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Zusammenfassung

Eine große Herausforderung im Gebiet der künstlichen Intelligenz liegt im Umgang
mit widersprüchlichen Informationen. Inkonsistenzmaße ermöglichen eine quanti-
tative Bewertung des Konfliktgehalts einer Wissensbasis. Diese Masterarbeit wid-
met sich der Entwicklung und Evaluation von zwei neuen algorithmischen Ansät-
zen zur Berechnung des formelbasierten Contension-Inkonsistenzmaßes (Ifc), wel-
ches auf der dreiwertigen Logik von Priest basiert. Der erste Ansatz formuliert das
Problem als Optimierungsproblem für (Maximum) Satisfiability (MaxSAT) Solver,
während der zweite Ansatz auf dem Answer Set Programming (ASP) aufbaut. Die
experimentelle Evaluation auf Basis von synthetischen und aus realen Anwendun-
gen abgeleiteten Datensätzen zeigt einen klaren Kompromiss zwischen den beiden
Ansätzen. Der MaxSAT-basierte Ansatz ist bei syntaktisch einfachen Wissensbasen
deutlich schneller, wohingegen der ASP-Ansatz eine höhere Robustheit aufweist
und bei strukturell komplexen Problemen mehr Instanzen lösen kann. Die Ergeb-
nisse verdeutlichen, dass die praktischen Herausforderungen bei der Berechnung
des Ifc vor allem die Syntaxsensitivität der Formeln betrifft. Die Arbeit liefert so-
mit neben den zwei Algorithmen auch Einblicke darin, welcher Solver sich für den
spezifischen Einsatz unter Verwendung der dreiwertigen Logik am besten eignet.

Abstract

A major challenge in the field of artificial intelligence is dealing with contradic-
tory information. Inconsistency measures allow for a quantitative assessment of
the conflict level of a knowledge base. This master’s thesis is dedicated to the de-
velopment and evaluation of two new algorithmic approaches for calculating the
formula-based contension inconsistency measure (Ifc), which is based on Priest’s
three-valued logic. The first approach formulates the problem as an optimization
problem for (Maximum) Satisfiability (MaxSAT) solvers, while the second approach
is based on Answer Set Programming (ASP). The experimental evaluation, based
on synthetic and real-world-derived datasets, shows a clear trade-off between the
two approaches. The MaxSAT-based approach is significantly faster for syntactically
simple knowledge bases, whereas the ASP approach exhibits greater robustness and
can solve more instances in structurally complex problems. The results clarify that
the practical challenges in computing the Ifc is primarily the syntax sensitivity of
the formulas. Thus, in addition to the two algorithms, the work also provides in-
sights into which solver is best suited for the specific application using three-valued
logic.
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1. Introduction

The increasing aggregation of data from heterogeneous sources challenges knowl-
edge based systems in artificial intelligence with the handling of inconsistent infor-
mation. A key approach to this issue is the quantitative measurement of contra-
dictions through inconsistency measures. This Master’s thesis is dedicated to the
development and evaluation of two new algorithmic approaches for the calculation
of a specific measure based on three-valued logic. This introductory chapter moti-
vates the need of this research, defines the central objectives and research questions,
and provides an overview of the structure of the entire work.

1.1. Motivation and Problem statement

In the age of digitalization and artificial intelligence, knowledge based systems col-
lect a constantly growing amount of information from diverse and often heteroge-
neous sources [BH08]. Whether in autonomous robotics, medical diagnostics, or the
integration of enterprise databases, the ability to handle large amounts of data and
gather logical conclusions from them is very important [Thi19]. However, this data
aggregation leads to a fundamental challenge: the emergence of contradictory infor-
mation, which are called inconsistencies. Conflicts within a knowledge base occure
very often, and they can significantly impair the reliability and functionality of a
system by leading to faulty conclusions [KT20, Thi13].

Classical logic, which is based on the principle of non-contradiction, is not al-
ways suitable for handling such inconsistent knowledge bases, since any arbitrary
statement can be derived from a single contradiction [GS16, Hun07, HK08]. Instead
of summarily dismissing an inconsistent knowledge base as unusable, previous re-
searches have established approaches that aim to deal with contradictions. A central
step in this process is the quantification of the degree of inconsistency [HK08]. In-
consistency measures are functions that assign a numerical value to a knowledge
base, representing its degree of conflict. These kinds of measures make the compar-
ison of different knowledge bases possible.

A promising approach to defining such a measure is based on paraconsistent log-
ics, which are able to tolerate contradictions [Thi13]. The formula-based conten-
sion inconsistency measure considered in this thesis uses Priest’s three-valued logic
[KGLT22]. This logic extends the classical truth values of true and false with a third
value: both. In this system, a formula is considered satisfied if it evaluates to true or
both. This makes it possible to satisfy even classically contradictory sets of formulas.
The measure therefore quantifies inconsistencies by identifying the minimum num-
ber of formulas containing any atom valued both. Higher values therefore indicate
a greater inconsistency.
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1.2. Objectives of the study

The central goal of this Master’s thesis is the design, implementation, and exper-
imental evaluation of two new algorithmic approaches for the calculation of the
formula-based contension inconsistency measure. To explore the strengths of dif-
ferent solution strategies for this problem, two established paradigms of declara-
tive programming and constraint solving will be employed. Answer Set Program-
ming (ASP) is a declarative programming paradigm that is particularly well-suited
for modeling and solving combinatorial search and optimization problems. (Maxi-
mum) Satisfiability Solving ((Max)SAT) is an extension of the classical propositional
satisfiability problem that allows for the formulation and solution of optimization
problems.

Therefore, the research questions to be answered in this thesis are as follows:

• How can the problem of calculating the formula-based contension inconsis-
tency measure be formulated as MaxSAT encoding?

• How can the problem of calculating the formula-based contension inconsis-
tency measure be formulated as a logic program within the Answer Set Pro-
gramming framework?

• How do the two developed approaches compare in performance? An experi-
mental evaluation will show the performance and scalability of the algorithms
using different benchmark instances.

The results of this work aim to provide two practical algorithms for calculating
this specific inconsistency measure. They additionally provide deep insights into
the suitability of ASP and MaxSAT for problems in paraconsistent logic.

1.3. Structure of the thesis

The work is primarily divided into a theoretical and a practical part. The theoretical
part covers the logical foundations, a general definition of inconsistency measures,
and the transition to the formula-based contension inconsistency measure. Further-
more, there is an introduction to Answer Set Programming and (Max)SAT solvers.

The practical part of the work builds on the theoretical explanations and aims to
develop two different algorithmic approaches. The ASP-based approach is about
formulating the problem as a declarative programming approach that produces
multiple answer sets as solutions. Whereas the (Max)SAT-based approach formu-
lates the problem as a (Max)SAT problem and implementation of a corresponding
solver.

In a further step, the algorithms will be evaluated experimentally. For this pur-
pose, a collection of datasets is used that has already been used in the research of
[KGLT22]. In one run-through, all knowledge bases of a dataset are processed and
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the computation time is determined for each. If a knowledge base can’t be pro-
cessed within a specified time it runs into a timeout and the algorithm skips to the
next knowledge base. The algorithms can finally be compared based on their run-
ning time and the underlying dataset.

2. Theoretical Background

This chapter comes up with the theoretical foundations of classical logic, provides
an introduction to Graham Priest’s three-valued logic, and offers a general definition
as well as an overview of existing inconsistency measures. These fundamentals are
essential for the following chapters and form the necessary basic knowledge for the
programming and implementation of the algorithms.

2.1. Logical Foundations

Mathematical logic is a subfield of mathematics that deals with the formal analysis
of arguments and proofs. The main focus is on classical logic, which is based on
three principles. The principle of bivalence states that a statement can either be true
or false [Ebb18]. A statement can also not be true and false at the same time, which
leads to the principle of non-contradiction. Finally, for every statement, either it
itself or its negation holds [Men15, BL12].

2.1.1. Propositional Logic

Propositional logic is a subfield of mathematical logic that deals with statements,
their truth values, and the logical connections between them. The simplest form of
a statement is the atom, which can take on the truth value true or false [Ebb18]. The
literal extends the atom by the negation of the same. Literals can also be viewed as
the simplest form of a formula, which can be extended with other atoms or literals
using logical operators to form new statements.

Definition 1 (Truth Values). The truth values are {t, f}, representing true and false.

The most common logical operators are the ¬ negation, ∧ conjunction, ∨ disjunc-
tion,→ implication and↔ equivalence [Kle04]. The conjunction as logical AND, as
well as the disjunction as logical OR, include or exclude individual atoms or other
formulas as a condition for the fulfillment of the statement. The implication is a
logical consequence which is derived from the state of another atom in the form of
a condition. Note that an implication is false only if the premise is true and the con-
clusion is false. A logical equivalence requires the same truth value and the leading
conditions for the formation of the truth value [Sip12, Lif19].

An atom p could be translated into the positive literal p and the negative literal
¬p. A formula ¬p ∧ q is read as “not p and q”. The formula becomes true if p is
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not true and q is true. In any other case, the statement is to be evaluated as false.
The tautology, as a special form of a statement, is always true regardless of the truth
values of its constituent parts. A contradiction is the opposite of tautology and is
always false.

Definition 2 (Alphabet of Propositional Logic). Let A be a countable set of atomic
propositions (e.g., p, q, r). The set of logical connectives is {¬,∧,∨,→,↔}. Paren-
theses ( and ) are used for grouping.

The alphabet defines all the valid symbols that can be used to construct logical
statements. The atoms are the basic building blocks, and the connectives are the
tools to combine them. From here we can provide a definition for constructing com-
plex and syntactically correct statements from simple atoms.

Definition 3 (Formula). The set of well-formed formulas F is defined inductively:

• Every p ∈ A is a formula.

• If φ ∈ F , then ¬φ ∈ F .

• If φ,ψ ∈ F , then (φ ∧ ψ), (φ ∨ ψ), (φ→ ψ), (φ↔ ψ) ∈ F .

A knowledge base represents a collection of statements, facts, or beliefs that are to
be considered together [EIST09, Thi13]. For computational purposes, it is typically
assumed to be a finite set [KT21].

Definition 4 (Knowledge base). A knowledge base K is a finite set of formulas of
propositional logic. Let K then be the set of knowledge bases K.

Definition 5 (Set of Atoms). Let At(F) denote the set of all atoms occurring in the
set of formulasF . If φ is a single formula, then At(φ) is equivalent to At({φ}), where
{φ} represents the singleton set containing only the formula φ.

This function can be used for extracting the set of all propositional variables that
a formula or knowledge base contains.

Example 1. Let the alphabet of propositional logic be defined by the countable set of
atomic propositions A = {p, q, r} and the usual logical connectives {¬,∧,∨,→,↔},
along with parentheses.

Consider the following knowledge base K ∈ K, consisting of three well-formed
formulas φ1, φ2, φ3 ∈ F :

K = {φ1, φ2, φ3}

where
φ1 = p→ (q ∧ r)
φ2 = ¬q ∨ r
φ3 = ¬(p↔ r)
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The set of all atomic propositions occurring in K is:

At(K) = {p, q, r}

and, for instance, the set of atoms in φ2 is:

At(φ2) = {q, r}

Definition 6 (Interpretation). Let ω : At(F ) → {t, f} be an interpretation, which
assigns each atom α one of the truth values t or f .

An interpretation can be thought of as one possible state where every proposition
is assigned a definite truth value.

The following rules formally define the semantics of the logical connectives. They
specify exactly how the truth value of a complex formula is calculated from the truth
values of its simpler components, based on the initial interpretation of the atoms.

Definition 7 (Truth Assignment). The truth value of a formula φ under an interpre-
tation ω is defined as following:

• ω(p) = t or f for p ∈ A.

• ω(¬φ) = t if ω(φ) = f ; otherwise, ω(¬φ) = f .

• ω(φ ∧ ψ) = t if ω(φ) = t and ω(ψ) = t; otherwise, ω(φ ∧ ψ) = f .

• ω(φ ∨ ψ) = t if ω(φ) = t or ω(ψ) = t; otherwise, ω(φ ∨ ψ) = f .

• ω(φ→ ψ) = f if ω(φ) = t and ω(ψ) = f ; otherwise, ω(φ→ ψ) = t.

• ω(φ↔ ψ) = t if ω(φ) = ω(ψ); otherwise, ω(φ↔ ψ) = f .

A model, therefore, represents a scenario in which the entire knowledge base
holds true [BHvMW09, Lif19]. If a knowledge base has at least one model, it is
called satisfiable or consistent [Ebb18, KT20]. If it has no model, it is unsatisfiable or
inconsistent [Gra78].

Definition 8 (Model). A model is an interpretation that makes a given set of for-
mulas true. It satisfies all formulas of a knowledge base K. This means that every
statement in K is true under this interpretation [NKTJ23].

In various scenarios, it can be useful or even necessary to extend the classical logic.
Statements that, due to insufficient information or their contradictory nature, would
have to be true and false at the same time, cannot be represented by classical logic,
which is why further approaches are required [BL12]. In addition to fuzzy logic, in
which gradual membership is determined based on a scale, there are various forms
of multi-valued logic [KY95].
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Example 2. Let A = {p, q, r} be the set of atoms, and consider the following knowl-
edge base K:

K = {φ1, φ2}

with
φ1 = p→ (q ∧ r)
φ2 = ¬r ∨ q

Define an interpretation ω : A → {t, f} by:

ω(p) = t, ω(q) = t, ω(r) = t

We evaluate the truth values of the formulas in K under ω:

• ω(φ1) = ω(p→ (q ∧ r)) = t→ (t ∧ t) = t→ t = t

• ω(φ2) = ω(¬r ∨ q) = ¬t ∨ t = f ∨ t = t

Since both φ1 and φ2 evaluate to t under ω, it follows that ω is a model of K

ω |= K

So we can say, that the knowledge base K is satisfiable.

2.1.2. Boolean Satisfiability Problem

The Boolean Satisfiability Problem (SAT) addresses the question of whether there is
a truth assignment for a given propositional logic formula that makes the formula
true. For example, the formula A ∧ B is satisfiable, because there exists an interpre-
tation ω with ω(A) = t and ω(B) = t, such that ω(A ∧B) = t [BHvMW09].

Generally, such satisfiability problems can be classified into complexity classes.
Big O notation is used here to describe the asymptotic behavior of functions, par-
ticularly the upper bound of the runtime or memory requirements of an algorithm
depending on the size of the input. The O stands for order of and characterizes how
quickly the resource requirement grows in the worst case [Păt08]. The class P repre-
sents a set of problems that can be solved by a deterministic algorithm within poly-
nomial runtime. An algorithm runs in polynomial time if its runtime is bounded
by a polynomial in the size n of the input (e.g., O(nk) for a constant k). So it grows
relatively slowly with increasing input size. Algorithms that run in polynomial time
are considered efficient [Sip12].

Determinism is defined by the fact that the output of an algorithm remains iden-
tical with each run for the same input. Non-deterministic algorithms, on the other
hand, are characterized by random decisions or parallel processing and are con-
sidered to be more efficient than deterministic algorithms [Sip12]. In practice, the
results of such algorithms can only be used to a limited extent due to the non-unique
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output. The class NP accordingly comprises all problems of class P, as well as prob-
lems that can be solved by non-deterministic algorithms in polynomial time [Sip12].
Although SAT is in NP, the best-known deterministic algorithms for solving the gen-
eral SAT problem are exponential in the worst case. This will result for example in
runtimes on the order of O(2n), where n is the number of variables.

Figure 1 shows class P as a subset of class NP. Furthermore, a distinction must
be made between the classes NP-Hard and NP-Complete. A problem is NP-Hard
if it is at least as difficult as the most difficult problems in class NP. NP-Complete
comprises the most difficult problems in class NP and forms the intersection be-
tween NP and NP-Hard [BM07]. A central method in this context is reduction. A
reduction transforms an instance of a problem A into an instance of a problem B
such that a solution for the B-instance provides a solution for the A-instance. If this
transformation itself can be performed in polynomial time, it is called a polynomial-
time reduction A ≤p B. It serves to compare the relative difficulty of problems: If a
known hard problem A can be reduced to problem B, then B is at least as hard as A
[BHvMW09]. Since every problem in NP can be reduced in polynomial time to any
NP-Complete problem, they are considered the most difficult problems in NP. SAT
is considered the first problem for which NP-Completeness was proven [NKTJ23],
which implies that there is no deterministic algorithm with polynomial runtime for
it.

Figure 1: Complexity classes of decision problems
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An unsolved question in mathematics is whether the classes NP and P might
not be identical after all. To prove this, a deterministic and efficient algorithm is
searched that can solve a problem of the NP-Complete class in polynomial time.
All problems in class NP, including class P, could then be reduced to this algorithm
[Sip12].

In the following chapters, the presented inconsistency measures and their algo-
rithms will be examined more closely for their complexity class, because this plays
a significant role in comparability and evaluation [KGLT22, Thi18].

2.1.3. Priest’s Three-Valued Logic

Graham Priest, with his three-valued logic in the subfield of non-classical logic,
broke the principle of bivalence and defined a third value, both. Concretely, this
means that a statement can be both true (t) and false (f ) and thus both (b). Although
the idea of a third truth value may seem unusual at first, there are still some sce-
narios in which it is at least not clearly recognizable which truth value is correct.
Three-valued logic creates a way to deal with such uncertainties or contradictions
in statements [Pri79].

Definition 9 (Truth Values in Three-Valued Logic). The set of truth values is {t, f, b},
where b represents both true and false.

Definition 10 (Interpretation in Three-Valued Logic). Let ω3 : At(F)→ {t, f, b} be a
three-valued interpretation, which values each atom α with one of the truth values
t, f or b.

Example 3. Consider the following statement made by a person:

“I am lying.”

If this statement is true, then the person is lying, which implies the statement is
false. But if it is false, then the person is not lying, and hence the statement is true.
This creates a classical paradox which cannot be resolved using only the classical
truth values t and f .

In three-valued logic, we can assign the truth value b to the statement to capture
this contradiction. Let the atom a represent the statement “I am lying”. Then we
define the interpretation ω3 as:

ω3(a) = b

This assignment reflects the fact that the statement is simultaneously true and
false and avoids the inconsistency in classical logic.

The syntax of three-valued logic is similar to that of classical logic and uses the
usual connectives. A truth table (Table 1) illustrates the relationships.

8



p q ¬p p ∧ q p ∨ q p→ q p↔ q

t t f t t t t
t f f f t f f
t b f b t b b
f t t f t t f
f f t f f t t
f b t f b t b
b t b b t t b
b f b f b b b
b b b b b t t

Table 1: Truth Table

For the three truth values, a value ordering can be established: f ≺ b ≺ t, where≺
means that the left side is less true than the right side. In classical logic, the statement
p ∧ ¬p would lead to a clear contradiction [NKTJ23]. According to Priest, p could
also be assigned the value both which resolves the inconsistency [Pri79].

Definition 11 (Truth Assignment in Three-Valued Logic). The truth value of a for-
mula φ under an interpretation ω3 is defined as follows:

• ω3(p) = t, f, or b for p ∈ A.

• ω3(¬φ) = t if ω3(φ) = f ; f if ω3(φ) = t; b if ω3(φ) = b.

• ω3(φ ∧ ψ) = min(ω3(φ), ω3(ψ)) with the order f ≺ b ≺ t.

• ω3(φ ∨ ψ) = max(ω3(φ), ω3(ψ)).

• ω3(φ→ ψ) =


t, except if

ω3(φ) = t and ω3(ψ) = f, then ω3(φ→ ψ) = f ;

ω3(φ) = t and ω3(ψ) = b then ω3(φ→ ψ) = b.

ω3(φ) = b and ω3(ψ) = f then ω3(φ→ ψ) = b.

• ω3(φ↔ ψ) =


t, if ω3(φ) = ω3(ψ);

b, if either ω3(φ) = b or ω3(ψ) = b).

f, else.

Definition 12 (Three-Valued Model). A three-valued interpretation ω3 is a model of
a knowledge base K if ω3(φ) ∈ {t, b} for all φ ∈ K

Example 4. Let A = {p, q} be a set of atoms, and define the three-valued interpreta-
tion ω3 as follows:

ω3(p) = b, ω3(q) = f
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Consider the knowledge base:

K = {φ1, φ2} with
φ1 = ¬p ∨ q
φ2 = p→ q

We now evaluate each formula under ω3:

• ω3(φ1) = ω3(¬p ∨ q) = max(ω3(¬p), ω3(q)) = max(b, f) = b

• ω3(φ2) = ω3(p→ q) = b→ f = b

Since both formulas evaluate to b, and b is accepted as a satisfying value in three-
valued logic (i.e., ω3(φ) ∈ {t, b}) we can say:

ω3 ∈ Models(K)

So we can say that ω3 is a three-valued model of K.

Table 1 also makes it clear that three-valued logic overrides the classical rules of
inference and is not readily applicable in every scenario. Thus, in many areas of
application such as philosophy, semantics, and computer science, in addition to the
opportunities for analyzing paradoxes, modeling ambiguous concepts or develop-
ing fault-tolerant systems, some criticisms are also mentioned [Pri79].

Firstly, the interpretation of the value both can be difficult and lead to philosophi-
cal debates, as the result may contradict human intuition. Secondly, the logic gains
in a wider range of truth-values, which is particularly evident from the truth table.
Analyses and an understanding of the statements could generally be more difficult.
Last but not least, the use of the value both results in a loss of information, as state-
ments are now no longer unambiguous.

2.2. Basics of SAT and MaxSAT

The Boolean satisfiability problem (SAT) aims to determine whether a given propo-
sitional logic formula can be made true by assigning appropriate truth values to its
variables [BHvMW09]. SAT solvers are specialized algorithms that assess the satis-
fiability of formulas.

In contrast, MaxSAT solvers address the optimization variant of SAT. Rather than
simply determining if a formula is satisfiable, MaxSAT aims to find a truth-value
assignment that satisfies the maximum number of clauses in a given CNF formula
[BHvMW09]. To model this, a formula is often divided into two types of clauses.
Hard clauses must be satisfied in any valid solution while soft clauses are optional.
The goal is to satisfy as many of them as possible.

Additionally, soft clauses can be weighted to instruct the solver which rules to pri-
oritize [NKTJ23]. MaxSAT is an NP-hard problem, meaning that no known polynomial-
time algorithm can solve all instances [BHvMW09]. Despite this, modern MaxSAT
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solvers apply demanding techniques to solve practical instances efficiently. Exact
MaxSAT solvers typically use branch-and-bound strategies, where the search space
is systematically explored and pruned using upper and lower bounds. Additional
methods include variable selection heuristics, clause learning, and efficient data
structures [BHvMW09].

A common technique for solving MaxSAT problems is the reduction to SAT [ABL13].
This involves reformulating the optimization problem so that it can be solved by one
or more calls to a standard SAT solver. A well-known approach for this uses block-
ing variables, where soft clauses are modified with helping variables. The objective
then shifts from maximizing the number of satisfied clauses to minimizing the num-
ber of activated blocking variables, which is often achieved through iterative calls
to a SAT solver.

2.2.1. Davis-Putnam-Logemann-Loveland Algorithm

SAT and MaxSAT solvers are originally based on the Davis-Putnam-Logemann-
Loveland (DPLL) algorithm [Lif19], which was designed to solve decision prob-
lems (SAT). It is based on backtracking, systematically searching through all possi-
ble truth assignments.

Its operation can be broken down into three core operations applied in a recursive
process. Starting from an empty truth assignment ω, this process is repeated:

1. Deterministic Simplification: Using Unit Propagation, the last unassigned lit-
eral within a clause is assigned the truth value which is necessary to satisfy
the clause [DLL62, Wor24]. Let C = (l ∨ l1 ∨ · · · ∨ ln) be a clause in F such
that under the two-valued assignment ω, it leads to: ω(l1) = · · · = ω(ln) = f ,
and the literal l is still unassigned. Then the assignment ω is extended with
the assignment for the atom of l that makes l true. If a literal l appears in the
yet unsatisfied clauses of F , but its complementary literal ¬l does not, the as-
signment ω is extended with the assignment for the atom of l that makes l true.
This process is called Pure Literal Elimination [GKSS08, BHvMW09].

2. Decision: If no further simplification is possible, an unassigned variable is
chosen, and a truth value is speculatively assigned to it.

3. Backtracking: In the final step, this randomized assignment is evaluated. If a
conflict occurs, meaning that a clause cannot be satisfied, the last decision is
undone, and the alternative truth value is tried. This process is called back-
tracking [GKSS08]. If the algorithm tried all possible assignments without
finding a solution, the formula is considered unsatisfiable.

Modern SAT and MaxSAT solvers use Conflict-Driven Clause Learning (CDCL)
which is an extension of DPLL. The algorithm is enhanced with the ability to ana-
lyze conflicts and learn new clauses from them, which are then added to the set of
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formulas. This can significantly reduce the time required to find a solution [GKSS08,
Wor24].

Since DPLL/CDCL solves decision problems and MaxSAT is designed for op-
timization problems, some adaptations are necessary. The most common is the
Branch and Bound method. Here, the backtracking search is extended with a cost
function and a so-called pruning rule [BHvMW09].

The cost of a given truth assignment is the number of falsified clauses Ci in a
formula F .

cost(ω) = |{Ci ∈ F | ω(Ci) = f}|

The goal is to minimize this cost. During the search, the solver stores the best so-
lution with the lowest cost found so far. This is called the upper bound (UB). The
lower bound (LB) for a partial assignment ωp represents the cost already incurred
by the assignments made so far.

LB(ωp) = |{Ci ∈ F | ω(Ci) = f}|

The central optimization of the method is the pruning rule. At any point in the
search, if LB(ωp) ≥ UB, the current search branch is canceled, because it cannot
compute a better solution, and backtracking is initiated.

2.2.2. Conjunctive Normal Form

A normal form describes a syntactic restriction for formulas. For each formula there
must be a equivalent formula of its normal form like disjunctive normal form (DNF)
or negative normal form (NNF) [BM07].

A necessary prerequisite for applying the DPLL algorithm is that the input for-
mula F is expressed in Conjunctive Normal Form (CNF) [DLL62]. A formula in
CNF is a conjunction of clauses Ci where each clause is a disjunction of literals lij :

FCNF = C1 ∧ C2 ∧ · · · ∧ Cm, where Ci = (li1 ∨ li2 ∨ · · · ∨ lik)

There are several methods to transform F into CNF. A naive CNF transforma-
tion recursively rewrites logical connectives by applying equivalence laws until only
conjunctions of disjunctions remain.

1. Eliminate equivalences and implications:
A→ B ≡ ¬A ∨B,
A⇔ B ≡ (A→ B) ∧ (B → A)

2. Push negations inward using De Morgan’s laws:
¬(A ∧B) ≡ ¬A ∨ ¬B,
¬(A ∨B) ≡ ¬A ∧ ¬B

3. Apply the distributive law:
A ∨ (B ∧ C) ≡ (A ∨B) ∧ (A ∨ C)
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Although simple to implement, this method can lead to an exponential blow-up in
the size of the resulting CNF due to formula duplication.

In contrast, the Tseitin transformation offers a more efficient alternative by intro-
ducing new propositional variables for subformulas. Each subformula is associated
with a new variable, and constraints are added to ensure logical equivalence be-
tween the original formula and the introduced variables. The key advantage of
the Tseitin transformation is that it preserves satisfiability and ensures the resulting
CNF grows only linearly in the size of the original formula [Tse68]. However, it does
not preserve logical equivalence, only satisfiability [KKS+22].

Definition 13 (Tseitin Transformation [Tse68, KKS+22]). Let φ be a propositional
formula. The Tseitin transformation, denoted T (φ), recursively constructs a formula
in CNF that is equisatisfiable to φ. The process is as follows:

1. A new variable hψ is introduced for each non-atomic subformula ψ of φ.

2. For each such subformula ψ, a set of clausesCψ is generated to enforce the log-
ical equivalence hψ ↔ ψ. The structure of Cψ depends on the main connective
of ψ:

• If ψ = a ∧ b, the clauses for hψ ↔ (a ∧ b) are:

(¬hψ ∨ a) ∧ (¬hψ ∨ b) ∧ (hψ ∨ ¬a ∨ ¬b)

• If ψ = a ∨ b, the clauses for hψ ↔ (a ∨ b) are:

(hψ ∨ ¬a) ∧ (hψ ∨ ¬b) ∧ (¬hψ ∨ a ∨ b)

• If ψ = ¬a, the clauses for hψ ↔ ¬a are:

(¬hψ ∨ ¬a) ∧ (hψ ∨ a)

• If ψ = a→ b, the clauses for hψ ↔ (a→ b) are:

(hψ ∨ a) ∧ (hψ ∨ ¬b) ∧ (¬hψ ∨ ¬a ∨ b)

Here, a and b can be either original variables from φ or the helper variables
corresponding to their respective subformulas.

3. The final transformed formula, T (φ), is the conjunction of the helper variable
for the entire formula (hφ) and all generated equivalence clauses:

T (φ) = (hφ) ∧
∧

ψ∈Sub(φ)

Cψ

where Sub(φ) is the set of all non-atomic subformulas of φ.
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The Weighted Conjunctive Normal Form (WCNF) is an extension of CNF for
MaxSAT problems. The individual clauses are weighted so that a prioritization is
achieved. Hard clauses are valued the highest possible weight, therefore they have
to be fulfilled. However, the assigned weight for soft clauses has to be smaller than
the highest possible value and can be injured. The goal of a solver is now to fulfill
all hard clauses and to maximize the sum of all weights of satisfied soft clauses.

2.2.3. Types of MaxSAT Solver

There is a multitude of MaxSAT solvers, which all differ in their algorithms and
specializations for solving certain types of problems. These solvers can be divided
into the following categories:

• Branch and Bound Solvers: This approach extends the backtracking search
based on DPLL/CDCL with a cost function and a pruning rule to efficiently
prune the solution space.

• Core-guided Solvers: The solver first attempts to find a solution that satisfies
all clauses (hard and soft). If this fails, the SAT solver returns a set of clauses
that causes the contradiction [ABL13]. The algorithm then strategically relaxes
one or more soft clauses from this core. This process is repeated until a satis-
fiable set of clauses is found and the solver can prove that the cost, or in other
words the number of relaxed soft clauses, is minimal [BHvMW09, IMM19].

• Implicit Hitting Set Solvers: Unsatisfiable cores are collected iteratively. The
problem is then reformulated as finding a minimal set of soft clauses that hits
each of these conflict sets (cores) [BHvMW09]. This minimum hitting set with
the lowest cost corresponds to the optimal solution of the MaxSAT problem.

One of the most well-known and powerful representatives of modern MaxSAT
solvers is RC2. Its core technique is an efficient encoding of relaxable cardinality
constraints, which are used for the stepwise relaxation of soft clauses [IMM19]. As
a core-guided solver, it is based on an efficient implementation of strategies such
as the MaxSAT Using Unsatisfiable Cores (MSU3) or One-Literal Learning (OLL)
algorithms [IMM19, BHvMW09].

RC2 has regularly been ranked as one of the top performers, because of its high
performance [IMM19]. A significant advantage for practical application is its avail-
ability within popular libraries like pySAT, which enables its direct use in a Python
environment.

2.3. Introduction to ASP

Answer Set Programming (ASP) is a declarative programming paradigm based on
the stable model semantics of logic programs [Lif19]. In contrast to procedural
programming languages, where the programmer specifies the algorithm to solve
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a problem step-by-step, in ASP one describes the problem itself in terms of logi-
cal rules. An answer set solver, a specialized software program, then automatically
computes the answer sets of the program [SPBS03, Lif19].

The focus lies on describing the problem, not on the solution procedure. This
makes ASP particularly elaboration tolerant so new requirements or constraints can
be easily integrated by adding new rules [SPBS03].

2.3.1. Grounder and Solver

Even if ASP solver don’t need a CNF to proceed knowledge bases, a grounded pro-
gram still is mandatory. Grounding describes a process where variables get sub-
stituted through constants to transform the program from a predicate logic into a
propositional form [BET11, KGLT22].Therefore all terms are constituted, which re-
sult out of the constants and function symbols defined in the program. For each rule
these terms will be the ground instances [EIST09].

Grounding is decisive for the performance of the ASP solver. A naive grounding
would be, similar to a naive CNF transformation, increase the number of rules in an
exponential way. This is the reason why there are more effective techniques needed,
like e.g. the lazy grounding, on which only solution relevant rules are generated
[EIST09, SPBS03].

The Potsdam Answer Set Solving Collection (Potassco) includes various tools
for ASP like the grounder Gringo, the conflict driven answer set solver Clasp and
Clingo.

Clasp is therefore used to find the final answer sets. It needs the preprocessed
grounded logic programme and makes use of techniques like clause learning and
back-jumping [SPBS03]. ASP-Solver like Clasp make also use of the Davis-Putnam-
Logemann-Loveland algorithm, even if it was primarly designed for computing
SAT [BET11, Lif19].

Clingo integrates both Gringo and Clasp into a single tool, which performs ground-
ing and solving in one unified process. As such, Clingo can directly process logic
programs that include variables, constants and basic logical constructs [Lif19].

2.3.2. Syntax

A logic program consists of a set of rules that are formed as the following [SPBS03]:

p1 | . . . | pk ← q1, . . . , qm, not qm+1, . . . , not qn.

where pi and qj are literals and not denotes the negation. The head of the rule
consists of the disjunction of the literals p1 through pk while the body is made up of
the positive literals p1 to qm and the negated literals not qm+1 through not qn. There
are some special cases of rules.

Facts for example are rules with a non-empty head and an empty body. They
unconditionally state that the head is true. The fact

atom(a)
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declares that the constant a is an instance of the predicate atom [Lif19, BET11]. Con-
straints are rules with an empty head, used to eliminate answer sets that satisfy
certain conditions:

← condition1, not condition2.

This rule forbids any answer set in which condition1 is true and condition2 is not
true [SPBS03, EIST09].

A key feature of ASP is the distinction between two types of negation. Default
negation is denoted by not and expresses that a literal cannot be proven. Classical
negation, on the other hand, is represented by a leading minus sign and allows for
the explicit modeling of negative facts [BET11, Lif19].

Another important construct in ASP are choice rules. They allow selecting subsets
of atoms into the answer set. The general form is:

LB{p1, . . . , pk}UB ← body.

This states that if the body is satisfied, the literals between LB (lower bounds) and
UB (upper bounds) of the atoms from the set {p1, . . . , pk} must be included in the
answer set [Lif19].

Clingo’s concrete syntax also supports aggregates, which allow reasoning over
collections of terms. Common aggregates include #count, #sum, #min, and #max.
For example, the number of active students can be counted with:

number_active_students(N)← N = #count{S : student(S), active(S)}.

Based on aggregates, optimization statements can be used to find solutions that are
optimal with respect to some criterion. The #minimize and #maximize constructs
instruct the solver to find answer sets that minimize or maximize the value of a
specified expression [BET11].

Finally, it is conventional to write predicate symbols and constants in lowercase
letters, while variables are written in uppercase [Lif19, KGLT22]. This distinction is
important to avoid unintended variable binding and to ensure correct grounding of
rules.

2.3.3. Semantics of Stable Models

The stable model semantics was introduced by Gelfond and Lifschitz [GL88] and
forms the foundation of how ASP programs are interpreted and solved. It defines
the answer sets, which are consistent sets of atoms that satisfy all rules of the pro-
gram. In contrast to classical logic, ASP is non-monotonic, meaning that adding
new rules can change the set of answer sets.

The mathematical definition of a stable model is based on the concept of the
Gelfond-Lifschitz reduct [EIST09].

Definition 14 (Stable Models [EIST09, MT99]). An interpretation M of a program P
is a stable model of P if M is equal to the least model of the reduct PM of P with M .
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The construction of the reduct PM for a variable free (grounded) program P and
an interpretation M is made in two steps. First, all rules that contain a default
negated literal not α in the body where the atom α is in the interpretationM (a ∈M )
have to be removed. The intuition here is that if α is in M then not α is considered
false, and thus this rule cannot apply. After that, removing all remaining default-
negated literals not α from the bodies of the remaining rules is neccessary. Here, it
is assumed that α is not in M (α /∈ M ), so that not α is considered true and can be
removed.

The result of this process is a positive program, meaning that it contains no default
negations. A positive program always has a unique least model [Lif19, EIST09].
The stability of the interpretation M comes from the fact that this initially assumed
interpretation M is exactly the same as the least model of the reduced program PM .
This means that M verifies or confirms itself [Lif19].

For programs with variables, the definition is extended to the grounding of the
program. A stable model of a program P is a stable model of its ground instantiation
grnd(P ) [EIST09].

Stable models should fulfill several properties [EIST09, MT99]:

• Every stable model M of a program P is a model of P . This means that it is
compatible with all rules of the program.

• A stable model M is a minimal model of P . It contains the minimal necessary
set of facts, which have to be true, to consist with the scenario of the program.

• Various stable models of a program are not comparable. This means that if
M1 and M2 are two different stable models, neither M1 ⊂ M2 nor M2 ⊂ M1

applies.

• Stable models generalize the semantics of positive (the least model of a posi-
tive program is its only stable model) stratified programs (the perfect model
of a stratified program is its only stable model) .

In ASP, a program can have zero, one, or multiple stable models. This multi-
model nature can be useful for modeling search and optimization problems, where
each answer set represents a distinct solution. When multiple stable models exist,
there are two main modes of reasoning [EIST09]:

• Brave Reasoning: An atom α is a brave consequence if it is contained in at least
one stable model of the program.

• Cautious Reasoning: An atom α is a cautious consequence if it is contained in
every stable model of the program.

2.4. Inconsistency Measures

The meaning of the word consistency in logic largely corresponds to that of freedom
from contradiction. A set of statements is therefore consistent if no contradiction
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can be derived from them. So it is not possible to derive both a statement and its
negation at the same time [Hun71].

Inconsistency measures are used to quantitatively measure the degree of logical
inconsistency [HK08]. For example, they can provide information about the num-
ber of logical contradictions within a collection of statements, which also allows for
more in-depth analysis or localization [Gra78]. Such a collection of statements is
also called a knowledge base, which can be expanded by deriving rules between the
existing statements.

2.4.1. Definition and Properties

A knowledge base K = {A ∧ B,¬B} is inconsistent, as its statements can not be
satisfied simultaneously using classical logic. Inconsistency arises due to the con-
straints on atom B. It is implicitly asserted by the first and explicitly negated by the
second, making it impossible to satisfy all statements concurrently [Hun71].

To handle this inconsistency in K, there are several possibilities:

• Deletion: The simplest method is to delete formulas until the knowledge base
becomes consistent. In this example either the statement A ∧ B, or ¬B could
be deleted [GH11].

• Weakening: Instead of deleting formulas it is possible to weaken them by mak-
ing them less restrictive. The statementA∧B could be transformed intoA∨B,
so that the contradiction is resolved [GH11].

• Splitting: Splitting a formula into its constituent atoms can isolate these com-
ponents. The statementA∧B can be split into atomsA andB. The knowledge
base therefore looks like: K = {A,B,¬B}. Even if the knowledge base remains
inconsistent, subsequent resolution steps might be simplified e.g. deleting of
some isolated atoms [GH11].

• Paraconsistent logics: Finally, paraconsistent logics, such as Priest’s three-
valued logic also can be used to dissolve inconsistencies. If B is valued the
truth value both, the inconsistency gets tolerated.

Each of these handling methods typically results in some degree of information
loss. Choosing one of these methods depends on the application, the type of in-
consistency and the goals to be achieved. Inconsistency measures aim to quantify
such inconsistencies, providing an indication of how inconsistent a knowledge base
is. In the following, we formally define an inconsistency measure as a function that
assigns a non-negative real number to a knowledge base, representing its degree of
inconsistency.

Definition 15 (Non-Negative Extended Reals). Let R∞
≥0 = {x ∈ R∞

≥0} ∪ {∞} be the
set of all non-negative real numbers extended by positive infinity.
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Definition 16 (Inconsistency Measure [Thi18, NKTJ23]). Let I : K → R∞
≥0 be a in-

consistency measure, where I(K) = 0 iff K is consistent for each K ∈ K

In some cases a knowledge base contains formulas, which can be seen as kind
of irrelevant to the measure of inconsistency. These formulas can be differentiated
between safe and free formulas. Both of them make use of the concept of minimal
inconsistent subsets, which can be thought of the smallestpossible group of formulas
leading to a contradiction.

Definition 17 (Minimal Inconsistent Subset [HK08] [Thi18]). A subset M ⊆ K of a
knowledge base K is a Minimal Inconsistent Subset (MIS) if it satisfies the following
two conditions:

1. M is inconsistent. (M ⊢ ⊥)

2. Every subset of M is consistent. (For all M ′ ⊂M , M ′ ⊭ ⊥)

In other words, a MIS is a smallest possible group of formulas from K that collec-
tively lead to an inconsistency. Removing any single formula from this group makes
the remaining group consistent.

Definition 18 (Free Formulas [Thi18]). A formulaφ ∈ K is called free ifφ /∈ ∪MI(K).
Therefore Free(K) be the set of all free formulas of K.

In other words, a free formula is not involved in any conflict and therefore is no
element of any MI of K.

Definition 19 (Safe Formulas [Thi18]). A formula φ ∈ K is called safe if it is consis-
tent and At(φ) ∩ At(K \ {φ}) = ∅. Therefore Safe(K) be the set of all safe formulas
of K.

In other words, a safe formula extends the definition of free formulas by a state of
isolation. Because there is no intersection of atoms with the rest of the knowledge
base, a safe formula can’t be involved in any conflict.

Example 5. Let the knowledge base be:

K = {φ1, φ2, φ3, φ4}

with
φ1 = p

φ2 = ¬p
φ3 = q → r

φ4 = ¬q

The subset {φ1, φ2} is inconsistent and minimal, because no subset is inconsistent.
So:
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MI(K) =
{
{φ1, φ2}

}
Only formulas involved in an MIS are considered as conflicted. So φ3 and φ4 are

not part of any MIS:

Free(K) = {φ3, φ4}

Now we check whether a formula is consistent and has no atom in common with
the rest of the knowledge base.

• φ3 = q → r has the atoms q, r. φ4 also contains q, so it’s not safe.

• φ4 = ¬q shares q with φ3, so it’s not safe either.

• φ1 and φ2 share the atom p, so they are both not safe, too.

Therefore we can say:
Safe(K) = ∅

We can use a simple inconsistency measure I that counts the number of MIS to
illustrate our definition for this example:

I(K) = 1

There are many different properties a inconsistency measure should satisfy und
which can help evaluating and comparing to each other. The following postulates
therefore are decisive [Thi18]:

• Consistency (CO): I(K) = 0
According to the definition of inconsistency measures, a consistent knowledge
base schould have an inconsistency value of zero, while inconsistent knowl-
edge bases should have a value greater than zero.

• Normalization (NO): 0 ≤ I(K) ≤ 1
The inconsisteny value always should be in the unit interval, so that a com-
parison of different inconsistency values gets simplified.

• Monotony (MO): If K ⊆ K′ then I(K) ≤ I(K′)
Adding formulas to a knowledge base should not decrease the the inconsis-
tency value.

• Free-formula independence (IN): If φ ∈ Free(K) then I(K) = I(K\{φ})
Removing formulas, which do not contribute to the inconsistency, should not
affect the inconsistency value.
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• Dominance (DO): If φ ⊭ ⊥ and φ ⊨ ψ then I(K ∪ {φ}) ≥ I(K ∪ {ψ})
Replacing a consistent formula through a weaker one should not increase the
inconsistency value. If φ is consistent (⊥) and ψ follows logically of φ then the
incosnsitency value from K unified with φ is higher or equal to the incosnsi-
tency value of K unified with ψ.

Postulates in general describe a desirable behavior and are considered as policies.
Thus they are not undisputed and can implie or be in conflict to each other. In
addition to the mentioned postulates, Thimm added some more which originally
were used in the context of probabilistic logic and got transferred to propositional
logic. Table 2 gives an overview of all postulates and their computation.

Postulate Definition
Consistency (CO) I(K) = 0

Normalization (NO) 0 ≤ I(K) ≤ 1

Monotony (MO) If K ⊆ K′ then I(K) ≤ I(K′)

Free-formula independence (IN) If φ ∈ Free(K) then I(K) = I(K\{φ})
Dominance (DO) If φ ⊭ ⊥ and φ ⊨ ψ then I(K∪ {φ}) ≥ I(K∪

{ψ})
Safe-formula independence (SI) If φ ∈ Safe(K) then I(K) = I(K\{φ})
Super-additivitiy (SA) If K ∩ K′ = ∅ then I(K ∪ K′) ≥ I(K) + I(K′)

Penalty (PY) If φ /∈ Free(K) then I(K) > I(K\{φ})
MI-seperability (MI) If MI(K∪K′) =MI(K)∪MI(K′) and MI(K)∩

MI(K′) = ∅ then I(K ∪ K′) = I(K) + I(K′)

MI-normalization (MN) If M ∈MI(K) then I(M) = 1

Attentuation (AT) M,M ′ ∈ MI(K) and |M | > |M ′| implies
I(M) < I(M ′)

Equal conflict (EC) M,M ′ ∈ MI(K) and |M | = |M ′| implies
I(M) = I(M ′)

Almost consistency (AC) Let M1,M2 be a sequence of minimal incosnsi-
tent sets Mi with limi→∞ |Mi| = ∞ , then
limi→∞ I(Mi) = 0

Contradiction (CD) I(K) = 1 if and only if for all ∅ ≠ K′ ⊆ K, K′ ⊨ ⊥
Free-formula Dilution (FD) If φ ∈ Free(K) then I(K) ≤ I(K\{φ})
Irrelevance of Syntax (SY) If K ≡b K′ then I(K) = I(K′)

Exchange (EX) If K′ ⊭ ⊥ and K′ ≡ K′′ then I(K∪K′) = I(K∪
K′′)

Adjunction Invariance (AI) I(K ∪ {φ,ψ}) = I(K ∪ {φ ∧ ψ})

Table 2: Overview of rationality postulates
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2.4.2. Overview of Existing Inconsistency Measures

There is a multitude of inconsistency measures, which differ in the concepts they are
based on and the way they capture the severity of contradictions. In general, these
measures can be roughly categorized as follows.

• Based on Minimal Inconsistent Subsets (MISs): These measures typically count
or analyze the minimal sets of formulas within a knowledge base that are con-
tradictory. The more MISs, or the smaller they are, the more inconsistent the
base might be considered [HK08].

• Based on Maximal Consistent Subsets (MCSs): These approaches focus on the
largest subsets of formulas that are free of contradictions [GH11]. The incon-
sistency is often measured by how much information needs to be removed to
achieve consistency, or by the number of such consistent subsets [Hun07].

• Based on Multi-valued Logics or Non-classical Semantics: These measures use
logics that allow for more than two truth values, such as three-valued to quan-
tify the degree of contradiction [Thi19].

• Based on Distances between Truth Assignments: These measures consider
the distance between different models of the knowledge base. For instance,
how many variable assignments need to change to satisfy different parts of
the knowledge base, or the distance to the closest satisfying assignment of a
consistent version [NKTJ23, TW19].

• Based on Proofs or Derivations: These measures value inconsistency based on
the properties of logical proofs or derivations from the knowledge base, such
as the length or number of proofs required to derive a contradiction [Thi18].

• Based on Variable Forgetting: These approaches quantify inconsistency by de-
termining how many or which variables need to be forgotten to restore con-
sistency to the knowledge base [TW19].

• Simple or Baseline Measures: These are often straightforward, sometimes bi-
nary, measures that provide a basic assessment of inconsistency, like simply
checking if a contradiction is derivable [Thi18].

A well-established classification of inconsistency measures distinguishes between
the syntactic and the semantic approach [HK08]. This distinction is based on the
level of representation the measure operates on. Syntactic measures work on the
formula level and typically analyze structural properties of the knowledge base.
They often rely on the identification of Minimal Inconsistent Subsets (MIS) [Thi19].

Semantic measures, on the other hand, operate on the language level by consider-
ing the interpretations or models of the knowledge base. These approaches analyze
the inconsistency by evaluating how difficult or impossible it is to construct models
that satisfy the knowledge base [GH11, Thi19].
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The contension inconsistency measure, for example, falls into the semantic cat-
egory, as it evaluates the minimal number of atoms that must be assigned a non-
classical truth value to achieve consistency and is based on Priest´s three-valued
logic. Each atom in a knowledge base is thus assigned one of the three truth values.
The goal is to find an assignment that minimizes the number of atoms with a truth
value both. The contension value is the minimum number of atoms that must be
assigned the value both to make the knowledge base consistent [GH11, Thi18].

The set of all three-valued interpretations to fulfill each formula in our knowl-
edge base K is defined as Models(K) = {ω3 | ∀α ∈ K : ω3(α) = t ∨ ω3(α) =
b}. The set of all Atoms valued as b under an interpretation ω3 is then defined as
Conflictbase(ω3).

Definition 20 (Conflict Base). The conflict base of a three-valued interpretation ω3

is defined as
Conflictbase(ω3) = {α ∈ At(K) | ω3(α) = b}.

Example 6. Let A = {p} be the set of atoms, and consider the following knowledge
base K:

K = {φ1, φ2}

with
φ1 = p

φ2 = ¬p
We can see that this knowledge base is inconsistent. We now consider a three-

valued interpretation ω3 : A → {t, f, b} defined by:

ω3(p) = b

Then, we evaluate the formulas under ω3 using Priest’s three-valued logic:

• ω3(φ1) = ω3(p) = b

• ω3(φ2) = ω3(¬p) = ¬b = b

Since both formulas evaluate to either t or b, it follows that ω3 satisfies all formulas
in K

ω3 ∈ Models(K)

We can now compute the conflict base:

Conflictbase(ω3) = {a}

Definition 21 (Contension Inconsistency Measure). The contension inconsistency
measure is defined as

Ic(K) = min{|Conflictbase(ω3)| | ω3 ∈ Models(K)},

where Models(K) is the set of all three-valued interpretations satisfying K.
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Example 7. Given the conflict base:

Conflictbase(ω3) = {a}

As there is no interpretation in Models(K) with fewer than one atom assigned b,
the contension inconsistency measure is:

Ic(K) = 1

2.4.3. The Formula-Based Contension Inconsistency Measure

The key difference between the contension inconsistency measure Ic and its formula-
based variant Ifc lies in the unit of measurement. Ic evaluates how many atoms
must be assigned the truth value both in order to satisfy all formulas in the knowl-
edge base [KT20]. Thus, it focuses on atomic conflict participation. In contrast, Ifc
evaluates how many formulas in the knowledge base must contain at least one atom
assigned both in order for the whole knowledge base to be satisfiable. Hence, it fo-
cuses on formulas affected by conflict.

While both measures are based on Priest’s three-valued logic and rely on the ex-
istence of both-assignments to resolve contradictions, Ifc shifts the perspective. In-
stead of counting conflicted atoms, it counts formulas whose satisfaction depends
on conflicted atoms. Ic requires modeling the minimal number of atoms assigned
both, independently of how often each appears in formulas. Ifc on the other hand, is
formulawise satisfiability-oriented. Each formula is checked individually whether
it needs a both-valued atom to be satisfied.

This leads to syntactic sensitivity in Ifc as logically equivalent transformations
can change the number of formulas and how they are affected by both-assignments.
In contrast, Ic is not affected under such a transformation.

The definition of the formula-based inconsistency measure is therefore the mini-
mum number of formulas in a knowledge base that contain at least one atom with
the truth value both. So, the set of all formulas φ in K with a minimum number
of atoms valued with the truth value b under an interpretation ω3 is defined as
ConflictFormulas(ω3).

Definition 22 (Conflict Formulas). The set of formulas containing at least one con-
flicting atom is

ConflictFormulas(ω3) = {φ ∈ K | ∃α ∈ At(φ) : ω3(α) = b}.

Example 8. Let A = {p} be again the set of atoms, and consider the known knowl-
edge base K:

K = {φ1, φ2}

with
φ1 = p

φ2 = ¬p
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We define the three-valued interpretation ω3 by:

ω3(p) = b

We can now compute the conflicted formulas:

ConflictFormulas(ω3) = {φ1, φ2}

Definition 23 (Formula-Based Contension Inconsistency Measure). The formula-
based contension inconsistency measure is defined as

Ifc(K) = min{|ConflictFormulas(ω3)| | ω3 ∈ Models(K)}.

where Models(K) is the set of all three-valued interpretations satisfying K.

Example 9. Given the conflicted formulas:

ConflictFormulas(ω3) = {φ1, φ2}

As there is no interpretation in Models(K) with fewer formulas containing any
atom valued b, the formula-based contension inconsistency measure is:

Ifc(K) = 2

Matthias Thimm presented a comparison of many different inconsistency mea-
sures in [Thi18]. He used the 18 rationality postulates to create a basis for evaluating
these measures. Each measure is then considered to satisfy or violate a postulate. In
this section, this evaluation framework is partial expanded to include the formula-
based contension inconsistency measure.

To enable a direct comparison of the contension inconssitency measure Ic and its
formula-based variation Ifc their compliance with some of these postulates is listed
in Table 3. Since Ifc evaluates inconsistency on the formula level, the measure is
sensitive to the syntactic structure of formulas. Therefore, the evaluation of the pos-
tulates is restricted to a selected subset of five postulates that are formula-sensitive,
so their satisfaction may depend on the syntactic representation of formulas in the
knowledge base.

Postulate Ic Ifc

Free-formula independence (IN) ✓ ✗

Dominance (DO) ✓ ✗

Safe-formula independence (SI) ✓ ✓

Exchange (EX) ✓ ✗

Adjunction Invariance (AI) ✓ ✗

Table 3: Compliance of inconsistency measures with rationality postulates
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The postulate IN says that a free Formula φ can be removed from a knowledge
base K without changing the inconsistency value. But even if φ is free and therefore
not affected in any conflicts, the formula can contain atoms, which are valued both
due to conflicts occurring in any other formula. This scenario would then decrease
our inconsistency value.

Proof. Let the knowledge base K = {φ1, φ2, φ3}with

φ1 = A, φ2 = ¬A, φ3 = A ∨B.

The subset {φ1, φ2} is inconsistent, and no proper subset of it is inconsistent, so it
is a MIS. The formula φ3 is not part of any MIS, so it is a free formula.

According to the postulate IN, removing a free formula does not change the in-
consistency value:

Ifc(K) = Ifc(K \ {φ3}).

Since φ3 = A∨B contains the atom A, which is assigned the value both due to the
conflict between φ1 and φ2, the formula increases the Ifc value. The postulate IN is
therefore violated.

DO means that substituting a formula φ with a weaker logical formula ψ should
not increase the inconsistency value. Even if there is no possibility to add new con-
flicts to our knowledge base, there is a potential way that ψ contains atoms which
were not included in φ but are affected in conflicts in other formulas. This scenario
then would increase our inconsistency value.

Proof. Let φ1 = A and φ2 = A ∨ C, where φ2 is logically weaker than φ1 since
φ1 |= φ2.

Let K1 = {φ1, C,¬C} and K2 = {φ2, C,¬C}.
Both knowledge bases are inconsistent due to the conflict of the atom C but nei-

ther φ1 nor φ2 are affected in this conflict.
The Ifc(K1) = 2 because φ1 does not contain any atom C. But for φ2 there is

an atom C, which leads to Ifc(K2) = 3. Therefore Ifc(K1) < Ifc(K2) violates the
postulate DO.

The postulate SI says that if φ is a safe formula, removing it should not change the
inconsistency value. Similarly to IN, this formula could still contain atoms which are
assigned the truth value both, therefore removing it would decrease our value of Ifc.

Proof. Let K be a knowledge base and φ ∈ Safe(K).
By definition of safe formulas, φ is consistent and satisfies

At(φ) ∩At(K \ {φ}) = ∅.

Since φ is consistent, it does not contribute to any minimal inconsistent subsets of
K.

26



Because the atoms of φ are disjoint from the atoms of the rest ofK, there is no way
that φ shares any conflicting atoms with other formulas.

Therefore, removing φ from K does not reduce the number of conflicting atoms
or minimal inconsistent subsets, so

Ifc(K) = Ifc(K \ {φ}).

So the postulate SI is satisfied.

The postulate EX says that adding a knowledge base K1 to K should result in the
same inconsistency value as adding K2 to K, if K1 and K2 are logically equivalent.
But despite this equivalence K1 and K2 can differ in its containing atoms just like in
the number of formulas.

AI specifies the equality of the inconsistency value by adding two separate formu-
las and the conjunction of these formulas. It is clear to identify a significant violation
of Ifc due to the different number of formulas.

Proof. Consider the knowledge base

K = {φ1, φ2}

with
φ1 = ¬A, φ2 = ¬B,

Now, let the two consistent extensions be:

K1 = {B,A}, K2 = {B ∧A},

where both K1 and K2 are consistent and logically equivalent.
Then,

Ifc(K ∪ K1) = 4,

and
Ifc(K ∪ K2) = 3,

Therefore,
Ifc(K ∪ K1) ̸= Ifc(K ∪ K2),

which violates the EX and AI postulates.

In conclusion Ifc satisfies fewer postulates than Ic which suggests that Ifc is less
robust or behaves less predictably according to these rationality criteria.

The formulas of a knowledge base could be reformulated into logically equivalent
formulas to modify the inconsistency value. The formula {A,¬A} could be trans-
ferred to {A ∧ ¬A} which would decrease Ifc from the value 2 to 1. This may lead
to a higher sensitivity of the used syntax.

This characteristic implies that the formula-based contension inconsistency mea-
sure should be less used to evaluate the logical contradictions than measuring the
extent to the formulas of it.
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In addition to these postulates, Thimm also compared the inconsistency measures
using the term Expressivity. This is all about the information the used inconsistency
measure can give us about a given knowledge base and how it can identify differ-
ences between deviating knowledge bases. In case of the Ifc the primary informa-
tion we get might be the quantified affected formulas. Larger but fewer formulas
may lead to weaker expressivity regarding the granularity or perceived magnitude
of inconsistency, because each formula is counted as a single unit.

Computational Complexity as the last part of the evaluation criteria refers to the
scalability of computational effort with the size of the input and the classification
into complexity classes. As Ifc brings an optimization problem in finding the min-
imal number of formulas containing both valued atoms, which is part of SAT, the
problem of computing it is NP-hard. The computation can therefore lead to im-
practical computation times or require computation resources, especially for large
knowledge bases.

3. Algorithmic Approaches

After the definition and explanation of the theoretical foundations, there will be a
description of the Framework and the algorithmic approaches. Considered are the
resulting encodings, illustrated by an example for each approach, and the Correct-
ness and Limitations for the modeled Ifc.

The project has a modular structure, clearly separating data processing, algorith-
mic encoding, and the execution of experiments. It consists of three main compo-
nents: the main script, the parser and data model, and the two solver encoders. The
whole code can be found as a repository on GitHub 1.

3.1. Implementation Framework

This section explains the technical structure of the implementation and the exper-
imental procedure used to evaluate the algorithmic approaches. It provides an
overview of the system architecture, data modeling, and solver orchestration. The
Code is an adaption of the works from Isabelle Kuhlmann provided in GitHub 2.

3.1.1. Project Structure and Data Modeling

The project architecture is designed in a modular fashion to ensure a clear separation
of concerns. The entire process from the knowledge base to the final results follows
a logical pipeline, which is visualized in Appendix E.

The central script, main.py, acts as the main controller. It iterates through knowl-
edge bases in the file system, initiates solving runs for each approach, and man-

1Repository link for this project: https://github.com/Marcel104/Abschlussarbeit
2Repository link of the project “algorithms_for_inconsistency_measurement_in_PL” from Isabelle

Kuhlmann: https://github.com/aig-hagen/algorithms_for_inconsistency_measurement_in_PL/tree/main
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ages logging. The scripts parser.py, formula.py, and knowledge base.py are responsible
for reading and transforming the textual formulas into a structured, object-oriented
representation. For each algorithmic approach, a dedicated encoder exists. Each
encoder receives the object-oriented data model and translates it into the specific
input format required by the corresponding solver. The resulting programs or for-
mulas are passed to the respective solver libraries. Solver outputs are interpreted
and standardized for consistent logging.

The foundation for all algorithmic processing is the correct and flexible represen-
tation of logical formulas. The module parser.py implements a parser that trans-
forms textual formulas into syntax trees. This process involves tokenization and
tree construction. A regular expression is used to split the input string into tokens,
recognizing atoms, operators, parentheses, and constants. The parser implements
the Shunting Yard algorithm to convert the infix token sequence into postfix nota-
tion while respecting operator precedence and associativity. A syntax tree is then
recursively built from this postfix sequence.

The syntax tree is represented by instances of the Formula class (from formula.py).
Each node in the tree is such an object, which may recursively contain other Formula
instances as children. This class is the core of the data model and provides crucial
methods such as get_atoms() for extracting all unique atoms from a formula, and
to_cnf(), which offers two options for CNF conversion.

The Kb class serves as a container that holds a list of Formula instances, represent-
ing a knowledge base. A class diagram illustrating the data model is provided in
Appendix F.

Result extraction is implemented in a solver-specific manner. The function
asp_encode_and_solve uses the on_model callback function from the Clingo li-
brary. For each optimal model found, this callback extracts the cost and the atoms of
the val/2 and f_inconsistent/1 predicates to reconstruct the solution details.
The MaxSAT functions use the RC2 solver from the PySAT library. After computing
the result using rc2.compute(), the cost is directly read from the solver object. To
retrieve solution details, the returned model is analyzed and integer variables are
translated back into their boolean interpretations using a reverse_varmap. The
violated soft clauses reveal the inconsistent formulas.

3.1.2. Formula Representation with an Abstract Syntax Tree

To process logical formulas in a structured and rule-based way, each formula in the
knowledge base can be represented as an abstract syntax tree (AST). This tree struc-
ture enables recursive analysis and transformation, which is neccessary for the ASP
and MaxSAT encodings. Each node in an AST represents either a logical connec-
tive or a propositional atom [BHvMW09, BM07]. With the help of its hierarchical
structure, the tree can be run through.

Consider the knowledge base

K = {A ∧B,¬A}
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which consists of the two formulas φ1 = A ∧B and φ2 = ¬A. The corresponding
syntax trees are:

∧

AB

¬

A

Figure 2: Syntax trees of the formulas in the knowledge base K

The AST is implemented via the Formula class defined in formula.py. Each node
is an instance of this class, with a type field denoting the logical connective and op-
tional left, right, or atom fields describing its substructure. For example, the formula
A ∧B is represented as

1 Formula(

2 type=FormulaType.AND,

3 left=Formula(type=FormulaType.ATOM, atom="A"),

4 right=Formula(type=FormulaType.ATOM, atom="B")

5 )

while the formula ¬A can be modeled as

1 Formula(

2 type=FormulaType.NOT,

3 left=Formula(type=FormulaType.ATOM, atom="A")

4 )

The class provides further recursive transformation methods, for example to nor-
malize the formula and convert it into CNF. The ASP-based encoding directly uses
the AST to generate structural facts [KT20]. The benefit of such an AST representa-
tion is that it preserves the original syntactic structure of the formulas [BM07]. This
is very important for the syntactically sensitive Ifc measure.

3.2. Approach Based on MaxSAT Solving

This section presents the first of the two algorithmic approaches developed in this
thesis, which is based on Maximum Satisfiability (MaxSAT). The core of this ap-
proach is an encoding that translates the problem of computing the Ifc measure
from the three-valued logic into a Weighted Conjunctive Normal Form (WCNF) for-
mula. By leveraging the optimization capabilities of a MaxSAT solver, we can find
a solution whose cost directly corresponds to the desired inconsistency value. The
following subsections will detail the formal model of this encoding, its practical im-
plementation, a concrete example, and a proof of its correctness.
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3.2.1. Modelling the Ifc for MaxSAT

Given a knowledge base
K = {φ1, . . . , φn}

we first apply a naive transformation of each formula φi into conjunctive normal
form (CNF):

CNF(φi) = {Ci1, . . . , Cim}

where each clause Cij is a disjunction of literals. In this work, we apply a naive
CNF transformation that directly expands the structure of each formula. Although
this approach is less efficient than Tseitin’s method, it preserves logical equivalence
and maintains the original association between formulas and their constituent liter-
als.

For each atom α ∈ At(K), we introduce three new Boolean variables to represent
its truth value in a three-valued logic:

• αt: atom α is assigned true

• αf : atom α is assigned false

• αb: atom α is assigned both

Additionally, we introduce a Boolean variable Fi for each formula φi, which indi-
cates whether the formula is inconsistent under the current interpretation.

The following hard clauses must be satisfied in any valid solution:

• αt ∨ αf ∨ αb: ensures that at least one truth value is assigned to each atom.

• ¬αt ∨¬αf , ¬αt ∨¬αb, ¬αf ∨¬αb: ensures that no more than one truth value is
assigned.

To link formula inconsistency with atom values, we add for each α ∈ At(φi) the
hard clause:

Fi ∨ ¬αb

This means that if an atom in φi is assigned the value both, the formula must be
considered inconsistent.

Each clause Cij from the CNF of φi is extended to:

Cij ∨ αb1 ∨ αb2 ∨ · · · ∨ αbk
where α1, . . . , αk are the atoms occurring in Cij . This construction allows a clause

to be satisfied even when it is otherwise violated, provided that at least one involved
atom is assigned the value both.

Finally, for each formula φi, we add a soft clause:
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¬Fi
This clause may be violated by the solver, but doing so leads to a cost. The solver

thus aims to minimize the number of formulas considered inconsistent by minimiz-
ing the number of violated soft clauses.

The number of formulas φi for which Fi = true therefore corresponds to the
formula-based contension inconsistency measure.

The cost of an optimal solution to the generated WCNF problem corresponds
exactly to the value of Ifc(K). This can be justified as follows: A satisfying assign-
ment ω for the hard clauses of the generated formula in WCNF corresponds to a
valid three-valued interpretation ω3 for the knowledge base K. The added boolean
variables αt, αf and αb for each Atom α ∈ At(K) and the associated generated con-
straints guarantee that α is assigned exactly one of the values in ω3.

Furthermore, The hard clauses ensure, that every formula φ ∈ K is satisfied in
Priest´s logic, therefore no formula has the value false. A formula only could be
violated if it is classically unsatisfied and none of its atoms are assigned the value
both. Therefore every satisfying assignment of the hard clauses in F equals ω3 ∈
Models(K).

The optimization goal of the MaxSAT solver is to minimize the sum of the weights
of the violated soft clauses. In the encoding there is exactly one soft clause fpr each
φi ∈ K with a weight of 1. A soft clause is violated if Fi is assigned the value true.
The set of hard clauses Fi ∨¬αb for each atom α ∈ At(φ) ensures that Fi is forced to
be true if at least one of its constituent atoms is assigned the value both.

Consequently, minimizing the cost of violated soft clauses is equivalent to mini-
mizing the number of the variables Fi that are assigned true. This, in turn, is equiva-
lent to minimizing the number of formulas affected by a both assignment. The num-
ber of formulas φi for which Fi = true corresponds to the formula-based contension
inconsistency measure.

3.2.2. Implementation of the MaxSAT Approach

The formal model is implemented in Python within the MaxSat Encoder class in
solver_Max_SAT.py. This class is responsible for converting a Kb object into a WCNF
object, which is the standard input format for the pySAT library, using the encode
method.

In a first step, the class is initialized. A central dictionary, atom_vars, maps tuples
of atom_name: truth_value to unique integer variables required by the SAT solver. A
counter var_counter ensures that each new variable is unique.

According to this, the class provides additional methods like new_var (returns
the increased var_counter), get_var (returns the truth value of the original atom) and
some methods to extract clauses from a CNF formula or literals and atoms from a
clause.
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The encoder now iterates through all unique atoms present in the knowledge
base. For each atom, it retrieves the three corresponding integer variables for true,
false, and both and adds hard clauses to guarantee that there is exactly one of those
variables satisfied to the WCNF object.

After that, the encoder iterates through each formula of the knowledge base. First,
the to_cnf method of the formula instance is called to get a list of clauses representing
the formula. For each clause, a new list of literals is created where each original lit-
eral is mapped to its corresponding three-valued variable. For example α becomes
αt and ¬α becomes αf . This new extended clause is added as a hard clause. Ad-
ditionally a new helper variable finc is created for the formula. To link finc to the
αb variables of the atoms in the original formulas, again hard clauses are added.
Finally, the soft clause ¬finc with a weight of 1 is added.

The encoder method returns the WCNF object which is then passed to the solver
in main.py. In this case the solver RC2 from the library pysat is instantiated. We can
start solving by using the compute method and can use the returned model and cost
value for further analysis.

3.2.3. Example of the MaxSAT Encodings

To walk through the modeling and implementation with an example, the knowledge
baseK = {A∧B,¬A} is given. The knowledge base thus contains the two formulas
f0 = A ∧B and f1 = ¬A. The set of atoms in K is At(K) = {A,B}.

All variables and clauses are expressed in DIMACS format, which is the standard
input format for most SAT and MaxSAT solvers. In this format, each clause is a list of
integers that represent variables. A positive number denotes a variable set to true,
while a negative number denotes the variable set to false [BHvMW09]. DIMACS
does not represent propositional logic directly, it encodes it through integers for
efficient processing by solvers.

The mapping of the three-valued variables of each atom and the variables for each
formula to an integer will look like shown in table 4.

Atom Mapping
Atrue 1
Afalse 2
Aboth 3
Btrue 4
Bfalse 5
Bboth 6
f0inconssitent 7
f1inconssitent 8

Table 4: Mapping of the three-valued variables to Integers
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To ensure that every atom is assigned exactly one of the truth-values, the follow-
ing hard clauses are added:

[Atrue, Afalse, Aboth]

[¬Atrue,¬Afalse]
[¬Atrue,¬Aboth]
[¬Afalse,¬Aboth]

[Btrue, Bfalse, Bboth]

[¬Btrue,¬Bfalse]
[¬Btrue,¬Bboth]
[¬Bfalse,¬Bboth]

Because formula f0 consists of the AtomsA andB, one of these atoms valued both
would lead into inconsistency of this formula, whereas formula f0 only contains of
Atom B.

[f0inconsistent,¬Aboth]
[f0inconsistent,¬Bboth]
[f1inconsistent,¬Aboth]

To model the logical structure of our knowledge base, the WCNF of the formulas
is used. Therefore K is transformed into WK = {A,B,¬A}. For each clause a new
hard clause is created, containing the variable of its occuring atoms (Atrue, Btrue,
Afalse) and the variable representing the value both of each atom.

[Atrue, Aboth]

[Btrue, Btrue]

[Afalse, Aboth]

It is easy to see, that the first and the second of these three hard clauses leads to
an inconsistency. Since the variables Atrue and Afalse cant be true simultaneously,
Aboth has to be set to true instead. Finally the soft clauses are added, where the
mapped integer variables of the both original formulas are negated to ensure that
an occuring inconsistency injures these clauses.
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[¬f0inconsistent]
[¬f1inconsistent]

In the end, the solver will identifiy both formulas as inconsistent while valueing
the atom A both. The cost of injuring both soft clauses leads to an Ifc of 2.

3.2.4. Correctness of the MaxSAT Encoding for Computing Ifc

In this section, the correctness of our MaxSAT encoding for computing the Ifc(K)
is proven. We denote the cost of an optimal solution to the WCNF formula WK

generated from a knowledge base K by cost(WK). The goal is to show that

cost(WK) = Ifc(K).

This equality is established by proving two bounds: soundness, which shows cost(WK) ≥
Ifc(K), and completeness, which shows cost(WK) ≤ Ifc(K).

First, we show that the cost of an optimal solution is at least Ifc(K).
An optimal model M for the WCNF formula WK must satisfy all hard clauses.

This model defines a valid three-valued interpretation for K where all formulas are
satisfied in Priest’s logic. The cost of this model, cost(WK), is determined by the
number of violated soft clauses. Since there is exactly one soft clause ¬Fi for each
formula φi, the cost is the number of Fi variables assigned true.

Our encoding, specifically through the hard clauses (Fi ∨ ¬αb), ensures that Fi
is forced to be true if any atom α within the formula φi is assigned the value both
(i.e., if M(αb) = true). An optimal solver will not set any Fi to true unless required.
Therefore, the cost of the optimal solution M corresponds exactly to the number
of formulas containing at least one atom assigned the value both in that specific
solution.

By definition, Ifc(K) is the minimal possible number of such affected formulas
over all possible satisfying three-valued interpretations. The solution found by the
MaxSAT solver represents just one such interpretation. Therefore, its cost cannot be
lower than the theoretical minimum. Hence:

cost(WK) ≥ Ifc(K).

Next, we show that the cost of an optimal solution is no more than Ifc(K).
LetBmin ⊆ At(K) be a set of atoms that, when assigned the value both, satisfies the

knowledge base K and produces the minimal number of affected formulas, which
is exactly Ifc(K). We can construct a valid assignment Mmin for our WCNF formula
based on this optimal set Bmin.

• For every atom α ∈ Bmin, we set its corresponding variable αb to true. For all
other variables, we assign true or false according to a corresponding satisfying
three-valued interpretation. This ensures that the hard clauses for exactly one
variable to be true are satisfied.
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• For every formula variable Fi, we set it to true if its corresponding formula φi
contains an atom from Bmin (i.e., At(φi) ∩Bmin ̸= ∅), and to false otherwise.

This constructed assignment Mmin satisfies all hard clauses of the encoding. The
cost incurred by this assignment is the number of Fi variables set to true. By our
construction, this number is |{φ ∈ K | At(φ) ∩Bmin ̸= ∅}|, which equals Ifc(K).

Since we have successfully constructed a valid assignment with a total cost of
exactly Ifc(K), the cost of an optimal solution found by the solver can not be higher.
Thus:

cost(WK) ≤ Ifc(K).

Combining the two inequalities:

cost(WK) ≥ Ifc(K) and cost(WK) ≤ Ifc(K),

we conclude that
cost(WK) = Ifc(K),

which establishes the correctness of our MaxSAT encoding.

3.2.5. Limitations of the Tseitin Transformation for Ifc and Possible
Adaptations

The Tseitin transformation is a well-established method for converting propositional
formulas into equisatisfiable CNF. It introduces helping variables to represent sub-
formulas, and avoids an exponential blow-up in the formula size. While this makes
it highly efficient for SAT and MaxSAT solving, it leads to specific challenges in the
context of the Ifc.

The key requirement for computing Ifc is the ability to identify inconsistencies
that come up within specific formulas because of conflicting truth assignments to
their atomic literals. But Tseitin’s transformation does not preserve logical equiva-
lence, it only ensures equisatisfiability [KKS+22]. This means that:

• The transformed CNF contains helping variables that do not correspond to
original atoms.

• The structure of the original formula is no longer available.

• It becomes hard to trace whether a both assignment to a literal in a formula still
affects that specific formula after transformation. However, the violation of the
DO postulate makes it necessary to ensure this traceability, since even logically
weaker formulas can introduce new conflicts when their atoms overlap with
those in other formulas.

As a result, the transformed formula set cannot directly support the definition of
Ifc.
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To enable the use of Tseitin-transformed formulas in the computation of Ifc the
encoding must be extended with additional constructs. The core idea is to bridge the
gap between helping CNF clauses and the original formulas. This can be achieved
by:

• Recording, for each original formula φi the set of its original literals

• Ensuring that for every literal A in a formula φi the assignment of both to A
marks the formula as incosnsitent.

• Adding rules that explicitly link the truth assignments of original atoms to the
inconsistency variable associated with their parent formulas.

• Avoiding the use of helping variables in the definition of formula inconsis-
tency. Only original atoms should contribute to whether a formula is consid-
ered inconsistent.

In fact, this procedure relies the encodings in the use of the naive CNF transforma-
tion. The point is that helping variables always have to be valued true and therefore
do not need to be translated into the three-valued logic. This is justified by the se-
mantics of the Tseitin transformation: each helping variable introduced represents
the truth value of a subformula and is constrained by implications that ensure its
value is determined by the truth values of its constituents. In any satisfying assign-
ment, these constraints enforce the helping variables to be true if and only if the
subformulas they represent are satisfied. Consequently, helping variables cannot
themselves become both, and they cannot cause a formula to be marked as inconsis-
tent. This ensures that the three-valued interpretation only needs to be applied to
the original atoms.

As an example, the knowledge base K = {A ∧ B,¬A} is considered again. The
atoms are mapped to three-valued variables in DIMACS format, as shown in Table
4. Likewise, hard clauses are generated to represent the three-valued semantics of
the atoms and to capture the inconsistency of formulas based on the both assignment
for each atom. The soft clauses are added as usual.

The CNF transformation using Tseitin, together with the extension involving the
both variables for each original atom, results in the following clauses:

[¬h1, Atrue, Aboth]
[¬h1, Btrue, Bboth]

[h1, Afalse, Bfalse, Aboth, Bboth]

[h1, Atrue, Aboth]

[h1]

[h2]

[f0inconsistent]

[f1inconsistent]
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Here, variables h1 and h2 are helper variables h introduced by the Tseitin trans-
formation.

3.3. Approach Based on Answer Set Programming

ASP is well-suited for modeling the formula-based Contension measure. It naturally
supports recursive rules, which makes it ideal for evaluating logical formulas based
on their structure. The use of the #minimize statement enables the modeling of the
task as an optimization problem that targets the number of inconsistent formulas.
Moreover, the declarative nature of ASP allows us to describe the structure and the
conflicts of our knowledge base, whereby the solver will deliver us the correspond-
ing answer sets [SPBS03]. Although ASP is based on classical two-valued logic, its
flexible predicate representation makes it possible to simulate the three-valued se-
mantics required by the formula-based contension inconssitency measure.

3.3.1. Motivation for ASP Based on MaxSAT Limitations

ASP can be understood as a powerful extension of the classical SAT problem. Both
are tools describing a problem using logical rules, and a solver finds a solution that
follows those rules. But ASP adds extra features from logic programming that make
it more flexible. While SAT focuses on finding truth assignments that satisfy all
clauses, ASP is based on stable model semantics, allowing for default negation and
recursive definitions.

The basic ideas of MaxSAT and ASP are very similar. The equivalents to hard
clauses in MaxSAT are integrity constraints in ASP. For optimization, MaxSAT uses
soft clauses, while ASP does the same thing with its #minimize statement.

However, ASP offers several key advantages that could make it a better choice for
this project. First, ASP moves from a propositional to a predicate-based representa-
tion. In the MaxSAT approach, each atom requires three distinct propositional vari-
ables to represent its three-valued state. Additional hard clauses are then needed
to enforce that exactly one of these variables is assigned true. By contrast, the ASP
approach abstracts this concept by using a single predicate val(Atom, Value), to
express the relationship between an atom and its truth value. The condition, which
guarantess that excatly one truth value is assigned to each atom, is then captured by
a single choice rule. This transforms the encoding from a variable-based model to a
more abstract and scalable one [BET11, ABL13].

Second, a significant advantage of ASP is its ability to handle recursive structures
naturally. The MaxSAT approach requires transforming each formula into CNF, a
process that flattens the formula’s native structure and can lead to an exponential
increase in size with a naive transformation. In contrast, ASP can represent the syn-
tactic tree of a formula directly using recursive rules. A conjunction can be defined
in terms of its conjuncts, which can themselves be complex formulas. This avoids
the loss of structural information and allows the evaluation logic of Priest’s seman-
tics to be modeled in a way that directly mirrors its recursive definition[SPBS03].
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Finally, the not operator allows to create rules that apply when something else
cannot be proven. In this case, this is extremely useful for the truth value both. A
formula is evaluated to both if it can be proven neither true nor false. This other-
wise condition is difficult to model in classical logic but is a natural and declarative
feature of ASP [BET11, EIST09].

3.3.2. Modelling the Ifc in ASP

To process our knowledge base, we decompose each formula into its logical com-
ponents. This is achieved using recursively definable ASP terms that represent each
part of a formula as a separate predicate. Each formula and subformula is assigned
a unique identifier, allowing us to reference and evaluate them individually. To
specify the meaning of these predicates, connectivity rules are added. Our solver
thus gets an instruction on how to process this part of code. In this specific case
we add connectivity rules for the cases of conjunction, disjunction, negation and
the case that our formula is treated like an atom. Implications and equivalences are
simplified in it´s previous basic operations.

Given a knowledge base
K = {φ1, . . . , φn}

with the set of all atoms occurring in K

At(K) = {α1, . . . , αm}.

First, the knowledge base is translated into a set of foundational ASP facts. For
each atom α ∈ At(K), a fact atom(α) is generated. For each formula φ ∈ K, a fact
kb(rep(φ)) is added to mark it as a member of the knowledge base.

In addition, the structure of each formula φ ∈ K is translated into further facts.
We use rep(ψ) to denote the unique identifier for any subformula ψ. The Python
component is responsible for this syntactic decomposition by generating facts that
represent the formula structure.

• If φ is an atom α:
formula_is_atom(rep(α), α)

• If φ = ¬ψ:
negation(rep(ψ), rep(¬ψ))

• If φ = ψ1 ∧ · · · ∧ ψk:

conjunction(rep(φ))
num_conjuncts(rep(φ), k)

conjunct_of(rep(ψj), rep(φ)) for each j ∈ {1, . . . , k}
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• If φ = ψ1 ∨ · · · ∨ ψk:

disjunction(rep(φ))
num_disjuncts(rep(φ), k)

disjunct_of(rep(ψj), rep(φ)) for each j ∈ {1, . . . , k}

The union of these generated facts for all formulas in the knowledge base, forms
the structural foundation of the ASP program. In a previous step, implications and
equivalences are translated into their basic operations.

The predicate val(X,Y ) denotes that the atom or formula X is assigned the truth
value Y .

For each atom α ∈ At(K), exactly one truth value must be assigned. This explores
the search space of all possible three-valued interpretations. This is encoded as the
choice rule:

1{val(α, t);val(α, f);val(α, b)}1 for all α ∈ At(K).

The truth values of complex formulas are derived from their subformulas accord-
ing to the semantics of Priest´s logic. For a formula φ with subformulas ψj :

• Negation (φ = ¬ψ):

val(rep(φ), t)← val(rep(ψ), f)
val(rep(φ), f)← val(rep(ψ), t)
val(rep(φ), b)← val(rep(ψ), b)

• Conjunction (φ = ψ1 ∧ · · · ∧ ψk):

val(rep(φ), t)← ∀j : val(rep(ψk), t)
val(rep(φ), f)← ∃j : val(rep(ψk), f)
val(rep(φ), b)← ¬val(rep(φ), t) ∧ ¬val(rep(φ), f)

• Disjunction (φ = ψ1 ∨ · · · ∨ ψk):

val(rep(φ), t)← ∃j : val(rep(ψk), t)
val(rep(φ), f)← ∀j : val(rep(ψk), f)
val(rep(φ), b)← ¬val(rep(φ), t) ∧ ¬val(rep(φ), f)

All formulas in the knowledge base must be satisfied, so their truth value must
be t or b. This is enforced with a hard constraint that forbids any formula in K from
being evaluated to false.

← val(φ, f),kb(φ)

The predicate kb(φ) marks that the formula φ is a member of the initial knowledge
base K. An answer set of the program up to this point corresponds to a valid Priest-
model of K.
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The formula-based Contension measure seeks to minimize the number of formu-
las in K that are involved in a conflict. A formula is defined as conflict-involved if
it contains at least one atom assigned the truth value both. This is captured by the
predicate f_inconsistent(φ):

f_inconsistent(φ)← kb(φ), formula_contains_atom(φ, α),val(α, b)

The overall objective is to find a model of K that minimizes the cardinality of this
set. This is expressed through the minimize statement:

#minimize{1, φ : f_inconsistent(φ)}

The final value of Ifc(K) is the number of f_inconsistent(φ) predicates that hold in
an optimal answer set. The ASP solver thus searches for a three-valued interpreta-
tion that satisfies all formulas while minimizing the number of formulas containing
atoms with the value both.

Table 5 provides a conceptual mapping between logical constructs, their ASP rep-
resentation, and the corresponding elements in the Python implementation:

Concept ASP Representation Python Identifier
Atom atom(a) ATOM

Truth value assignment val(a, t/f/b) TRUTH_VALUE_PREDICATE

Formula is an atom formula_is_atom(f,a) FORMULA_IS_ATOM

Negation negation(sub, f) NEGATION

Conjunction conjunction(f) CONJUNCTION

Disjunction disjunction(f) DISJUNCTION

Part of a conjunction conjunct_of(sub, f) CONJUNCT_OF

Part of a disjunction disjunct_of(sub, f) DISJUNCT_OF

Number of subformulas num_conjuncts(f, n),
num_disjuncts(f, n)

NUM_CONJUNCTS,
NUM_DISJUNCTS

Formula belongs to KB kb(f) KB_MEMBER

Formula contains atom formula_contains_
atom(f,a)

add_formula_atom_
links()

Formula is inconsistent f_inconsistent(f) F_INCONSISTENT

Implication/Equivalence translated to OR/AND/NOT is_implication(),
is_equivalence()

Table 5: Conceptual mapping between logical concepts, ASP predicates, and Python
implementation

This structured representation results in a fully declarative semantic model of
the knowledge base, implemented entirely within ASP. The Python component is
responsible for the syntactic decomposition and for generating the ASP program,
which correctly implements the three-valued evaluation and the optimization pro-
cess for the inconsistency measure.
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3.3.3. Implementation of the ASP Approach

The implementation of the ASP encodings can be found in the class ASPEncoder in
solver_ASP.py. The class contains the necessary function pl_to_asp for converting a
formula into a tree structure. In a recursive call, each formula and subformula is
examined for its operators, whereby implications and equivalences are eliminated,
and then transformed into rules that syntactically represent the composition of the
formula. Conjunctions, disjunctions, negations, and the case where a formula con-
sists merely of an atom are directly included as such rules in the program. The
pl_to_asp function thus provides the foundation for the solver to process the knowl-
edge base and for the further logic to be programmed in ASP. It is initially called by
the function handle_formulas_in_kb for each formula in the knowledge base.

The encode function makes use of this possibility and, in addition to the facts for
mapping the formula structure, establishes further facts for the existing truth-values
and the atoms present in the knowledge base. Furthermore, the assignment of atoms
to formulas is ensured by using the function formula_atom_links to find the contained
atoms for each formula and to add the fact formula_contains_atom.

The truth evaluation of the connectivity rules is performed with the help of other
helper functions. If a conjunction, disjunction, or negation is present in one of the
formulas of the knowledge base, the corresponding function add_conjunction_rules,
add_disjunction_rules or add_negation_rules is called. In all three cases, three con-
straints are added that represent which conditions must be met for the assignment
of truth values.

Furthermore, the constraints for the evaluation of the truth-values are established,
with which a formula is not allowed to be false and an atom must be assigned exactly
one truth value. Additionally, the evaluation of a formula as inconsistent is added
for whenever an atom occurring in it (formula_contains_atom) is assigned the value
both.

Finally, the encoder returns the created program, which is passed on to the grounder
and solver Clingo in main.py. With the help of the following lines of code, the solver
is instructed to search for exactly one optimal model and to stop the search as soon
as it has found it and proven its optimality.

If a model is found, on_model is called to read out the costs as Ifc, as well as to
determine the inconsistent formulas and the atoms assigned the truth value both.

3.3.4. Example of the ASP Encodings

One more time, the knowledge baseK = {A∧B,¬A} is given. The knowledge base
thus contains the two formulas f0 = A ∧ B and f1 = ¬A. The set of atoms in K is
At(K) = {A,B}. Since constants in ASP are written in lowercase, the atoms will be
represented as At(K) = {a1, a2}.

The ASP encoder can therefore define the facts for the three-valued logic, the for-
mulas, and the atoms. To easily determine later which atoms appear in a formula of
the knowledge base, formula_contains_atom facts are generated.
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1 tv(t).

2 tv(f).

3 tv(b).

4 kb(f0)

5 kb(f1)

6

7 atom(a)

8 atom(b)

9

10 formula_contains_atom(f0,a2).

11 formula_contains_atom(f0,a1).

12 formula_contains_atom(f1,a1).

The necessary facts are also generated to represent the structure of the formulas.
Formula f0 consists of a conjunction of the atoms a1 and a2. Two subformulas f0_0
and f0_1 are created, each containing one atom.

13 conjunction(f0).

14 num_conjuncts(f0,2).

15 conjunct_of(f0_0,f0).

16 formula_is_atom(f0_0,a1).

17 conjunct_of(f0_1,f0).

18 formula_is_atom(f0_1,a2).

Formula f1, on the other hand, consists only of the negated atom a1, for which
the negated subformula f1_n is created.

19 negation(f1_n,f1).

20 formula_is_atom(f1_n,a1).

Added to this are the constraints for the use of truth values. The first rule is
an integrity constraint, which ensures that all models satisfy the knowledge base.
The second rule is a choice rule, which instructs the solver to find a unique truth
assignment for each atom.

21 :- val(X, f), kb(X).

22

23 1{val(X,Y) : tv(Y)}1 :- atom(X).

The correct assignment of truth values across the formula structure is ensured by
further constraints, starting with the constraint for the case where a formula consists
only of one atom
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24 val(X,Z):tv(Z):- formula_is_atom (X,Y), val (Y,Z).

and the occurring logical operators (conjunction and negation). These rules re-
cursively define how the truth value of a complex formula is determined from the
values of its parts.

25 val(Y,t):conjunction(Y):-N{val(X,t):

26 conjunct_of(X,Y)}N,num_conjuncts(Y,N).

27 val(Y,f):conjunction(Y):-1{val(X,f)},conjunct_of(X,Y).

28 val(X,b):-conjunction(X),not val(X,t),not val(X,f).

29

30 val(Y,t):-negation(X,Y),val(X,f).

31 val(Y,f):-negation(X,Y),val(X,t).

32 val(Y,b):-negation(X,Y),val(X,b).

As the last constraint, the evaluation for the inconsistency of a formula is added.

33 f_inconsistent(F) :- kb(F),

34 formula_contains_atom(F,A), val(A,b).

Finally, the minimize statement is added.

35 #minimize { 1,F : f_inconsistent(F) }.

The satisfaction of the formulas can only be achieved through the assignment
a1 = b.

• An assignment of val(a1, t) would result in val(f1, f), which is for-
bidden.

• An assignment of val(a1, f) would result in val(f0, f), which is also
forbidden.

Thus, the rule val(X,b):-conjunction(X),not val(X,t),not val(X,f).
applies for f0. Furthermore, the constraint val(Y,b):-negation(X,Y),val(X,b).
applies for the evaluation of f1. Consequently, both formulas are included in
f_inconsistent(F), which marks them as inconsistent.

4. Experimental Evaluation

In this section, the results of the algorithmic approaches are reviewed and evaluated.
First, the Setup is described to allow a comparison between different environments,
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following a short description of the used datasets. The second section compares the
WCNF encodings, coming from the naive and Tseitin approach. In this comparison,
the number of hard clauses will be calculated whereby a higher number can be the
reason for possible performance issues. After that the results of the used datasets
are compared, seperated by the used solver, where the runtime is crucial for the
computation of the Ifc. The last section gives an interpretation of these results,
aiming to give an answer to the third research question.

4.1. Description of the Experimental Setup

The code described in the previous chapters is programmed in Python. The MaxSAT
Solver RC2 was imported from the library PySAT, while the Potsdam Answer Set
Solving Collection (Potassco) provides the library for the grounder and solver Clingo.

The experiments were run on a machine using 16GB RAM and the AMD Ryzen
5 6600HS, which features 6 Cores and operates with a base clock speed of 3.3 GHz
and can boost up to 4.5 GHz.

The used datasets contain different complex knowledge bases. Every knowledge
base consists of formulas, connected with the common logical operators like con-
junction, disjunction, negation, implication and equivalence. As there is no dedi-
cated benchmark dataset, new synthetic data were created and additionally, datasets
from other research fields were translated [KGLT22].

• The SRS dataset contains 1800 synthetic generated knowledge bases. These
were generated with the help of the Syntactic Random Sampler (SRS) from
the TweetyProject3 [KT21]. The complexity of the knowledge bases varies
strongly; the smallest ones include 5 to 15 formulas with a signature size of
3, while the largest ones include 50 to 100 formulas with a signature size of 30
[KGLT22].

• The machine learning (ML) dataset contains 1920 knowledge bases, generated
from the Animals with Attributed (AWA) dataset. This dataset describes 50
animal types with the help of 85 binary attributes. With the help of the Apri-
ori algorithm, association rules were mined, which then were interpreted as
logical implications. Additionally, the attributes for any random animal were
added as facts. This probably leads to a high inconssitency.

• The argumentation (ARG) dataset consists of 326 knowledge bases and an av-
erage signature size of 827, whereby each of these knowledge bases consists
of clauses in CNF derived of a standard SAT encoding with added constraints
[NKTJ23]. It is based on the benchmarks of the International Competition on
Computational Models of Argumentation 2019 [NKTJ23, KT21].

3https://tweetyproject.org/
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For the encoding and solving time of each solver, a timeout of 1,000 seconds was
established. If one gets into this timeout, the algorithm passes over to the remaining
approach or the following dataset.

4.2. Comparison of the WCNF Encodings

In the naive approach, formulas are transformed into CNF by fully distributing con-
junctions over disjunctions. In the worst case, this can lead to an exponential num-
ber of clauses [BHvMW09]:

Cnaiv(φ) = O(2d)

where d denotes the depth or the maximum number of nested disjunctions over
conjunctions in the formula φ. The total number of CNF clauses for a knowledge
base K = {φ1, . . . , φm} is then given by:

Cnaiv(K) =
m∑
i=1

Cnaiv(φi)

Based on the implemented WCNF encoding, the following additional hard clauses
are generated:

• 4 hard clauses for each unique atom in K

• One hard clause for each formula–atom pair in K

• One hard clause for each clause in the CNF transformation

The total number of hard clauses then can be estimated as:

Hnaiv(K) = 4 · |At(K)|+
m∑
i=1

|At(φi)|+ Cnaiv(K)

In the Tseitin-based approach, each subformula ψ is replaced by an auxiliary vari-
able xψ and encoded using a constant number of clauses:

Ctseitin(φ) = c · s

where s is the number of logical operators in φ and c ≤ 3 is a constant indicating
the maximum number of clauses per operator in the Tseitin encoding. The total
number of CNF Tseitin clauses for a knowledge base K = {φ1, . . . , φm} is then:

Ctseitin(K) = c ·
m∑
i=1

si

The WCNF encoding yields the following hard clauses:
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• 4 hard clauses for each unique atom in K

• One hard clause for each formula–atom pair in K

• The Tseitin encoding Ctseitin

• One final clause to enforce the top-level variable of each Tseitin-encoded for-
mula

The total number of hard clauses H can thus be computed as:

Htseitin(K) = 4 · |At(K)|+
m∑
i=1

|At(φi)|+
m∑
i=1

(3si + 1)

The number of soft clauses S is the same for both approaches and corresponds to
the number of formulas in K:

S(K) = m

Therefore, the total number of WCNF clauses W for both encodings is given by:

Wnaiv(K) = Hnaiv(K) +m

Wtseitin(K) = Htseitin(K) +m

On the SRS dataset, the naive approach has fewer hard clauses than the Tseitin-
based encoding (figure 3). The explanation lies in the structure of the formulas in
the dataset.

Although the naive transformation may be exponential, this only occurs in for-
mulas that involve deep nesting of disjunctions over conjunctions. Many formulas
in the SRS dataset are already close to CNF or contain only simple combinations of
logical operators. Therefore, the naive CNF generation results in a relatively small
number of clauses.

In contrast, the Tseitin transformation introduces additional auxiliary variables
and encoding overhead, even for small or simple subformulas. Each logical opera-
tor adds up to 3 hard clauses, and each top-level formula adds one more clause to
enforce its truth. As a result, the Tseitin-based encoding may produce more clauses
in cases where the naive transformation remains compact.

To understand when the Tseitin approach becomes more efficient, consider for-
mulas of the form:

(A1 ∧A2) ∨ (A3 ∧A4) ∨ · · · ∨ (A2d−1 ∧A2d)

This disjunction of d conjunctions forces the naive transformation to distribute
conjunctions over disjunctions. The result is:
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Figure 3: WCNF hard clauses comparison

Cnaiv(d) ∈ O(2d)
since distributing conjunctions over disjunctions leads to clause explosion [BHvMW09].

The Tseitin encoding, however, grows linearly in d, because each conjunction and
disjunction introduces only a small constant number of clauses:

Ctseitin(d) ∈ O(d)
This behavior is reflected in Table 6, which shows that while the naive encod-

ing starts with fewer clauses, it becomes exponentially more expensive. The break-
even point occurs at around 5 disjunctions with each two conjunctions, after that the
Tseitin transformation is more efficient.

4.3. Comparison of the Results

The results for the runs of each dataset and solver (here ASP and naive MaxSAT)
were logged in a CSV file. Table 7 shows the comparison of the number of solved
instances and the cumulative runtime for each dataset.

The results reveal a clear trade-off between the two approaches. While the naive
MaxSAT solver exhibits significantly lower runtimes on the instances it can solve,
the ASP approach proves to be more robust, solving a higher number of instances
on the more challenging datasets (ML and ARG) within the 1000-second timeout.
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Conjunctions (d) Naive Tseitin
1 12 14
2 24 30
3 38 46
4 56 62
5 82 78
6 124 94
7 198 110

Table 6: Break-even-point of the number of WCNF hard clauses for both CNF trans-
formations

ASP MaxSAT
Dataset instances solved sum of runtime (s) instances solved sum of runtime (s)

SRS (1800) 1800 30,25 1800 6,17
ML (1920) 1520 1,567.63 1088 12.97
ARG (326) 186 4,585.55 162 11.75

Table 7: Comparison of the results of both solvers

On the SRS dataset, which appears to consist of structurally simpler problems,
both solvers solve all 1800 instances. The MaxSAT approach, with a cumulative
runtime of 6.17 s, is nearly five times faster than the ASP approach (30.25 s). On the
ML dataset, in contrast, the ASP solver solves 432 more instances than the MaxSAT
solver. This extremely low cumulative runtime of the MaxSAT solver (12.97 s) sug-
gests that it primarily solves the easy instances very quickly before timing out early
on the more difficult ones. A similar behavior is observed on the ARG dataset. It
should be noted here that for the ASP approach, 41 instances were terminated not
due to a timeout, but because of a memory overflow. The reason of this may be the
high complexity of the encoding for these specific instances.

To analyze the origin of the runtime differences, the time for encoding and the
solving time of the solver were considered separately. Figure 4 shows the average
times for the ARG dataset.

It becomes clear that for both approaches, the encoding time is negligible com-
pared to the solving time. The main part of the runtime for the ASP approach is
the solving phase. This means that the performance difference does not lie in the
preprocessing step, but rather in the efficiency of the underlying search algorithms
of the solvers for this class of problems.

The runtime distribution diagrams in Figures 5 to 7 allow for a more in-depth
analysis of the solvers’ behavior. The x-axis shows the number of solved instances,
sorted by increasing runtime, which is shown on the logarithmic y-axis.

For the SRS dataset (Figure 5), the curves confirm the high performance of both
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Figure 4: Comparison of the mean encoding and solve time of the ARG dataset

approaches. All instances are solved in less than 0.1 seconds. Nevertheless, a steeper
rise in the curve for the ASP solver is already identificable. The SRS dataset is cat-
egorized by the number of unique atoms and the minimum and maximum of for-
mulas in each knowledge base. These categories were collected in folders, by which
the name of the folder is created on the mentioned information separated by an un-
derline. For a more detailed view, table 8 and table 9 show the mean, sum and the
minimum and maximum runtime of each folder.

Folder Mean Sum Min Max
sig3_5_15 5.19 1,038.49 2.79 10.76

sig5_15_25 8.88 1,776.83 5.73 19.69
sig10_15_25 8.42 1,684.64 5.61 16.1
sig15_15_25 9.25 1,850.34 6.12 17.81
sig15_25_50 15.70 3,140.71 8.40 26.60
sig20_25_50 18.45 3,689.15 9.97 32.35
sig25_25_50 21.12 4,224.80 9.99 32.90
sig25_50_100 30.95 6,190.80 15.08 50.91
sig30_50_100 33.28 6,656.47 17.27 69.92

Table 8: Runtime measures of the ASP approach over the SRS dataset (in ms)

It is recognizable, that some folders have a smaller mean runtime, although they
have the identical number of minimal and maximal formulas but a higher number of
unique atoms. These circumstances would raise the expectation of a higher runtime.
This may come from more extensive and nested formulas within these folders or a
larger amount of formulas near the maximum.

The trend of the SRS dataset intensifies on the ML dataset (Figure 6). The curve for
the ASP solver rises steadily, until it reaches the timeout value. The last solved in-
stance required nearly 100 seconds, which shows that the solver works on very hard
instances for a long time. In contrast, the behavior of the MaxSAT solver is almost
binary: it solves a large number of instances extremely quickly but then reaches a
point where the runtime increases so sharply that almost all remaining instances
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Figure 5: Runtime of the SRS Dataset

Folder Mean Sum Min Max
sig3_5_15 1.05 209.34 0.53 2.38

sig5_15_25 1.94 388.52 1.06 3.87
sig10_15_25 1.62 323.11 0.93 5.36
sig15_15_25 1.62 324.74 1.03 3.50
sig15_25_50 3.34 667.15 1.69 5.96
sig20_25_50 3.60 719.71 2.07 6.32
sig25_25_50 3.87 773.04 1.93 6.17
sig25_50_100 6.69 1,338.61 3.28 10.77
sig30_50_100 7.13 1,425.12 3.17 11.42

Table 9: Runtime measures of the (naive) MaxSAT approach over the SRS dataset (in
ms)

time out. This explains why the MaxSAT solver solves fewer instances but has a
very low cumulative runtime.

Figure 7 for the ARG dataset confirms this impression. Although the MaxSAT
solver starts faster on the easiest instances, its curve is significantly steeper, leading
it to solve fewer instances overall compared to the more resilient ASP solver.

A solver-independent evaluation in the form of diagrams showing the frequency
of Ifc per dataset can be found in Appendix A for the SRS dataset, Appendix B
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Figure 6: Runtime of the ML Dataset

for the ML dataset, and Appendix C for the ARG dataset. Appendix D provides a
complementary tabular overview for the SRS dataset. It is worth mentioning that
the Ifc value of 1 can never occur, as there always have to be at least two formulas,
affected by the inconsistency. Otherwise it would need to be a safe formula, which
has to be consistent by definition.

An examination of the diagrams reveals that Ifc varies significantly and can reach
extremely high values. Although lower values are particularly common, the results
clearly demonstrate the magnitude the inconsistency measure can attain when a
large number of formulas contain inconsistent atoms.

4.4. Interpretation

The data analysis of the two algorithmic approaches shows a clear picture. The
MaxSAT solver is significantly faster than the ASP-based approach in a direct com-
parison of simple knowledge bases. Although the encoding makes no significant
time difference in these cases, it is the sticking point of the issue for the MaxSAT
approach.

The MaxSAT solver RC2 demonstrates its strength on the SRS dataset, where it
solves all 1800 instances in just 6.17 seconds, so it is about five times faster than
the ASP approach. This high efficiency results from the specialized architecture of
modern SAT solvers, which are optimized for processing clauses in CNF. However,
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Figure 7: Runtime of the ARG Dataset

as soon as the complexity of the knowledge bases increases, as in the ML and ARG
datasets, the picture reverses. Here, the MaxSAT approach solves significantly fewer
instances than the ASP approach before it times out. The cactus plots in Figure 6 and
Figure 7 visualize this behavior. The runtime curve of the MaxSAT solver remains
extremely flat for many instances but then rises almost vertically upon reaching a
complexity threshold. The low cumulative time for the ML and ARG datasets is
therefore not a sign of consistent efficiency but reflects that the solver processes the
simple cases very quickly and capitulates early on the more difficult ones.

In contrast, the ASP approach demonstrates greater robustness against structural
complexity. Although it requires a higher baseline effort for simple instances, its
runtime curve on more complex datasets rises faster. This indicates that the solver
makes a stepwise progress even with increasingly difficult problems, rather than
failing abruptly. This robustness allowed it to solve significantly more instances on
the ML and ARG datasets within the time limit. However, the memory overflows
that occurred on some very complex ARG instances suggest that the grounding pro-
cess of Clingo can reach its limits with very large and nested rules.

The core of these performance differences lies in the different representation of
the problem. The MaxSAT approach is dependent on the quality of the CNF trans-
formation. Surprisingly, the naive transformation appears to be more efficient here
than the Tseitin transformation. The reason is that the formulas in the used datasets
did not consist of that many nested disjunctions over conjunctions that lead to an
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exponential explosion of clauses. For syntactically simpler formulas, the overhead
of the Tseitin transformation is greater than the benefit because of the additional
helper variables. So the efficiency of computing Ifc with MaxSAT strongly depends
on the syntactic form of the input. This mirrors the sensitivity to syntax of the mea-
sure itself, which is the reason for the violation of postulates such as Adjunction
Invariance (AI) and Exchange (EX).

This is where the strength of the ASP approach lies. It does not require conver-
sion into a flat set of clauses but can directly represent the recursive tree structure of
the formulas through declarative rules. The modeling by means of predicate logic,
such as val(Atom, Value), and the use of powerful constructs like Choice Rules
to represent the three-valued semantics are more robust against syntactic complex-
ity. The logical structure of the problem is passed directly to the solver, which is
optimized to handle such rule-based programs.

In summary, it can be sayed that the choice of the optimal algorithm for calcu-
lating the formula-based contension inconsistency measure depends on many cir-
cumstances. Regarding the objectives of efficiency and scalability mentioned in this
work, the MaxSAT approach shows a high efficiency for large but syntactically sim-
ple knowledge bases. The ASP approach, on the other hand, offers better scalability
with respect to the structural complexity of the formulas. The decision for an ap-
proach in practice thus strongly depends on the expected nature of the knowledge
base to be analyzed. The experimental results show that the practical computation
of Ifc reflects the theoretical nature of the measure. This means that both are sensi-
tive to the syntactic representation of the information.

5. Conclusion and Future Work

This chapter summarizes the key findings of this thesis, answers the research ques-
tions from the beginning, and provides an outlook on possible future researches that
build on these results.

5.1. Conclusion

The goal of this master’s thesis was the development, implementation, and experi-
mental evaluation of two new algorithmic approaches for computing the formula-
based contension inconsistency measure Ifc. For this purpose, Answer Set Program-
ming (ASP) and the principle of (Maximum) Satisfiability (MaxSAT) were used.

To answer the first research question, an encoding for the Weighted Conjunctive
Normal Form (WCNF) was developed that translates Priest’s three-valued logic into
classical logic. Each atomic truth value is represented by a Boolean variable, and
hard clauses ensure that each atom is assigned exactly one value. The satisfaction of
formulas in the knowledge base is also ensured by hard clauses, which allow satis-
faction through the assignment of both to the involved atoms. Finally, a soft clause is
introduced for each formula, whose violation results into a cost. Minimizing these
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costs using a MaxSAT solver corresponds to minimizing the number of formulas
affected by a conflict, which is the value of Ifc.

The second research question deals with the equivalent approach using ASP. The
ASP method takes advantage of the ability to directly represent the syntactic tree
structure of formulas through recursive rules. The knowledge base is transformed
into a set of facts describing its structure. Using predicates and recursive rules,
Priest’s three-valued semantics is reconstructed. A choice rule assigns one of the
three truth values to each atom. The optimization task is implemented through the
#minimize statement, which minimizes the number of f_inconsistent facts.

To answer the third research question, the experimental evaluation showed that
there is no universally better approach. The MaxSAT-based method is faster for
large but syntactically simple knowledge bases but the performance heavily de-
pends on the quality of the CNF transformation. As soon as formulas become struc-
turally more complex the performance worses significantly, which leads to many
timeouts. Surprisingly, the naive CNF transformation turned out to be more effi-
cient than the Tseitin transformation, since the test data did not contain the deep
nesting that would lead to an exponential clause explosion.

In contrast, the ASP-based approach proved to be more robust against structural
complexity. Although it has a higher base cost for simple instances, the runtime
scales better with complex formulas. The key advantage here is the ability to directly
process the recursive structure of formulas without converting them into clauses.

In summary, the computation of Ifc mirrors the theoretical properties of the mea-
sure itself. Both approaches are sensitive to the syntactic representation of the knowl-
edge base. The choice of the optimal algorithm therefore strongly depends on the
expected nature of the knowledge bases which have to be analyzed.

5.2. Outlook for Future Research

The findings of this thesis open up many possibilities for future research. One inter-
esting result is the observation that the naive CNF transformation was better suited
for the datasets used than the Tseitin transformation. Future work could investigate
this systematically by generating datasets with deep nested formulas. This would
allow a precise determination of the break-even point described in Table 6 and the
derivation of a general formula property at which the linear overhead of the Tseitin
transformation becomes essential. This would require experiments on more power-
ful hardware and with longer timeouts.

Since both approaches have clear strengths and weaknesses, the development of
a hybrid solver could be a possible next step. Such an algorithm could first analyze
a knowledge base based on syntactic features like the maximum nesting depth, the
number of atoms and formulas or the ratio of conjunctions to disjunctions to finally
decide which of the two approaches might be more performant.

The algorithms presented here were evaluated on synthetic or derived datasets. A
crucial next step would be to apply them in real world scenarios in order to measure
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their performance on real data. This would not only demonstrate the algorithms in
practice but also underline the practical relevance of Ifc. In addition, the algorithms
already provide some extra information like the minimal sets of atoms assigned both
and the formulas affected by them. These information could be processed further to
give a better understanding of the occuring real world inconsistencies and recom-
mendations how to handle with them.
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6. Appendix

A. Number of Occurences for each Ifc value in the SRS
dataset as diagram
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B. Number of Occurences for upper bound Ifc value in the
ML dataset as diagram
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C. Number of Occurences for upper bound Ifc value in the
ARG dataset as diagram
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D. Number of Occurences for each Ifc value in the SRS
dataset

Ifc Occurences Ifc Occurences Ifc Occurences
0 19 33 20 65 9
2 2 34 24 66 11
3 9 35 28 67 11
4 21 36 23 68 5
5 15 37 15 69 7
6 20 38 28 70 9
7 22 39 26 71 9
8 37 40 22 72 11
9 39 41 18 73 7
10 51 42 15 74 2
11 47 43 14 75 9
12 41 44 17 76 7
13 65 45 18 77 10
14 57 46 12 78 5
15 68 47 14 79 8
16 54 48 7 80 4
17 65 49 8 81 9
18 58 50 2 82 8
19 51 51 9 83 7
20 61 52 6 84 11
21 60 53 10 85 8
22 45 54 9 86 9
23 54 55 10 87 6
24 36 56 9 88 4
25 22 57 9 89 4
26 12 58 8 90 9
27 17 59 4 91 4
28 21 60 9 92 7
29 17 61 12 93 2
30 20 62 10 94 3
31 27 63 7 95 1
32 23 64 3 96 2

Table 10: Number of occurences for each Ifc value in the SRS dataset
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E. Blockdiagram - System Architecture and Data Flow
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F. Classdiagram - Data Modeling
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