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1 Introduction

The spherical harmonics method is an important approach for representing square-integrable
functions on the unit sphere [1] and when it comes to finding solutions to partial differential
equations [2, 3]. In the field of radiative transfer, this spectral method is abbreviated as PN
method [4, Section 8.2]. Here, it is used for representing solutions to the radiative transfer
equation (RTE) as linear combination of these orthogonal functions [4–6]. However, the de-
termination of the unknown expansion coefficients (that depend on space and time) leads to
a complicated system of partial differential equations, known as the PN equations [5], which
are still challenging to solve. In addition, if boundary conditions are taken into account, the
resulting systems of linear equations for finding the unknown constants within the homoge-
neous solution can become difficult to solve, see for example [6, Section 6]. To mitigate the
problems associated with the PN method, the so-called simplified spherical harmonics equa-
tions (SPN equations) were introduced, at first in the steady-state domain about 60 years
ago [7]. Not even 20 years ago, the SPN method was extended for approximating solutions
to the time-harmonic RTE [8,9]. As mentioned in [10], the time-dependent (parabolic) SPN
equations were first introduced by Frank et al. [11] in 2007 via an asymptotic analysis. In
2010, these equations were directly derived from the (hyperbolic) PN equations, see e.g. [9],
in a similar manner as the classical diffusion approximation [5, pp. R46–R49] many years
before. We note that the latter kind of derivation (regarding the SPN equations) is shown
within the scope of this thesis. Of course, we will see that the simplifications made do not
remain without consequences, especially at short times. In the literature, the fraction of
studies focusing on theoretical aspects or reporting on analytical solutions to the SPN equa-
tions is considerably smaller than that dealing with direct applications of these equations
e.g. in biomedical optics [9], medical physics [12] and especially in nuclear sciences [13–16].
For example, Zheng and Han investigated the well-posedness of the steady-state SPN equa-
tions under reflective boundary conditions [17] . In their work, which was published in 2011,
the authors mentioned in the introduction the lack of mathematical studies on the SPN
method. In the article of McClarren [18], dealing also with theoretical aspects (mainly in
the steady-state domain), there was additionally a brief discussion on the SPN equations in
time domain. Until today, there still seems to be a lack of theoretical studies on the SPN
equations, especially with regard to the time-dependent case. A few words about the RTE,
for which the PN and SPN methods were developed are appropriate in this context. This fun-
damental equation is involved in many areas of science such as optical tomography [5], heat
transfer [19], biophotonics [20] or nuclear physics [21]. However, analytical solutions to this
integro-differential equation, which would be of particular importance in view of applications,
are very rare. As a consequence, the RTE is mainly solved numerically e.g. via Monte Carlo
methods [22], the discrete ordinate method [23] or the finite volume method [24]. Apart from
this, the RTE is also approximated by the diffusion equation (DE) [20], which corresponds
in the light of the PN or SPN methodology with the lowest order approximation. There
are well-known shortcomings of the DE (in comparison with the transport theory), which
limit its applicability. For example, the diffusion theory fails near sources and in highly ab-
sorbing media and it suffers from the unrealistic feature of an infinite speed of propagation,
due to the parabolic nature of the DE. In contrast to that, the Telegrapher equation (TE),
which represents a second order formulation of the time-dependent P1 equations, is of the
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1 Introduction

hyperbolic type that indeed has a finite propagation speed. However, the associated value
for the speed (resulting from the PN method) is too low, namely by a factor of

√
3, see also

Example 3.4 and the TE (3.14). The differences between the results obtained from the DE
or TE and those predicted by the RTE are generally too large. Consequently, higher order
models such as the PN or SPN equations must be used. Regarding the applicability of the
DE in the field of biomedical optics, we refer to [20, Chapter 3].

Aim and structure of this thesis

According to the relevant literature, the SPN equations are widely used in different fields
of applied science, but there seem to be relatively few publications on theoretical aspects,
especially when it comes to the time-dependent case. This also includes the derivation
and investigation of concrete (analytical) solutions. In this thesis, we focus on the SPN
equations in the time domain, where our main goal and contribution is the derivation (and
partly justification) of exact solutions to the SP3 equations. This is also motivated by the
fact that this kind of solution (if available) is particularly interesting and useful for several
reasons. For example, it allows a fast and accurate evaluation, it often permits an insight into
the underlying physics and, this is of particular importance, it is usable for verifying results
obtained from numerical approaches such as finite differences and/or finite element methods.
Another reason for the mentioned goal is that the results predicted by the SP3 equations
have been shown to be sufficiently accurate for several applications, see for example [9,13,15].
We furthermore point out at this stage that we accept (and adopt) the kind of derivation of
the SPN equations without doing further investigations in this direction (e.g. in form of an
error analysis). The structure of this thesis is as follows.
In Chapter 2, we give a brief introduction to the basics of radiative transfer and present some
computable solutions to the RTE, which are needed in Section 3.5 for comparison purposes.
Most of the content in this chapter is known to scientists in the field of radiative transfer.
However, the derived Fourier series solutions (2.21) and (2.22) for the bounded domain could
not be found by us in the literature.
In Chapter 3, we begin with the spherical harmonics method (PN method) and derive, in
accordance with the relevant literature, the three-dimensional PN equations (3.6). We then
incorporate the simplifications resulting from the plane symmetry and arrive at the (known)
hyperbolic system (3.10). In Example 3.4, we look at the lowest order approximation, the
P1 equations (3.13), and derive the Telegrapher equation (3.14) from them. Due to the
relevance of the Telegrapher equation (and the P1 equations) in applied sciences, we present
a proof of a known fundamental solution (Theorem 3.5) that has been developed by ourselves.
In this context, we only could find Ganapol’s paper [25] on the multiple collision method,
which goes very roughly in the direction of our proof. Subsection 3.2.1 deals with the PN
equations in lossless media. One reason for this is that solutions for lossless media are usable
to construct solutions for the more general case of lossy media, see e.g. the formulation (3.21).
We note that this principle is exactly what we have used in proving Theorem 3.5. Moreover,
the determination of the characteristics (to the PN equations) serves as preparation for the
classification of the SPN equations, see Section 3.3, and the derived solution (3.33) to the
PN equations is needed in Section 3.5 for comparisons purposes. We leave the discussion
about the PN equations with a well-posedness result (Corollary 3.10) and with verifying the
energy conservation in lossless media. The introduced energy function (3.35) is also used
later (in a slightly modified form) in the context of the SP3 equations (Lemma 3.18).
In Section 3.3, we perform the necessary simplifications to get the time-dependent SPN
equations in form of the vectorial diffusion equation (3.40). So far, this step (regarding the
neglect of the time derivatives) is not new and can be reviewed in the relevant literature
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1 Introduction

such as [9, 14]. However, our derivation differs in the treatment of the absorption. We
separate this quantity (by a product ansatz) at the beginning and verify a positive effect
on the long-time behavior, see for example (3.58). Next, we confirm with Proposition 3.11
the parabolic nature of the SPN equations. This classification has been mentioned in the
literature, e.g. in [9, 10], but a concrete verification has not been presented.
Section 3.4 constitutes the main part of this thesis in terms of original contributions. Here,
we start with some considerations in the infinite medium (Subsection 3.4.1). Of particular
importance (with regard to the next subsections) are the moments (3.50) and the estimates
(3.52) and (3.53). As a byproduct, we confirm Einstein’s formula for the means-square
displacement (Proposition 3.14) and the normalization of the zero order moment (Remark
3.15), both for arbitrary orders N ≥ 1. In Subsection 3.4.2, we present an exact solution
to the SP3 equations in a bounded domain and proof the well-posedness of the obtained
expression by verifying existence and uniqueness (Theorem 3.20) as well as the continuous
dependence on the initial data (Corollary 3.21). In Subsection 3.4.3, there is the derivation
of alternative representations for solutions to the SP3 equations in Laplace space. The
numerical inversion of the Laplace transform is demonstrated in Subsection 3.5.2 by means
of the Post-Widder formula. Due to the relevance of time-harmonic sources in diffuse optical
tomography, we additionally consider and solve in Subsection 3.4.4 the time-harmonics SP3

equations, which consist of two coupled Helmholtz equations. To our knowledge, the results
presented in Section 3.4 have not yet been reported in the literature on the SPN equations.
In Section 3.5, various numerical experiments are carried out for both the infinite medium
and the bounded domain in order to illustrate and verify the theoretical findings.
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2 Fundamentals of Radiative Transfer

In this chapter, we give an overview about the quantities, definitions and mathematical con-
cepts that are often used in the field of radiative transfer. In addition, we present computable
solutions to the RTE for the infinite medium and for a bounded domain, which are used in
Section 3.5 for comparison purposes.

2.1 The radiative transfer equation

The radiative transfer equation (RTE) is widely used for modelling the propagation of par-
ticles like photons, neutrons, electrons or molecules in random scattering media [4,21]. It is
a conservation law that governs the gains and losses of the radiance due to scattering and
absorption [26]. We note that a solution to the RTE is called specific intensity or radiance.
Throughout this thesis we use the latter designation. The time-dependent RTE formulated
as integro-differential equation is given by [5, p. R46]

1

c

∂I

∂t
+ ŝ · ∇I + (µa + µs)I = µs

∫
S2
f (̂s · ŝ′)I(x, ŝ′, t) dŝ′, (2.1)

for (x, ŝ, t) ∈ V ×S2×R+. We assume the domain V = {(x, y, z) ∈ R3 : x ∈ Ω, y ∈ R, z ∈ R}
with Ω ⊆ R denoting an open interval. The quantity I(x, ŝ, t) is the radiance at the position
x ∈ V evaluated for the direction ŝ ∈ S2 := {x ∈ R3 : ‖x‖2 = 1} and the time t ≥ 0. The
constant c > 0 denotes the speed of light in the medium and f : [−1, 1] → [0,∞) is the
scattering phase function that is normalized according to

∫
S2 f (̂s · ŝ′) dŝ′ = 1. It describes

the probability that a particle travelling along the direction ŝ is scattered within the unit
solid angle around ŝ′ [20, Chapter 1]. Moreover, µa ≥ 0 denotes the absorption and µs ≥ 0
is the scattering coefficient. Both quantities are assumed to be spatially independent. We
also note on the streaming operator ŝ · ∇ = s1∂x + s2∂y + s3∂z and the parametrization of
the direction variable

ŝ(θ, ϕ) =

 cos θ
sin θ cosϕ
sin θ sinϕ

, (θ, ϕ) ∈ [0, π]× [0, 2π). (2.2)

This means that the polar angle θ is measured from the positive x-axis of a Cartesian
reference system. The isotropic1 initial condition belonging to equation (2.1) is given by

I(x, ŝ, 0) = c
Q(x)

4π
, x ∈ V, ŝ ∈ S2, (2.3)

where Q ∈ C1(V ). Under the regularity assumption I ∈ C1(V ×S2×R+), the radiance that
satisfies (2.1) and the initial condition (2.3) can be seen as a classical solution. As usual for
the derivation of the SPN equations, we consider in accordance with the publications [9,11]
an infinitely extended plane source of the form Q(x) = Q(x), where x ∈ Ω. Due to the

1This means that the source is independent of ŝ and radiates uniformly in all directions.
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2 Fundamentals of Radiative Transfer

infinite extend of this source, solutions to (2.1) will be independent of the variables y and
z and hence of the form I = I(x, ŝ, t). In view of the phase function, we take into account
the uniform distribution f (̂s · ŝ′) = 1/(4π) (isotropic scattering), which is often assumed
in atmospheric science [4] or nuclear physics [27]. For convenience and without loss of
generality, we set c = 1 because the case c 6= 1 can be readily determined afterwards via
scaling. This means that if I(x, ŝ, t) belongs to c = 1, then cI(x, ŝ, ct) holds true for c 6= 1.
Furthermore, we separate the absorption according to I(x, ŝ, t) := e−µatΨ(x, µ, ϕ, t), where
µ := ŝ · x̂ = cos θ ∈ [−1, 1] denoting the cosine of the angle between ŝ and the positive x-
direction x̂ = (1, 0, 0)T . Inserting this ansatz into (2.1) and considering the above mentioned
conventions results in the transport model

∂Ψ

∂t
+ µ

∂Ψ

∂x
+ µsΨ =

µs
4π

∫ 2π

0

∫ 1

−1
Ψ(x, µ′, ϕ′, t) dµ′dϕ′, (2.4)

for (x, µ, ϕ, t) ∈ Ω× [−1, 1]× [0, 2π)×R+ and Ψ(x, µ, ϕ, 0) = Q(x)/(4π). In accordance with
the derivations outlined in [10], we integrate equation (2.4) and the initial condition over
ϕ ∈ [0, 2π) and define the azimuthally integrated radiance according to [10]

ψ(x, µ, t) :=

∫ 2π

0
Ψ(x, µ, ϕ, t) dϕ, (2.5)

for (x, µ, t) ∈ Ω× [−1, 1]× [0,∞).

Remark 2.1. In the present case of an isotropic initial condition, solutions to (2.4) reduce
to Ψ = Ψ(x, µ, t). Concerning (2.5), this means ψ(x, µ, t) = 2πΨ(x, µ, t).

As a consequence, we arrive at the following simplified transport equation

∂ψ

∂t
+ µ

∂ψ

∂x
+ µsψ =

µs
2

∫ 1

−1
ψ(x, µ′, t) dµ′, (2.6)

for (x, µ, t) ∈ Ω × [−1, 1] × R+ and ψ(x, µ, 0) = Q(x)/2. In view of concrete applications,
e.g. in medical physics, the fluence that corresponds with the integrated radiance is a quantity
of particular importance [12].

Definition 2.2. The fluence is defined as the integral of the radiance over the angular
domain, which means

Φ(x, t) :=

∫ 1

−1
ψ(x, µ, t) dµ, x ∈ Ω, t ≥ 0. (2.7)

Remark 2.3. The fluence is currently defined in a non-absorbing medium with c = 1. In
the more general case of µa ≥ 0 and c > 0, we again find via scaling ce−µactΦ(x, ct).

Within radiative transfer (theory and applications), point sources are of particular impor-
tance e.g. when modelling a point light source that radiates uniformly in all directions, which
we abbreviate as δ-source, or when thinking about a narrow light beam that penetrates bio-
logical tissue. These source types as well as the description of ballistic (uncollided) intensities
can be conveniently handled by the Dirac delta distribution δ(x) := d

dxΘ(x), with Θ being
the unit step function [28, Chapter 1]. It also appears in the context of integral transforms
such as Fourier, Laplace or Mellin transform, especially when discontinuous functions and
their (generalized) derivatives are taken into account.
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2 Fundamentals of Radiative Transfer

Remark 2.4. For illustration as well as for numerical considerations, the Dirac delta dis-
tribution can be approximated by several elementary functions. Two examples are

(1) δ(x) = lim
ε→0

e−x
2/(2ε)

√
2πε

, x ∈ R,

(2) δ(φ) = lim
g→1

1

2π

1− g2

1 + g2 − 2g cosφ
, φ ∈ (−π, π],

where (2) represents a 2π-periodic Dirac delta distribution.

In this thesis, we also make use of this helpful concept without going into the theory of
distributions. Instead, we refer to the textbooks [28, Chapter 1] and [29, Chapter 2], from
which we adopt the following results.

Proposition 2.5. The Dirac delta distribution considered on the entire x-axis satisfies

(1) f(x)δ(x− x0) = f(x0)δ(x− x0), x0 ∈ R,

(2) δ(ax) =
δ(x)

|a|
, a ∈ R, a 6= 0,

(3) δ(g(x)) =
∑
j

δ(x− xj)
|g′(xj)|

, where g(xj) = 0, g′(xj) 6= 0,

(4) F(δ)(k) = 1 ∀k ∈ R,

with F denoting the Fourier transform, cf. Definition 2.7.

The lowest order approximation to the RTE (in view of the angular dependence) is the
classical heat or diffusion equation [5, 20]. In that case, the exact transport theory fluence
(2.15) associated with the RTE (2.6) for the infinite medium caused by a δ-source reduces
to the well-known heat kernel [2, p. 463]

Φ(x, t) =
e−

x2

4κt

√
4πκt

, x ∈ R, t > 0, (2.8)

where Φ(x, 0) = δ(x) and κ := 1/(3µs) is the diffusion constant (or thermal conductivity).
In Section 3.3, we will see that the SP1 equation coincides with the heat equation ut = κuxx.
At this stage, it should be noted that the plane source problem treated in this thesis differs
from the two-stream methodology [30]. The latter configuration, in which particles can only
travel along two specific directions (e.g. particle transport in a very thin fiber), is a real
one-dimensional problem that is significantly easier to solve. The idea of restricting the RTE
(in view of the angular space) to a finite number of directions leads to an approximation
technique known as the discrete ordinate method [23,30]. We furthermore have to address the
issue of boundary conditions (BCs) that must be taken into account for modelling transport
processes in finite domains. In this thesis, we take into account reflective BCs2 according to
the following definition [27].

Definition 2.6 (Reflective BC). Let Ω ⊂ R be an open domain with a reflecting boundary
∂Ω, which means that a particle coming from direction ŝ(θ, ϕ) and reaching ∂Ω will be
reflected back into the medium along ŝ(π−θ, ϕ). Then, the azimuthally independent radiance
ψ associated with the RTE (2.6) must satisfy

ψ(x, µ, t) = ψ(x,−µ, t) ∀x ∈ ∂Ω,

and (µ, t) ∈ [−1, 1]× [0,∞).

2In this context, one could think of a ball before and after reaching a wall.
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2 Fundamentals of Radiative Transfer

In the sections below, we make use of two integral transforms. One of that is the Fourier
transform according to the following definition [31, p. 213].

Definition 2.7. The Fourier transform F : f 7→ F(f) = f̂ of an absolutely integrable
function f ∈ L1(R) is defined as

f̂(k) :=

∫ ∞
−∞

f(x)e−ikx dx, k ∈ R.

Remark 2.8. For f ∈ L1(R) the Fourier transform is bounded for all k ∈ R due to

|f̂(k)| ≤
∫ ∞
−∞
|f(x)e−ikx| dx =

∫ ∞
−∞
|f(x)| dx <∞. (2.9)

Moreover, in [31, Chapter 7] it is shown by the Riemann-Lebesgue Lemma that f ∈ L1(R)
implies f̂ ∈ C0(R) with

C0(R) := {ϕ ∈ C(R) : lim
|x|→∞

ϕ(x) = 0}. (2.10)

The Fourier transform has many useful properties of which we only need a few for the
purposes of this work. A proof or derivation of the following results can be found, for
example, in [29, Chapter 2] and [31, Chapter 7].

Proposition 2.9. For f ∈ L1(R) with Fourier transform F(f) = f̂ we have

(1) f(x) = F−1(f̂)(x) =
1

2π

∫ ∞
−∞

f̂(k)eikx dk, x ∈ R, f̂ ∈ L1(R),

(2) F(f (n))(k) = (ik)nf̂(k), if f (0)(x), . . . , f (n−1)(x)→ 0 as |x| → ∞, n ∈ N0,

(3) F(f(·)eik0·)(k) = f̂(k − k0), k0 ∈ R,

(4)
∑
n∈Z

f(x− nT ) =
1

T

∑
n∈Z

f̂(2πn/T )e2πinx/T , x ∈ R, T > 0,

where (4) is known as the Poisson summation formula.

Besides the Fourier transform, we will also use the one-sided Laplace transform, see e.g. [28,
Chapter 5] for more details on this subject.

Definition 2.10. Let f : [0,∞) → R be a continuous function with f(t) = O(eσ0t)3 as
t → ∞ and σ0 ∈ R denoting the exponential order. Then, the one-sided Laplace transform
L : f 7→ L(f) = f̂ defined by

f̂(s) =

∫ ∞
0

f(t)e−st dt, s = σ + iω ∈ C,

exists in the half-plane {s ∈ C : σ > σ0} with σ0 ∈ R being the abscissa of convergence. The
corresponding inverse relation, also known as Bromwich integral, is given by

f(t) =
eσt

2π

∫ ∞
−∞

f̂(σ + iω)eiωt dω ∀σ > σ0,

where the integration takes place along a straight line (within the region of convergence)
that is parallel to the imaginary axis.

3Here, we use the big-O notation. That is, f(t) = O(g(t)) as t→∞ means that there are constants M > 0
and t0 such that |f(t)| ≤M |g(t)| for all t ≥ t0.
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2 Fundamentals of Radiative Transfer

Remark 2.11. If the region of convergence contains the imaginary axis, then the Bromwich
integral can be evaluated for σ = 0 leading to the inverse Fourier transform, cf. Proposition
2.9. In the context of partial differential equations, the inverse Laplace transform must be
in general carried out numerically. Depending on the properties of the image function f̂ ,
there are different approaches for reconstruction of f such as Talbot’s (contour deformation)
method [32, Chapter 6] or the Post-Widder inversion formula, see e.g. [32, Theorem 2.4] or
Proposition 3.25.

For our purposes, we need an operational property regarding the first time derivative.

Proposition 2.12. Let f : [0,∞) → R be a continuous function with f(t) = O(eσ0t) as
t→∞. Then, the Laplace transform of f ′ exists for σ > σ0 with

L(f ′)(s) = sf̂(s)− f(0).

Proof. A proof of this differentiation property can be found in [28, Theorem 5.2].

2.2 Analytical solutions to the RTE

In general, closed-form solutions to the RTE (2.6) are very rare. Even in the simplest
cases such as the infinite medium, the corresponding solution is only available in form of a
quadrature that must be evaluated numerically. Nevertheless, this type of solution is also
useful e.g. for verification of Monte Carlo codes and/or PN -based methods. The purpose of
this section is to provide some computable solutions to the RTE (2.6), which are needed in
Section 3.5 for checking the accuracy of the derived SP3 solutions.

2.2.1 Solution for the fluence in the infinite medium

Let us start with the derivation of an expression for the infinite-space fluence caused by
an instantaneous δ-source. To this end, we consider equation (2.6) on Ω = R subject to
ψ(x, µ, 0) = δ(x)/2 for (x, µ) ∈ R × [−1, 1]. The application of the Fourier transform with
respect to the space and the Laplace transform in view of the time converts the RTE (2.6)
into the following equation

(s+ µs + ikµ)ψ̂(k, µ, s) =
µs
2

Φ̂(k, s) +
1

2
, (2.11)

for k ∈ R, µ ∈ [−1, 1] and Re s = σ > 0, where we have considered Proposition 2.9 and
Proposition 2.12 with ψ̂(k, µ, 0) = 1/2 for (k, µ) ∈ R× [−1, 1]. We note that the assumption
σ > 0 is in accordance with the considerations in the work [33].

Lemma 2.13. The fluence in Fourier-Laplace space due to an instantaneous δ-source is
uniquely determined by

Ĝ(k, s) =
Φ̂0(k, s)

1− µsΦ0(k, s)
with Φ̂0(k, s) =

1

k
arctan

(
k

s+ µs

)
,

where k ∈ R and σ > 0.

8



2 Fundamentals of Radiative Transfer

Proof. By solving (2.11) for the radiance gives

ψ̂(k, µ, s) =
1

2

1 + µsΦ̂(k, s)

s+ µs + ikµ
. (2.12)

Next, we integrate this expression over µ ∈ [−1, 1] to obtain

Φ̂(k, s) = Φ̂0(k, s)[1 + µsΦ̂(k, s)],

where we have used Φ̂(k, s) =
∫ 1
−1 ψ̂(k, µ, s) dµ and Φ̂0 is the uncollided fluence in the trans-

formed space that is given by

Φ̂0(k, s) :=
1

2

∫ 1

−1

dµ

s+ µs + ikµ
=

1

k
arctan

(
k

s+ µs

)
.

Therefore, the transport theory fluence in Fourier-Laplace space turns out to be

Φ̂(k, s) =
Φ̂0(k, s)

1− µsΦ̂0(k, s)
=: Ĝ(k, s). (2.13)

In the next subsection, we also need the radiance in the transformed space. By inserting the
expression (2.13) into (2.12) gives

ψ̂(k, µ, s) =
1

2

1

s+ µs + ikµ

1

1− µsΦ0(k, s)
=: Ĝ(k, µ, s). (2.14)

Theorem 2.14. The spatially resolved fluence in time domain due to an instantaneous δ-
source exhibits for x ∈ R and t > |x| the following representation

G(x, t) =
e−µst

2t
+

1

π

∫ πµs/2

0

e(k cot(k/µs)−µs)t

sinc2(k/µs)
cos(kx) dk

− µse
−µst

4πt

∫ |x|
0

(
t− η
t+ η

)µs(|x|−η)/2 [
2π ln

t+ η

t− η
cos

(
µsπ
|x| − η

2

)
+

(
π2 − ln2 t+ η

t− η

)
sin

(
µsπ
|x| − η

2

)]
dη, (2.15)

where sincx := sinx/x and G(x, t) = 0 for 0 ≤ t < |x|, due to the finite speed of propagation.

Proof. We have to perform F−1L−1Ĝ = L−1F−1Ĝ = G under the use of the transformed
fluence Ĝ from Lemma 2.13. This task is not easy and requires some knowledge in complex
analysis. We refer at this stage to the article [33], in which the authors have proposed an
appropriate contour in the complex plane in combination with the residue theorem.

The integral representation (2.15) enables the determination of the fluence in the long-time
limit. To this end, let us first investigate the contribution of

I(t) :=
1

π

∫ πµs/2

0

e(k cot(k/µs)−µs)t

sinc2(k/µs)
cos(kx) dk, (2.16)

9



2 Fundamentals of Radiative Transfer

for t → ∞. The particular form of this integral gives rise to the application of the Laplace
formula [34, Chapter 5]∫ b

0
e−tϑ(k)g(k) dk ≈ 1

2

√
2π

tϑ′′(0)
g(0)e−tϑ(0) as t→∞. (2.17)

This asymptotic expansion requires that g(0) 6= 0 and ϑ must be a monotonically increasing
function on (0, b] with ϑ′(0) = 0 and ϑ′′(0) > 0. In the present case, we have b = πµs/2 and
ϑ(k) := µs − k cot(k/µs) with ϑ′(0) = 0 and ϑ′′(0) = 2/(3µs) > 0. Moreover, the associated
function g satisfies g(0) = 1 6= 0 and the first derivative of ϑ is given by

ϑ′(k) =
k/µs − sin(2k/µs)/2

sin2(k/µs)
, 0 ≤ k ≤ πµs

2
.

On its domain of definition it is positive due to sin ξ ≤ ξ for all ξ ≥ 0. Hence, all requirements
are fulfilled and the application of Laplace’s formula (2.17) to (2.16) shows that

I(t) ∼ 1√
4πκt

=: H(t) as t→∞, (2.18)

which coincides with the classical heat kernel (2.8) in the long-time limit. We note that the
remaining terms in (2.15) decay exponentially as t → ∞. Thus, expression (2.18) is the
leading term of the transport theory fluence at late times. In Subsection 3.4.1, we verify the
convergence of the SP3 fluence against (2.18) when t→∞.

2.2.2 Solution of the RTE in a bounded domain

In addition to the infinite medium, it would be important to have also an exact reference
solution for the bounded domain. In the case of Ω = (0, L) subject to the reflective BCs
from Definition 2.6, there is the possibility to derive an expression in form of a Fourier series.
Moreover, we will see that the δ-source problem can be alternatively solved by the method of
images, see e.g. [35] for more details on this solution approach. Again, the starting point is
the transport equation (2.6) on the whole space R, but under consideration of the following
even and 2L-periodic source distribution

Q(x) =

∞∑
n=0

2− δn0

L
qn cos(ωnx), qn :=

∫ L

0
Q(x) cos(ωnx) dx, (2.19)

where ωn := nπ/L and δij denotes the Kronecker delta. We furthermore assume uniform
convergence with (qn)n∈N0 ∈ `1(N0) such that

∑∞
n=0 |qn| <∞. As shown below, the obtained

solution on R satisfies the intended reflective BCs according to Definition 2.6. To proceed
further, we need the Fourier transform of the periodic source (2.19). It has a discrete
spectrum consisting of weighted Dirac pulses, see e.g. [28, Chapter 2]. This leads to

Q̂(k) =
2π

L

∑
n∈Z

q|n|δ(k − ωn), k ∈ R. (2.20)

We now can proceed in the same manner as in the previous subsection. The resulting
radiance in Fourier-Laplace space is nearly the same as before and given by the product

ψ̂(k, µ, s) = Q̂(k)Ĝ(k, µ, s), (k, µ) ∈ R× [−1, 1], σ > 0.

10



2 Fundamentals of Radiative Transfer

Considering (2.20) and making use of the property (1) from Proposition 2.5 gives

ψ̂(k, µ, s) =
2π

L

∑
n∈Z
Ĝ(ωn, µ, s)q|n|δ(k − ωn), (k, µ) ∈ R× [−1, 1], σ > 0.

The Fourier transform can be inverted under the use of F(eiωn·)(k) = 2πδ(k − ωn), yielding

ψ̂(x, µ, s) =
1

L

∑
n∈Z
Ĝ(ωn, µ, s)q|n|e

iωnx, (x, µ) ∈ R× [−1, 1], σ > 0. (2.21)

At this stage, when using the symmetry property Ĝ(k, µ, s) = Ĝ(−k,−µ, s), one can confirm
the reflective BC

ψ̂(x, µ, s) = ψ̂(x,−µ, s) ∀(x, µ) ∈ ∂Ω× [−1, 1], σ > 0.

Thus, the radiance obtained on R is simultaneously a solution for the bounded domain. The
fluence is found via integration under the use of

∫ 1
−1 Ĝ(ωn, µ, s) dµ = Ĝ(ωn, s), yielding

Φ̂(x, s) =
1

L

∑
n∈Z

Ĝ(ωn, s)q|n|e
iωnx =

∞∑
n=0

2− δn0

L
Ĝ(ωn, s)qn cos(ωnx), (2.22)

for x ∈ R, σ > 0 and Ĝ with property Ĝ(k, s) = Ĝ(−k, s) is adopted from Lemma 2.13. We
also see that the fluence (2.22) satisfies homogeneous Neumann BCs. Let us briefly discuss
the special case qn = cos(ωnx0) with x0 ∈ Ω. In contrast to the considerations above, the
coefficients qn do not decay towards zero and lead to the periodic δ-source distribution

Q(x) =

∞∑
n=0

2− δn0

L
cos(ωnx0) cos(ωnx) =

∑
n∈Z

[δ(x− x0 − 2nL) + δ(x+ x0 − 2nL)].

We note that this (symbolic) relation, which represents an infinite number of δ-sources, is
still consistent with the Poisson summation formula from Proposition 2.9. Regarding the
fluence (2.22), a symbolic manipulation by means of the Poisson summation gives

Φ̂(x, s) =
1

L

∑
n∈Z

Ĝ(ωn, s) cos(ωnx0)eiωnx =
1

2L

∑
n∈Z

Ĝ(ωn, s)e
iωn(x+x0)

+
1

2L

∑
n∈Z

Ĝ(ωn, s)e
iωn(x−x0) =

∑
n∈Z

Ĝ(x− x0 − 2nL, s)

+
∑
n∈Z

Ĝ(x+ x0 − 2nL, s), x ∈ Ω \ {x0}, σ > 0. (2.23)

This expression represents the fluence caused by a δ-source located at x0 ∈ (0, L). Hence, this
transport theory problem (under reflective BCs) can be successfully solved by the method
of images. Let us go back to the Fourier series (2.21) and (2.22) with (qn)n∈N0 ∈ `1(N0).
Here, the remaining inverse Laplace transform must be in general carried out numerically.
An exception is the lossless medium with µs = 0. In that case, we obtain with (2.14)

Ĝ(ωn, µ, s) =
1

2

1

s+ iµωn
=⇒
L−1

Ĝ(ωn, µ, t) =
e−iµωnt

2
, n ∈ Z,

and (µ, t) ∈ [−1, 1]× [0,∞). Inserting this result into (2.21) leads to the radiance

ψ(x, µ, t) =
∞∑
n=0

2− δn0

2L
qn cosωn(x− µt),

11
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for (x, µ, t) ∈ Ω × [−1, 1] × [0,∞). Due to |qn cosωn(x − µt)| ≤ |qn| and
∑∞

n=0 |qn| < ∞,
this series converges according to the Weierstrass majorant criterion [2, p. 87] absolutely and
uniformly to a continuous function. In view of the fluence, we note on

Ĝ(ωn, t) =

∫ 1

−1
Ĝ(ωn, µ, t) dµ =

∫ 1

−1

e−iµωnt

2
dµ = sinc(ωnt), n ∈ Z, t ≥ 0.

Inserting this into (2.22) leads to the uniformly convergent series

Φ(x, t) =

∞∑
n=0

2− δn0

L
qn sinc(ωnt) cos(ωnx), (x, t) ∈ Ω× [0,∞). (2.24)

For the classical wave equation utt = c2uxx on Ω = (0, L) under homogeneous Dirichlet or
Neumann conditions, it has been shown in the literature that the total energy according
to E(t) = 1

2

∫
Ω(u2

t + c2u2
x) dx (assuming sufficient regularity) is constant over time, see for

example [36, Section 3.3]. Due to the hyperbolic nature of the RTE, one may expect a similar
result for the radiance in a lossless medium. Let us investigate the following energy function

E(t) := ‖ψ(·, t)‖2L2(Ω×[−1,1]) =

∫ 1

−1

∫ L

0
ψ2(x, µ, t) dxdµ, t ≥ 0. (2.25)

The RTE (2.6) in lossless media reduces to ψt + µψx = 0 with ψ(x, µ, 0) = Q(x)/2. This
simple transport equation is solved by ψ(x, µ, t) = Q(x − µt)/2. Due to the fact that Q is
even and 2L-periodic, we have ψ(x, µ, t) = ψ(x,−µ, t) for (x, µ, t) ∈ ∂Ω × [−1, 1] × [0,∞).
In view of the energy integral (2.25), we get

E(t) =
1

4

∫ 1

−1

∫ L

0
Q2(x− µt) dxdµ =

1

8

∫ 1

−1

∫ 2L

0
Q2(x− µt) dxdµ

=
1

4

∫ 1

−1

∫ L

0
Q2(ξ) dξdµ =

1

2

∫ L

0
Q2(x) dx = E(0),

(2.26)

where we again have used the symmetry and periodicity of Q. This shows that the introduced
energy function (2.25) is a conserved quantity. Below, we will see that the PN method
represents in lossless media a conservative scheme. For illustration purposes, we will consider
the derived Fourier series solution (2.22) within the last numerical experiment from Section
3.5. In view of the SP3 equations discussed in Section 3.4, we will apply the Poisson’s
summation formula in exactly the same way as we did to obtain the fluence expression
(2.23).

12



3 On the SPN Equations in Time Domain

The simplified PN equations (SPN equations) can be derived from the PN equations belong-
ing to the azimuthally independent RTE (2.6). Thus, we first have to derive these equations
before we can apply the remaining simplifications with respect to the time derivatives. There
are different ways to proceed further. One possibility would be to start the analysis directly
from the transport equation (2.6). On the other hand, to get a deeper insight into the PN
methodology and its applicability to more complicated (higher dimensional) problems, it
is also possible to start from the original equation (2.1) and carry out the simplifications
afterwards. Although being more extensive, we prefer to show the second option. Let us
start with a short overview about the spherical harmonics and some of its basic properties.

3.1 The spherical harmonics method

Within the spherical harmonics method, in radiative transfer abbreviated as PN method,
all angle-dependent quantities such as the (unknown) radiance, the source term as well as
the scattering phase function are represented in terms of spherical harmonics [4, 5]. They
form an orthonormal basis of the Hilbert space of square-integrable functions. A spherical
harmonic function Y m

` : S2 → C of degree ` ∈ N0 and order m (|m| ≤ `) can be defined
as [2, p. 282]

Y m
` (̂s) :=

√
2`+ 1

4π

(`−m)!

(`+m)!
Pm` (cos θ)eimϕ,

for ŝ = ŝ(θ, ϕ) ∈ S2 and Pm` are the associated Legendre functions according to [2, p. 319]

Pm` (x) := (−1)m(1− x2)
m
2
dmP`(x)

dxm
, |x| ≤ 1, 0 ≤ m ≤ `.

For negative values −` ≤ m ≤ −1, we note on the useful relation [2, p. 319]

Pm` (x) = (−1)m
(l +m)!

(l −m)!
P−m` (x), |x| ≤ 1,

yielding Y m
` = (−1)mY −m` .1 The first few spherical harmonics are given

Y 0
0 (̂s) =

1√
4π
, Y 0

1 (̂s) =

√
3

4π
cos θ and Y 1

1 (̂s) = −1

2

√
3

2π
sin θeiϕ.

With the above normalization these functions are orthonormal in the sense [2, p. 283]

〈Y m
` , Y m′

`′ 〉L2(S2) :=

∫
S2
Y m
` (̂s)Y m′

`′ (̂s) dŝ = δ``′δmm′ . (3.1)

Concerning the expansion of a function f ∈ L2(S2) in terms of spherical harmonics, we adopt
from [1] the following important result.

1In general, we denote by f the complex conjugate of f .
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3 On the SPN Equations in Time Domain

Proposition 3.1. Every function f ∈ L2(S2) can be represented in terms of the spherical
harmonics according to

f (̂s) =
∞∑
`=0

∑̀
m=−`

fm` Y
m
` (̂s), where fm` = 〈f, Y m

` 〉L2(S2).

The convergence with respect to the L2-norm ‖f‖2L2(S2) :=
∫
S2 |f (̂s)|2 dŝ is

lim
N→∞

‖f − fN‖L2(S2) = lim
N→∞

∥∥∥∥∥
∞∑

`=N+1

∑̀
m=−`

fm` Y
m
`

∥∥∥∥∥
L2(S2)

= 0,

where fN :=
N∑̀
=0

∑̀
m=−`

fm` Y
m
` denotes the N th partial sum.

Remark 3.2. The Nth partial sum fN ∈ SN := span{Y m
` : |m| ≤ `, 0 ≤ ` ≤ N} is the

best approximation of f within the subspace SN of dimension (N + 1)2 with respect to the
L2-norm. This means

‖f − fN‖L2(S2) ≤ ‖f − q‖L2(S2) ∀q ∈ SN .

Proof. Due to the orthogonality 〈f − fN , p〉L2(S2) = 0 for all p ∈ SN we find for an arbitrary
q ∈ SN (Pythagorean identity)

‖f − q‖2L2(S2) = ‖f − fN + fN − q‖2L2(S2) = ‖f − fN‖2L2(S2) + ‖fN − q‖2L2(S2),

where we have considered fN − q ∈ SN . This is just the best approximation property.

The scattering phase function occurring in equation (2.1) has a particular form, namely

f (̂s · ŝ′) = f(cos θ cos θ′ + sin θ sin θ′ cos(ϕ− ϕ′)).

For this kind of rotationally invariant function, which means that there is no dependence on
a laboratory coordinate system, the corresponding expansion coefficients can be computed
more conveniently by means of the Funk-Hecke formula [3, Theorem 2.16]∫

S2
f (̂s · ŝ′)Y m

` (̂s) dŝ = 2πY m
` (̂s′)

∫ 1

−1
f(µ)P`(µ) dµ. (3.2)

In addition, if we set 2π
∫ 1
−1 f(µ)P`(µ) dµ =: f` and making use of the addition theorem for

spherical harmonics [5, p. R89]

P`(̂s · ŝ′) =
4π

2`+ 1

∑̀
m=−`

Y m
` (̂s′)Y m

` (̂s),

we can identify with fm` = f`Y
m
` (̂s′) the simple Legendre series

f (̂s · ŝ′) =
∞∑
`=0

∑̀
m=−`

f`Y
m
` (̂s′)Y m

` (̂s) =
∞∑
`=0

2`+ 1

4π
f`P`(̂s · ŝ′).
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As an example, the Henyey-Greenstein phase function is an often considered model within
biomedical optics applications [20]. It has the following explicit representation [26, p. 148]

fHG(̂s · ŝ′) =
1

4π

1− g2

(1 + g2 − 2g ŝ · ŝ′)3/2
=

∞∑
`=0

2`+ 1

4π
g`P`(̂s · ŝ′),

with g ∈ (−1, 1) being the so-called anisotropy factor. This function provides also an ap-
proximation of the Dirac delta distribution on the unit sphere such as [26, p. 148]

lim
g→1

fHG(̂s · ŝ′) =
δ(1− ŝ · ŝ′)

2π
= δ(̂s− ŝ′) = δ(cos θ − cos θ′)δ(ϕ− ϕ′).

Within the PN method, the radiance I from (2.1) is (in view of the angular space) projected
onto the finite-dimensional space SN with N ≥ 1 being the truncation parameter that is
necessary for realization of the PN method on a computer. Consequently, we have the
representation [5, p. R47]

I(x, ŝ, t) ≈ IN (x, ŝ, t) =
N∑
`=0

∑̀
m=−`

√
2`+ 1

4π
φm` (x, t)Y m

` (̂s), (3.3)

for (x, ŝ, t) ∈ V × S2 × [0,∞). Here, the pre-factor
√

(2`+ 1)/(4π) is only due to conve-
nience for reducing the size of the coefficients within the PN equations. Next, we insert the
approximated radiance IN ≈ I into (2.1) under the use of the derivatives

1

c

∂

∂t
IN (x, ŝ, t) =

N∑
`=0

∑̀
m=−`

√
2`+ 1

4π

1

c

∂

∂t
φm` (x, t)Y m

` (̂s),

ŝ · ∇IN (x, ŝ, t) =
N∑
`=0

∑̀
m=−`

√
2`+ 1

4π
ŝ · ∇φm` (x, t)Y m

` (̂s),

where we have used the linearity of the partial derivative operator (applied to a finite series).
In view of the integral term on the right-hand side of (2.1), we find with (3.2)∫

S2
f (̂s · ŝ′)IN (x, ŝ′, t) dŝ′ =

N∑
`=0

∑̀
m=−`

√
2`+ 1

4π
φm` (x, t)

∫
S2
f (̂s · ŝ′)Y m

` (̂s′) dŝ′

=
N∑
`=0

∑̀
m=−`

√
2`+ 1

4π
φm` (x, t)f`Y

m
` (̂s).

Collecting the provided information enables us to write

N∑
`=0

∑̀
m=−`

√
2`+ 1

4π

(
1

c

∂

∂t
+ σ` + ŝ · ∇

)
φm` (x, t)Y m

` (̂s) = 0, (3.4)

for (x, ŝ, t) ∈ V × S2 × (0,∞) and σ` := µa + µs(1 − f`). To proceed further, we use the
identities sinϕ = (eiϕ − e−iϕ)/(2i) and cosϕ = (eiϕ + e−iϕ)/2 to get

ŝ · ∇ = cos θ∂x + sin θ cosϕ∂y + sin θ sinϕ∂z

= cos θ∂x +
1

2
sin θeiϕ(∂y − i∂z) +

1

2
sin θe−iϕ(∂y + i∂z).
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Multiplying both sides of (3.4) with the test function
√

4π
2`′+1Y

m′
`′ ∈ SN results in

N∑
`=0

∑̀
m=−`

√
2`+ 1

2`′ + 1

[
1

c

∂

∂t
+ σl + cos θ∂x +

1

2
sin θeiϕ(∂y − i∂z)

+
1

2
sin θe−iϕ(∂y + i∂z)

]
φm` (x, t)Y m

` (̂s)Y m′
`′ (̂s) = 0.

We finally have to integrate this expression over the unit sphere. For this, we can use the
following recurrence relations for the spherical harmonics [5, p. R90]

cos θY m
` =

√
(`+m)(`−m)

(2`− 1)(2`+ 1)
Y m
`−1 +

√
(`+ 1 +m)(`+ 1−m)

(2`+ 1)(2`+ 3)
Y m
`+1,

sin θeiϕY m
` =

√
(`−m)(`−m− 1)

(2`− 1)(2`+ 1)
Y m+1
`−1 −

√
(`+m+ 1)(`+m+ 2)

(2`+ 1)(2`+ 3)
Y m+1
`+1 ,

sin θe−iϕY m
` =

√
(`−m+ 1)(`−m+ 2)

(2`+ 1)(2`+ 3)
Y m−1
`+1 −

√
(`+m)(`+m− 1)

(2`− 1)(2`+ 1)
Y m−1
`−1 .

With these formulae all integrals can be evaluated via the orthogonality relation (3.1). For
example, we have∫

S2
cos θY m

` (̂s)Y m′
`′ (̂s) dŝ =

√
(`′ +m′)(`′ −m′)
(2`′ − 1)(2`′ + 1)

δ`,`′−1δmm′

+

√
(`′ + 1 +m′)(`′ + 1−m′)

(2`′ + 1)(2`′ + 3)
δ`,`′+1δmm′ .

(3.5)

The remaining integrals can be evaluated in the same way. After that, we get

∂x

[√
(`′ +m′)(`′ −m′)

2`′ + 1
φm
′

`′−1 +

√
(`′ + 1 +m′)(`′ + 1−m′)

2`′ + 1
φm
′

`′+1

]

− 1

2
(∂y − i∂z)

[√
(`′ +m′ − 1)(`′ +m′)

2`′ + 1
φm
′−1

`′−1 −
√

(`′ −m′ + 1)(`′ −m′ + 2)

2`′ + 1
φm
′−1

`′+1

]

+
1

2
(∂y + i∂z)

[√
(`′ −m′ − 1)(`′ −m′)

2`′ + 1
φm
′+1

`′−1 −
√

(`′ +m′ + 1)(`′ +m′ + 2)

2`′ + 1
φm
′+1

`′+1

]

+
1

c

∂φm
′

`′

∂t
+ σ`′φ

m′
`′ = 0, (x, t) ∈ V × R+.

We now can summarize the resulting PN system consisting of (N + 1)2 coupled partial
differential equations. That is

(2`+ 1)

(
1

c

∂φm`
∂t

+ σ`φ
m
`

)
+ a`m

∂φm`−1

∂x
+ a`+1,m

∂φm`+1

∂x

−1

2

(
∂

∂y
− i ∂

∂z

)(
b`−1,mφ

m−1
`−1 − c`+1,mφ

m−1
`+1

)
(3.6)

+
1

2

(
∂

∂y
+ i

∂

∂z

)(
c`−1,mφ

m+1
`−1 − b`+1,mφ

m+1
`+1

)
= 0, (x, t) ∈ V × R+,

16
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for ` = 0, 1, . . . , N , |m| ≤ ` and moments of the form φm` = φm` (x, t). The corresponding
coefficients are given by

a`m :=
√
`2 −m2, b`m :=

√
(`+m)(`+m+ 1), c`m := b`,−m.

We note that our obtained system (3.6) differs slightly from that found in [5] due to the
differences in the parametrization of the direction variable (2.2). It remains to provide the
associated initial condition. This can be done via comparison such as

I(x, ŝ, 0) ≈ IN (x, ŝ, 0) =

N∑
`=0

∑̀
m=−`

√
2`+ 1

4π
φm` (x, 0)Y m

` (̂s)
!

= c
Q(x)

4π

=
N∑
`=0

∑̀
m=−`

√
2`+ 1

4π
cQ(x)δ`0δm0Y

m
` (̂s) =⇒ φm` (x, 0) = cQ(x)δ`0δm0,

for x ∈ V . We leave the discussion about the three-dimensional PN equations at this stage.
In the next section, we derive the intended PN equations for the plane symmetric medium
based on the three-dimensional PN equations (3.6) just derived.

3.2 The PN equations under plane symmetry

We now apply the simplifications from Section 2.1 to the system (3.6) in order to obtain the
PN equations associated with the azimuthally independent transport equation (2.6). The
separation of the absorption at the beginning allows us to consider (3.6) for µa = 0. We
also recall the convention c = 1 for the speed of light. The isotropic (constant) scattering
phase function corresponds with f` = δ`0, yielding σ` = µa + µs(1− f`) = µs(1− δ`0). Due
to the infinitely extended plane source Q, we know from Section 2.1 that the problem is
independent of y and z and governed by the equation (2.4). Hence, (3.6) simplifies at this
stage to the following block-diagonal system

∂φm`
∂t

+ σ`φ
m
` +

a`m
2`+ 1

∂φm`−1

∂x
+
a`+1,m

2`+ 1

∂φm`+1

∂x
= 0, (3.7)

for (x, t) ∈ Ω×R+ and φm` (x, 0) = Q(x)δ`0δm0 with Q ∈ C1(Ω). These PN equations belong
to the transport equation (2.4). The corresponding radiance ΨN ≈ Ψ has the form

ΨN (x, µ, ϕ, t) =

N∑
`=0

∑̀
m=−`

√
2`+ 1

4π
φm` (x, t)Y m

` (̂s), (3.8)

where the coefficients φm` now depend only on two instead of four variables. The integrated
radiance from (2.5) is found via integration of (3.8) using∫ 2π

0
Y m
` (̂s) dϕ = 2π

√
2`+ 1

4π
P 0
` (µ)δm0,

where we note on
∫ 2π

0 eimϕ dϕ = 2πδm0. Hence, we arrive at the Legendre series

ψN (x, µ, t) =
N∑
`=0

2`+ 1

2
φ`(x, t)P`(µ) ≈ ψ(x, µ, t), (3.9)
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3 On the SPN Equations in Time Domain

which only considers the moments φ0
` = φ` for m = 0. This means that the PN equations we

are looking for correspond to the block for m = 0 of system (3.7). The resulting equations
considered on Ω× R+ can be given as

∂φ0

∂t
+
∂φ1

∂x
= 0,

∂φ`
∂t

+
`

2`+ 1

∂φ`−1

∂x
+

`+ 1

2`+ 1

∂φ`+1

∂x
+ µsφ` = 0, ` = 1, 2, . . . , N,

(3.10)

for the moments φ` ∈ C1(Ω × R+) with φ`(x, 0) = Q(x)δ`0 for x ∈ Ω and φN+1 = 0.
These are the desired PN equations associated with the transport equation (2.6).2 From
now on, when we refer to the PN equations, we always mean (3.10) respective (3.11). The
truncation parameter N ≥ 1 is typically an odd number. One reason for this convention can
be reviewed in [10]. The Legendre polynomials occurring in (3.9) satisfy the orthogonality
relation

∫ 1
−1 P`(x)Pm(x) dx = 2δ`m

2`+1 , see for example [2, p. 310].

Remark 3.3. The fluence from Definition 2.2 corresponds with the zero order moment φ0,
due to

Φ(x, t) ≈
∫ 1

−1
ψN (x, µ, t) dµ =

N∑
`=0

2`+ 1

2
φ`(x, t)

∫ 1

−1
P`(µ) dµ = φ0(x, t).

The PN equations (3.10) can be conveniently written in matrix notation. For this, we
introduce the vector-valued function

φ : Ω× [0,∞)→ RN+1 with φ =


φ0

φ1
...
φN

,
together with the diagonal matrix Σ := diag(0, µs, µs, . . . , µs) ∈ RN+1,N+1 and

A :=



0 1 0 0 · · · 0

1
3 0 2

3 0 · · ·
...

0 2
5

. . .
. . . · · · 0

0 0
. . .

. . .
. . . 0

... · · · · · · . . .
. . . N

2N−1

0 · · · 0 0 N
2N+1 0


∈ RN+1,N+1.

Then, system (3.10) becomes

φt +Aφx + Σφ = 0, x ∈ Ω, t > 0, (3.11)

subject to φ(x, 0) = Q(x)e0 for x ∈ Ω with e0 := (1, 0, . . . , 0)T ∈ RN+1. It remains to transfer
the BC from Definition 2.6 into the frame of the PN methodology. Let xb ∈ ∂Ω be an element
of the boundary. By requiring ψN (xb, µ, t) = ψN (xb,−µ, t) for all (µ, t) ∈ [−1, 1] × [0,∞),
one obtains

N∑
`=0

2`+ 1

2
[1− (−1)`]φ`(xb, t)P`(µ)

!
= 0 ∀(µ, t) ∈ [−1, 1]× [0,∞),

2As already mentioned, the system (3.10) can be derived more conveniently if one starts from (2.6). Then,
the unknown radiance can be directly expressed in Legendre polynomials according to (3.9)
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3 On the SPN Equations in Time Domain

where we have used P`(−µ) = (−1)`P`(µ), see e.g. [2, p. 304] for more details on the Legendre
polynomials. Due to the linear independence of these polynomials, the reflective BC from
Definition 2.6 translates into the zero BC

φ`(x, t) = 0 ∀(x, t) ∈ ∂Ω× [0,∞), ` = 1, 3, . . . , N. (3.12)

Example 3.4. Let us consider the lowest order approximation on Ω = (0, L) for the 2L-
periodic source distribution (2.19). From (3.10) we get for N = 1 the time-dependent P1

equations
∂φ0

∂t
+
∂φ1

∂x
= 0,

∂φ0

∂x
+ 3

∂φ1

∂t
+ 3µsφ1 = 0,

(3.13)

with initial conditions φ0(x, 0) = Q(x) and φ1(x, 0) = 0 for x ∈ Ω. The corresponding zero
BCs are φ1(0, t) = φ1(L, t) = 0 for t ≥ 0, cf. (3.12). A computable solution to this problem
is given by the Fourier series (3.33) for N = 1.

The P1 equations (3.13) represent the Telegrapher equation. This can be seen as follows.
The first equation ∂tφ0 + ∂xφ1 = 0 gives ∂2

t φ0 = −∂t∂xφ1. From the second equation, we
find ∂2

xφ0 + 3µs∂xφ1 + 3∂x∂tφ1 = 0. The combination of these results and the assumption
that Schwarz’s theorem can be applied leads to the Telegrapher equation

∂2φ0

∂t2
+ µs

∂φ0

∂t
=

1

3

∂2φ0

∂x2
, x ∈ Ω, t > 0, (3.14)

subject to φ0(x, 0) = Q(x) and ∂tφ0(x, 0) = 0 for x ∈ Ω. Moreover, for x ∈ ∂Ω, we obtain
from the second equation of the system (3.13) the condition ∂xφ0(x, t) = 0 for all t ≥ 0,
because φ1(x, t) = 0 = ∂tφ1(x, t). Thus, the BCs belonging to the Telegrapher equation
(3.14) are given by the homogeneous Neumann conditions ∂xφ0(0, t) = ∂xφ0(L, t) = 0 for
t ≥ 0. We also note on the particular case µs = 0. Then, the Telegrapher equation (3.14)
reduces to a classical wave equation with propagation speed 1/

√
3. In some cases, equation

(3.14) admits a closed-form solution.

Theorem 3.5. The Telegrapher equation on Ω = R subject to the initial conditions φ0(x, 0) =
δ(x) and ∂tφ0(x, 0) = 0 for x ∈ R admits an explicit solution of the form

φ0(x, t) =

√
3

2
e−µst/2δ(t−

√
3|x|) + µs

√
3

4
e−µst/2Θ(t2 − 3x2)

×
[
I0

(µs
2

√
t2 − 3x2

)
+

t√
t2 − 3x2

I1

(µs
2

√
t2 − 3x2

)]
,

(3.15)

with In for n = 0, 1 being the modified Bessel function of the first kind.

Proof. In the literature, fundamental solutions to the Telegrapher equation are often derived
by means of integral transforms [37]. While it is not difficult to recover the solution in the
transformed space, the required inversion leads often to complicated integrals that must be
looked up in tables. In the following, we propose an elementary proof with reference to the
theory for the classical wave equation. We first introduce φ0(x, t) := e−µst/2u(x, t). In view
of the initial values, we note on u(x, 0) = φ0(x, 0) and (by the product rule) ∂tu(x, 0) =
(µs/2)φ0(x, 0). Inserting this ansatz into (3.14) leads to the new initial value problem

utt −
1

3
uxx =

(µs
2

)2
u, x ∈ R, t > 0,

u(x, 0) = δ(x), x ∈ R,

ut(x, 0) =
µs
2
δ(x), x ∈ R.

(3.16)
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3 On the SPN Equations in Time Domain

Next, we seek a solution in form of the function series

u(x, t) =
∞∑
n=0

(µs
2

)2n
un(x, t), x ∈ R, t ≥ 0, (3.17)

where the convergence is shown at the end of the proof. Inserting this into (3.16) leads to
the following system of recursively defined wave equations

∂2
t u0 −

1

3
∂2
xu0 = 0,

∂2
t un −

1

3
∂2
xun = un−1, n ≥ 1,

subject to un(x, 0) = δ(x)δn0 and ∂tun(x, 0) = (µs/2)δ(x)δn0. Thus, starting from u0, we
can successively determine all elements un≥1. In this context, we need the complete solution
of the classical wave equation on R, see for example [2, p. 477]. The first equation is just a
homogeneous wave equation that can be solved by the d’Alembert formula, yielding

u0(x, t) =

√
3

2
δ(t−

√
3|x|) + µs

√
3

4
Θ(t2 − 3x2). (3.18)

The second inhomogeneous wave equation under zero initial values is formally solved via
integration of the right-hand side over the characteristic triangle in the xt-plane with corners
(x− t/

√
3, 0), (x+ t/

√
3, 0) and (x, t). This results in

un(x, t) =

√
3

2

∫
∆
un−1 dS =

√
3

2

∫ t

0

∫ x+ t−s√
3

x− t−s√
3

un−1(y, s) dyds.

The computation of un for several n = 1, 2, . . . gives rise to the assumption

un(x, t) =

√
3

22n+1(n!)2

[µs
2

(t2 − 3x2)n + 2nt(t2 − 3x2)n−1
]

Θ(t2 − 3x2), (3.19)

for an arbitrary n ∈ N. We want to confirm this formula by induction. We begin with n = 1,

which requires the computation of
√

3
2

∫
∆ u0 dS. In this context, we rewrite the Dirac delta

distribution occurring in (3.18) under consideration of Proposition 2.5, yielding

δ(t−
√

3|x|) = δ(
√

3|x| − t) =
1√
3
δ(|x| − t/

√
3)

=
δ(x− t/

√
3) + δ(x+ t/

√
3)√

3
=

d

dx

Θ(x− t/
√

3) + Θ(x+ t/
√

3)√
3

.

With this and under the use of
∫

Θ(λ) dλ = λΘ(λ) + C, we find regarding the Dirac delta
distribution

I1(x, t) :=

∫ t

0

∫ x+ t−s√
3

x− t−s√
3

d

dy

Θ(y − s/
√

3) + Θ(y + s/
√

3)√
3

dyds =
t√
3

Θ(t2 − 3x2).

For the second double integral, we perform a linear coordinate transformation according to
y =

ξ + η

2
,

s =
√

3
ξ − η

2
,

=⇒
∣∣∣∣∂(y, s)

∂(ξ, η)

∣∣∣∣ =

√
3

2
, (3.20)
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3 On the SPN Equations in Time Domain

which is also used for the induction step. Under this transformation, the characteristic
triangle becomes a right one with corners (x − t/

√
3, x − t/

√
3), (x + t/

√
3, x + t/

√
3) and

(x + t/
√

3, x − t/
√

3) in the ξη-plane. The application of the transformation formula for
multiple integrals leads to

I2(x, t) :=

∫ t

0

∫ x+ t−s√
3

x− t−s√
3

Θ(s2 − 3y2) dyds =

√
3

2

∫ x+t/
√

3

x−t/
√

3

∫ ξ

x−t/
√

3
Θ(−3ξη) dηdξ

= Θ(t2 − 3x2)

√
3

2

∫ x+t/
√

3

0

∫ 0

x−t/
√

3
dηdξ =

t2 − 3x2

2
√

3
Θ(t2 − 3x2).

We now can combine both integral contributions to obtain

√
3

2

∫
∆
u0 dS =

√
3

2

[√
3

2
I1(x, t) + µs

√
3

4
I2(x, t)

]
= u1(x, t),

which agrees with formula (3.19) for n = 1. We assume the correctness of (3.19) for a natural

number n ≥ 1. For the induction step, we have to evaluate
√

3
2

∫
∆ un dS with un from (3.19).

In doing so, we again use the coordinate transformation (3.20) to obtain

√
3

2

∫
∆
un dS =

3
√

3

22n+3(n!)2

∫ x+t/
√

3

x−t/
√

3

∫ ξ

x−t/
√

3

[µs
2

(−3ξη)n

+
√

3n(ξ − η)(−3ξη)n−1
]

Θ(−3ξη) dηdξ

=
3
√

3

22n+3(n!)2

∫ x+t/
√

3

0

∫ 0

x−t/
√

3

[µs
2

(−3ξη)n

+
√

3n(ξ − η)(−3ξη)n−1
]
dηdξ ·Θ(t2 − 3x2)

=

√
3 ·Θ(t2 − 3x2)

22(n+1)+1((n+ 1)!)2

[µs
2

(t2 − 3x2)n+1 + 2(n+ 1)t(t2 − 3x2)n
]
,

which agrees with un+1 from (3.19) and hence the induction is completed. The last step
consists in the evaluation of the series (3.17). For x ∈ R and t ≥

√
3|x| we get

u(x, t) =

√
3

2
δ(t−

√
3|x|) + µs

√
3

4

∞∑
n=0

(µs
2

)2n (t2 − 3x2)n

22n(n!)2

+ t
√

3
∞∑
n=1

(µs
4

)2n (t2 − 3x2)n−1

(n− 1)!n!
=

√
3

2
δ(t−

√
3|x|)

+ µs

√
3

4

[
I0

(µs
2

√
t2 − 3x2

)
+

t√
t2 − 3x2

I1

(µs
2

√
t2 − 3x2

)]
,

where we have incorporated the modified Bessel function of the first kind according to the
definition [2, p. 246]

Im(x) :=
(x

2

)m ∞∑
n=0

(x/2)2n

n!(n+m)!
, x ∈ R, m ∈ N0,

which is known to be an absolute convergent series. The proof of Theorem 3.5 is completed
after setting φ0(x, t) = e−µst/2u(x, t).
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3 On the SPN Equations in Time Domain

As we have just seen, the Telegrapher equation could be solved with recourse to the general
solution to the classical wave equation ∂2

t φ0 = 1
3∂

2
xφ0. The latter one is a second order

formulation of the P1 equations (3.13) in the non-scattering (lossless) medium. This concept
is also applicable to higher order PN equations by seeking for a solution φ =

∑∞
n=0 ξn, which

leads to the following recursively defined first order systems

∂tξ0 +A∂xξ0 = 0,

∂tξn +A∂xξn = −Σξn−1, n ≥ 1,
(3.21)

subject to ξn(x, 0) = Q(x)e0δn0 for x ∈ R. Looking at the left-hand side, we see that it
makes sense to give a closer look at the PN equations in lossless media. After that, we will
focus entirely on the time-dependent SPN equations.

3.2.1 The PN equations in lossless media

In general, it is not easy to solve the PN equations in closed form. For lossless media,
when µs = 0, there is the possibility to derive an analytical solution that is also useful
for verification of numerical approaches. Furthermore, as shown above, it can be used to
construct solutions for the lossy medium. We remind on the convention N ≥ 1 and N odd.

Theorem 3.6. Let Q ∈ C1(R) be the spatial distribution of particles that are initially emitted
into the unbounded domain Ω = R. Then, the Cauchy problem{

φt +Aφx = 0, (x, t) ∈ R× R+,

φ(x, 0) = Q(x)e0, x ∈ R,
(3.22)

has a classical solution of the form

φ(x, t) = D−1U


Q(x− λ0t) 0 · · · 0

0 Q(x− λ1t)
. . .

...
...

. . .
. . . 0

0 · · · 0 Q(x− λN t)

UT e0, (3.23)

for (x, t) ∈ R× [0,∞). It can be written more explicitly in terms of the moments

φ`(x, t) =
1√

2`+ 1

N−1
2∑
j=0

[
Q(x− λjt) + (−1)`Q(x+ λjt)

]
u

(0)
j u

(`)
j , (3.24)

where D := diag
(√

1,
√

3, . . . ,
√

2N + 1
)

and (λj , uj) for j = 0, 1, . . . , N are the eigenpairs
of the associated Jacobi matrix

JN+1 =



0 1√
3

0 0 · · · 0

1√
3

0 2√
15

0 · · ·
...

0 2√
15

. . .
. . . · · · 0

0 0
. . .

. . .
. . . 0

... · · · · · · . . .
. . . N√

4N2−1

0 · · · 0 0 N√
4N2−1

0


∈ RN+1,N+1.
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3 On the SPN Equations in Time Domain

Proof. First, we notice that the matrix A is similar to the Jacobi matrix due to the factor-
ization DAD−1 = JN+1. The Jacobi matrix itself is a symmetric tridiagonal matrix which
admits the decomposition JN+1 = UΛUT , where Λ = diag(λj)0≤j≤N contains the real-valued
eigenvalues. With the current entries of JN+1, they coincide with the roots of the Legendre
polynomial PN+1, see for example [38, Chapter 2]. The orthogonal matrix U is the eigen-
vector matrix with property UTU = I, where I ∈ RN+1,N+1 denotes the identity matrix.
We therefore have the decomposition A = D−1UΛUTD so that the system of PN equations
decouples into the following N + 1 transport equations

wt + Λwx = 0, w(x, 0) = Q(x)UT e0, (3.25)

where we have introduced the function w := UTDφ. The general solution to the jth
equation of (3.25) is given by wj(x, t) = Cj(x−λjt) with Cj being an arbitrary continuously
differentiable function. The incorporation of the initial condition (component-wise) gives

wj(x, 0) = eTj w(x, 0) = Q(x)uTj e0
!

= Cj(x) =⇒ wj(x, t) = Q(x− λjt)uTj e0.

With this result, we get for the original solution

φ(x, t) = D−1U w(x, t) = D−1U


Q(x− λ0t)u

T
0 e0

Q(x− λ1t)u
T
1 e0

...
Q(x− λN t)uTNe0

, x ∈ R, t ≥ 0,

which is the same as given in (3.23). The more explicit representation (3.24) is found by
considering the symmetry of the eigenpairs. That is, for N odd, the spectrum of A is of
the form σ(A) = {±λj : 0 ≤ j ≤ (N − 1)/2}. Furthermore, if uj ∈ RN+1 is an eigenvector

with components u
(`)
j (` = 0, . . . , N) belonging to the eigenvalue λj , then (−1)`u

(`)
j are the

components associated with −λj .

Expression (3.24) displays the hyperbolic nature of the PN equations. There is no change/im-
provement of the initial regularity and the domain of dependence regarding the value φ(x0, t0)
is given by the finite set {(x0 ± λjt0, 0) : 0 ≤ j ≤ (N − 1)/2}. The corresponding character-
istics can be found without the prior determination of an explicit solution by making use of
the following definition (see e.g. [36, p. 55] or [39, pp. 142–143]).

Definition 3.7 (Characteristics of a first order system). Characteristics are curves along
which it is not possible to determine the first order derivatives of the unknown solution using
only the information provided by the Cauchy data and the first order system.

Based on this definition, we are able to state the following result, which also applies to lossy
media.

Proposition 3.8. The characteristics of the PN equations (3.11) are given by the lines
x± λjt = const., where λj are the positive roots of the equation PN+1(λ) = 0.

Proof. Let (x, t(x))T ∈ R2 be a continuously differentiable curve for x ∈ J ⊂ R on which we
would like to prescribe Cauchy data according to

φ(x, t(x)) = γ(x) = (γ0(x), γ1(x), . . . , γN (x))T . (3.26)
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Taking the first derivative with respect to the curve parameter leads to

φx(x, t(x)) + t′(x)φt(x, t(x)) = γ ′(x). (3.27)

On the other hand, the PN equations (3.11) must also be satisfied along the selected curve,
yielding the following second set on conditions

φt(x, t(x)) +Aφx(x, t(x)) = −Σγ(x). (3.28)

From (3.27), we find φx(x, t(x)) = γ ′(x)− t′(x)φt(x, t(x)). Inserting this into (3.28) results
in the system of linear equations

(t′(x)A− I)φt(x, t(x)) = Aγ ′(x) + Σγ(x). (3.29)

This system is, in general, not solvable if

det(t′(x)A− I) = det(t′(x)Λ− I) =

N−1
2∏
j=0

[
1−

(
t′(x)λj

)2]
= 0.

Thus, given φ(x, t(x)) = γ(x) with t′(x)λj = ±1 and j ∈ {0, . . . , (N − 1)/2}, we cannot find
the first order derivatives of φ along x±λjt = const. under the use of the PN equations.

Example 3.9. The zero order moment (fluence) belonging to the P3 equations can be found
from (3.24) and summarized as

φ0(x, t) =
18 +

√
30

72
[Q(x− λ0t) +Q(x+ λ0t)]

+
18−

√
30

72
[Q(x− λ1t) +Q(x+ λ1t)], x ∈ R, t ≥ 0, (3.30)

where the wave velocities λ0 =

√
3
7 −

2
7

√
6
5 and λ1 =

√
3
7 + 2

7

√
6
5 are the positive roots of

P4(λ) = 0. For illustration purposes, Figure 3.1 shows the time evolution of the fluence

(3.30) for the Gaussian wave packet Q(x) = e−
x2

2ε /
√

2πε with ε = 0.1.
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Figure 3.1: Time evolution of the fluence in the infinite medium obtained from the P3 equations.
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3 On the SPN Equations in Time Domain

In Section 3.5, we also consider within the numerical experiments solutions to the P3 equa-
tions in order to highlight differences to the derived SP3 equations. In contrast to the system
(3.11), the PN equations in Fourier space

φ̂t + (Σ + ikA)φ̂ = 0, k ∈ R, t > 0, (3.31)

with φ̂(k, 0) = Q̂(k)e0 for k ∈ R are solvable with relatively little effort, even for the
lossy medium. The corresponding solution leads to the matrix exponential with property
d
dte

Mt = MeMt = eMtM . Further details on this matrix-valued function can be found, for
example, in [40, Chapter 1]. Hence, the initial value problem (3.31) is solved by

φ̂(k, t) = Q̂(k)e−(Σ+ikA)te0, k ∈ R, t ≥ 0. (3.32)

For an even source distribution Q̂(−k) = Q̂(k), one can deduce from the (tridiagonal) system
(3.31) the symmetry relation φ̂`(−k, t) = (−1)`φ̂`(k, t) for ` = 0, 1, . . . , N . The usefulness of
this property becomes apparent when considering the even and 2L-periodic source distribu-
tion (2.19) together with its Dirac-like spectrum (2.20). Then, as shown in Subsection 2.2.2,
we can invert (3.32) to get in space-time domain

φ(x, t) =
1

L

∑
n∈Z

q|n|e
iωnxe−(Σ+iωnA)te0, x ∈ R, t ≥ 0. (3.33)

For ` odd, we deduce φ`(0, t) = φ`(L, t) = 0 for t ≥ 0, which is due to the mentioned
symmetry in Fourier space. More concretely, for x = 0 and ` odd, we have

φ`(0, t) = eT` φ(0, t) =
q0

L
δ`0 +

1 + (−1)`

L

∑
n≥1

qne
T
` e
−(Σ+iωnA)te0 = 0 ∀t ≥ 0.

The same result can be confirmed for the boundary point x = L. Thus, the obtained
expression (3.33) is simultaneously a solution for the bounded domain Ω = (0, L), because
it satisfies the required BC (3.12). For the lossless medium, it can be directly seen that if Q
is even and 2L-periodic, the odd moments from (3.24) vanish at ∂Ω = {0, L}. In contrast
to the solution from Theorem 3.6, the series (3.33) is also valid in lossy media. It will be
used later in Section 3.5. For illustration purposes, let us perform a comparison between the
transport theory fluence (2.24) and the zero order moment from (3.24). To get the bounded
domain Ω = (0, L), we employ the Poisson kernel

P (x) :=
1

L

1− %2

1 + %2 − 2% cos(πx/L)
, x ∈ R,

where |%| < 1 and set in view of the initial source distribution

Q(x) :=
P (x− x0) + P (x+ x0)

2
=
∞∑
n=0

2− δn0

L
qn cos(ωnx). (3.34)

Here, qn = %n cos(ωnx0) are the corresponding Fourier coefficients with x0 ∈ Ω. This source
is even, 2L-periodic and normalized according to

∫
ΩQ(x) dx = 1. Figure 3.2 displays the

fluence in a bounded domain with L = 3 caused by the Poisson-like distribution (3.34) with
% = 0.6 and x0 = 2. The PN -based solution (3.24) was evaluated for the order N = 7
and the Fourier series (2.24) was truncated at nmax = 20. As can be seen, the zero order
moment of the P7 equations (black dashed lines) provides a reasonable approximation of
the transport theory fluence (red and green line). We also note on the equilibrium state
limt→∞Φ(x, t) = 1/L = 1/3 for all x ∈ Ω.
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Figure 3.2: Time evolution of the fluence in a lossless and bounded domain due to a Poisson-like
initial condition.

As a consequence of Theorem 3.6, we additionally can show the following well-posedness
result.

Corollary 3.10. The Cauchy problem (3.22) has a unique solution that depends continuously
on the initial data.

Proof. In view of the existence, we note that φ from (3.23) is of class C1 because Q ∈ C1(R).
Furthermore, we have φ(x, 0) = Q(x)D−1UUT e0 = Q(x)e0 and

φt = D−1Uwt = D−1U(−Λwx) = −D−1UΛUTDφx = −Aφx,

where we have used A = D−1UΛUTD. Thus, we have φt+Aφx = 0 and hence the existence
of a solution. Regarding the uniqueness, we have decoupled in the proof of Theorem 3.6 the
original PN system into N + 1 simple transport equations of the form wj,t +λjwj,x = 0 with
wj(x, 0) = Q(x)uTj e0 for x ∈ R. Let wj be a solution of class C1 and (x, t) ∈ R× [0,∞) an

arbitrary point. Then, wj is constant along the line (x+ λj(s− t), s)T for s ≥ 0 that passes
through the point (x, t). We therefore obtain

wj(x+ λj(s− t), s) = wj(x, t) = wj(x− λjt, 0) = Q(x− λjt)uTj e0 ∀s ≥ 0.

Thus, the value wj(x, t) is uniquely determined by the initial condition. Hence, φ = D−1Uw
is also unique. To show the continuous dependence, we take into account the induced matrix
norm ‖ · ‖ : Rn,n → R defined by

‖M‖p := sup
x 6=0

‖Mx‖p
‖x‖p

, p ≥ 1, M ∈ Rn,n,

with the vector norm ‖x‖pp :=
∑n

i=1 |xi|p. This matrix norm is compatible in the sense
‖Mx‖p ≤ ‖M‖p‖x‖p for all M ∈ Rn,n, x ∈ Rn and sub-multiplicative according to ‖MN‖p ≤
‖M‖p‖N‖p for all M,N ∈ Rn,n. We then obtain under the assumption ‖Q‖L∞(R) < δ the
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3 On the SPN Equations in Time Domain

uniform estimate

‖φ(x, t)‖∞ =
∥∥D−1Dφ(x, t)

∥∥
∞

≤
∥∥D−1‖∞‖Udiag(Q(x− λjt))0≤j≤NU

T e0

∥∥
∞

≤
∥∥Udiag(Q(x− λjt))0≤j≤NU

T e0

∥∥
2

≤
∥∥Udiag(Q(x− λjt))0≤j≤NU

T
∥∥

2
‖e0‖2

= ‖diag(Q(x− λjt))0≤j≤N‖2 = max
0≤j≤N

|Q(x− λjt)| < δ,

where we have used ‖D−1‖∞ = 1, ‖x‖∞ ≤ ‖x‖2 and the invariance of the spectral norm under
orthogonal transformations. For a given ε > 0 and under the assumption ψ(x, 0) = Q(x)e0

and ϕ(x, 0) = P (x)e0, we can choose δ = ε to ensure

‖Q− P‖L∞(R) < δ =⇒ ‖ψ(·, t)−ϕ(·, t)‖L∞(R) < ε ∀t ≥ 0.

To conclude this subsection, we want to show that the PN method preserves the initially
entered energy. We first have to translate the energy definition (2.25) into the frame of the
PN method. In doing so, we evaluate (2.25) for the projected radiance ψN ≈ ψ. This gives

‖ψN (·, t)‖2L2(Ω×[−1,1]) =

∫
Ω

∫ 1

−1
ψ2
N (x, µ, t) dµdx =

∫
Ω

N∑
`=0

2`+ 1

2
φ2
` (x, t) dx

=
1

2

∫
Ω
‖Dφ(x, t)‖22 dx =

1

2
‖Dφ(·, t)‖2L2(Ω) , t ≥ 0,

with D being the diagonal matrix from Theorem 3.6. Concerning the integration over µ ∈
[−1, 1], we have considered the Parseval-like relation

‖fN‖2L2(−1,1) = 〈fN , fN 〉L2(−1,1) =
N∑
`=0

2`+ 1

2
f2
` .

Hence, in the light of the PN method, we introduce the following energy function

E(t) :=
1

2
‖Dφ(·, t)‖2L2(Ω) =

1

2
‖w(·, t)‖2L2(Ω) , t ≥ 0. (3.35)

To incorporate this quantity, we multiply both sides of (3.25) with wT (which is also of class
C1) followed by an integration over Ω, which results in

E′(t) = −
∫

Ω
wTΛwx dx = −1

2

∫
Ω
∂x(wTΛw) dx = 0.

The last conclusion is due to the zero BC (3.12). That is, for all x ∈ ∂Ω, we have

(wTΛw)(x, t) = (φTDJN+1Dφ)(x, t) = 0 ∀t ≥ 0,

where DJN+1D has the same structure as JN+1 from Theorem 3.6. Therefore, the PN
method under the zero BCs (3.12) is a conservative scheme with

E(t) = E(0) =
1

2
‖Dφ(·, 0)‖2L2(Ω) =

1

2

∫
Ω
Q2(x) dx ∀t ≥ 0,

which agrees (for all orders N ≥ 1) with the exact transport theory value (2.26). At this
stage, we also note on the article [27], dealing with the convergence of the PN method to the
solution of the RTE (2.6) under reflective BCs. After this excursus on the PN equations in
lossless media, we continue with the derivation of the SPN equations.
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3 On the SPN Equations in Time Domain

3.3 Derivation of the time-dependent SPN equations

The SPN equations in time-domain are obtained from the PN equations (3.10) by neglecting
the time derivatives applied to the odd moments [9, 13, 14]. It is important to note that
this does not insinuate odd moments of the form φ`(x, t) = φ`(x). The main motivation
for this simplification is due to the difficulty in solving the hyperbolic PN equations and
the breakdown of the classical diffusion approximation in several situations of high practical
importance. Thus, the SPN method yields a compromise between accuracy and computa-
tional effort [15]. There are also physical reasons for neglecting the time derivatives of the
odd moments. For example, in the field of biomedical optics, there is the assumption that
the (relative) change of the odd moments within a characteristic time is very small [9]. For
reactor core analysis, it is assumed that the time variation of the odd moments is much
smaller than the spatial variation of the even moments, see for example [13]. In the case of
the classical diffusion approximation, we get under the assumption ∂tφ1 ≈ 0 from the second
P1 equation of the system (3.13) the well-known Fick’s law

− κ∂xφ0(x, t) = φ1(x, t) +
1

µs
∂tφ1(x, t) ≈ φ1(x, t), (3.36)

where the first moment φ1(x, t) =
∫ 1
−1 ψ(x, µ, t)µdµ represents the diffuse flux. In this

context, we also refer to [20, Chapter 3] for some historical aspects on Fick’s law. The neglect
of the time derivative regarding the odd moments can therefore be seen as a generalization
of the assumption made in (3.36). Of course, the removal of certain time derivatives does
not remain without consequences, especially at short times. However, when the data at
early times are negligible, this does not represent a serious limitation. In the publication [9],
the authors mentioned the parabolic nature of the SPN equations without any concrete
verification. Let us continue with the classification of the SPN equations in the sense of the
characteristics and with finding out the consequences of the missing time derivatives.

Proposition 3.11. The characteristics of the SPN equations are given by the lines t =
const. in the xt-plane.

Proof. We can start as in the proof of Proposition 3.8. In view of the Cauchy data, we
adopt equations (3.26) and (3.27). To enable a smooth transition from the hyperbolic PN
equations to the desired simplified system, we replace (3.28) by the following ε-dependent
PN equations

Iεφt(x, t(x)) +Aφx(x, t(x)) = −Σγ(x), x ∈ J, (3.37)

where Iε := diag(1, ε, 1, ε, . . . , 1, ε) ∈ RN+1,N+1. Thus, we have scaled the time derivative
of the odd moments with the parameter ε ∈ [0, 1]. The resulting system of linear equations
becomes

(t′(x)A− Iε)φt(x, t(x)) = Aγ ′(x) + Σγ(x),

which looks nearly like (3.29). As before, the characteristics are found by setting the deter-
minant equal to zero. The use of the product rule for determinants leads to3

det(t′(x)A− Iε) = det(t′(x)A−
√
εI) =

N−1
2∏
j=0

[
ε−

(
t′(x)λj

)2]
= 0.

3In this context, we note on the factorization

t′A− Iε =
1√
ε
I√ε(t

′A−
√
εI)I√ε ∀ε ∈ (0, 1].
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3 On the SPN Equations in Time Domain

The characteristics to the scaled PN equations (3.37) turn out to be

t(x) =
±
√
ε

λj
x+ const. for j = 0, . . . ,

N − 1

2
.

Thus, for ε→ 0, we arrive at the SPN equations that exhibit horizontal characteristics.

We see that the removal of the time derivatives applied to the odd moments transfers the
hyperbolic PN equations (3.11) into a parabolic system. The SPN equations in first order
form, that is I0φt+Aφx+Σφ = 0 (ε = 0), are typically converted into a system of (N+1)/2
coupled diffusion-like equations. This reformulation can be done as follows. By selecting an
arbitrary equation from (3.10) for ` odd and the neglect of ∂tφ` gives

`

2`+ 1

∂φ`−1

∂x
+

`+ 1

2`+ 1

∂φ`+1

∂x
+ µsφ` = 0.

Solving this equation for the odd moment φ` results in

φ` = − 1

µs

(
`

2`+ 1

∂φ`−1

∂x
+

`+ 1

2`+ 1

∂φ`+1

∂x

)
. (3.38)

Next, we replace all odd moments occurring in the `th PN equation (` even) of the system
(3.10) by the expression (3.38). The resulting second order form becomes

∂φ0

∂t
=

1

3µs

∂2φ0

∂x2
+

2

3µs

∂2φ2

∂x2

∂φ`
∂t

=
1

µs

`(`− 1)

(2`+ 1)(2`− 1)

∂2φ`−2

∂x2
+

1

µs

1

2`+ 1

(
`2

2`− 1
+

(`+ 1)2

2`+ 3

)
∂2φ`
∂x2

(3.39)

+
1

µs

(`+ 1)(`+ 2)

(2`+ 1)(2`+ 3)

∂2φ`+2

∂x2
− µsφ` for ` = 2, 4, . . . , N − 1

for (x, t) ∈ Ω × R+ and the moments φ` ∈ C2,1(Ω × R+) with φN+1 = 0. In view of the
initial condition, we have φ`(x, 0) = Q(x)δ`0 for x ∈ Ω and ` = 0, 2, . . . , N − 1. By defining
the vector-valued function ψ := (φ0, φ2, . . . , φN−1)T , we can write (3.39) schematically as
vectorial diffusion equation

ψt + Sψ = Dψxx, x ∈ Ω, t > 0. (3.40)

Remark 3.12. The characteristics to the SPN equations can also be obtained from the
second order form (3.40). In that case, we have to look for curves on which the determination
of the second order derivatives becomes impossible. Suppose that ψ and its first derivatives
have already been fixed by the prescribed Cauchy data and available in the form

ψ(x, t(x)) = α(x), ψx(x, t(x)) = β(x) and ψt(x, t(x)) = γ(x).

By differentiating the latter two conditions with respect to the curve parameter and incor-
porating equation (3.40) results in the linear systemD 0 0

I t′(x)I 0
0 I t′(x)I

ψxx(x, t(x))
ψxt(x, t(x))
ψtt(x, t(x))

 =

Sα(x) + γ(x)
β′(x)
γ ′(x)

.
Suppose that detD 6= 0. Then, the second order derivatives can be determined in all cases
if t′ 6= 0. On the other side, if t′ = 0, we see that ψtt remains completely undetermined. All
in all we again find t = const. as characteristics.
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3 On the SPN Equations in Time Domain

The BCs to the derived SPN equations (3.39) respective (3.40) can be found under the use
of the condition (3.12) in combination with the relation (3.38). That is, for x ∈ ∂Ω, the
left-hand side of (3.38) becomes zero. The resulting homogeneous system (with an upper
bidiagonal matrix) has only the trivial solution, yielding the Neumann-type condition

ψx(x, t) = 0 ∀(x, t) ∈ ∂Ω× [0,∞), (3.41)

that belongs to the system (3.40).

Example 3.13. Let us consider the SP1 equation4 on Ω = (0, L) for the 2L-periodic source
distribution (2.19) with Q′(0) = Q′(L) = 0. From (3.39) we get for N = 1

∂φ0

∂t
= κ

∂2φ0

∂x2
, x ∈ Ω, t > 0, (3.42)

subject to φ0(x, 0) = Q(x) for x ∈ Ω and κ = 1/(3µs). The corresponding Neumann BCs
are given by ∂xφ0(0, t) = ∂xφ0(L, t) = 0 for all t ≥ 0. This problem has a unique solution,
see for example [31, pp. 48–51], with representation

φ0(x, t) =
∞∑
n=0

2− δn0

L
qne
−κω2

nt cos(ωnx), x ∈ Ω, t ≥ 0, (3.43)

where ωn := nπ/L. It belongs to C∞(Ω × (0,∞)) ∩ C(Ω × [0,∞)). We also recall the
fundamental solution to (3.42) on Ω = R that is given by the heat kernel (2.8).

Now we turn our attention to the SP3 equations, which represent the next higher approxi-
mation over the standard heat (SP1) equation. The following Section 3.4 contains the main
results of this thesis.

3.4 The time-dependent SP3 equations

We now consider the time-dependent SPN equations for the order N = 3. That is

ψt + Sψ = Dψxx, x ∈ Ω, t > 0, (3.44)

where ψ = (φ0, φ2)T and the matrices associated with this system are given by

D =

(
d11 d12

d21 d22

)
=


1

3µs

2

3µs
2

15µs

11

21µs

 and S =

(
0 0
0 µs

)
. (3.45)

We furthermore assume µs > 0 and the corresponding initial condition reads

ψ(x, 0) =

(
Q(x)

0

)
, x ∈ Ω. (3.46)

We consider both the infinite medium Ω = R and the finite domain Ω = (0, L) under
the Neumann-type condition (3.41). A vector-valued function ψ ∈ C2,1(Ω × R+,R2) that
satisfies (3.44) and (3.46) can be considered as a classical solution to the time-dependent
SP3 equations. We also remind at this stage on the absorption and the speed of light in the
medium. Both can be readily incorporated afterwards according to ce−µactψ(x, ct).

4This is nothing other than the well-known heat equation (diffusion equation without absorption).
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3 On the SPN Equations in Time Domain

3.4.1 Considerations in the infinite medium

This subsection is primarily intended as preparation for the next Subsection 3.4.2, in which
we will incorporate some of the results obtained for the infinite medium. In the present case
of an unbounded domain, some caution is required when it comes to the question of well-
posedness. Without a boundedness condition on the solution, the classical heat equation
ut = uxx on Ω = R is solved by u = 0 and also by the (unbounded) candidate

u(x, t) =
∞∑
k=0

g(k)(t)

(2k)!
x2k with g(t) =

{
e−1/t2 for t > 0,

0 for t = 0,

which we have adopted from [36, p. 145]. Moreover, in both cases we have u(x, 0) = 0 for
x ∈ R. Thus, there are (at least) two possible solutions to the same initial value problem.
According to the textbook [41, Section 3.4], uniqueness can be guaranteed by requiring
additionally an exponential boundedness condition. It can be expected that the same sort of
solutions will also be present when dealing with the SP3 equations on Ω = R. We therefore
omit the well-posedness issue in the case of the infinite medium. Regarding the more realistic
case of a bounded domain (cf. Subsection 3.4.2), we verify in detail the existence of a classical
solution, its uniqueness as well as the continuous dependence on the initial data. Let us
continue with the derivation of a formal solution to the SP3 equations (3.44) by making
use of the Fourier transform formalism. In doing so, we multiply both sides of (3.44) and
(3.46) with e−ikx, followed by an integration over R. In this context, we assume Q ∈ L1(R)
which implies Q̂ = F(Q) ∈ C0(R), cf. Remark 2.8. The consideration of the differentiation
property (2) from Proposition 2.9 leads in Fourier space to the Cauchy problem

ψ̂t +Aψ̂ = 0, k ∈ R, t > 0, (3.47)

where ψ̂ = (φ̂0, φ̂2)T = F(ψ) and ψ̂(k, 0) = (Q̂(k), 0)T for k ∈ R. The time-independent
coefficient matrix is given by

A(k) := S + k2D =

(
d11k

2 d12k
2

d21k
2 d22k

2 + µs

)
∈ R2,2. (3.48)

Thus, we have converted the SP3 equations (3.44) into a first order system with constant
coefficients. From the theory of ordinary differential equations, it is known that (3.47) admits
a unique solution. It can be given in terms of the matrix exponential, similar as in the case
of the Cauchy problem (3.31). Setting A = Udiag(λ1, λ2)U−1 enables us to write

ψ̂(k, t) = e−At
(
Q̂
0

)
= U

(
e−λ1t 0

0 e−λ2t

)
U−1

(
Q̂
0

)
, k ∈ R, t ≥ 0. (3.49)

The required eigenvalues and eigenvectors can be given explicitly by starting with the roots
of the characteristic polynomial

det(A− λI) = λ2 −
(
µs +

6k2

7µs

)
λ+

3k4

35µ2
s

+
k2

3
= 0.

This quadratic equation exhibits real-valued solutions of the form λ1 = p+ q and λ2 = p− q
with

p(k) :=
3k2

7µs
+
µs
2

and q(k) :=

√
24k4

245µ2
s

+
2k2

21
+
µ2
s

4
.

Concerning the asymptotic stability, it is worth to mention that both eigenvalues are non-
negative. Otherwise, the moments in Fourier space would grow exponentially as t → ∞.
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The positivity of λ1 is evident because p and q are both positive real numbers. In view of
λ2, Vieta’s formula gives

λ1λ2 =
3k4

35µ2
s

+
k2

3
≥ 0 =⇒ λ2 ≥ 0.

The eigenvectors follow as solution of (A− λjI)uj = 0 (j = 1, 2), which leads to

u1 =

(
d12k

2

λ1 − d11k
2

)
, u2 =

(
d12k

2

λ2 − d11k
2

)
.

The moments (3.49) can be given in the form ψ̂(k, t) = Q̂(k)Ĝ(k, t), with

Ĝ0(k, t) =
1 + h(k)

2
e−λ2(k)t +

1− h(k)

2
e−λ1(k)t,

Ĝ2(k, t) =
k2

15µs

e−λ1(k)t − e−λ2(k)t

q(k)
,

(3.50)

and h(k) :=
(

2k2

21µs
+ µs

2

)
/q(k). We note that the moments Ĝj correspond to the source

Q̂ = 1 = F(δ). As a composition of elementary functions, they are smooth. Let us derive
at this stage two useful estimates. In view of Ĝ0, we have introduced in (3.50) the even
function h, which takes the values h(0) = 1 and h(±∞) =

√
30/18 ≈ 0.304 < 1. The first

derivative satisfies

h′(k) = − 4

45µs

k3

(q(k))3
≤ 0 ∀k ≥ 0.

We therefore obtain h(R) = (
√

30/18, 1] and the upper bound

Ĝ0(k, t) ≤ e−λ2(k)t

(
1 + h(k)

2
+

1− h(k)

2

)
= e−λ2(k)t, (3.51)

for all k ∈ R and t ≥ 0, where we have used e−λ1(k)t ≤ e−λ2(k)t. The eigenvalue λ2 can be

estimated under the use
√

24
245 >

2
21 , yielding

(√
24

245

k2

µs
+
µs
2

)2

=
24k4

245µ2
s

+
2

7

√
6

5
k2 +

µ2
s

4
≥ (q(k))2 ∀k ∈ R.

With this result, we deduce for all k ∈ R

λ2(k) = p(k)− q(k) ≥ p(k)−

(
2

7

√
6

5

k2

µs
+
µs
2

)
= ak2,

where a :=
(

3
7 −

2
7

√
6
5

)
/µs ≈ 0.116/µs has the meaning of a diffusion constant. Notice that

a ∈ σ(D) is just the smaller eigenvalue of the diffusion matrix D from (3.45). Hence, (3.51)
becomes

Ĝ0(k, t) ≤ e−λ2(k)t ≤ e−ak2t ∀(k, t) ∈ R× [0,∞), (3.52)

where equality arises for k = 0 or t = 0. In view of the second moment Ĝ2, we note on

0 ≤ 1

15µs

k2

q(k)
<

7

6
√

30
∀k ∈ R.
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3 On the SPN Equations in Time Domain

Thus, we get for k ∈ R and t ≥ 0 the upper bound

|Ĝ2(k, t)| = k2

15µs

e−λ2(k)t − e−λ1(k)t

q(k)
≤ 7

6
√

30
e−ak

2t. (3.53)

With these relations on hand we can show two things. Concerning the zero order moment
(fluence) in space domain, we have (notice that Ĝ0 is non-negative)

|G0(x, t)| ≤ 1

2π

∫
R
Ĝ0(k, t)|eikx| dk = G0(0, t) ≤ 1

π

∫ ∞
0

e−ak
2t dk =

1√
4πat

, (3.54)

for all x ∈ R and t > 0. Thus, the fluence in SP3 approximation due to a δ-source can
be uniformly bounded by a square root function, similar as the classical heat kernel (2.8).
Secondly, we have for all t > 0 and m ∈ N0∫

R
|Ĝj(k, t)km| dk ≤ 2

∫ ∞
0

kme−λ2(k)t dk ≤ 2

∫ ∞
0

kme−ak
2t dk =

Γ
(
m+1

2

)
(at)

m+1
2

,

with Γ denoting the gamma function [2, p. 242]. This result has a direct consequence on
the smoothness in real space. It can be shown that kmf̂(k) ∈ L1(R) implies f (r) ∈ C0(R)
for r = 0, 1, . . . ,m, see for example [42, Theorem 9.2.13]. The moments in real space can be
(formally) reconstructed by means of the inverse Fourier transform

ψ(x, t) =
1

2π

∫ ∞
−∞

ψ̂(k, t)eikx dk, x ∈ R, t ≥ 0. (3.55)

For an even source distribution Q̂(−k) = Q̂(k), the inverse (3.55) reduces to a Fourier cosine
transform. In particular, in the case of a δ-source when Q̂ = 1, we get for x ∈ R and t > 0

Gj(x, t) =
1

π

∫ ∞
0

Ĝj(k, t) cos(kx) dk, j = 0, 2. (3.56)

Notice that Ĝj (j = 0, 2) are the moments from (3.50). There is an interesting result on
the SPN equations, which coincides with the famous Einstein formula 〈x2〉(t) = 2κt for the
mean-square displacement in the theory of Brownian motion. For more information on this
topic, we refer to the textbook [43].

Proposition 3.14. The second-order moment 〈x2〉(t) =
∫
R x

2G0(x, t) dx for t ≥ 0 of the
fluence to the SPN equations on Ω = R caused by a δ-source agrees for all orders N ≥ 1
with Einstein’s formula for the mean-square displacement.

Proof. Based on the differentiation property (2) from Proposition 2.9, it is not difficult to
deduce the relation F(xnf(x))(k) = in dn

dkn f̂(k). Using this for n = 2 and setting k = 0 gives

for the second order moment 〈x2〉(t) = −∂2
kĜ0(0, t) for t ≥ 0. To find the required derivative

at k = 0, we consider the SPN equations (3.40) in Fourier space

Ĝt + (S + k2D)Ĝ = 0, Ĝ(k, 0) = e0 = (1, 0, . . . , 0) ∈ R
N+1

2 ,

for (k, t) ∈ R×R+ and Ĝ = (Ĝ0, Ĝ2, . . . , ĜN−1)T . The corresponding solution can be again
given in terms of the matrix exponential. In particular, the zero order moment becomes

Ĝ0(k, t) = eT0 Ĝ(k, t) = eT0 e
−(S+k2D)te0, k ∈ R, t ≥ 0.
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3 On the SPN Equations in Time Domain

Next, we use the (convergent) Taylor series for the matrix exponential and remind on the
diagonal matrix S = diag(0, µs, . . . , µs). We then obtain the expression

Ĝ0(k, t) = 1− k2t

3µs
+ k4eT0D

∞∑
n=0

(−1)ntn+2 (S + k2D)n

(n+ 2)!
De0. (3.57)

The use of the difference formula for the second derivative gives

Ĝ0(ε, t)− 2Ĝ0(0, t) + Ĝ0(−ε, t)
ε2

= −2κt+ 2ε2eT0D
∞∑
n=0

(−1)ntn+2 (S + ε2D)n

(n+ 2)!
De0,

for a small number ε > 0 and κ = 1/(3µs). In the limit ε → 0, we arrive at Einstein’s
formula5

〈x2〉(t) = −∂2
kĜ0(k, t)

∣∣∣
k=0

= 2κt ∀t ≥ 0.

Remark 3.15. In accordance with the classical heat kernel (2.8), the fluence to the SPN
equations on Ω = R caused by a δ-source is normalized according∫

R
G0(x, t) dx = Ĝ0(0, t) = 1 ∀t ≥ 0,

for all orders N ≥ 1. This can be readily verified by setting k = 0 in (3.57).

We furthermore want to find the SP3 fluence (caused by a δ-source) in the long-time limit.
It can be found under the use of the Laplace formula (2.17) for b = ∞. In this context, we
write the zero order moment from (3.56) according to

G0(x, t) =
1

π

∫ ∞
0

e−λ2(k)t 1 + h(k)

2
cos(kx) dk

+
1

2π

∫ ∞
0

e−λ1(k)t cos(kx) dk − 1

2π

∫ ∞
0

e−λ1(k)th(k) cos(kx) dk.

The main contribution for t → ∞ arises from a small environment around k = 0, due to
the rapid decay of the exponentials. Let us verify the requirements. We have λ′1(0) =
λ′2(0) = 0, λ′′1(0) = 22/(21µs) > 0 and λ′′2(0) = 2/(3µs) > 0. Moreover, λ1 and λ2 are
both monotonically increasing on (0,∞) and in all cases the associated function g satisfies
g(0) 6= 0. Therefore, using formula (2.17), we see that the fluence in SP3 approximation
behaves like

G0(x, t) ∼ 1√
4πκt

= H(t) as t→∞, (3.58)

which coincides with the exact transport theory fluence at late times, see (2.18). To transmit
this exact asymptotic behavior from transport theory to the SP3 fluence, it was necessary to
separate the absorption before neglecting the time derivatives applied to the odd moments.
Otherwise, the SP3 equations would still look like (3.44), but the diffusion matrix (3.45)
would depend on absorption, which prevents the convergence to the exact asymptotic value.
We note that this is principally the same problematic as in the case of the classical diffusion

5Einstein’s result approaches the exact transport theory value at late times, see e.g. [44]

2

3

µst− 1 + e−µst

µ2
s

/
2κt ∼ 1 as t→∞.
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3 On the SPN Equations in Time Domain

equation. Here, there is a discussion about the correct treatment of the absorption for almost
thirty years, see e.g. [45–48]. We also want to confirm (3.58) by a numerical experiment. For
this, we have evaluated G0 from (3.56) for the time values t1 = 106 and t2 = 109. Moreover,
we have set x = 1 and the scattering coefficient is assumed to be µs = 0.5. As a result, we
find the numerical values

G0(1, t1)

H(t1)
= 1.000000825000392 and

G0(1, t2)

H(t2)
= 1.000000000824997.

We note that these ratios are independent of the absorption, because the exponential factor
e−µat cancels out. We finally want to provide a fourth order formulation to the SP3 equations.
It can found from system (3.44) by eliminating the moment φ2 and by adding a second initial
condition. The latter requirement follows directly from the first equation of (3.44) and reads

∂tφ0(x, 0) =
1

3µs
∂2
xφ0(x, 0) +

2

3µs
∂2
xφ2(x, 0) =

Q′′(x)

3µs
,

for x ∈ R. The resulting fourth order formulation for the fluence φ0 ∈ C4,2(R × R+) can
then be written in the form

∂2φ0

∂t2
+ µs

∂φ0

∂t
=

1

3

∂2φ0

∂x2
+

6

7µs

∂3φ0

∂t∂x2
− 3

35µ2
s

∂4φ0

∂x4
, x ∈ R, t > 0, (3.59)

subject to φ0(x, 0) = Q(x) and ∂tφ0(x, 0) = Q′′(x)/(3µs) for x ∈ R. Compared with the
classical heat equation, this higher order model contains a coupling between the space and
time variable in form of a mixed partial derivative. If we assume for a moment that integra-
tion and differentiation would be interchangeable, then it can be verified that φ0 from (3.55)
satisfies equation (3.59). In the next subsection, we will apply the finite cosine transform
(FCT) in order to solve the SP3 equations on a bounded domain.

3.4.2 Solution for a bounded domain via the FCT

We now employ the SP3 equations (3.44) as a simplified transport model on the finite
domain Ω = (0, L) with reflecting boundaries. As shown above, reflective BCs correspond
in the frame of the SPN methodology with the Neumann-type conditions (3.41). Hence, we
consider the SP3 equations (3.44) subject to

ψx(0, t) = ψx(L, t) = 0 ∀t ≥ 0. (3.60)

In view oft the initial condition (3.46), we assume throughout this subsection the compati-
bility condition Q′(0) = Q′(L) = 0 and that Q is representable on Ω in form of the uniformly
convergent cosine series (2.19). Considered on the entire space, Q represents an even and
2L-periodic function. Similar as for the classical heat equation, it would be possible to seek
for separable solutions. Let us briefly discuss this method on hand of the separation ansatz
φj(x, t) := Xj(x)Tj(t) (j = 0, 2). Inserting this into the SP3 equations (3.44) results in(

X0T
′
0

X2T
′
2

)
+ S

(
X0T0

X2T2

)
= D

(
X ′′0T0

X ′′2T2

)
, x ∈ Ω, t > 0. (3.61)

In contrast to the classical heat equation, we are not able to perform the separation directly.
We therefore divide the first equation by T2 and the second one by T0. After that, we
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3 On the SPN Equations in Time Domain

additionally apply on the obtained equations the partial derivative with respect to t. We
then get the following separated equations

3µs
(T ′0/T2)′

(T0/T2)′
=
X ′′0
X0

= −ω2,

21µs
11

((T ′2 + µsT2)/T0)′

(T2/T0)′
=
X ′′2
X2

= −η2.

(3.62)

By the homogeneous Neumann conditions (3.60), we find for the unknown separation con-
stants the discrete values ωk = ηk = kπ/L with k ∈ N0. Furthermore, the appropriate
eigenfunctions have the form Xj,k(x) = αj,k cos(ωkx) (j = 0, 2). To find the corresponding
time-dependent factors Tj,k, we insert the obtained eigenfunctions into (3.61) and get for
each k ∈ N0 a condition of the form

d

dt

(
α0,kT0,k

α2,kT2,k

)
+Ak

(
α0,kT0,k

α2,kT2,k

)
=

(
0
0

)
, t > 0, (3.63)

where Ak := A(ωk) is the matrix from (3.48). The general solution to (3.63) is given by(
α0,kT0,k(t)
α2,kT2,k(t)

)
= e−Aktβk, k ∈ N0, t ≥ 0,

with βk = (β0,k, β2,k)
T being an arbitrary constant vector. Multiplying both sides of this

expression by cos(ωkx) results in the eigensolutions

ψk(x, t) =

(
T0,k(t)X0,k(x)
T2,k(t)X2,k(x)

)
= e−Aktβk cos(ωkx), k ∈ N0, t ≥ 0.

The general solution to our problem is then obtained via superposition

ψ(x, t) =

∞∑
k=0

ψk(x, t), x ∈ Ω, t ≥ 0. (3.64)

If we consider the cosine series (2.19) as initial condition, we can fix the unknown vector
according to

βk
!

=
2− δk0

L

(
sk
0

)
, sk =

∫ L

0
Q(x) cos(ωx) dx, k ∈ N0. (3.65)

We omit at this stage the justification of the obtained series solution, because we will do
this shortly after we have confirmed (3.64) via the FCT. In the present case of homogeneous
Neumann conditions, we will see that using the FCT is a little more convenient than seeking
for separable solutions. At the same time, we can use some of the results prepared in the
previous subsection. The FCT we are going to consider is defined as follows [29, Definition
10.2.2].

Definition 3.16. The FCT of a piecewise smooth6 function f : [0, L] → R is the sequence
(ak)k∈N0 ∈ `1(N0) with elements

ak =

∫ L

0
f(x) cos(ωkx) dx, ωk = kπ/L, k ∈ N0. (3.66)

The inverse relation corresponds with the uniformly convergent cosine series

f(x) =
∞∑
k=0

2− δk0

L
ak cos(ωkx), x ∈ [0, L]. (3.67)

6We denote a function f ∈ C(Ω) as piecewise smooth if it has a piecewise continuous first derivative, see for
example [2, pp. 19–20].
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3 On the SPN Equations in Time Domain

As is typical for finite transforms, the FCT exhibits a discrete spectrum. For our purposes,
we need the following relations concerning the FCT.

Proposition 3.17. Let (ak)k∈N0 ∈ `1(N0) be the FCT according to (3.66) of a sufficiently
smooth function f defined on [0, L]. Then, we have

(1)

∫ L

0
f ′′(x) cos(ωkx) dx = −ω2

kak, f ′(0) = f ′(L) = 0, f ∈ C2[0, L],

(2)

∫ L

0
f2(x) dx =

∞∑
k=0

2− δk0

L
a2
k, f piecewise smooth.

Proof. The differentiation property (1) results from integration by parts. The Parseval re-
lation (2) can be obtained by multiplying both sides of (3.67) with f(x) followed by an
integration over (0, L), which leads to∫ L

0
f2(x) dx =

∞∑
k=0

2− δk0

L
ak

∫ L

0
f(x) cos(ωkx) dx =

∞∑
k=0

2− δk0

L
a2
k.

We note that term-by-term integration is allowed due to the uniform convergence.

We now can proceed as for the unbounded domain. That is, we multiply both sides of the
system (3.44) by cos(ωkx) (k ∈ N0), followed by an integration over Ω. At the same time,
we make use of the differentiation property (1) from Proposition 3.17 under consideration of
the homogeneous BCs (3.60). As a result, we obtain the Cauchy problem

ψ′k(t) +Akψk(t) = 0, k ∈ N0, t > 0, (3.68)

with ψk(0) = (sk, 0)T for k ∈ N0. Thus, we have obtained practically the same initial value
problem as in (3.47). Hence, the corresponding solution can be given in the form

ψk(t) =

(
φ0,k(t)
φ2,k(t)

)
= sk

(
G0,k(t)
G2,k(t)

)
= skGk(t), k ∈ N0, t ≥ 0, (3.69)

where Gj,k(t) := Ĝj(ωk, t) and Ĝj (j = 0, 2) are adopted from (3.50). The inverse FCT
(3.67) applied to the function sequence (ψk)k∈N0 is then in agreement with the eigenfunction
expansion (3.64). Now it is time to address the well-posedness of the recovered (formal)
solution to the SP3 equations. In doing so, we start with an energy analysis.

Lemma 3.18. Let (ψk)k∈N0 be the function sequence with elements from (3.69). Then, the
energy function E : [0,∞)→ [0,∞) defined by

E(t) :=

∞∑
k=0

2− δk0

2L
‖Deψk(t)‖22 =

1

2
‖Deψ(·, t)‖2L2(Ω), (3.70)

with De := diag(1,
√

5) and E(0) = 1
2

∫ L
0 (Q(x))2 dx belongs to C1([0,∞)) and satisfies the

relation 0 ≤ E(t) ≤ E(0) for all t ≥ 0. In addition, there holds the energy inequality

E(t)− E(∞) ≤ (E(0)− E(∞))e−2λ2(ω1)t, t ≥ 0, (3.71)

where E(∞) = limt→∞E(t) = s2
0/(2L) and ω1 = π/L.
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3 On the SPN Equations in Time Domain

Proof. We first note that the scaling of the (even) moments with De is used to hold a certain
similarity to the energy definition (3.35) for the PN equations. The integral representation
on the right-hand side of (3.70) results from the Parseval relation (2) from Proposition 3.17.
The function series (3.70) converges uniformly on [0,∞) due to

‖Deψk(t)‖22 ≤
265

216
s2
ke
−2aω2

kt ≤ 265

216
s2
k ∀k ∈ N0,

where we have used the estimates (3.52) and (3.53). The series obtained after termwise
differentiation still converges uniformly up to t = 0. To show this, we consider

1

2

d

dt
‖Deψk(t)‖22 = −ψk(t)T Ãkψk(t), k ∈ N0, t ≥ 0,

where we have used ψ′k(t) = −Akψk(t). The matrix Ãk is symmetric and looks like

Ãk := D2
eAk =


ω2
k

3µs

2ω2
k

3µs
2ω2

k

3µs

55ω2
k

21µs
+ 5µs

, k ∈ N0. (3.72)

The Cauchy–Schwarz inequality enables for k ∈ N0 and t ≥ 0 the estimate

|ψk(t)T Ãkψk(t)| ≤ ‖Ãkψk(t)‖2 ‖ψk(t)‖2 ≤ ‖Ãk‖2 ‖ψk(t)‖
2
2 . (3.73)

The spectral norm of the symmetric matrix Ãk equals its spectral radius %(Ãk) = ‖Ãk‖2.
The spectral radius itself can be bounded by any compatible matrix norm such as %(Ãk) ≤
‖Ãk‖∞ = 5µs + 23ω2

k/(7µs). Hence, (3.73) becomes for all k ∈ N0 and t ≥ 0

|ψk(t)T Ãkψk(t)| ≤
1129

1080

(
5µs +

23

7

ω2
k

µs

)
s2
ke
−2aω2

kt ≤ (c1 + c2ω
2
k)s

2
k.

It remains to show the convergence of
∑∞

k=1(ωksk)
2. By assumption, Q′ is piecewise contin-

uous and the Fourier coefficients of Q ∈ C(Ω) can be reformulated via integration by parts.
That is

sk = − 1

ωk

∫ L

0
Q′(x) sin(ωkx) dx = −βk

ωk
∀k ∈ N.

The coefficients of a piecewise continuous function satisfy Bessel’s inequality [2, p. 56]. Hence,

in view of βk :=
∫ L

0 Q′(x) sin(ωkx) dx, we get

M∑
k=1

β2
k ≤

L

2

∫ L

0
(Q′(x))2 dx <∞ ∀M ∈ N.

Due to |βk| = |ωksk|, we deduce
∑∞

k=1(ωksk)
2 =

∑∞
k=1 β

2
k < ∞. Thus, term-by-term

differentiation of the energy series (3.70) is permissible and leads to the continuous function

E′(t) = − 2

L

∞∑
k=1

ψk(t)
T Ãkψk(t), t ≥ 0. (3.74)

The leading principal minors of Ãk for k ∈ N satisfy ω2
k/(3µs) > 0 and

det Ãk =
ω2
k

3µs

(
55ω2

k

21µs
+ 5µs

)
−

4ω4
k

9µ2
s

=
3

7

ω4
k

µ2
s

+
5ω2

k

3
> 0, (3.75)
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3 On the SPN Equations in Time Domain

which means that (3.72) is a positive definite matrix. In view of (3.74), this in turn shows
that E′(t) ≤ 0 and hence 0 ≤ E(t) ≤ E(0) for all t ≥ 0. The second part, namely the energy
inequality (3.71), can be derived from the series (3.74) as follows. We first note on

ψk(t)
T Ãkψk(t) ≥ ψk(t)T Ã1ψk(t), k ∈ N, t ≥ 0.

Moreover, we perform the manipulation

Ã1 = D2
eA1 = D2

e [A1 − λ2(ω1)I + λ2(ω1)I], ω1 = π/L,

with λ2(ω1) = p(ω1) − q(ω1) being the smaller eigenvalue of the matrix A1 = A(ω1) from
(3.48) with property λ2(ω1) ≤ λ2(ωk) for all k ∈ N. With these relations on hand, we deduce
from (3.74) after some smaller rearrangements the following differential inequality

E′(t) + 2λ2(ω1)E(t) ≤ 2λ2(ω1)E(∞)− 2

L

∞∑
k=1

ψk(t)
T [Ã1 − λ2(ω1)D2

e ]ψk(t).

Note that E(∞) = s2
0/(2L) is the first (time-independent) term in the energy series (3.70).

The symmetric matrix Ã1 − λ2(ω1)D2
e = D2

e [A1 − λ2(ω1)I] has the eigenvalues 0 and

trace(Ã1 − λ2(ω1)D2
e) = 2µs +

8

21

ω2
1

µs
+ 6q(ω1) > 0,

which means that it is positive semidefinite. This leads to the inequality

d

dt

(
E(t)e2λ2(ω1)t

)
≤ 2λ2(ω1)E(∞)e2λ2(ω1)t, t ≥ 0.

By the monotonicity of the integral, we find after integration over [0, t] the inequality (3.71).

Remark 3.19. The energy inequality (3.71) could also be derived as in the case of the heat
equation ut = κuxx. That is, we can multiply the SP3 system (3.44) with ψTD2

e followed by
an integration over Ω. Moreover, after integration by parts under the use of the homogeneous
Neumann BCs (3.60), we can incorporate the following Poincaré-like inequality7∫

Ω
ψTD2

eDψ dx− LψTmD2
eDψm ≤ C2

∫
Ω
ψTxD

2
eDψx dx,

with C := L/π = 1/ω1 and the mean value ψm := 1
L

∫ L
0 ψ(x, t) dx = (s0/L, 0)T . Note that

the matrix D2
eD is symmetric and positive definite.

We are now in position to verify the existence and uniqueness of a solution to the SP3

equations in a bounded domain.

Theorem 3.20. Let Q ∈ C(Ω) be a piecewise smooth source distribution with Q′(0) =
Q′(L) = 0. Then, the SP3 equations (3.44) on Ω = (0, L) subject to the Neumann-type
BCs (3.60) and the initial condition (3.46) admit a unique solution in form of the uniformly
convergent cosine series

ψ(x, t) =

∞∑
k=0

2− δk0

L
ψk(t) cos(ωkx), x ∈ Ω, t ≥ 0, (3.76)

7This relation can be obtained e.g. under the use of the cosine series (3.76).
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with ψk being the time-dependent Fourier coefficients from (3.69). In addition, if we consider
the defining equation for the source coefficients sk, we additionally have

ψ(x, t) =

∫ L

0
K(x, η, t)Q(η) dη, x ∈ Ω, t > 0, (3.77)

where the corresponding integral kernel K = (K0,K2)T is defined as

K(x, η, t) :=

∞∑
k=0

2− δk0

L
Gk(t) cos(ωkη) cos(ωkx). (3.78)

Proof. We begin with verifying the existence of a solution. In view of the series (3.76), we
define Ψk(x, t) := ψk(t) cos(ωkx). Note that each Ψk is an eigensolution of the SP3 equations
(3.44). The derived estimates (3.52) and (3.53) can be used to provide the uniform upper
bound

‖Ψk(x, t)‖∞ ≤ ‖ψk(t)‖∞ = |sk| ‖Gk(t)‖∞ ≤Me−aω
2
kt0 ∀k ∈ N0,

for an arbitrary t0 > 0. We furthermore have used |sk| ≤
∫ L

0 |Q(x)| dx = M . The application

of the ratio test shows that
∑∞

k=0 e
−aω2

kt0 <∞. Thus, according to the Weierstrass majorant
criterion [2, p. 87], the series (3.76) converges on Ω× [t0,∞) absolutely and uniformly to a
continuous vector-field. Next, we investigate the partial derivatives

∂xΨk(x, t) = −ωkψk(t) sin(ωkx) and ∂tΨt(x, t) = −Akψk(t) cos(ωkx),

that exist everywhere and vanish for k = 0. They can also be uniformly bounded on the
domain Ω× [t0,∞) for each k ∈ N according to

‖∂xΨk(x, t)‖∞ ≤Mωke
−aω2

kt0 and ‖∂tΨk(x, t)‖∞ ≤M(µs + ω2
k/µs)e

−aω2
kt0 ,

where we have used ‖Ak‖∞ ≤ µs + ω2
k/µs. Again, by the ratio test, both upper bounds can

be summed up. Consequently, the series obtained after termwise differentiation of (3.76)
converge uniformly and yield (continuous) representations for ψx and ψt. Regarding the
necessary conditions for termwise differentiation of a function series, we refer to [2, p. 92].
Moreover, we have on Ω× [t0,∞) the uniform estimate

‖∂mx ∂nt Ψk(x, t)‖∞ ≤Mωmk (µs + ω2
k/µs)

ne−aω
2
kt0 ∀k ∈ N.

Due to
∑∞

k=1 ω
m
k (µs + ω2

k/µs)
ne−aω

2
kt0 < ∞ (ratio test), we successively come to the same

conclusion for higher order derivatives. In particular, the series solution (3.76) satisfies on
Ω× [t0,∞) the SP3 equations (3.44), due to (termwise differentiation)

ψt + Sψ −Dψxx =

∞∑
k=0

2− δk0

L
(∂tΨk + SΨk −D∂2

xΨk)

=

∞∑
k=0

2− δk0

L
(−Ak + S + ω2

kD)Ψk = 0.

For t > 0, we can differentiate the series (3.76) to confirm ψx(0, t) = ψx(L, t) = 0. When
t = 0, we remind on the compatibility condition Q′(0) = Q′(L) = 0. This means that the
BCs are satisfied for t ≥ 0. In view of the initial condition, we have the alternative estimate

‖Ψk(x, t)‖∞ ≤ |sk| ‖Gk(t)‖∞ ≤ |sk| ∀k ∈ N0,
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3 On the SPN Equations in Time Domain

which holds true on Ω × [0,∞). Due to (sk)k∈N0 ∈ `1(N0), we can interchange limit with
summation (due to the uniform convergence) which results in

lim
t→0

ψ(x, t) =
∞∑
k=0

2− δk0

L
lim
t→0

Ψk(x, t) =

(
Q(x)

0

)
∀x ∈ Ω,

where we have used Ψk(x, 0) = (sk, 0)T cos(ωkx). Thus, we in fact have found a solution
to our problem with regularity φj ∈ C∞(Ω × (0,∞)) ∩ C(Ω × [0,∞)) for j = 0, 2. As
typical for parabolic systems, solutions to the SP3 equations undergo smoothing as soon as
t > 0. The integral representation (3.77) follows by replacing sk by

∫ L
0 Q(η) cos(ωkη) dη in

the series (3.76). Then, the exchange of summation and integration, which is allowed due to
the uniform convergence on Ω×(0,∞), yields the integral representation (3.77). To show the
uniqueness, let ψ and ϕ be two classical solutions to the same problem. Then, by Lemma
3.18, we find 0 ≤ ‖ψ(·, t)−ϕ(·, t)‖L2(Ω) ≤ 0 for all t ≥ 0 and hence ψ = ϕ.

A direct consequence of Lemma 3.18 is the following result on the stability and the long-time
behavior.

Corollary 3.21. The solution to the SP3 equations from Theorem 3.20 depends continu-
ously on the initial data and converges exponentially in time to the equilibrium state ψm =
limt→∞ψ(x, t) = (s0/L, 0)T .

Proof. Under the assumption ‖Q‖L2(Ω) < δ, we obtain from Lemma 3.18 the estimate

‖ψ(·, t)‖L2(Ω) ≤ ‖Deψ(·, t)‖L2(Ω) ≤ ‖Q‖L2(Ω) < δ ∀t ≥ 0.

This means that for every ε > 0, we can choose δ = ε to ensure

‖ψ(·, 0)−ϕ(·, 0)‖L2(Ω) < δ =⇒ ‖ψ(·, t)−ϕ(·, t)‖L2(Ω) < ε ∀t ≥ 0. (3.79)

Thus, small perturbations in the initial data yield small deviations in the solution. In
addition, we can measure the stability in the maximum norm. For this, we consider the
integral representation (3.77) under ‖Q‖L∞(Ω) < δ and |Kj(x, η, t)| ≤ 1

L

∑
k∈Z e

−aω2
kt0 for

t ≥ t0 > 0. The last series can be bounded by the Poisson summation formula (cf. Proposition
2.9) according to8

1

L

∑
k∈Z

e−aω
2
kt0 =

1√
πat0

∑
k∈Z

exp

(
−k

2L2

at0

)
≤ 1√

πat0

∑
k∈Z

1

1 + k2L2/(at0)
.

For the last step, we have used 1+x ≤ ex for all x ∈ R. Under consideration of
∑

k∈Z
1

1+(βk)2
=

π
β coth(π/β), we find with Hölder’s inequality on Ω× [t0,∞) the upper bound

|φj(x, t)| ≤ ‖Q‖L∞(Ω)

∫ L

0
|Kj(x, η, t)| dη < δ

√
π coth(π

√
at0/L).

Hence, for an arbitrary ε > 0, we find with δ = ε tanh(π
√
at0/L)/

√
π the implication

‖ψ(·, 0)‖L∞(Ω) < δ =⇒ ‖ψ(·, t)‖L∞(Ω) < ε ∀t ≥ t0.
8In this context, we note on the required transform pair, see for example [31, p. 223]

F−1(e−αk
2

)(x) = exp[−x2/(4α)]/
√

4πα, α > 0.
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3 On the SPN Equations in Time Domain

The convergence to the equilibrium state follows directly from the energy inequality (3.71)
by making use of

1

2
‖ψ(·, t)−ψm‖

2
L2(Ω) =

1

2
‖ψ(·, t)‖2L2(Ω) − E(∞) ≤ E(t)− E(∞),

where we again have considered ‖ψ(·, t)‖L2(Ω) ≤ ‖Deψ(·, t)‖L2(Ω). Consequently, we get

‖ψ(·, t)−ψm‖L2(Ω) ≤ ‖ψ(·, 0)−ψm‖L2(Ω) e
−λ2(ω1)t, t ≥ 0,

where we note on E(0) = 1
2‖ψ(·, 0)‖2L2(Ω). For media with Lµs � 1 we have ω1/µs � 1.

Then, the rate of decay approaches that for the heat (SP1) equation, due to

λ2(ω1) =
3ω2

1

7µs
+
µs
2
−

√
24ω4

1

245µ2
s

+
2ω2

1

21
+
µ2
s

4
≈ ω2

1

3µs
= κ/C2,

with C = 1/ω1 = L/π being the Poincaré constant.

The kernel (3.78) has the meaning of a fundamental solution on a bounded domain.9 In
accordance with Subsection 2.2.2, we can apply the Poisson summation formula to both
components, which results in

Kj(x, η, t) =
∑
k∈Z

[Gj(x− η − 2kL, t) +Gj(x+ η − 2kL, t)], (3.80)

for (x, η, t) ∈ [0, L]2×R+ and Gj are the moments for the infinite medium. This means that
the point source problem for the SP3 equations on a bounded domain can also be solved
by the method of images. In the next subsection, we derive closed-form expressions for the
kernels (3.80) in Laplace space. The subsequent inversion of the Laplace transform enables
us to verify the series representation (3.78) by a numerical experiment.

3.4.3 Solution for a bounded domain via the Laplace transform

In Subsection 3.4.1, we have used the Fourier transform in order to reduce the SP3 equations
to an ordinary first order system. The transformed moments Ĝj (j = 0, 2) could be found in
explicit form, cf. (3.50). In this subsection, we apply also the one-sided Laplace transform
(cf. Definition 2.10) with respect to time. As a consequence, the SP3 equations (3.44) are
reduced to a system of linear equations in Fourier-Laplace space. If we invert only the Fourier
transform, we get moments of the form Ĝj(x, s). Then, by the method of images, we can
construct the desired kernels for the bounded domain according to

K̂j(x, η, s) =
∑
k∈Z

[Ĝj(x− η − 2kL, s) + Ĝj(x+ η − 2kL, s)], (3.81)

where x, η ∈ [0, L] and s ∈ R+. The reason for restricting the complex Laplace variable to
the positive real axis is due to the Post-Widder inversion formula, see Proposition 3.25. We
will see that the series for K̂j can be summarized in closed form. It should be noted that
the Laplace transform approach offers the possibility to incorporate much more complicated
BCs than the Neumann-type conditions currently considered. However, the required inverse
transform must be in general carried out numerically.

9This kernel function satisfies the initial condition K(x, η, 0) = (δ(x− η), 0)T for x, η ∈ Ω.
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3 On the SPN Equations in Time Domain

Proposition 3.22. The moments of the fundamental solution to the SP3 equations on Ω = R
in Laplace space are given by

Ĝj(x, s) =
Aj
2

e−κ1|x|

κ1
+
Bj
2

e−κ2|x|

κ2
, x ∈ R, s ∈ R+, (3.82)

for j = 0, 2. The corresponding parameters are defined as

A0 =
1

9

105µ2
s(s+ µs)− 55κ2

1µs
κ2

2 − κ2
1

, A2 =
1

9

14κ2
1µs

κ2
2 − κ2

1

,

B0 =
1

9

105µ2
s(s+ µs)− 55κ2

2µs
κ2

1 − κ2
2

, B2 =
1

9

14κ2
2µs

κ2
1 − κ2

2

, (3.83)

κ1/2 =

√
5µss+

35

18
µ2
s ± µs

√
40

3
s2 +

70

9
µss+

1225

324
µ2
s.

Proof. We start with the SP3 equations in Fourier space, see (3.47), under consideration of
the initial condition Ĝ(k, 0) = (1, 0)T for k ∈ R. The application of the Laplace transform
leads to the following system of linear equations

[sI +A(k)]Ĝ(k, s) = (1, 0)T , k ∈ R, s ∈ R+, (3.84)

where we have used the differentiation property for the first derivative, cf. Proposition 2.12.
The corresponding solution is given by

Ĝ0(k, s) =
55k2µs + 105µ2

s(s+ µs)

9k4 + (90s+ 35µs)k2µs + 105µ2
ss(s+ µs)

,

Ĝ2(k, s) =
−14k2µs

9k4 + (90s+ 35µs)k2µs + 105µ2
ss(s+ µs)

.

(3.85)

These expressions can be written in form of the following partial fractions

Ĝj(k, s) =
Aj

k2 + κ2
1

+
Bj

k2 + κ2
2

, k ∈ R, s ∈ R+.

We note that the coefficients belonging to these decompositions do not depend on k ∈ R, see
(3.83). Hence, the inverse Fourier transform10 can be carried out analytically, which results
in the moments from Proposition 3.22.

Remark 3.23. The moments (3.82) can also be derived by solving sψ̂ + Sψ̂ = Dψ̂xx in
Laplace space. More concretely, we then seek for a function that satisfies

ψ̂xx = Mψ̂, x ∈ R \ {0}, s ∈ R+, (3.86)

with M := D−1diag(s, s+ µs) including the following continuity and jump condition

ψ̂(0+, s) = ψ̂(0−, s),

ψ̂x(0+, s)− ψ̂x(0−, s) = −D−1

(
1
0

)
,

10In this context, we make use of the transform pair

F(e−a|x|)(k) =

∫ ∞
−∞

e−a|x|e−ikx dx =
2a

k2 + a2
, a > 0.
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for all s ∈ R+. The general solution to (3.86) can be formally written in the form

ψ̂(x, s) = e
√
Mxc + e−

√
Mxd,

with arbitrary constant vectors c and d. In the present case, when s ∈ R+, the matrix M is
diagonalizable with real-valued and positive eigenvalues κ2

1 and κ2
2, which are exactly those

from (3.83). This means that the square root
√
M is similar to diag(κ1, κ2). Hence, we find

the following more compact alternative to (3.82)

Ĝ(x, s) =
1

2
e−
√
M |x|

(
D
√
M
)−1

(
1
0

)
, x ∈ R, s ∈ R+. (3.87)

This expression can be conveniently evaluated in Matlab using the functions expm and sqrtm

for the exponential and the square root of a matrix. The vector-valued function (3.87) has a
certain similarity to Green’s function of the classical heat equation in Laplace space, namely

Ĝ0(x, s) = L

 e−
x2

4κt

√
4πκt

(s) =
1

2
e−
√
m|x| (κ√m)−1

, (3.88)

for (x, s) ∈ R× R+ and m := κ−1s.

Based on Proposition 3.22, we can give the desired kernels for the bounded domain.

Corollary 3.24. The kernels (3.81) in Laplace space that satisfy the Neumann conditions
∂xK̂(0, η, s) = ∂xK̂(L, η, s) = 0 for (η, s) ∈ Ω× R+ are explicitly given by

K̂j(x, η, s) =
Aj
2

coshκ1(|x− η| − L) + coshκ1(x+ η − L)

κ1 sinh(κ1L)

+
Bj
2

coshκ2(|x− η| − L) + coshκ2(x+ η − L)

κ2 sinh(κ2L)
, (3.89)

where x, η ∈ [0, L] and s ∈ R+. The coefficients Aj, Bj and κj for j = 0, 2 are adopted from
(3.83). In addition, the kernels written as vector-valued function become

K̂(x, η, s) =
1

2

[
cosh

√
M(|x− η| − L)

+ cosh
√
M(x+ η − L)

] (
D
√
M sinh(

√
ML)

)−1
(

1
0

)
.

Proof. We only have to evaluate the series (3.81) under consideration of the moments from
Proposition 3.22. This can be done under the use of∑

k∈Z
e−κ|x−η−2kL| =

coshκ(|x− η| − L)

sinh(κL)
, κ > 0, (3.90)

where |x− η| ≤ L. The vector-valued kernel function follows via summation of (3.87).

For the last step, we need to apply the inverse Laplace transform to the kernels (3.89). In
this way, we have the possibility to verify the derived Fourier series expansion (3.78). This
is done in Subsection 3.5.2. Concerning the numerical inversion of the Laplace transform, it
is advantageous to have some information about the function to be inverted. In the present
case, if we consider the kernels (3.89) as function of the real variable s ∈ R+, we see that
they are non-oscillating and continuously differentiable up to any order. In this situation,
instead of evaluating the (complex) Bromwich contour integral, the inversion of the Laplace
transform can also be carried out along the positive real axis by means of the Post-Widder
inversion formula.
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Proposition 3.25. Let f : [0,∞)→ R be a continuous function of exponential order α0 ∈ R
and f̂ = L(f) the corresponding Laplace transform that exists for all σ > σ0. Then, f =
L−1(f̂) can be reconstructed according to

f(t) = lim
n→∞

(−1)n

n!

(n
t

)n+1
f̂ (n)

(n
t

)
, t > 0. (3.91)

Proof. A possible proof of this result can be found e.g. in [32, Theorem 2.4].

The direct application of the Post-Widder formula is difficult due to the required high order
derivatives, which are in general not available. In Subsection 3.5.2, we make use of a discrete
version of (3.91), the so-called Gaver-Stehfest formula [32, p. 144].

3.4.4 The time-harmonic SP3 equations

Time-harmonic (monochromatic) light sources of the form e−iωt, with ω ∈ R being the
angular modulation frequency, are often considered in diffuse optical tomography [9,49,50].
Here, the modulation frequency f = ω/(2π) typically lies between 25 MHz and 1 GHz [50].
It is important to note that this source type is formally defined for t ∈ R and hence a
two-sided signal. Besides optical imaging, time-harmonic fields are also of importance in the
context of Maxwell’s equations, see e.g. the textbook [3]. Until now, we have considered the
homogeneous (source-free) SP3 equations (3.44) under a given initial condition at time zero.
The same result can be obtained from the inhomogeneous system

ψt(x, t) + Sψ(x, t) = Dψxx(x, t) + Q(x)δ(t), x ∈ Ω, t ∈ R,

under ψ(·, t) = 0 for t < 0 and Q = (Q, 0)T . Thus, in view of the time variable, we have
recovered a causal impulse response that vanishes for t < 0. In this case, the convolution
theorem enables us to get the response to an extended source. More concretely, we have11

(ψ(x, ·)e−µa· ∗ e−iω·)(t) = e−iωt
∫ ∞

0
ψ(x, τ)e−(µa−iω)τ dτ = e−iωtψ̂(x, µa − iω), (3.92)

for (x, t) ∈ Ω× R. The amplitude ψ̂ satisfies the SP3 equations in Laplace space

(sI + S)ψ̂(x, s) = Dψ̂xx(x, s) + Q(x), x ∈ Ω,

for s = µa− iω. In the time-harmonic case, we can set ψ(x, t) := ψ(x)e−iωt for (x, t) ∈ Ω×R
with ψ : Ω→ C2 being the time-independent part that satisfies

ψxx(x) +Mψ(x) = −D−1Q(x), x ∈ Ω, (3.93)

where M := D−1diag(iω − µa, iω − µa − µs) ∈ C2,2. The time-harmonic system (3.93),
which consists of two coupled Helmholtz equations, already contains the absorption. For
a point source of the form δ(x)e−iωt in the infinite medium, equation (3.93) exhibits the
closed-form solution ψ(x) = Ĝ(x, µa − iω) with Ĝ = (Ĝ0, Ĝ2)T being the moments from
(3.82). Moreover, if the point source δ(x−x0)e−iωt is located in the finite domain Ω = (0, L),
we have ψ(x) = K̂(x, x0, µa − iω), where K̂ = (K̂0, K̂2)T are adopted from (3.89). Apart
from δ-sources, we can also solve (3.93) for the more general case of Q(x)e−iωt.

11We remind on the factor e−µat due to the absorption.
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Proposition 3.26. Let Q ∈ C(Ω) be a piecewise smooth source distribution with repre-
sentation (2.19). Then, the time-harmonic SP3 equations (3.93) on Ω = (0, L) subject to
ψx(0) = ψx(L) = 0 exhibits a solution of the form

ψ(x) =
∞∑
k=0

2− δk0

L
Ĝ(ωk, µa − iω)qk cos(ωkx), x ∈ Ω, (3.94)

where µa ≥ 0 and µa − iω 6= 0. Moreover, Ĝ = (Ĝ0, Ĝ2)T are the moments from (3.85).

Proof. The application of the FCT to (3.93) under consideration of Proposition 3.17 leads to
the system [(µa − iω)I +Ak]ψ̂k = (qk, 0)T , which is practically the same as (3.84). It would
also be possible to show the well-posedness, due to (qk)k∈N0 ∈ `1(N0).

For the modulation frequency ω = 0, one obtains the solution of the SP3 equations in
the steady-state domain. On the other hand, if we consider (3.93) for variable modulation
frequencies, we get solutions of the form ψ = ψ(x, ω). We then can reconstruct the time-
dependent moments for x ∈ Ω and t ≥ 0 according to∫

R
ψ(x, ω)e−iωt dω =

∫
R
ψ̂(x, µa + iω)eiωt dω = 2πe−µatψ(x, t). (3.95)

Note that the second integral can be seen as a Bromwich integral, see Definition 2.10. This
means also that, instead of solving the SP3 equations directly in time domain, we alter-
natively could solve (3.93). However, the remaining (numerical) integration in frequency
domain can become a quite challenging task especially in the neighbourhood of δ-sources,
caused by the slowly decaying and oscillating integrand. Due to the causality in time do-
main, the real and imaginary part of ψ associated with (3.93) are connected by the Hilbert
transform [28, Chapter 7]

Imψ(x, ω) =
1

π

∫
R

Reψ(x, τ)

ω − τ
dτ and Reψ(x, ω) = − 1

π

∫
R

Imψ(x, τ)

ω − τ
dτ,

for (x, ω) ∈ Ω × R and the integrals are considered as Cauchy principal values. By taking
into account Reψ(·,−ω) = Reψ(·, ω) and Imψ(·,−ω) = −Imψ(·, ω), we can restrict the
integration to positive frequencies which leads then to the classical Kramers–Kronig relations
[28, Chapter 7]. If one part is known, the other one can be computed. This is consistent
with the fact that a one-sided signal is completely determined by its even or odd part.12

Hence, as an alternative to (3.95), we can reconstruct the solution to the time-dependent
SP3 equations according to

e−µatψ(x, t) =
2

π

∫ ∞
0

Reψ(x, ω) cos(ωt) dω =
2

π

∫ ∞
0

Imψ(x, ω) sin(ωt) dω.

Remark 3.27. The time-harmonic SP3 equations (3.93) already contain the absorption,
but the speed of light is missing. We can incorporate this quantity by a simple modification
of (3.92) according to

(cψ(x, c·)e−µac· ∗ e−iω·)(t) = e−iωtψ̂(x, µa − iω/c), x ∈ Ω, t ∈ R. (3.96)

Thus, we only have to replace iω by iω/c in the matrix M occurring in (3.93).

12We note on

feven(t) =
f(t) + f(−t)

2
and fodd(t) =

f(t)− f(−t)
2

.
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In the next section, the last numerical experiment is carried out in the frequency domain
under consideration of realistic optical properties. The relevant quantities in view of exper-
imental activities are the modulation M and the phase shift θ [50]. In the case of fluence
measurements these quantities are defined as

M(x, ω) :=

∣∣∣∣φ0(x, ω)

φ0(x, 0)

∣∣∣∣ and θ(x, ω) := arg φ0(x, ω), (x, ω) ∈ Ω× R. (3.97)

3.5 Numerical experiments

The derived solutions to the SP3 equations were implemented in Matlab for comparison
purposes. We show in this section the result of different numerical experiments for both the
infinite medium and the bounded domain Ω = (0, L) under the Neumann-type conditions
(3.60). In general, except for two examples, we restrict our attention to non-absorbing media,
because the solutions to the derived SPN equations exhibit the same exact dependence on
absorption13 as the solutions to the RTE and the PN equations. We recall at this point that
the presented results for the SP1 equation correspond to those of the classical heat equation.
We also note that the figures shown below were generated with Matlab.

3.5.1 Simulations for the infinite medium

The first comparison is for an infinite medium with scattering coefficient µs = 0.9 that is
illuminated by an instantaneous δ-source. Figure 3.3 displays the fluence for the time value
t = 2 predicted by different theories. We see that only the exact transport theory fluence
(2.15) exhibit the correct causality principle. For small distances, the SP3 fluence according
to (3.56) performs better than the classical heat kernel (2.8).
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Figure 3.3: Fundamental solution in the infinite medium for t = 2 predicted by different theories.

We reconsider the infinite medium from the first comparison, but we replace the δ-source

by the more realistic Gaussian distribution Q(x) = e−
x2

2ε /
√

2πε with parameter ε = 0.05. In
this case, the data for the transport theory fluence can be generated numerically by means

13That is given by a simple multiplication with the exponential e−µat.

47



3 On the SPN Equations in Time Domain

of the convolution. In addition, we have included the fluence predicted by the (hyperbolic)
P3 equations, which can be computed by the formulae (3.99) for ε = 1. Figure 3.4 shows a
snapshot for the time value t = 3. Interestingly, in this case, the fluence belonging to the
more exact and complicated P3 equations performs not really better than the SP3 fluence.
The deviations disappear completely when increasing the PN approximation order N .
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Figure 3.4: Fluence in the infinite medium for the time value t = 3 caused by a Gaussian distribution
with ε = 0.05.

As mentioned at the beginning of this section, we consider in two cases also an absorbing
medium. Figure 3.5 displays the time-resolved fluence G0 from (3.56) due to a δ-source
located in an infinitely extended scattering and absorbing medium with properties µs = 1
and µa = 0.03. As expected, the fluence predicted by the (parabolic) SP3 equations (red
solid lines) fails at short times, but converges to the exact transport theory (black dashed
lines) as t→∞.
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Figure 3.5: Time-resolved fluence in an infinitely extended scattering and absorbing medium eval-
uated at the positions x = 3 and x = 5.

For the last experiment in the infinite medium, we want to reconstruct the derived SP3

solution (3.55) by solving the ε-dependent P3 equations numerically. They are explicitly
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given by

∂

∂t


φ0

εφ1

φ2

εφ3

+Aφx + Σφ = 0, x ∈ R, t > 0, (3.98)

subject to φ(x, 0) = Q(x)e0 for x ∈ R, where e0 = (1, 0, 0, 0)T . Note that the matrices A
and Σ are those from (3.11). The parameter ε ∈ [0, 1] allows us to make a smooth transition
from the hyperbolic P3 equations (ε = 1) to the parabolic SP3 equations (ε = 0). The P3

equations (3.98) in Fourier space become Iεφ̂t + (Σ + ikA)φ̂ = 0 with φ̂(k, 0) = Q̂(k)e0 and
Iε = diag (1, ε, 1, ε). The corresponding solution can be again given in terms of the matrix
exponential, namely φ̂(k, t) = Q̂(k) exp

(
−I−1

ε (Σ + ikA)t
)
e0. The application of the inverse

Fourier transform leads then to the moments

φ(x, t) =
1

2π

∫ ∞
−∞

Q̂(k) exp
(
−I−1

ε (Σ + ikA)t
)
e0e

ikx dk, (x, t) ∈ R× [0,∞). (3.99)

Figure 3.6 shows the zero order moment φ0 (left figure) and the second order moment φ2

(right figure) for different values of the parameter ε. The considered time value is t = 2.
The infinite medium is characterized by the scattering coefficient µs = 0.9. In view of the
initial condition, we consider the Gaussian pulse from the second experiment. The derived
solution to the SP3 equations ψ = (φ0, φ2)T from (3.55) is shown by the black lines. As
can be seen, when ε goes to zero, the even moments (3.99) predicted by the ε-dependent P3

equations tend to the SP3 moments (3.55).
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Figure 3.6: Reconstruction of the SP3 moments via numerical solution of the ε-dependent P3 equa-
tions for different values of the parameter ε.

3.5.2 Simulations for the bounded domain

We now perform comparisons in a bounded domain under consideration of Neumann-type
conditions. The kernel function (3.78) plays a key role in solving the SP3 equations on
Ω = (0, L). The first experiment concerns with the verification of K0 from (3.78) by applying
the Post-Widder inversion formula (3.91) to the image function K̂0 from (3.89). The direct
evaluation of the Post-Widder formula is difficult due to the required high-order derivatives in
Laplace space. We therefore have implemented a computable representation for the formula
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(3.91), namely the so-called Gaver-Stehfest formula. That is [32, p. 144]

f(t) ≈ ln 2

t

2M∑
k=1

Vkf̂(sk), t > 0, (3.100)

where sk := k ln(2)/t are the discrete values on the positive real axis on which the image
function f̂ is evaluated. Moreover, the corresponding weights Vk are given by [32, p. 144]

Vk := (−1)k+M
∑
j

jM (2j)!

(M − j)!j!(j − 1)!(k − j)!(2j − k)!
,

where b(k + 1)/2c ≤ j ≤ min(k,M) and b·c is the floor function. Figure 3.7 shows the kernel
function K0 for η = 2 in a bounded domain of thickness L = 3 and µs = 1. Physically, it
represents the fluence in a bounded domain caused by a δ-source located at η = 2. The solid
colored lines correspond with the Fourier series expansion (3.78), whereas the black dashed
lines are the numerical inversion of K̂0 from (3.89) by means of the Gaver-Stehfest formula
(3.100) for the value M = 8. We see that the numerically inverted kernel function is in good
agreement with the data generated by the Fourier series (3.78).
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Figure 3.7: Comparison between K0 in Fourier series representation (3.78) and the numerical in-
version of the image function K̂0 from (3.89) by means of the Gaver-Stehfest formula
(3.100).

Similar as done for the infinite space, we compare the fluence in the bounded medium
Ω = (0, 4) with µs = 0.9 predicted by different theories. In view of the initial condition,
we take into account the Poisson-like distribution (3.34) for x0 = 3 and % = 0.95. This
distribution satisfies also the compatibility condition Q′(0) = Q′(L) = 0. We additionally
note that for % = 1 we would recover the kernel function (3.78) for the bounded domain with
η = x0. The Poisson-like distribution becomes in this case a Dirac comb. Thus, we simulate
in the present case a kind of damped kernel function. In view of the SP3 equations we have
to consider the Fourier series (3.76). We also incorporate the fluence belonging to the P3

equations, which can be computed by the derived expression (3.33). Figure 3.8 displays the
fluence for two time values predicted by different theories. Again, the fluence obtained from
the hyperbolic P3 equations exhibits an interesting behavior. For the smaller time value
t = 0.3 (left figure), it agrees at least for |x − 3| > 0.5 with the exact transport theory. By
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contrast, large deviations from the expected values are observed in the case t = 1 (right
figure). These deviations can be removed by increasing the PN approximation order N .
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Figure 3.8: Comparison of the fluence in a bounded domain caused by a Poisson-like distribution
with parameters % = 0.95 and x0 = 3. The left figure shows the case t = 0.3, whereas
the right one corresponds with t = 1.

To address the question of uniqueness and stability, we have seen that the derived energy
function from Lemma 3.18 was quite useful. Figure 3.9 shows as an example the energy
function (3.70) including its first derivative (3.74) in a bounded domain of thickness L = 5.
The scattering coefficient is set to µs = 0.9 and the considered Poisson-like distribution (3.34)
is characterized by % = 0.4 and x0 = 3. In accordance with the theoretical predictions, the
energy function decreases monotonically and converges for t → ∞ against the final value
E(∞) = s2

0/(2L) = 0.1. In addition, the green dashed line shows the upper bound of the
energy inequality (3.71).
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Figure 3.9: Energy function and its first derivative associated with the time-dependent SP3 equa-
tions on a bounded domain.
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The last numerical experiment is carried out in the frequency domain. For this, we consider
a medium of size L = 10 mm with optical properties µa = 0.01 mm−1 and µs = 1.0 mm−1.
We note that these values for the absorption and the scattering coefficient are typical for
biological tissue in the near-infrared (NIR) spectral range [20]. The sample is illuminated by
a sinusoidally modulated point light source located at x0 = 5 mm and the resulting fluence
φ0 = |φ0|eiθ is detected at a certain distance d := |x−x0|. The speed of light in the medium is
set to c = 300 mm/ns. Figure 3.10 shows the modulation M and the phase shift θ according
to (3.97) for a typical frequency range. The red solid lines display the fluence belonging to the
time-harmonics SP3 equations (3.93). Note that this is just the kernel function K̂0 from (3.89)
evaluated for η = x0 and s = µa− iω/c. Alternatively, one can use (3.94) for qn = cos(ωnx0).
For illustration purposes, we additionally have included the exact transport theory fluence
(black dashed lines) and the solution to the often used SP1 equation (blue dashed lines).
The latter one can be obtained by the method of images applied to Ĝ0(x, µa − iω/c) from
(3.88). Concerning the transport theory, we can directly use the derived fluence expression
(2.22) for qn = cos(ωnx0) and s = µa − iω/c. As shown in Figure 3.10, for the larger
distance d = 2 mm, all theories are in relative good agreement (especially in the case of
the modulation M). However, for d = 0.1 mm, we observe the mentioned problems of the
classical diffusion approximation near sources and/or high modulation frequencies.14 Of
course, the SP3 fluence indeed performs better, but also starts to deviate from the (desired)
transport theory data.
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Figure 3.10: Modulation M (left figure) and phase shift θ (right figure) for the frequency domain
fluence φ0 in a bounded domain.

14See also [20, Chapter 3] regarding the applicability of the diffusion equation in biomedical optics.
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4 Conclusion

In this thesis, we have reported about some known as well as some new (or at least not
well-known) results on the time-dependent simplified spherical harmonics equations. Let
us summarize in this conclusion the findings we have obtained regarding these equations.
The starting point, the derivation of the SPN equations, was basically known to relevant
scientists, but without the separation of the absorption. However, as shown in (3.58), this
small modification ensured the convergence of the SP3 fluence (in the long-time limit) against
the exact transport theory quantity. In the further course, we have confirmed the parabolic
nature of the SPN equations by determining their characteristics. We now come to the main
objective of this thesis, namely the derivation of exact solutions to the SP3 equations. To
accomplish this task successfully, we started with some considerations in the infinite medium.
Here, we have derived an analytical solution to the SP3 equations in Fourier space. The
obtained moments (3.50) belonging to the fundamental solution could be uniformly bounded

by the Gaussian function e−ak
2t, with a =

(
3
7 −

2
7

√
6
5

)
/µs being the smaller eigenvalue of

the diffusion matrix D from (3.45). Based on this, we were able to bound the SP3 fluence
(caused by a δ-source) by the square root function (3.54). This is similar as for the classical
heat kernel. Some of the results obtained for the infinite medium could be directly used
in the next Subsection 3.4.2, in which we considered the more realistic case of a bounded
domain. Here, we started with the derivation of a formal solution under the use of the finite
cosine transform, which led to the same initial value problem as for the infinite medium. In
proving the well-posedness of the obtained series solution, we have introduced Lemma 3.18
as preparation. It is mentionable that the derived energy inequality (3.71) has the same
form as that for the classical heat equation under homogeneous Neumann conditions. The
existence and uniqueness as well as the C∞ regularity (on Ω × (0,∞)) were then shown
with Theorem 3.20. As a consequence of the analysis carried out so far, we could prove
the continuous dependence on the initial data as well as the exponential decay (in time) to
the equilibrium state (Corollary 3.21). In Subsection 3.4.3, we derived alternative closed-
form expressions in Laplace space, which are particularly useful in the context of the time-
harmonic SP3 equations, which have been considered in Subsection 3.4.4. For illustration and
verification purposes, we have implemented the obtained solutions for the infinite medium
and the bounded domain within Matlab. The numerical experiments outlined in Section 3.5
have shown different things. On the one hand, we could successfully verify the derived series
solution (3.76) with the numerical inversion of the expression (3.89) by means of the Post-
Widder formula. On the other hand, the considered numerical experiments indicated the
improvements achieved by the SP3 equations (compared to the diffusion theory) especially in
the neighbourhood of sources. In some figures, we additionally included the results obtained
from the more exact P3 equations. However, at least in the cases shown, these strongly
oscillating results were not really better (compared to transport theory) than those obtained
by the SP3 equations. In view of concrete applications, this can become a decisive point
since the SP3 equations are easier to solve than the (hyperbolic) P3 equations. As for a
future work, it would be interesting to consider and solve the time-dependent SP3 equations
in a layered medium (piecewise constant coefficients), because this is an often assumed model
within biomedical optics applications.
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