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The Mountain Pass Theorem and Applications

Julian Bayerl

Introduction

The Mountain Pass Theorem (MPT) by Ambrosetti and Rabinowitz (1973) is a celebrated result in
nonlinear analysis with many applications in particular to partial differential equations. In the first
section we develop some concepts of the calculus of variations and prove the MPT via the Deformation
Lemma. In the second section we are concerned with a first application of the MPT to prove the existence
of a solution of the semilinear problem

{

−∆u(x) = f(x, u) in Ω,

u = 0 on u|∂Ω,

on a bounded domain Ω ⊂ R
n, with Theorem 2 being our main result. In the following section we

investigate nonlinear elliptic PDEs involving the p-Laplacian ∆pu := ∇
(

|∇u|p−2∇u
)

, where |∇u|p−2 =
{

(

∂u
∂x1

)2

+ · · ·+
(

∂u
∂xn

)2
}

p−2
p

. The PDEs are of the form

−div(a(x)|∇u|p−2∇u) + b(x)|u|p−2u = f(x, u), x ∈ Ω,

and Ω an unbounded domain. In the beginning of section three we assume

f(x, u) = g(x)uα, p− 1 < α < p∗ − 1 and 1 < p < n,

and prove existence using the MPT and C1,δ regularity of the solutions (Theorem 3). We continue by
showing that α = p∗ − 1 is a “critical exponent” by giving a proof of nonexistence if α = p∗ − 1. In the
last part of section three we study the limit case n = p (spatial dimension equals the exponent of the
Sobolev space W 1,p(Ω)). In this case the “critical exponent” is determined by the Trudinger inequality
(and its generalizations). We prove C1,δ- regularity for the subcritical case (Theorem 3.5), i.e. for

lim
u→∞

f(x, u)

e|u|µ
= 0 for some 0 < µ <

n

n− 1
, uniformly onRn

and show that a weak solution exists if f(x, u) is allowed to grow as e
n

n−1 |u| (the critical case) (Theorem
3.9). In the Appendix we give a short account of important properties of Sobolev spaces, especially the
Sobolev embedding Theorem and the Rellich-Kondrachov Theorem.

1 Deformation Lemma and Mountain Pass Theorem

In the original proof of the Mountain Pass theorem, Ambrosetti and Rabinowitz used the Deformation
Lemma. We choose a similar method, but instead of proving the Deformation Lemma directly we will
give a quantitative version from which it follows. First we need some definitions. Throughout the next
two sections we will take X to be a Banach space with norm ‖ · ‖. Unless stated otherwise we will mean
convergence in the norm of X when taking about convergence of functionals on X.

Definition 1.1 (Frechét differentiability).
Let Y be a Banach space and u ∈ U ⊂ X with U open. I : X → Y is said to be Frechét differentiable
at x, if a linear operator A ∈ L(X,Y ) exists such that

I[u+ φ]− I[u]−Au = o(‖φ‖).

A is called Frechét derivative of I at u and is denoted by I ′[u]. Suppose I is Frechét differentiable in
U , then we call I ′ : U → L(X,Y ) the Frechét derivative of I in U and say that I is a C1-functional iff
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I ′ is continuous.
In the rest of the text we will mean Frechét differentiability when we talk about the differentiability of
a functional.

Definition 1.2 (Palais-Smale condition).
Let I : X → R be a C1- functional. We say that I satisfies the Palais-Smale condition (PS), if any
sequence {un} in X such that {I[un]} is bounded and {I ′[un]} → 0, has a convergent subsequence. A
sequence with {I[un]} bounded and {I ′[un]} → 0 is called Palais-Smale sequence .

We also make use of the following weaker form introduced in [9]:
Definition 1.3 (local Palais-Smale condition).
A C1- functional I : X → R satisfies the local Palais-Smale condition (PS)c at the point c ∈ R if
any sequence {un} in X with {I[un]} → c and {I ′[un]} → 0, has a convergent subsequence.
This means that the set of critical points of I at level c is compact. If I satisfies (PS) then it does satisfy
(PS)c for all c ∈ R (which lie in the closure of the image of I), but the converse does not hold.

Some examples:

• The function f : R → R f(x) = x3 satisfies the (PS) condition. In fact if X is a finite-dimensional
Banach space I ∈ C1(X,R) and |I| : X → R is coercive (i.e. tends to +∞ if ‖x‖X tends to +∞,
then I satisfies (PS) (see Prop. 2.1 in [16]).

• For X = R, I[u] = sinu, satisfies (PS)c for all c in R\{−1, 1}. At 1 (resp. -1) the (PS)c condition
fails, since one can construct a sequence {xi} of certain increasing odd integer multiplies of π

2 such
that I[xi] = 1 (resp. -1) ∀i, then I ′[xi] = cosxi = 0 for all i, contradicting (PS)c since xi does not
have a convergent subsequence.

• The functional

I[u] =

∫

Ω

[

|∇u(x)|2 −
|u+(x)|p

p
−

µ|u+(x)|q

q

]

,

for the problem

−∆u = up−1 + µuq−1 in Ω, u > 0 inΩ, u = 0 on ∂Ω,

Ω ⊂ R
n a smooth domain, u ∈ W 1,2

0 (Ω) and n ≥ 4, p = 2n
n−2 , 0 < q < p, µ > 0, satisfies (PS)c for

all c < Γn/2

n , where Γ is the Sobolev embedding constant of the injection of W 1,2
0 (Ω) into Lp(Ω)

(see [8]).

We will need the following concept introduced by Palais ([30]). In the following K will denote the set of
critical points of a functional I, i.e. K := {t ∈ X | I ′[t] = 0}.
Definition 1.4 (pseudo-gradient vector field).
Let I ∈ C1(X,R). We call v ∈ X a pseudo-gradient vector of I at u ∈ X\K if v satisfies:

(i) ‖v‖ ≤ 2‖I ′[u]‖,

(ii) ‖I ′[u]‖2 ≤ 〈I ′[u], v〉,

where 〈·, ·〉 denotes the duality pairing. If F : X\K → X is locally Lipschitz continuous and F (x) is a
pseudo-gradient vector for all x ∈ X\K, then F is called a pseudo-gradient vector field of I.
Note that any convex combination of pseudo-gradient vectors (resp. fields) is again a pseudo-gradient
vector (field). We follow Rabinowitz [31], Lemma A.2 and show that there is always such a v ∈ X as
long as I is C1.

Definition 1.5 (paracompactness).
A topological space is called paracompact if every open cover has a locally finite refinement.
By the Theorem of Stone (see [32] for a proof) metric spaces are paracompact.

Lemma 1.6. If I is a C1- functional, there exists a pseudo-gradient vector field on the set of regular
points (i.e. u ∈ X with I ′[u] 6= 0) of I.
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Proof. Let us denote the set of regular values of I in X by X̃, i.e. X̃ = X\K. Then for every
u ∈ X̃ there is a y ∈ X with ‖y‖ = 1 and

〈I ′[u], y〉 >
2

3
‖I ′[u]‖.

Thus v := 3
2‖I

′[u]‖y is a pseudo-gradient vector of I at u, since

(i)
3

2
‖I ′[u]‖‖y‖ < 2‖I ′[u]‖, and

(ii) ‖I ′[u]‖2 ≤

〈

I ′[u],
3

2
‖I ′[u]‖y

〉

.

Since I ′ is continuous, there is an open neighbourhood Vu of u, such that v is a pseudo-gradient vector for
every w ∈ Vu. Clearly {Vu | u ∈ X̃} is an open cover of X̃, and since X̃ as a metric space is paracompact,
we can take a locally finite refinement of this cover, {Qk} say. We set ρk(u) := dist(u, X̃\Qk), then ρk
is Lipschitz continuous and ρk(u) = 0 if u /∈ Qk. Define

βk(u) :=
ρk(u)
∑

i ρi(u)
.

Every Qk lies in some Vu, which we denote by Vuk
for all k, then vk = 3

2‖I
′[uk]‖yk is a pseudo-gradient

vector of I in Qk. Set

B(u) :=
∑

k

vkβk(u),

therefore, since 0 ≤ βk(u) ≤ 1 and
∑

k βk(u) = 1 for all u ∈ X̃, B(u) is a convex combination of pseudo-
gradient vectors. Since B is also locally Lipschitz continuous it is a pseudo-gradient vector field of I.

We give the following variant of the Deformation Lemma as stated by Willem [37]. Set Ia := {u ∈
X | I[u] ≤ a}.
Theorem 1.7 (Quantitative version of the Deformation Lemma). Let U ⊂ X, δ > 0 and
Uδ := {u ∈ X | dist(u, U) ≤ δ}. Suppose I : X → R is a C1-functional and there exists c ∈ R, such that
for some ε > 0 and u ∈ I−1([c− 2ε, c+ 2ε]) ∩ U2δ

4ε

δ
≤ ‖I ′[u]‖. (1)

Then there is a continuos deformation η ∈ C([0, 1]×X,X) with

(i) η(0, u) = u ∀u ∈ X,

(ii) η(t, u) = u ∀u /∈ I−1([c− 2ε, c+ 2ε]) ∩ U2δ, ∀t ∈ [0, 1],

(iii) η(1, Ic+ε ∩ U) ⊂ Ic−ε ∩ Uδ,

(iv) η(t, ·) is a homeomorphism ∀t ∈ [0, 1].

Proof. The proof follows [16]. Since I is a C1-functional there is a pseudo-gradient vector field on
X̃ and by assumption (1) I−1([c−2ε, c+2ε])∩U2δ ⊂ X̃. Define the locally Lipschitz continuous funciton
V : X → R,

V (u) =

{

1 on I−1([c− 2ε, c+ 2ε]) ∩ Uδ,

0 on X\I−1([c− 2ε, c+ 2ε]) ∩ U2δ.

Then W : X → X

W (u) =

{

−V (u)v(u)
‖v(u)‖ on I−1([c− 2ε, c+ 2ε]) ∩ U2δ,

0 on X\I−1([c− 2ε, c+ 2ε]) ∩ U2δ,

too is locally Lipschitz and bounded, thus the boundary value problem

{

df
dt = W (f),

f(0) = u
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has a unique solution f(·, u) for every u ∈ X defined on the maximal interval (t−(u), t+(u)). We show
that t±(u) = ±∞. Suppose, by contradiction, t+(u) < +∞. Let tn be a sequence with tn → t+(u) and
tn < t+(u). Integrating the ODE leads to

‖f(tn+1, u)− f(tn, u)‖ ≤ |tn+1 − tn|,

since ‖W (u)‖ ≤ 1 on X. Thus f(tn, u) is a Cauchy sequence and hence converges to some ũ ∈ X.
Taking ũ as new initial data in the ODE, the solution is a continuation of f(t, u) to values t > t+(u)
contradicting the maximality. t−(u) = −∞ is proved in the same way. Let f(·, u) be a solution on [0,∞[,
and define η : [0, 1]×X → X

η(t, u) = f(δt, u).

From the definition of W it is clear that (i) and (ii) hold true for η. We show that (iii) is satisfied: For
t > 0

‖f(t, u)− u‖ = ‖

∫ t

0

W (f(s, u)) ds‖ ≤

∫ t

0

‖W (f(s, u))‖ ds ≤ t,

and therefore f(t, U) ⊂ Uδ for all t ∈ [0, δ].

d

dt
I[f(t, u)] = 〈I ′[f(t, u)], f ′(t, u)〉 = 〈I ′[f(t, u)],W (f(t), u)〉 ≤ 0,

from the definition of f and (1). Thus for u ∈ Ic+ε ∩ U , and if I[f(t, u)] < c − ε for some t ∈ [0, δ[, it
follows that f(δ, u) ⊂ Ic−ε ∩ Uδ. If such a “t” does not exist we have

c− ε ≤ I[f(t, u)] ≤ I[f(0, u)] = I[u] ≤ c+ ε,

and so f(t, u) ∈ I−1([c− 2ε, c+ 2ε]) ∩ Uδ ∀t ∈ [0, δ[. Using (1) we get

I[f(δ, u)] = I[u] +

∫ δ

0

d

dt
I[f(s, u)] ds = I[u] +

∫ δ

0

〈I ′[f(s, u)],W (f(s, u))〉 ds

= I[u] +

∫ δ

0

〈

I ′[f(s, u)],
v(f(s, u))

‖v(f(s, u))‖

〉

ds ≤ c+ ε−

∫ δ

0

‖I ′[f(s, u)]‖2

‖v(w(s, u))‖
ds,

≤ c+ ε−
1

2

∫ δ

0

‖I ′[f(s, u)]‖ ds ≤ c+ ε−
4ε

2
= c− ε,

and thus f(δ, u) ⊂ Ic−ε ∩ Uδ.

We obtain the “standard” Deformation Lemma as a corollary:
Corollary 1.8 (Deformation Lemma). Let c ∈ R and I : X → R be a C1-functional satisfying (PS)c.
If c is a regular value of I then, for a given ε′ > 0 and some ε ∈ (0, ε′), there is η ∈ C([0, 1] × X,X)
such that:

(i) η(0, u) = u ∀u ∈ X,

(ii) η(t, u) = u ∀u /∈ I−1([c− ε′, c+ ε′]), ∀t ∈ [0, 1],

(iii) η(1, Ic+ε ∩ U) ⊂ Ic−ε,

(iv) η(t, ·) is a homeomorphism ∀t ∈ [0, 1].

Proof. There are ε̃, δ̃ > 0 such that we have ‖I[u]‖ ≥ δ̃ for u ∈ I−1([c − ε̃, c + ε̃]), because other-
wise one would have a sequence {un} with c − 1

n ≤ I[un] ≤ c + 1
n and ‖I ′[un]‖ ≤ 1

n , thus c would be a

critical value of I. So by Theorem 1.7 with U = X, ε′ small enough and, δ̃ = 4ε
δ we get the result.

The great strength of the quantitative version of the Deformation Lemma, lies in the fact that we
do not assume the “a priori” compactness of the (PS)c condition. This allows us to apply the MPT
to functionals which do not satisfy the (PS) or (PS)c condition. We thus get a sequence {un} with
{I[un]} → c and {I ′[un]} → 0 of which we prove afterwards that it converges to a nontrivial solution.
Similarly Ekeland’s Variational Principle can be used instead of the Deformation Lemma to obtain this
kind of machinery.
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We are now able to prove the Mountain Pass theorem.

Theorem 1.9 (The Mountain Pass Theorem). Let X be a Banach space, I : X → R a C1-
functional satisfying the Palais-Smale condition and I[0] = 0. Suppose

(A) ∃ ρ, α > 0 such that I|∂Bρ ≥ α,

(B) ∃ e ∈ X\Bρ with I[e] ≤ 0,

where Bρ denotes the ball of radius ρ around 0.
Then I has a critical value c ≥ α and c is characterized by

c = inf
γ∈Γ

max
u∈γ([0,1])

I[u],

where
Γ = {γ ∈ C([0, 1], X) | γ(0) = 0, γ(1) = e}.

Proof. c < ∞, and for γ ∈ Γ γ([0, 1]) ∩ ∂Bρ 6= ∅. Therefore

max
u∈γ([0,1])

I[u] ≥ inf
v∈∂Bρ

I[v] ≥ α,

and thus c ≥ α. Suppose that c is a regular value of I. Then, by Corollary 1.8, for ε′ = α there is
ε ∈ (0, ε′) and a deformation η with η(1, Ic+ε) ⊂ Ic−ε. By the definition of c, we can choose a γ ∈ Γ such
that

max
u∈γ([0,1])

I[u] ≤ c+ ε.

h(t) = η(1, γ(t)) is in C([0, 1], X) and h(0) = 0 since γ(0) = 0, I[0] = 0 ≤ α ≤ c− ε′ and (i) of Corollary
1.8, h(1) = e follows similarly. So h ∈ Γ and thus

max
h∈γ([0,1])

I[u] ≥ c,

which contradicts h([0, 1]) ⊂ Ic−ε.

Note that we could have used the weaker (PS)c condition instead of (PS), with c being the c in the proof.

Remark. The name of the theorem comes from the intuitive interpretation in two dimensions. Imagine
a valley around I[0] = 0 surrounded by a mountain range. v with I[v] ≤ 0 is another valley outside the
mountain range. To travel from 0 to v we must pass over the mountains and the theorem gives us the
mountain pass with the smallest elevation.

2 A Semilinear Problem

We will now apply the Mountain Pass theorem to

{

−∆u(x) = f(x, u) in Ω,

u = 0 on u|∂Ω,
(2)

Equations like this occur frequently in physics. For example standing waves of the nonlinear Schrödinger
equation are described in such a way. These are solutions Φ(x, t) = eiαtu(x) of

i
∂Φ

∂t
= ∇Φ+ g(|Φ|)Φ,

and therefore u satisfies
∆u+ g(|u|)u+ αu = 0.

Let Ω ⊂ R
n be a bounded domain with smooth boundary. We will assume the following properties to
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hold:

(i) f ∈ C(Ω× R,R) and for all x there are constants c1, c2 ≥ 0, such that for all t

|f(x, t)| ≤ c1|t|
p + c2, 1 ≤ p <

2n

n− 2
− 1 if n ≥ 3, and 1 ≤ p < ∞ if n = 2,

(ii) For F (x, u) :=
∫ u

0
f(x, t) dt there is a β > p with

βF (x, t) ≤ tf(x, t)

for all (x, t) ∈ Ω× R, and

(iii) For all x ∈ Ω
f(x, t) = o(|t|) as t → 0.

Dirichlet’s principle tells us that a weak solution u ∈ W 1,2
0 (Ω) can be obtained as the minimizer of the

functional

I[u] =
1

2

∫

Ω

|∇u|2dx−

∫

Ω

F (x, u)dx =: I1[u]− I2[u].

We are going to use the norm ‖u‖ :=
(∫

Ω
|∇u|2dx

)
1
2 on W 1,2

0 (Ω), which by the Poincaré inequality is
equivalent to the usual norm. We prove:

Theorem 2. If (i),(ii),(iii) hold, then (2) has a nontrivial weak solution.

The following technical lemma, depicts a basic property of the more general concept of Nemytskii (su-
perposition) operators (see [11]).
Lemma 2.1 Ω ⊂ R

n a bounded domain, suppose the following properties hold for the function g:

(i’)
g ∈ C(Ω× R,R),

(ii’) For some constants c′1, c
′
2 ≥ 0, r, s ≥ 1

|g(x, t)| ≤ c′1 + c′2|t|
r
s ,

then u(x) 7→ g(x, u(x)) is in C(Lr(Ω), Ls(Ω)).

Proof. For u ∈ Lr(Ω)
∫

Ω

|g(x, u(x))|s dx ≤

∫

Ω

(c′1 + c′2|u(x)|
r
s )s dx ≤ c′3

∫

Ω

(1 + |u(x)|r)dx,

and so g : Lr(Ω) → Ls(Ω). To prove the continuity we can assume u = 0 and g(x, 0) = 0 since g is
continuous at u if and only if f(x, φ(x)) = g(x, φ(x) + u(x)) − g(x, u(x)) is continuous at φ = 0. From
(i’); there is a δ′ for any given ε′ such that |t| ≤ δ′ implies |g(x, t)| ≤ ε′. Suppose again u ∈ Lr(Ω) and
‖u‖Lr(Ω) ≤ δ, with δ free for now, define Ω1 := {x ∈ Ω | |u(x)| ≤ γ} then

∫

Ω1

|g(x, u(x))|s dx ≤ ε′
s
µ(Ω),

where µ(Ω) denotes the (Lebesgue) measure of Ω. Choose ε′ in such a way that ε′sµ(Ω) ≤
(

ε
2

)s
. The

same argument as above for Ω\Ω1 gives us
∫

Ω\Ω1

|g(x, u(x))|s dx ≤ c′3(µ(Ω\Ω1) + δr).

Since

δr ≥

∫

Ω\Ω1

|u(x)|r ≥ γrµ(Ω\Ω1),
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we have µ(Ω\Ω1) ≤
(

δ
γ

)r

, and therefore

∫

Ω\Ω1

|g(x, u(x))|s dx ≤ c′3δ
r

(

1 +
1

γr

)

.

Choose δ small enough to get c′3δ
r
(

1 + 1
γr

)

≤
(

ε
2

)s
and the proof is complete.

Lemma 2.2 I[·] is weakly continuous.

Proof. Let (ui) ⇀ u in W 1,2
0 (Ω) , then (ui) is bounded in W 1,2(Ω) and since p + 1 < 2n

n−2 , by the

Rellich-Kondrachov theorem, (ui) → u in Lp+1(Ω).

|I[ui]− I[u]| ≤

∫

Ω

|F (x, ui)− F (x, u)| dx,

with the Mean Value theorem and assumption (i) we get

|I[ui]− I[u]| ≤

∫

Ω

(c1|ui|
p + c2) (ui − u)dx ≤

(∫

Ω

(ui − u)p+1dx

)
1

p+1
(∫

Ω

(c1|ui|
p + c2)

p+1
p dx

)
p

p+1

,

and thus I[ui] → I[u].

Remark. In the proof of the lemma we used the inequality p + 1 < 2n
n−2 . This does only make

sense for n > 2, but since the compact embedding W 1,2(Ω) →֒ Lq(Ω) holds true for n = 1, 2 and all
q ∈ [p,∞) the argument extends to this cases. We make it a convention to ignore the cases n ≤ 2 when
stating an inequality like the above.

Lemma 2.3 I[·] is in C1(Ω× R,R).

Proof. The Proof follows Rabinowitz [31], Proposition B.10. Clearly I1[u] =
1
2‖u‖

2 is continuously
(Frechét) differentiable with I ′1[u](φ) =

∫

Ω
∇u · ∇φdx. We have to show that for every ε > 0 there is a

δ > 0 such that
∣

∣

∣

∣

∫

Ω

F (x, u+ φ)−

∫

Ω

F (x, u)−

∫

Ω

f(x, u)φ

∣

∣

∣

∣

< ε‖φ‖

for all φ ∈ W 1,2
0 (Ω) with ‖φ‖ ≤ δ. Define

Ω1 := {x ∈ Ω | |u(x)| ≥ γ}, Ω2 := {x ∈ Ω | |φ(x)| ≥ κ}, Ω3 := {x ∈ Ω | |u(x)| ≤ γ, |φ(x)| ≤ κ}.

Use the Mean Value theorem and assumption (i) to get

∫

Ω1

|F (x, u+ φ)− F (x, u)| dx ≤

∫

Ω1

(c1 + c2(|u(x)|+ |φ(x)|)p) |φ(x)| dx

≤ c1µ(Ω1)
n+2
2n ‖φ‖

L
2n

n−2 (Ω1)
+ c3µ(Ω1)

1
s

(

‖u‖pLp+1(Ω1)
+ ‖φ‖pLp+1(Ω1)

)

‖φ‖
L

2n
n−2 (Ω1)

,

where n−2
2n + p

p−1 + 1
s = 1 and we used the Hölder inequality. Then, via the Sobolev inequality, we have

∫

Ω1

|F (x, u+ φ)− F (x, u)| dx ≤ c4‖φ‖
(

µ(Ω1)
n+2
2n + µ(Ω1)

1
s (‖u‖p + ‖φ‖p)

)

.

Using the same argument as above:
∫

Ω1

|f(x, u)φ| dx ≤ c5‖φ‖
(

µ(Ω1)
n+2
2n + µ(Ω1)

1
s ‖u‖p

)

.

Since µ(Ω1)
n+2
2n , µ(Ω1)

1
s → 0 as γ → ∞ we can choose γ sufficiently large, such that for ‖φ‖ ≤ 1,

c6

(

µ(Ω1)
n+2
2n + µ(Ω1)

1
s (‖u‖p + 1)

)

≤
ε

3
.
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In a very similar way:

∫

Ω2

|F (x, u+ φ)− F (x, u)− f(x, u)φ| dx ≤

(∫

Ω2

(c1 + c2(|u(x)|+ |φ(x)|)p)
p+1
p dx

)
p

p+1

‖φ‖Lp+1(Ω2)

≤ c3 (1 + ‖u‖p + ‖φ‖p)

(

∫

Ω2

|φ(x)|p+1

(

|φ(x)|

κ

)
2n

n−2−p−1

dx

)
1

p+1

≤ c4 (1 + ‖u‖p + ‖φ‖p)κ
p+1− 2n

n−2
p+1 ‖φ‖

2n
n−2
p+1 .

Thus, by choosing δ small enough

c4 (2 + ‖u‖p)κ
p+1− 2n

n−2
p+1 ‖φ‖

2n
n−2
p+1 −1 ≤

ε

3
.

Finally note that, since F ∈ C1(Ω× R,R) given any ε1, γ1 there is a κ1 = κ1(ε1, γ1) such that

|F (x, u+ φ)− F (x, u)− f(x, u)φ| ≤ ε1|φ|,

with x ∈ Ω, |u| ≤ γ1, |φ| ≤ κ1. By setting γ1 = γ and κ1 ≤ κ we get

∫

Ω3

|F (x, u+ φ)− F (x, u)− f(x, u)φ| dx ≤ ε1‖φ‖Lp(Ω3)‖χ(Ω3)‖Lp′ (Ω),

where, as usual, 1
p + 1

p′ = 1 and χ(Ω3) the characteristic function of Ω3. Now choose ε1 such that

ε1‖χ(Ω3)‖Lp′ (Ω) ≤
ε
3 , and by putting together the estimates over Ω1,Ω2,Ω3 the differentiability follows.

Let (ui) → u in W 1,2
0 (Ω), then

‖I ′[ui]− I ′[u]‖W−1,2′ (Ω) = sup
‖φ‖≤1

∣

∣

∣

∣

∫

Ω

f(x, ui(x))− f(x, u(x))φ(x) dx

∣

∣

∣

∣

≤ C‖f(x, ui(x))− f(x, u(x))‖
L

p+1
p (Ω)

,

From assumption (i) we know that

|f(x, u(x))| ≤ c1|u(x)|
sp
s + c2,

and by taking s = p+1
p the result follows from Lemma 2.1.

We use the following lemma in the verification of the Palais-Smale condition.
Lemma 2.4 I ′2 : W 1,2

0 (Ω) → W−1,2′(Ω) is compact.

Proof. Let {ui} be a bounded sequence in W 1,2
0 (Ω). We get the compact embedding W 1,2

0 (Ω) → Lq(Ω)
for all q ∈ [1, 2n

n−2 ], from the Rellich-Kondrachov theorem (see Appendix). Thus {ui} has a Cauchy
subsequence, {uij} say, in Lq(Ω). Note that

|I ′[uij ]φ− I ′[uil]φ| =

∣

∣

∣

∣

∫

Ω

(

f(x, uij)− f(x, uil)
)

φ dx

∣

∣

∣

∣

,

therefore it follows from the assumptions on f that I ′[uij ] is Cauchy in W−1,2′(Ω).

Proof (of Theorem 2). We prove first that the Palais-Smale condition holds for I[·]. Suppose
{ui} ⊂ W 1,2

0 (Ω) with I ′[ui] → 0 as i → ∞ and |I[ui]| ≤ C. Then

C ≥ I[ui] ≥
1

2
‖ui‖

2
W 1,2

0 (Ω)
−

1

β

∫

Ω

f(x, ui)uidx ≥

(

1

2
−

1

β

)

‖ui‖
2
W 1,2

0 (Ω)
+

1

β
I ′[ui]ui,
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and thus {ui} is bounded. Since W 1,2
0 (Ω) is reflexive there exists a weakly convergent subsequence

(see for example [39]). I ′[u] = I ′1[u] + I ′2[u] with I ′1 linear, invertible and I ′2 compact, it follows

{(ui)+ I ′1
−1

I ′2[ui]} → 0 as i → ∞. {ui} is bounded and since I ′2[·] is compact (Lemma 2.4), {I ′1
−1

I ′2[ui]}
is relatively compact, i.e. has a convergent subsequence, then {ui} too has a convergent subsequence.

Now to prove the remaining conditions of the MPT: (A) from (i) we know that for every ε > 0 there is
a δ > 0 with

|F (x, t)| ≤
ε|t|2

2

for a.e. x ∈ Ω and all t ∈ Bδ(0). On the other hand (i) and (ii) imply

|F (x, t)| ≤ C|t|p

for all t ∈ R
n\Bδ(0). Thus

|F (x, t)| ≤
ε|t|2

2
+ C|t|p

for every t ∈ R
n and a.e. x ∈ Ω.

∣

∣

∣

∣

∫

Ω

F (x, u)dx

∣

∣

∣

∣

≤
ε

2

∫

Ω

|u|2dx+ C

∫

Ω

|u|pdx.

Now use the Sobolev inequality to get
∣

∣

∣

∣

∫

Ω

F (x, u)dx

∣

∣

∣

∣

≤
ε

2
‖u‖2

W 1,2
0 (Ω)

+ C‖u‖p
W 1,2

0 (Ω)
.

Then, for ‖u‖W 1,2
0 (Ω) small enough,

I[u] ≥
1

2
‖u‖W 1,2

0 (Ω) − Cε‖u‖W 1,2
0 (Ω),

and therefore I[u] ≥ c > 0 for some c. To prove that (B) holds, note that we have β
t ≤ f(x,t)

F (x,t) by condition

(ii), integrating from s0 to s, with s0 ≤ s, gives

F (x, s) ≥ F (x, s0)s
βs0

β .

Thus

I[ut] ≤
t2

2

∫

Ω

|∇u|2dx− Ctβ
∫

Ω

uβdx,

therefore I[tu] → −∞ as t → ∞. The Mountain Pass theorem now tells us that (1) has a nontrivial
weak solution.

Some remarks on the case n = 2 and critical growth:
For n = 2 we assumed that the nonlinearity has at most arbitrary polynomial growth. We can weaken
this assumption. In the case n = p the Rellich-Kondrachov theorem gives us, for Ω ⊂ R

n, the embedding

W 1,p(Ω) ⊂ Lq(Ω) ∀q ∈ [p,+∞).

This fails for q = +∞. To see this one has only to consider the following example given by Bernhard
Ruf, u(x) = log(1− log(|x|)) in Ω = B1(0). u is in W 1,2(Ω) since

∫

Ω

|∇u|2dx = 2π

∫ 1

0

r

∣

∣

∣

∣

d

dr
log(1− log r)

∣

∣

∣

∣

2

dr = 2π

∫ 1

0

r

∣

∣

∣

∣

1

1− log r

−1

r

∣

∣

∣

∣

2

dr

= 2π

∫ 1

0

1

(1− log r)2
1

r
dr < ∞,

but clearly log(1− log(|x|)) /∈ L∞(Ω).
An equivalent way of stating the Sobolev embedding is

sup
u∈W 1,2(Ω), ‖u‖W1,2(Ω)≤1

∫

Ω

|u|pdx < +∞ for 1 ≤ p ≤ 2∗,
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and the supremum is infinite for p > 2∗.
We state our question using this new notion: what is the maximal growth of f(u) : R → R+ such that

sup
u∈W 1,2

0 (Ω), ‖u‖
W

1,2
0 (Ω)

≤1

∫

Ω

f(u) dx < +∞ ?

The answer is given by the Trudinger-Moser inequality ([26], [36]): For a bounded domain Ω ⊂ R
n

sup
u∈W 1,n

0 (Ω), ‖u‖
W

1,2
0 (Ω)

≤1

∫

Ω

(

eα|u|
n

n−1
− 1
)

dx ≤ +∞,

for all α ≤ αn = n (ωn−1)
1

n−1 , where ωn−1 denotes the surface area of the n-sphere and the supremum
can be attained. For α > αn the supremum is infinite.
Thus f(u) can actually behave like e4π|u|

2

, when |u| → ∞ (see also [25]).

3 A nonlinear p-Laplacian problem

Partial Differential Equations involving the p-Laplacian operator are of importance in fluid-mechanics
especially non-Newtonian fluid flows ([3]) and fluid flows through porous media ([2]. The operator
appears also in equations describing singular solutions to the Einstein-Yang-Mills equations ([5]). We
will consider the elliptic problem

{

−div(a(x)|∇u|p−2∇u) + b(x)|u|p−2u = g(x)uα,

x ∈ Ω ⊂ R
n, u|∂Ω = 0, lim|x|→∞ u = 0, p− 1 < α < p∗ − 1

(3)

with 1 < p < n and Ω an exterior domain (i.e. the interior of the complement of a bounded domain with
C1,δ boundary. p∗ = np

n−p denotes the Sobolev critical exponent.

Various studies about problems similar to this one have appeared. We mention [12],[40],[18],[20] and
[6]. All of this works focus on unbounded domains. This fact poses a problem mostly because we lose
the compact Sobolev embedding.

For the coefficients a and b we will assume 0 < a0 ≤ a(x) ∈ L∞ ∩C(Ω) and 0 < b0 ≤ b(x) ∈ L∞ ∩C(Ω).

We take E to be the completion of C∞
0 under the norm ‖u‖ := (

∫

Ω
a(x)|∇u|p + b(x)|u|pdx)

1
p . Set

f(x, u) := g(x)uα, we then assume:

(i) f ∈ C(Ω× R,R),

(ii) 0 ≤ g(x) (not identically equal to zero), g(x) ∈ L∞ ∩ Lp0(Ω) with p0 := np
np−(α+1)(n−p) ,

(iii) there is a β > p such that for F (x, u) :=
∫ u

0
f(x, t)dx, βF (x, u) ≤ uf(x, u) for (x, u) ∈ Ω× R

+.

Our main Result will be:
Theorem 3.Under the assumptions (i), (ii), (iii) (3) has a positive decaying solution u ∈ C1,δ(Ω∩Br(0))
for every r > 0, and δ ∈ (0, 1).

The energy functional of (3) is

I[u] =
1

p
‖u‖p −

∫

Ω

F (x, u)dx =: I1[u]− I2[u].

. We want to apply the MPT to obtain a weak solution as critical point of I[u], i.e. as u ∈ E with

I ′[u](φ) =

∫

Ω

(a(x)|∇u|p−2∇u∇φ) + b(x)|u|p−2uφ− f(x, u)φdx = 0

for all φ ∈ E. Thus we start by proving the assumptions of the MPT. The biggest difficulty of handling
the unbounded domain, is the loss of compact Sobolev embedding. In the next proofs we will often treat
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the cases Ωk = {x ∈ Ω | |x| ≤ k ∈ N} and Ω\Ωk separately. The work over Ωk will be similar to that
already done in section 2. In the proof of the following lemma we make use of [31], Prop. B.10; [40],
Lemma 1; and [38], Thm. 2.10.

Lemma 3.1 I2[·] is weakly continuous and continuously differentiable on E with I ′2[u](φ) =
∫

Ω
f(x, u)φdx

for ∀φ ∈ E.

Proof. Assume ui → u weakly in E. Note that

|I2[ui]− I2[u]| ≤

∫

Ωk

|F (x, ui)− F (x, u)|+

∫

Ω\Ωk

g(|ui|
α+1 + |u|α+1).

Since 1
p0

+ α+1
p∗ = 1, we can use the Hölder inequality to yield

|I2[ui]− I2[u]| ≤

∫

Ωk

|F (x, ui)−F (x, u)|+

(

∫

Ω\Ωk

gp0

)
1
p0







(

∫

Ω\Ωk

|ui|
p∗

)
α+1
p∗

+

(

∫

Ω\Ωk

|u|p
∗

)
α+1
p∗






.

By applying the Sobolev inequality we have

|I2[ui]− I2[u]| ≤

∫

Ωk

|F (x, ui)− F (x, u)|+ C‖g‖Lp0 (Ω\Ωk)

{

‖ui‖
α+1 + ‖u‖α+1

}

.

Because {ui} is bounded in E, {ui |Ωk
} is bounded in W 1,p(Ωk) for all k. The Rellich-Kondrachov

theorem gives us the compact embedding W 1,p(Ωk) →֒ Lq(Ωk) for 1 ≤ q < p∗ and thus there is a
converging subsequence

{

uij

}

→ u in Lq(Ωk). Because of F (x, t) ≤ 1
α+1g(x)|t|

α+1 from the Vitali

convergence theorem follows
∫

Ωk
F (x, uij) →

∫

Ωk
F (x, u) for all k. Since

∫

Ω
(χΩ\Ωk

g)p0 → 0 as k → ∞

we have I2[ui] → I2[u] for sufficiently large k.
To prove the differentiability we have to show: for any fixed ε > 0 there is a δ > 0 such that

∣

∣

∣

∣

∫

Ω

F (x, u+ φ)−

∫

Ω

F (x, u)−

∫

Ω

f(x, u)φ

∣

∣

∣

∣

< ε‖φ‖

for all φ ∈ E with ‖φ‖ ≤ δ. Using the Mean-Value-Theorem we get

∣

∣

∣

∣

∫

Ω\Ωk

F (x, u+ φ)−

∫

Ω\Ωk

F (x, u)−

∫

Ω\Ωk

f(x, u)φ

∣

∣

∣

∣

≤

∫

Ω\Ωk

g {(|u|+ |φ|)α|φ|+ |u|α|φ|}

≤ C

∫

Ω\Ωk

g{|u|α|φ|+ |φ|α+1},

since (|u| + |φ|)α ≤ 2α(|u|α + |φ|α) (from (|x| + |y|)α ≤ |x|α + |y|α for 0 < α ≤ 1 and the convexity of
| · |α for 1 ≤ α). We use the Hölder inequality

≤ C

(

∫

Ω\Ωk

gp0

)
1
p0







(

∫

Ω\Ωk

|u|p
∗

)
α
p∗
(

∫

Ω\Ωk

|φ|p
∗

)
1
p∗

+

(

∫

Ω\Ωk

|φ|p
∗

)
α+1
p∗






and then (by the Sobolev inequality)

≤ C‖g‖Lp0 (Ω\Ωk) {‖u‖
α + ‖φ‖α} ‖φ‖.

Since
∫

Ω
(χΩ\Ωk

g)p0 → 0 as k → ∞ we have

C‖g‖Lp0 (Ω\Ωk) {‖u‖
α + ‖φ‖α} ‖φ‖ ≤

ε

2
‖φ‖.

for sufficiently large k.
To prove the differentiability over Ωk, we define the following three subsets of Ωk:

Ωk1 := {x ∈ Ωk | |u(x)| ≥ γ}, Ωk2 := {x ∈ Ωk | |φ(x)| ≥ κ}, Ωk3 := {x ∈ Ωk | |u(x)| ≤ γ, |φ(x)| ≤ κ}.
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Then
∣

∣

∣

∣

∫

Ωk1

F (x, u+ φ)−

∫

Ωk1

F (x, u)−

∫

Ωk1

f(x, u)φ

∣

∣

∣

∣

≤ C

∫

Ωk1

g
{

|u|α|φ|+ |φ|α+1
}

≤ C1

∫

Ωk1

{

|u|α|φ|+ |φ|α+1
}

,

similar as above. We get

C1

∫

Ωk1

{

|u|α|φ|+ |φ|α+1
}

≤ C2{‖u‖
α
Lα(p∗)′ (Ωk1)

‖φ‖+ ‖φ‖α+1},

by applying the Hölder and Sobolev inequality (note that α(p∗)′ = αp∗

p∗−1 < p∗) .

∫

Ωk1

|u|α(p
∗)′ ≤ ‖u‖

α(p∗)′

Lα+1(Ωk1)
‖χΩk1

‖
L

(

α+1
α(p∗)′

)′

(Ωk1)

,

again by the Hölder inequality. Since

∞ >

∫

Ωk1

|u|p ≥

∫

Ωk1

γp ≥ γpµ(Ωk1)

, we have µ(Ωk1) → 0 as γ → ∞, which implies

‖u‖α
Lα(p∗)′ (Ωk1)

→ 0

as γ → ∞. One can use the same argument for |φ|α+1 instead of |u|α|φ| and then choose γ sufficiently
large, such that

∣

∣

∣

∣

∫

Ωk1

F (x, u+ φ)−

∫

Ωk1

F (x, u)−

∫

Ωk1

f(x, u)φ

∣

∣

∣

∣

≤
ε

6
‖φ‖.

For Ωk2:
∣

∣

∣

∣

∫

Ωk2

F (x, u+ φ)− F (x, u)− f(x, u)φ dx

∣

∣

∣

∣

≤ C

∫

Ωk2

{

|u|α|φ|+ |φ|α+1
}

dx

≤ C{‖u‖αLα+1(Ωk2)
+ ‖φ‖αLα+1(Ωk2)

}‖φ‖Lα+1(Ωk2).

Note that

lim
‖φ‖

W
1,p
0 (Ωk2)

→0

‖φ‖Lα+1(Ωk2)

‖φ‖Lp∗ (Ωk2)

= 0,

since, for every θ, 0 < θ < 1,

∫

Ωk2

(

|φ|

θ‖φ‖Lp∗ (Ωk2)

)α+1

dx ≤

∫

Ωk2

(

|φ|

‖φ‖Lp∗ (Ωk2)

)p∗
(

‖φ‖Lp∗ (Ωk2)

κ

)p∗−α−1(
1

θ

)α+1

dx,

and thus, by choosing ‖φ‖Lp∗ (Ωk2)
small enough,

∫

Ωk2

(

|φ|

θ‖φ‖Lp∗ (Ωk2)

)α+1

dx ≤

∫

Ωk2

(

|φ|

‖φ‖Lp∗ (Ωk2)

)p∗

dx ≤ 1.

Therefore we have
‖φ‖Lα+1(Ωk2) ≤ C1θ1‖φ‖W 1,p

0 (Ωk2)
,

and can choose θ1 small enough to yield

∣

∣

∣

∣

∫

Ωk2

F (x, u+ φ)−

∫

Ωk2

F (x, u)−

∫

Ωk2

f(x, u)φ

∣

∣

∣

∣

≤
ε

6
‖φ‖.

Since F (x, u) ∈ C1(Ω× R) there is a κ1 for any given γ1, ε1 > 0, such that

|F (x, u+ φ)− F (x, u)− f(x, u)φ| ≤ ε1|φ|,
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for all x ∈ Ω if |u| ≤ γ1 and |φ| ≤ κ1. Taking γ1 = γ and κ1 ≤ κ and integrating gives:

∣

∣

∣

∣

∫

Ωk3

F (x, u+ φ)− F (x, u)− f(x, u)φ dx

∣

∣

∣

∣

≤ ε1

∫

Ωk3

|φ| dx ≤ ε1C‖φ‖,

choosing ε1 such that ε1C = ε
6 , finally gives us our desired result

∣

∣

∣

∣

∫

Ω

F (x, u+ φ)−

∫

Ω

F (x, u)−

∫

Ω

f(x, u)φ

∣

∣

∣

∣

< ε‖φ‖

for all φ ∈ E with ‖φ‖ ≤ δ.

To see that I ′2[u] : E → E∗ is continuous apply the same procedure as above to

|I ′2[ui]φ− I ′2[u]φ| ≤

∫

Ωk

|f(x, ui)− f(x, u)||φ|+

∫

Ω\Ωk

g {|uj |
α + |u|α} |φ| (4)

for all φ ∈ E.

Lemma 3.2 I ′2[·] is a compact map.

Proof. Let {ui} be a bounded sequence in E. The compact embedding W 1,p(Ωk) →֒ Lq(Ωk) for
1 ≤ q < p∗ implies that there is a Cauchy subsequence

{

uij

}

in Lq(Ωk). Plugging uii, uij into (4)
it follows, in a similar way as above, that I ′2[uii] is Cauchy.

In the following Lemma we will use a variant of Moser’s iteration technique to prove the boundedness
of the weak solutions. The idea behind this is to obtain an inequality like

‖u‖Lδβ(Ω) ≤ C‖u‖Lβ(Ω),

for all β ∈ [1,∞], u ∈ Lp(Ω), δ ∈ (1,∞), and some constant C > 0; which we then can iterate: Setting
β = p we obtain

‖u‖Lδp(Ω) ≤ ‖u‖Lp(Ω),

for some δp > p. In the second step we take β = δp, etc.. This process yields

‖u‖
Lpδk (Ω)

≤ C ′‖u‖Lp(Ω),

for some new constant C’, and letting k → ∞ we showed the boundedness of u

‖u‖L∞(Ω) ≤ C ′′‖u‖Lp(Ω).

Lemma 3.3 If u ∈ E is a critical point of I, then u ∈ Lq(Ω) for all p ≤ q ≤ ∞ , and lim|x|→∞ u = 0.

Proof. We adapt [18], Thm. 1.2 and [40], Lemma 2. To prove the L∞- boundedness of u we choose a
Moser-iterative approach. We can assume u ≥ 0 since the same argument works for u+ = max {u(x), 0}
and u− = min {−u(x), 0}. Set uL(x) := min {u(x), L} for L ∈ R, L ≥ 0 , then (uL)

i ∈ E for all
i ∈ R, i ≥ 1.

I ′[uL]((uL)
i) =

∫

Ω

(a(x)|∇uL|
p−2∇uL∇(uL)

i) + b(x)|uL|
p−2uL(uL)

idx =

∫

Ω

f(x, uL)(uL)
idx = 0

Since g(x)uα ≤ ‖g‖L∞(Ω)|u|
α we obtain

i

∫

Ω

(uL)
i−1|∇uL|

p dx ≤
‖g‖L∞(Ω)

‖a‖L∞(Ω)

∫

Ω

(u)α+i dx.

Now use the identity (uL)
i−1|∇uL|

p = ( p
i+p−1 )

p|∇(uL)
i+p−1

p |p followed by the Sobolev inequality to give

(∫

Ω

(uL)
n(i+p−1)

n−p

)
n−p
n

≤ C

∫

Ω

(u)α+i.
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Set i = i0 = 1+µ, µ = p∗−α−1, q0 = n(i0+p−1)
n−p and by letting L → ∞ we get u ∈ Lq0(Ω). Consider

i0, q0 as our starting point of an iteration procedure. For the second step set i1 = 1 + µ + n
n−2µ and

q1 = n(i1+p−1)
n−p and thus u ∈ Lq1(Ω). Continuing this process for ik = 1+µ+ n

n−2µ+ ...+( n
n−2 )

jµ, qj =
n(ij+p−1)

n−p this gives us u ∈ Lq(Ω) for np
n−p ≤ q < ∞ from which u ∈ Lq(Ω) p ≤ q < ∞ follows by the

interpolation inequality . To get the L∞ estimate of u, set i = kp+ 1 and as above

kp+ 1

(k + 1)p

∫

Ω

|∇(uL)
(k+1)|pdx ≤

∫

Ω

g(x)(u)α+kp+1dx.

By applying the Sobolev inequality we have

kp+ 1

Cp(k + 1)p

(∫

Ω

(uL)
(k+1)p∗

dx

)
p
p∗

≤

∫

Ω

g(x)(u)α+kp+1dx.

Now fix a q > p∗ and set

t =
p∗qp

α(q − p∗) + q + (p− 1)p∗
.

Then t
p > 1 and t < p∗. In the integral write uα+kp+1 as uα+1−p+(k+1)p and use the Hölder inequality,

since
1

p0
+

α+ 1− p

q
+

p

t
= 1.

We get

∫

g(x)uα+kp+1dx =

∫

g(x)uα+1−pu(k+1)pdx ≤

(∫

(g(x))p0dx

)
1
p0
(∫

uqdx

)
α+1−p

q
(∫

u(k+1)tdx

)
p
t

.

As we have already shown u ∈ Lq(Ω) for our fixed q, therefore it exists a constant C1 independent of L
and k such that

(∫

Ω

(uL)
(k+1)p∗

dx

)
p
p∗

≤ C1
(k + 1)p

kp+ 1

(∫

u(k+1)tdx

)
p
t

.

This is equivalent to

‖uL‖L(k+1)p∗ (Ω) ≤ C1

1
p(k+1)

(k + 1)
1

k+1

(kp+ 1)
1

p(k+1)

‖u‖L(k+1)t(Ω).

Choose k = k1 = p∗

t − 1 to get

‖uL‖L(k1+1)p∗ (Ω) ≤ C1

1
p(k1+1)

(k1 + 1)
1

k1+1

(k1p+ 1)
1

p(k1+1)

‖u‖Lp∗ (Ω).

Use Fatou’s Lemma and the fact that limL→∞ uL(x) = u(x) to yield

‖u‖L(k1+1)p∗ (Ω) ≤ C1

1
p(k1+1)

(k1 + 1)
1

k1+1

(k1p+ 1)
1

p(k1+1)

‖u‖Lp∗ (Ω).

Now choose kn = (p
∗

t )
n − 1 for our iteration process. Then

‖u‖L(kn+1)p∗ (Ω) ≤ C1

1
p(kn+1)

(kn + 1)
1

kn+1

(knp+ 1)
1

p(kn+1)

‖u‖
L(kn−1p∗)(Ω)

for all n ∈ N. It follows

‖u‖L(kn+1)p∗ (Ω) ≤ C1

1
p

∑n
i=1

1
ki+1

n
∏

i=1

{

(ki + 1)
1

ki+1

(kip+ 1)
1

p(ki+1)

}

‖u‖Lp∗ (Ω).

Since
{

(k + 1)

(kp+ 1)
1
p

}
1√
k+1

> 1,
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for all k > 0, and

lim
k→∞

{

(k + 1)

(kp+ 1)
1
p

}
1√
k+1

= 1,

there is a constant C2 > 0 independent of n ∈ N with

‖u‖L(kn+1)p∗ (Ω) ≤ C1

1
p

∑n
i=1

1
ki+1C2

∑n
i=1

1√
ki+1 ‖u‖Lp∗ (Ω).

Note that 1
ki+1 =

(

t
p∗

)i

, 1√
ki+1

=
(√

t
p∗

)i

and t
p∗ <

√

t
p∗ < 1, therefore

‖u‖L(kn+1)p∗ (Ω) ≤ C3‖u‖Lp∗ (Ω)

for all n ∈ N and some constant C3 > 0 independent of n. Letting n tend to infinity we get u ∈ L∞(Ω).
Thus we have proved the first part of the theorem. The second part follows by Theorem 1 of Serrin’s
[33], which gives us

‖u‖L∞(B1(x)) ≤ C4‖u‖Lp∗ (B2(x))

for B2(x) ⊆ Ω, with C4 independent of x and C4 = C4(n, p) from which implies the decay of u.

Proof (of Theorem 3). First we will show that the assumptions for the Mountain Pass theorem
are met. For (A):

I[u] ≥
1

p

∫

Ω

a0|∇u|p + b0|u|
p −

1

α+ 1

∫

Ω

g|u|α+1 ≥
1

p

∫

Ω

a0|∇u|p + b0|u|
p − C‖u‖α+1

=
1

p
‖u‖p − C‖u‖α+1

since g(x) ∈ Lp0(Ω). Therefore, and since α+ 1 > p, for ‖u‖ small enough, ‖u‖ = ρ say, there is a c > 0
with I[u] ≥ c for all ‖u‖ = ρ.

Now to show (B):

I[t
1
pu] ≤

t

p

∫

Ω

a0|∇u|p + b0|u|
p dx− t

α+1
p C‖u‖α+1,

thus I[t
1
pu] → −∞ as t → +∞.

Finally for the Palais-Smale condition: Suppose {ui} ⊂ E with {I[ui]} ≤ C and {I ′[ui]} → 0 in
E∗. Then

I[ui] ≥
1

p

∫

Ω

a(x)|∇ui|
p + b(x)|ui|

pdx−
1

β

∫

Ω

f(x, ui)uidx

=

(

1

p
−

1

β

)∫

Ω

a(x)|∇ui|
p + b(x)|ui|

pdx+
1

β

(∫

Ω

a(x)|∇ui|
p + b(x)|ui|

pdx−

∫

Ω

f(x, ui)uidx

)

=

(

1

p
−

1

β

)

‖ui‖
p +

1

β
I ′[ui](ui),

thus {ui} is bounded. Since I ′2 is compact, there is a subsequence of {ui}, {uij} say, such that {I ′2[uij ]}
is a Cauchy sequence in E∗. To prove that {uij} is Cauchy in E we will need the following inequality,
which can be found in [19] or [23] .

|x− y|p ≤

{

(|x|p−2x− |y|p−2y) · (x− y) if p ≥ 2,
(

|x|p−2x− |y|p−2y · (x− y)
)

p
2 (|x|p + |y|p)

2−p
p if 1 < p < 2

for x, y ∈ R
n.

∫

Ω

a(x)
(

|∇uij |
p−2∇uij − |∇uil|

p−2∇uil

)

· (∇uij −∇uil) + b(x)
(

|uij |
p−2uij − |uil|

p−2uil

)

· (uij − uil)dx

≤ |I ′[uij ](uij − uil)|+ |I ′[uil](uil − uij)|+

∣

∣

∣

∣

∫

Ω

(f(x, uij)− f(x, uil))(uij − uil)dx

∣

∣

∣

∣
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≤ C
(

‖I ′[uij ]‖E∗ + ‖I ′[uil]‖E∗ + ‖I ′2[uij ]− I ′2[uil]‖E∗
)

with C = C(n, p). Thus {uij} is Cauchy in E , the Palais-Smale condition holds. The conditions for
the Mountain Pass theorem are met, therefore we get the existence of a nontrivial weak solution. From
Lemma 3.3, we know u decays, and setting φ = u− in I ′[u](φ) one sees u ≥ 0 in Ω. Using the strong or
weak Harnack inequality from [35], it follows that u is positive. Since the structural assumptions for the
regularity results [22], (or [34]) hold, we get u ∈ C1,δ(Ω ∩BR(0)), ∀R > 0.

On the importance of the critical exponent: In what follows we briefly discuss the necessity
of the critical exponent condition, i.e. p− 1 < α < p∗ − 1.
Assuming α < p−1 instead we can establish nonnegativity, regularity and decay of the, at this point hy-
pothetical, solution in the same way as above. To prove existence we use a local minimization argument
(note that since I[·] is weakly continuous the minimum is attained): Since

I[u] ≥
1

p
‖u‖p − C‖u‖α+1,

I is bounded below and thus has a critical point u with I[u] = inf{I[v] | v ∈ E}. It remains to show that
u is nontrivial, but since

I[tφ] =
tp

p
‖φ‖p −

tα+1

α+ 1

∫

Ω

g(x)|φ|α+1dx < 0,

for t > 0 small and some φ ∈ C∞
0 , this is clear.

We show that the restriction α < p∗ − 1 can not simply be removed. The proof of Theorem 3 works in
the same way when we consider the problem over Rn instead of Ω, the only change being the regularity
result we use ( u ∈ C1,δ(Br(0)), ∀r > 0) which can be found in [34]. Consider the special case

−div(|∇u|p−2∇u) + b0|u|
p−2u = |u|α−2u,

with α = p∗. This equation has no solution. We use the following Pohozaev type identity (see [41]):

∫

Rn

|∇u|pdx =

∫

Rn

|u|p
∗
dx−

b0p
∗

p

∫

Rn

|u|pdx.

If u is a solution then by definition
∫

Rn

|∇u|pdx =

∫

Rn

|u|p
∗
dx− b0

∫

Rn

|u|pdx.

Putting this two identities together one sees that u must be the trivial solution. If however a subcritical

perturbation of |u|p
∗
u, i.e. f(x, u) continuous with limu→∞

f(x,u)
|u|p∗u = 0, is added to the right side of

aboves equation a nontrivial solution exists ([42]).

The limit case n = p : In analogy to the semilinear problem above the Trudinger inequality becomes
of crucial importance when n = p. Consider the problem

{

−div(|∇u|n−2∇u) + b(x)|u|n−2u = f(x, u), x ∈ R
n,

lim|x|→∞ u = 0.
(5)

Let the space E be the completion of C∞
0 (Rn) under the norm ‖u‖n =

∫

Rn |∇u|n+b(x)|u|ndx. We define
the functional I : E → R

I[u] =
1

n
‖u‖ −

∫

Rn

F (x, u)dx.

The fact that I[·] is well defined (i.e. that F (x, u) ∈ L1(Rn)) will become true when we impose our
assumptions on the problem. We say f(x, u) has subcritical growth if

lim
u→∞

f(x, u)

e|u|µ
= 0 for some 0 < µ <

n

n− 1
, uniformly onRn.

If this condition is satisfied proving the existence of a weak solution is not that different than for p < n
(see for example [15]). We give a regularity result for the subcritical case and the existence of weak
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solutions for the critical case. For both proofs the following lemma will be the main ingredient:

Lemma 3.4. If n ≥ 2, 0 < γ ≤ n
n−1 , α > 0 (if γ = n

n−1 , also assume α < n(ωn−1)
1

n−1 ), then

∫

Rn

exp (α|u|γ)− Φn−2(α, u) dx < ∞,

for all u ∈ W 1,n(Rn),

Φn−2(α, u) :=

n−2
∑

k=0

αk

k!
|u|γk.

If ‖∇u‖Lp(Rn) ≤ K, ‖u‖Lp(Rn) ≤ M , with K,M < ∞, then there is a constant C(K,M,n, α, γ) depending
on K,M,n, α, γ alone, such that

∫

Rn

exp (α|u|γ)− Φn−2(α, u) dx ≤ C(K,M,n, α, γ).

The Lemma is motivated by generalizations of the Trudinger inequality ([21]), and similar results can be
found in [29],[13],[14]. The proof uses the important technique of Schwarz symmetrization, which was
already used by Trudinger in the proof of the orginal inequality.
Proof. We first state some properties of the Schwarz symmetrization. For nonnegative u ∈ Ln(Rn)
there is a unique radial function u∗ ∈ Ln(Rn),

λ ({x | u∗(x) ≥ c}) = λ ({x | u(x) ≥ c}) ,

for all c > 0, u∗ decreasing in |x|, and ∃Rc such that {x | u∗(x) ≥ c} = BRc(0). If u ∈ W 1,n
0 (Rn) then

u∗ ∈ W 1,n
0 (Rn) and also ‖∇u∗‖Ln(Rn) ≤ ‖∇u‖Ln(Rn). For every f : [0,∞) → [0,∞), with f(0) = 0 we

have
∫

Rn

f(u∗(x)) dx =

∫

Rn

f(u(x)) dx.

We can concentrate on the critical case, i.e. γ = n
n−1 and α < n(ωn−1)

1
n−1 and further assume u ≥ 0.

From what is stated above one sees that
∫

Rn

exp
(

α|u|
n

n−1
)

− Φn−2(α, u) dx =

∫

Rn

exp
(

α|u∗|
n

n−1
)

− Φn−2(α, u
∗) dx

≤

∫

|x|<r

exp
(

α|u∗|
n

n−1
)

dx+

∫

|x|≥r

exp
(

α|u∗|
n

n−1
)

− Φn−2(α, u
∗) dx.

Like in [29] we use the following inequalities for a, b ≥ 0

(a+ b)
n

n−1 ≤ a
n

n−1 + b
n

n−1 + C{n} a
1

n−1 b,

some positive constant C depending on n, and

aqbq
′
≤ εa+ εb

− q
q′ ,

for 1
q′ +

1
q = 1 and all ε > 0. By using this and the fact that u∗ − u∗(rx0) ∈ W 1,n(Br(0)), where x0 is a

fixed vector of unit length, we obtain

|u∗|
n

n−1 ≤ (1 + ε)(u∗(x)− u∗(rx0))
n

n−1 +
(

C{n}
n

n−1 ε
1

1−n + 1
)

u∗(rx0)
n

n−1 ,

and thus
∫

|x|<r

exp
(

α|u∗|
n

n−1
)

dx

≤ exp
((

C{n}
n

n−1 ε
1

1−n + 1
)

u∗(rx0)
n

n−1

)

∫

|x|<r

exp
(

α(1 + ε)|u∗(x)− u∗(rx0)|
n

n−1
)

dx.

Letting (1 + ε)α < n(ωn−1)
1

n−1 , then by the Trudinger inequality
∫

|x|<r

exp
(

α|u∗|
n

n−1
)

dx ≤ C ′{n}
ωn−1r

n

n
exp

((

C{n}
n

n−1 ε
1

1−n + 1
)

u∗(rx0)
n

n−1

)

.
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We use a generalization to Sobolev spaces of Strauss’ Radial Lemma, due to Lions ([24]):

|u∗(x)| ≤ |x|−
n−1
n C ′′{n}‖u∗‖

n
n−1

Ln(Rn)‖∇u∗‖
1
n

Ln(Rn) a.e..

Since ‖∇u∗‖Ln(Rn) ≤ ‖∇u‖Ln(Rn) and ‖u∗‖Ln(Rn) = ‖u‖Ln(Rn) (see e.g. [17], § 6.3) we get
∫

|x|<r

exp
(

α|u∗|
n

n−1
)

dx

≤ C ′{n}
ωn−1r

n

n
exp

(

(

C{n}
n

n−1 ε
1

1−n + 1
)

|x0r|
−1C ′′′{n}‖u(rx0)‖

( n
n−1 )

2

Ln(Rn)‖∇u(rx0)‖
1

n−1

Ln(Rn)

)

.

Finally, using the assumptions on ‖∇u‖Ln(Rn) and ‖u‖Ln(Rn) , this yields

∫

|x|<r

exp
(

α|u∗|
n

n−1
)

dx ≤ A{n, ε}
ωn−1r

n

n
exp

(

M( n
n−1 )

2

K
1

n−1

r

)

,

for A{n, ε} some constant.
To handle the integral over |x| ≥ r note that
∫

|x|≥r

exp
(

α|u∗|
n

n−1
)

− Φn−2(α, u
∗) dx

=
αn−1

(n− 1)!

∫

|x|≥r

|u∗|n dx+
αn

n!

∫

|x|≥r

|u∗|
n2

n−1 dx+

∞
∑

k=n+1

αk

k!

∫

|x|≥r

|u∗|k
n

n−1 dx,

(6)

and since for all k ≥ n+ 1
∫

|x|≥r

1

|x|k
dx = ωn−1

∫ ∞

r

1

tk−n−1
dx =

ωn−1

rk−n
,

we can use the Radial Lemma again, to yield

∞
∑

k=n+1

αk

k!

∫

|x|≥r

|u∗|k
n

n−1 dx ≤ ωn−1

∞
∑

k=n+1

αk

k!

(

Mk( n
n−1 )

2

Kk 1
n−1

rk−n

)

.

From n2

n−1 > n and the embedding W 1,n(Rn) →֒ Ls(Rn) for all s ∈ [n,+∞), the result follows.

Theorem 3.5 ([13]). If u ∈ W 1,n(Rn) is a weak solution to (5), and f(x, u) ∈ C(Rn × R,R),
b(x) ∈ C(Rn,R) with b(x) ≥ b > 0 and

lim
t→0

f(x, t)

|t|n−1
= 0 uniformly in R

n,

then u ∈ L∞(Rn) and there is q > n and Rq > 0, C > 0 such that for all R ≥ Rq

‖u‖L∞(|x|≥R) ≤ C‖u‖Lq(|x|≥R/2) < ∞.

Note that from Theorem 3.5 follows, by Tolksdorf’s regularity result mentioned above that lim|x|→∞ u = 0

and u ∈ C1,β
loc (R

n) for some 0 < β < 1.
Proof. By the assumptions on f(x, u) we have

|f(x, u)| ≤ δ|u|n−1 + Cδ

∞
∑

l=l0

|u|µl+n−1

l!
,

for all (x, u) ∈ R
n × R. Let u be a weak solution, then set once more u+ = max {u(x), 0} and uM (x) =

min {u(x),M} for M ∈ R,M > 0. Choose η ∈ C∞(Rn), such that for R,r with 0 < r ≤ R
2 ,

η =

{

1 if |x| ≥ R,

0 if |x| ≥ R− r,
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and also |∇η| ≤ 2
r , 0 ≤ η ≤ 1. Use u+u

+n(i−1)
M ∈ W 1,n(Rn) for i ≥ 1 as a test function and then since

u is a weak solution
∫

Rn

|∇u+|nu
+n(i−1)
M dx+ n(i− 1)

∫

Rn

|∇u+
M |nu

+n(i−1)
M dx+ b

∫

Rn

u+nu
+n(i−1)
M dx

≤ C

∞
∑

l=l0

1

l!

∫

Rn

u+µl+n−1u
+n(i−1)
M u+dx.

Setting W = u+u
+n(i−1)
M this implies

∫

Rn

|∇W |n dx ≤ Cin
∞
∑

l=l0

∫

Rn

u+µl|W |n dx,

and by the Hölder inequality with µ
µ+ε + ε

µ+ε = 1 for an ε such that µ+ ε < n
n−1 we get

∫

Rn

|∇W |n dx ≤ Cin
∞
∑

l=l0

(∫

Rn

u+(µ+ε)l dx

)
µ

µ+ε

‖Wn‖
L

µ+ε
ε (Rn)

.

Therefore Lemma 3.4 yields
‖∇W‖Ln(Rn) ≤ Ci‖W‖

L
n(µ+ε)

ε (Rn)
.

Now we use Nirenberg’s inequality (see appendix)

‖∇ju‖Lq(Rn) ≤ C‖∇mu‖αLr(Rn)‖u‖
1−α
Lp(Rn),

with j = 0, m = 1, p = n(µ+ε
ε , r = n and some 0 < α < 1 to get the iteration inequality

‖W‖Lq(Rn) ≤ ‖W‖
L

n(µ+ε)
ε (Rn)

,

q > n(µ+ε)
ε and the L∞ bound ‖u+‖L∞ < ∞, respectively ‖u−‖L∞ < ∞, follows by Moser iteration.

For all δ > 0 we have, by plugging in ηnu+u
+n(i−1)
M as a test function,

∫

Rn

|∇u+|nηnu
+n(i−1)
M dx+ n(i− 1)

∫

Rn

|∇u+
M |nu

+n(i−1)
M ηndx+ b

∫

Rn

u+nu
+n(i−1)
M ηndx

+ n

∫

Rn

|∇u+|n−1|∇η|ηn−1u+u
+n(i−1)
M dx ≤

∫

Rn

f(x, u+)u+u
+n(i−1)
M ηndx.

Using Lemma 3.4 again gives
∫

Rn

f(x, u+)u+u
+n(i−1)
M ηn dx ≤ δ

∫

Rn

u+nu
+n(i−1)
M ηndx+ Cδ‖ηu

+u+i−1
M ‖n

L
n(µ+ε)

ε (Rn)
.

Choosing δ small enough we get
∫

Rn

|∇u+|nηnu
+n(i−1)
M dx+ n(i− 1)

∫

Rn

|∇u+
M |nu

+n(i−1)
M dx+ C

∫

Rn

u+nu
+n(i−1)
M dx

≤ n

∫

Rn

|∇u+|n−1|∇η|ηn−1u+u
+n(i−1)
M dx+ b‖ηu+u+i−1

M ‖n
L

n(µ+ε)
ε (Rn)

,

C > 0 a constant, and using Young’s inequality on the first term of the right hand side yields

n

∫

Rn

|∇u+|n−1|∇η|ηn−1u+u
+n(i−1)
M dx+ b‖ηu+u+i−1

M ‖n
L

n(µ+ε)
ε (Rn)

≤ κ

∫

Rn

|∇u+|nηnu
+n(i−1)
M dx+ C ′

∫

Rn

|∇η|nu+nu
+n(i−1)
M dx+ C ′′‖ηu+u+i−1

M ‖n
L

n(µ+ε)
ε (Rn)

,

where C ′, C ′′ > 0 are constants which may depend on κ > 0 and κ is arbitrary. From the last two
inequalities one gets
∫

Rn

|∇u+|nηnu
+n(i−1)
M dx+ n(i− 1)

∫

Rn

|∇u+
M |nu

+n(i−1)
M ηndx+ C

∫

Rn

u+nu
+n(i−1)
M ηndx

≤ C ′′′
{∫

Rn

|∇η|nu+nu
+n(i−1)
M dx+ ‖ηu+u+i−1

M ‖n
L

n(µ+ε)
ε (Rn)

}

, (7)
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by taking κ to be sufficiently small. Writing out ∇
(

ηu+u+i−1
M

)

explicitly and using (7) we have

∫

Rn

|∇
(

ηu+u+i−1
M

)

|n dx+ ‖ηu+u+i−1
M ‖n

L
n(µ+ε)

ε (Rn)

≤ Cin
{∫

Rn

|∇η|nu+nu
+n(i−1)
M dx+ ‖ηu+u+i−1

M ‖n
L

n(µ+ε)
ε (Rn)

}

. (8)

Finally we use the properties of the bump function to give

(8) ≤ Cin
(

2n (Rn − (R− r)n)

rn

)

‖u+u
+(i−1)
M ‖n

L
n(µ+ε)

ε (|x|≥R−r)
.

Now one can use Nirenberg’s inequality again and get, for n(µ+ε)
ε < s

‖ηu+u
+(i−1)
M ‖Ls(Rn) ≤ C

(

‖∇
(

ηu+u
+(i−1)
M

)

‖Ln(Rn) + ‖ηu+u
+(i−1)
M ‖

L
n(µ+ε)

ε (Rn)

)

≤ C ′i

(

2n (Rn − (R− r)n)

rn

)1/n

‖u+u
+(i−1)
M ‖

L
n(µ+ε)

ε (|x|≥R−r)
.

Taking the limit M → ∞

‖u+‖Lsi(Rn) ≤ C ′1/ii1/i
(

2nRn

rn

)1/ni

‖u+‖
L

ni(µ+ε)
ε (|x|≥R−r)

,

and setting α := sε
n(µ+ε) , i = αm and rm = R

2m+1 yields

‖u+‖Lαms(|x|≥R−rm+1) ≤ C ′1/αm

i1/α
m

2
n(m+2)
αmn ‖u+‖Lαm−1s(|x|≥R),

from which the Theorem follows.

We now come to the critical case. Because of the lack of compactness we can not show the (PS)-condition
for I[·]. To compensate for this, we instead prove that a sequence ui ∈ W 1,n(Rn) with I[ui] → c and
I ′[ui] → 0 as i → ∞, obtained from the MPT, does converge to a nontrivial solution. This approach,
introduced by Willem ([37]), can be considered “a posteriori” compared to the “a priori” compactness
condition employed before, and is of great importance in modern applications of the MPT. We demon-
strate this technique following [29].
We impose the following assumptions on problem (5):

(a) f ∈ C(Rn × R,R) and for c1, c2, α > 0 constants

|f(x, u)| ≤ c1|u|
n−1 + c2

∞
∑

i=n−1

αi

i!
|u|

ni
n−1

(b) For some β > n and ∀u > 0,
βF (x, u) ≤ uf(x, u),

(c) For constants C1, C2 > 0, ∀u ≥ C1,

0 < F (x, u) ≤ C2f(x, u),

(d)
lim

u→+∞
uf(x, u) exp

(

−α|u|
n

n−1
)

≥ C3 > 0,

uniformly on all compact sets of Rn,

(e) b(x) ∈ C(Rn,R), b(x) ≥ b > 0, and b is coercive, i.e. b(x) → ∞ for |x| → ∞,

(f)

lim sup
u→0+

nF (x, u)

|u|n
< λ1(n) = inf

E∋u 6=0

‖u‖n

‖u‖Ln(Rn)
, uniformly in R

n.
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We actually do not have to assume that b(x) ∈ L∞, if we instead let E be the subspace of W 1,n defined
by

E =

{

u ∈ W 1,n(Rn) |

∫

Rn

b(x)|u|n dx < ∞

}

.

To make up for the lack of compactness we prove the following Lemma, which gives us an upper bound
on the Mountain Pass level c:

Lemma 3.6. If assumptions (a) - (e) are satisfied there is a r > 0 such that

max{I[tMk(x, r)] | t ≥ 0} <
nn−2ωn−1

αn−1
,

where Mk(x, r) denotes the Moser sequence introduced in [26]

Mk(x, r) =
1

ω
1/n
n−1















(log k)
n−1
n if |x| ≤ r

k ,
log( r

|x| )

(log k)
1
n

if r
k ≤ |x| ≤ r,

0 if |x| ≥ r,

and Mk(x, r) =
Mk(x,r)

‖Mk(x,r)‖ .

Proof. Note that Mk(x, r) ∈ W 1,n(Rn) and

∫

Rn

|∇Mk(x, r)|
n dx = 1.

Also

Mk(x, r) =
log n

ω
1/(n−1)
n−1

+ ak, ∀|x| ≤
r

k
,

where ak ≥ 0 is a bounded sequence. Suppose that

max{I[tMk(x, r)] | t ≥ 0} ≥
nn−2ωn−1

αn−1
, ∀k

where we fixed the r such that nn−1

αn−1rn < C3. We prove that this leads to a contradiction. The fact that

I[tu] → −∞ as t → ∞ , ∀u ≥ 0 with compact support and u 6≡ 0,

is shown exactly as we did above. Then, for given k, we can take tk > 0 so that

I[tkMk(x, r)] = max{I[tMk(x, r)] | t ≥ 0}, (9)

I[tkMk(x, r)] =
tnk
n

−

∫

Rn

F
(

x, tkMk(x, r)
)

dx ≥
nn−2ωn−1

αn−1
,

by our assumption and thus tnk ≥ nn−1ωn−1

αn−1 . From (9) we get

tnk =

∫

Rn

f
(

x, tkMk(x, r)
)

tkMk(x, r) dx,

by taking the derivative d
dtk

. (d) gives

uf(x, u) ≥ (C3 − δ) exp
(

α|u|
n

n−1
)

,

for fixed δ > 0, ∃Cδ > 0, ∀|u| ≥ Cδ, and ∀|x| ≤ r. Integrating this inequality and using the “cut-off”
property of the Moser sequence yields

tnk ≥ (C3−δ)

∫

|x|≤ r
k

exp
(

α|tkMk(x, r)|
n

n−1
)

dx =
(C3 − δ)ωn−1r

n

nkn
exp

(

αt
n/(n−1)
k log k

ω
1/(n−1)
n−1

+ αt
n/(n−1)
k ak

)

.

(10)
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Dividing both sides by tnk and taking the limit k → ∞ one sees that the sequence tk must be bounded.
We rewrite (10) as

tnk ≥
(C3 − δ)ωn−1r

n

n
exp

( (

αt
n/(n−1)
k

ω
1/(n−1)
n−1 n

− 1

)

n log k + αt
n/(n−1)
k ak

)

,

and since tnk ≥ nn−1ωn−1

αn−1

tnk →
nn−1ωn−1

αn−1
, as k → ∞,

follows.
Define the sets

Ωk :=
{

x ∈ Br(0) | Cδ ≤ tkMk(x, r)
}

, Γk := Br(0)\Ωk.

By repeating the steps leading up to (10) and adding integrals over the above sets, we get the improved
lower bound

tnk ≥ (C3 − δ)

∫

Ωk

exp
(

α|tkMk(x, r)|
n

n−1
)

dx+

∫

Γk

tkMk(x, r)f
(

x, tkMk(x, r)
)

dx

= (C3 − δ)

∫

|x|≤r

exp
(

α|tkMk(x, r)|
n

n−1
)

dx− (C3 − δ)

∫

Γk

exp
(

α|tkMk(x, r)|
n

n−1
)

dx

+

∫

Γk

tkMk(x, r)f
(

x, tkMk(x, r)
)

dx.

Because of Mk(x, r) → 0, as k → ∞ on Br(0), the set of points x ∈ Br(0) with tkMk(x, r) ≥ Cδ gets

arbitrarily “thin”. Therefore the last two terms converge to (C3−δ)ωn−1r
n

n and 0 respectively, and using

tnk ≥ ωn−1n
n−1

α again as well as the properties of Mk(x, r) we get

∫

|x|≤ r
k

exp
(

α|tkMk(x, r)|
n

n−1
)

dx ≥

∫

|x|≤ r
k

exp

(

nω
1

n−1

n−1 |Mk(x, r)|
n

n−1

)

dx =
ωn−1r

n exp(nω
1

n−1

n−1ak)

n
.

Finally we have
∫

r
n≤|x|≤r

exp

(

nω
1

n−1

n−1 |Mk(x, r)|
n

n−1

)

dx → rnωn−1,

as k → ∞ by computing the integral using a change of variable (see [29] for details). Putting this together
in the limit yields

lim
k→∞

tnk =
nn−1ωn−1

αn−1
≥ (Cδ − δ)

ωn−1r
n

n
lim
k→∞

exp
(

aknω
1/(n−1)
n−1

)

− (Cδ − δ)
ωn−1r

n

n
+ (Cδ − δ)ωn−1r

n.

Thus
nn−1ωn−1

αn−1
≥ (Cδ − δ)ωn−1r

n,

which in turn implies
nn−1

αn−1rn
≥ Cδ,

a contradiction.

Lemma 3.7 (Compact Embedding). If b(x) satisfies (e), then E →֒ Lq(Rn), ∀q ∈ [n,∞) is compact.

Proof. The proof is a generalization of Costa [10]. Assume uk ⇀ 0 in E, we show uk → 0 in Lq(Rn), for
∀q ∈ [n,∞). Let ‖u‖ ≤ C, for a positive constant C. Since b is coercive we can choose, for a given ε > 0,
a R > 0, such that b(x) ≥ 2Cq

ε for all |x| ≥ R. Restricting uk to BR(0), we have uk ⇀ 0 in W 1,n(BR(0)).
Then the compact embedding W 1,n(BR(0)) →֒ Lq(BR(0)) for all q ∈ [n,∞) implies

∫

BR(0)

|um|qdx ≤
ε

2
, for some m0 ∈ N, ∀m ≥ m0.
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2

ε

∫

Rn\BR(0)

|um|qdx ≤
1

Cq

∫

Rn\BR(0)

b(x)|um|qdx ≤
1

Cq
‖um‖q ≤ 1,

and therefore ‖um‖qLq(Rn) ≤ ε.

Remark. This is the only time we will use that b is coercive. Assumption (e) can be exchanged

for various other ones, for example, a(x) postive, continuous and (a(x))−1 ∈ L
1

n−1 (Rn), see [4], or a(x)
radially symmetric ([24], Thm. II.1.) .

We show that the remaining assumption (A) of the MPT holds true:
Lemma 3.8. If assumptions (a) -(f) hold, then I[·] satisfies, for some constants ζ, ρ > 0,

I|∂Bρ
≥ ζ > 0.

Proof. We can choose δ, ε in such a way that (f) implies

|F (x, u)| ≤
(λ1(n)− ε) |u|n

n
,

for all |u| ≤ δ. By (a) we also have

|F (x, u)| ≤ C|u|q
∞
∑

i=n−1

γi

i!
|u|

ni
n−1 ,

for |u| ≥ δ, and q > n and some constants C = C(δ, q), γ > 0. Putting this estimates together yields

|F (x, u)| ≤
(λ1(n)− ε) |u|n

n
+ C|u|q

∞
∑

i=n−1

γi

i!
|u|

ni
n−1 .

We use
∫

Rn

|u|q
∞
∑

i=n−1

γi

i!
|u|

ni
n−1 dx ≤ C(n, γ)‖u‖q,

for ‖u‖ ≤ K. This can be shown in a similar way as Lemma 3.4 using symmetrization . Thus

I[u] ≥
1

n
‖u‖n −

(λ1(n)− ε) ||u||nLn(Rn)

n
− C(n, γ)‖u‖q,

for ‖u‖ ≤ K . We see, using the continuous embedding E →֒ Ln, and λ1(n) = infE∋u 6=0
‖u‖n

‖u‖Ln(Rn)

≥ b, that we can choose ρ, ‖u‖ = ρ, small enough, such that I[u] ≥ ζ > 0, for some ζ.
Now that we have verified the Mountain Pass geometry we can prove:

Theorem 3.9. If the conditions (a) - (f) are satisfied, problem (5) has a weak nontrivial solution.

Proof. The MPT ensures the existence of a sequence {uk} ⊂ E with I ′[uk] → 0 and I[uk] → c for
k → ∞, c > 0. We prove that this sequence converges to a weak nontrivial solution. By construction

∣

∣

∣

∣

∫

Rn

|∇uk|
n−2∇uk∇φ+ b(x)|uk|

n−2ukφ dx−

∫

Rn

f(x, uk)φ dx

∣

∣

∣

∣

≤ ε‖φ‖, (11)

for ∀φ ∈ E and ε > 0. By (b) we get

(

β

n
− 1

)

‖uk‖ −

∫

Rn

βF (x, uk)− f(x, uk)uk dx ≤ C + ε‖uk‖,

with C a positive constant. Thus {uk} is bounded in E, and also

∫

Rn

f(x, uk)uk dx ≤ C,

∫

Rn

F (x, uk) dx ≤ C.
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From the compact embedding, given by Lemma 3.7 we know that

uk ⇀ u inE; uk → u in Lq(Rn), ∀q ∈ [n,∞); uk(x) → u(x) a.e. in R
n;

by passing down to a subsequence (since E is reflexive). Using this, one can show that

f(x, uk) → f(x, u) inL1(BR(0)); and |∇uk|
n−2∇uk ⇀ |∇u|n−2∇u in

(

Ln/(n−1)(BR(0))
)n

;

for all R > 0. The proof of the latter is quite lengthy, involving the theory of distributions . We omit
this step and instead refer to [28] or [14]. Taking the limit in (11), we see that uk converges to a weak
solution u. It is left to show, u is nontrivial. Assume u ≡ 0, then F (x, uk) → 0 in L1(BR(0)) for all
R > 0, by the generalized Lebesgue Dominated Convergence Theorem (see for example Coroll. 4.14. in
[17]). Since

∫

Rn

|F (x, uk)| dx ≤ C

∫

Rn

∞
∑

i=n−1

γi

i!
|u|

ni
n−1 dx,

for some positive constants C, γ, by (a), plugging in the symmetrization of u as in the proof of Lemma
3.4 and using the Radial Lemma once more, one sees that F (x, uk) → 0 in L1(Rn).

1

n

∫

Rn

|∇uk|
n + b(x)|uk|

n dx−

∫

Rn

F (x, uk) dx → c as n → ∞,

and the two last terms converge to zero in the limit, thus

1

n

∫

Rn

|∇uk|
n dx → c.

From the upper bound on the Mountain Pass Level given by Lemma 3.6, we get

‖∇uk‖
n
Ln(Rn) ≤ nc+ δ <

nn−1ωn−1

αn−1
+ δ,

for some δ > 0. By repeating the argument of Lemma 3.4, we get

∫

Rn

∞
∑

i=n−1

αi

i!
|uk|

ni
n−1 dx ≤ C ′

C ′ a positive constant, ∀k. Bounding
∫

Rn

f(x, uk)uk dx,

from above by (a), and using Hölder’s inequality, we see that

lim
k→∞

∫

Rn

|f(x, uk)|
q dx = 0,

for q > 1 close enough to 1. Then, since

∫

Rn

|∇uk|
n + b(x)|uk|

n dx−

∫

Rn

f(x, uk)uk dx → 0, as k → ∞,

∫

Rn

|∇uk|
n dx → 0,

a contradiction. u is nontrivial.

Remark on the necesssity of the assumptions (a) - (f). It is curious that one can show the
same result assuming only (a) and b(x) ∈ C(Rn,R), b1 ≤ b(x) ≤ b2, by using Ekeland’s variational
principle instead of the MPT, see [14].

Open problem. In contrast to the analog semilinear case, to this point there seems to be no work
on nonexistence of higher regularity solutions or regularity results for problem (5), when n ≤ p < ∞ and
the growth of the nonlinearity is critical or supercritical.
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4 Appendix: Sobolev Spaces

We state some basic definitions and theorems from the theory of Sobolev spaces. We will not prove any
of the following results, but instead refer to specific literature.

Definition A.1 (weak derivative).
Ω ⊂ R

n an open set. For u ∈ L1
loc(R

n) and α a multi-index,
∫

Ω

∇αϕ(x)u(x) dx = (−1)|α|
∫

Ω

vα(x)u(x) dx ∀ϕ ∈ C∞
c ,

if vα ∈ L1
loc(R

n) exists, it is the weak derivative ∇αu of u and it is unique.

Definition A.2 (Sobolev space).
The Sobolev spaces Wm,p(Ω) are defined as

Wm,p(Ω) := {u ∈ Lp(Ω) | ∇αu ∈ Lp(Ω), ∀0 ≤ |α| ≤ m} .

The spaces Wm,p(Ω) are equipped with the norm

‖u‖Wm,p(Ω) :=





∑

0≤|α|≤m

‖u‖pLp(Ω)





1
p

.

• By Wm,p
0 (Ω) we denote the closure of C∞

c (Ω) in Wm,p(Ω). (Also, C∞
c (Ω) is dense in W 1,p(Ω) for

1 ≤ p < ∞ if Ω is bounded with Lipschitz boundary);

• W 1,p(Ω) is a Banach space for 1 ≤ p ≤ ∞, reflexive for 1 < p < ∞ and separable for 1 ≤ p < ∞;

• Wm,2(Ω) = Hm(Ω) are Hilbert spaces, with 〈u, v〉Hm(Ω) :=
∑

0≤|α|≤m〈∇αu,∇αv〉L2(Ω) the scalar
product.

Theorem A.2 (weak product rule).
Let u, v ∈ W 1,p(Ω) ∩ L∞(Ω) with 1 ≤ p < ∞, then uv ∈ W 1,p(Ω) ∩ L∞(Ω) and

∇(uv) = v (∇u) + u (∇v) .

Theorem A.3 (Sobolev’s embedding theorem).
For 1 ≤ p < ∞, then

W 1,p(Rn) ⊂ Lp∗(Rn),
1

p∗
=

1

p
−

1

n
, if p < n;

W 1,p(Rn) ⊂ Lq(Rn), ∀q ∈ [p,∞), if p = n;

W 1,p(Rn) ⊂ L∞(Rn), if p > n;

and all these injections are continuous. The statement is still true, if we exchange R
n with a bounded,

open set Ω ⊂ R
n, having a Lipschitz boundary.

Actually this theorem is not only due to Sobolev, but rather a collection of results by Sobolev, Nirenberg,
Gagliardo and Morrey.

Theorem A.4 (Rellich-Kondrachov). If Ω ⊂ R
n is bounded, with C1-boundary, then the following

injections are compact

W 1,p(Ω) ⊂ Lq(Ω), ∀q ∈ [1, p∗),
1

p∗
=

1

p
−

1

n
, if p < n;

W 1,p(Ω) ⊂ Lq(Ω), ∀q ∈ [p,∞), if p = n;

W 1,p(Ω) ⊂ C(Ω), if p > n.
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Theorem A.5 (Nirenberg’s inequality).
Let u ∈ Lp(Rn), and ∇mu ∈ Lr(Rn), then for C a constant depending only on n, α, p, r,m, j

‖∇ju‖Lq(Rn) ≤ C‖∇mu‖αLr(Rn)‖u‖
1−α
Lp(Rn),

for
1

q
=

j

n
+ α

(

1

r
−

m

n

)

+ (1− α)
1

p
,

and all α with j
m ≤ α ≤ 1, and the following exceptional cases:

• If j = 0, rm < n, p = ∞, then we have to assume additionally that u tends to zero at infinity or
that u ∈ Lp̃, for some finite p̃ > 0.

• If 1 < r < ∞, and m− j − n
r a nonnegative integer, than the theorem holds only for α < 1.

Remark. Note that Nirenberg’s inequality implies the Sobolev embedding: Set α = 1, then Theorem A.5
states as

‖u‖Lp∗(Rn) ≤ C‖∇u‖Lp(Rn),

which is frequently referred to as Gagliardo-Nirenberg-Sobolev inequality.

This definitions and properties can be found in many textbooks, see for example [1] or [7].
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