
Faculty of Mathematics and Computer Science Artificial Intelligence Group

Comparing Effectiveness and Efficiency of
Large Language Models and Traditional

Vulnerability Assessment Tools in IT
Network Vulnerability Analysis

Master’s Thesis
in partial fulfillment of the requirements for

the degree of Master of Science (M.Sc.)
in Informatik

submitted by
Oliver Dzaeck

First examiner: Prof. Dr. Matthias Thimm
Artificial Intelligence Group

Advisor: Prof. Dr. Matthias Thimm
Artificial Intelligence Group

Zusammenfassung

Diese Masterarbeit untersucht die Effizienz und Effektivität von großen Sprach-
modelle im Bereich der Schwachstellenanaylse von IT Netzwerken. Ziel ist es dabei
festzustellen, inwieweit große Sprachmodelle für den Bereich der Cybersecurity an-
gepasst werden können und unter welchen Bedingungen sie eine bessere Leistung
erzielen. In dieser Arbeit wird das Pattern der "Retrieval Augmented Generation"
untersucht. Ziel ist es zu bewerten in wie weit große Sprachmodelle als nützliche
Alternative für die Identifizierung und Klassifizierung von Schwachstellen in Un-
ternehmensnetzwerken dienen können.

Herkömmliche Tools wie Nessus stützen sich auf signaturbasierte Methoden und
heuristische Ansätze. Im Gegensatz dazu bieten Sprachmodelle aufgrund ihrer Fä-
higkeit, natürliche Sprache zu verarbeiten und zu analysieren, potenzielle Vorteile
hinsichtlich Flexibilität und Genauigkeit. Insbesondere bei der Analyse unstruktu-
rierter Daten aus Netzwerk-Scans haben große Sprachmodelle gezeigt, dass sie kon-
textbezogene Informationen besser erfassen und relevante Schwachstellen genauer
identifizieren können. Dies deutet darauf hin, dass große Sprachmodelle eine wert-
volle Ergänzung zu bestehenden Werkzeugen zur Schwachstellenbewertung sein
könnten.

Abstract

This thesis investigates the efficiency and effectiveness of large language models
in the area of vulnerability analysis of IT networks. The goal is to determine to
what extent large language models can be adapted for the area of cybersecurity and
under what conditions they perform better. In this thesis, the pattern of "retrieval
augmented generation" is investigated. The goal is to evaluate to what extent large
language models can serve as a useful alternative for identifying and classifying
vulnerabilities in corporate networks.

Traditional tools such as Nessus rely on signature-based methods and heuristic
approaches. In contrast, language models offer potential advantages in terms of
flexibility and accuracy due to their ability to process and analyze natural language.
In particular, when analyzing unstructured data from network scans, large language
models have shown that they can better capture contextual information and more
accurately identify relevant vulnerabilities. This suggests that large language mod-
els could be a valuable addition to existing vulnerability assessment tools.

v

Contents

1 Introduction 3
1.1 Research objectives . 6
1.2 Method . 6

2 Theoretical Framework 9
2.1 Large Language Models . 9

2.1.1 Retrieval-Augmented Generation 18
2.2 Cybersecurity . 23
2.3 State of research . 26
2.4 Vulnerability Assessment Tools in IT Security 28
2.5 CVE . 28
2.6 CVSS . 32
2.7 Exploit DB . 37
2.8 Nmap . 39

3 Method 41
3.1 Datasources . 41
3.2 Models and technologies . 41

3.2.1 Models . 41
3.2.2 RAG . 43

3.3 Experimental Design . 49
3.4 Experiment 1 . 50

3.4.1 Experimental Objectives and Hypotheses 50
3.4.2 Methodology . 50
3.4.3 Experiment Execution . 56
3.4.4 Measurement and Evaluation 59
3.4.5 Results Analysis . 63

3.5 Experiment 2 . 71
3.5.1 Experimental Objectives and Hypotheses 71
3.5.2 Methodology . 72
3.5.3 Experiment Execution . 76
3.5.4 Measurement and Evaluation 78
3.5.5 Results Analysis . 80

3.6 Experiment 3 . 84
3.6.1 Experimental Objectives and Hypotheses 84
3.6.2 Methodology . 84
3.6.3 Experiment Execution . 94
3.6.4 Measurement and Evaluation 99
3.6.5 Results Analysis . 101

vii

4 Discussion 110
4.1 Interpretation of the results . 111
4.2 Practical implications and applications 116

viii

List of Abbreviations

AI Artificial Intelligence

AIG Artificial Intelligence Group

AWS Amazon Web Services

CSV Comma-Separated Values

CVE Common Vulnerabilities and Exposures

CVSS Common Vulnerability Scoring System

DMZ Demilitarized Zone

FTP File Transfer Protocol

GPT Generative Pre-trained Transformer

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

LLM Large Language Model

MTA Mail Transfer Agent

NLP Natural Language Processing

Nmap Network Mapper

NVD National Vulnerability Database

OS Operating System

RAG Retrieval-Augmented Generation

REST Representational State Transfer

SQL Structured Query Language

SSH Secure Shell

URL Uniform Resource Locator

1

VM Virtual Machine

XML Extensible Markup Language

2

1 Introduction

In 2022, the population’s use of Large Language Models (LLMs) has measurably
increased. The most well-known example of an LLM is the Chatbot Generative
Pretrained Transformer or ChatGPT. Even though, according to the Luenendonk
List, the most critical topic in 2022 was still cybersecurity 1, current Google Trends
data (as of July 2023) shows that interest in LLMs has significantly increased since
the beginning of 2023, significantly surpassing the previous topic of cybersecurity
in terms of search query volume.

The reason for the significant increase is the versatility that ChatGPT provides.
Through interaction in natural language and extensive training with data, ChatGPT
can conduct high-quality conversations in various existing domains like education,
healthcare, reasoning, text generation, human-machine interaction, and scientific
research [27]. This is because of the underlying architecture and the training used to
develop ChatGPT (see 2.1).

This new technology opens up new possibilities for various industries to inte-
grate artificial intelligence into their daily operations. A strength of ChatGPT is that
it can query data creatively, interact with data, and suggest analyses, predictions,
optimizations, and improvements based on specific data sets. A paper by Brown et
al. [7] describes how GPT-3 can be used in various use cases and requires only tiny
datasets for some tasks. Although this master’s thesis deals with technical topics,
the other domains served by ChatGPT should not be neglected. The use of LLMs
extends through all known industries.

To maximize the benefits of AI technology and manage the associated responsi-
bilities, companies are establishing specialized task forces to ensure that employees
can efficiently work with AI-supported tools to create new operational excellence.
Language models like ChatGPT surpass mere text generation, offering support in
broader areas. Many companies are setting up ChatGPT instances to facilitate access
to large language models while ensuring that no company internal information is
shared with official models. This technology integrates into developers daily work
by generating language and code from programming languages using the appropri-
ate datasets. Such developments are on the rise, and it is foreseeable that most IDEs
will include AI support, similar to GitHub Copilot in Visual Studio Code.

Moreover, companies are not just forming task forces but entire departments dedi-
cated to exploring how AI can be deployed to streamline internal processes. Internal
ChatGPT instances, enriched with company-specific knowledge, enable various use
cases, from creative error code analysis to making company knowledge available
that was previously scattered across various PDF documents. Microsoft has even

1https://www.luenendonk.de/aktuelles/themen-trends/die-top-5-der-it-investitionen-2023/

3

launched a product named Microsoft 365 Copilot, integrated throughout almost the
entire Microsoft product lineup. This product enhances these offerings with the
capabilities of LLMs to boost user productivity. It incorporates the application of
LLMs into tools such as Word, Excel, PowerPoint, Outlook, and Teams[28]. Within
Microsoft’s Azure Cloud, Copilot aggregates knowledge and data from hundreds
of services to elevate productivity, decrease costs, and derive extensive insights. Mi-
crosoft Copilot for Azure is designed to field questions about Azure and provide
information tailored to individual Azure resources and environments[35]. More-
over, Azure Copilot can be employed to evaluate the security of Azure resources
and condense extensive data signals into crucial insights, thereby helping to cut
through clutter, preempt cyber threats, and bolster security posture[31]. The impact
on various industries is tremendous by tailoring LLMs to specific needs, integrating
them with knowledge databases, and even providing internet access.

Beyond GPT, one of the most renowned language models, numerous providers
have developed additional models, including Google with Gemini and Meta with
LLaMA. According to Gartner, by 2026, it is expected that 100 million people will
have AI-assisted "colleagues" to support their daily work. By 2027, the productivity
value of AI will be recognized as a primary economic indicator of national power,
and by 2028, due to labor shortages in manufacturing, retail, and logistics, there will
be more intelligent robots than employees[18].

The cybersecurity sector is expected to experience significant changes as mali-
cious actors leverage generative AI systems for cyber and fraud attacks. According
to Europol, expert analyses[10] have determined that models like GPT-3.5 and those
above it offer a wide range of criminal possibilities. Such models could greatly sim-
plify information gathering in areas such as burglary, terrorism, cybercrime, and
others without prior knowledge. Furthermore, LLMs are used for fraud, identity
theft, and social engineering, as they can generate highly authentic texts. This makes
detecting phishing attempts more challenging.

Europol also notes that such models may simplify entry into cybercriminal activ-
ities. Nonetheless, Europol advises evaluating the possibilities of LLMs for one’s
areas and acquiring the knowledge and competencies to, for example, use LLMs to
combat cybercrime[10].

In light of the ongoing digitalization, IT security is an essential component of to-
day’s world and will undoubtedly become even more critical. Especially in turbu-
lent times like the present, almost every day, we read about hacker attacks on com-
panies and institutions2. On average, every second company fell victim to hacker
attacks in 2022. The risks posed by unprotected systems are diverse, and the con-
sequences can devastate companies and individuals. In this context, penetration
tests, which are processes for identifying security gaps in IT systems, have taken on

2https://www.luenendonk.de/aktuelles/themen-trends/die-top-5-der-it-investitionen-2023/

4

a crucial role.

The analysis of vulnerabilities in IT enterprise networks has been primarily based
on heuristic techniques and dynamic and static analyses, which have been estab-
lished and proven over the years. By supporting LLMs, potential gaps in accuracy
could be closed.

Use cases for integration span many different areas of cybersecurity. LLMs could
automate reporting and documentation to generate understandable reports about
the network with custom classifications and risk assessments. LLMs could also help
with pattern recognition of anomalies within the network scan and develop sugges-
tions for improvement. When analyzing vulnerabilities within corporate networks,
areas that would otherwise only be covered by current tools with the integration
of machine learning or AI solutions could be covered. For example, LLMs could
interpret CVE entries better than heuristic and dynamic analysis could by detecting
vulnerable versions not explicitly defined in a CVE.

Involvement in IT security and LLMs motivates a deeper analysis of how LLMs
can enhance the efficiency and effectiveness of vulnerability analyses or augment ex-
isting tools for more detailed work. As digital attacks continue to rise, particularly
with countries like China and Russia in mind, integrating cutting-edge technolo-
gies with established security strategies forms a crucial bridge. This work aims to
contribute valuable insights to the research topic and expand the collective under-
standing of it.

5

1.1 Research objectives

The goal of this master’s thesis is to validate the hypothesis that LLMs can make
measurable contributions to the analysis of vulnerabilities in networks. This the-
sis intends to verify, through systematic research and experiments, that LLMs are
capable of achieving superior results in vulnerability detection compared to con-
ventional tools based on methods like static heuristics. A central research focus is
on evaluating different LLMs in terms of their efficiency and effectiveness by train-
ing them with specific datasets and comparing their performance in practical ap-
plications. The emphasis is on the detection and classification of network scans
conducted across networks. Typically, the results include the detected hosts and the
services running on them. In addition to comparing with conventional tools, this
study aims to determine how an LLM can be best utilized for this specific domain.

This thesis seeks to answer the following research questions:

• RQ1. How does the efficiency of an LLM in detecting vulnerabilities in IT
networks compare to established vulnerability assessment tools?

• RQ2. How do various LLMs compare in terms of efficiency for detecting vul-
nerabilities in IT networks, as measured by key performance metrics such as
Precision, Recall, F1-Score, and False Positive/Negative Rates?

The following additional questions should be answered in order to gain a deeper
understanding of the research topic. These questions are included, but not limited
to:

• What are the limitations of using LLMs for this purpose compared to tradi-
tional vulnerability assessment tools?

• Can the use of LLMs in conjunction with traditional tools yield better results
than using either individually?

• What kind of customization is required to improve the efficiency of an LLM in
vulnerability detection?

• Can LLMs assess the severity of a vulnerability?

1.2 Method

By formulating research questions in this master’s thesis to compare the efficiency
and effectiveness of LLMs, the chosen quantitative methodology is the core of the

6

research. The aim is to collect empirical data in order to comprehensively evalu-
ate the research questions. By conducting various experiments (see chapter 3.4.1,
3.5.1 and 3.6.1), the LLM to be used for subsequent investigations will be selected.
Here, metrics of a binary classification model provide important insights into the
performance of the LLMs.

The first experiment evaluates the effectiveness and efficiency of different LLMs
in detecting known vulnerabilities in software, as cataloged in MITRE’s CVE
database. This involves comparing various models, including standard pre-trained
LLMs and those with Retrieval Augmented Generation (RAG) techniques. To un-
derstand their capability in correctly identifying vulnerabilities it is particularly fo-
cusing on the use of natural language processing to understand the context and
semantics of unstructured vulnerability descriptions. The experiments also investi-
gates the models generalization capabilities and the contextual understanding also
assessing how well they can recognize correlations in software versions. Also de-
tecting vulnerabilities even when explicit version details are missing. The results of
this experiment will determine which model is most effective for this specific case,
guiding further research into optimizing LLMs for vulnerability detection in soft-
ware.

The second experiment evaluates the effectiveness of the GPT-4 model with the
Azure AI Search and the GPT-3 model with the RAG approach in classifying vulner-
abilities from CVE descriptions. This study builds on their successful performance
in prior tests and includes a cost-effectiveness analysis. The hypothesis posits that
LLMs can accurately classify vulnerabilities vector scores using a RAG. Also for
entries lacking CVSS ratings and potentially outperforming traditional assessment
tools. This experiment draws on previous findings by Aghaei et al. [1], using their
CVEDrill model as a benchmark to test whether a well-informed LLM can lead to
superior performance in vulnerability classification. This contributes to the broader
goal of enhancing network security assessment.

The third experiment is focuses on determining whether the best-performing
LLM from previous experiments. The experiment test the LLMs to analyze and
interpret network scans to identify and assess the severity of vulnerabilities. A sim-
ulated IT network environment will be set up specifically for this experiment to
facilitate this. Previous experiments explored the models abilities to detect vulner-
abilities in software and to evaluate their severity based solely on textual descrip-
tions. This final experiment builds on the foundational understanding developed in
earlier stages, using enhanced models capable of handling unstructured data from
network scans to determine if a network or specific computer within it is vulnerable
and to classify the criticality of these vulnerabilities.

Finally, the results of each experiment are analyzed in detail and transferred to the
subsequent experiment. The experiments are followed by an overall review of all the

7

experiments conducted. This involves scrutinizing whether the selected approaches
were correct and whether the research questions and additional hypotheses were
answered. The hypotheses are critically examined, and a reflection on the research
objectives and methodology is carried out.

Due to the complexity of the various Python scripts developed in this thesis, only
portions of the source code are included within the main body of the work. The
same applies to the results logs and Nmap scan results. Access to the complete
source code as well as the result files can be obtained from the following Git reposi-
tory: https://github.com/Dzaecko/masterthesis_appendix.

8

2 Theoretical Framework

This chapter introduces the topic of LLMs, including the current state of research
and existing approaches to the use of LLMs in cybersecurity. Furthermore, existing
scientific papers that deal with this topic are examined. It also examines which stan-
dard tools already exist to detect vulnerabilities in corporate networks and which
different types of vulnerabilities are of interest in the course of this work.

2.1 Large Language Models

LLMs are advanced artificial neural networks specialized in interpreting and gen-
erating natural language [56]. These models are based on a deep learning architec-
ture known as the "Transformer." Deep learning is an approach in machine learning
where complex tasks are solved using artificial neural networks with a deep hierar-
chy of layers, as outlined by Goodfellow et al. [19].

Artificial neural networks (ANN) are models that are used in the field of machine
learning.

The idea of an ANN is partly based on the research of Frank Rosenblatt in the
1950s and 1960s. Rosenblatt had the idea of developing an artificial neuron, the
so-called perceptron. Inspired by the actual nerve cells that receive and process
impulses [42]. The basic idea of the perceptron forms the basis of modern ANNs.

The example in Figure 1 shows a perceptron with three input variables. According
to Nielsen [42], this could already be used to develop abstract decision-making.

x1

x2

x3

Output

Perceptron

Figure 1: Diagram of a simple perceptron

Technically speaking, the perceptron represents a binary decision matrix in which
each input value x can assume either the state 1 or 0. If each value x fulfills a condi-
tion that is a prerequisite for decision-making, a decision can be made. Rosenblatt
has applied the concept of weightings to this so that each value has a specific weight-
ing that makes the input value have a stronger or weaker effect on the output.

The mathematical representation was defined as follows:

9

A perceptron takes a series of input values x1, x2, . . . , xn, each of which is mul-
tiplied by a weight w1, w2, . . . , wn. The weighted sum of these inputs is then com-
pared with a threshold value θ. The threshold is used to compare the weighted sum
and determine whether a positive or negative decision is made. In this case, it de-
termines whether the threshold for recognizing a salient word has been exceeded to
determine the output:

Output =

{
1 if

∑n
i=1wixi ≥ Threshold,

0 else.

Here, the output is 1 when the weighted sum of the inputs meets the threshold,
which means the perceptron identifies the pattern or feature it was trained to detect.
The output is 0 when the weighted sum falls below the threshold, signifying that
the perceptron does not recognize the pattern. This output enables the perceptron to
make straightforward decisions based on the input data. An example is a perceptron
that decides whether an email is classified as spam (1) or not (0). The features are the
frequency of the words "free" (x1) and "millions" (x2). The weights could be w1 = 0.2
and w2 = 0.5, and the threshold value could be 1.0.

The perceptron function could, therefore, be formulated as follows:

Output =

{
1 if 0.2 · x1 + 0.5 · x2 ≥ 1.0,

0 else.

Suppose an email contains the word "free" three times (x1 = 3) and the word
"millions" once (x2 = 1). The weighted sum would be 0.2× 3 + 0.5× 1 = 1.1, that is
greater than 1.0. The email is than classified as spam (output = 1).

Modern ANN are based on Rosenblatt’s perceptrons but mainly use sigmoid neu-
rons. According to Nielsen [42], a sigmoid neuron also has input values like a per-
ceptron. But unlike a perceptron, it does not just return 0 or 1. The return is a num-
ber in the range between 0 and 1. This means that a sigmoid neuron can represent
probabilities, unlike a perceptron.

Sigmoid neurons can be used to create deep neural networks. An ANN is con-
structed using multilayer networks. An ANN consists of three different layers,
which can be formed from any number of neurons. Each of these layers can, in
turn, contain sub-layers. The input layer contains n possible neurons that represent
the input values x1, x2, . . . , xn. Each neuron sends the input value to each neuron
in the next layer. The value is multiplied by a weight each time it is passed on, and
a bias is added. The bias is an additional parameter that offers various advantages

10

in neural networks, such as the adjustment of the activation function. The activa-
tion function is the actual function that uses the sigmoid function in an ANN with
sigmoid neurons to calculate the output between 0 and 1 and pass it on to the next
layer. The weighted sum is used as the input parameter for the activation function.

The next layer to which the values of the input layer are sent is the hidden layer.
The described process of the activation function is repeated there and calculated in
n hidden layers. The weighted sum in each neuron and in each layer of the hidden
layer results in each time from the outputs of the activation function of the connected
neurons, multiplied by the weights and added with the bias. The last layer in an
ANN is the output layer. Here, the weighted sum of the last neuron is also taken,
multiplied by the weight, and the bias is added.

The next layer to which the values of the input layer are sent is the hidden layer.
The described process of the activation function is repeated there and calculated in
n hidden layers. The weighted sum in each neuron and in each layer of the hidden
layer results in each time from the outputs of the activation function of the connected
neurons, multiplied by the weights and added with the bias.

For the j-th neuron in the l-th hidden layer, the weighted sum z
(l)
j is calculated as

follows:

z
(l)
j =

nl−1∑
i=1

w
(l)
ij a

(l−1)
i + b

(l)
j ,

Where:

• w
(l)
ij is the weight between the i-th neuron of the (l − 1)-th layer and the j-th

neuron of the l-th layer,

• a
(l−1)
i is the output of the i-th neuron of the (l − 1)-th layer,

• b
(l)
j is the bias term of the j-th neuron in the l-th layer.

The output a(l)j of the j-th neuron in the l-th layer is then calculated by applying

the activation function σ to the weighted sum z
(l)
j :

a
(l)
j = σ(z

(l)
j).

The last layer in an ANN is the output layer. Here, the weighted sum of the last
neuron is also calculated, multiplied by the weight, and the bias is added. For the

11

k-th neuron in the output layer, the weighted sum z
(L)
k is calculated as follows:

z
(L)
k =

nL−1∑
j=1

vjka
(L−1)
j + ck,

Where:

• vjk is the weight between the j-th neuron of the last hidden layer and the k-th
neuron of the output layer,

• a
(L−1)
j is the output of the j-th neuron of the last hidden layer,

• ck is the bias term of the k-th neuron in the output layer.

The output yk of the k-th neuron in the output layer is then calculated by applying
the activation function σ to the weighted sum z

(L)
k :

yk = σ(z
(L)
k).

To explain the process clearly using a minimal example, let us think of an example
that can be used in the development of an AI-controlled computer game.

Definition 2.1. Pong Game: In the game Pong, two bats have to be moved along
the Y-axis to hit a ball. The ball has a position in the coordinates X and Y. Suppose
you want to develop a neural network that is able to determine the Y-position of the
bat. The neural network should calculate how far the bat must be moved along the
Y-axis to hit the ball.

Definition 2.2 (Neural Network Specifications). A neural network could be devel-
oped with the following specifications:

• Input Layer: 3 neurons (xball, yball, ybeater)

• Hidden Layer: 4 neurons (with weights wij from each input to each hidden
neuron and bias bj for each hidden neuron)

• Output Layer: 1 neuron (with weights vk from each hidden neuron to the
output and bias c for the output neuron)

Definition 2.3 (Weights and Biases). • Weights:

12

– Between input and hidden layer (wij): randomly initialized

– Between hidden and output layer (vk): randomly initialized

• Biases:

– For hidden layer (bj): randomly initialized

– For output layer (c): randomly initialized

Example 2.1. In order to calculate a corresponding output value, the following is an
example of a passageway calculation with values:

• Inputs:

– xball = 0.5

– yball = 0.5

– ybat = 0.3

• Weights from input to hidden (wij):

– w11 = 0.2, w12 = −0.3, w13 = 0.4

– w21 = 0.1, w22 = −0.2, w23 = 0.5

– w31 = −0.1, w32 = 0.3, w33 = −0.4

– w41 = 0.3, w42 = −0.1, w43 = 0.2

• Weights from hidden to output (vk):

– v1 = 0.5, v2 = −0.4, v3 = 0.3, v4 = 0.1

• biases:

– Hidden layer (bj): b1 = 0.1, b2 = −0.1, b3 = 0.05, b4 = 0.2

– output layer (c): c = 0.1

1. calculation of the hidden layer neurons: Each neuron in the hidden layer
calculates the weighted sum of its inputs and bias and applies the sigmoid
activation function.

h1 =
1

1 + e−(0.5·0.2+0.5·0.1−0.3·(−0.1)+0.1)
≈ 0.5546

13

h2 =
1

1 + e−(0.5·(−0.3)+0.5·(−0.2)+0.3·0.3−0.1)
≈ 0.4350

h3 =
1

1 + e−(0.5·0.4+0.5·0.5+0.3·(−0.4)+0.05)
≈ 0.5930

h4 =
1

1 + e−(0.5·0.3+0.5·(−0.1)+0.3·0.2+0.2)
≈ 0.5890

2. calculation of the output neuron: The output is also calculated as the
weighted sum of the hidden neurons plus bias:

ynew =
1

1 + e−(h1·0.5+h2·−0.4+h3·0.3+h4·0.1+0.1)
≈ 0.6083

The result ynew = 0.61 would be the new Y-value suggested by the network for the
bat to hit the ball. To train the network effectively, one would measure the output
error and optimize the weights and biases through many iterations of training data
using backpropagation and gradient descent.

Definition 2.4. Forward Propagation: The network that has just been described and
receives an input x and generates an output y is referred to as forward propagation
according to Goodfellow et al. [19].

Definition 2.5. Backpropagation: Backpropagation attempts to minimize the differ-
ence between the output of the ANN and the desired target. The error is calculated
using a loss function, and the network is run backward using gradient calculation
to adjust the values for the weights and bias. With each run, an attempt is made to
achieve an optimized output that approximates the target.

a
(0)
1

a
(0)
2

a
(0)
3

h
(1)
1

h
(1)
2

h
(1)
3

h
(1)
4

o(2)

Hidden
Layers

Input
Layer

Output
Layer

Figure 2: Neural network architecture with 3 input neurons, 4 hidden neurons, and
1 output neuron.

14

ANNs are very suitable for clear, context-independent tasks. However, when
more complex tasks need to be solved, such as processing natural language or other
sequence-based data, such as creating source code or audiovisual data, or detecting
and analyzing vulnerabilities in corporate networks, as in this master’s thesis, more
specific approaches are required.

The Transformer architecture was specially developed for such tasks, which re-
quire context and also comprehension relationships over long distances within the
data.

The Transformer architecture, first presented at the Neural Information Process-
ing Systems (NIPS) conference in 2017 in the paper "Attention is All You Need",
is divided into two main components: the encoder and the decoder. The encoder
receives input in the form of a text sequence and processes it sequentially. For in-
stance, the sentence ’In a democracy, the people’ would be divided into tokens like
[’In,’ ’a’, ’democracy,’ ’the,’ ’people’]. Each of these vectors is represented in a mul-
tidimensional space. The encoder evaluates these vectors using the Self-Attention
model, generating an "attention score’ through more complex mathematical trans-
formations, including normalization and the application of a Feed Forward Neural
Network (FFNN).

The decoder operates similarly. It reprocesses the output of the encoder using the
Self-Attention model to generate a response. This response depends on the specific
model and the training data used. When the Transformer architecture was intro-
duced in 2017, it was trained with datasets from the Workshop on Machine Transla-
tion (WMT) for English-German and English-French translations [56].

According to Vaswani et al., [56], both the encoder and the decoder are the main
components of the Transformer architecture, as illustrated in Figure 3. The previ-
ously described example sentence (’In a democracy, the people’) is converted into
vectors in the input embedding as described. Then, the Attention Layer calculates
how much attention one word should pay to another. In the example mentioned
here, the word ’democracy’ could direct attention to ’people.’ New vectors with
these attention relationships are created. The newly formed vectors subsequently
go through a FFNN and generate new vectors. To stabilize and accelerate the pro-
cess, normalizations are performed, and residual connections are added to each of
these layers. The softmax function considers the determined attention score of the
words from the input and calculates a probability distribution in which each value
lies between 0 and 1 [19]. In the softmax function, exponential values of the attention
scores of the individual words are calculated and divided by the sum of all expo-
nential values. This function, applied to the example sentence [’In,’ ’a’, ’democracy,’
’the,’ ’people’], would direct significant attention between the words’ democracy,’
’people’ and ’the’ depending on the calculation of the attention score.

15

Softmax(si) =
esi∑
j e

sj

Depending on the pretraining, the model would then select the next word that is
likely to fit into the learned context. This could be the word "have," for example.
The whole process of the transformer would then be run through with the new
input sentence plus the word "have" to generate the next word. This process would
run until either the maximum tokens are used up or the sentence is finished. In the
example given here, this could lead to the result with the generated sentence: "In a
democracy, the people have the power to elect their leaders."

In a paper by Kaiming He et al. [12], these types of connections were introduced.
These residual connections can offer several benefits to the processing, such as ad-
dressing the issue of vanishing gradients in intense networks and allowing a net-
work to gain advantages from increased depth without adding complexity or diffi-
culty to the training process.

This process is repeated in a certain number of layers. In the example of Vaswani
et al., [56], the process was run through 6 encoder layers and six decoder layers. In
GPT-3, for 96 layers each, and in GPT-4, for 120 layers each.

The output sequence generated thereby represents the original input with rich,
learned context through the Transformer architecture. Depending on the chosen
model, different types of outputs can be generated. In GPT-3 and GPT-4, whose
goal is language modeling, for example, the example sentence would be completed,
and the output could be: ’In a democracy, the people have the power to elect their
leaders." Other types of outputs include text translation, text classifications, senti-
ment analysis, and Named Entity Recognition.

In the realm of Natural Language Processing (NLP), LLMs, like the Transformer
architecture, have become indispensable tools for a variety of tasks. The reason for
their effectiveness lies in their ability to understand the sequential and contextual
nature of language. Traditional machine learning algorithms often need help with
handling the intricacies and nuances of natural language, such as idioms, phrasal
verbs, and contextual meanings. LLMs, on the other hand, can capture these com-
plexities through their deep learning architecture and large number of parameters.
This enables them to outperform traditional algorithms in tasks like text summariza-
tion, machine translation, and sentiment analysis. As a result, LLMs have opened
new avenues for research and practical applications in NLP, making the field more
robust and versatile than ever before.

More advanced models, like GPT-3, build upon this architecture but vary in ap-
plication. GPT-3, for instance, only uses the decoder and has a significantly higher

16

Figure 3: Transformer architecture from Vaswani et al. [56]

number of parameters compared to other models. To clarify the complexity, The
model in "Attention is All You Need" had up to 213 million parameters. [56], GPT-3
has 175 billion, and GPT-4 even has up to 1 trillion parameters, as mentioned by
Brown et al. [7].

A high number of parameters indicates the complexity of the underlying neural
network. These parameters are calculated through the connections between differ-
ent layers in a neural network (Input, Hidden, Output), along with their weightings
and biases. For example, a neural network consisting of 3 input neurons, four hid-
den neurons, and one output neuron has, in comparison to large language models,
a parameter count of 21. This allows the network to learn a game like Pong (see
Figure 2).

The total number of parameters P in a fully connected neural network is calcu-

17

lated by the following formula:

P =
n−1∑
i=1

(Ni ×Ni+1 +Ni+1)

where:

• Ni is the number of neurons in the i-th layer,

• Ni+1 is the number of neurons in the (i+ 1)th layer,

• Ni ×Ni+1 represents the number of weights between layer i and layer i+ 1,

• Ni+1 represents the number of bias values in layer i+ 1.

In comparison to the parameters within an LLM like GPT-4 with 1 trillion param-
eters, the complexity is quite evident. For the training of GPT-3, as mentioned by
Brown et al., [7], a version of the CommonCrawl archive was used. Given that the
data basis for GPT-4 only extends up to September 2021, the archive of that month
was likely used for the training of GPT-4. As of the specified time, the archive com-
prised 2.95 billion web pages, amounting to 310 terabytes of uncompressed data.
Prior to training, this data underwent a filtering and deduplication process. The
training also incorporated extended versions of the WebText dataset and the literary
datasets Booksl and Books2; however, the precise contents of these datasets were
only partially revealed due to copyright constraints. The entirety of the English
Wikipedia, up to September 2021, was also included. It should be noted that in
contrast to open-source models such as BERT [8], OpenAI’s models are proprietary,
leading to a need for more transparency.

2.1.1 Retrieval-Augmented Generation

LLMs such as GPT-4 or Llama are pre-trained models that have already been trained
using a large corpus of knowledge. This last state of pretraining defines a static
limit of knowledge that an LLM has [7]. Furthermore, there is a known problem
with LLMs, especially when they are supposed to access knowledge that is outside
the trained knowledge. This problem is called hallucinations. According to [58],
hallucination occurs because models have learned specific data patterns during the
training process and then tend to overgeneralize these patterns when they encounter
new or different data.

During the evaluation of LLMs in the context of vulnerability detection, this be-
havior could be simulated. For this purpose, the GPT-4 model was asked whether
it can detect vulnerabilities at different CVE IDs (see section 2.5). For this purpose,

18

a CVE entry from 2010, i.e., before the training of the model, as well as a CVE entry
from the time of training and a CVE entry that was only discovered after the training
of the GPT-4 model, were used for a random sample.

For the sample with vulnerability CVE-2024-22317 affecting IBM App Connect
Enterprise 11.0.0.1 to 11.0.0.24 and 12.0.1.0 to 12.0.11.0, which was created after the
training was created, the model correctly responded that this entry was created after
the model was trained and therefore no information was available.

The vulnerability CVE-2010-3683, which affects Oracle MySQL 5.1 before 5.1.49
and 5.5 before 5.5.5, was not correctly identified by the LLM, but a vulnerability
was plausibly described. However, this vulnerability does not exist and cannot be
compared with an existing vulnerability. It is, therefore, assumed that the model
hallucinated here, and the description was freely generated.

For entry CVE-2020-29662, the LLM correctly identified the vulnerability and de-
scribed it in detail (correct description, correct CVSS score, etc.).

The results from experiment 1 (see section 3.3) and experiment 2 (see section 3.5)
are used to examine this case in more depth, where different models are tested in
the pre-trained state for the detection of vulnerabilities.

This sample was repeated several times, constantly with the same result. This
leads to the assumption that the corpus for the training of GPT-4 contains samples
of more recent CVE entries but not older entries and then declares a plausible vul-
nerability by hallucinating them, but this is not correct. Because CVE entries contain
the year in their name, the model was able to understand the context to the extent
that the CVE entry was only created after the pretraining was created, and it, there-
fore, assumes that it has no knowledge of it. This prevented hallucination.

The answers that are generated seem plausible but are then factually incorrect.
The problem occurs mainly when models are confronted with new or unknown
data. For example, data that was not available at the time of pre-training the LLM
would be generated hallucinatorily. In an example, from [58], a model that was
trained with data up to the year 2022 could not answer which country would host
the Olympic Games in 2023, for example. This confirms the result of the samples
from this work. The answer is to clarify that the model does not have this data, or it
could hallucinate and incorrectly output any country as the venue.

RAGs build a bridge to this. According to [26], a RAG is a system for improv-
ing the accuracy and reliability of LLMs and generative AI models by adding facts
from external sources. RAGs provide a solution by adding information that is either
newer than what the model already had in pretraining or information that was not
previously part of the model’s pre-training. [26] distinguish between implicit para-
metric memory, the knowledge that a model has already obtained through pretrain-

19

ing, and non-parametric memory, the knowledge that a model obtains through ex-
ternal knowledge after pre-training. Referencing external knowledge significantly
reduces the problem of incorrect content generation. RAGs are considered a key
technology for the further development of chatbots and for improving the suitabil-
ity of LLMs for real-world applications [17]. One advantage of using a RAG is that
the model does not have to be fine-tuned in context, so the data does not have to be
integrated directly into the model and can also be used across different models([58]).

When creating a RAG, the input text is converted by a process so that it can later
be saved in a vector database. There are various approaches for this, the most
widespread being the Byte Pair Encoding (BPE) approach, which is also used in
the OpenAI models ([5]). First, the entire input text is converted to lowercase let-
ters. An algorithm is then used to split the individual letters or words into tokens.
The same procedure is also used in the Transformer architecture 2.1 when entering
text.

As an example to link to the research in this thesis, the following CVE entry is
used for the process within a RAG:

The CVE entry "CVE-2023-50870, In JetBrains TeamCity before 2023.11.1 a CSRF
on login was possible, CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:L/I:N/A:N,
CWE-352" was broken down into 58 tokens using the "text-embedding-ada-002"
model (see section 3.2.1). Each token represents a specific entry in the model’s vo-
cabulary. To understand this approach in more detail, a test was made with the
online version of the TikTokenizer in this paper.3 An array of indices was created
using the sample text (see Array 2.1.1). The word CVE occupies exactly the place
with the index 68902 in the vocabulary. For efficiency, not every word within the
vocabulary of the model is represented by its index, but words are also made up of
several tokens.

68902 12 2366 18 12 19869 2031 11
644 76224 8068 13020 1603 220 2366 18
13 806 13 16 264 79695 389 5982
574 3284 11541 53 1242 25 18 13
16 14 8253 38794 14 1741 70333 14

6616 38794 75983 25 49 11628 25 52
11547 70333 39251 38794 10576 38794 11541 12739
12 16482 720

These indices would be created for each entry in a CSV file, for example, and
stored with enriched metadata in a vector database. There are currently cloud so-
lutions that provide vector databases, but there are also on-premise solutions such

3https://tiktokenizer.vercel.app/

20

as LlamaIndex4 or Langchain5. Cloud based solutions are offered by Azure6 (see
section 3.2.2), Databricks7, AWS8 or Qdrant9.

With on-premise solutions such as Llamaindex, the vector databases are saved in
JSON format 3.2.2.

Figure 4: Retrieval-Augmented Generation Workflow. from
https://towardsdatascience.com/retrieval-augmented-generation-rag-
from-theory-to-langchain-implementation-4e9bd5f6a4f2

As illustrated in Figure 4, a RAG system consists of various processes, which are
divided into Retrieve, Augment, and Generate. For the retrieval process, as ex-
plained above, the input text is converted into embeddings (tokenized), and the
tokens contained in the input text represent the semantic content. Semantic search
is applied to this content. Semantic search goes beyond traditional keyword-based
search [21]. Semantic search aims to find specific information by analyzing the con-
text and meaning behind the search queries. It uses the Nearest Neighbor (NN)
algorithm, also known as parallel search or nearest point search. It is a nearest
neighbor point search problem. The nearest neighbor extraction takes into account
conditions related to the geometric effects of the objects [21]. This content is often
processed by an Approximate Nearest Neighbor (ANN) algorithm or the k-nearest
Neighbors (KNN) to find the nearest neighbors within the vector database and form
a context.

Both algorithms use cosine similarity to calculate the distance between vectors.

4https://www.llamaindex.ai/
5https://www.langchain.com/
6https://azure.microsoft.com/en-us/products/ai-services/ai-search
7https://www.databricks.com/
8https://aws.amazon.com/de/bedrock
9https://qdrant.tech/

21

Cosine Similarity(A,B) =
A ·B

∥A∥∥B∥

For example, A forms the vector that is calculated by embedding the input, and
B forms various vectors from the vector database.

Algorithms such as ANN and k-NN are suitable for semantic searches and have
become established in the use of RAGs.

The k-NN provides exact results and is, therefore, ideal in situations where pre-
cision is crucial. K-NN guarantees that the k-nearest neighbors found actually have
the shortest distances to the query point. ANN provides an approximate solution
that only sometimes provides the absolute shortest distances but comes sufficiently
close in most cases. This is useful in applications where a slight deviation from the
exact solution is acceptable if it significantly improves performance [6].

The resulting context is generated into a prompt together with the actual input
in the RAG process. With this enhanced prompt, the LLM can now work on the
context to produce a coherent and informative response.

22

2.2 Cybersecurity

Since the introduction of computer technologies, there has been a threat that pri-
vate, sensitive, or critical data could be compromised by unauthorized access. In
the 1980s, this threat manifested itself in particular through the spread of the first
various computer viruses, including the Elk Cloner[25], the Brain Virus10 , and the
Stoned Virus11, and despite the absence of the Internet as we understand it today,
the dissemination of this malware took place primarily via portable storage media
such as floppy disks and within the rudimentary internal networks of organizations.
For the most part, these viruses represented experimental attempts by developers to
enable research into potential vulnerabilities rather than posing an immediate threat
to data security. The Elk Cloner, for example, was developed by Rich Skrenta as a
high school joke to test the ability of software to self-replicate [25]. Even though
the Elk Cloner was relatively harmless, for example, it displayed poems when start-
ing a floppy disk, this virus has historical significance as it is considered the first
self-propagating virus [25].

These early forms of malware were not yet technically capable of extracting data
or giving outsiders access to internal networks. At that time, the real threat was
less in the virtual domain and more in the physical domain. Due to the prevailing
isolation or closed nature of computer systems, the focus of security efforts was not
on defending against external network attacks but on protecting against physical
access, data theft, and internal threats. Even within the ARPANET, the forerunner
of the modern Internet, security concepts were considered secondary, as access was
limited to an exclusive circle of people with a military or academic background [48].

Public interest was first aroused in 1988 when Robert Tappan Morris developed
a program that, according to Robert’s statements, actually intended to count the
computers on the then-young Internet. Due to a program error, the infected com-
puter replicated the software independently, which led to an enormous utilization
of resources. At the time, around 6,000 computers were infected with the program,
which at the time accounted for around 10% of the entire Internet. This program
went down in history as the Morris worm, the first worm to spread on the Internet
[23].

As a result of this incident, the first official team, the Computer Emergency Re-
sponse Team (CERT), was formed to protect against, detect, and respond to an orga-
nization’s cybersecurity incidents. The term cybersecurity was not yet widely used
at that time. It was more commonly referred to as computer security or network
security [9].

10https://medium.com/geekculture/brain-the-worlds-first-computer-virus-f3758323d894
11https://www.f-secure.com/v-descs/stoned.shtml

23

Due to the rapid increase in technologies and the spread of personal computers,
as well as the further expansion of the Internet, the topic of cyber security became
more and more present, so private companies and official authorities became more
intensively involved with the topic. The idea of CERTs was transferred to other
countries, and the state developed the first legislation and regulations [43, 49, 55].

Today, the field of cybersecurity covers a wide range of areas that protect systems,
networks, companies, and private individuals from digital attacks or other security
breaches. Cybersecurity covers the following areas in particular:

• Network security

• application security

• end device security

• data security

• Identity and access management

• Operational security

• Compliance

In recent years, more and more LLMs have also taken their place in cybersecurity.
According to Nourmohammadzadeh et al., [44], the first documented use of LLMs
was in 2018, where the AWD-LSTM model was used to generate a malicious spear
phishing link [24]. The paper also mentioned various attack vectors through the use
of LLMs (mostly GPT models). The attack vectors are divided into two particularly
recognizable ones: One is in support of phishing attacks by creating convincing and
easy-to-read phishing emails and web pages through the models’ language capabil-
ities. The other attack vector that LLMs can clearly exploit is the creation of malware
or malicious program code. Since LLMs are capable of generating code in a variety
of programming languages, they can be used to generate not only benign code but
also malware.

In the same year that the first documented use of the AWD-LSTM model for at-
tacks was reported, the first LLM was also used in the course of defensive applica-
tions. In 2018, the RNN model was used to detect abnormal behavior in network
protocols. In the paper, the NIST Cybersecurity Framework (CSF) was used to clas-
sify in which areas there are already elaborations in the course of using LLMs as
defensive applications. The CSF was developed to help individual companies and
other organizations identify the cybersecurity risks to which they are exposed. Ac-
cordingly, the risks are divided into five functions defined by NIST:

24

1. Identify: Develop an organizational understanding to manage cybersecurity
risk to systems, people, assets, data, and capabilities.

2. Protect: Develop and implement appropriate safeguards to ensure delivery of
critical services.

3. Detect: Develop and implement appropriate activities to identify the occur-
rence of a cybersecurity event.

4. Respond: Develop and implement appropriate activities to take action regard-
ing a detected cybersecurity incident.

5. Recover: Develop and implement appropriate activities to maintain plans for
resilience and to restore any capabilities or services that were impaired due to
a cybersecurity incident.

The research by Nourmohammadzadeh et al. has shown that LLMs have been
mainly researched in the functions Detect and Protect. Among the research in Pro-
tect mentioned there, LLMs were used to investigate how well LLMs can correct
software vulnerabilities in programs. For example, one of Pearce et al. [46] research
questions was: "Can off-the-shelf LLMs generate safe and functional code to fix se-
curity vulnerabilities?" Pearce et al. were able to answer this research question by
using experiments as the chosen method. The researchers used various commercial
models, such as code-davinci-001 from OpenAI and a GPT-2-based model, which
they had created themselves.

The research teams generated targeted vulnerabilities in software, including
Python and C-based programs. These vulnerabilities were based on known Com-
mon Vulnerabilities and Exposures (CWE) entries. Based on two CWEs, CWE-
89 (SQL Injection) and CWE-787 (Out-of-bounds Write), a database of vulnerable
scripts was created. For this purpose, various LLMs were used to create scripts
that contained a vulnerability of the respective CWEs. In order to generate as many
programs as possible, the settings (Temperature and Top P) with which the most
compilable programs could be generated were evaluated.

In the study, the OpenAI LLMs code-cushman-001 and code-davinci-001 were
used to generate ten programs for each combination of the parameters "Tempera-
ture" (T) and "Top P" (P), with the values {0.00, 0.25, 0.50, 0.75, 1.00}. This resulted
in a total of 250 suggestions for each model, giving a total number of 500 programs.
The aim was to check the compilability of each generated program before evaluating
it in terms of functional and safety aspects.

The results of the analysis can be calculated with this formula like, described be-

25

fore:

any combination (Ti, Pj), with Ti, Pj ∈ {0.00, 0.25, 0.50, 0.75, 1.00},

led to the generation of Nij = 10 programs per model

This resulted in 250 suggestions per model and a total of 500 programs.

The analysis revealed that 95 functional and vulnerable programs were identi-
fied for CWE-787 and 22 corresponding programs for CWE-89 among the generated
programs. These executable and vulnerable programs were then used as a database
to discuss the extent to which code-cushman-001 and code-davinci-001 can repair
these programs. The Temperature/Top P matrix was used again for this; instead of
10 programs per field, the corresponding generated programs were used. This led to
the creation of 47,500 programs for the scenarios based on CWE-787 and, similarly,
11,000 programs for CWE-89. For CWE-89, with 10,796 valid programs, the success
rate was 29.6% (3,197 programs). The test results illustrate the potential of LLMs, es-
pecially the Codex model, in identifying and repairing software vulnerabilities. The
varying success rate between the different vulnerability types underlines the need
for further research to optimize the efficiency of these models in various application
scenarios.

Figure 5: Examining Zero-Shot Vulnerability Repair with Large Language Models
from Hammond Pearce et al.

2.3 State of research

The steadily increasing threat from cyber threats poses significant challenges to the
security of various systems in light of the ongoing evolution of attack tactics and
their rapid adaptation to new technologies. Ferrag et al. [13] argue that the need for
advanced and effective detection mechanisms is of crucial importance.

Since the proliferation of LLMs, interest has increased in various security fields
for using this modern technology to improve cybersecurity. As the topic of LLMs
in the context of IT security is still new, no printed literature on this subject could
be found during the initial literature search. However, several works have already

26

been published that deal with this issue. These are mostly pre-trained LLMs tailored
to specific domains. Notably, BERT has been used multiple times in the field of
IT security to develop a domain-specific LLM. Examples include CySecBERT [4],
ExBERT [22], MalBERT [47], and CyBERT [2].

Further research approaches focus on the analysis and classification of software
vulnerabilities. An paper from Chandra Thapa et al. [54] specifically addresses this
topic. The focus is not on fine-tuning a particular model but on evaluating various
models. Chandra et al. [54] were able to demonstrate that models like GPT-2 Large
and GPT-2 XL outperformed models like CodeBERT [12] and DistilBERT in detect-
ing vulnerabilities. The results show a general improvement in performance with
increasing model size. The studies were limited to vulnerabilities in the program-
ming languages C and C++.

Another documented approach is MalBERT [13], developed by Rahali and
Akhloufi in 2021. Rahali and Akhloufi aimed to create a framework for detecting
Android malware using a transformer-based approach, mainly using BERT. This
process starts with the collection of data on Android applications from the public
Androzoo dataset, which includes both malicious and benign apps. This data is
filtered to include 12,000 benign and 10,000 malicious apps from 11 different cate-
gories, such as Adware, Spyware, and Ransomware. The downloaded APK files are
then decompiled, and the AndroidManifest.xml files are extracted. BERT is used to
fine-tune the training set to perform two types of classifications: a binary classifi-
cation to identify malware and a multi-class classification to identify the malware
category. The authors use four key metrics to assess model performance: Accuracy,
Matthews Correlation Coefficient (MCC), F1-Score, and Cross-Entropy Loss. The re-
sults show that the BERT model outperforms all other models in both classification
tasks. Specifically, BERT achieved an accuracy of 0.9761, an F1-Score of 0.9547, a loss
value of 0.1274, and an MCC of 0.9559 [13].

Previous research has explored the applicability of LLMs in various areas of IT
security. This includes the analysis of cybersecurity texts, where models like Cy-
SecBERT [4] and ExBERT [22] have been developed to analyze specific texts in the
field of cybersecurity and detect threats or anomalies in cybersecurity. Another fo-
cus is on vulnerability detection in source code, where studies from Chandra Thapa
et al. [54] have evaluated the efficiency of LLMs in detecting vulnerabilities in source
code. Additionally, there are projects like MalBERT [13], which explore the capabil-
ity of LLMs in detecting Android malware. While these research efforts provide
valuable insights, they mainly focus on specialized use cases and leave broader con-
texts unexplored.

Despite LLMs promising applications in IT security, there are clear gaps that need
further exploration. A key point is the comparative analysis of LLMs efficiency with
traditional vulnerability detection tools in enterprise networks. While existing re-

27

search primarily focuses on specific applications and domains, the question remains
open as to how LLMs perform compared to traditional tools in a broader context.

Addressing these research gaps could not only significantly contribute to science
but also have practical implications for improving cybersecurity in enterprise net-
works. The answers to these questions could assist companies in making informed
decisions about deploying LLMs in their IT infrastructure.

2.4 Vulnerability Assessment Tools in IT Security

Vulnerability Assessment Tools have long served as the conrnerstone for identify-
ing, classifying, and managing vulnerabilities within IT networks. These tools spaan
a broad range of specialized software. From web application scanners like OWASP
ZAP, Burp Suite, or Nikto, to comprehesive network scanners such as Nessus12 and
OpenVAS13. Network scanners generally offer broad scanning capabilities, includ-
ing the identification of open ports, misconfigured firewalls, and known vulnerabil-
ities specific to network services. Web application scanners are tailored for specific
vulnerabilities like SQL injection, XSS, and CSRF.

Many of these tools rely on signature-based detection methodologies, utilizing
databases of known vulnerabilities like CVE databases. Some advanced tools em-
ploy heuristic methods to discover vulnerabilities that may not yet be cataloged.

This background on vulnerability assessment tools will serve as a comparative
foundation for evaluating the effectiveness and efficiency of LLMs in similar roles.

2.5 CVE

The idea of creating a Common Enumeration of Vulnerabilities came from David
E. Mann and Steven M. Christey in 1999, when they explained in their paper [8]
for the MITRE Corporation, a non-profit organization based in America that deals
with cybersecurity, among other things, that the CVE system can be used to define
a uniform collection of vulnerabilities. A CVE forms a logical bridge between a tool
used and a database that contains the description of the vulnerability discovered
in the tool, with enriched information on the version and possible implied CWE
entries. Since 1999, the database of all tools with known vulnerabilities has been
growing.

A CVE record can always be clearly identified by its CVE ID. A CVE record always

12https://www.tenable.com/
13https://openvas.org/

28

goes through a defined life cycle until it is generally published (see Figure 6) 14. As of
today (April 2024), there are 228,713 published CVE entries available for download.

Figure 6: CVE Record Lifecycle

The CVE database is the leading database for software vulnerabilities and is con-
stantly updated. It serves as a fundamental basis for classifying the most common
vulnerabilities.

Consequently, the CVE database also forms a basis for this master thesis, supple-
mented by data from the Exploit DB (see Chapter 2.7) and the primary CVSS data
from Chapter 2.6. The complete existing data sets are accessed for use in this thesis.
MITRE offers several ways to download the dataset; in the traditional way, the data
is available in CSV, HTML, text, and XML formats. In addition, all CVE entries are
also available for download in JSON 5.0 format.

For research reasons, both the traditional CSV file format and the JSON 5.0 format
are used in this paper. The structure of the CSV format is shown in table 1.

Table 1: Summary of the CVE Database Fields
Field Name Description
Name The unique identifier of the security vulnerability, known as the CVE ID.

Status
The status of the CVE entry, indicating whether it is a candidate or a rec-
ognized entry.

Description
A brief description of the security vulnerability detailing its nature and
potential impact.

References
References to resources that provide additional information about the vul-
nerability. This may include URLs, advisories, or database entries.

Phase
The stage of the CVE entry in the CVE lifecycle, indicating its maturity
and whether it has been reviewed.

Votes
Records of the voting results from the CVE board members, reflecting a
consensus on the vulnerability.

Continued on next page

14https://www.cve.org/About/

29

Table 1 – Continued from previous page
Field Name Description

Comments
Additional remarks or discussions from the CVE board or analysts, which
may include insights or clarification on the entry.

A significant problem that became apparent during the research phase also con-
cerns a gap in the information retrieval of data from the corresponding datasets. As
the missing link between the classification of CVSS scores (see 2.6) and the classi-
fication of existing exploits (see 2.7) shows, queries using a Python script revealed
that, as listed in table 2, over half (58.56 %) of all CVE entries only contain a reference
to the affected software and the corresponding version in the description. This sug-
gests that a classic database query or a keyword search challenges the identification
of vulnerabilities for classic vulnerability assessment tools, as an exact statement on
the severity and identification of a vulnerability can be derived across various data
sources.

Table 2: CVE Records Overview

Description Number or Percentage

Total Number of CVE Records 238,151
CVE Records without Name or Version 139,458
CVE Records without Version 139,408
Percentage Missing Name or Version 58.56%
Percentage Missing Version 58.54%

It was also noticed during the research that versions are often not clearly defined
in the description. Words such as "before", "after", "up to", "earlier", "lessThan",
"lessThanEqual" and "or prior" are often used to describe a whole series of versions.
An examination of the keywords during the research phase revealed that 43% of all
current CVE records contain these keywords in the description. There is no uniform
structure in the use of these terms; instead, they are used in an unstructured manner
in different contexts. This makes it difficult to automatically transfer the information
into relational database systems or other structured data systems. Furthermore, the
CSV and JSON data formats are each structured differently.

For example, the CVE entry CVE-2008-3716 in CSV format has the following de-
scription: "Cross-site request forgery (CSRF) vulnerability in Harmoni before 1.6.0
allows remote attackers to make administrative modifications via a (1) save or (2)
delete action to an unspecified component."

In JSON format, on the other hand, versioning is not handled according to a fixed
structure. For example, for CVE-2020-9497, the version is stored together with the

30

software name in the "Version" field, with the information that all versions from
1.1.0 and older are affected.

Listing 1: CVE-2020-9497 Version
1 {
2 "versions": [
3 {
4 "status": "affected",
5 "version": "Apache Guacamole 1.1.0 and older"
6 }
7]
8 }

For CVE-2021-24383, version 8.1.12 for WP Google Maps is described as affected
in the JSON format. The "lessThan" field also mentions version 8.1.12. This com-
bination is not technically correct, as the description of the CVE states: "The WP
Google Maps WordPress plugin before 8.1.12 did...". This description supports the
assumption that the "version" field was mishandled.

Listing 2: CVE-2020-9497 Version
1 {
2 "versions": [
3 {
4 "lessThan": "8.1.12",
5 "status": "affected",
6 "version": "8.1.12",
7 "versionType": "custom"
8 }
9

10 }

In the listing for CVE-2022-4289, instead of the fields "lessThan," etc., the versions
are described using mathematical operators.

Listing 3: CVE-2020-9497 Version
1 "affected": [
2 {
3 "vendor": "GitLab,"
4 "product": "GitLab,"
5 "versions": [
6 {
7 "version": ">=15.3, <15.7.8",
8 "status": "affected"
9 },

10 {
11 "version": ">=15.8, <15.8.4",
12 "status": "affected"
13 },
14 {
15 "version": ">=15.9, <15.9.2",
16 "status": "affected"
17 }
18]

The assumption here is that LLMs are better than traditional assessment tools
at recognizing the context as well as the semantic nuances and contextualizations
within the description. For example, if the software is installed with version 1.5.4,
static tools may need help to make the connection between these versions. More in-
depth research is considered in chapter 3.5. A fully structured form in the form of a

31

relational database was also not found during the research phase and during the lit-
erature review. As described in the following sections, other data sources such as the
Exploit DB and CVSS scoring exist, which, via larger databases such as the National
Vulnerability Database (NVD) from NIST, The National Institute of Standards and
Technology (NIST) is a U.S. government agency focused on advancing measurement
science, standards, and technology to promote innovation and competitiveness [41],
offers a further challenge in providing an organized overview across different sys-
tems. Therefore, the assumption here is that LLMs that have access to this unstruc-
tured distributed data can more efficiently and effectively identify vulnerabilities
through solutions such as vector databases.

2.6 CVSS

To assess and classify the vulnerabilities in this software, the Common Vulnerability
Scoring System (CVSS) is used, which has established itself as a ubiquitous standard
for quantifying vulnerabilities[14]. CVSS is an open framework developed by the
Forum of Incident Response and Security Teams (FIRST), an international forum
for incident response and cybersecurity teams, which published the first version of
the CVSS standard in 2005. The CVSS score is measured on a scale of 0 to 10, with
10 being the highest level of risk. The calculated value can be transformed into
qualitative categories (like LOW, MIDDLE, HIGH, and CRITICAL) to aid organi-
zations in appropriately designing their vulnerability assessment and prioritization
processes [15]. This classification into different qualitative representations can be
categorized as shown in Table 3.

Table 3: CVSS Score and Qualitative Rating

CVSS Score Qualitative Rating

0.0 None
0.1 – 3.9 LOW
4.0 – 6.9 MEDIUM
7.0 – 8.9 HIGH
9.0 – 10.0 CRITICAL

Various metrics are used to calculate one of three scores. The base score, the tem-
poral score, and the environmental score can be calculated. CVE entries, for ex-
ample, use the base score to evaluate individual CVE records. As the focus of this
paper is partly on evaluating the security of a CVE, only the base score is consid-
ered in more detail. The possible presence of exploits is used later in the 3.3 section
as additional information for entering the calculation and prediction by LLMs. Ac-
cording to the official CVSS version 3.1 specification [16], base scores are generally

32

generated by the organization responsible for the vulnerable product or by an au-
thorized third party. Often, only the base metrics are released since they do not
change over time and are relevant to all environments.

The metrics group for the base score is made up of eight different metrics (see
table 4)

Table 4: CVSS Base Metrics Summary

Metric Group Metric Value Description

Attack Vector
(AV)

Network (N) The vulnerability can be exploited from any-
where across the Network.

Adjacent (A) The attack must be launched from the same lo-
cal Network or a logically adjacent network.

Local (L) The attack requires local access or user interac-
tion to succeed.

Physical (P) The attacker needs to physically access or ma-
nipulate the vulnerable component.

Attack Com-
plexity (AC)

Low (L) The attack does not require special conditions
and has a high likelihood of success.

High (H) The attack relies on conditions outside the at-
tacker’s control, making it more difficult to ex-
ploit.

Privileges Re-
quired (PR)

None (N) No privileges are required for exploitation.

Low (L) The attacker needs privileges that grant basic
user capabilities.

High (H) and
significant
privileges are
required for
exploitation.

User Interac-
tion (UI)

None (N) No interaction from any user is required.

Required (R) Requires the user to perform some action be-
fore exploitation.

Scope (S) Unchanged
(U)

The exploit affects only the vulnerable compo-
nent.

Changed (C) The exploit affects resources beyond the initial
component.

Confidentiality
(C)

High (H) Total loss of confidentiality, leading to all re-
sources being divulged.

33

Metric Group Metric Value Description

Low (L) Partial disclosure of restricted information; not
all data is disclosed.

None (N) No impact on confidentiality.
Integrity (I) High (H) Complete loss of integrity; the attacker can alter

all protected files.
Low (L) Partial modification is possible but does not im-

pact the component critically.
None (N) No impact on integrity.

Availability
(A)

High (H) Complete loss of availability; the component
becomes completely inaccessible.

Low (L) Performance degradation or interruptions oc-
cur but do not completely deny service.

None (N) No impact on availability.

In summary, FIRST has specified a vector that summa-
rizes the classification of the metrics in the following format:
’CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:H/I:H/A:H’.

According to Jiamou Sun et al., [53], the mere description of a CVE record can
already be used to make a suitable assessment of the classification into these metrics
in order to calculate a CVSS score. To make the calculation more straightforward to
understand, the following example illustrates the calculation of a CVSS score. FIRST
defines the following formula for calculating the base score version 3.1:

The CVSS v3.1 Base Score is calculated using the following formula [16]:

Base Score = Round Up (Minimum [(Impact + Exploitability), 10]) (1)

Where:

• Impact is calculated as:

Impact = 1− (1− Conf)× (1− Integ)× (1− Avail) (2)

Here, Conf, Integ, and Avail are the impacts on confidentiality, integrity, and
availability, respectively.

• Exploitability is calculated as:

Exploitability = 8.22× AV × AC × PR × UI (3)

Each of these factors (AV, AC, PR, UI) are weights based on the Attack Vector,
Attack Complexity, Privileges Required, and User Interaction metrics.

34

• If the Impact sub-score is 0 (meaning no impact), the overall Base Score is also
0.

If Impact = 0, then Base Score = 0 (4)

Each metric value of a metric has a defined numerical value that is used for the
calculation [16]."

Example 2.2 (CVE-2022-37878). Description: "Vulnerabilities in the ClearPass Pol-
icy Manager web-based management interface allow remote authenticated users to
run arbitrary commands on the underlying host. A successful exploit could allow
an attacker to execute arbitrary commands as root on the underlying operating sys-
tem, leading to complete system compromise in Aruba ClearPass Policy Manager
version(s): 6.10.x: 6.10.6 and below; 6.9.x: 6.9.11 and below. Aruba has released
upgrades for Aruba ClearPass Policy Manager that address these security vulnera-
bilities."

CVSS Vector:

CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:H/I:H/A:H

Score 7.2 HIGH

• Attack Vector (AV:N): The vulnerability can be exploited over the Network,
indicating a web-based management interface. Therefore, the attack vector is
classified as Network (Network).

• Attack Complexity (AC:L): The attack complexity is low (Low), suggesting
that no special conditions or hard-to-reach states are necessary for a successful
attack. The attacker only needs to be authenticated.

• Privileges Required (PR:H): The attacker needs high privileges (High) in the
system to exploit the vulnerability. This reflects the need to access the man-
agement interface as an authenticated user.

• User Interaction (UI:N): No interaction from another user is required (None)
to exploit the vulnerability. The exploitation occurs completely through au-
thorized user sessions.

• Scope (S:U): The Scope (Scope) of the vulnerability remains unchanged (Un-
changed), as the vulnerability does not affect components outside the original
security context.

• Impact on Confidentiality, Integrity, and Availability (C:H/I:H/A:H): The Im-
pact on confidentiality, integrity, and availability is high (High). This is because

35

a successful attack gives the attacker full control over the system, leading to a
complete loss of confidentiality and integrity, as well as availability.

Given the metric values:

Metric Value
AV Network (0.85)
AC Low (0.77)
PR High (0.27) for unchanged Scope
UI None (0.85)
C, I, A High (0.56 each)

Table 5: Metric Values

The calculated values are:

Calculated Value Result
Impact 5.87
Exploitability 1.23

Table 6: Calculated Values

The formula for the Base Score is:

Base Score = Round Up (min [(Impact + Exploitability) , 10])

Applying the calculated values:

Base Score = Round Up (min [5.87 + 1.23, 10]) = Round Up(7.1) = 7.2

Thus, the CVSS Base Score is 7.2. This score can be interpreted with Table 3 to
classify the qualitative rating as HIGH.

In this work, the CVSS score is relevant insofar as it describes a representative
statement about software classified as critical. As a rule, a CVE record (see 2.5)
describes the vulnerability that exists within the software but not the size of the
impact of the vulnerability. To close this gap, this thesis will investigate whether
LLMs are able to assess the severity of the impact through the text-based descrip-
tion within a CVE record. Research by Mustafizur R. Shahid and Hervé Debar [51]
has already shown how a trained BERT model 2.3 can be very effectively adapted to
the specific task through targeted fine-tuning and achieve high accuracy in predict-
ing CVSS metrics based on vulnerability descriptions. [51] Building on this research,
the CVSS score and metrics will also be extracted from the descriptions and tested

36

against different models (see 3.3) to provide a detailed statement on the measure-
ment of efficiency and effectiveness in the course of vulnerability detection in this
research area.

The latest standard is version 4.0 (as of April 2024). In this work, however, the
CVSS standard 3.1 is used. The reason for this is that during the investigation of
the CVSS score, a comparison was developed using a Python script. The aim was to
find out which CVSS version is currently used the most within the CVE database in
order to work with it in the course of this work.

The comparison of all existing CVE entries as of April 2024 was carried out, and
it was checked whether CVSS metrics were noted in the CVEs. The result of this
(see table 7) shows that currently 69.39% of all CVE entries that contain a score
evaluation use version 3.1. It is striking that version 4.0 was already released in
2023 but has so far had no apparent use on the creation of CVE entries from MITRE’s
official CVE database.

CVSS Version Percentage
CVSS 3.1 69.39%
CVSS 3.0 26.14%
CVSS 2.0 4.55%

Table 7: Percentage of CVSS Versions

It was remarkable that in MITRE’s official CVE database, 20.06% of all CVE entries
had an entry of one or more CVSS scores. That was 47,813 out of a total of 238,151
CVE entries. A comparison with the NVD, for example, shows that a CVE record
with a base score of 7.5, i.e. HIGH, was rated in the NVD database (CVE-2020-23872)
and this has still not been added to the official CVE database after 3 years since the
last update to the entry in the NVD database in 2021. This confirms the discrepancy
between the different sources in the synchronization of exploits in the assignment
to CVE entries, which was also found by Jiamou Sun et al. [53]. Here, too, it was
found that there is a gap between the timeliness of the official CVE database and the
CVSS metrics recorded for it. This paper does not go into the size of the discrepancy
or the comparison of the NVD database in any depth, but it is a research point that
is still open for more in-depth analysis.

2.7 Exploit DB

Another data source included in this work is the database provided by ExploitDB.
The entries within ExploitDB differ from the CVE entries in that they register and
describe existing exploits for specific vulnerabilities. According to Jiamou Sun et al.,
[53], 69% of the entries that were created as CVE entries and initially announced in

37

ExploitDB have a HIGH or CRITICAL severity rating (see chapter 2.6).

This can be explained by the fact that the actual existence of a confirmed exploit
makes the vulnerability significantly more dangerous. In addition, it often takes
a year or more for vulnerabilities for which exploits exist to appear in the official
CVE database. More specifically, Jiamou Sun et al. [53] found that at the time of
writing their paper, 39.6% of all exploits had no associated CVE entry. 94.8% of
these exploits were already older than one year since their publication at that time.
Based on these findings, in addition to the CVE entries, all ExploitDB records were
used as a data set in this paper to extend the RAG system and investigate whether it
can close the gap between missing CVE entries and the detection of vulnerabilities
in software.

ExploitDB makes all exploit descriptions and papers on the exploits publicly
available in its GitLab repository15. The data used in this paper refers to the CSV file
with the descriptions of the exploits. Furthermore, the ExploitDB also provides the
code for the exploits directly. For ethical reasons, these were not used in this work,
but only the data available in the CSV file and described in table 8.

Table 8: Description of Exploit Database Fields
Field Description
id The unique identifier for each exploit entry.
file The path to the file containing the exploit code or text.
description A brief summary of the exploit or vulnerability.
date_published The date when the exploit was published.
author The name of the person or entity that published the ex-

ploit.
type The type of exploit, e.g., denial of service (dos), web apps,

etc.
platform The platform that the exploit targets, e.g., Windows, Unix,

Linux, etc.
port The network port that the exploit targets, if applicable.
date_added The date when the exploit was added to the database.
date_updated The last date when the exploit entry was updated.
verified A flag indicating whether the exploit has been verified.
codes Associated codes such as CVE or OSVDB identifiers.
tags Keywords or tags associated with the exploit.
aliases Alternative names or identifiers for the exploit.
screenshot_url URL to a screenshot related to the exploit, if available.

Continued on next page

15https://gitlab.com/exploit-database/exploitdb

38

Table 8 – Continued from previous page
Field Description
application_url URL to the application or service that is affected by the

exploit.
source_url URL to the original source of the exploit information.

The further use and processing of the data from the ExploitDB are explained in
more detail from the chapters in the experiments section 3.3

2.8 Nmap

The Network Mapper (Nmap) is an open-source tool used for scanning networks
and gathering information about the systems and services present in a network.
Orebaugh and Pinkard [45] describe network scanning as the process of discover-
ing active hosts on a network and gathering detailed information about these hosts,
such as their operating system, active ports, services, and applications [45]. Net-
work scanning consists of the following four basic techniques according to Ore-
baugh and Pinkard [45]:

1. Network Mapping: Sending messages to a host to generate a response if the
host is active.

2. Port Scanning: Sending messages to a specific port to determine if it is active.

3. Service and Version Detection: Sending specially crafted messages to active
ports to generate a response indicating the type and version of the service
running.

4. OS Detection: Sending specially crafted messages to an active host to generate
a response that indicates the type of operating system running on the host.

Nmap offers various output formats and different scanning depths, which can be
set using parameters when invoking the Nmap program. For the preliminary phase,
the following Nmap parameters were used:

Nmap -A 192.168.178.107 --version-all

This command instructs Nmap to enable the detection of the OS, the version,
script scanning, and the traceroute. A typical output of this command could look as
follows:

39

Listing 4: Nmap scan on 192.168.178.107
1
2 PORT STATE SERVICE VERSION
3 21/tcp open ftp Pure-FTPd
4 25/tcp filtered smtp
5 63/tcp filtered domain
6 80/tcp open http Apache httpd 2.4.10
7 | _http-server-header: Apache/2.4.10 (Debian)
8 | _http-title: 403 Forbidden

The output displays the ports open on the target server, the running services on
those ports, and their versions. Some software providers attempt to hide version
information. However, by reading HTTP headers, as enabled by Nmap, the version
number can often still be revealed.

For the initial phase and the handling of Nmap outputs, the original Nmap output
was used unaltered as an input parameter. The only modification was to manually
split the scans based on each discovered port during the preliminary phase since
some Nmap scans can exceed the maximum length of 4096 tokens. Tokens in GPT-
3.5 are the basic units of text processing, similar to words or punctuation, and the
limit of 4096 tokens is set due to memory and computational constraints to ensure
efficient processing. Beyond this threshold, the resource requirements and com-
plexity of the model’s attention mechanism would increase exponentially. For the
subsequent master’s thesis, a Python script will be used to segment the scan results
better and use them automatically as input parameters for the models.

40

3 Method

This chapter sets out the research question and the hypotheses. Experiments are
used to provide empirical answers to the research questions. The design of the ex-
periments from section 3.3, as well as the detailed procedure of the experiments,
are described here. Detailed descriptions are used to define the databases selected
here. Section 3.1 describes in detail the process of creating, selecting, and using the
data sets specified for the experiments. The analysis in the summary sections eval-
uates the results obtained from the experiments after their execution. In order to
test the most efficient LLM against a realistic scenario, it is evaluated in a simulation
environment, and the research questions are answered.

3.1 Datasources

In order to define a database for the experiments to answer the research questions,
data sources must be consulted that provide information on existing vulnerabilities
and make them available in a categorized form. During the research, it looked in
detail at two globally established standards for identifying and classifying vulner-
abilities (see 2.5 and 2.6), as well as another comprehensive collection of collected
use cases that security researchers use to improve the practical applicability of these
standards in cybersecurity.

The selection of LLMs used for the experiments is also explained in this section.
The focus here is on current LLMs that have already been generally trained and can
be used immediately. The aim of this work is not to train a new model from scratch.
Even though this is also a very research-intensive area in the field of cybersecurity
improvement, this work aims to test how standard models can be used in vulnera-
bility detection, both in the initial state and in the optimized state (see Section 2.1.1.
The creation of data sets adapted for the execution of the experiments is described
using Python scripts from section 3.3 onwards.

3.2 Models and technologies

3.2.1 Models

Various models were used for the experiments to evaluate their efficiency against
each other, particularly with regard to the detection of weak points. Different ap-
proaches were chosen to evaluate efficiency. The selection of the specified models
was broad to obtain a comprehensive overview. All models are off-the-shelf LLMs
that have already been pre-trained and are currently established on the market as

41

the most widely used and most capable. The models are tested in the initial state
in the experiments, and selected models are enriched more precisely by using Re-
trieval Augmented Generation (RAG) together with embedding models. All models
are consumed as a cloud service via REST APIs. The tests with the embeddings use
both REST APIs and locally hosted RAGs that use the corresponding embedding
models via REST APIs. The models are later used via Python scripts. By using a
variety of models, the experiment can better reflect the complexity and versatility
of actual use cases and thus provide more robust, generalizable findings. This helps
to understand the areas of application of the individual methods and to provide an
evidence-based statement about the LLM to be used further.

When selecting the models, the two models, GPT-3 and GPT-4, that were in
widespread use at the time this paper was written, were chosen. OpenAI published
the GPT-4 Omni model during the preparation of this thesis. This was not used for
this work but should not be neglected for cost reasons since, as can be seen in the
chapters of the experiment, a cost factor has an influence here. With the GPT-4 Omni
model, the costs were reduced by 50% for the same performance.

Three different models were evaluated in advance for embedding the input data
for the vector index within the RAG (see 2.1.1). The orientation towards OpenAI
was based on the preliminary phase of the research. Due to the availability of the
embedding models in Azure Open AI and the fact that the experiments and the
structure of the RAG were to be standardized, i.e., with the same primary condi-
tions, the embedding models were selected from those listed in the table 9. During
the research, other models were examined in the literature, such as the Jina Embed-
dings 2 model, which was developed by Guenther et al. [20] for the BERT model. In
work by Guenther et al. [20], the Jina models were compared with the text embed-
ding Ada-002 model. The Jina model was able to achieve an average performance
of 60.37%, whereas the text embedding Ada-002 model was able to achieve a better
performance of 60.99%. However, the actual decision to select the embedding mod-
els was again influenced by the availability of the technologies used in this work.

For the models in Table 9, the newer text-embedding-3 models should be used first,
as the text-embedding-3 large model in particular achieved a value of 64.6% in the
MTEB benchmark. The Massive Text Embedding Benchmark (MTEB), according
to Muenninghoff et al. [40], aims to clarify how models perform across different
embedding tasks and serve as a starting point for identifying universal text embed-
dings suitable for various tasks.

However, when working with the LlamaIndex, it has not been possible to build a
vector index over the text embedding 3 model after several attempts. Therefore, the
text embedding Ada 002 model was chosen for the following experiments.

The selection of models was also based on the pre-trained models from OpenAI.

42

Table 9: OpenAI Embedding Models https://platform.openai.com/docs/guides/embeddings/embedding-
models

Model Pages per Dollar Performance on MTEB Eval Max Input
text-embedding-3-small 62,500 62.3% 8191
text-embedding-3-large 9,615 64.6% 8191
text-embedding-ada-002 12,500 61.0% 8191

This is also because the experiments conducted with a vector index hosted by Azure
are limited to OpenAI’s models. In addition, it was observed from various bench-
mark analyses, such as that of Wang et al. [57], that the GPT-4-Turbo model, in par-
ticular, outperforms other current models such as Claude-3-Opus. Wang et al. [57]
were able to achieve better results in the User-Centric Benchmark (URS) in 6 out of
7 tasks and thus also in the overall evaluation than the other models examined in
the study. The USR benchmark consists of tasks from the following seven areas:

• Solve Problem

• Factual QA

• Text Assistant

• Ask for Advice

• Seek Creativity

• Leisure

• through API

In order to create diversity within the experiments, the Claude Opus Model 3 was
initially to be used, but this is not yet available in Germany. Therefore, the Mistral
Large model was chosen for another model, which, according to Mistral16 has a
similar performance to the GPT-4 model and is said to be more powerful than the
Claude 2 model. The Claude Opus 3 model was not included in this review.

3.2.2 RAG

Two different frameworks for implementing a RAG were consulted for this work.
On the one hand, Azure, the Microsoft cloud platform, was selected to pursue a
cloud-based approach, and on the other hand, LlamaIndex was chosen as an on-

16https://mistral.ai/news/mistral-large/

43

premise solution. The purpose of this selection was to perform a cost and per-
formance analysis across different methodological approaches. In addition to the
two selected frameworks, others currently exist that are suitable for implementing
a RAG. It was not the aim of this research to comprehensively evaluate the vari-
ous providers. During the exploratory phase of the research, work was carried out,
particularly with the frameworks mentioned.

RAG with Azure OpenAI Microsoft has formed a partnership with OpenAI to
accelerate the advancement of AI and make the resulting benefits accessible globally.
This partnership, which has already been consolidated through investments in 2019
and 2021, continues to focus on the domains of supercomputing and AI research.
As the exclusive cloud provider for OpenAI, Microsoft hosts all OpenAI workloads
on the Azure cloud. To this end, Microsoft integrates the AI services and models
developed by OpenAI into its consumer and enterprise products [30].

As part of this partnership, Microsoft is offering all models provided by OpenAI
as an Azure service in a pay-as-you-go model as part of Azure AI Services, with
consumption billed on a token basis. These include the Advanced Language and
Legacy Language models, code interpreters, the OpenAI base models, image mod-
els, and embedding models, which are made available to end users [32].

Microsoft’s AI-powered information retrieval platform, Azure AI Search, is used
to construct the underlying RAG. According to [36], Azure AI Search enables devel-
opers to create rich search experiences and generative AI applications that combine
large-scale language models with enterprise data. For this work, the Vector Store
is used to create an index. When embedding the data, configurations can be used
to select which embedding model should be used and whether a semantic search
(see 2.1.1) should be performed for the queries on the RAG or whether a hybrid
search should take place. A semantic search is carried out with a keyword search.

The workflow for indexing and querying for the vector search is implemented
by Microsoft, as shown in Figure 4. For the vector search, Microsoft integrates
the k-Nearest Neighbors (KNN) (see 2.1.1) and the Hierarchical Navigable Small
World (HNSW) algorithm, a leading algorithm for Approximate Nearest Neighbors
(ANN)([34] [33]).

To set up a RAG system within the Azure Cloud, several conditions must be met.
Firstly, a Microsoft Entra Tenant is required to be able to work with the Azure Cloud.
An Entra Tenant represents an organization according to [37]. Each Microsoft Entra
Tenant is independent and separate from other Microsoft Entra Tenants.

In order to be able to use the Azure OpenAI services, which are not available to
all users by default, an activation must be requested from Microsoft (as of March

44

2024) so that these services are activated on a subscription (a unit within the Entra
Tenant in which resources are provided) within the Tenant.

Azure offers several options for deploying resources in the Azure Cloud. These
include manual creation via the Azure Portal17 and provisioning via Infrastructure
as Code (IaC). IaC uses the DevOp methodology and versioning with a descrip-
tive model to define and deploy infrastructure such as networks, virtual machines,
load balancers and connection topologies([38]) via tools such as Bicep from Mi-
crosoft18 or Terraform from HashiCorp19 or also via the Azure Command-Line In-
terface (Azure CLI). For the reenactment of this work, it is explained here in detail
how a RAG can be created in Azure via the Azure CLI.

To set up a RAG system in the Azure Cloud, basic structures must first be set
up. The process includes creating a resource group, setting up an Azure OpenAI
resource, and deploying the models required for the experiments to be performed
(see 3.3 and 3.5). The required models include "GPT-4", "GPT-3.5" and the OpenAI
embedding model "text-embedding-ada-002". In addition, an Azure AI Search must
be set up in which the vector database is located to enable effective search functions.

The data required for vectorization comes from the sources mentioned in the sec-
tions 2.5 and 2.7 and is stored in Azure Storage. Azure Storage offers a highly avail-
able, massively scalable, permanent, and secure storage space for a large number of
data objects in the cloud [29].

In Listing 5, the required resource group is created via the Azure CLI in the East
US region. This resource group forms the basis on which all subsequent resources
are created. Creating and using a resource group is cost-neutral in Azure, as there
are no monthly fees for a resource group.

Listing 5: Create a new resource group in the East US region.
1 # Creates a new resource group in the East US region
2 az group create --name RAGRG --location eastus

The Azure OpenAI service is created in Listing 6. This service makes it possible
to deploy models within the service and access the service via a REST API. The re-
source is provided within the previously created resource group. The Stock Keeping
Unit (SKU) currently (April 2024) only exists in one version, as the costs for using
the API for the individual model calls are billed via tokens. For the GPT-4 model,
for example, the costs (as of April 2024) for input are 0.03$ per 1000 tokens and 0.06$
for output per 1000 tokens.

Listing 6: Create a Cognitive Services account.

17https://portal.azure.com/
18https://learn.microsoft.com/en-us/azure/azure-resource-manager/bicep/overview?tabs=bicep
19https://www.terraform.io/

45

1 # Creates an Azure OpenAI Search account in the previously created resource group
2 az cognitive services account create \
3 --name RAGOpenAIService \
4 --resource-group RAGRG \
5 --location east us \
6 --kind OpenAI \
7 --sku s0 \
8 --subscription <subscriptionID>

To communicate with the REST API, the endpoint provided by the Azure AI
Search resource is required. After executing Listing 7, the endpoint is provided in
the following form: https://RAGOpenAIService.openai.azure.com. This endpoint
is the URL through which requests are sent to the provided models to perform var-
ious operations, such as retrieving responses or performing calculations based on
the requested data.

Listing 7: Retrieve the endpoint URL of the Azure OpenAI Service.
1 # Retrieves the endpoint URL of the Azure OpenAI Service
2 az cognitive services account shows \
3 --name RAGOpenAIService \
4 --resource-group RAGRG \
5 | jq -r .properties.endpoint

To ensure that only authorized users have access to the REST endpoints, this is
secured with an API key. This API key must be specified together with the endpoint
during the calls. Listing 8 maps the Azure CLI command to retrieve the API key.
This step is crucial to ensure the security and integrity of the data and services that
are made accessible via the REST API.

Listing 8: Retrieve the access key for the Azure OpenAI Service account.
1 # Retrieves the primary access key for the Azure OpenAI Service account
2 az cognitive services account keys list \
3 --name RAGOpenAIService \
4 --resource-group RAGRG \
5 | jq -r .key1

For the later experiments from the chapters 3.3,3.5 and3.6 an embedding model as
well as the GPT-4 and GPT-3.5 model is required. Listing 9 shows the deployment
for the embedding model "text-embedding-ada-002". The same step is carried out
for the "GPT-4" model in the "GPT-4-turbo" version and "GPT-3.5" in the "GPT-3.5-
Turbo-0125" version. No further costs are charged by Microsoft here.

Listing 9: Deploy a model in Azure OpenAI Service.
1 # Deploys a model in Azure OpenAI Service
2 az cognitive services account deployment create \
3 --name RAGOpenAIService \
4 --resource-group RAGRG \
5 --deployment-name ada002 \
6 --model-name text-embedding-ada-002 \
7 --model-version "1" \
8 --model-format OpenAI \
9 --sku-capacity "1" \

10 --sku-name "Standard"

46

For the later experiments in this work, specific vector databases are created for
the use cases, and the creation of the RAGs required for the respective use cases is
discussed in detail. These are created within the Azure AI Search from Listing 10.
The service is set up in the same resource group as the previous services. The parti-
tion and replica settings were configured in a cost-saving manner and created in the
Basic SKU with one partition and one replica. The partition describes the physical
memory and the replica of the number of instances of the service. In addition to the
Azure AI Search Service, the selected Basic SKU offers 15 GB of storage and costs
$73.73 per month (as of April 2024).

Listing 10: Azure AI Search
1 az search service create \
2 --name RAGAISearch \
3 --resource-group RAGRG \
4 --sku Basis \
5 --partition-count 1 \
6 --replica-count 1

Specific Azure configurations are made for further implementation in the experi-
ments. These are explained in detail in the corresponding chapters. To create a basis
for the storage of data, into which the data sources are later uploaded, an Azure
Blob Storage is created at the end of this chapter, as mentioned at the beginning (see
Listing 11).

47

Listing 11: Azure Blob Storage
1 az storage account create \
2 --name RAGBLOB \
3 --resource-group RAGRG \
4 --location east us \
5 --sku Standard_ZRS \
6 --encryption-services blob

In the further course, the RAG can now be set up with this configuration depend-
ing on the use case from the chapters 3.3 and 3.5.

RAG with LlamaIndex The LlamaIndex is an open-source framework for context-
augmented, domain-independent data augmentation for text classification tasks
and applications of LLMs. The LlamaIndex was originally developed by Meta (for-
merly Facebook). This context is used to leverage private or domain-specific data
for specific use cases, such as Q&A bots or understanding documents and extracting
information20. The LlamaIndex framework supports the RAG pattern, as shown in
Figure 4. The LlamaIndex provides the framework for flexible connections to vari-
ous providers. By default, LlamaIndex offers the option of embedding local data in
a vector store and then working with a selected model on the data.

In addition, certain connectors or entire data sets can be obtained via the
LlamaHub21. In this paper, we work with a self-created data set and with the "Sim-
pleDirectoryReader" connector, which allows access to the contents of a local folder.
There are also connectors that can be used to read PDFs, for example, or to access
various cloud storage services as a data source.

LlamaIndex uses this local data to create a vector index. To do this, the documents
are vectorized using an embedding model and stored in a corresponding vector stor-
age. The vector storage can be either directly available as an in-memory solution;
the vector index is loaded into the computer’s main memory, and the queries are
carried out directly on the in-memory storage, or the vector index can be stored in a
cloud vector storage from a provider such as AWS, Qdrant, Postgres or MongoDB.
In this work, the Simple Vector Store is used, which is offered directly by LlamaIn-
dex and stored in memory. This enables the flexible and easy use of a vector index,
but it is more suitable for experiments than for productive applications. In addition
to the cloud and direct in-memory solutions, there are also other providers, such
as Apache Cassandra, which offer a self-hosted solution. In contrast to Azure AI
Search (see 3.2.2), this approach via the Simple Vector Store is not as complex as
using Azure AI Search, where more advanced semantic search techniques such as
HNSW are not possible. Therefore, it is assumed that the results in the following
experiments will be more powerful and show better performance for the models

20https://docs.llamaindex.ai/en/stable/\#llamacloud
21https://llamahub.ai/

48

that use the Azure AI Search approach. However, it should be found out whether
a RAG pattern using the LlamaIndex also provides satisfactory results. A distinc-
tion of the required time as well as the size of the respective indices is carried out in
chapter 3.4.3.

To use the LlamaIndex locally, a Python script was developed for this work, which
is described in more detail in Chapter 3.5.2. Files are loaded from a folder on the
local storage and vectorized using the Text-Embedding-Ada-002 model. After vec-
torization, the vector index is generated by the LlamaIndex in the form of a JSON
file and stored on the hard disk. Each time the LlamaIndex is used to work on the
vector index, the content of the JSON file is loaded from the LlamaIndex into the
in-memory and can then be queried via the LlamaIndex.

3.3 Experimental Design

To develop a thorough understanding of the methodology to be applied in this mas-
ters thesis, the plan is to conduct preliminary experiments during the preparatory
phase of the work. The aim of these initial experiments is to investigate various ap-
proaches, which will later facilitate a comprehensive evaluation of different LLMs
and tools used for vulnerability identification. From these preliminary studies, I
expect to derive insights into how diverse datasets can be utilized for training the
models or how a specialized database might be implemented within the scope of
the master’s thesis.

This includes understanding how the models interact with these datasets and
how they can be trained to make robust predictions. Additionally, I intend to ex-
plore the necessary processing of input data for the model to handle specific types
of inputs. An example of such specific inputs is output reports from Nmap scans, a
popular network scanning tool. This is crucial to comprehend how the model needs
to be adjusted to work effectively with real-world cybersecurity data. It is essential
to emphasize that this preliminary work is being conducted on a limited scale, rely-
ing on a restricted number of data sources and datasets. This limitation is chosen to
manage the effort and to test specific aspects of the methodology before applying it
on a larger scale in the master’s thesis.

Another focus of this phase is to compare the scan results of port data gener-
ated using the vulnerability tool Nessus with the findings from the models. This
includes examining the running software identified by the models, their version
numbers, and potential vulnerabilities. Through this comparison, I aim to gain an
initial assessment of the accuracy and utility of the model predictions in comparison
to established security tools.

49

3.4 Experiment 1

3.4.1 Experimental Objectives and Hypotheses

In this experiment, the aim is to determine which LLM (see 3.2.1) is best suited, in
which constellation, and with which extension to recognize, identify, and classify
the efficiency in the correct identification of an affected and known vulnerability. In
addition, a cost comparison is carried out based on the tokens used.

The aim is to investigate in detail how effective LLMs are in identifying a specific
known vulnerability that has already been classified in MITRE’s CVE database. It
analyzes how well LLMs with a RAG 2.1.1 can correctly classify corresponding vul-
nerabilities in contrast to pre-trained LLMs. In the course of preparing for the exper-
iment, challenges arose that extended the experiment beyond the originally planned
pure check for the same software and version number. As already described in 2.5,
there are recognized deficits in the general normalization and uniformity of descrip-
tions and the up-to-dateness between different vulnerability databases. As a result,
the experiment should also test the generalization capability and context under-
standing of the different LLMs. The assumption here is that, in contrast to static
vulnerability detection tools or pure database queries, LLMs also recognize correla-
tions within the vulnerability description. The focus here is particularly on correla-
tions in software versions.

The hypothesis is that LLMs are able to recognize vulnerabilities based on the
software and version if this is done as a pure parameter input in this experiment.
By using NLP to better understand and utilize the context and semantics within
the unstructured data, it is hypothesized that LLMs using a vector index will out-
perform pure pre-trained models. The hypothesis further postulates that LLMs can
also correctly recognize vulnerabilities through text understanding if these are not
explicitly noted in the existing vulnerability. For example, the detection of a vulner-
ability even if the version is not explicitly stated.

3.4.2 Methodology

The methodology of this experiment is designed to evaluate and compare the accu-
racy and reliability of the responses generated by the different models. This is done
through a combined automated procedure and manual checks to gain a deeper un-
derstanding of the performance of this technology in the cybersecurity application
domain. In addition to efficiency, a cost analysis per tested LLM is performed, as
this is a relevant variable when compared with static evaluation tools. The LLMs
used are the same as those already described in 3.3.

50

The database for this experiment comprises the complete CVE database with all
CVE records up to April 2024. A subset of 100 randomly selected CVE records from
all the CVE records is used to test the LLMs against the various LLMs. The selection
of 100 records was made for cost and verification reasons. As part of the check is
carried out manually, the subset should not be too large. In addition, during the
preliminary phase, it was determined that a single run with 100 datasets against the
GPT-4 model using a vector index in the Azure cloud costs around 20$. A more
detailed cost calculation will be explained later. Due to the likely iterations during
the experiment setup, the cost should be kept low. These 100 CVE records were used
in the JSON 5.0 data format.

In order to obtain a suitable subset of the 100 CVE records, only CVE records with
an entry in the "Version" field were selected to ensure that these data records have a
version. As already explained in section 2.5, this is not always the case, as the data
is very unstructured. This can be used to the advantage of this experiment, as there
may be a case such as in 2.5 where a version is incorrectly entered in the "Version"
field, but this is not affected at all, as the actual description excludes this version.

For this experiment, this would mean that if an LLM queries this version, it is
assumed that no vulnerability is detected by the LLM, which would lead to a false
positive, as the version specified in the "Version" field is used as a parameter. For
example, version 1.8.0 would be used as the version, but the description says "...be-
fore 1.8.0". In this case, the LLM would not have to detect a vulnerability in the
version, which would be correct according to the description. Furthermore, a crite-
rion was set during filtering that the CVE record must be published. This is defined
in a field within the CVE record. Furthermore, the selection was limited to software
types that are usually frequently affected by vulnerabilities (see table 11), as well as
if they are installed in an environment, require a port, and can thus be detected via
Nmap scans (see section 2.8). The selection was made based on the context of this
work, as this type of software type will be the focus of this work later on.

This experiment transfers the software and version parameters to all LLMs.

A prompt was engineered for the input to the corresponding model, which trans-
fers the parameters "product" for Software and "versions" for Version in a prompt.
The prompt in Listing 12 is designed in such a way that it explicitly asks for the
parameters for a vulnerability. The prompt includes the return being in a specified
JSON format.

51

Software Description

nginx Web server and reverse proxy
MySQL Relational database management system
apache Web server software
phpmyadmin Web interface for MySQL database management
MariaDB Relational database system, a fork of MySQL
WordPress Content management system for websites
drupal Content management framework
samba Free Software for file and print sharing in networks
PostgreSQL Extensive, object-relational database system
postfix Mail transfer agent (MTA) for routing and delivering email
OpenSSH Set of programs for secure communication over insecure net-

works
BIND Widely used Domain Name System (DNS) server
Exim Mail transfer agent (MTA) for Unix systems
Squid Proxy server and web cache daemon
Dovecot IMAP and POP3 server software
vsftpd Very secure FTP daemon for UNIX-like systems
proftpd Modular FTP server for Unix and Unix-like operating systems
OpenVPN Open-source Software for creating virtual private networks

(VPNs)
gitea Compact software for code management with Git

Table 11: Brief Description of Software Types

Listing 12: Input Prompt for the Model
1 "content": (
2 f"Has this software: {product} {versions} susceptible to vulnerabilities? Please provide only the JSON

data for each affected cve number in the following format:"
3 ’{"Software":"<software_name>", "Version":"<version_number>", "IsAffected":"<true/false>" , "CVE-ID":

"<cve_id>"}’
4 ’No further information on the CVE from your side. Pay particular attention to whether the specified

Version is within the version range of the affected Software.’
5 ’Check whether the name and version are within the scope of the CVE.’
6 ’If you do not find information about the software and version, give a single JSON response in that

format: {"Software": "<software_name>," "Version": "<version_number>," "IsAffected": "false,"
"CVE-ID": "None"}.’

7)

If the model cannot generate a result, the LLM cannot declare the Software and
Version as affected. In a context where the model is used to predict vulnerabilities
and cannot return a result, a vulnerability that is not found is treated as non-existent.
The prompt explicitly points to the model that special attention should be paid to
understanding the versions.

The model returns the following parameters:

52

Field Descriptions:

• Software: The Software is interpreted by the model according to the input
parameters.

• Version: The Version of the Software as interpreted by the model according to
the input parameters.

• IsAffected: Indicates whether the model has declared this Software as being
affected by a vulnerability.

• CVE-ID: The CVE Record identified by the model.

The evaluation of the results is checked for matches manually and using a GPT-4
model. GPT-4 was chosen because, according to the Hughes Hallucination Evalu-
ation Model (HHEM) leaderboard on Huggingface22, it showed the best results in
avoiding hallucinations. Until April 2024, GPT-4-Turbo remains at the top of the
leaderboard with a hallucination rate of 2.5%. Each conspicuous record is reviewed
and checked against the detected CVE record during the manual review. The man-
ual check was carried out carefully and compared with the original data sets of the
CVE records published by MITRE.

The complete CVE database with all entries up to April 2024 was used for the
pre-trained models, which also have a RAG approach. Beforehand, a Python script
filtered the JSON files for relevant parameters. A CVE record, as in Listing 13, in-
cludes data fields that are irrelevant to this experiment and were therefore filtered
out. When filtering, care was taken to ensure that only published CVE records (sta-
tus = published) and CVE records containing a description, a CVE ID, and a CVSS
vector string were included. The CVSS vector string is irrelevant for this experiment
but is used in other experiments.

The implementation used a Python script, which extracts only the CVE ID, De-
scription, vector string, and a CWE description from the relevant entries and creates
one per CVE entry in a CSV file. Since the Azure AI Search has a restriction that a
file may not contain more than 16 MB and no more than 65,000 characters23, which
are to be vectorized, the Python script generated 1261 individual CSV files that have
the format from Listing 13.

22https://huggingface.co/spaces/vectara/leaderboard
23https://learn.microsoft.com/en-us/azure/search/search-limits-quotas-capacity

53

Listing 13: CSV Record for RAG
1 CVE-ID, Description, vectoring, CWE-Description
2 CVE-2024-22317, IBM App Connect Enterprise 11.0.0.1 through 11.0.0.24, and 12.0.1.0 through 12.0.11.0

could allow a remote attacker to obtain sensitive information or cause a denial of service due to
improper restriction of excessive authentication attempts. IBM X-Force ID: 279143
.,CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:H,CWE-307 Improper Restriction of Excessive
Authentication Attempts

3 CVE-2024-22318, "IBM i Access Client Solutions (ACS) 1.1.2 through 1.1.4 and 1.1.4.3 through 1.1.9.4 is
vulnerable to NT LAN Manager (NTLM) hash disclosure by an attacker modifying UNC capable paths within
ACS configuration files to point to a hostile server. If NTLM is enabled, the Windows operating
system will try to authenticate using the current user’s session. The hostile server could capture
the NTLM hash information to obtain the user’s credentials. IBM X-Force ID:
279091.",CVSS:3.1/AV:L/AC:H/PR:N/UI:N/S:U/C:H/I:N/A:N,CWE-200 Exposure of Sensitive Information to an
Unauthorized Actor

This approach ensures that only relevant data is used in a compressed manner
and that superfluous and irrelevant data is excluded. For the Azure AI Search, these
data sets were manually uploaded to an Azure Blob Storage based on section 2.1.1.
First, a container, i.e., a storage area within the Azure Blob Storage, must be created
to which the JSON files are uploaded. In addition to the initial creation of the infras-
tructure for the RAG (see section 3.2.2), a container is created for this experiment us-
ing the Azure CLI (see Listing 14). First, the executing user is granted access rights
as a contributor, and then a container for the experiment is created within the Blob
Storage. To create the vector index, the index was created via the Azure portal using
the Azure AI Search resource with the embedding model text-embedding-ada-002.

Listing 14: Example generated CVE Record
1 {
2 az ad signed-in-user show --query id -o tsv | az role assignment create \
3 --role "Storage Blob Data Contributor" \
4 --assignee @- \
5 --scope "/subscriptions/XXX/resourceGroups/RAGRG/providers/Microsoft.Storage/storage accounts/RAGBLOB."
6
7 az storage container create \
8 --account-name RAGBLOB \
9 --name exp1 \

10 --auth-mode login
11 }

To generate the vector that is used on-premise via the LlamaIndex, the same data
sets were used to generate a Simple Vector Store (see section 2.1.1). A Python script
was developed for this purpose, which also reads the CSV files via the embedding
model text-embedding-ada-002 and writes them to a local vector for later use in the
store. The libraries required for this were the official LlamaIndex libraries24.

The results and token effort are recorded and saved in various CSV files. For each
LLM, a CSV file is created for the results, see Listing 16, as well as a CSV file for the
tokens used, see Listing 15, in order to be able to take a closer look at the costs.

Listing 15: CSV for token consumption
1 Total Time, Call Count, Right, False, Input Tokens, Prompt Tokens, Input Tokens RAG, Prompt Tokens RAG,

Cost Input Total, Cost Prompt Total, Cost Total
2 3066.08 seconds,156,53,48,5317,14419,241,2244,0.05558,0.49989,0.55547

24https://pypi.org/project/llama-index-core

54

Listing 16: CSV for LLM results
1 Software, Version, CVE ID, Reason, Software Match, Version Match, IsAffected, VersionIsExactlyNamed,

LLMTrue, LLMSaysIsAffected
2 Icegram Email Subscribers & Newsletters Plugin for WordPress,4.4.8, CVE-2020-5767: The version and

software name match the dataset, and the Version is affected as described. true, true, accurate,
True, true

3 Icegram Email Subscribers & Newsletters Plugin for WordPress,4.4.8, CVE-2020-5768, The Software and
Version in the assertion exactly match the Software and Version described in the data set as being
affected by CVE-2020-5768., true, accurate, true, True, true

The performance of the LLMs is evaluated using a confusion matrix (for more
information, see section 3.4.4). In addition to categories such as Software and Ver-
sion, a reason is documented in the "reason" field that explains why the statement
of the LLM is rated as correct or incorrect. In addition, it is recorded whether the
LLM has made an accurate statement regarding the impact of a vulnerability on the
specified Software and Version. The specific values and their significance within the
experiment are discussed in detail.

To check this data, a Python script was developed, which creates a confusion ma-
trix based on the results obtained. LLMTrue and LLMSaysIsAffected values are ex-
tracted from the results list and compared to derive the metrics required to create the
confusion matrix. This is discussed in detail in the following chapters. From the out-
put parameters after the programmatic evaluation 16, including LLMSaysIsAffected
(the model has declared the Software and Version as affected by vulnerabilities) and
LLMTrue (the check has shown that the LLM is correct), the value IsAffected is cal-
culated in the script for generating the Confusion Matrix. This indicates whether
the Software is affected by the vulnerability identified by the LLM.

The following formula is used in the Python script to decide whether a vulnera-
bility exists: It is assumed that the values LLMSaysIsAffected and LLMTrue have
been set correctly. In this case, the formula validates whether the LLM declared this
Version affected. If the check shows that the LLM is correctly located, the Version
discovered vulnerability affects the Version. The formula returns "TRUE" if the sys-
tem (LLMSaysIsAffected) correctly recognizes that a condition applies (LLMTrue).

IsAffected =



"TRUE" if (LLMSaysIsAffected = "TRUE") ∧ (LLMTrue = "TRUE")
"TRUE" if (LLMSaysIsAffected = "FALSE") ∧ (LLMTrue = "FALSE")
"FALSE" if (LLMSaysIsAffected = "TRUE") ∧ (LLMTrue = "FALSE")
"FALSE" if (LLMSaysIsAffected = "FALSE") ∧ (LLMTrue = "TRUE")
"FALSE" otherwise

As explained above, the parameter LLMTrue is validated using a GPT-4 model.
The output parameters from the output by the prompt in Listing 12 and the correct
Description of the detected CVE vulnerability in a prompt 17 are used as input pa-
rameters. The correct Description of the vulnerability is loaded into the script via

55

the CVE ID, and the Description is extracted. The model is instructed to compare
the two inputs to verify the consistency of the context. The model is also instructed
to monitor version coherence in particular.

The generated output parameters are added in the CSV file described above. The
parameters Software Match, Version Match, and Reason are used for this, as well as the
parameter AssertionIsTrue, which represents the value LLMTrue and is used
to collect metrics. This process is used to verify the accuracy of the data set. As
already described in section 2.5, there are no defined structures for validating the
correctness of a vulnerability. The data is often inconsistent and difficult to inter-
pret. An exclusively algorithmic processing would require the consideration of all
existing auxiliary words such as before, after, etc., as well as mathematical operators
and the understanding of textual relationships. Since completing this task requires
text comprehension supported by AI, the GPT-4 model was chosen for verification.
In addition, each result list is inspected manually, which requires a secondary eval-
uation, especially for conspicuous entries. This methodical approach to verification
aims to generate the metrics to be collected in later sections.

Listing 17: Input Prompt for the Model
1 messages=[
2 {
3 "role": "user",
4 "content": f"This is an assertion: {json_data}. This is the correct data set: {entry}. The entry

describes a Vulnerability. Is my assertion regarding whether the Version is affected correct? Check
whether the assertion matches the dataset. Pay particular attention to whether the versions match
and are within the correct version range. Respond only in this format; no additional information is
needed.: ’{{’Version’: ’<version>’, ’Software’: ’<software>’, ’Version Match’:’<true/false>’,
’Software Match’:’<true/false>’,’AssertionIsTrue’:’<true/false>’, ’Reason’: ’<reason>’,
’VersionIsExactlyNamed’:’<true/false>’}}’"

5 },
6],

3.4.3 Experiment Execution

The experiment used specific specifications, scripts, and technologies. The descrip-
tion of the required components is followed by a detailed description of how the
experiment was carried out and the methods used to determine the required results.

The hardware specifications used for this experiment are listed in Table 3.4.3.

component specification

Operating system Windows 11
Processor Intel Core i7-10700K, eight cores, 3.8 GHz
Memory 128 GB
Development environment Visual Studio Code - Insider Version 1.89.0
Python version 3.9.2

56

Various Python scripts were developed for the experiment, listed in Table 12.
These scripts execute specific logic to test the hypotheses formulated in section 3.4.1.
Each script fulfills a separate task and is called manually in sequential order.

Table 12: Scripts and Descriptions

Script Description

createRAGFiles.py Filters and creates compressed CSV files from JSON CVE
records.

runExperiment1.py Runs the experiment, processes 100 selected CVE records,
and interacts with corresponding LLMs depending on the
configuration.

createConfMatrix.py Calculates the Confusion Matrix based on the experiment
results.

createLlamaIndex.py Creates a SimpleVector Store via the LlamaIndex.

Table 13: Technologies, REST APIs, and Data Formats

Table 13: Technologies and Usage

Technology/Service Usage

Azure Blob Storage Data Storage for CVE Database
Azure AI Search Vector Database
Azure OpenAI LLM models and embedding models
REST API Interaction with Llama 2 70B, Mistral, Azure,

OpenAI
Data Formats JSON, CSV

The experiment was implemented in systematically planned steps. According to
the methodology described in detail in section 3.5.2, the vector databases on Azure
and the LlamaIndex were initialized. The required datasets were prepared using the
script "createRAGFiles.py" to iterate through the datasets and then segment them
into CSV files using specific filter processes. Using the described process, these files
were then vectorized within the Azure AI Search vector database.

The script "createLlamaIndex.py," which uses the OpenAI embedding model
"test-embedding-ada-002", was used for vectorization using the LlamaIndex. The
duration and memory requirements of these processes were documented in detail.

Creating the vector index on the specified hardware for the LlamaIndex took 39
minutes and resulted in a vector index of 994 MB. The input dataset comprised 1261
CSV files with a total volume of 73.8 MB. In contrast, creating the vector index via
the Azure Cloud took 845 minutes and required 1610 MB of storage space.

57

After creating the vector indices, the experiment was initiated using the script
"runExperiment1.py", listed in table 12. The execution of the experiment was auto-
mated and continuously monitored. During the run, adjustments had to be made to
the script to correct errors during runtime and restart the process. Before each run,
the script had to be adapted for a different LLM from the list used. The output files
for the results and the token calculation were modified manually, and the method
for the run was changed accordingly.

Within the experiment execution script, each LLM has its method. The input pa-
rameters of each method required to use the LLMs were the same for each model
and included the software and its version. In addition, the CVE ID was passed for
the described check. Each LLM used the same parameters configured when calling
the REST API to control the model to the corresponding endpoints. The tempera-
ture, the maximum number of response tokens (to limit the size of the response),
and the top-p value were always set to 0 to achieve more repetitive and determin-
istic responses and to 1 to work conservatively and select only the most probable
tokens. These values were not considered with different settings in the experiment.

The described check was also performed using the individual methods used for
the calls to the LLMs. It was stored in working memory along with the specified
output parameters of the LLMs during execution. After the 100 CVE records were
iterated, CSV files were created from the data held in working memory. It is possible
that multiple entries were generated per software and version, as the model was
able to identify potential vulnerabilities multiple times.

The process was automated as described and randomly checked by running the
process in debug mode. This method made it possible to view the outputs and
checks during processing. This process required multiple adjustments to the code
to refine the input prompts described in section 3.5.2 and respond to any errors.
As explained in the later cost estimate, the runs, particularly those via Azure AI
Search, were closely monitored due to the costs involved in proceeding efficiently
and aborting erroneous runs early.

The result of each run was a CSV file with the LLM’s predictions and the checks
already carried out during the run, as well as another CSV file with the generated
prompts. Each time the LLM was called, the tokens were divided into input and
output tokens: Input tokens for the inputs passed to the model and Output tokens
for the responses generated by the model.

After the script run was completed, a manual check was carried out as described
above to validate the correctness of the results list. This thorough check took about
two hours per result list to match possible detected vulnerabilities with the authentic
CVE records.

58

After validating the result lists, they were loaded as input parameters into the
script createConfMatrix.py. This script calculates the following metrics based
on the values of the confusion matrix:

• TP (True Positives)

• FN (False Negatives)

• FP (False Positives)

• TN (True Negatives)

• Accuracy

• Precision

• Recall

• F1-Score

• Matthews Korrelationskoeffizient (MCC)

The metrics Accuracy, Precision, Recall, F1-Score, and the MCC are determined us-
ing the values from the confusion matrix in the script and output via the console.
The results were then noted manually for each LLM. The following chapter dis-
cusses in detail the values determined and the results, including a cost analysis.

3.4.4 Measurement and Evaluation

The performance of the different models is first measured using a confusion matrix
per LLM. According to Mohak Shah and Nathalie Japkowicz [50], the Confusion
Matrix is a central element for evaluating the performance of classification algo-
rithms. It is represented by the matrix elements Cij , where i and j are the indices for
the actual class and the class predicted by the classifier. In this specific experiment,
the Confusion Matrix is used to evaluate the performance of LLMs in predicting
vulnerabilities in software. Different performance evaluations are performed. In
the case of the experiment, the performance evaluation is done for binary classifica-
tion. The binary classification is one of the most common classifications in evaluat-
ing algorithms [50]. Two classes are defined: negative and positive. This results in
a confusion matrix with four components: true positives (TP), false positives (FP),
false negatives (FN), and true negatives (TN). TP and TN indicate the number of test
set examples that were correctly classified as positive or negative, respectively. In

59

contrast, FN and FP represent the positive and negative examples incorrectly classi-
fied as negative and positive respectively [50].

For the binary classification in this experiment, the four key figures can be de-
scribed as follows:

TP): The LLM correctly predicts the presence of a vulnerability in the software.

example: The LLM receives the input parameters: Software = "MySQL Server",
Version = "8.0.17". The checked output is CVE-ID = CVE-2019-2997; ISAffected =
True, and LLMTrue = True. In this case, the number of TPs is increased by one
(TP = TP + 1) as the correct vulnerability has been identified.

FN: The LLM incorrectly predicts the absence of a vulnerability, although there is
a known vulnerability in the software.

example: The LLM receives the input parameters: Software = "MySQL Server",
Version = "8.0.17". The checked output is CVE-ID = CVE-2019-2997, IsAffected =
True, and LLMTrue = False. In this case, the number of FNs is increased by one
(FN = FN + 1) as an existing vulnerability was not detected.

FP: The LLM incorrectly predicts the presence of a vulnerability, although no
known vulnerability exists in the software or another vulnerability is present.

example: The LLM receives the input parameters: Software = "MySQL Server",
Version = "8.0.18". The checked output is CVE-ID = CVE-2019-2997; IsAffected =
False and LLMTrue = False (for example, the description was up to version 8.0.17),
in which case the number of FP is increased by one (FP = FP + 1).

TN: The LLM correctly predicts the absence of a vulnerability, which is correct
because no known vulnerability exists in the software.

example: The LLM receives the input parameters: Software = "MySQL Server",
Version = "8.0.18". The checked output is CVE-ID = CVE-2019-2997; IsAffected =
False and LLMTrue = True (e.g., the description states up to version 8.0.17). In this
case, the number of TNs is increased by one (TN = TN + 1).

The confusion matrix is the basis for evaluating other metrics such as precision,
accuracy, recognition, and F1 score. The accuracy indicates the proportion of correct
predictions overall (TP + TN) about all cases.

The accuracy is calculated as follows:

accuracy =
TP + TN

TP + TN + FP + FN

60

PrecisionPrecision measures how accurate the model predictions are when deter-
mining vulnerabilities.

precision =
TP

TP + FP

Recall indicates how well the model captures all vulnerabilities.

Recall =
TP

TP + FN

The F1 score represents a harmonic mean of PrecisionPrecision and Recall and
aims to achieve a balance between precision and recall [50].

F1-Score = 2× Precision × Recall
Precision + Recall

The above guidelines address two specific scenarios: the accuracy with which
an output matches an existing vulnerability in a given software version and the
accuracy with which an LLM identifies a vulnerability in a given software.

During the initial phase of the study, it was found that LLMs can tend to hallu-
cinate (referenced in section 2.1). This tendency leads to a situation in which LLMs
make correct statements that are not congruent with the other parameters. An ex-
ample of this is that an LLM correctly claims the existence of a vulnerability in soft-
ware; however, this statement is based on a random hit and not on a well-founded
analysis. Consequently, in subsequent experiments, it is essential to implement a
multicategorical classification in addition to the binary classification. This also eval-
uates whether an LLM states the presence of a vulnerability and correctly identi-
fies and names the specific vulnerability. Although randomly correct predictions
can potentially distort the assessment of model performance, the hypothesis for the
evaluation is based on the fact that by analyzing various classes within the Confu-
sion Matrix, it could be shown that models are also prone to hallucinations about
other aspects. Evaluating the entire Confusion Matrix and the metrics above enables
a more precise understanding of model performance.

As the classes may be unbalanced, an additional value is added to assess the qual-
ity of the binary classifier: the Matthews Correlation Coefficient (MCC). According to
Baldi et al., [3], the MCC is a robust metric that considers true and false positives
and negatives and provides a value between -1 and +1. In this context, +1 indicates
a perfect prediction, 0 signifies performance no better than random guessing, and -1
represents complete divergence between the prediction and the actual observation.

MCC =
(TP × TN)− (FP × FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

61

To calculate the costs, the tokens required for each run were logged. A distinction
was made between the input tokens and the output tokens.

The current costs for running the experiment and for calling the model are defined
in table 3.4.4.

Model cost per 1000 tokens (input) cost per 1000 tokens (output)

Mistral Large $0.004 $0.012
GPT-4-Turbo-2024-04-09 $0.01 $0.03
GPT-3.5-Turbo-0125 $0.0005 $0.0015

The following formula was used to calculate the cost per run. Specific parameters

were considered, including the tokens generated to check the model responses
and those used to detect vulnerabilities. For example, the formula below for the
GPT-4-Turbo model results in the following example calculation: 100 tokens for the
verification input and 1000 tokens for the vulnerability check input, resulting in
a requirement of 1100 tokens. These are then divided by the number 1000 (as the
price is calculated per 1000 tokens) and multiplied by 0.01$, resulting in a cost of
0.011$.

In addition, in this example, the calculation of 300 tokens for the output of the
check and 3000 tokens for the output of the vulnerability detection would result
in a total of 3300 tokens. This is again divided by 1000 and multiplied by 0.03$,
resulting in 0.099$. The total costs for an exemplary call, therefore, amount to 0.11$.
A detailed cost analysis is presented in the following chapter.

Variables and parameters:

• Input tokens (verification): input

• Output tokens (check): output

• Input Tokens (vulnerability analysis): inputRAG

• Output tokens (vulnerability analysis): outputRAG

• Costs per 1000 input tokens: Cin

• Costs per 1000 output tokens: Cout

62

Cost Input Total =
(input + inputValid)

1000
× Cin

Cost Output Total =
(output + outputValid)

1000
× Cout

Cost Total =
(
(input + inputValid)

1000
× Cin

)
+

(
(output + outputValid)

1000
× Cout

)

3.4.5 Results Analysis

This chapter presents and discusses the experiment’s results. The aim was to de-
termine the efficiency of LLMs in identifying known vulnerabilities and to compare
the costs of using them. Particular attention was paid to how pre-trained models
perform in contrast to models that have access to a broad knowledge of software
vulnerabilities and how well models can assess whether the software is affected by
a vulnerability based on vulnerability descriptions and versions, even if this is not
explicitly present in the vulnerability description.

63

Table 14: Performance Metrics of Different Models

Model Accuracy Precision Recall F1-Score MCC

GPT-4-Turbo with Vector-Index (Az. AI Search) 0.8191 0.9612 0.8105 0.8794 0.5600
GPT-4-Turbo 0.0833 0.1026 0.2162 0.1391 -0.8155
Mistral Large 0.3401 0.2558 0.1447 0.1849 -0.3361
GPT-3 with Vector-Index (Az. AI Search) 0.7952 0.8220 0.8151 0.8186 0.5836
GPT-4-Turbo with Vector-Index (LlamaIndex) 0.3120 0.4853 0.3929 0.4342 -0.4344

Table 15: Confusion Matrix Values for Different Models

Model TP FP TN FN

GPT-4-Turbo with Vector-Index (Azure AI Search) 124 5 30 29
GPT-4-Turbo 8 70 1 29
Mistral Large 11 32 39 65
GPT-3 with Vector-Index (Azure AI Search) 97 21 70 22
GPT-4-Turbo with Vector-Index (LlamaIndex) 33 35 6 51

GPT-4-Turbo (LlamaIndex & text-embedding-ada-02) The LLMAIndex GPT-4
model, which has knowledge of all vulnerabilities up to April 2024 and uses this
knowledge via the vector index Simple vector of the LlamaIndex, has shown a low
overall performance in identifying vulnerabilities. According to the table 15, the
model identified 33 true positive cases, i.e. correctly identified 33 vulnerabilities.

The accuracy of around 31.2% shows that the model could only correctly classify a
limited number of positive and negative cases. This provides a suboptimal baseline
performance and indicates that the model cannot effectively distinguish between
the presence and absence of a vulnerability.

The precision of 48.5% indicates that the model has moderate reliability in positive
predictions. This means that a significant number of the vulnerabilities identified by
the model are not actual, with a relatively high number of false positives (35 cases).

The recall value of 39.3% shows that the model only captures a portion of the ac-
tual vulnerabilities. The model’s weakness is reflected in the high number of false
negatives (51), which suggests that the model has overlooked many actual vulner-
abilities. The recall value shows that the model failed to detect around 60.7% of all
actual vulnerabilities.

Overall, the results are weak, with moderate precision and even lower scores in
other vital metrics such as recall. The F1 score of 43.4% shows that the balance be-
tween recall and precision is suboptimal, and there is clearly room for improvement.
The MCC of -0.434 indicates that the model’s predictions have a negative correlation

64

with the actual data. This calls into question the general predictive power of the
model.

GPT-4-Turbo (Azure AI Search & text-embedding-ada-02) The GPT-4-Turbo
model, which has knowledge of all vulnerabilities up to April 2024 and uses this
knowledge via the Azure AI Search Service’s Vector Index, has shown high overall
performance in identifying vulnerabilities. According to table 15, the model iden-
tified 124 true positive cases, meaning that 124 software and version inputs were
correctly identified as affected by a vulnerability.

The accuracy of about 81.9% shows that the model can successfully classify the
majority of positive and negative cases correctly. It provides a solid baseline perfor-
mance, indicating that the model can effectively distinguish between the presence
and absence of a vulnerability.

The precision of 96.1% shows that the model is highly reliable in making posi-
tive predictions. This means that almost all vulnerabilities identified by the model
are actual vulnerabilities, although there were a small number of false positives (5
cases).

The recall value of 81% shows that the model captures a large proportion of actual
vulnerabilities. The model’s weakness is particularly evident in the relatively high
number of false negatives (29), which suggests that the model has overlooked actual
vulnerabilities. The recall value shows that the model failed to detect around 19%
of all actual vulnerabilities, which limits its effectiveness and reliability.

Overall, the results are mixed, with very high precision but lower values in other
vital metrics such as recall. The F1 score of 87.9% shows that the balance between
recall and precision is relatively reasonable, but there is still room for improvement.
The MCC of 0.56 indicates that the model’s predictions have a moderate correlation
with the actual data, confirming the model’s overall predictive power and reliability.

The costs incurred for this run can be summarized as shown in Table 16. A to-
tal of 32,954 input tokens and 647,852 output tokens were generated. If the prices
from Table 3.4.4 are included, total costs of around $19.77 for testing 100 software
programs.

category number of tokens cost (in Dollar)
Cost input total 32954 0.32954

Cost request total 647852 19.43556
Total costs - 19.7651

Table 16: cost of the prompts

65

GPT-3 (Azure AI Search & text-embedding-ada-02) The GPT-3 model, which
has knowledge of all vulnerabilities until April 2024 and uses this knowledge via
the Azure AI Search Service’s Vector Index, has shown an overall acceptable perfor-
mance in identifying vulnerabilities. According to the 15 table, the model identified
101 true positive cases, meaning that 101 software and version inputs were correctly
identified as being affected by a vulnerability.

The accuracy of approximately 68.7% shows that the model successfully correctly
classifies the majority of positive and negative cases. This provides a solid baseline
performance and indicates that the model can effectively distinguish between the
presence and absence of a vulnerability.

The precision of 65.6% indicates that the model has moderate reliability in positive
predictions. This means that many of the vulnerabilities identified by the model are
actual vulnerabilities, although there were a significant number of false positives (53
cases).

The recall value of 91.8% shows that the model captures the majority of actual
vulnerabilities. The weakness of the model is reflected in the relatively low number
of false negatives (9), which suggests that the model missed few actual vulnerabil-
ities. The recall value shows that the model failed to detect only about 8.2% of all
actual vulnerabilities.

Overall, the results are acceptable, with a high recall, but the precision could be
improved. The F1 score of 76.5% shows that the balance between recall and preci-
sion is moderate and there is room for improvement. The MCC of 0.378 indicates
that the predictions of the model have only a moderate positive correlation with the
actual data.

The costs incurred for this run can be summarized as shown in Table 17. A total
of 31333 input tokens and 695418 output tokens were generated. If the prices from
Table 3.4.4 are included, this results in a total cost of around $1.06 for testing 100
different software programs.

category number of tokens cost (in dollars)
Total cost input 31333 0.0156665

Total cost request 695418 1.043127
Total costs - 1.0587935

Table 17: cost of the prompts

GPT-4-Turbo (OpenAI) The GPT-4-Turbo model has shown low overall perfor-
mance in identifying vulnerabilities. According to the Confusion Matrix, the model

66

identified eight true positive cases, which means that eight software and version
inputs were correctly identified as affected by a vulnerability.

The accuracy of around 8.3% shows that the model could only classify a small
number of positive and negative cases correctly. This provides poor baseline per-
formance and indicates that the model cannot effectively distinguish between the
presence and absence of a vulnerability.

The precision of 10.3% shows that the model is very unreliable in making positive
predictions. This means that almost all vulnerabilities identified by the model are,
in fact, not real vulnerabilities, and there are a high number of false positives (70
cases).

The recall value of 21.6% shows that the model only captures a small proportion
of actual vulnerabilities. The weakness of the model is particularly evident in the
high number of false negatives (29), which suggests that the model has overlooked
many actual vulnerabilities. The recall value shows that the model failed to detect
around 78.4% of all actual vulnerabilities, which severely limits its effectiveness and
reliability.

Overall, the results could be more robust, with very low precision and even lower
values in other vital metrics such as recall. The F1 score of 13.9% shows that the
balance between recall and precision is inferior, and there is clear room for improve-
ment. The MCC of -0.816 indicates that the model’s predictions have a negative cor-
relation with the actual data. This calls into question the general predictive power
and reliability of the model.

The costs incurred for this run can be summarized as shown in Table 18. A total
of 11,866 input tokens and 45,228 output tokens were generated. If the prices from
Table 3.4.4 are included, total costs of around $1,47 for testing 100 software programs
will be reduced.

category number of tokens cost (in dollars)
Total input costs 11,866 0.118
Cost request total 45,228 1.356

Total costs - 1,474

Table 18: cost of the prompts

Mistral Large The Mistral Large model has shown moderate overall performance
in identifying vulnerabilities. According to the Confusion Matrix, the model iden-
tified 11 true positive cases, meaning that 11 software and version inputs were cor-
rectly identified as affected by a vulnerability.

67

The accuracy of around 34.0% shows that the model was only able to classify a
limited number of positive and negative cases correctly. This provides poor baseline
performance and indicates that the model cannot effectively distinguish between
the presence and absence of a vulnerability.

The precision of 25.6% shows that the model is unreliable in making positive pre-
dictions. This means that many of the vulnerabilities identified by the model are not
real vulnerabilities, and there are many false positives (32 cases).

The recall value of 14.5% shows that the model only captures a tiny proportion of
the actual vulnerabilities. The weakness of the model is particularly evident in the
high number of false negatives (65), which suggests that the model has overlooked
many actual vulnerabilities. The recall value shows that the model failed to detect
around 85.5% of all actual vulnerabilities.

Overall, the results are moderate, with low precision and even lower values in
other important metrics such as recall. The F1 score of 18.5% shows that the balance
between recall and precision is not satisfactory, and there is clearly room for im-
provement. The MCC of -0.336 indicates that the model’s predictions have a weak
negative correlation with the actual data. This calls into question the overall predic-
tive power and reliability of the model.

The costs incurred for this run can be summarized as shown in Table 19. A total
of 17,865 input tokens and 59,905 output tokens were generated. If the prices from
Table 3.4.4 are included, this results in total costs of around $0.79 for testing 100
different software programs.

category number of tokens cost (in dollars)
Total input costs 17,865 0.071
Cost request total 59,905 0.718

Total costs - 0.789

Table 19: cost of the prompts

Summary To summarize, the first experiment produced some interesting findings
on vulnerability detection performance. The GPT-4-Turbo model using vector in-
dices performed significantly better than other models in pure pre-trained status.

The model that used the vector index from Azure AI Search stood out. It was
interesting to see that the GPT-3 model showed good efficiency close to the GPT-4
Turbo model. The GPT-4 model with the Vector index offers significantly higher
precision and an improved F1 score compared to the GPT-3 model. However, the
GPT-3 also offers acceptable performance and costs only a fraction compared to the
GPT-4 Turbo model.

68

The conclusion here is that it makes sense to conduct further research with the
GPT-3 model to improve the overall performance here through customized prompt-
ing, data sources, embedding, or configuration by parameters. As assumed in the
hypothesis, the comparison of the performance of the different models mapped in
Diagramm 8 is significantly different. The pre-trained models, as hypothesized, did
not perform seriously enough to be suitable for use in vulnerability detection in
the initial state. Likewise, while the GPT-4 Turbo model using the in-memory vec-
tor indices performed generally better than the pre-trained models, its performance
does not come close to the models using Azure AI Search. As LLamaIndex itself de-
scribes 2.1.1, this should be used for testing purposes but is less suitable for critical
applications such as vulnerability detection.

Through manual testing, it was observed that for many vulnerabilities that did
not have a matching version description implied, the vulnerability could still be
identified or declared non-convergent for the software and version. A precise mea-
surement made the data base difficult and required manual verification. The high
number of true negative cases indicates that the models correctly identified these
inconsistent statuses.

In the initial situation, as explained in section 3.4.3, the version was extracted from
the Version field. However, as already explained, this often differs from the CVE
description. For example, the Version field contains the version number: 1.3.5, but
the description says "....before 1.3.5", and the model has correctly recognized here
that there is no vulnerability, which would mean that this was a case in which the
model recognized that the version belongs differently to the version description. Af-
ter analyzing the results for this experiment, this only includes the versions that are
described with ‘before,‘ ‘through,‘ or ‘prior to‘ in the description. Versions that are
in a range between versions, as can also occur in the description of vulnerabilities,
could not be tested due to the nature of the CVE records since, during the analysis,
there is never a number in the version field that is in a range, but only versions that
are declared in the text with ‘before‘ or similar.

The following experiments take a closer look at these special cases. Thus, the
hypothesis that LLMs are able to use text comprehension to recognize weak points
could be proven in certain respects, but it remains to be seen whether text compre-
hension also recognizes weak points, as the versions are in certain ranges.

The cost analysis performed in the experiment shows that high costs are incurred
when using the GPT-4 Turbo approach with Azure AI Search. The reason for this is
that when using embeddings, the knowledge is not directly available in the model.
However, the model first vectorizes the input signal, as described in section 2.1.1 by
the RAG approach, and compares it with the vector database. The context found
there can vary in size depending on the index but includes all connections to the in-
put found in the index. This is passed to the model together with the input prompt,

69

0 5 10 15 20 25

GPT4TurboLlamaIndex

GPT4TurboAzure

GPT3Azure

GPT4TurboOpenAI

MistralLarge

1.06

19.77

1.06

1.47

0.79

Cost ($)

M
od

el

Figure 7: Comparison of Total Costs for Evaluating 100 Software Programs

which means that very high numbers of tokens are processed by the model. As
the GPT-4-Turbo model has much higher consumption costs compared to the other
models, higher costs are incurred even when matching 100 data records.

This experiment did not cover the yet-to-be-explored attempt to iterate different
models with different RAG approaches.

In summary, this experiment demonstrated that models such as GPT-4 could pro-
vide added value in vulnerability detection. Further experiments will explore how
these models can perform in detecting vulnerabilities and threat ratings and how
they compare to traditional assessment tools.

70

GPT-4-
Tu

rb
o (A

zu
re

AI Se
ar

ch
)

GPT-4

M
ist

ra
l Lar

ge

GPT-3
(A

zu
re

AI Se
ar

ch
)

LLM
In

dex
GPT-4

0

0.2

0.4

0.6

0.8

1

1.2
W

er
te

Accuracy Precision Recall F1-Score MCC

Figure 8: Comparison of the Models

3.5 Experiment 2

3.5.1 Experimental Objectives and Hypotheses

In this experiment, the aim is to determine whether the LLM that has shown the
best performance in previous experiments, i.e., the GPT-4 model with the Azure AI
Search approach, also shows good efficiency in classifying a vulnerability based on
the CVE description. Furthermore, the GPT-3 model will also be included in the
experiments with the RAG approach, as it was able to deliver acceptable results in
the previous experiment. Since the cost analysis here calculated a significant differ-
ence between the models, the analysis for the GPT-3 model will be included here.
Based on the findings from the sections 2.5 and 2.6, an essential gap between the
coverage of vulnerabilities and score classifications via the CVSS score in the CVE
database was identified. As stated in section 2.6, only 20.06% of all CVE records
have a classification via the CVSS score. To answer the research question of how

71

the efficiency of an LLM in detecting vulnerabilities in IT networks compares to es-
tablished vulnerability assessment tools, it is hypothesized that LLM models can
classify the vector scores of vulnerabilities using an extensive existing database of
vulnerability information, including their CVSS scores, even if they are not part of
the existing knowledge base.

Answering this hypothesis is crucial to the course of this master’s thesis, as the
goal of network vulnerability detection is to classify the riskiness of the vulnera-
bility as a critical component in deciding to what extent a network is at risk. This
experiment does not make a direct comparison to conventional assessment tools.
However, at this stage, it is assumed that static tools are not able to classify vulnera-
bilities that do not have a CVSS rating. However, this hypothesis will be examined
in greater depth in the later experiment.

This experiment benefits from the findings of Aghaei et al. [1]. In their research,
Aghaei et al. [1] developed a model called CVEDrill, which is based on SecureBERT
(see Section 2.3). This model accurately classified CVSS vectors using the descrip-
tion of CVE records. Their study assessed the prediction accuracy of various attack
vectors (see Section 2.6) based on 100 randomly selected CVE descriptions as input
parameters. As shown in Table20, the prediction accuracy was compared with that
of the ChatGPT model. The study does not specify which GPT model was used,
but given that it was published in September 2023 and ChatGPT-4 was released in
March 2023, it is assumed that the tests were conducted using the GPT-4 model.

Table 20: Comparative evaluation of predictive accuracy for CVSS vectors in a sam-
ple of 100 randomly selected CVEs disclosed in 2023.

Tool AV AC PR UI S C I A
ChatGPT 0.52 0.78 0.85 0.55 0.43 0.36 0.81 0.42
CVEDrill 0.82 0.86 0.76 0.91 0.87 0.81 0.81 0.77

Therefore, this experiment builds on the results of the study by Aghaei et al. [1]
and tests the hypothesis that a model that has a broader knowledge of vulnerabili-
ties can lead to better performance results, which were determined in the study of
the pure ChatGPT (GPT-4).

3.5.2 Methodology

The methodology of this experiment is designed to investigate the ability of the
GPT-4 and GPT-3 models using the RAG approach to identify vulnerabilities based
on the description captured in a CVE record. Understanding the performance of
these models will be integrated into Experiment X to gain a comprehensive picture
of their efficiency and effectiveness compared to traditional vulnerability assess-

72

ment tools. The hypothesis that will be addressed in the later experiment is that
traditional tools cannot classify vulnerabilities where a severity score has yet to be
formally established. Therefore, the outcome of this experiment will provide an
essential insight into whether LLMs are able to assist in this area of cybersecurity.
This will build on the research of Aghaei et al. [1] to take advantage of their findings
already and gain new insights not covered there.

In addition to measuring the match rates of various CVSS vector metrics (see 2.6),
a cost analysis of the tokens used is performed, and it is checked whether the de-
tection performance is close to the original result. This is evaluated based on the
determined severity level (LOW, MEDIUM, HIGH, CRITICAL).

The database for this experiment comprises the complete CVE database with all
filtered and processed CVE records up to April 2024. During the creation of the
knowledge database in the form of the RAG, one parameter that was also passed
was the CVSS vector string of the CVE vulnerability (see 2.6 and 3.3). The assump-
tion is that this knowledge enables the model to make a more precise statement
about a CVSS vector string and thus determine the CVSS metrics better than the
pure pre-trained model, which has also been described as a vulnerability as a basis.

As in the last experiment, a database of 100 CVE records is used to test these
against the model. This also overlaps with the number of test data used by Aghaei
et al. [1] in the experiment. In order to rule out the possibility that the model draws
on existing knowledge, only CVE records that were not yet available in the database
at the time the RAG was created are used. An updated data set was therefore ob-
tained from MITRE, which has a total of 233,151 CVE records in May 2024. When
the RAG was created, there were still 228,713 published CVE entries. This results
in a difference of 4,438 new CVE records created in the meantime. This ensures
that the model does not simply fall back on existing knowledge but should use this
knowledge to classify unknown CVE records. The possibility of a possibly equiva-
lent description of an older vulnerability was disregarded.

The 100 CVE records used for the experiment are checked during processing to
see whether they contain a CVSS vector string. Only if this is present is the data set
used for processing. This allows the result of the model to be compared with the
official CVSS vector string in order to determine a precise accuracy rating.

The setup for this project is different from the first approach used in Experiment
1. The experiment receives, as an input parameter, the description of a published
CVE vulnerability, with no additional information provided. A CVE description is
created by the individual or organization that discovered the vulnerability and re-
ported it to MITRE. The lifecycle is described in Section 2.5. The requirements for
a description follow the rules defined by MITRE 25. The description must provide

25https://www.cve.org/ResourcesSupport/AllResources/CNARules#section_8_

73

enough information for the reader to have a reasonable understanding of the af-
fected products. Furthermore, the vulnerability type, root cause, and impact must
be present in the text. Providing a version is not necessarily required.

For example, this CVE description of CVE-2021-24910 describes the existing vul-
nerability as follows:

"The Transposh WordPress Translation WordPress plugin before 1.0.8
does not sanitize and escape the parameter via an AJAX action (available
to both unauthenticated and authenticated users when the curl library is
installed) before outputting it back in the response, leading to a Reflected
Cross-Site Scripting issue."

Compared to the rules described, the description fulfills the requirements for a
CSV entry. The description clearly names the product concerned, namely the "Trans-
posh WordPress Translation WordPress plugin" (information about the product). The
type of vulnerability is identified as "Reflected Cross-Site Scripting" (vulnerability
type). The description explains that the root cause of the issue is that the ’a’ pa-
rameter is not sufficiently sanitized and secured before it is returned in the response
(root cause). The description implies the type of vulnerability (XSS) that makes it
potentially possible to execute malicious code in the context of a victim’s browser
(Impact).

The area of severity classification has already been addressed by several re-
searchers, including Aghaei et al. [1], as described above, as well as by Shahid and
Debar [52]. Both types of research were designed to determine the severity of CVSS
based solely on the content of the CVE description. Both were able to achieve good
results with their trained models. The results of Aghaei et al. [1] have already been
shown in Table 20. Shahid and Debar [52] were able to achieve a relatively high
accuracy ranging from 83.79 % to 96.07 %. Both researchers chose the approach of
analyzing each vector metric individually.

cve_record_requirements

74

In this paper’s experiment, a pre-trained model is used to develop full-text under-
standing by inputting the description to generate a vector string for all metrics. The
input, as described above, consists of the CVE description and a prompt designed
from it, shown in Listing 18. The model is instructed to return a vector string from
the given description after the text has been analyzed.

Listing 18: Input Prompt for the Model
1 messages = [
2 {
3 "role": "user",
4 "content": (
5 f"Generate a CVSS vector string from a CVE vulnerability description. Analyze the description and create

the CVSS vector string based on this analysis. This is the CVE vulnerability description:
{description}. Respond only with the CVSS vector string.

6 "
7
8)
9 },

The expected output is a vector string in the standard format from 2.6, in this form:
"AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H". Once the vector string has been out-
put by the model as a response parameter, it is used to perform further calculations.
Further to the research of Shahid and Debar [52] and Aghaei et al. [1], this experi-
ment not only looks at the vector string but also at the resulting severity level. The
assumption here is that the severity level is also a meaningful metric for evaluating
a vulnerability. Therefore, even if the vector string generated by the model as a re-
sponse parameter and the original vector string officially associated with the CVE
entry differ, an approximation of the generated base score and the official base score
can lead to similar severity levels. In this experiment, therefore, not only is the abil-
ity of the model to generate the vector string measured but the serenity score is also
used as a performance parameter.

Example 3.1 (RAG System Process). As an example, a vector string pre-
dicted by the model would include the following metrics and their re-
sults: "AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H ."This would provide
a calculated base score of 6.5, which would mean a Serenity level of
MEDIUM. However, the official entry for this vulnerability would be
"AV:N/AC:L/PR:L/UI:R/S:C/C:N/I:N/A:L" and, in contrast to the 6.5 base
score, would have a base score of 4.1. Both base scores differ because, in this case,
the availability impact was rated higher by the model than officially. This means
that a security vulnerability more severely impairs the availability of an affected
system or component.

Therefore, the two base scores are 2.4 points apart. However, both are at the same
Serenity level *MEDIUM*. For the assessment of vulnerabilities, both vector strings
match in terms of the serenity level.

Therefore, after receiving the response from the model, the vector string is ex-

75

tracted using a regex. This vector string is used to calculate the base score using the
formula from 2.5. The base score is checked against the severity levels and classi-
fied according to the level of the score. The model’s response parameters are used
to record the input and output tokens. The predictions of the model, the calcula-
tions of the base score, and the severity level are saved together with the original
values from the CVE entry and the CVE ID for each response in a CSV file for later
evaluation. The CSV is structured as in Listing 19.

Listing 19: Output Format for the Results
1 CVE ID, Generated Vector String, Calculated Base Score, Calculated Severity, Original Base Score, Original

Vector String, Original Severity, Input Tokens, Prompt Tokens
2 CVE-2024-25015,AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H,7.5,High,7.5,CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H,HIGH,77,350
3 CVE-2024-25016,AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H,7.5,High,7.5,CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H,HIGH,103,480

After each run, the saved CSV file is passed to another script, which calculates
the performance metrics. This script checks the predictive accuracy values for each
CVSS metric and calculates the match rate for the severity. The following chapters
describe this in more detail.

The limitation that arises is that a CVE entry only sometimes contains all the in-
formation in the description.

3.5.3 Experiment Execution

The experiment used specific specifications, scripts, and technologies. The descrip-
tion of the required components is followed by a detailed description of how the
experiment was carried out and the methods used to determine the required results.

The hardware specifications used for this experiment are listed in Table 3.4.3.

Various Python scripts were developed to carry out the experiment, which are
listed in Table 3.5.3. These scripts execute specific logic to test the hypotheses for-
mulated in section 3.4.1. Each script fulfills a separate task and is called manually in
sequential order.

Script description

cvssexp.py Runs the experiment, processes 100 selected CVE records,
and interacts with corresponding LLMs depending on the
configuration.

cvssCalc.py Calculates the Confusion Matrix based on the experiment
results.

76

Table 3.5.3 includes the technologies, REST APIs, and data formats used in this
experiment.

technology/service usage

Azure Blob Storage Data Storage for CVE Database
Azure AI Search Vector Database
Azure OpenAI LLM models and embedding models
REST API interaction with Azure, OpenAI
Data formats JSON, CSV

This experiment is based on the database that was already created for the last
experiment. This means that the dataset still contains the CVE records of all CVE
entries up to April 2024 and has yet to be further modified for this experiment.
A Python script called "cvssexp.py" was developed that iterates through the delta
of the sourced CVE records, which cannot be known to the model either by the
pretraining or by the dataset, and extracts the vector string from the response as
described above. Since in the study by Aghaei et al. [1] it was not clear which GPT
model was used in the evaluation, in this experiment, the GPT-3 and GPT-4 turbo
models were used in the scripts, each with and without the RAG approach.

The delta is made up of the 4,438 CVE records described above. The script "cvs-
sexp.py" iterates through the download folder of the CVE records and starts with
the folders that were not yet present in the old data set. The script filters the entries
for all CVE records that contain a CVSS version 3.1 vector string in the data. This
is required for validation. The description is extracted from the data records and
passed to the model.

Within the script, the parameters are adjusted manually after each run. This in-
cludes the model (GPT-4-Turbo or GPT-3) and whether or not the Azure extensions
should be used for the RAG. In this experiment, all runs with the different models
receive the same data. The first 100 CVE records that meet the criteria (CVSS vector
score 3.1 is available) are selected from the delta rather than randomly per run.

The values required for the result analysis are formatted as above and saved in a
CSV file.

This CSV file is manually passed as input in the script "cvssCalc.py" and run for
each result file. In this experiment, the Python library "sklearn" was used for the
required metrics26. The library contains methods for calculating metrics that are
used mainly in the field of machine learning. The methods used in this experiment
calculate the accuracy score. To do this, the library creates a confusion matrix in
the background and calculates the required accuracy value, which it returns as an
26https://domino.ai/data-science-dictionary/sklearn

77

answer. It receives each metric in a loop as an input parameter for each vector string.
The metrics were first defined in an array.

The script’s output parameters are the predictive accuracy values for each CVSS
metric and the severity match rate. The results are copied manually from the console
and saved to a text file. The following chapters provide a more in-depth look at the
results, a cost analysis, and a final evaluation of the experiment.

3.5.4 Measurement and Evaluation

As in the first experiment, the performance of the models is evaluated using the
metrics of a confusion matrix. The calculation of the Confusion Matrix was taken
from the sklearn library described above. Further information on the Confusion
Matrix is described in the experiment above. This experiment is based on the Con-
fusion Matrix. In the last experiment, the Confusion Matrix was defined by a binary
classification. In this experiment, however, a multi-class confusion matrix is used.
The multi-class confusion matrix is used in this experiment because there are several
classes involved in this part of the elaboration.

With binary classification, we only had the case where the model gave a prediction
as to whether a vulnerability was present and which vulnerability it was. The check
was both automated and manual there, but the performance was not measured to
determine whether the model detected all existing CVE entries associated with that
vulnerability. This would have required an even more profound examination of the
existing data set, which was different from the focus of the experiment. Therefore,
binary classification was sufficient for this approach.

In this experiment, the performance is based on the correct assignment of met-
rics and their values. Thus, a metric of the CVSS score can have several states, as
already described in section 2.6. For example, the metric "Attack Complexity" can
have the state "Low (L)" or "High (H)." The "Attack Vector" metric can have up to
four different states. Therefore, when measuring performance and effectiveness, the
Confusion Matrix is performed with a multi-class classification, whereby a compar-
ison is performed for each class of the metric.

In this experiment, the values True Positives (TP), False Negatives (FN), and False
Positives (FP) are used. True Negatives (TN) are also relevant, but TP, FN, and FP
are decisive for calculating the metrics Accuracy, Precision, Recall, and F1-Score.

Each of the metrics of the CVSS score 2.6, which is measured within the experi-
ment, is used to evaluate performance. The metrics Accuracy, Precision, Recall, and
the F1 score are measured for this purpose.

78

In order to obtain a more general overall picture, the results of research that has
already produced results in this subject area were used in the evaluation. Therefore,
the results from this experiment are also compared with the results of Aghaei et al.
[1] and Shahid and Debar [52] for comparison. This allows a broader view of this
work, as the focus of the research described was on models specifically designed
and trained for this use case.

The analysis of the results also evaluates the "Predictive Accuracy for CVSS Vec-
tors" of the models from the research. The results should show to what extent the
accuracy is different or closer compared to the approach with the pre-trained GPT-
3 and GPT-4 models with and without RAG. The metrics described above are also
considered via predictive accuracy in order to gain a better understanding of the
performance of the models. For the metrics, the weighted average across the classes
is considered, as certain classes of vector metrics have a higher presence in the data
than others.

An analysis should have been carried out within this work. The assumption is
supported by the results of Aghaei et al. [1]. In their research, the frequency of the
classes was mapped in a table using a confusion matrix. For example, of a total
number of 4791 data sets, the "Attack Vector" has the class "N" with a presence of
about 76.62

A further value is measured for the models used and enriched in this work. As
already explained above, the severity level is also considered in this paper. The
assumption here is that a severity score can also reflect a classification of a vulnera-
ble network/computer, even if deviations exist between the predicted and original
CVSS vector strings. For this purpose, an accuracy calculation is also performed on
the "Severity" field, and a comparison is made of how often vulnerabilities are at
the same severity level. In this way, any deviations can be balanced out in order to
obtain an assessment of the vulnerability.

79

3.5.5 Results Analysis

This chapter presents and discusses the experiment’s results. The aim was to find
out how efficient LLMs are at generating a correct CVSS vector string from a descrip-
tion of a CVE entry. Both pure pre-trained models and models with a rag approach
were compared. The input data was the same for each run with different configura-
tions. In each case, 100 CVE entries were run, which were also not available at the
time the model was trained or within the knowledge database.

The results are measured using the metrics explained above. To enable a compar-
ison with other research, the results of Aghaei et al. [1] are included in this results
analysis.

GPT-4-Turbo (Azure AI Search & text-embedding-ada-02) The GPT-4 model,
which uses the Azure AI Search approach and has access to a knowledge base with
all existing CVE entries up to April 2024, achieved the values from Table 21 in the
analysis. For the metric "Attack Vector (AV)" achieved a very high accuracy of 93%,
which means reliable identification of the matching classes of the metric. The recall
of 93% shows that the model was able to assign almost all classes from the CVE
description correctly. The interplay between precision and recall shows the balance
indicated by the F1 score. The precision of 93% is in the excellent range and achieves
the highest value compared to all other models.

For "Access Complexity (AC)," the accuracy is 87%, which is lower than AV. The
model effectively recognizes the metric from the CVE description but generates
some false positives. With a recall of 87%, the model identifies the correct classes
of the metric in most cases despite complex conditions.

Metric Precision Recall F1-Score Accuracy
AV 0.93 0.93 0.92 0.93
AC 0.84 0.87 0.84 0.87
PR 0.74 0.73 0.73 0.73
UI 0.82 0.82 0.82 0.82
S 0.78 0.77 0.76 0.77
C 0.72 0.70 0.70 0.70
I 0.69 0.68 0.68 0.68
A 0.62 0.64 0.57 0.64

Table 21: Summary of Metrics from Confusion Matrices for Various CVSS Metrics

For Privileges Required (PR), the precision value drops to 74%, which shows that
many contexts of the descriptions could not be correctly interpreted and classified
by the model. The F1 score of 73% indicates that the differentiation of the Privileges

80

Required classes could be improved. The accuracy of 73% shows that the under-
standing of these classes needs to be optimized.

User Interaction (UI) has an average accuracy of 82% across all metrics, which is a
solid performance in correctly classifying these metric classes.

The detection of the Scope (S) classes performs better than the classification of the
PR metric but shows weaknesses in precision and accuracy with 78% each. Never-
theless, it can classify most cases correctly from the CVE description.

Confidentiality (C), Integrity (I) and Availability (A) are the worst recognized met-
rics. Although all more than 50% of the classes were correctly assigned, only Confi-
dentiality achieved precision and accuracy values of over 70%. The worst performing
metric was Availability with a precision of 62% and an accuracy of 64%.

The agreement rate of almost 60% for the severity classification means that more
than a third of the classifications are inaccurate. For use in safety-critical environ-
ments, more than such a classification is needed to meet the requirements.

The total cost of the GPT-4 model with the Azure approach (see table 22) was
$16.22.

category number of tokens cost (in Dollar)
Cost input total 15844 0.16

Cost request total 535404 16.06
Total costs - 16.22

Table 22: cost of the prompts

GPT-3 (Azure AI Search & text-embedding-ada-02) The GPT-3 model has gen-
erally shown excellent performance in the classification of metrics. Overall, the
GPT-3 model with Azure AI Search achieved better results than the GPT-4 model
and approached the performance of the BERT (classifier) model. In the attack vector
(AV) domain, the model achieved a precision of 92%, which is higher than the multi-
classifier BERT model by Aghaei et al. [1]. The recall is also 92%, which means that
the model was able to predict the class correctly in most cases.

Access Complexity (AC) also has a high precision of 90% and a recall of 89%. The
model was even able to identify certain classes 100% correctly. For example, the
class High was correctly classified in every given description. The F1 score shows a
good balance between precision and recall, reaching 85%.

The weakest of all metrics was Privileges Required (PR). Only a low precision of
60% was achieved here. The accuracy of 56% is the worst of all the models used.

81

User Interaction (UI) and Scope (S) again showed a strong performance with over
80%. UI achieved an accuracy of 85%, reflecting a high identification rate of correct
classes.

The model shows the values for Confidentiality (C) and Integrity (I) in Table 23. A
precision of 86% was achieved for C, which indicates good reliability, even if I has a
solid value of 78%.

metric precision recall F1 score accuracy
AV 0.92 0.92 0.91 0.92
AC 0.90 0.89 0.85 0.89
PR 0.60 0.56 0.57 0.56
UI 0.88 0.85 0.85 0.85
S 0.82 0.80 0.80 0.80
C 0.86 0.84 0.84 0.84
I 0.78 0.78 0.78 0.78
A 0.61 0.69 0.64 0.69

Table 23: Summary of the weighted metrics from the confusion matrices of various
CVSS metrics

Summary In this experiment, the capabilities of the GPT-4 Turbo and GPT-3 Turbo
models were investigated, both of which were tested in pretrained mode and with
an additional RAG approach. The task was to analyze CVE descriptions and classify
correct CVSS vectors and the associated base score. Literary sources were used to
build on previous studies in this context. The work of Aghaei et al. [1] and Shahid
and Debar [52] were considered, and the results compared with those in this work.
Both studies used different approaches to those chosen for this work. In this work,
a large dataset of already known CVSS vectors was used. The other studies were
carried out on the basis of more fine-grained metrics per CVSS vector. During the
implementation phase, an approach was also used that was to be approximated by
a pre-trained model in the aforementioned studies.

For this purpose, models were finetuned via the OpenAI page. Two different
approaches were chosen: In one, the GPT-3 model was trained on a massive dataset
with mixed CVSS vectors. The other approach was based on the strategy of Aghaei
et al. [1], where a separate classifier was trained for each CVSS vector. For this
purpose, the finetuning was carried out with 300 data sets per CVSS metric, with
a separate model trained by GPT-3 for each vector metric and later queried via a
Python script for each metric to the corresponding model and then combined into
a CVSS vector string. Due to the complexity of this approach and the complexity
of the rest of the experiment, this part of the finetuning has yet to be included in
this work. The depth of the topic of finetuning would not have justified the effort

82

that would have been required for the work. Nevertheless, the first results of the
finetuning were included in the overall view in Table 24.

Model AV AC PR UI S C I A Severity

BERT (with classifier) 0.91 0.96 0.83 0.93 0.95 0.87 0.87 0.88 N/A
GPT-3 with Azure AI Search 0.92 0.89 0.56 0.85 0.80 0.84 0.78 0.69 0.68
CVEDrill 0.82 0.86 0.76 0.91 0.87 0.81 0.81 0.77 N/A
GPT-4 pretrained 0.90 0.89 0.68 0.89 0.75 0.66 0.65 0.61 0.61
GPT-3 finetuned (raw) 0.89 0.84 0.68 0.82 0.77 0.74 0.73 0.55 N/A
GPT-4 with Azure AI Search 0.93 0.87 0.73 0.82 0.77 0.70 0.68 0.64 0.59
GPT-3 finetuned (per metric) 0.89 0.84 0.60 0.88 0.71 0.62 0.59 0.43 N/A
ChatGPT (laut Aghaei et al. [1]) 0.52 0.78 0.85 0.55 0.43 0.36 0.81 0.42 N/A

Table 24: Performance comparison of LLMs

Overall, this experiment showed that the GPT-3 model, in combination with
Azure AI Search, performed better than the GPT-4 model with the same approach.
Surprisingly, the GPT-3 model was able to achieve better performance in this work
than the CVEDrill model. The CVSS-BERT model by Shahid and Debar [52] contin-
ued to show the best performance of all models listed in the table 24 compared to
the models used in this work and was able to classify 5 of the 8 CVSS vector metrics
with the highest performance.

The severity was also compared in this experiment to determine how well the
average CVSS base score could be correctly calculated using the CVSS metrics. The
GPT-3 model with the Azure AI approach demonstrated an accuracy of 68%. As was
also noted in the other studies, some metrics can be ranked very well by models and
metrics, whereas classification is measurably more difficult. All models, except for
the GPT model tested by Aghaei et al. [1], were able to achieve an accuracy of over
80

In general, a GPT model can be used to classify CVSS vectors well and appropri-
ately. The challenge here also lies in the description of the CVE records, as a model
can find it difficult to classify if the description is inaccurate or very short.

83

3.6 Experiment 3

3.6.1 Experimental Objectives and Hypotheses

As a final experiment, the LLM that performed best in this work was selected to
provide the basis needed to perform this experiment. The previous experiments
were designed so that Experiment 1 tested the extent to which models can detect
vulnerabilities in software that have already been officially cataloged. The limita-
tions of CVE descriptions make it challenging to deal with versions that need to be
clearly defined. The following experiment examined the extent to which models are
able to perform a severity assessment when only the description of the vulnerability
is provided. In other words, to use the textual understanding that a model brings
with it to use the textual information extracted from it to assess the severity of the
vulnerability. This was based on the results and research of Aghaei et al. [1] and
Shahid and Debar [52].

The aim of this experiment is to determine whether models are able to interpret
scans in IT networks to such an extent that a statement can be made as to whether
this network or the corresponding computer in the network is affected by a vulnera-
bility and how critical this is to be classified. The research approaches for classifying
network scans that were researched during the research phase exist, but they needed
to be present more to build on the results. For example, a paper by Moskal et al. [39]
deals in part with the analysis of network scans in Nmap reports as a step in the
execution of a multi-agent system.

The hypothesis that is being put forward is that models that have an extensive
knowledge base of vulnerability data can interpret scan reports from network scans
and identify and classify affected software versions. More specifically, the assump-
tion is made that powerful models can be used in network scans to identify vulner-
abilities in IT networks, assign them to existing threats, and determine the degree
of danger. In particular, the research question “How does the efficiency of an LLM
in detecting vulnerabilities in IT networks compare to established vulnerability as-
sessment tools?” should be addressed. It is assumed that models specially trained in
the field of cybersecurity, as in the experiments, can achieve similar or better results
than conventional assessment tools. For this approach, the Nessus tool was chosen,
as discussed in Chapter 2.4.

3.6.2 Methodology

The methodology of this experiment is designed to measure the performance of the
GPT-4 Turbo and GPT-3 Turbo models, each with the knowledge base as a RAG ap-
proach, to determine the extent to which these models are able to interpret network

84

scans and identify possible vulnerabilities in this context. The focus is on software
versions that, as in Experiment 1, are not available in a fixed schema and can either
not be recognized or recognized less well by conventional vulnerability analysis
tools. The execution of the experiment will benefit from the results of the first two
experiments.

To do this, a framework is created within the experiment (referred to as AISecNet
in this paper), which performs a sequence of processes to generate a result for evalu-
ating the analyzed IT network. The evaluation includes an output of vulnerabilities
within the network and the classification of the level of danger. The framework was
created using Python scripts that perform a Nmap scan, extract the software and
versions for each port from the scan result, and perform a query against the GPT-
4 model with Azure AI Search for each extracted software and version, which has
shown the best performance in classifying vulnerabilities in an experiment. After
that, the framework also uses the GPT-3 model with Azure AI Search, which in the
last experiment showed the best performance of the models adapted in this thesis
in the area of CVSS classification. The output parameters of the framework include
a list of the vulnerabilities found and the CVSS rating of the vulnerability.

Due to the specific requirements and limited facilities of the server infrastructure,
an anecdotal evidence base is used in this study. The decision to use anecdotal evi-
dence comes from the need to conduct a deeper analysis in a real-world simulation
environment that cannot rely on traditional large-scale data collection due to obsta-
cles arising from its specific configuration and limited scope. Instead, the focused
analysis of the results from this limited number of tests allows for a detailed and nu-
anced consideration of the performance of the models. To answer the research ques-
tion of how models measure efficiency and effectiveness compared to conventional
assessment tools, this must be done in a sandbox environment. For assessment tools
such as Nessus, it is not possible to test Nessus on a large number of data sets due
to technical limitations, as it is designed to check specific IP addresses or IP ranges.
The technical solution is possible, but it goes beyond the scope of this work. One
approach would be to provision a large number of computers with pre-installed
software. Therefore, anecdotal evidence is used to gain specific insights into the
performance and effectiveness of the models. This means that the primary data set
is not very diverse, but a focused investigation and targeted manual evaluation can
be carried out on the selected data sets.

The network that is being tested for this purpose is a simulation environment that
was set up for this experiment. The environment consists of a router, a web server,
an application server, and a database server. All computers were set up as virtual-
ized computers with the Ubuntu operating system 22.04.3 LTS. The structure of this
simulation environment primarily serves several purposes. The primary goal is to
establish a controlled and secure platform for testing and evaluating various secu-
rity aspects of a modeled corporate network. Due to the effort and configuration

85

of the various systems in the network, the simulation is limited to a small com-
pany with an established network topology. Simulating actual network structures
offers the opportunity to test hypotheses under almost actual conditions without
the associated risks and costs in an actual business context. Such an environment
is essential for conducting simulations during the experimentation phase in order
to analyze specific use cases and potential threat scenarios. For the recipients, this
simulation environment offers practical insight.

During the research, the GitHub repository Vulhub27 caught our attention be-
cause it contains a collection of different software types as Docker images, and each
of these software versions is associated with a known CVE entry. This enables flexi-
ble scaling of the various services to be scanned without having to install them with
all their dependencies. The Docker images found there contain various types of
software that can be classified, among other things, as software that is suitable in
the context of web servers, application servers, and database servers. The respec-
tive software in the Docker image is directly linked to a known CVE vulnerability.
During the research phase, it was noticed that older vulnerable software, in partic-
ular, cannot be easily installed on the Ubuntu system. It is particularly problematic
if the version of the Ubuntu system is measurably younger than the service to be in-
stalled. During tests, it was noticed that outdated calls and program codes are often
executed and can no longer be compiled on new Ubuntu systems. Therefore, the
Docker images provide a good solution for flexibly installing vulnerable software.

The network topology, as shown in Figure 3.6.2, has been set up within the Mi-
crosoft Hyper-V virtualization environment on a Windows 11 machine. Each virtual
machine was installed headless using the Ubuntu operating system with version
22.04.3 LTS, as mentioned above. The server configuration of the individual virtual
machines is shown in Table 25.

27https://github.com/vulhub/vulhub

86

Internet

Router DMZ

192.168.1.1/24

eth0:
192.168.178.164

eth1:
192.168.1.1

Web server 1
192.168.1.10

Application server
192.168.1.12

Database server
192.168.1.15

The DMZ router is the entry channel for the actual network. It establishes the
connection to the Internet via the Windows 11 host system and controls the network
traffic to the outside. Furthermore, the DMZ router also serves as a Dynamic Host
Configuration Protocol (DHCP) server to automatically distribute IP addresses from
a defined address pool to the servers within the network. The DMZ router also acts
as a firewall for the internal network. It ensures that network address translation
(NAT) is carried out on a gateway, which enables computers in a private network to
access the Internet under a shared public IP address by dynamically masking their
internal IP addresses when forwarding packets.

Access to the internal computers from the outside is not possible and is controlled
via port forwarding through the DMZ router. The setup is kept minimalistic so that
the focus of the experiment is not on setting up the simulation environment. How-
ever, a corporate network should be simulated fundamentally. The basic configura-
tions are documented in this work to help understand how the network was config-
ured. The resource configuration and the operating systems installed are listed in
Table 25.

During the setup of the Hyper-V environment, Ubuntu 22.04.3 Lite (without GUI)
was downloaded as a server variant from the official Ubuntu site28 as an image. A

28https://ubuntu.com/

87

Table 25: Server Configurations
Property Router DMZ Web Server Application Server Database Server

OS Ubuntu 22.04.3 LTS Ubuntu 22.04.3 LTS Ubuntu 22.04.3 LTS Ubuntu 22.04.3 LTS
CPU Intel i7-10700K Intel i7-10700K Intel i7-10700K Intel i7-10700K
Memory 2 GB 5 GB 5 GB 5 GB
Storage 60 GB 50 GB 50 GB 50 GB
Interface 1 sandbox_ext. (eth0) - - -
Interface 2 sandbox_int. (eth1) sandbox_int. (eth0) sandbox_int. (eth0) sandboxsub_int. (eth0)

virtual machine was set up in Hyper-V with this image. For the virtual computers in
the subnetwork of the DMZ router, a network card sandbox_int was configured
in Hyper-V for internal communication and assigned to the virtual computers. The
DMZ VM router was equipped with this network card as well as with another net-
work card sandbox_ext to ensure communication with the internet via the host
system.

Since the computers within the virtual network cannot be reached by the host
computer, an SSH connection was established from the DMZ router, which can be
reached by the host system, to the computers in the subnet to configure each com-
puter. Termius was used to manage the SSH connections29.

The virtual computers within the subnet of the DMZ router were equipped with
various software, such as Docker containers, as described above. To do this, Docker
had to be installed on all computers first. In addition, an update and upgrade were
carried out on the machines, and other required tools such as Nmap (for performing
the network scan), unzip (for unpacking packages), and Docker were installed (see
listing 20) and started.

Listing 20: Installing needed dependencies
1 sudo apt install nmap unzip
2 curl -s https://get.docker.com/ | sh
3 systemctl start docker

The selection of software for the various VMs was based on the domain of the
respective server. For the web server, software products were selected in the prepa-
ration phase that was available in the GitHub repositories of Vulhub30 and also re-
ceived at least a “medium base score” in the CVSS classification.

29https://termius.com/
30https://github.com/vulhub/vulhub

88

Table 26: System Vulnerabilities Summary

Software Version Port CVE

Webserver Software

Drupal 7.57 8081 CVE-2018-7602
Jenkins 2.441 8091 CVE-2024-23897
PHP 7.0.28 8081 CVE-2018-10546 and more
Apache HTTP 2.4.54 8080 CVE-2006-20001 and more
jQuery 1.4.4 8081 CVE-2020-11022 and more
Joomla 4.2.7 8080 CVE-2023-23752
Confluence 8.5.3 8090 CVE-2023-22527
Grafana 8.2.6 3000 CVE-2021-43798

Application Server

GitLab 13.10.1 8092 CVE-2021-22205
Apache Tomcat 9.0.30 8082 CVE-2020-1938 and more
phpMyAdmin 4.8.1 8070 CVE-2018-12613
Elasticsearch v1.6.0 9200 CVE-2015-5531
JetBrains TeamCity 2023.05.3 8111 CVE-2023-42793
Oracle GlassFish 4.1.0 4848 CVE-2017-1000028
postfix 3.7.11 25 CVE-2023-51764
OpenSSH 8.9p1 22 CVE-2023-28531
Apache httpd 2.4.25 8070 CVE-2017-7659
Jetty 8.1.14 8080 CVE-2023-40167
vsftpd 2.3.4 21 CVE-2011-2523

Database Server

PostgreSQL DB 10.5 5432 CVE-2019-9193
MySQL 5.5.23 3308 CVE-2012-2122
OpenSSH 8.9p1 22 CVE-2023-28531
Redis 5.0.7 6379 CVE-2022-0543

When selecting the software, care was taken to ensure that it was widely used and
standard software. The selected software is described below. The CVE records reg-
istered for this purpose, as well as the version and port used on the corresponding
server, are listed in Table 26. The various software versions cover older vulnerabili-
ties from 2012 up to current vulnerabilities from 2024.

Drupal
An open-source content management system (CMS), ideal for complex and cus-
tomizable websites. It supports a wide range of web content such as texts, blogs,

89

surveys, and image galleries.31

Jenkins
An automated continuous integration tool that helps developers automate tasks
such as building, testing, and deploying software.32

JetBrains TeamCity
A continuous integration and continuous delivery (CI/CD) server that supports the
automation of build and test processes.33

Confluence
A platform for team collaboration and knowledge management that facilitates the
sharing and editing of documents within teams.34

Joomla
A user-friendly content management system (CMS) is used to create websites and
online applications.35

Grafana
An open-source platform for monitoring and analytics, providing visualization and
alerting for web applications.36

GitLab
A complete DevOps platform, delivered as a single application, enabling the man-
agement of projects and the automation of workflows in the software development
process.37

phpMyAdmin
A free software tool for managing MySQL over the web. It allows the creation and
editing of databases, tables, and content.38

Elasticsearch
A search and analytics engine that provides fast and powerful search capabilities
for large datasets.39

Oracle GlassFish
An open-source application server that supports the Java EE platform, allowing de-

31https://www.drupal.org
32https://www.jenkins.io
33https://www.jetbrains.com/teamcity/
34https://www.atlassian.com/software/confluence
35https://www.joomla.org
36https://www.grafana.com
37https://www.gitlab.com
38https://www.phpmyadmin.net
39https://www.elastic.co/elasticsearch/

90

velopers to create and deploy enterprise applications.40

PHP
An open-source scripting language particularly builded for web development and
can be embedded into HTML.41

Apache HTTP Server
An open-source web server that provides a variety of features and extensions, being
one of the most used web servers worldwide.42

jQuery
A fast, compact, and feature-rich JavaScript library that streamlines HTML docu-
ment traversal and manipulation, event handling, animation, and Ajax.43

Apache Tomcat
An open-source platform implementing Java Servlet, JavaServer Pages, Java Expres-
sion Language, and Java WebSocket technologies.44

Postfix
A mail transfer agent (MTA) that can send and receive emails on a computer and is
often used as an alternative to Sendmail.45

OpenSSH
An open-source tool that provides secure encryptions for remote access protocols,
enabling secure communication over an unsecured network.46

Apache httpd
A modular web server is known for its flexibility and extensive support for various
operating systems.47

Jetty
A lightweight, Java-based web server and servlet container used in both large and
small applications.48

vsftpd
A very secure and fast FTP server for Unix-based systems, known for its reliability

40https://www.oracle.com
41https://www.php.net
42https://httpd.apache.org
43https://jquery.com
44https://tomcat.apache.org
45http://www.postfix.org
46https://www.openssh.com
47https://httpd.apache.org
48https://www.eclipse.org/jetty

91

and low resource requirements.49

PostgreSQL
An open-source object-relational database management system that offers a wide
range of advanced data processing features.50

MySQL
A widely-used open-source database management system.51

Redis
An open-source, in-memory data structure store utilized as a message broker
database and cache.52

The installation of a Docker image from the Vulhub repository is shown here as
an example. To do this, the entire repository was first downloaded and, in this case,
the corresponding Docker image was started from the corresponding CVE folder of
Drupal using the command docker-compose up -d (see listing 21).

Listing 21: Installing Docker Image from vulhub repo
1 wget https://github.com/vulhub/vulhub/archive/master.zip -O vulhub-master.zip
2 unzip vulhub-master.zip
3 cd vulhub-master
4 cd drupal
5 cd CVE-2018-7602
6 docker compose up -d

To answer the research question of how the efficiency of an LLM for detecting
vulnerabilities in IT networks compares to that of established vulnerability assess-
ment tools, a network scan with Nessus is performed on the same network during
the experiment, as well as a run with the framework.

For this purpose, the accessible version of Nessus, which can be used for up to
12 IP addresses, is installed on the router within the network. The version installed
is 10.7.2. During the installation, care was taken to use the latest version of Nessus
at the time of the experiment in April 2024 to ensure that the internal knowledge
database contains the most up-to-date vulnerability databases. For the Nessus in-
stallation, an SSH connection to the router DMZ was established, and Nessus was
downloaded, installed, and started as a service according to Listing 22. Nessus must
be used via the web portal, which is available by default on port 8834 after installa-
tion. Since the router DMZ is connected to the host network via the network inter-
face eth0, Nessus can be accessed via the IP 192.168.178.164 and the corresponding
port. The actual execution and start of a network scan via Nessus are described in
more detail in the following chapter.

49https://security.appspot.com/vsftpd
50https://www.postgresql.org
51https://www.mysql.com
52https://redis.io

92

Listing 22: Installing Nessus
1 dpkg -i Nessus-10.7.2-debian6_amd64.deb
2 systemctl start nessusd

The Nmap scan used in the execution was designed in advance as in listing 23.
Care was taken to ensure that a particular depth of scan intensity was used to obtain
as much information as possible about a computer. The parameters used for the scan
are listed below:

• nmap: The Network Mapper tool for scanning networks.

• -sV: Version detection - Identifies the versions of running services.

• -script "http-title,http-headers,http-methods,http-enum":
Executes specific NSE scripts:

– http-title: Retrieves the title of the webpage.

– http-headers: Displays the HTTP headers.

– http-methods: Determines the supported HTTP methods.

– http-enum: Performs a simple enumeration of HTTP services.

• -T4: Sets the timing template to "Aggressive" to speed up the scan.

• 192.168.1.12: Target IP address of the scan.

• -p-: Scans all 65535 ports.

Listing 23: nmap scan command
1 nmap -sV --script "http-title,http-headers,http-methods,http-enum" -T4 192.168.1.12 -p-

During the preparation and execution of the experiment, it was discovered that
there is a possibility that software does not directly display its version during a
Nmap scan, even when using an intensive Nmap command. The Nmap scan com-
mand was executed on a test example and detected an open port on port 8112. The
expected software there is TeamCity, but “unknown” is displayed because the web
server running in the Docker image does not provide the information. Also, using
the Nmap script to read out the HTTP headers or the HTTP title was not success-
ful in this case. This can be due to various reasons, such as the main page on the
port containing a redirect that Nmap does not resolve, thus making the required
information unavailable.

To solve this problem, an attempt was made to retrieve the web page content us-
ing curl. curl is a command-line utility for data transfer that utilizes URL syntax.

93

When curl is called with the -L parameter, it follows the HTTP redirect, and the
web page data of the target page can be displayed. At the time of writing, no Nmap
script was available to perform this option. For statically processed network scans,
the website content offers less added value, as information may be present in an
unstructured manner within the HTML source code. These are difficult to recognize
using static analysis, as the result for a query is not available at this point, and the
search is therefore made more difficult, as it is not clear which keywords, such as
the software name, should be searched for.

For processing via LLMs, which master text comprehension through NLP con-
cepts, this information can be used advantageously for this experiment to obtain
missing information in addition to the Nmap scan. In the test in the preliminary
phase, the unambiguous version of the software could thus be defined from the
context. Deeper insights into the results will be explained in the following chapters.

To use curl within the Nmap scan, a custom Nmap script was developed (see
listing 24), which executes a curl -L command for each open port and adds the re-
sult to the Nmap scan result. The script for this was developed in Lua, a lightweight
embedded scripting language used by Nmap for internal scripts. This approach has
proven to be positive in several tests in the preliminary phase.

Listing 24: Nmap script for curl
1 local stdnse = require "stdnse"
2 local shortport = require "shortport"
3
4 description = [[
5 Perform an HTTP GET request on the specified port, following redirects using curl.
6]]
7
8 author = "Oliver Dzaeck"
9 license = "Same as Nmap--See https://nmap.org/book/man-legal.html"

10 categories = {"discovery", "safe"}
11
12 portrule = shortport.http
13
14 action = function(host, port)
15 local path = "/"
16 local ip = host.ip
17 local port_number = port.number
18 local command = "curl -L http://" .. ip .. ":" .. port_number .. path
19
20 -- Execute the curl command and capture the output
21 local handle = io.popen(command)
22 local result = handle:read("*a")
23 handle:close()
24
25 return result
26 end

3.6.3 Experiment Execution

The static analysis is carried out as described with Nessus. Nessus was installed
on the router DMZ to do this, as described in the previous section. The analy-
sis was carried out via the Nessus application interface. To do this, the address

94

http://routermaster:8834 was called up from the host system.

To scan the entire network, the Basic Network Scan was selected as the scan tem-
plate, and the IP addresses of the computers in the subnet were entered as parame-
ters (192.168.1.10, 192.168.1.12, 192.168.1.11). After the network scan was completed,
a report was created. The export should be in CSV format so that the results can be
processed more efficiently. The fields that are crucial for this experiment were se-
lected for export. These include the CVE entry, the CVSS v3.0 Base Score (the CVSS
v3.1 Base Score was not yet available in Nessus at the time this work was written),
the risk, the host, the protocol, the port, the name and the description of the vulnera-
bility. Since Nessus also outputs general information about the scanned ports in the
report, the CSV report file was filtered only for entries that contain a CVE entry and
thus explicitly recognized and assigned a vulnerability. Furthermore, only entries
associated with a valid port were filtered. Thus, all entries containing port 0 were
not included in the analysis and the experiment. When examining the execution,
further vulnerabilities were found in system components. However, these were not
included in the analysis because the focus was on the detection of vulnerable soft-
ware.

The developed framework (AISecNet) was also developed in Python. The code
parts were reused from the other experiments and extended by the corresponding
logic for the framework. The framework comprises several steps that are executed
during a run of the process. The process is shown in Figure 9. The process begins
with an initial scan of the network using a Nmap scan, which is executed as a sub-
process in Python. The Nmap command described above is used, supplemented
by the previously mentioned scripts and the self-developed Nmap script, to execute
the Curl command on the software systems.

The result of this process is a comprehensive Nmap report. Such a report, de-
pending on the number of installed software, contains, on average, over 2000 lines,
as observed, and was not included in this document due to its length. The report
is structured like the Nmap example from section 2.8 and contains the web page
content of the page that was retrieved using Curl.

95

This large unstructured text is then passed to a purely pre-trained GPT-4-Turbo
model within the framework to extract the relevant information from the text. For
this purpose, a prompt (see 25) was written that instructs the model to extract the
relevant information about possible software and versions from the context passed
to it. The model is instructed to return the information in a specific JSON format.
The software and version, as well as the port on which the software is installed, are
to be used for further processing. The tokens used for this are also stored.

Listing 25: Prompt for text summarizing
1
2 "content": (
3 f"The context is an extended namp scan. ToDo:\n"
4 f" - Find software, websites, webtechnologies, script language (like php, jquery, javascript, drupal,

joomla), software libraries etc. and the corresponding version in the given context of the nmap scan.\n"
5 f" - If a version is not directly recognizable, take a closer look at the corresponding output realated to

the software and try to deduce the version from it.\n"
6 f" - Check the nmap scan several times for matches.\n"
7 f"Your answer should be look like in this json example:\n"
8 f"f’{{’Results’: [’\n"
9 f"f’{{’software’: ’jquery.js’, ’port’: 8080, ’version’: ’2.3.4’}}, ’\n"

10 f"f’{{’software’: ’PHP’, ’port’: 22, ’version’: ’3.4’}}’\n"
11 f"f’]}}’. This is the namp scan output:\n{nmapscan}"

The return is processed within the framework using an iterative method in which
each entry in the last result list is passed to another model. The model used is the one
that proved to be the more performant in Experiment 1 (GPT-4-Turbo with Azure
AI Search). The software and version are embedded in a prompt (see Listing 26)
and passed to the model as input. The model is defined to find corresponding CVE
entries and exploits and to generate them in a predefined JSON format as a return.
The output is stored in a result file and recorded for further performance measure-
ment in comparison to Nessus. The tokens used are also stored. The expected result
list, therefore, includes the software and version, as well as the corresponding CVE
record and, if possible, other CVE records that also exist for this software.

96

Listing 26: Prompt for cve identfiy
1
2 "content": (
3 f"""
4 Find possible vulnerabilities in this software.
5 List the corresponding CVE entries in a JSON with description and also exploits if there are any.
6 Do not give me any information about software if the version is not directly affected by the vulnerability.
7
8 Name: {name} Version: {version}
9

10 The output should be in this JSON format:
11 {{
12 "name": "{name} {version}",
13 "software": [
14 {{
15 "cve_entry": {{
16 "number": "CVE-2023-0001",
17 "description": "Description of the vulnerability 1"
18 }}
19 }},
20 {{
21 "cve_entry": {{
22 "number": "CVE-2023-0002",
23 "description": "Description of the vulnerability 2"
24 }}
25 }},
26 {{
27 "cve_entry": {{
28 "number": "CVE-2023-0003",
29 "description": "Description of the vulnerability 3"
30 }}
31 }}
32]
33 }}

Subsequently, an assessment of the system’s level of danger is made on the basis
of Experiment 2. Therefore, the same methods are used to determine the CVSS
score based on a description of a vulnerability. A CVSS vector string is determined
using the GPT-3 model with Azure AI Search. This CVSS vector string is broken
down into individual metrics and then calculated using the calculation explained in
chapter 2.6. The result is also appended to the result file, as are the tokens generated
by the call.

97

Run Nmap scan Æ

GPT-4 Summarizer

Æ

GPT-4 RAG

Nmap scan result

For each entry in summarized result

Æ

GPT-4 RAG
CVSS classifier CVE identifier

send result list

For each entry in identifier list

Send summarized result

AISecNet - Python Framework

IP-Address

AISecNet Result in json

Figure 9: AISecNet Workflow

This process is run for each computer in the subnet. The computer with the
IP 192.168.1.10 (application server) was run first, then the computer with the IP
192.168.1.11 (database server), and finally, the computer with the IP 192.168.1.12
(webserver). The result is a list of results for each IP in the network. A section of a
result list is shown in listing 27. The output parameters in the file are as follows:

software_name This is the name of the software to which the CVE entry pertains.

number This is the unique identifier of the CVE entry.

cve_description This is the description of the vulnerability.

software_version This is the version of the software that is affected by the vulner-
ability.

cvss_vector This is the CVSS vector, which describes the characteristics and im-
pact of the vulnerability.

base_score This is the CVSS’s base score, indicating the severity of the vulnerabil-
ity on a scale from 0 to 10.

severity This is the vulnerability’s severity rating (e.g., low, medium, high, critical),
which is calculated based on the base score.

98

Listing 27: Example for the result output from the AISecNet Framework
1
2 {
3 "number": "CVE-2024-23897",
4 "description": "Jenkins 2.441 and earlier does not disable a feature of its CLI command parser that

replaces an ’@’ character followed by a file path in an argument with the file’s contents, allowing
unauthenticated attackers to read arbitrary files on the Jenkins controller file system.",

5 "software_name": "Jenkins 2.441",
6 "software_version": "2.441",
7 "cvss_vector": "AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N",
8 "base_score": 7.5,
9 "severity": "High"

10 },

After the scan has been completed, the results list contains all the recognized vul-
nerabilities, including the CVSS data, so that they can be compared with the reports
generated by Nessus during the evaluation.

3.6.4 Measurement and Evaluation

The results of the Nessus scan were exported in the form of a CSV file, as described
in the previous chapter. The filtering described above was applied to the data in
order to extract only the relevant data. Care was taken to ensure that only software
was taken into account. Vulnerabilities were also identified that are directly related
to the connection to the system configuration of the scanned computers. For exam-
ple, a vulnerability was found on the system with IP 192.168.1.12, which describes
that IP forwarding is enabled. This aspect is a valuable insight for a comprehensive
analysis of the vulnerabilities of a computer system. However, these vulnerabilities
were filtered out for this work and experiment, as the developed framework is not
designed to identify these vulnerabilities based on the various models, and their in-
clusion would create a less clear picture. However, it would be a valuable addition
to further research approaches and the further development of the framework to
classify the system even better.

In this experiment, the measurement was controlled manually and not automati-
cally by scripts. This makes it possible to look at each individual affected vulnera-
bility in more detail, based on the small data basis, in order to obtain a comparison
between the static detection tools and the detection of the vulnerabilities via the
framework.

The CSV report file from Nessus was compared with the software installed on the
computer and the known vulnerabilities. A further CSV file was then used to define
which software was recognized by Nessus and which was not. After careful exami-
nation, a note was made to indicate whether the vulnerabilities were recognized.

The following procedure was carried out manually for all entries. For clarity, the
following is a description of the procedure.

99

The CSV file is filtered for the IP 192.168.1.12. The first entry found by Nessus is
ElasticSearch on port 9200. The first thing to check is whether Nessus has recognized
the correct version. In the case of ElasticSearch, Nessus was able to identify version
1.6.0 successfully. The result is recorded in a CSV file. The CVE entries found are
then checked for correctness. Nessus has recognized CVE-2015-5377 with a CVSS
v3.0 Base Score of 9.8. The CVE entry was checked manually using the official CVE
database, as it does not match the CVE entry that was stored for the Docker image
for ElasticSearch. The description of the recognized CVE reads: “Elasticsearch be-
fore 1.6.1 allows remote attackers to execute arbitrary code via unspecified vectors
involving the transport protocol. NOTE: ZDI appears to claim that CVE-2015-3253
and CVE-2015-5377 are the same vulnerability”. This implies that the installed ver-
sion 1.6.0 is also affected by the vulnerability. This finding is also recorded in the
results CVE file.

Further testing for this example revealed that Nessus was unable to identify the
installed phpMyAdmin software, even though phpMyAdmin version 4.8.1 was in-
stalled on the computer and included the CVE-2018-12613 vulnerability. This result
is also recorded in the results CSV. This process was then carried out with each soft-
ware program on each computer in the subnet. The structure of the results list is
shown in Table 27 as an example.

Software Version CVE Status
ElasticSearch 1.6.0 CVE-2015-5531 Detected OK

Name CVE De-
tected

NOK

Version detected OK
CVE-2015-5377 OK

phpMyAdmin 4.8.1 CVE-2018-12613 Detected NOK
Name CVE De-
tected

NOK

Version detected NOK

Table 27: CVE Detection Status

The results of the model were manually extracted from the results list described
in the last chapter and compared with the results of Nessus. For this purpose, they
were entered in a comparison file, an Excel sheet, for validation. In the Excel file, a
list of correctly installed software versions and CVE records reported via the Docker
image was first created. The structure is shown in Table 27.

The accuracy of the results was also measured by comparing the recognized CVSS
severity levels, the base score, and the CVSS vector string. A module within the
framework was explicitly used to perform this classification. The vector string, the
base score, and the severity level were also manually compared with the level en-

100

tered in the CVE records.

Another important aspect of the framework’s evaluation is the cost analysis. If
the framework is to be used in a productive environment or similar environment,
this is a decisive factor for usability.

3.6.5 Results Analysis

In this chapter, the results of experiment 3 are considered and discussed. The aim
was to find out whether LLMs can be used in any way to detect vulnerabilities
within IT networks. To confirm these hypotheses and assumptions, experiments
were carried out, and a vulnerability detection framework was developed, as de-
scribed in the last chapter. The results were recorded and prepared for evaluation.
The results were analyzed manually and are evaluated in this chapter for each com-
puter from the simulation environment. The aim was to compare which framework,
Nessus or AiSecNet, was able to detect the most vulnerabilities. Based on these re-
sults, an evaluation of the performance was carried out.

It is important to emphasize that the data basis represents a small data basis with
a total of 22 software products that were installed in the simulation environment.
In order to obtain a deeper insight and more precise results, the experiment would
have to be applied to a more extensive data basis. Due to the difficulties described in
the other chapter with a mass test with, for example, Nessus, the framework had to
be kept small. However, this provides an opportunity to assess the small database
better and to develop a more detailed understanding of the results.

Furthermore, it must be mentioned that the AiSecNet framework, in contrast to
Nessus, had to be carried out several times, as the results varied in part, and the
prompt had to be adapted again and again. It must also be mentioned that only
Nessus was selected for evaluation for this experiment. Due to the complexity of the
other parts of this work, only one assessment tool was used for evaluation. Attempts
were made with Nmap’s internal vulnerability detection tool, but the results were
not satisfactory, so they were not included in the analysis.

In order to get a bigger picture of how LLMs could achieve better results in a
larger context using assessment tools, the experiments should be carried out using
other assessment tools. Nevertheless, the results will provide added value based
on the research details to assess how well LLMs could be used in cybersecurity and
whether they can achieve better results than joint assessment tools.

The results include the described results of the detection of the software compared
to Nessus. Furthermore, the results considered the extent to which the AiSecNet
framework can classify the dangers of software using the CVSS score. The cost

101

analysis for a run per computer using the AiSecNet framework is also included in
the analysis, as it provides a decisive statement on the economic implementation of
a framework under the current conditions of the price models of the models.

Application Server (192.168.1.12) The first analysis of the results was carried out
on a computer loaded with various vulnerable software as an application server in
the simulation environment.

Surprisingly, Nessus was able to detect 3 out of 11 vulnerable software types in-
stalled and correctly assign a vulnerability. Nessus was also able to identify vsftp
and Postfix with the correct version but could not assign a vulnerability, accord-
ing to the report. All other software types, except for the correctly identified ones,
could not be recognized as to which software was running on the scanned port.
This results in a pure detection rate of the software, with or without vulnerability,
of 45.45%. The results from Table 28 show that Nessus was able to correctly de-
tect, identify, and classify the vulnerabilities in Elasticsearch, Oracle Glassfish, and
Apache Tomcat. In this small-scale experiment, Nessus was able to achieve a vul-
nerability detection rate of 27.27% when scanning the application server.

To check which data Nessus should at least be aware of, an extended Nmap
scan was carried out on the application server using the command: nmap
192.168.1.12 -sV -p-. The parameters -sV ensure that the software version is
specifically searched for, and the parameter -p- ensures that all ports are scanned.
It was noticeable that the Jetty web server and OpenSSH should also have been
identified by a purely static search (see listing 28).

Listing 28: Extended nmap scan on 192.168.1.12
1
2 PORT STATE SERVICE VERSION
3 21/tcp open ftp vsftpd 2.3.4
4 22/tcp open ssh OpenSSH 8.9p1 Ubuntu 3ubuntu0.6 (Ubuntu Linux; protocol 2.0)
5 25/tcp open smtp Postfix smtpd
6 4848/tcp open ssl/http Oracle GlassFish 4.1 (Servlet 3.1; JSP 2.3; Java 1.8)
7 8070/tcp open http Apache httpd 2.4.25 ((Debian))
8 8080/tcp open http Jetty 8.1.14.v20131031
9 8088/tcp open http Apache Tomcat 9.0.30

10 8092/tcp open http nginx
11 8112/tcp open unknown
12 9200/tcp open http Elasticsearch REST API 1.6.0 (name: Frederick Slade; cluster: elasticsearch;

Lucene 4.10.4)
13 9300/tcp open elastic search Elasticsearch binary API

As shown in Table 28, AISecNet was able to correctly identify 10 out of 11 installed
software types as vulnerable. Each detected software was correctly identified as
vulnerable software, as well as in the appropriate CVE entry and the correct version.
For the correctly detected software, the installed TeamCity version could be marked
as vulnerable, but the correct CVE entry could not be recognized.

Neither Nessus nor AISecNet were able to identify GitLab correctly.

102

Based on the context recognition of the Nmap scan from listing 28, which was also
part of the AISecNet process in an extended version, AISecNet was able to identify
vsftp, OpenSSH, Oracle GlassFish, Apache HTTPD, Jetty, Apache Tomcat and Elas-
ticsearch. GitLab, TeamCity, and phpMyAdmin were not included in the Nmap
scan result. The contextual information that the model used to obtain information
about the software was extracted from the extension via the curl script. During the
manual review, TeamCity and the version were found in the extracted HTML con-
tent of the curl result obtained, as were phpMyAdmin and the version. GitLab was
named, but it did not provide a direct reference to a software version.

In a direct comparison between the assessment tool and the AISecNet framework,
the framework, which uses models specially adapted to the cybersecurity domain,
was able to deliver a 233% better result in this case than Nessus.

192.168.1.12 Nessus AISecNet
Software Ver. CVE Vul. Det. CVE Det. Ver. Det. Vul. Det. CVE Det. Ver. Det.
ElasticSearch 1.6.0 CVE-2015-5531 OK OK OK OK OK OK
phpMyAdmin 4.8.1 CVE-2018-12613 NOK NOK NOK OK OK OK
Apache httpd 2.4.25 CVE-2017-7659 NOK NOK NOK OK OK OK
Jetty 8.1.14 CVE-2023-40167 NOK NOK NOK OK OK OK
Oracle Glassfish 4.1.0 CVE-2017-1000028 OK OK OK OK OK OK
Apache Tomcat 9.0.39 CVE-2020-1935 OK OK OK OK OK OK
Gitlab 13.10.1 CVE-2021-22205 NOK NOK NOK NOK NOK NOK
vsftp 2.3.4 CVE-2011-2523 NOK NOK OK OK OK OK
TeamCity 2023.05.03 CVE-2023-42793 NOK NOK NOK OK NOK OK
postfix 3.7.11 CVE-2023-51764 NOK NOK OK OK OK OK
OpenSSH 8.9p1 CVE-2023-28531 NOK NOK NOK OK OK OK

Table 28: Vulnerability Detection Comparison

Nessus did not incur any extra costs during execution except for the operation of
computer power.

AISecNet caused costs of 1.53$ through the use of the models and the increased
number of tokens through the use of the context from the RAG. The consumed to-
kens per model are listed by input and output tokens in table 29.

Modell Prompt-Tokens Completion-Tokens Gesamtkosten ($)

GPT-4 Turbo 149,308 5834 1.49
GPT-3.5 Turbo 28595 510 0.02

Total Cost ($): 1.51

Table 29: Tokenanzahl und Kosten für GPT-Modelle

In the area of classifying vulnerabilities via the CVSS metrics, AISecNet was only
able to generate 2 out of a possible 11 vector strings from the CVE description, as
can be seen in Table 30. One vector string was generated for Apache Tomcat, which
was flagged as correct after checking the NVD database. The other vector string
was generated for Oracle Glassfish. The generated vector string for Oracle Glassfish

103

was not correct and was not categorized as "Critical." The vector string stored in
the NVD database has a calculated base score of 7.5 and is therefore assigned to the
severity level "High." Overall, the model performed poorly in this example scenario.
It was striking that the model returned "No match found" for all other weak points.
This would suggest that the model tried to include the vector string via the RAG in
these cases and, when this was not found, did not look at the CVE description. The
result obtained thus contradicts the results obtained in the second experiment. The
same setup and the same prompt were used for this experiment as for experiment
2. No further work will be done on this result in this paper, but a revision of the
prompt could lead to better results.

Product CVSS Vector RAG Status CVSS Score Severity Correctly Classified

Apache HTTP No match found
ElasticSearch No match found
phpMyAdmin No match found
Apache httpd No match found
Jetty No match found
Oracle Glassfish AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:N Not in RAG 9.1 Critical No
Apache Tomcat AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:L/A:N Not in RAG 5.3 Medium Yes
vsftp No match found
TeamCity No match found
postfix No match found
OpenSSH No match found

Table 30: Security ratings of software products from application server 192.168.1.12

Database Server (192.168.1.11) The next step in our thorough assessment was
to examine the database server, which was also installed in the simulation environ-
ment with vulnerable software. Our focus here was purely on database systems,
ensuring a comprehensive evaluation of their vulnerability.

Regrettably, Nessus was unable to identify any of the 3 installed database systems
with the correct version, even after repeated scans. This critical gap in vulnerability
detection is evident in the fact that although the database systems were recognized
in the Nessus report, the corresponding version of the database system was not. The
listing 29 shows the Nmap scan that was also carried out for the computer. It can
be seen that MySQL was not recognized with a version number, but a version was
already available directly in the Nmap scan for the PostgreSQL DB and Redis. This
results in a 100

Listing 29: Extended nmap scan on 192.168.1.11
1
2 PORT STATE SERVICE VERSION
3 22/tcp open ssh OpenSSH 8.9p1 Ubuntu 3ubuntu0.6 (Ubuntu Linux; protocol 2.0)
4 3308/tcp open mysql MySQL
5 5432/tcp open postgresql PostgreSQL DB 10.2 - 10.5
6 6379/tcp open redis Redis key-value store 5.0.7
7 Service Info: OS: Linux; CPE: cpe:/o:linux:linux_kernel

104

In comparison, AISecNet was able to identify all three database systems and
OpenSSH with a 100% detection rate, both based on the appropriate CVE records
and on the version. During the manual review, it was recognized that the MySQL
version was available via the HTML content, and therefore, it is assumed that the
framework was able to obtain the version from the context. This was also the case
for the other two database systems, as these were also directly available in the Nmap
result context.

The comparison of the two systems is listed in table 31. As already described, it
can be seen that Nessus was unable to detect any of the four vulnerabilities. AISec-
Net, on the other hand, was able to identify all vulnerabilities perfectly.

192.168.1.11 Nessus AISecNet
Software Ver. CVE Vul. Det. CVE Det. Ver. Det. Vul. Det. CVE Det. Ver. Det.
PostgreSQL 10.5 CVE-2019-9193 NOK NOK NOK OK OK OK
MySQL 5.5.23 CVE-2012-2122 NOK NOK NOK OK OK OK
Redis 5.0.7 CVE-2022-0543 NOK NOK NOK OK OK OK
OpenSSH 8.9p1 CVE-2023-28531 NOK NOK NOK OK OK OK

Table 31: Vulnerability Detection Comparison for 192.168.1.11

As with the other servers, the Nessus scan is free of charge, except for the re-
sources used to run Nessus. AiSecNet incurred costs of 0.34$ for a single run. The
individual cost breakdowns, broken down by the models used, are listed in Table 32.

Modell Anzahl der Prompt-Tokens Anzahl der Completion-Tokens Gesamtkosten ($)

GPT-4 Turbo 29802 1088 0.33
GPT-3.5 Turbo 11604 144 0.012

Total Cost ($): 0.34

Table 32: Tokenanzahl und Kosten für GPT-Modelle

When considering the classification, AISecNet was able to correctly classify 75%
of all vulnerabilities within the CVSS scoring system. It is noticeable that in this
experiment, the CVSS vector string for OpenSSH was correctly classified using the
CVE description. This was not the case for the application server. The "No match
found" result also occurred when classifying MySQL. This leads to the assump-
tion that, compared to experiment 1, the success rate is high on a more significant
amount of data but that the model works very inconsistently in a framework that
was not measured in this study. The classification of the recognized vulnerabilities
according to a CVE description gives excellent results; all generated vector strings
were identical to the vector strings stored in the NVD database, except for minor
differences. For example, the vector string for the PostgreSQL vulnerability was
"CVSS:3.0/AV:N/AC:L/PR:H/UI:N/S:U/C:H/I:H/A:H" with a base score of 7.2
and a severity level of HIGH according to the NVD database. In this case, the
model had rated the vector metric for privileges requirements as LOW, while the
actual NVD rating for privileges requirements was HIGH.

105

Product CVSS Vector RAG Status CVSS Score Severity Correctly Classified

PostgreSQL AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H Not in RAG 8.8 High Yes

MySQL No match found

Redis AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H Not in RAG 9.8 Critical Yes

OpenSSH AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H Not in RAG 9.8 Critical Yes

Table 33: Security ratings of software products from web server 192.168.1.11

Web Server (192.168.1.10) The final analysis of the results is carried out on the
computer that was loaded as a web server in the simulation environment with var-
ious vulnerable software types.

Nessus was able to detect 3 out of 8 installed vulnerable software types and cor-
rectly assign a vulnerability. It was able to correctly identify PHP, Apache HTTP,
and an outdated version of jQuery as vulnerable. Nessus was also able to iden-
tify Grafana and the installed version but not the vulnerability associated with the
Grafana version. Nessus did not identify any other web applications (see table 34).
This corresponds to a detection rate of vulnerable software of 37.5%.

192.168.1.10 Nessus AISecNet
Software Ver. CVE Vul. Det. CVE Det. Ver. Det. Vul. Det. CVE Det. Ver. Det.
PHP 7.0.28 CVE-2018-10546 OK OK OK OK OK OK
Apache HTTP 2.4.54 CVE-2006-20001 OK OK OK OK OK OK
Grafana 8.2.6 CVE-2023-22527 NOK NOK OK OK OK OK
Drupal 7.57 CVE-2018-7602 NOK NOK NOK NOK NOK NOK
Jenkins 2.441 CVE-2024-23897 NOK NOK NOK OK OK OK
Joomla 4.2.7 CVE-2023-23752 NOK NOK NOK OK OK OK
Confluence 8.5.3 CVE-2023-22527 NOK NOK NOK NOK NOK NOK
jquery 1.4.4 CVE-2020-11022 OK OK OK OK OK OK

Table 34: Vulnerability Detection Comparison

To check the results, an extended Nmap scan was carried out on this server with
the IP 192.168.1.10. The result is shown in listing 30. The scan result shows that
none of the installed software is mentioned explicitly in the scan result for the web
server. Therefore, in this case, it can only be assumed that this information had to be
extracted for the AiSecNet framework by using various Nmap scripts and the Curl
script.

The scan analyses that Nessus performs show that the detection of software is
challenging here. The extended Nmap scan result shows that without the use of
scripts, the software listed by the Docker images with installed web servers is not
directly identified by name. No further information is displayed for port 3000.
Grafana is installed on this port. Nessus successfully identified Grafana there using
the internal algorithms and analyses used by Nessus and assigned the appropriate
version, but Nessus did not recognize the vulnerability that existed there.

106

Listing 30: Extended nmap scan on 192.168.1.10
1
2 PORT STATE SERVICE VERSION
3 22/tcp open ssh OpenSSH 8.9p1 Ubuntu 3ubuntu0.6 (Ubuntu Linux; protocol 2.0)
4 80/tcp open http Apache httpd 2.4.52 ((Ubuntu))
5 3000/tcp open ppp?
6 8080/tcp open http Apache httpd 2.4.54 ((Debian))
7 8081/tcp open http Apache httpd 2.4.10 ((Debian))
8 8084/tcp open http Apache httpd 2.4.52
9 8088/tcp open http nginx 1.14.2

10 8089/tcp open http nginx 1.14.2

In this experiment, AISecNet correctly identified and classified 6 out of 8 vulnera-
ble software types on the web server. This corresponds to a detection rate of 75% for
vulnerable software. The two software types that were not recognized, Drupal and
Confluence, were correctly recognized by AISecNet, but no correct version could be
assigned. The pure detection rate of the installed software is 100%. AISecNet did
recognize the major release number 7, but not the corresponding sub-version.

In a performance comparison for the detection of vulnerabilities, AiSecNet
showed a measurably better performance.

Nessus did not incur any additional costs during execution except for the opera-
tion of the computer performance.

AISecNet caused costs of 1.53$ by using the models and the increased number of
tokens by using the context from the tag. The tokens used per model are listed in
Table 35 according to input and output tokens.

Model Number of Prompt Tokens Number of Completion Tokens Total Cost ($)

GPT-4 Turbo 126707 4938 1.41
GPT-3.5 Turbo 75034 1235 0.12

Total Cost ($): 1.53

Table 35: Token counts and costs for GPT models based on the measurement of the
web server 192.168.1.10.

When classifying the vulnerabilities according to the CVSS scoring system, AiSec-
Net created a CVSS vector string for all recognized vulnerabilities. The model was
able to generate vector strings for Grafana, Jenkins, PHP, Joomla, and Apache HTTP.
A closer examination of the CVSS vector strings known to the model revealed that
a classification of the CVSS vector strings was available in the vector database for
Grafana, as well as for the jQuery vulnerability and the PHP vulnerability. It can be
assumed that the information was obtained directly from the RAG. The model gen-
erated the other CVSS vector strings by interpreting the CVE description. Despite
the presence of the vector string for the PHP vulnerability, it was not correctly clas-
sified by the framework. The comparison was carried out using the NVD database.
This contained a CVSS vector string for these vulnerabilities. The CVE database
used by MITRE did not contain this score classification, which can be explained by

107

the lack of correspondence between the various vulnerability databases from Chap-
ter 2.6. In the comparison, the generated vector string was compared with the vector
string on the NVD database for the vulnerability. A "No match found" result, as in
the classification of the vulnerabilities in the application server and database server,
did not occur when checking the web server.

Product CVSS Vector RAG Status CVSS Score Severity Correctly Classified

Apache HTTP AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H Not in RAG 9.8 Critical No
Grafana AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:N/A:N Is in RAG 4.3 Medium Yes
Jenkins AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H Not in RAG 9.8 Critical Yes
Joomla AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N Not in RAG 5.3 Medium Yes
jquery AV:N/AC:H/PR:N/UI:R/S:C/C:H/I:L/A:N Is in RAG 6.9 Medium Yes
PHP AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H Is in RAG 9.8 Critical No

Table 36: Security ratings of software products from web server 192.168.1.10

Overall, AISecNet achieved a higher success rate for the web server than Nessus,
with AISecNet detecting 6 out of 8 vulnerabilities compared to Nessus’s 3 out of
8. In terms of cost, the AISecNet framework is costly, as a single scan costs 1.53$,
in contrast to the unrestricted use of Nessus. In the classification of vulnerabilities,
AISecNet performed in the middle range. Of a total of 6 vulnerabilities, four were
correctly identified, and two were incorrectly identified, resulting in a detection rate
of 66.67%.

Summary In this experiment, the performance and efficiency of two security tools
were examined: Nessus and AISecNet. Nessus is an established vulnerability de-
tection tool, while AISecNet is a framework that was developed on the basis of
other experiments to investigate various software and server configurations in a
simulated environment. The approaches from Experiment 1 and Experiment 2 were
taken up, and the results of both experiments regarding the performance of the best
model variants were used as a basis for developing the AISecNet framework.

The analysis focused on the aspects of detection rates, the cost of classification
accuracy, and the overall performance in identifying and assessing vulnerabilities in
the server setup. The investigation aimed to conduct an evaluation and to discuss
and answer the research questions. The strengths and weaknesses of both tools
were measured and compared. An evaluation of the respective results per server
was carried out in the corresponding sections of the servers.

During the experiment, various hypotheses were formulated. These were in-
tended to answer the question of whether models with an extensive knowledge base
of vulnerability data can interpret scan reports from network scans and identify and
classify affected software versions. The study also investigated whether powerful
models can identify vulnerabilities in network scans, assign them to existing threats,
and determine the level of risk. It also investigated whether models that have been

108

specially trained in the field of cybersecurity achieve similar or better results than
conventional evaluation tools.

The first hypothesis was that models with an extensive knowledge base of vulner-
ability data could interpret scan reports from network scans and identify and clas-
sify affected software versions. This hypothesis was confirmed. The results show
that AISecNet has a high detection rate in identifying vulnerabilities in software
from the extended Nmap scan reports based on the text context. The results con-
firmed a high detection rate of 86.96% for the various servers.

The second hypothesis was that powerful models can identify vulnerabilities in
network scans, assign them to existing threats, and determine the level of risk.
This hypothesis was already addressed in Experiment 2, where good results were
achieved with the GPT-3 model using a knowledge database via the RAG pattern.
In this experiment, the same approach was used, but the developed process was
now part of the entire AISecNet framework. The results varied greatly depending
on the server: a classification rate of 75% was achieved for the database server, while
the detection rate for the application server was only about 9.09%. Overall, AiSec-
Net was able to correctly classify 38.1% of all vulnerabilities to a CVSS score. The
hypothesis was thus partially confirmed.

The third hypothesis was that models that have been specifically trained in the
field of cybersecurity can achieve similar or better results than conventional evalua-
tion tools. The Nessus vulnerability tool was included in this analysis. The investi-
gation was carried out in a simulation environment in a direct comparison between
the AISecNet framework and Nessus. The result was that this hypothesis could be
confirmed. In a direct comparison, the AISecNet Framework showed a significantly
higher detection rate of 86.96% compared to 26.09% for Nessus.

Although the results generally support the hypotheses, there is room for improve-
ment, especially in the consistency of the classification of the level of vulnerability.
At a total cost of 3.37 $, this is a crucial factor for the practical feasibility of vul-
nerability analysis using this framework. During the creation of this work, Ope-
nAI released another model, GPT-4 Omni, which costs only 50% of the current cost
while providing the same performance as the GPT-4 Turbo model. If the AISecNet
framework were to be iterated over a more extensive network in its current form, it
would be necessary to examine to what extent the costs justify the benefits. The Nes-
sus version used in this experiment was free of charge and limited to 12 computers.
Currently, the cheapest annual license for Nessus costs 4,836 €. This allows unlim-
ited scans. It should be mentioned that this experiment focused exclusively on the
detection of installed software components. Nessus also offers other security mech-
anisms, such as vulnerability detection at the system and protocol level, as well as
the creation of advanced reports and a user-friendly administration interface.

109

Nessus AISecNet

0

50

100

26.09

86.96

D
et

ec
ti

on
R

at
e

(%
)

Figure 10: Comparison of detection rates between Nessus and AISecNet

4 Discussion

In this master’s thesis, LLMs such as GPT-4 and GPT-3, as well as Mistral Large,
were compared with traditional heuristic tools for vulnerability detection. The mo-
tivation for this work resulted from the analysis of existing literature and studies
that support AI models in cybersecurity. These studies are relatively new, as this
field has only been intensively studied since the emergence of LLMs. The changes
within the current research are enormous, and during this elaboration, various con-
texts and new models have emerged and been published (e.g., GPT-4 Omni). In
addition, during the preparation of this work, studies have appeared, such as the
research by Fang et al. [11], which deals with the compromise of websites by mod-
els.

To date, there are no established works of literature that address vulnerability de-
tection through LLMs. This work was, therefore, primarily based on research and
studies by other scientists. Various approaches were used in the analysis that link
LLMs to the context of cybersecurity. Various sub-areas of cybersecurity were con-
sidered, such as the research by Pearce et al. [46], which deals with the identification
and repair of software vulnerabilities. This research provides important insights
into how models could be used to eliminate vulnerabilities in vulnerable code.

Other research, such as that of Aghaei et al. [1] and Shahid and Debar [52], fo-
cused specifically on the area of CVE vulnerabilities, which has provided this work
with essential insights for further research, especially in terms of classifying vulner-
abilities according to the CVSS scoring system, where the CVSS vector string was
created by analyzing the CVE description. Other research, such as MalBERT [47],
examines AI-assisted Android software for vulnerabilities and code that could in-
dicate malware. Comparison with the existing literature shows that the results are
consistent with previous studies that have examined the effectiveness of LLMs in

110

various application areas of IT security. This work extends these findings to the area
of vulnerability detection. It shows that LLMs are not only able to identify known
vulnerabilities but also to classify unknown vulnerabilities (within the scope of the
CVE description, even if the actual vulnerability is not known).

According to Nourmohammadzadeh et al., [44], LLMs are mainly used in the
area of detection in various use cases. Most of the studies in this area appeared in
2023, which underlines the timeliness of the topic addressed in this thesis and the
importance of research in the field of cybersecurity in the context of AI, especially
LLMs. Many of these research projects have achieved very positive results. The
noticeable gap here should be addressed in this work. A direct vulnerability check of
installed software was not present in previous research and could not be identified
during the research for this work. There are research papers such as those by Fang
et al. [11], Aghaei et al. [1], and Shahid and Debar [52] that overlap with this work.
The results of this work thus cover an area that still needs to be addressed in the
context of these research papers.

The developed AISecNet framework would also be classified in the areas of de-
tection classified by CSF (see Chapter 2.2) like most of the frameworks analyzed by
Nourmohammadzadeh et al. [44].

4.1 Interpretation of the results

At the beginning of this work, several research questions were formulated. This
work aimed to answer these questions. To answer the research questions, experi-
ments, and literature research had to be carried out. The findings obtained from this
provide a comprehensive overview of the models’ performance and allow conclu-
sions to be drawn as to the extent to which LLMs could be used in cybersecurity to
improve detection rates and thus ensure more accurate and precise monitoring of
critical infrastructures such as corporate networks.

First, the research question RQ1 is considered: "How does the efficiency of an
LLM in detecting vulnerabilities in IT networks compare to established vulnerabil-
ity assessment tools?"

To answer this question, we investigated how vulnerabilities in a network can be
measured and how these results can be integrated into a specially developed solu-
tion so that models can work on this data. In this work, the use of Nmap scans was
discussed (see chapter 2.8) in order to use them in a comparative experiment and to
compare the performance of an LLM with established assessment tools. Nessus was
chosen as the comparison tool.

To achieve the most accurate results possible, the first two experiments evalu-

111

ated how models can detect vulnerabilities with and without RAG patterns. These
results were used to conduct Experiment 3 (see Chapter 3.6.1), which served to an-
swer RQ1.

The results of this experiment show that LLMs can be used to perform vulner-
ability analyses. The results have shown that LLMs are not only able to identify
vulnerabilities in IT networks but can also outperform established evaluation tools
in a high percentage of performance. In a direct comparison from Experiment 3, the
developed AiSecNet framework, which works with multiple layers of LLM models,
was able to achieve a detection rate of 86.96%. In contrast, Nessus only achieved a
detection rate of 26.09%. The implications of these results are manifold. In practical
terms, this means that LLMs can be integrated into existing security infrastructures
to improve detection and response times to security incidents. Theoretically, the
results provide new insights into the application of machine learning and artificial
intelligence in cybersecurity.

However, it must be taken into account that Experiment 3 was carried out on a
small database of 22 installed software programs, which limits the validity of the re-
sults. It remains to be seen whether Nessus would have achieved better results than
in the small experimental framework with a more significant number of comput-
ers to be scanned or an entire infrastructure. Based on the other experiments con-
ducted, the AiSecNet framework would have achieved similarly good results with
a more extensive data set. This assumption is supported by the results in Experi-
ment 1, which showed that the specially trained GPT-4 Turbo model with Azure AI
Search as an RAG approach was able to deliver very good to almost perfect metrics.
The precision was 96.1%, and the accuracy was 81.9% (see chapter 3.3). Answer-
ing the research question leads to the conclusion that LLMs trained specifically for
vulnerabilities could provide significant added value in cybersecurity when used
productively.

Static analysis tools such as Nessus offer many other methods in addition to the
scanning option used, which enable more targeted security scans. Among other
things, Nessus can perform system-level scans or generate reports that contain valu-
able information and descriptions of the vulnerabilities detected. These capabilities
were not examined in this work in relation to the implementation of AI-based meth-
ods in the context of LLM. Nevertheless, there are already recognizable research
fields that leave open how user-friendly reports can be created and what counter-
measures could be taken.

However, it should be noted that the LLM only recognizes vulnerabilities that
have already been described in the CVE database. Therefore, the RAG approach
must always be kept up to date in order to identify new vulnerabilities correctly.
New vulnerabilities unknown to the LLM could not be recognized even with this
support. To do so, combinations of several process steps would have to be carried

112

out, such as examining the source code for potential vulnerabilities based on the
research of Nourmohammadzadeh et al. [44].

The models that were not pre-trained were not able to deliver the best perfor-
mance in recognizing vulnerabilities. The research showed that the pure GPT-4
model was only accurate to a small extent of 8.3% in assigning software to an ex-
isting vulnerability. In particular, the contextual understanding of text that the lan-
guage models guarantee through their given architecture has been shown to be able
to identify vulnerabilities to a high degree. This was demonstrated by the pure ex-
amination of the Nmap scan, and the extension of the Nmap scan results through
the implementation of extended scripts. It was initially somewhat surprising that
Nmap does not provide a script that executes a Curl command. The assumption
here is that there has yet to be any added value so far in displaying the content of
the website installed on the port for a scan. However, using the NLP capabilities
of LLMs gives a decisive advantage for this experiment in clearly identifying soft-
ware and version. The accuracy of whether a statement is correct, whether software
and version are really affected, was also increased in the experiments, as the as-
sumptions were confirmed that LLMs also correctly assign software and version if
the version is not exactly as described in the vulnerability description of CVE. For
example, if a version of a software is in a particular range.

In summary, research question RQ1’s effectiveness and efficiency not only ap-
proach but also greatly exceed those of established vulnerability assessment tools.

The second research question that was posed was: "How do various LLMs com-
pare in terms of efficiency for detecting vulnerabilities in IT networks, as measured
by key performance metrics such as Precision, Recall, F1-Score, and False Posi-
tive/Negative Rates."

To this end, a diverse selection of different standard pre-trained models was se-
lected in an experiment in order to compare them with each other. The selection of
models included the models developed by OpenAI, GPT-3, and GPT-4. Other mod-
els were evaluated, as described in this paper, and to introduce diversity, the Mistral
Large model was also added to the consideration. The first important finding was
that models in a pre-trained state were able to identify known vulnerabilities, but
only to a minimal extent.

In contrast, models that were specifically trained for the domain of cybersecu-
rity, in particular for vulnerabilities in software, were compared. In Experiment 1
(see 3.3), it was evaluated how a pre-trained LLM can perform with the enrichment
of large knowledge databases that were previously unknown to the model (or only
to a small extent), in contrast to purely pre-trained models. This experiment had an
enormous impact on the further implementation of this work due to the in-depth
preliminary analysis and research on the topic of RAG patterns (see chapter 2.1.1).

113

The possibility of using a pre-trained model and enabling it to access all existing
CVE vulnerabilities via an RAG pattern proved to be the critical factor in achieving
a very high performance in the identification of vulnerabilities in Experiment 1. The
combination of this knowledge database and the contextual text understanding that
the models bring with them had a decisive impact on the positive results of this
work. This was clearly demonstrated in the comparisons based on key performance
metrics such as recall, precision, F1 score, and false positive/negative rates.

In particular, the RAG pattern using the Microsoft Azure solution, especially
Azure AI Search, was able to offer significant added value compared to the on-
premise solution from LlamaIndex. The focus was on evaluating these models and
RAG approaches. The results based on the metrics show that the GPT-4 Turbo
model, which used Azure AI Search, performed best. This was followed by GPT-3
with the same RAG approach. All other models without the RAG approach per-
formed poorly and were not measurable in the context of cybersecurity. The reasons
for this were described in detail in the experiment. One of the main reasons for this
was that a general pre-trained model was not explicitly trained for the field of cyber-
security but instead contained a large knowledge corpus from other domains, and
CVE entries only make up a small part of the overall knowledge. The interpretation
of this is that it is not the trained knowledge base that matters but rather how the
model can be trained for a specific domain. This allows an entirely different per-
spective on this work and the context to flow. The real advantage that the models
provided was the NLP understanding of how to extract parameters from texts and
interpret them correctly and intelligently.

One gap and open question that arises is how other models and other RAG ap-
proaches from other providers would perform. This experiment was focused on
Microsoft technologies due to the preliminary phase of this research and the avail-
able resources. Other providers, which were mentioned by name in chapter 2.1.1,
would also have to be evaluated for further research approaches. However, it can be
assumed that the RAG patterns offered by Google, AWS, and others would achieve
similar results since the RAG pattern is basically consistently implemented in the
same way. Google and AWS also offer hybrid and semantic searches on the index.

In summary, Experiment 1 was crucial for the further development and imple-
mentation of the subsequent experiments. Therefore, the RQ2 can be answered by
saying that, as shown in Table 14, the GPT-4 Turbo model, which was the most
up-to-date at the time the experiment was carried out, was able to achieve the best
results with 124 TP values when extended by an RAG (see Table 15).

Furthermore, additional questions were asked at the beginning of this work that
were to be answered in the course of this work by the results obtained:

114

What are the limitations of using LLMs for this purpose compared to traditional
vulnerability assessment tools?

During this work, it was found that LLMs are very dependent on the quality and
completeness of the training data. If the training data is complete and correct, the
performance of the model is positively affected. If a model does not have the neces-
sary knowledge base, it may hallucinate and give incorrect answers. Especially in a
sector like cybersecurity, these points must be considered critically, as misjudgments
in sensitive areas can have critical consequences (see chapter 2.1.1).

Furthermore, during the research for this thesis, it became apparent that there
needs to be more standardization of vulnerabilities. LLMs may have difficulties in
developing a uniform CVE database. It must be said that this thesis is based on the
CVE database from MITRE (see chapter 2.5). It was only during the work that it
became apparent that the NVD database has the same up-to-date status as the CVE
database from MITRE (it is the source of the CVE records). In contrast to the CVE
database from MITRE, the NVD database is better maintained and more up-to-date
in the areas of CWE, CVSS, and exploit references.

Another major factor in considering models’ limitations in this area is the costs
incurred. For example, a cost analysis was carried out in the chapters of the experi-
ments, which, using the current AISecNet framework, resulted in costs of 3.37$. In
contrast, Nessus was free of charge (if the computer resources were not taken into
account).

Can the use of LLMs in conjunction with traditional tools yield better results
than using either individually?

Yes, the combination of traditional tools can yield better results with the integra-
tion of LLMs. During the research for this thesis, a deeper insight into the func-
tioning of traditional tools, in this case Nessus, could be determined. Nessus and
other tools are well-established, widely used, and already known to users. They
have a large community and an extensive range of additional plugins. According to
Nessus (footnote https://www.tenable.com/blog/introducing-nessus-expert-now-
built-for-the-modern-attack-surface), Nessus is the leader in the field of assessment
tools and offers Nessus in all installation forms and on various operating systems.
It can be assumed that the large providers, in particular, are currently investing in
the integration of LLMs themselves since, as can be seen in this paper, the perfor-
mance with the text context understanding of LLMs offers a high added value in the
quality of the already very well developed assessment tools.

What kind of customization is required to improve the efficiency of an LLM in
vulnerability detection?

It was clearly shown in this thesis that the use of a separate knowledge base in

115

the form of an RAG offers excellent added value. This was described in the last
chapters and the chapters of the experiments (see chapters 3.3, 3.5 and 3.6). What
was not considered in this thesis is the fine-tuning of models in this domain. Within
this work, attempts were made to fine-tune the models to the field of cybersecurity.
The integration was planned for Experiment 2 in order to classify vulnerabilities
based on the description. However, the procedure and the experiments were not
documented; the results are recorded in Table 24.

The experimental setup was based on two different approaches. On the one hand,
the GPT-3 model (GPT-4 was not yet fine-tunable as of May 2024) was trained with a
more significant number of pre-defined prompts about CVE vulnerabilities and the
associated CVSS metrics. The other approach was carried out in line with Aghaei
et al. [1] research. In this approach, a separate model was trained for each metric
of a CVSS vector string. In the experiment, the vulnerability description was then
iterated through each model, and a statement was generated for each vector metric.

The results were not convincing, so the implementation focused specifically on
the RAG pattern. Due to the workload for this work, which arose for the further
topic of fine-tuning, this area has not been further investigated. Therefore, it does
not provide any usable results and thus offers no added value for research. Overall,
further in-depth research in this area would be worthwhile.

Can LLMs assess the severity of a vulnerability?

The results of Experiment 2 (see Chapter 3.5) show that the use of LLMs to de-
tect the severity of a vulnerability can be used well. The results obtained in this
experiment show a high level of accuracy in the interpretation of textual descrip-
tions of vulnerabilities. This area of vulnerability detection in the support of lan-
guage models has, as already mentioned above, also been considered in the interest
of other research. In this work, as well as in the work of Aghaei et al. [1], and in
the work of Shahid and Debar [52], various approaches described in the chapters
of Experiment 2 were carried out. Both the CVSS-BERT, CVEDrill, and the imple-
mentation via the GPT-3 model with the RAG approach via Azure AI Search were
able to achieve an accuracy of over 80% in most of the CVSS metrics. These findings
from the other research bring significant added value to cybersecurity. According
to Aghaei et al. [1], it is assumed that CVEDrill (or a generalized similar approach)
will play a central role in improving proactive cybersecurity measures, strengthen-
ing digital landscapes against emerging threats and contributing to standardization
and general practices. This work supports this thesis.

116

4.2 Practical implications and applications

The use of LLMs can significantly improve the detection rate of vulnerabilities in
IT networks. This work has shown that LLMs can process contextual and semantic
information, enabling detailed analysis. AISecNet was able to create more specific
vulnerabilities than Nessus. This leads to a more comprehensive security check
and reduces the risk of undetected threats. In practice, the use of a framework like
AISecNet could be extended to take over possible routine tasks such as regular risk
reports and documentation.

In this work, the framework was built on the results of the various experiments
extracted by the methods developed for the experiments and integrated into the
AISecNet framework. Using the framework for a scan costs an average of 1.50$.
The framework developed here is based entirely on Python and can only be started
via the console; it has no user interface. The AISecNet framework was more of a
proof of concept (PoC) that carried out a feasibility study in this work to answer
specific hypotheses and research questions. Therefore, the context of the framework
was tailored to a sub-area.

When comparing the costs of Nessus and AISecNet, only the license fees were
compared with the costs incurred by the corresponding models. If an AI-based
framework were to be used productively, it could cover additional areas that Nessus
already covers. In this case, the final cost-benefit analysis would have to take into
account additional factors, such as development costs and maintenance costs, that a
development project would require to implement a productively usable framework.

As described, the GPT-4 Omni model was released during the development of this
work, which only costs 50% of the actual cost. For the cost calculation, this would
have already caused an average price of 0.75$ per scan. The focus of this experiment
was mainly on the pre-trained models from OpenAI. Mistral Large was included in
the analysis but was only able to achieve a low accuracy of 34%. This work should
have covered how the model could be measured. If Mistral Large had also had the
advantage of a knowledge base in the form of an RAG, it would have been possi-
ble to achieve a higher accuracy. Therefore, the research part remains open as to
whether there may be other models that are cheaper than the OpenAI models and
could also achieve good performance. The approach of fine-tuning was also not di-
rectly considered in this work. It was mentioned that partial developments in this
area had taken place for this work, but that due to the complexity and the results
achieved for this, they needed to be better to be able to work on them further. How-
ever, this only refers to the part within this research, and more profound research
for the context of cybersecurity with the inclusion of fine-tuning could promise more
successful results.

Since the major established assessment tools are already well developed in the

117

field of cybersecurity, the inclusion of LLMs would be essential for future develop-
ments and will help to define a standard.

A productive expansion of the AISecNet framework or a similar framework is
also conceivable for productive use. For example, this could involve working with
a local instance of a RAG, which would require increased computing resources, as
well as the most up-to-date possible updates of CVE records and other important
information in the field of cybersecurity, such as the ExploitDB and scientific papers
on specific areas and other sources that could contribute to vulnerability analysis.

In the course of the research, a Proof of Concept (PoC) was set up to extend the
AISecNet framework via an interface. A rough architecture was developed to test
the extent to which productive use would be possible. The architecture includes a
Docker image to be installed within the network, which contains two applications.
On the one hand, a frontend component was developed that accepts an IP address
via an input field for the PoC and sends it to a Python Flask backend. Both compo-
nents were packaged in a Docker container and can be installed on an independent
operating system. The Python script receives the IP from the front end, performs a
Nmap scan against the target, and sends the Nmap scan report to a .Net web API
in the Azure cloud. There, the API call is processed by the Nmap scan against the
GPT-4 Omni model. The result is then sent back to the client and displayed on an
output page.

The description of the PoC is not detailed here, as it is not part of this work.
However, it should show that it would be feasible to implement the process that
was carried out in the various experiments in this work in a productive scenario.
The feasibility of executing this in a user-controlled manner via a user interface with
a backend that is not installed locally on the client but is operated in the cloud offers
the advantage that users could be provided with a daily updated RAG. Possible
monetization could also be offered as pay-as-you-go models, where billing could be
based on use or in a subscription model.

The interface, which is run locally as a Docker image, could be expanded accord-
ingly to enable a user-friendly interface like Nessus. The search algorithms could
then go beyond pure Nmap scans and, for example, also use other tools such as
Nikto53, a web server scanner that detects many potentially dangerous files and
CGIs, as well as outdated software versions and other security problems, to obtain
detailed information about the installed web tools or to perform advanced scans
at the operating system level. The results could then be interpreted using a corre-
sponding model, thus generating detailed damage reports in text form, categorizing
the network according to risks, and obtaining further creative, text-context-related
information about the risk status of the corresponding systems. Approaches that
have already been explored in the research of Fang et al. [11] could also be used to
53https://cirt.net/Nikto2

118

develop one’s exploits based on the error description in order to check whether the
affected system is really affected by the vulnerability. Of course, ethical consider-
ations would have to be taken into account since such frameworks could not only
be used in the context of the positive aspects of cybersecurity but also, on the other
hand, to use these tools to gain unauthorized access to systems.

119

References

[1] Ehsan Aghaei et al. „Automated CVE Analysis for Threat Prioritization and
Impact Prediction“. In: arXiv preprint arXiv:2309.03040 (Sept. 2023). arXiv:
2309.03040 [cs.CR].

[2] Kimia Ameri et al. „CyBERT: Cybersecurity Claim Classification by Fine-
Tuning the BERT Language Model“. In: Journal of Cybersecurity and Privacy
(2021). DOI: 10.3390/jcp1040031. URL: https://doi.org/10.3390/
jcp1040031.

[3] Pierre Baldi1 et al. „Assessing the accuracy of prediction algorithmsfor classi-
fication: an overview“. In: https://www.researchgate.net/ (2000).

[4] Markus Bayer et al. „CySecBERT: A Domain-Adapted Language Model for
the Cybersecurity Domain“. In: Proceedings of the Conference Acronym ’XX.
New York, NY, USA: ACM, 2022. URL: https://doi.org/10.1145/
nnnnnnn.nnnnnnn.

[5] Martin Berglund and Brink van der Merwe. „Formalizing BPE Tokeniza-
tion“. In: Electronic Proceedings in Theoretical Computer Science (EPTCS) (2023).
arXiv:2309.08715 [cs.FL]. URL: https://doi.org/10.48550/arXiv.
2309.08715.

[6] Nitin Bhatia and Vandana. „Survey of Nearest Neighbor Techniques“. In: In-
ternational Journal of Computer Science and Information Security 8.2 (2010). Cor-
responding author: Nitin Bhatia, n/a.

[7] Tom B. Brown et al. „Language Models are Few-Shot Learners“. In:
arXiv:2005.14165 (2020). Available at https://arxiv.org/abs/2005.
14165.

[8] Steven M. Christey David E. Mann. „Towards a Common Enumeration of
Vulnerabilities“. In: (1999). URL: https://www.cve.org/Resources/
General/Towards-a-Common-Enumeration-of-Vulnerabilities.
pdf.

[9] eSecurityPlanet. History of Computer Viruses and Malware . What Was Their Im-
pact? 2023. URL: https://www.esecurityplanet.com.

[10] Europol. The Impact of Large Language Models on Law Enforcement. 2023. URL:
https://www.europol.europa.eu/cms/sites/default/files/
documents/Tech%20Watch%20Flash%20-%20The%20Impact%20of%
20Large%20Language%20Models%20on%20Law%20Enforcement.pdf.

[11] Richard Fang et al. LLM Agents can Autonomously Hack Websites. License:
arXiv.org perpetual non-exclusive license. Feb. 2024. arXiv: 2402.06664v1
[cs.CR]. URL: https://arxiv.org/abs/2402.06664v1.

[12] Zhangyin Feng et al. „CodeBERT: A Pre-Trained Model for Programming and
Natural Languages“. In: arXiv preprint arXiv:2002.08155 (Sept. 2020).

120

[13] Mohamed Amine Ferrag et al. „Revolutionizing Cyber Threat Detection with
Large Language Models“. In: arXiv preprint arXiv:2306.14263 (June 2023).

[14] Common Vulnerability Scoring System (CVSS). https://www.first.org/
cvss/v3-1/. 2021.

[15] FIRST. Common Vulnerability Scoring System SIG. URL: https : / / www .
first.org/cvss/.

[16] FIRST.Org, Inc. Common Vulnerability Scoring System v3.1: Specification Docu-
ment. https : / / www . first . org / cvss / v3 . 1 / specification -
document.

[17] Yunfan Gao et al. „Retrieval-Augmented Generation for Large Language
Models: A Survey“. In: arXiv arXiv:2312.10997 (2024). URL: https://arxiv.
org/abs/2312.10997.

[18] Gartner. Gartner Experts Answer the Top Generative AI Questions for Your En-
terprise. 2023. URL: https : / / www . gartner . com / en / topics /
generative-ai.

[19] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016.

[20] Michael Günther et al. „JINA EMBEDDINGS 2: 8192-Token General-Purpose
Text Embeddings for Long Documents“. In: arXiv preprint arXiv:2310.19923
(2024). Available from Jina AI GmbH: https://jina.ai/embeddings.

[21] S. Haripriya, A. Brahmananda Reddy, and A. Prashanth Rao. „A Review
on Semantic Approach using Nearest Neighbor Search“. In: IOSR Journal of
Computer Engineering (IOSR-JCE) (2016). ISSN: 2278-0661 (e-ISSN), 2278-8727
(p-ISSN). DOI: 10 . 9790 / 0661 - 1803054653. URL: https : / / www .
iosrjournals.org.

[22] Ben Hoover, Hendrik Strobelt, and Sebastian Gehrmann. „EXBERT: A Visual
Analysis Tool to Explore Learned Representations in Transformers Models“.
In: arXiv preprint arXiv:1910.05276 (Oct. 2019).

[23] IBM. The history of malware: A primer on the evolution of cyber threats. 2023. URL:
https://www.ibm.com/blogs.

[24] Philip Tully John Seymour. „Generative Models for Spear Phishing Posts on
Social Media“. In: arxiv:1802.05196 (2018). URL: https://arxiv.org/pdf/
1802.05196.pdf.

[25] Scott Levy and Jedidiah R. Crandall. The Program with a Personality: Analysis of
Elk Cloner the First Personal Computer Virus. arXiv:2007.15759v1 [cs.CR]. 2020.

[26] Patrick Lewis et al. „Retrieval-Augmented Generation for Knowledge-
Intensive NLP Tasks“. In: arXiv preprint arXiv:2005.11401 (2020). URL: https:
//arxiv.org/pdf/2005.11401.pdf.

121

[27] Yiheng Liu et al. „Summary of ChatGPT-Related Research and Perspective
Towards the Future of Large Language Models“. In: Meta-Radiology 1 (2023).
DOI: 10 . 1016 / j . metrad . 2023 . 100017. URL: https : / / www .
keaipublishing.com/en/journals/meta-radiology.

[28] Microsoft. Introducing Microsoft 365 Copilot – your copilot for work. 2023. URL:
https://blogs.microsoft.com/blog/2023/03/16/introducing-
microsoft-365-copilot-your-copilot-for-work/.

[29] Microsoft. Introduction to Azure Storage. https://learn.microsoft.com/
en-us/azure/storage/common/storage-introduction. Accessed:
2024-04-23. 2023.

[30] Microsoft. Microsoft and OpenAI Extend Partnership. https :
/ / blogs . microsoft . com / blog / 2023 / 01 / 23 /
microsoftandopenaiextendpartnership/. [Accessed: 20.04.2024].
Jan. 2023.

[31] Microsoft. Microsoft Copilot for Security. 2024. URL: https : / / www .
microsoft . com / en - us / security / business / ai - machine -
learning/microsoft-copilot-security.

[32] Microsoft. Pricing - Cognitive Services | OpenAI Service. https://azure.
microsoft.com/en-us/pricing/details/cognitive-services/
openai-service/. Accessed: 05.04.2024. 2023.

[33] Microsoft. Relevance in Vector Search. Apr. 2024. URL: https : / / learn .
microsoft.com/en-us/azure/search/vector-search-ranking
(visited on 04/22/2024).

[34] Microsoft. „Vectors in Azure AI Search“. In: Microsoft Azure Documenta-
tion (Apr. 2024). URL: https : / / learn . microsoft . com / en - us /
azure/search/vector-search-overview#approximate-nearest-
neighbors.

[35] Microsoft. Was ist Microsoft Copilot für Azure. 2023. URL: https://learn.
microsoft.com/de-de/azure/copilot/overview.

[36] Microsoft Corporation. AI Search. https://azure.microsoft.com/en-
us/products/ai-services/ai-search. Accessed: 21/04/2024. 2024.

[37] Microsoft Corporation. Quickstart: Set up a tenant. https : / / learn .
microsoft.com/en-us/entra/identity-platform/quickstart-
create-new-tenant. Accessed: 01/11/2024. Jan. 2024.

[38] Microsoft Corporation. What is Infrastructure as Code (IaC)? https : / /
learn . microsoft . com / en - us / devops / deliver / what - is -
infrastructure-as-code. Accessed: 20/04/2024. Nov. 2022.

[39] Stephen Moskal et al. „LLMs Killed the Script Kiddie: How Agents Supported
by Large Language Models Change the Landscape of Network Threat Test-

122

ing“. In: arXiv preprint arXiv:2310.06936 (2023). URL: https://arxiv.org/
abs/2310.06936.

[40] Niklas Muennighoff et al. „MTEB: Massive Text Embedding Benchmark“.
In: arXiv preprint arXiv:2210.07316 (2023). Code and leaderboard available at
https://github.com/embeddings-benchmark/mteb and https:
//huggingface.co/spaces/mteb/leaderboard.

[41] National Institute of Standards and Technology. National Institute of Standards
and Technology Website. https://www.nist.gov/.

[42] Michael A. Nielsen. Neural Networks and Deep Learning. 2015. URL: http://
neuralnetworksanddeeplearning.com/index.html.

[43] NIST Cybersecurity Program History and Timeline. National Institute of Stan-
dards and Technology (NIST). 2023. URL: https://csrc.nist.gov.

[44] Farzad Nourmohammadzadeh et al. „Large Language Models in Cyberse-
curity: State-of-the-Art“. In: arXiv:2402.00891v1 (2024). Available at https:
//arxiv.org/abs/2402.00891.

[45] Angela Orebaugh and Becky Pinkard. Nmap in the Enterprise: Your Guide to
Network Scanning. Syngress, 2011. ISBN: 9780080558745.

[46] Hammond Pearce et al. „Examining Zero-Shot Vulnerability Repair with
Large Language Models“. In: arXiv:2112.02125 (2023). Available at https:
//arxiv.org/pdf/2112.02125.pdf.

[47] Abir Rahali and Moulay A. Akhloufi. „MALBERT: Using Transformers for
Cybersecurity and Malicious Software Detection“. In: A Preprint (Mar. 2021).

[48] SentinelOne. A Brief History of Cybersecurity. 2023. URL: https : / / www .
sentinelone.com.

[49] SentinelOne. A Brief History of Cybersecurity. 2023. URL: https : / / www .
sentinelone.com/blog/a-brief-history-of-cybersecurity/.

[50] Mohak Shah and Nathalie Japkowicz. Evaluating Learning Algorithms: A Clas-
sification Perspective. Cambridge University Press, 2011. ISBN: 978-0521196000.

[51] Mustafizur R. Shahid and Hervé Debar. CVSS-BERT: Explainable Natural Lan-
guage Processing to Determine the Severity of a Computer Security Vulnerability
from its Description. Available at arXiv. France, 2021. URL: https://arxiv.
org/pdf/2111.08510.pdf.

[52] Mustafizur R. Shahid and Herve Debar. „CVSS-BERT: Explainable Natural
Language Processing to Determine the Severity of a Computer Security Vul-
nerability from its Description“. In: arXiv preprint arXiv:2111.08510 (2021).

[53] Jiamou Sun et al. „Generating Informative CVE Description From ExploitDB
Posts by Extractive Summarization“. In: arXiv (2021). Jiamou Sun, Zhenchang
Xing (Research School of Computer Science, CECS, Australian National Uni-
versity, Canberra, Australia), Hao Guo, Xiaohong Li (College of Intelligence

123

and Computing, Tianjin University, Tianjin, China), Deheng Ye (Tencent AI
Lab, Shenzhen, China), Xiwei Xu, Liming Zhu (Data61, CSIRO, Australia).
arXiv: arXiv:2101.01431 [cs.LG].

[54] Chandra Thapa et al. „Transformer-Based Language Models for Software Vul-
nerability Detection“. In: arXiv preprint arXiv:2204.03214 (Sept. 2022).

[55] U.S. Passes New Cybersecurity Laws in June 2022. EC-Council. 2022. URL:
https://www.eccouncil.org/u-s-passes-new-cybersecurity-
laws-in-june-2022/.

[56] Ashish Vaswani et al. „Attention Is All You Need“. In: (2017).

[57] Jiayin Wang et al. „A User-Centric Benchmark for Evaluating Large Language
Models“. In: arXiv preprint arXiv:2404.13940 (2024). Benchmark dataset and
code available at https://github.com/Alice1998/URS.

[58] Hongbin Ye et al. „Cognitive Mirage: A Review of Hallucinations in Large
Language Models“. In: arXiv (2023). arXiv: 2309.06794. URL: https://
arxiv.org/abs/2309.06794.

124

