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Drums

Take a vibrating membrane fixed at the boundary of a set Ω ⊂ R2

This is a superposition of a discrete set of stationary vibrations

U(x , t) =
∞∑
k=1

uk(x)
(
αk cos

(√
λk(Ω) t

)
+ βk sin

(√
λk(Ω) t

))
The eigenpair (uk , λk(Ω)) solves

−∆uk = λk(Ω) uk in Ω, uk = 0 on ∂Ω

I λk(Ω) is the k−th eigenvalue of the Dirichlet-Laplacian

I uk is a k − th eigenfunction

I k 7→
√
λk(Ω) increasing (it is the frequency of vibration)

I
√
λ1(Ω) is the principal frequency, corresponds to the

gravest tone of the drum



Heat conductors
Take a bounded heat conductor Ω ⊂ R3 with uniform initial
temperature

Put it in a cold basin. The time evolution of the temperature obeys
∆U = ∂tU, in Ω× (0,+∞)
U = 0, in ∂Ω× (0,+∞)
U = 1, at t = 0

and it is a superposition of a discrete set of stationary
heat-waves

U(x , t) =
∞∑
k=1

αk uk(x) e−λk (Ω) t

Long-time behavior

U(t, x) ∼ e−λ1(Ω) t for t → +∞

λ1(Ω) dictates the rate of heat dissipation



The principal frequency λ1(Ω)

Variational definition

λ1(Ω) = inf
u∈W 1,2

0 (Ω)

{∫
Ω
|∇u|2 dx :

∫
Ω
|u|2 dx = 1

}
i.e. this is the sharp constant in the Poincaré inequality

λ1(Ω)

∫
Ω
|u|2 dx ≤

∫
Ω
|∇u|2 dx

for functions u “zero on the boundary ∂Ω”

Remarks

1. Definition makes (mathematical) sense in every dimension N

2. Definition makes sense for a general open set Ω, it is not
necessary that the spectrum of the Dirichlet-Laplacian is
discrete



Goal

In general, it is difficult to compute exactly λ1(Ω)

• Is it possible to give estimates on λ1(Ω)?

• Possibly in terms of simple geometric features of Ω?
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A classic

Faber-Krahn inequality

For every Ω ⊂ RN open set with finite volume

λ1(Ω) ≥ λ1(B1) |B1|2/N

|Ω|2/N

Equality holds if and only if Ω is a ball.

Remarks

I Isoperimetry: among sets with fixed volume, balls minimize
λ1

I Geometric estimate: λ1 can be estimated from below by the
volume



Proof of the Faber-Krahn inequality

1. The proof is based on the isoperimetric inequality

2. take u ∈W 1,2
0 (Ω) positive with

∫
Ω
|u|2 dx = 1

3. define u∗ its symmetric decreasing rearrangement, i.e. u∗ is a
radially symmetric decreasing function, defined on the ball Ω∗

centered at the origin with |Ω∗| = |Ω|

4. u and u∗ are equi-measurable, i.e.∣∣∣{x : u(x) > t}
∣∣∣ =

∣∣∣{x : u∗(x) > t}
∣∣∣

5. in particular

∫
Ω
u2 dx =

∫
Ω∗

(u∗)2 dx = 1

6. u∗ ∈W 1,2
0 (Ω∗) and

∫
Ω
|∇u|2 dx ≥

∫
Ω∗
|∇u∗|2 dx

(Pólya-Szegő principle)



The Pólya-Szegő principle

We set µ(t) :=
∣∣∣{x : u(x) > t}

∣∣∣ distribution function

∫
Ω
|∇u|2 dx Coarea

=

∫ +∞

0

(∫
{u=t}

|∇u|2 dσ

|∇u|

)
dt

Jensen
≥

∫ +∞

0

(∫
{u=t}

|∇u| dσ

|∇u|

)2
dt∫

{u=t}
|∇u|−1 dσ

=

∫ +∞

0

(Perimeter({u > t}))2

−µ′(t)
dt

Isoperimetry
≥

∫ +∞

0

(Perimeter({u∗ > t}))2

−µ′(t)
dt

=

∫
Ω∗
|∇u∗|2 dx



Reverse Faber-Krahn?

Faber-Krahn gives a geometric lower bound in terms of |Ω|−2/N

Is it possible to revert this estimate?

Is λ1(Ω) equivalent to |Ω|−2/N? NO

Counter-examples

I Take a slab–type sequence Ωn = (−n, n)N−1 × (−1, 1)

λ1(Ωn)→
(π

2

)2
and |Ωn|−2/N → 0 as n→∞

Important: (π/2)2 coincides with λ1 for the interval (−1, 1)

I any set such that λ1(Ω) > 0 and |Ω| = +∞



An important class of sets having

λ1(Ω) > 0 and |Ω| = +∞

is that of infinite curved wave-guides in R2 or in R3

Figure: The tubular neighborhood of an unbounded planar curve

A humble criticism to Faber-Krahn
It is useless for sets like these
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Inradius of a set

For an open set Ω ⊂ RN , this is

rΩ = sup
{
r > 0 : ∃ a ball of radius r contained in Ω

}
Essentially, this is the radius of a largest ball inscribed in Ω

The inradius rΩ is a measure of “fatness”, in a sense

By recalling the initial physical models, one could guess

rΩ is large ⇐⇒ the drum has a very low gravest tone

or also

rΩ is large ⇐⇒ the heat dissipation is slow

Is it true?
Is it possible to relate rΩ and λ1(Ω)?



A very simple sharp estimate

For every ball Br (x0) ⊂ Ω we have

λ1(Ω) ≤ λ1(Br (x0)) =
λ1(B1)

r2

By arbitrariness of the ball, we get

λ1(Ω) ≤ λ1(B1)

r2
Ω

Remark
This is a quantitative version of the statement “if Ω contains large
balls, then the first eigenvalue must be small ”

In particular, if rΩ = +∞ then λ1(Ω) = 0 and the set does not
support the Poincaré inequality (ex. RN , cones etc.)



A reverse estimate?

Is it possible to have

λ1(Ω) ≥ c

r2
Ω

for some uniform c > 0?

False in general!

Take Ω = R2 \ Z2, in this case

rΩ =
√

2 but λ1(Ω) = 0

The second fact is due to points have zero capacity in
dimension N ≥ 2, thus W 1,2

0 (R2 \ Z2) = W 1,2
0 (R2) and

λ1(R2 \ Z2) = λ1(R2) = 0



A glimpse of capacity
In which sense “points have zero capacity”?

I Take an open bounded set Ω, let us try to compare

W 1,2
0 (Ω) and W 1,2

0 (Ω \ {x0})

I Take a function u ∈W 1,2
0 (Ω), to make it admissible for

W 1,2
0 (Ω \ {x0}) we need to “force it” to vanish at x0

I we multiply u by a “funnel–type” function ηε (ε� 1 is the
radius of the hole)



I How much does it cost to “brutally” jump at 0 in a point?

I ...i.e. how much
∫

Ω |∇(u ηε)|2 increases w.r.t
∫

Ω |∇u|
2?

I the crucial question of course is

how large

∫
Ω
|∇ηε|2 is?

I |∇ηε| is large....but it is integrated on a very small region!

I if we choose ηε accurately (not as in the picture!) we have∫
Ω
|∇ηε|2 → 0

I ηε is chosen so at “to pay as less as possible”, i.e. through a
minimization problem

inf

{∫
Ω
|∇η|2 :

η ≡ 1 for |x − x0| > ε
η ≡ 0 for |x − x0| < ε2

}
I thus W 1,2

0 (Ω \ {x0}) = W 1,2
0 (Ω)



The role of topology and geometry

What if we can not cheat by drilling “holes ”?

For example, we could ask what happens for

1. simply connected sets

2. convex sets

These are two classes of open sets for which very often things
“work better”

Is it possible to have

λ1(Ω) ≥ c

r2
Ω

with some uniform c > 0?



Simply connected sets for N ≥ 3

I Take a ball B and remove n radial segments, with an endpoint
on ∂B and the other at distance 1/n from the center

I We call {Ωn}n∈R this sequence of open simply connected sets

I Segments in dimension N ≥ 3 have zero capacity, thus again

λ1(Ωn) = λ1(B)

while by a clever choice of the segments, we have rΩn → 0

I Conclusion: for simply connected sets in dimension N ≥ 3,
we can not have

λ1(Ω) ≥ c

r2
Ω

with some uniform c > 0 (observe that the example above is
even contractible, not just simply connected)



Convex sets

Theorem [Hersch-Protter]

For every Ω ⊂ RN open convex set

λ1(Ω) ≥
(π

2

)2 1

r2
Ω

Inequality is sharp and the equality sign is never attained for
bounded sets

Trivia

I Hersch proved the result in 1960 for N = 2

I Protter extended it to N ≥ 3 in 1981 (incomplete argument)

I To the best of my knowledge, the first complete proof is by
Kajikiya in 2015 (!), by an elegant and completely different
strategy. This is based on the fact that “the distance function
is superharmonic on a convex set ”



A brief summary

I for every open set

λ1(Ω) ≤ λ1(B1)

r2
Ω

I for convex sets, we have the (sharp) reverse estimate

λ1(Ω) ≥
(π

2

)2 1

r2
Ω

I for general open sets, the reverse estimate

λ1(Ω) ≥ c

r2
Ω

with a uniform constant is false, even among simply
connected sets in N ≥ 3

Question
What happens for simply connected sets in dimension N = 2?



Simply connected sets in R2

Theorem [Makai (1965), Hayman (1977)]

Let Ω ⊂ R2 be an open simply connected set, then

λ1(Ω) ≥ c

r2
Ω

for a uniform constant c > 0

Trivia

I Makai found c = 1/4, which nowadays is known to be
not optimal

I Hayman found c = 1/900, much worse than Makai’s one...

I the sharp constant is still unknown (the best known result is
due to Bañuelos & Carroll (1994))



A glimpse of proofs

Makai’s proof

I it starts as Faber-Krahn’s proof

I in Pólya-Szegő principle

∫
Ω
|∇u|2 dx ≥

∫
Ω∗
|∇u∗|2 dx ...

I ...use Bonnesen–type inequality in place of Isoperimetric
inequality (i.e. an “improved” isoperimetric inequality, with
remainder term depending on rΩ)

`(∂Ω) ≥ |Ω|
rΩ

+ π rΩ



Hayman’s proof

I even if the constant is much worse, the proof is elementary
(NO Coarea, NO isoperimetric inequality, NO rearrangements)

I it is just based on a quite simple covering lemma in terms of
“boundary disks” (i.e. disks centered at ∂Ω)...

I ...and a Poincaré inequality for “boundary disks”

c

r2

∫
Br

|u|2 dx ≤
∫
Br

|∇u|2 dx

I the radius r of the covering can be chosen in such a way that

1. r ∼ rΩ

2. the disks do not overlap “too much”

I the result is then obtained by “patching” together all the
Poincaré inequalities above
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The fractional Laplacian
We consider the same kind of issues for the fractional Laplacian

(−∆)su(x) = P.V.

∫
RN

u(x)− u(x + h)

|h|2 s

dh

|h|N
0 < s < 1

The Fourier side
It is the pseudo-differential operator whose symbol is given by |ξ|2 s

The probabilistic side

The infinitesimal generator of an isotropic stable stochastic process
with stationary and independent increments

The variational side
As −∆ is the first variation of the Dirichlet integral, (−∆)s is the
first variation of the fractional s−Dirichlet Integral

[
u
]2
W s,2(RN)

:=

∫
RN

(∫
RN

∣∣∣∣δhu|h|s
∣∣∣∣2 dx

)
dh

|h|N



A glimpse of interpolation

The quantity
[
u
]2
W s,2(RN)

is “intermediate” between L2 norm and

Dirichlet integral

More precisely, it can be obtained by the K−method in real
interpolation (Lions, Petree,...), with interpolation parameter s

Asymptotics I – Maz’ya-Shaposhnikova

s
[
u
]2
W s,2(RN)

∼
∫
RN

|u|2 dx for s ↘ 0

Asymptotics II – Bourgain-Brezis-Mironescu

(1− s)
[
u
]2
W s,2(RN)

∼
∫
RN

|∇u|2 dx for s ↗ 1



First eigenvalue of the fractional Dirichlet-Laplacian

Notation
W s,2(RN) =

{
u ∈ L2(RN) :

[
u
]
W s,2(RN)

< +∞
}

W̃ s,2
0 (Ω) = “ closure of C∞0 (Ω) in W s,2(RN)′′

Remark

Functions u ∈ W̃ s,2
0 (Ω) are considered as defined on the whole RN ,

with the nonlocal boundary condition u ≡ 0 in RN \ Ω

Variational characterization

λs1(Ω) = inf
u∈W̃ s,2

0 (Ω)

{[
u
]2
W s,2(RN)

:

∫
Ω
|u|2 dx = 1

}
sharp constant in the fractional Poincaré inequality

λs1(Ω)

∫
Ω
|u|2 dx ≤

[
u
]2
W s,2(RN)

for functions u “zero on the boundary RN \ Ω”



The fractional Makai-Hayman inequality

Theorem [Bianchi - B.]

Let 1/2 < s < 1 , for an open simply connected set Ω ⊂ R2

λs1(Ω) ≥ cs
r2 s
Ω

for a uniform constant cs > 0. Moreover, we have

cs ∼
1

1− s
as s ↗ 1 and cs ∼ s − 1

2
as s ↘ 1/2

Remarks

I NO reasonable “Coarea–type trick ” for the fractional
s−Dirichlet integral...we use a Hayman–type elementary proof

I By using Bourgain-Brezis-Mironescu we recover as s ↗ 1 the
classical Makai-Hayman inequality

I the result does not cover the case s ≤ 1/2 and the constant
deteriorates as s ↘ 1/2...why?



The fractional Makai-Hayman non-inequality

Theorem [Bianchi - B.]

There exists a sequence of open simply connected sets

{Ω}n∈N ⊂ R2 such that for every 0 < s ≤ 1/2

λs1(Ωn)→ 0 and 0 < rΩn ≤ C

The fractional Makai-Hayman does not hold for 0 < s ≤ 1/2

Construction

I The sequence {Ωn}n∈N is constructed by taking the squares
(−n, n)× (−n, n) and removing a periodic array of horizontal
segments

I Crucial point: segments have zero s−capacity for s ≤ 1/2.
The borderline case s = 1/2 is delicate



Figure: The set Ωn with n = 2...

Figure: ...and the set Ωn with n = 10 (the scales are different)



Thanks for your kind attention
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