 ✗4 ✗4 ✗ ✗

Table 6: Overview over the considered semantics and their compliance with selected prin-
ciples. Results with a superscript 1 are from [5], 2 from [7], 3 from [3], 4 from [31],
5 from [6] and the results for the unchallenged semantics with superscript 6 are
taken from [11]. Note, that conflict-free, reduct- and semi-qualified-admissibility
are omitted, since every semantics is admissible.

given for the challenged semantics, as well as a recursive construction via evaluation over
strongly connected components. It is also noticeable that most of the other semantics
satisfy I-Maximality, which the challenged, unchallenged and complete semantics do not.

For Research Question 3, the runtime complexity of the challenged semantics was
investigated. The results are depicted in Table 7. Since unchallenged and challenged se-
mantics are closely related and just differs in the selected initial sets, it is reasonable, that
they are similar complex. The difference in complexity for the Exists Problem results
from different complexity for the existence problem for unchallenged and challenged ini-
tial sets (shown in Table 5). Moreover, the unchallenged and challenged semantics seem
to be more complex in comparison to the classical semantics for most of the problems.
This maybe come from the construction via initial sets for which the considered problems
are already complex.

Problem
σ

ad1 co1 pr1 uc2 c

Verσ in L in L coNP-c in ΣP
2 and PNP

∥ -h in ΣP
2 and coNP-h

Exists¬∅ NP-c NP-c NP-c PNP
∥ -c NP-c

Skeptσ trivial P-c ΠP
2 -c ΠP

2 -c in ΠP
2

Credσ NP-c NP-c NP-c ΣP
2 -c in ΣP

2

Table 7: Overview over the complexity of the considered problems for the semantics ad,
co, pr, uc and c. The simple Exists is omitted, since it is trivial for every shown
semantics. A "-c" suffix stands for complete, while a "-h" suffix means hard.
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7 Future Work

This bachelor thesis lays the foundation for future research. It could be interesting to
experiment with slightly different definitions for challenged semantics. For example, the
termination condition could be softened to converge towards the complete semantics
or allowing abstention. It might also be worth examining the behaviour of challenged
semantics under other structural constraints like bipartiteness.

In the complexity analysis no proof for the hardness of skeptical and credulous accep-
tance of an argument could be found and thus are still open questions. Since the compu-
tational complexity for challenged semantics is high in comparison to other semantics, it
would be interesting to find efficient implementation approaches. For example, the use
of parallelism as shown in [12] could be an option.

Another possibility would be to examine whether challenged semantics can be trans-
ferred to other formalisms like WAF or PrAF.

Still an open problem is the question, whether the challenged semantics can be defined
without referring to initial sets.

8 Conclusion

In this bachelor thesis we analysed the new challenged semantics based on serialisability.
It is defined by selecting unattacked and challenged initial sets exclusively, until a reduct
is reached, that does not provide any more initial sets of these types to select. By com-
parison of extensions from different semantics for some example abstract argumentation
frameworks, we could confirm, that the challenged semantics is not yet characterised by
another semantics. Moreover, we proofed, that the challenged semantics always has at
least one extension and is a subset of the complete semantics.

We then analysed the challenged semantics in regard of common principles from the lit-
erature. Our results show, that the challenged semantics satisfies the principles Conflict-
Freeness, Admissibility, Reduct-Admissibility, Semi-Qualified Admissibility and Modu-
larization due to serialisability. Challenged semantics also satisfies Reinstatement and
Directionality. It, however, does not satisfy Naivety, Allowing Abstention, I-Maximality
and SCC-Recursiveness.

Finally we considered the runtime complexity for challenged semantics with regards to
the typical reasoning problems Verification, if a set is a challenged extension, Exis-
tence of a challenged, non-empty extension, Skeptical Acceptance and Credulous
Acceptance of an argument. We found, that Verc is in ΣP

2 and coNP-hard, Exists¬∅c
is NP-complete and for Skeptc and Credc we proofed the ΠP

2 - and the ΣP
2 -membership,

respectively.
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