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Introduction

This work concerns the analysis of diffusion equations on graphs, where the leading

operator randomly varies during the time evolution. A graph G = (V,E) is a couple

defined by a set V of vertices, which can be connected by some edges in E. Graphs can

have complicated structure, but we only deal with those whose number of vertices and

edges is finite. In particular, it is possible to distinguish two classes of graphs on which we

are going to work. If every edge of G only represents the connection between its endpoints,

without any physical meaning, then G is called combinatorial graph. On the other hand,

we speak of metric graphs when all the edges are identified with one-dimensional intervals

and then, as the name suggests, we can equip G with the structure of metric space.

These two types of graphs open the way for the research in several areas of mathemat-

ics. There is a wide literature where combinatorial graphs are studied with an approach

closer to branches like algebra, topology, discrete mathematics. During the last century

many geometric properties of graphs were analyzed, in order to find some invariants and

to develop a rich and elegant theory of graphs. Several text books can be mentioned, for

instance [11, 25].

Additionally, graphs represent an interesting and challenging subject in the field of

analysis, to which the present work belongs. In fact, graphs provide an efficient substitute

for the classical Euclidean domains on which we define specific matrices or differential op-

erators and then study difference or partial differential equations. In particular, among

the various evolution problems on graphs, we have focused on diffusion systems, both in

the combinatorial and metric settings.

Concerning the discrete framework, one can define a function on a combinatorial

graph G as a map assigning a complex value to each vertex. Hence, in the first chap-

ter of this thesis we are going to present a well-known model which describes the heat

diffusion on G. Suppose that the heat is concentrated only at each vertex and possible

exchanges occur only between vertices which are connected by some edge. The model of

this physical phenomenon, known in literature as discrete heat equation on G, is given

by an autonomous and deterministic linear system, where the leading operator A is a
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|V | × |V | matrix. More precisely, A is the minus Laplacian −L associated with G, one

of the fundamental matrices defined on a graph. The discrete Laplacian has many nice

properties and its spectrum was deeply studied in several works (see, for instance [21]).

We review well-known results about the well-posedness and the asymptotic behaviour

of the solution of the heat discrete equation. In fact, we can prove that the semigroup gen-

erated by the minus Laplacian converges uniformly towards the orthogonal projection P

onto the kernel of L. Hence, when the graph environment is connected, namely every two

vertices are linked by some path of edges, then P exactly coincides with the orthogonal

projection P0 onto the linear subspace of constant functions on V . Then, given an initial

distribution f , the limit heat distribution will be equal to the average of f computed on

all the graph: the connectedness of G let the heat reach every vertex. In addition, the

structure of G also influences the rate of convergence to the equilibrium, which is equal

to the lowest nonzero eigenvalue of L.

In Chapter 2, we investigate whether there are analogous results when the diffusion

system is no longer autonomous and deterministic. More precisely, suppose we want

to analyze the heat equation on a graph whose set of edges evolves in a random way:

obviously this means that the connectivity of the domain varies and so does the possibility

of heat exchange between the vertices. In order to describe this situation, in the second

chapter we introduce a new dynamical system and we study its random evolution. The

notion of random evolution was introduced by Griego and Hersh in [14, 15], where the

authors considered the selection from a finite number of strongly continuous semigroups

by means of a finite-state Markov chain.

In this context, in order to simulate the time evolution of the graph environment on

which we study the diffusion, we consider a finite family C = {G1, . . . , GN} of graphs

sharing the same set of vertices, but with different edges. Additionally, we introduce a

Markov chain which takes values exactly in C. Roughly speaking, during every unit time

interval we are going to study the heat diffusion on a different graph in C, determined

by the jumps of the Markov chain. As we will better understand, this implies that the

evolution operator of the model is expressed in terms of a random product of matrices

and studying the limit of S(t) for t→ +∞ means dealing with infinite products of them.

Regarding this, there are several articles (like [1, 9, 10, 12, 16, 17]) about the convergence

of (random) products of matrices and contractive operators on infinite-dimensional Hilbert

spaces.

In the end, we are going to see that it is possible to obtain the same long-time be-

haviour as in the case of a fixed connected graph under particular conditions involving

the stochasticity of the model and the connectivity of graphs in C. In fact, the main
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result proved is that if the Markov chain is irreducible, then the evolution operator S(t)

converges uniformly and – since it is also a stochastic process – almost surely towards

the orthogonal projection P0 onto the constant functions on V . Therefore, even when

the graph environment is not constant in time, in this case the limit distribution still

converges to the average of the initial datum on all the vertices in V .

These diffusion models can be generalized in the continuous setting of metric graphs.

In this case, we can consider G as a family of intervals joined by the vertices in a suitable

way. Hence, we can naturally define functions edgewise and in the same way it is possible

to introduce differential operators, equipped with some vertex conditions. All the classical

results on PDEs and on evolution semigroups are therefore brought in this framework,

where an interesting theory about the so-called quantum graphs (metric graphs on which

differential operators and vertex conditions are defined) is developing. We refer to [5, 22]

for a deep presentation on this branch of graph theory.

Therefore, the aim of Chapter 3 is to present all the known classical results about

the continuous heat diffusion equation on one fixed metric graph: now the heat distri-

bution is to be meant along every edge of the domain. This means introducing and

analyzing in detail the Laplacian operator associated with a metric graph – which acts

edgewise as a second derivative – and studying a partial differential equation on the net-

work domain equipped with Kirchhoff and continuity’s vertex conditions. Also in the

infinite-dimensional setting, it turns out that the model is still well-posed. Additionally,

we will see that its long-time behaviour is similar and parallel to the one in the discrete

heat equation. In fact, we still obtain the uniform covnergence of the evolution semigroup

towards P0, provided that G is connected. In this framework, P0 is still the orthogonal

projection onto the subspace of functions which are now constant on every edge of the

metric graph.

Since the asymptotic behaviour of the diffusion problem on a metric graph is quite

similar and analogous to the one in the discrete setting, the challenge in Chapter 4 is to

find a way of generalizing the random evolution model presented in Chapter 2.

We wondered how the evolution dynamics of the metric graph environment could

be meant in this framework. Again, we have built a non autonomous stochastic model,

whose architecture does not present big differences from the discrete one.

In fact, we can start again from a finite family C of N metric graphs: now each one

shares the same set of edges, while the configuration of vertices and the way that these

are joined is different graph by graph. Also the stochasticity of the model is the same as

before: a Markov chain jumps from one to another metric graph at each integer time. In
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such a way, we still study the heat diffusion on a non autonomous environment and we

are still interested in analyzing the convergence of the evolution operator for long times.

The final result we will obtain in Chapter 4 is exactly the metric version of the

theorem proved before: as long as we require the irreducibility of the Markov chain, the

evolution operator converges uniformly and almost surely to P0 if and only if the union

of the initial graphs in C is connected.

In fact, we will see that all the tools and theoretical results used in the combinatorial

framework still hold: it is only necessary to extend some technical computation to the

infinite-dimensional case and everything works well.

On the other hand, one aspect in the discrete setting, the least expected one, will

not be obvious to be generalized: the notion of union of graphs. In fact, in the random

evolution model in Chapter 2 we are able to deal with this concept because there is a

rigorous and well-posed definition of union of graphs, present in all the classical text

books. However, the same no longer holds when we leave the combinatorial framework

to study metric graphs. In this case, in fact, there is just an intuitive and heuristic idea,

but a unique and formal notion of union of metric graphs is missing in the literature.

For this reason, in order to parallelize the results obtained in Chapter 2, a great effort

is placed into formalizing the union of metric graphs and to obtain a reasonable definition.

Using this definition, at the end of Chapter 4 we will obtain a main general result

about the long-time behaviour of two random evolution models, one on combinatorial and

one on metric evolving graphs. As the connectedness of the network plays a funtamental

role in the corresponding diffusion problems on a fixed combinatorial or metric graph,

here we find a similar situation. In fact, in both settings, the connectedness of the union

of graphs in C provides a necessary and sufficient condition in order that the heat spreads

until getting homogenized for long times.
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Chapter 1

The heat equation on a

combinatorial graph

The aim of this chapter is to introduce the reader to the main notions of Graph

Theory, emphasizing those properties we are going to use throughout the thesis.

First of all, we are going to give some definitions about combinatorial graphs, a

particular type of graphs which will be often used. Given a combinatorial graph, one can

associate to it some matrices. We are going to focus on one of these, the so-called discrete

(or combinatorial) Laplace operator.

Furthermore, we are going to analyze the discrete heat equation on a combinatorial

graph, which is the starting point of this research. In particular, we are going to present

the case when the fixed graph is finite, i.e. it has a finite number of vertices and edges.

The well-posedness and the long-time behaviour of the dynamical system associated with

the heat equation are well-known (e.g. see [22]). We will see that, despite the system

is always exponentially stable, the heat limit distribution also depends on the particular

structure of the graph.

1.1 Introduction to combinatorial graphs and to the

discrete Laplace operator

In this section we give an overview of the theory of graphs, in order to introduce the

terminology used in the sequel. There is a huge bibliography on the topics we are going

to talk about: we will mainly follow the guidelines of [5, 7, 11, 21, 22, 25].

A graph, denoted by G = (V,E), is a structure defined by a set V of vertices (or

nodes) and a set E ⊂ V × V of edges. The latters are given by ordered couples of
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vertices and, in the case of combinatorial graphs, they do not necessarily have a physical

or geometric meaning. Therefore, it is irrelevant how to draw the edges in this type of

graphs: they only represent the possible communication between to vertices.

Figure 1.1: An example of graph.

Two vertices u, v ∈ V are called adjacent (denoted by u ∼ v) if there exists an edge

e ∈ E joining them, namely e = (u, v) or e = (v, u). A vertex and an edge e are said to

be incident if v corresponds to one of the endpoints of e. Two edges are incident if there

exists a vertex which is incident with both of them. Additionally, we denote the set of all

the edges with endpoint v ∈ V by

Ev = {e ∈ E : e is incident to v}

and the cardinality dv of this set is called degree of the vertex v.

We deal with particular classes of combinatorial graphs: more precisely, by “graph”

we will always mean a finite graph, which has a finite number of edges and vertices. In

addition, throughout this chapter and the next one we will focus on simple graphs, namely

we exclude the presence of loops and/or multiple edges (see Fig. 1.2).

Figure 1.2: On the left, we have an example of graph with two multiple edges which
connect the same couple of vertices. On the right, we have a loop, namely an edge where
both endpoints coincide.

If we consider two graphs G1 = (V1, E1) and G2 = (V2, E2), whose vertices are

enumerated, we shall define the notion of union of G1 and G2 as the graph given by

G1 ∪G2 = (V1 ∪ V2, E1 ∪ E2).

7



1 2
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1 2

3

1 2

4 3

G1 G2 G1 ∪G2

Figure 1.3: Example of union of two graphs.

Given a graph G = (V,E), we can introduce the notion of subgraph as a graph

G′ = (V ′, E ′) where both V ′ and E ′ are respectively subsets of V and E. Fixed two

vertices v1, vN ∈ V , a path which links v1 and vN is a subgraph Γ = (V ′, E ′), where

V ′ = {v1, v2 . . . , vN−1, vN} ⊂ V and E ′ = {(v1, v2), . . . , (vN−1, vN)} ⊂ E.

A graph G is said to be connected if for every couple of vertices u, v there exists a

path Γ linking them. Otherwise, a maximal connected subgraph of G is called component

and it turns out that G can be expressed as disjoint union of their connected components.

In the following, we will mention the connectedness of a graph when we will mean the

property of a graph to be connected.

G1 G2

Figure 1.4: G1 is a connected graph, whereas G2 is disconnected and given by the disjoint
union of two connected components.

On the other hand, when we talk about the connectivity of a graph, we will just refer

to how much the vertices are linked to each others by edges.

Given a simple and finite combinatorial graph G = (V,E), we introduce a |V | × |V |
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matrix A called adjacency matrix and defined as follows:

A = (Auv) , Auv :=

1 if u ∼ v,

0 if u � v.

The matrix A was deeply studied in the past (see [8]): we notice that it is symmetric and,

since there are no loops, it has null trace. However, this matrix does not have so many

good properties: for instance, one can easily show that it generates a semigroup {etA}t≥0

which is not contractive and that

lim
t−→+∞

‖e±tA‖ = +∞.

For this reason, we need to find a matrix associated to G with nicer properties. We

define the degree matrix D as the diagonal |V | × |V | matrix

D := diag (dv)v∈V .

Then, we are finally able to introduce the discrete Laplace operator associated with G,

given by the |V | × |V | matrix

L := D − A.

Example 1.1. Given the graph G = (V,E) shown in Fig. 1.5, we have

1 2

4 3

Figure 1.5

D =

à
2 0 0 0

0 2 0 0

0 0 3 0

0 0 0 1

í
and A =

à
0 1 1 0

1 0 1 0

1 1 0 1

0 0 1 0

í
.
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Therefore, the associated discrete Laplacian is

L = D − A =

à
2 −1 −1 0

−1 2 −1 0

−1 −1 3 −1

0 0 −1 1

í
.

One immediately notices that the Laplacian inherits the symmetry from A and that

the algebraic sum of the elements in every row is always zero.

Given a graph G = (V,E), one can define functions on it just by assigning a certain

value at each vertex in V . We denote by

C(V ) := {f : V → C} ∼= C|V |

the space of all the complex-valued functions on G. By the definition of C(V ), they can be

meant as |V |-dimensional vectors, whose components represent their value at each v ∈ V :

∀f ∈ C(V ) ∼= C|V | : f =

Ü
f(v1)

...

f(vN)

ê
, where |V | = N, for some N ∈ N.

We can equip C(V ) with the canonical scalar product

(f, g) =
∑
v∈V

f(v)g(v), f, g ∈ C(V )

and with the induced norm

‖f‖ =

(∑
v∈V

|f(v)|2
) 1

2

.

Remark 1.2. In many text books, in order to emphasize the structure of Hilbert space

or to use a notation which is suitable even if G is not finite, instead of C(V ) they refer

to the space

`2(V ) = {f : V → C :
∑
v∈V

|f(v)|2 < +∞}.

Clearly, the above definition agrees with C|V | when |V | <∞. Therefore, for simplicity we

will always use the notation C|V |.

At this point, given a graph G = (V,E) and a function f ∈ C|V | defined on it, one
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can apply the Laplacian L to f and obtain

(Lf)(u) =
∑
v∈V

Luvf(v)

=
∑
v∈V

(Duv − Auv)f(v)

= duf(u)−
∑
v∼u

f(v)

=
∑
v∼u

(f(u)− f(v)) , u ∈ V.

We can consider the symmetric sesquilinear form associated with L

q(f, g) =
∑
v∼u

(f(u)− f(v)) (g(u)− g(v)), f, g ∈ C|V | (1.1)

and the corresponding quadratic form

q(f) = (Lf, f) =
∑
v∼u

|f(u)− f(v)|2 ≥ 0, f ∈ C|V |. (1.2)

From (1.1) and (1.2) it follows that L is positive semidefinite and self-adjoint. Therefore,

its eigenvalues are real and nonnegative and, in particular, it turns out that 0 is always

an eigenvalue. Looking for the eigenfunctions associated with 0, one gets

(Lf)(u) =
∑
v∼u

(f(u)− f(v)) = 0, u ∈ V ⇐⇒ f(u) = f(v), ∀v ∼ u, u ∈ V. (1.3)

Thus, if G is connected, then the only choice is that f is constant on V , 0 is a simple eigen-

value and a possible one-dimensional basis for kerL is given by 1 = (1, . . . , 1)> ∈ C|V |.
Otherwise, if G is given by the disjoint union of G(1), . . . , G(L) connected components,

then from (1.3) we deduce that a possible eigenfunction f associated with 0 has to be

constant on each G(h), for all h = 1, . . . , L. Then, 0 has multiplicity equal to L (i.e. the

number of the connected components) and a possible basis for kerL is given by

{11, . . . ,1L} ,

where for every h = 1, . . . , L

1h(u) =

1 if u ∈ V (G(h)),

0 otherwise,
u ∈ V.

11



Until now, we have only considered undirected graphs, but we can assign an orienta-

tion on G = (V,E), just by assuming that every edge has an initial and a terminal vertex.

Given an oriented graph, we can define the incidence matrix φ with dimension |V | × |E|
as follows:

φue =


−1 if v is a terminal edge for e,

−1 if v is a initial edge for e,

−0 otherwise,

u ∈ V, e ∈ E.

Obviously, this matrix depends on the particular orientation imposed on a graph,

however one can easily prove (see [22], Chapter 2) that the product between φ and its

transpose matrix is invariant under orientation. In particular, it turns out that the discrete

Laplacian is exactly given by

L = φ φ>.

1.2 The discrete heat equation on a combinatorial

graph

Once introduced the basic notions about combinatorial graphs, we shall present one

first example of difference equation computed on a discrete network, namely the discrete

heat equation.

Fixed a graph G = (V,E), assume that the heat is concentrated only at each vertex

and not along the edges, which in a combinatorial graph do not have a physical meaning.

We denote by

u(t, v) ∈ C, t ≥ 0, v ∈ V

the heat concentration at the time t in the vertex v.

We are going to analyze how the heat distribution on each vertex varies during time,

assuming that heat exchanges are possible only between two nodes linked by some edge.

Thus, the discrete heat equation on G is given by definition as

du

dt
(t, v) = −Lu(t, v), t ≥ 0, v ∈ V (1.4)

and the leading operator driving this evolution problem is the minus Laplace matrix −L
associated with G.

In order to rewrite (1.4) in a more compact form, let us introduce the heat distribution
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u(t) at the time t on G as

u(t) =

Ü
u(t, v1)

...

u(t, vd)

ê
∈ Cd,

supposing that from now on |V | = d. Therefore, problem (1.4) can be reformulated as

du

dt
(t) = −Lu(t), t ≥ 0

and, considering the vector

u0 =

Ü
u0(v1)

...

u0(vd)

ê
∈ Cd,

one obtains the Cauchy problem
du

dt
(t) = −Lu(t), t ≥ 0,

u(0) = u0.
(DHE)

When G is a finite graph, (DHE) corresponds to a linear system of d equations. Since

−L is dissipative, namely

Re(−Lf, f) ≤ 0, f ∈ Cd,

then by the Lumer-Phillips Theorem (e.g. Theorem 3.15 of [13]) it follows that −L gen-

erates a contractive semigroup given by the family of exponential matrices

{
e−tL

}
t≥0

.

Furthermore, from the theory of dynamical systems, it is well-known that (DHE) is well-

posed and that its solution is

u(t) = e−tLu0.

At this point, one can apply the Spectral Theorem and then represent the solution

of (DHE) in terms of

u(t) = e−tLu0 =
d∑

k=1

e−tλk(f, ek)ek,

where {ek}dk=1 is an orthonormal basis of eigenfunctions of the (minus) Laplacian. In the
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above expression λks are the eigenvalues of L indexed in increasing order counting the

multiplicity. We remark that λ1 is always 0, whereas λ2 > 0 if and only if G is connected.

Let us now recall a well-known result, which we are going to apply several times in

the next chapters.

Lemma 1.3. If L denotes the discrete Laplacian, then

kerL = Fix e−tL, t > 0,

where

Fix e−tL := {f ∈ Cd : e−tLf = f}

is the fixed points set.

Proof. We only show the case when G is connected, so that the kernel of the Laplacian is

one-dimensional and the notation is simpler. From this proof, one can easily extend the

thesis to the general case.

Being G connected, we have seen that f ∈ kerL if and only if f is constant on V .

Let us denote it by

f = αe1, α ∈ C,

where e1 = 1
|V |1. Thus, by orthogonality, for all t > 0 one has

e−tLf = (f, e1)e1 +
d∑

k=2

e−tλk (f, ek)ek︸ ︷︷ ︸
=0

= (αe1, e1)e1 = αe1 = f,

then f ∈ Fix e−tL.

On the other hand, let f ∈ C represented as

f =
d∑

k=1

(f, ek)ek.

We have that f ∈ Fix e−tL if and only if

d∑
k=1

e−tλk(f, ek)ek =
d∑

k=1

e−λk(f, ek)ek,

then

e−tλk(f, ek) = (f, ek), ∀k = 1, . . . , d. (1.5)

Equality (1.5) holds if and only if f = αe1 ∈ kerL for some α ∈ C, otherwise we would

get a contradiction. Thus, the proof is complete.
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We are now able to study the long-time behaviour of (DHE) in the following

Theorem 1.4 (Asymptotic behaviour of (DHE)). Let P be the orthogonal projection

onto the eigenspace of L associated with λ = 0, namely the orthogonal projection onto the

kernel of the discrete Laplacian. Then the semigroup generated by −L uniformly converges

towards P, namely

lim
t−→+∞

‖e−tL − P‖ = 0,

and the convergence rate is given by λ, the lowest nonzero eigenvalue of L.

In particular, it follows that for any initial datum u0 ∈ Cd

lim
t−→+∞

u(t) = lim
t−→+∞

e−tLu0 = Pu0.

Proof. Let Pk be the orthogonal projection such that

Pkf = (f, ek)ek, f ∈ Cd, ∀k : λk 6= 0.

Now the exponential matrix of −L may be written as

e−tL = P +
∑
k:λk 6=0

e−tλkPk.

Thus, recalling that λ > 0, we have

‖e−tL − P‖ =

∣∣∣∣∣∣ ∑k:λk 6=0

e−tλkPk

∣∣∣∣∣∣
≤
∑
k:λk 6=0

e−tλk‖Pk‖

≤
∑
k:λk 6=0

e−tλk

≤Me−tλ
t→+∞−−−−→ 0,

where M =
∑

k:λk 6=0 1 <∞.

Notice that, despite the convergence to equilibrium always holds, the graph environ-

ment on which we are studying the heat diffusion has an influence on the behaviour of

the solution for long times. First of all, the convergence rate directly depends on G, since

we have shown that it is given by the lowest nonzero eigenvalue of the discrete Laplace

matrix of G. In turn, this eigenvalue can be estimated by some graph invariants1 (see,

1Following the definition given by [11] in Chapter 1, two graphs G = (V,E) and G′ = (V ′, E′) are
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for instance, [21]).

In conclusion, we want to investigate how the limit distribution varies depending on

the structure of the combinatorial graph. The previous theorem states that the solution

of the discrete heat equation tends to a vector in Cd, given by

lim
t−→+∞

u(t) = Pu0,

where P is the orthogonal projection onto the kernel of the Laplacian and u0 ∈ Cd is the

initial datum. Therefore

1. if G is a connected graph, then 0 is a simple eigenvalue and the one-dimensional

kerL is spanned by 1. Thus, P agrees with the orthogonal projection P0 onto the

subspace of constant functions on the graph:

P0u0 := Pu0 = (u0, e1)e1 =
1

d
(u0,1) 1 =

1

d

∑
v∈V

u0(v) 1 ∈ Cd,

which is indeed a constant function on G. In particular, we notice that the constant

value assigned to each vertex

∑
v∈V

u0(v) 1 =: −
ˆ
G

u0

is exactly the average of the initial datum u0 computed on V : the connectedness of

G let the heat spread and reach every vertex;

2. otherwise, when G is not connected and then it is given by the disjoint union of

connected components G(1), . . . , G(L), we have seen that 0 has multiplicity equal to

L as an eigenvalue of the Laplacian. As a consequence, kerL is spanned by the

characteristic function on each connected component

{11, . . .1L} .

Therefore, we get

Pu0 =
L∑
h=1

1

|V (G(h))|
(u0,1h) 1h ∈ Cd

isomorphic if there exists a bijection ϕ : V → V ′ such that e = (u, v) ∈ E then (ϕ(u), ϕ(v)) ∈ E′ for all
u, v ∈ V . Therefore, a graph invariant is a graph property which is invariant under isomorphisms.
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and

Pu0(v) =
1

|V (G(h))|
∑
w∈V

u0(w) =
1

|V (G(h))|
∑

w∈V (G(h))

u0(w) =: −
ˆ
G(h)

u0, v ∈ V (G(h)).

From the above expressions, one deduce that in this situation for long times the

heat tends to homogenize on the graph G in a different way as before: it spreads

component by component until getting constant and equal to the average of u0 on

each G(h), h = 1, . . . , L.

This is the long-time behaviour of this diffusion model, studied on a fixed combina-

torial graph. Starting from (DHE), in the next chapter we will modify this framework in

order to obtain variations of the system just described comparing it with each others.

1 2

3 4

1 2

3 4

G1 G2

Figure 1.6: Suppose to study two heat diffusion problems on G1 and on G2. Given the
initial datum u0 = (a, b, c, d)> ∈ C4, then the limit heat distribution Pu0 is different
depending on the graph. Since G1 is connected, then Pu0 = P0u0 = (α, α, α, α), where
α = (a + b + c + d)/4. On the other hand, being G2 disconnected, then we have that
Pf = (α, α, β, β), where α = (a+ b)/2 and β = (c+ d)/2.
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Chapter 2

Random evolution on combinatorial

graphs

In this chapter we are going to introduce one of the original problems proposed in this

thesis: the heat diffusion on combinatorial graphs. In Chapter 1, we have already shown

some results about the discrete heat diffusion equation. Now, we no longer focus on one

fixed graph, constant in time, but we are interested in studying what happens when the

graph randomly changes during the evolution of the system.

First of all, when we talk about “evolution of graph” we actually mean that the set of

its edges varies, while the vertices always remain fixed. Suppose that we want to study the

heat diffusion starting from an initial combinatorial graph G. We recall that the set of its

edges E(G) plays a fundamental role in this context, since the heat exchange between two

vertices is possible only when there exists an edge connecting them. Then, if we decide

to “turn on” some edges and to “turn off” some others according to a suitable random

law, as a consequence the dynamics of the heat diffusion will change as time goes on.

Therefore, we first intend to find a way of suitably modelling the proposed situation.

Additionally, once we will have got a well-posed dynamical system, the following step is

to analyze its long-time behaviour, comparing it to the case in the previous chapter.

2.1 Evolution problems with variable coefficients

Before talking about graphs, we first want to illustrate the general idea of the random

evolution model. In fact, in this section we introduce some basic notions about evolution

equations on randomly evolving structures.

Consider a set K = {A0, . . . , AN−1} of d × d matrices and we choose a sequence
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{Ajk , k ∈ N} from it. We are going to study the associated evolution problem

d+u

dt
(t) = Ajku(t), t ∈ [k, k + 1), k ∈ N, (2.1)

where
d+

dt
is the right derivative.

Definition 2.1. A weak solution of (2.1) is a function u ∈ H1([0,+∞); Rd) such that

(2.1) is satisfied for all t ≥ 0.

A weak solution admits a unique value at t = 0: hence, we can complement (2.1)

with an initial value.

Definition 2.2. If u0 ∈ Rd, then a weak solution of the problem
d+u

dt
(t) = Ajku(t), t ∈ [k, k + 1), k ∈ N,

u(0) = u0 ∈ Rd
(2.2)

is a weak solution of (2.1) which additionally satisfies the initial condition u(0) = u0.

In particular, a weak solution of (2.2) satisfies the equation in its integrated form

u(t) = u0 +
k−1∑
h=0

Ajh

ˆ h+1

h

u(s)ds+ Ajk

ˆ t

k

u(s)ds, t ∈ [k, k + 1], k ∈ N.

We are now about to find a specific solution of (2.2), in terms of an evolution operator.

For all t ≥ 0 we define recursively an operator family on Rd by

S(t)u0 :=

etAj0u0 t ∈ [0, 1],

e(t−k)AjkS(k)u0 t ∈ [k, k + 1].
(2.3)

First of all, we remark that despite {S(t)}t≥0 can be written in terms of the semigroups

generated by matrices in K, it turns out that (2.3) itself does not define a semigroup. In

fact, only the first condition

S(0) = I

holds, but if we take t = 1 and s = 1
2
, then

S(t+ s) = S

Å
3

2

ã
= e

1
2
Aj1eAj0 6= eAj0e

1
2
Aj0 = S(t)S(s).

We know that all semigroups {Ti(t)}t≥0 generated by the matrices Ai are strongly and uni-

formly continuous, thus we find that {S(t)}t≥0 itself is strongly and uniformly continuous,
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namely

lim
ε↓0
||S(t+ ε)u0 − S(t)u0|| = 0, u0 ∈ Rd, t ≥ 0 (S.C.)

and

lim
ε↓0
||S(t+ ε)− S(t)|| = 0, t ≥ 0. (U.C.)

Furthermore, taking the right derivatives of (2.3) yields

d+S(t)

dt
u0 =

Aj0S(t)u0 t ∈ [0, 1)

AjkS(t)u0 t ∈ [k, k + 1),
(2.4)

therefore {S(t)}t≥0 only fails to be differentiable at the instants t = k. In fact

lim
t→(k+1)−

dS(t)

dt
= Ajke

AjkS(k),

lim
t→(k+1)+

dS(t)

dt
= Ajk+1

eAjkS(k)

(2.5)

which can be different, because in general Ajk 6= Ajk+1
. Formula (2.4) shows that for all

u0 ∈ Rd the mapping

u : [0,+∞) −→ Rd

t 7−→ S(t)u0

is a weak solution of (2.1) and satisfies the initial condition

S(0)u0 = u0.

Now, we also prove the uniqueness of a weak solution of (2.2).

Theorem 2.3. For every u0 ∈ Rd, the evolution equation (2.1) with initial data u(0) = u0

has a unique weak solution.

Proof. We adapt the proof of Proposition II.6.4 in [13] to the non autonomous case.

We are going to show that there exists a unique solution of (2.1) on [0, T ], for each

T > 0. We start from T = 1 and, due to linearity, it is sufficient to prove that
du

dt
(t) = Aj0u(t), t ∈ [0, 1],

u(0) = 0
(2.6)

has u(t) ≡ 0 as unique solution. In fact, let u : [0, 1]→ Rd be a further solution of (2.6),
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which also solves the integral version of (2.6)

u(t) = u(0) + Aj0

ˆ t

0

u(r)dr

= Aj0

ˆ t

0

u(r)dr, t ∈ [0, 1].

(2.7)

Take t ∈ [0, 1], then for each s ∈ (0, t) we get

d

ds

Å
S(t− s)

ˆ s

0

u(r)dr

ã
= S(t− s)u(s)− Aj0S(t− s)

ˆ s

0

u(r)dr

= S(t− s)u(s)− S(t− s)Aj0
ˆ s

0

u(r)dr

= S(t− s)u(s)− S(t− s)u(s) = 0,

(2.8)

where we used the fact that Aj0 commutes with its exponential matrix S(t−s) = e(t−s)Aj0 .

Hence, integration from 0 to t of the expression (2.8) gives

ˆ t

0

d

ds

Å
S(t− s)

ˆ s

0

u(r)dr

ã
ds =

ˆ t

0

u(r)dr = 0

and from (2.7) we conclude that u(t) ≡ 0 for t ∈ [0, 1].

Now we want to show the uniqueness of (2.1) in [0, 2]. Suppose that there exist

u : [0, 2]→ Rd and v : [0, 2]→ Rd solutions of (2.1) with initial condition u(0) = v(0) = u0.

For the previous computations, we can deduce that u and v coincide on the time interval

[0, 1], namely

u
∣∣
[0,1]
≡ v
∣∣
[0,1]

and we set u(1) = v(1) = u1. Since we just require to have a weak solution, we only need

to prove that

u
∣∣
[1,2]
≡ v
∣∣
[1,2]

to ensure the uniqueness on [0, 2]. If we consider the autonomous problem
du

dt
(t) = Aj1u(t), t ∈ [1, 2],

u(1) = u1,
(2.9)

we know that u
∣∣
[1,2]

and v
∣∣
[1,2]

solves (2.9) and this holds if and only if

ũ(t) := u
∣∣
[1,2]

(t+ 1), ṽ(t) := v
∣∣
[1,2]

(t+ 1), t ∈ [0, 1]
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are solutions of 
dũ

dt
(t) = Aj1ũ(t), t ∈ [0, 1],

ũ(0) = u1.
(2.10)

At this point, proceeding as in the case T = 1, it is clear that (2.10) admits unique

solution, thus

ũ(t) = ṽ(t), t ∈ [0, 1]

and

u
∣∣
[1,2]
≡ v
∣∣
[1,2]

.

This proves the uniqueness of (2.1) on [0, 2] and, by recursion, one can obtain the same

on [0, T ] for every T > 0. Due to the arbitrariness of T , there exists one weak solution of

(2.1) for all t ∈ [0,+∞).

In the next section we are going to study the long-time behaviour of {S(t)}t≥0 for the

specific model on graphs. We remark that while S(t) is well defined for all t > 0, it is a

priori not clear whether its limit exists.

In general, when we talk about asymptotic behaviour of bounded operators from a

normed vector space (X, ‖·‖) to itself, we always have to specify which type of convergence

we mean. In the sequel, we will consider

– the strong convergence of S(t) towards a bounded operator M ∈ B(X), namely

lim
t→+∞

||S(t)f −Mf ||X = 0, ∀f ∈ X;

– the uniform convergence of S(t) towards a bounded operator M ∈ B(X), namely

lim
t→+∞

||S(t)−M || = 0,

where || · || is the operator norm.

Remark 2.4. Clearly, uniform convergence always implies the strong one. However,

when we work in finite dimension, also the opposite implication is true.

In fact, if X = Rd, let us consider a basis {ek}dk=1. From the strong convergence, we

have that for all k and for all ε > 0, there exists tk such that

|S(t)ek −Mek| < ε ∀t > tk.

If we now define tε := max{tk, k = 1, . . . , d}, this implies that

|S(t)ek −Mek| < ε ∀t > tε, ∀k.
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Due to linearity and thanks to Cauchy-Schwarz inequality, for all f ∈ Rd with |f | ≤ 1 we

obtain

|S(t)f−Mf | =
∣∣∣∣∣
d∑

k=1

fk(S(t)ek −Mek)

∣∣∣∣∣ ≤
(

d∑
k=1

|fk|2
) 1

2
(

d∑
k=1

|S(t)ek −Mek|2
) 1

2

≤ ‖f‖
√
dε.

Thus, taking the supremum over f ∈ Rd with |f | ≤ 1

‖S(t)−M‖ ≤
√
dε ∀t > tε

which implies the uniform convergence.

Coming back to our model, since S(n) is given by a product of n exponential matrices

generated by Aj0 , . . . , Ajn−1 , we can perform an asymptotic study in terms of products

like {
n∏
i=0

Mji , n ∈ N

}
(2.11)

where Mji = eAji is a d×d matrix. Hence, in order to prove that S(n) converges uniformly

towards some d× d matrix M , we will equivalently show that

+∞∏
i=0

Mji := lim
n→+∞

n∏
i=0

Mji = M,

where the limit is taken with respect to the matrix norm.

2.2 The discrete heat equation on evolving combina-

torial graphs

On the basis of the evolution model just described, we are now ready to introduce a

random evolution diffusion model on graphs. In this section, we are going to deal with

combinatorial graphs which are finite, simple and unweighted. We can consider one graph

G just at first. As already explained, our goal is to analyze how heat spreads on G while

their edges randomly changing in time.

In order to model the evolution of network G in an efficient way, we now forget

about G itself and start considering a finite collection of graphs C = {G1, . . . , GN} with

an arbitrary, but fixed ordering. Roughly speaking, these graphs correspond to all the

possible stages that the graph G can reach at a certain time. Therefore, it is reasonable
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to require that G1, . . . , GN have different sets of edges E(G1), . . . , E(GN), whereas the

set of vertices V = {v1, . . . , vd} is the same for every graph and represents the structure

of the domain which always remains fixed.

Now we want to introduce the stochasticity of this model. We then consider a proba-

bility space (Ω,F ,P) and we define a stationary Markov chain {jk}k≥0 which takes values

in the set of graphs C. Hence, we have that for each k ∈ N

jk : Ω −→ C

ω 7−→ jk(ω)

is a random variable and it represents the state of the chain after the k-th jump. As we

can guess, the time sequence of graphs will be determined by the jumps of this Markov

chain.

Finally, we are able to write the system of equations for our model. The idea is to

generalize the discrete heat equation (DHE) introduced in the previous chapter and to

construct a system with the same form of (2.2). We denote by

K = {−L(G1), . . . ,−L(GN)} (2.12)

the finite family of discrete Laplace operators associated with the graphs in C and we

consider again

u(t) =

Ü
u(t, v1)

...

u(t, vd)

ê
∈ Cd,

i.e. the vector of heat concentration at each vertex of G.

Hence, the discrete random evolution (DRE) system has the following form:
d+u

dt
(t) = −L(jk)u(t), t ∈ [k, k + 1), k ∈ N

u(0) = u0 ∈ Cd,
(DRE)

where u0 ∈ Cd is the initial heat concentration.

Looking at this system, the main difference with (2.2) can be found in the sequence

which determines the evolution of the graphs. We remark that in this random context

the model is clearly no longer deterministic as before. In fact, (DRE) is not only non

autonomous, but its leading operator −L(jk) is also a stochastic process taking values in

K. In particular, {−L(jk)}k≥0 is still a Markov chain, with the same class structure as

{jk}k≥0. For this reason, we will directly refer to the original Markov chain to talk about
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the stochasticity of the model.

Despite the stochasticity of (DRE), it is also convenient to analyze every deterministic

problem one obtains fixing a realization ω ∈ Ω. Hence, we get
d+u

dt
(t) = −L(jk(ω))u(t), t ∈ [k, k + 1), k ∈ N

u(0) = u0 ∈ Cd
(DRE ω)

and this problem is exactly (2.2) with K defined as in (2.12) and with a deterministic

sequence given by {jk(ω)}k≥0.

Once introduced the model in a rigorous way, we can now better understand its dy-

namics. Fig. 2.1 gives a more intuitive idea about what happens when we fix ω ∈ Ω and

how the graphs’ evolution actually works.

1 2 3

1

0

ω ∈ Ω

G

G

G

...j0(ω)

j1(ω)

j2(ω)

t

Figure 2.1: Dynamics of (DRE ω).

Suppose that we deal with three graphs in C = {G1, G2, G3} and we start from an initial

heat distribution u0. If we fix a realization ω ∈ Ω of the Markov chain, we have seen that

our network will evolve according to a deterministic sequence.

More in detail, for the first time interval [0, 1], we have to study the discrete heat

diffusion on the graph given by the initial state j0(ω) = G2. After this interval, at t = 1

we ”freeze” our system and we substitute the current graph with the state j1(ω) = G1

reached by the Markov chain after its first jump. Hence, for the next interval [1, 2], (DRE

ω) will follow the heat diffusion on the new graph G1, which represents the second stage
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of the evolving domain. From t = 1 on, the initial condition for the new system is given

by the final solution e−L(j0(ω))u0 of the previous one in t = 1 and the leading operator

is −L(j1(ω)). This system will remain unvaried and autonomous until t = 2, then the

Markov chain will jump into G3 and we will have to study the evolution on a different

network again and so on for all the times.

Using those results proved in the previous section, (DRE) is well-posed and its weak

solution is given by

u(t) = e−(t−k)L(jk)e−L(jk−1) · · · e−L(j0)f, t ∈ [k, k + 1]. (2.13)

Let us focus on the evolution operator

S(t) = e−(t−k)L(jk)e−L(jk−1) · · · e−L(j0), t ∈ [k, k + 1] (2.14)

Due to the dependence on the Markov chain {jk}k≥0, we have that {S(t)}t≥0 is a stochastic

process: in particular it is a random product of matrices which receives one more factor

at every integer time according to the Markov chain {jk}k≥0.

2.2.1 Asymptotics

Once we have proved the existence and uniqueness of the solution, we can finally

present the main part of this research: the study of the long-time behaviour of model

(DRE). In particular, we are going to refer to the results shown for the discrete heat

equation on a single graph G fixed in time. In that framework, we briefly recall that the

evolution operator for long times converges to the orthogonal projection onto the kernel

of L(G). This means that, as one can expect, the heat spreads during the time and tends

towards the average of u0 on each connected component of the graph. Hence, as we have

already remarked in the previous chapter, the connectedness of G plays a fundamental

role in this analysis, because it determines the asymptotic dynamics of the model.

In the new framework of this chapter, where the network is no longer constant in time,

there are several aspects we now have to consider. First of all, we deal with a stochastic

evolution operator and this obviously implies that we need a convergence notion different

from the one used in the deterministic case. In addition, it seems suitable to impose some

conditions related to the connectivity of graphs. However, since we no longer work with

only one graph, we have to understand which are these conditions are and how much we

can weaken them.

First of all, our idea is to study what happens trajectory by trajectory of the Markov
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chain. More precisely, we are going to study the long-time behaviour of each family of

operators {S(t, ω)}t≥0, for fixed ω ∈ Ω. When we study the dynamics of a single trajectory,

the evolution operator is clearly a deterministic product and it has the following form:

S(t, ω) = e−(t−k)L(jk(ω))e−L(jk−1(ω)) · · · e−L(j0(ω)), t ∈ [k, k + 1], ω ∈ Ω. (2.15)

Since each exponential matrix e−tL(jk(ω)) is strongly, uniformly continuos and contractive,

we find that {S(t, ω)}t≥0 preserves these properties. Then, denoting by {T (t, jk(ω))}t≥0

the semigroup generated by the minus Laplacian −L(jk(ω)), we can also rewrite (2.15)

as the product

S(t, ω) = T (t− k, jk(ω))T (1, jk−1(ω)) · · ·T (1, j0(ω)), t ∈ [k, k + 1], ω ∈ Ω

and study its asymptotic behaviour using the notions of strong and uniform convergence

recalled in the deterministic case.

In particular, we are going to neglect the trajectories with zero probability P, hence

it is convenient to introduce an additional notion of convergence which is referred to a

random environment.

Definition 2.5. Let (X, ‖ ·‖) be a normed vector space and let (Ω,F ,P) be a probability

space. We consider a stochastic process {S(t)}t≥0 with state space in B(X) and a (deter-

ministic) bounded operator M ∈ B(X). We will say that S(t) converges P-almost surely

towards M , namely

lim
t→+∞

S(t) = M P− a.s.,

when

P
Å

lim
t→+∞

S(t, ω) = M

ã
= 1.

Depending on the different convergence of the bounded operator S(t, ω), we will say

that S(t) converges uniformly/strongly and P-almost surely towards M .

At this point, we can talk more in detail about our purposes. Imagine that we are

analyzing the heat diffusion during the time and we want to guess its distribution when

t → +∞. At every integer time the graph environment on which we study the diffusion

changes: for this reason, it seems reasonable to deduce that if we let the graph evolve in

a suitable way, the heat will spread on the entire set of vertices V , until its distribution

gets homogeneous. From a mathematical point of view, we have seen that this situation

corresponds to show that S(t) converges towards P0, the orthogonal projection onto the

subspace of constant functions on G spanned by 1 = (1, . . . , 1)> ∈ Rd.
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Then, in a first moment, we are going to deal with the following

Problem (P): Determine whether and under which conditions the evolution operator of

(DRE) converges almost surely to the projection P0, namely

lim
t→+∞

S(t) = P0 P− a.s.. (?)

Regarding the possible conditions under which (?) holds, they can have different na-

ture. Firstly, it seems reasonable to require some hypotheses on the mechanism of graphs’

choice which determines the evolution of (DRE). This means that we have to consider

some suitable properties related to the Markov chain {jk}k≥0: in this way, we can get

more information about the sequence of matrices which compose the operator S(t). For

this purpose, from now on we will require that

Condition (1): the Markov chain {jk}k≥0 is irreducible.

It is well-known that an irreducible Markov chain with finite state space is positively

recurrent when it is aperiodic or when it has period p. Hence, this implies that with prob-

ability 1 the chain will visit every graph in C infinitely many times during the evolution

of the system.

In addition, as we have specified before, we certainly need to impose some conditions

about the connectivity of the graphs in C. Let us start from the case when all graphs

G1, . . . , GN are connected.

G1 G2 G3 G4

Figure 2.2: All graphs in C are connected.

In a random evolution like the one described in Fig. 2.2, where at each stage the

graph environment is connected, we can intuitively imagine that (?) holds. In fact, we

recall that in the discrete heat equation on a fixed graph, its connectedness allows the

heat distribution to tend towards the average of u0 on V . Then, roughly speaking, the

same happens even when we jump from a connected graph to another one: there will

always be a possible path of edges which let the heat – even though more slowly – reach

28



every vertex in V for long times.

The following Proposition 2.7 proves this conjecture in a more rigorous way. We first

present the following

Lemma 2.6. Let G = (V,E) be a connected graph. Then for all t > 0

||Qe−tL|| < 1,

where L is the Laplace operator associated with G and Q := I − P0 is the orthogonal

projection onto the subspace 〈1〉⊥ orthogonal to the constant functions.

Proof. By contradiction, suppose that ||Qe−tL|| = 1, then there exists f ∈ Cd, f 6= 0 such

that

Qe−tLf = f,

i.e. f belongs to the fixed points space Fix
(
Qe−tL

)
. Additionally, we have that f ∈ rgQ,

then we can deduce that

Qe−tLf = e−tLQf = e−tLf = f

and so f ∈ Fix
(
e−tL

)
= kerL.

Since G is a connected graph, it is well-known that the kernel of its Laplacian agrees

with the subspace of constant functions on V , thus f = c, for some constant c. But f

is also in rgQ and by definition the latter contains only 0 as unique constant. Then, we

conclude that the only possible choice is f = c = 0, which is a contradiction.

Now, we are finally able to prove

Proposition 2.7. Let us consider model (DRE) where C = {G1, . . . , GN} is a finite

family of connected graphs and {jk}k≥0 a Markov chain. Then

lim
t→+∞

‖S(t, ω)− P0‖ = 0, ∀ω ∈ Ω. (2.16)

Before proving this result, observe that the convergence proposed in (2.16) is not the

almost sure one in Definition 2.5: it is clearly stronger, since it holds for any trajectory,

without imposing particular conditions on the Markov chain. This suggests that under

the assumption of connectedness of all graphs, we are able to prove a result which is more

general than (?). It does not matter which sequence of graphs (DRE) follows: S(t) will

always uniformly converge to P0.
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Proof. Fixed ω ∈ Ω, we consider again

Q := I − P0,

whose range is 〈1〉⊥. We can prove the thesis in an equivalent way, showing that

lim
t→+∞

‖QS(t, ω)‖ = 0.

First of all, by definition Q is idempotent and commutes with the exponential matrix of

every Laplace operator. Hence

QS(t) = Qe−(t−k)L(jk)e−L(jk−1) · · · e−L(j0)

= Qe−(t−k)L(jk)Qe−L(jk−1) · · ·Qe−L(j0),

where we neglect the dependence on ω to simplify the notation.

Thanks to Lemma 2.6, we deduce that each matrix Qe−L(Gi), i = 1, . . . , N has norm

strictly less than 1 and we denote by

δ := max
¶
||Qe−L(Gi)|| : i = 1, . . . , N

©
< 1.

For all t > 0, let k ∈ N be such that k ≤ t < k + 1. By submultiplicativity of the matrix

norm we have

||QS(t, ω)|| = ||Qe−(t−k)L(jk)Qe−L(jk−1) · · ·Qe−L(j0)||

≤ ||Qe−(t−k)L(jk)|| ||Qe−L(jk−1)|| · · · ||Qe−L(j0)||

≤ ||Qe−L(jk−1)|| · · · ||Qe−L(j0)||

≤ δk−1.

If t→ +∞, then k → +∞ and we finally get

lim
t→+∞

‖QS(t, ω)‖ = 0.

At this point, we can rewrite the evolution operator as

S(t, ω) = P0S(t, ω) + (I − P0)S(t, ω). (2.17)

Thanks to the spectral representation of each exponential matrix, for all i = 1, . . . , N

e−tL(Gi) = P0 +
∑
λk 6=0

e−tλkPk, t > 0,
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where λks are the k−1 strictly positive eigenvalues of the Laplacian L(Gi) and Pks are the

mutually orthogonal eigenprojections. In particular, P0 is the eigenprojection associated

with the simple eigenvalue λ0 = 0. Applying P0 to both sides, due to the properties of

these projections we obtain

P0e
−tL(Gi) = P 2

0︸︷︷︸
P0

+
∑
λk 6=0

e−tλk P0Pk︸ ︷︷ ︸
0

= P0, t > 0

and, recursively,

P0S(t, ω) = P0 t > 0.

Then, from (2.17) we can write

S(t, ω) = P0 +QS(t, ω)

and finally conclude that

lim
t→+∞

||S(t, ω)− P0|| = lim
t→+∞

||QS(t, ω)|| = 0,

so the proof is complete.

The result just presented is surely strong, but it only holds under a very restrictive

condition too: all the graphs are required to be connected. However, one can wonder what

happens when we weaken this hypothesis and admit also non connected graphs in C. May

we hope that S(t, ω) still converges to P0 in this situation? The answer is affirmative, but

the price to pay is that the convergence for all the realizations ω ∈ Ω no longer holds.

In fact, suppose that Condition (1) holds and fix ω ∈ Ω such that

jk(ω) = G ∀k ≥ 0, (2.18)

where G is some non connected graph in C. In this specific situation (DRE) is just the

discrete heat equation on the graph G which remains always the same and, as we have seen

in the previous chapter, we clearly do not expect that the evolution operator converges to

P0. Fortunately, trajectories like (2.18) have zero probability and this is the reason why

we have expressed problem (P) in terms of the almost sure convergence. From now on,

the goal is to find a suitable and as weak as possible connectivity’s condition that allows

us to prove (P).

We start adapting a result of [3] in our setting. The authors proved that if the second

eigenvalues of the operators {Ajk , k ≥ 0} driving a certain non-autonomous diffusion
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equation as (2.1) are bounded from below away from 0, then the solution of (2.2) converges

for all initial data u0 towards the projection of u0 onto the first eigenspace. In our case,

this projection is exactly P0 and the eigenspace is spanned by 1. We are going to refine

their method in the following

Proposition 2.8. Fix ω ∈ Ω, consider the sequence j(ω) = {jk, k ∈ N} and denote by

λ2(jk) the second lowest eigenvalue of the discrete Laplacian L(jk). If

+∞∑
k=0

λ2(jk) = +∞, (2.19)

then S(t, ω) strongly (then uniformly) converges towards the projection P0 onto the con-

stant functions, namely the solution u(t, ω) converges for all initial datum u0 to P0u0 =

(u0, e1)e1, where e1 := 1√
d

(1, . . . , 1)> ∈ Rd.

Proof. We are going to adapt the proof of Theorem 5.4 in [3].

Throughout this proof we will neglect the dependence on ω for simplicity. We start

setting

ũ(t) := u(t)− (u0, e1)e1,

so now we have to show that ũ(t)→ 0 as t→ +∞.

We can estimate the Euclidean norm of the vector ũ(t) ∈ Cd by

||ũ(t)||2 − ||ũ(0)||2 =

ˆ t

0

d

dt
||ũ(s)||2ds

= 2

ˆ t

0

(
dũ

dt
(s), ũ(s))ds

= −2

ˆ t

0

(L(jbsc)ũ(s), ũ(s))ds.

(2.20)

Applying the Spectral Theorem, we write

ũ(s) =
d∑

h=1

(ũ(s), eh(jbsc)) eh(jbsc),

where {eh(jbsc)}dh=1 is a basis of mutually orthogonal eigenvectors of the Laplacian L(jbsc)
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with common first eigenvector e1(jbsc) = e1, ∀s ≥ 0. Thus by linearity

L(jbsc)ũ(s) = L(jbsc)

(
d∑

h=1

(ũ(s), eh(jbsc)) eh(jbsc)

)

=
d∑

h=1

(ũ(s), eh(jbsc))λh(jbsc)eh(jbsc)

≤ λ2(jbsc)
d∑

h=2

(ũ(s), eh(jbsc)) eh(jbsc)

= λ2(jbsc)
d∑

h=1

( ũ(s), eh(jbsc) ) eh(jbsc)

= λ2(jbsc)ũ(s),

where we used the fact that (ũ(s), e1) = 0 ∀s ≥ 0. Then from (2.20) we get

||ũ(t)||2 − ||ũ(0)||2 = −2

ˆ t

0

(L(jbsc)ũ(s), ũ(s))ds

≤ −2

ˆ t

0

λ2(jbsc)||ũ(s)||2ds.

By Gronwall’s Lemma we deduce that

||ũ||2 ≤ ||ũ(0)||2 e−2
´ t
0 λ2(jbsc)ds.

Hence, for t→ +∞, we have

ˆ +∞

0

λ2(jbsc)ds =
+∞∑
k=0

λ2(jk) = +∞

and ||ũ(t)|| → 0.

The statement we have just proved ensures the convergence towards P0 provided that

(2.19) holds. First of all, we notice that this series of second lowest eigenvalues diverges

when the family C contains only connected graphs. In fact, since λ2(i) 6= 0 for all Gi ∈ C,
(2.19) is an infinite sum of strictly positive terms and thus diverges. This means that

Proposition 2.8 is another way to prove the convergence result we have already known.

However, Proposition 2.8 is not useless, in fact it ensures that S(t) converges almost

surely to P0 for a more general family C of graphs. In fact, the following result states that

it is sufficient that at least one among G1, . . . , GN is connected.

Corollary 2.9. Let us consider model (DRE) where C contains at least one connected
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graph G̃ and let {jk}k≥0 be an irreducible Markov chain. Then the evolution operator S(t)

converges strongly (then uniformly) and almost surely towards the projection P0.

Proof. We fix ω ∈ Ω and we recall that, due to the connectedness of G̃, 0 is a simple

eigenvalue of L(G̃): therefore, its second lowest eigenvalue λ2(G̃) is strictly positive.

Consider
+∞∑
k=0

λ2(jk) = +∞, (2.21)

whose terms are always positive and given by all the second lowest eigenvalues of the

graphs in C
{λ2(Gi), Gi ∈ G} ,

according to the evolution of (DRE). As we know, when they are associated with connected

graphs, some of these eigenvalues are strictly positive, whereas the ones corresponding to

disconnected graphs are equal to 0. With probability 1, we can estimate (2.21) as follows:

+∞∑
k=0

λ2(jk) ≥
∑

h:jh=G

λ2(G̃) = +∞ P− a.s.,

where in the last equality we have applied the fact that G̃ is visited infinitely many times

by the chain with probability 1. Then, the thesis follows just applying Proposition 2.8.

G1 G2 G3 G4

Figure 2.3: Only G2 is connected, the other graphs are disconnected.

Despite the previous results allow us to prove (?) without requiring a very strong

condition on C, we can even do better. In fact we are going to show that it is not

necessary that one of the graphs we are dealing with has to be connected, as the following

example shows.

Example 2.10. Let V = {v1, v2, v3} and we consider C = {G1, G2} according to the

following picture
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G1 G2

v1 v1v2 v2v3 v3

Both graphs are clearly non connected, nevertheless we can prove that also in this case

S(t) converges almost surely to the orthogonal projection

P0 =
1

3
J =

1

3

Ö
1 1 1

1 1 1

1 1 1

è
.

Equivalently, as done in the proof of Proposition 2.7, we are going to show that QS(t)→ 0

as t→ +∞ where

Q = I − P0 =

Ö
2
3
−1

3
−1

3

−1
3

2
3
−1

3

−1
3
−1

3
2
3

è
.

Suppose that the Markov chain which jumps from G1 to G2 is irreducible, thus with

probability 1 both graphs are reached infinitely many times. This means that for long

times there are two terms composing the product QS(t), both repeated infinitely often as

the time goes on, and they are

M1 = Qe−L(G1), M2 = Qe−L(G2).

As we know, both M1 and M2 are contractions, but we cannot estimate them as in the

case of all connected graphs because it is not true that ‖Mi‖ < 1, i = 1, 2. In fact, after

easy computations we get

M1 = Qe−L(G1) =

Ö
1
6

+ 1
2e2

1
6
− 1

2e2
−1

3
1
6
− 1

2e2
1
6

+ 1
2e2
−1

3

−1
3

−1
3

2
3

è
and its eigenvalues are λ1 = 1, λ2 = 1

e2
and λ3 = 0. Thus, denoting by ρ(Mi) the spectral

radius of Mi, we have

1 ≤ ρ(M1) ≤ ‖M1‖ ≤ 1

and this implies that ‖M1‖ = 1 and in a similar way we obtain ‖M2‖ = 1, too. However,
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one can show by an explicit computation that the operators M1M2 and M2M1 satisfy

‖M1M2‖ = ‖M2M1‖ = δ ≈ 0.413262 < 1.

Clearly, due to the irreducibility of the Markov chain, also the sequences M1M2 and M2M1

are repeated infinitely many times with probability 1. This implies that for t > 0 large

enough, there exists k(t) ∈ N positively diverging as t→ +∞ and, for instance, we get

‖QS(t)‖ ≤ ‖M1M2‖k(t) = δk(t) t→+∞−−−−→ 0 P− a.s..

This example suggests that the connectedness of all or some graphs in C is not a nec-

essary condition in order that (?) holds. In fact, what is really important is to consider a

more general concept of connectivity, which involves all the graphs in C and at the same

time does not require that the single ones are connected. We are going to show that the

right hypothesis to be imposed is the following

Condition (2): the union graph G := (V, E1 ∪ · · ·EN) has to be connected.

In view of (2), we now understand why Example 2.10 works. In fact, the union graph of

G1 and G2 is given by

G1 ∪G2

v1 v2 v3

which is clearly connected.

Before proving the sufficience of Condition (2), we need three lemmas. The first one

characterizes the connectedness of the union graph in terms of the Laplace operators of

G1, . . . , GN .

Lemma 2.11. Let G1, . . . , GN be combinatorial graphs and let G = (V, E1 ∪ . . . ∪ EN)

their union graph. Then

G is connected ⇐⇒
N⋂
i=1

kerL(Gi) = 〈1〉.

Proof. We only prove the statement for N = 2, then the general case follows by induction

on N .
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Suppose that the union graph G is connected. Since constant functions are always in

the kernel of a discrete Laplace operator, it always holds

kerL(G1) ∩ kerL(G2) ⊇ 〈1〉

and then we just need to prove the opposite inclusion. Let f ∈ kerL(G1) ∩ kerL(G2),

hence f is constant on the connected components of G1 and G2: we claim that f is

actually constant on each vertex of V . Let u, v ∈ V . Since G is connected, there exists a

path {(v1, v2), (v2, v3), . . . , (vm−1, vm)} of edges in E1 ∪ E2 such that

u ∼ v1 ∼ . . . ∼ vm ∼ v,

where ∼ can be ∼G1 or ∼G2 . We now apply f to u and v1: since this couple of vertices are

adjacent in G1 or in G2 and f is constant on the connected components of both graphs,

then we have f(u) = f(v1). Applying the same procedure for every vertex in the path, we

get

f(u) = f(v1) = . . . = f(vm) = f(v),

thus f is constant and kerL(1) ∩ kerL(2) ⊆ 〈1〉.
As for the opposite implication, suppose G is not connected: then we can find a

function in the intersection of the two kernels which is not constant on V . Being G not

connected, so do G1 and G2 and we write

G =
l⊔

h=1

G(h), G1 =
m⊔
j=1

G
(j)
1 , G2 =

n⊔
k=1

G
(k)
2 ,

as disjoint unions of connected components. In particular, each component of the union

graph can be written as follows:

G(h) =
⊔

j∈A(h)
1

G
(j)
1 or G(h) =

⊔
k∈A(h)

2

G
(k)
2 , h = 1, . . . , l,

where

A
(h)
1 :=

¶
j ∈ {1, . . . ,m} : G

(j)
1 ⊆ G(h)

©
,

A
(h)
2 :=

¶
k ∈ {1, . . . , n} : G

(k)
2 ⊆ G(h)

©
.

37



Due to the disjointness, we have

A
(1)
1 t A

(2)
1 t . . . t A

(l)
1 = {1, . . . ,m},

A
(1)
2 t A

(2)
2 t . . . t A

(l)
2 = {1, . . . , n}.

At this point, we just define f as

f(v) = ch, if v ∈ V (G(h)), i = 1, . . . , l,

where ch is constant ∀h = 1, . . . , l, and ch1 6= ch2 for h1 6= h2. By definition, for all

h = 1, . . . , l, f is constant on each G(h), therefore it is also constant on G
(j)
1 , j ∈ A(h)

1 and

on G
(k)
2 , k ∈ A(h)

2 . This means that

f ∈ kerL(G1) ∩ kerL(G2),

but by construction f is not constant and the proof is complete.

Lemma 2.12. Let G be a combinatorial graph and denote by L its discrete Laplace op-

erator. Then

‖e−tLf‖ < ‖f‖, ∀f /∈ kerL, ∀t > 0.

Proof. The proof is simple and comes from the spectral decomposition of the exponential

matrix of L. In fact, let t > 0 and f /∈ kerL, then we can write

e−tLf =
d∑

k=1

e−tλk(f, vk) vk,

where {vk}dk=1 is an orthonormal basis of eigenvectors of L, associated with the eigenvalues

λks. Taking the square norm, we get

‖e−tLf‖2 =
d∑

k=1

e−2tλk |(f, vk)|2 =
∑

{k: λk=0}

|(f, vk)|2 +
∑

{k: λk 6=0}

e−2tλk |(f, vk)|2, (2.22)

where the last addendum is different from 0 since f /∈ kerL. Recalling that the nonzero

λk are strictly positive and then e−2tλk < 1, one can estimate the norm in (2.22) as follows:

‖e−tLf‖2 =
∑

{k: λk=0}

|(f, vk)|2 +
∑

{k: λk 6=0}

e−2tλk |(f, vk)|2

<
∑

{k: λk=0}

|(f, vk)|2 +
∑

{k: λk 6=0}

|(f, vk)|2

= ‖f‖2
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and the thesis follows.

Lemma 2.13. Assume that the union graph G = (V,E1 ∪ . . . ∪ EN) is connected. Given

any sequence of indexes α1, . . . , αL covering the full set {α1, . . . , αL} = {1, . . . , N}, then

||Qe−L(GαL ) · · · e−L(Gα1 )|| < 1. (2.23)

Proof. We argue by contradiction. Let us assume now that (2.23) does not hold: since

the projection Q and all the exponential matrices are contractions, it follows that

||Qe−L(GαL ) · · · e−L(Gα1 )|| = 1.

Hence, there exists f ∈ Cd, f 6= 0 such that

Qe−L(GαL ) · · · e−L(Gα1 )f = f,

which means

f ∈ Fix
Ä
Qe−L(GαL ) · · · e−L(Gα1 )

ä
⊆ rgQ.

Following the same procedure as in the proof of Proposition 2.7, we get

f ∈ Fix
Ä
e−L(GαL ) · · · e−L(Gα1 )

ä
.

Let us assume that

Fix
Ä
e−L(GαL ) · · · e−L(Gα1 )

ä
=

L⋂
h=1

Fix
Ä
e−L(Gαh )

ä
(2.24)

holds. As a consequence, we can apply the result of the previous lemma and we obtain

f ∈
L⋂
h=1

Fix
Ä
e−L(Gαh )

ä
=

N⋂
i=1

Fix
Ä
e−L(Gi)

ä
=

N⋂
i=1

ker e−L(Gi) = 〈1〉.

Hence, f is constant and, since f ∈ rgQ, the only possibility is f = 0, then we reach a

contradiction.

To complete the proof, we only have to verify (2.24). Clearly,

L⋂
h=1

Fix
Ä
e−L(Gαh )

ä
⊆ Fix

Ä
e−L(GαL ) · · · e−L(Gα1 )

ä
,

so we only have to prove the opposite inclusion. Given f ∈ Fix
(
e−L(GαL ) · · · e−L(Gα1 )

)
,
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we start to show that f is in the kernel of e−L(Gα1 ). Recalling that we are dealing with

contractive operators, we get

||f || = ||e−L(GαL ) · · · e−L(Gα1 )f ||

≤ ||e−L(GαL ) · · · e−L(Gα2 )|| ||e−L(Gα1 )f ||

≤ ||e−L(Gα1 )f ||

≤ ||f ||,

then

||e−L(Gα1 )f || = ||f ||. (2.25)

Thanks to Lemma 2.12, we have that equality (2.25) implies

e−L(Gα1 )f = f

and so f ∈ Fix
(
e−L(Gα1 )

)
. It follows that

e−L(GαL ) · · · e−L(Gα2 )f = f (2.26)

and now one can recursively follow the same procedure starting from (2.26) until showing

that

f ∈
L⋂
h=1

Fix
Ä
e−L(Gαh )

ä
.

Thanks to the previous lemmas, we are finally able to prove the main result of this

chapter.

Theorem 2.14. Let us consider model (DRE) and let {jk}k≥0 be an irreducible Markov

chain. Moreover, let us assume that the graphs in C have a connected union graph

G = (V,E1 ∪ . . . ∪ EN).

Then the evolution operator S(t) converges uniformly and almost surely towards the

projection P0.

Proof. We fix ω ∈ Ω and, due to the irreducibility of {jk}k≥0, with probability 1 we can

find a sequence of indexes α1, . . . , αL such that

– they cover the full set of indexes:

{α1, . . . , αL} = {1, . . . , N};
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– the Markov chain follows this path with a strictly positive probability:

pα1,α2 pα2,α3 · · · pαL−1,αL > 0.

Consider now the Markov chain {j′k}k≥0 on the L-tuple of states {1, . . . , N}L induced

by {jk}k≥0 as follows:

j′0 := (j0, . . . , jL−1) ,

j′1 := (jL, . . . , j2L−1) ,

j′k :=
(
jkL, . . . , j(k+1)L−1

)
, k ≥ 2.

Clearly, the number of times the chain {jk}k≥0 follows the path α1, . . . , αL is greater than

or equal to the number of times {j′k}k≥0 visits the state α = (α1, . . . , αL) and the latter

is infinite P-almost surely, due to the results proved in Appendix A. This means that

the evolution of (DRE) follows the sequence of graphs Gα1 , . . . , GαL infinitely many times

with probability 1 as t→ +∞.

From Lemma 2.13 we are able to estimate

‖Qe−L(αL) · · · e−L(α1)‖ < 1

and then for t large there exists k(t) such that it diverges as t→ +∞ and, almost surely,

we get

‖QS(t)‖ ≤ ‖Qe−L(αL) · · · e−L(α1)‖k(t) t→+∞−−−−→ 0.

Now, the thesis

lim
t→+∞

‖S(t)− P0‖ = 0 P− a.s.

follows analogously to Proposition 2.7.

The result we have just proved ensures that (?) holds for a large class of families

C of graph. At this point, one can wonder again if there exist cases which are further

general. We are now going to show that this is not possible: hence, condition (2) not only

is sufficient, but also necessary. To prove this, we are going to adapt some results in [1,

12] about convergence of random products of contractions in Hilbert spaces.

Let C = {G1, . . . , GN} a finite family of graphs such that their union

G = (V,E1 ∪ . . . ∪ EN)
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is a disconnected graph. As a consequence of Lemma 2.11, this implies that

N⋂
i=1

kerL(Gi) 6= 〈1〉.

In particular, we can prove a more precise result, which also contains the statement of

Lemma 2.11.

Lemma 2.15. Let G1, . . . , GN be combinatorial graphs and let G = (V,E1 ∪ . . .∪EN) be

their union. Then
N⋂
i=1

kerL(Gi) = kerL(G). (2.27)

Clearly, this result makes Lemma 2.11 a trivial consequence of (2.27).

Proof. For simplicity we only prove the case with two graphs. We still need the notation

used in the proof of Lemma 2.11. In general, suppose that G, G1 and G2 are written as

disjoint unions of connected components:

G =
l⊔

h=1

G(h), G1 =
m⊔
j=1

G
(j)
1 , G2 =

n⊔
k=1

G
(k)
2 .

As we have already seen, each connected component of the union G can be expressed as

G(h) =
⊔

j∈A(h)
1

G
(j)
1 or G(h) =

⊔
k∈A(h)

2

G
(k)
2 , h = 1, . . . , l,

with the same definition of A
(h)
1 and A

(h)
2 as in the previous proof.

In Chapter 1, we have seen that BG = {1h, h = 1, . . . , l} such that

∀ v ∈ V : 1h(v) :=

1 if v ∈ G(h)

0 otherwise

is a basis for kerL(G). Similarly, B1 = {11,j, j = 1, . . . ,m} and B2 = {12,k, k = 1, . . . , n}
are basis of kerL(G1) and kerL(G2), respectively. Hence, we only need to prove that for

all h = 1, . . . , l, 1h is in the intersection of the kernels in C and then extend the result to

kerL(G) by linearity. In particular, by construction the function 1h will be

∀v ∈ V : 1h(v) :=

1 if v ∈ G(j)
1 , j ∈ A(h)

1

0 otherwise
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and

∀v ∈ V : 1h(v) :=

1 if v ∈ G(k)
2 , k ∈ A(h)

2

0 otherwise,

thus 1h ∈ kerL(G1) ∩ kerL(G2), in fact it can be written as linear combination of both

basis B1 and B2 as

1h =
∑
j∈A(h)

1

11,j or 1h =
∑
k∈A(h)

2

12,k.

On the other hand, given f ∈ kerL(G1) ∩ kerL(G2), we have

f = α111,1 + · · ·+ αm11,m (2.28)

and

f = β112,1 + · · ·+ βn12,n, (2.29)

where B1 and B2 as above. We recall that by construction every function 1h of the basis

BG can be written for every h = 1, . . . , l as

1h =
∑
j∈A(h)

1

11,j or 1h =
∑
k∈A(h)

2

12,k.

Then, comparing the expressions (2.28) and (2.29), we get that

αj = βk = c1, ∀j ∈ A(1)
1 , ∀k ∈ A(1)

2 ,

α = a
...

αj = βk = cl, ∀j ∈ A(l)
1 , ∀k ∈ A

(l)
2

and f can also be expressed in terms of BG as

f =
l∑

h=1

ch1h,

thus f ∈ kerL(G).

Let now denote by P the orthogonal projection onto the kernel of L(G):

P : Cd → kerL(G),

P (f) :=
l∑

h=1

1

|V (G(h))|
(f, 1h) 1h.
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Before proving the main result of this chapter, we introduce two lemmas.

Lemma 2.16. The orthogonal projection P commutes with every exponential matrix

e−L(G), ∀i = 1, . . . , N .

Proof. We follow the proof of the theorem in Section 3 of [1].

Denote Ti := e−L(Gi) for all i = 1, . . . , N. Since P has range
⋂N
i=1 FixTi it follows that

P Ti = P , i = 1, . . . , N.

This implies (see [23]) that it also holds

P T ∗i = P , i = 1, . . . , N.

Hence, since the projection P is selfadjoint, for all h = 1, . . . , N and x, y ∈ Cd:

P = P
∗

= (P T ∗i )∗ = Ti P
∗

= Ti P ,

thus P Ti = Ti P .

Lemma 2.17. Given any sequence of indexes α1, . . . , αL covering the full set of indexes

{α1, . . . , αL} = {1, . . . , N}, then

||(I − P ) e−L(GαL ) · · · e−L(Gα1 )|| < 1. (2.30)

Proof. The proof is exactly the same as the one for Lemma 2.13, just by substituting Q

with (I − P ) and by taking into account Lemma 2.16. By contradiction, suppose that

there exists a nonzero function f in the fixed points set of the operator in (2.30). In the

end, f ∈ rgP ∩ rg(I − P ), so that f = 0, a contradiction.

We are going to prove the necessity of condition (2) through the following

Theorem 2.18. Let us consider model (DRE) and let {jk}k≥0 be an irreducible Markov

chain. Moreover, let C be a finite family of graphs with union G = (V,E1 ∪ . . . ∪ EN).

Then the evolution operator S(t) converges uniformly and almost surely towards the

projection P .

We notice that this theorem also contains the result proved in Theorem 2.14. In that

case, we have that P ≡ P0, indeed.

Proof. As one can guess, thanks to Lemma 2.17, the proof is very similar to that of

Theorem 2.14.
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Thanks to Lemma 2.16, we can write the evolution operator as

S(t) = P S(t) + (I − P ) S(t) = P + (I − P ) S(t).

Hence, we just need to prove that

lim ‖(I − P ) S(t)‖ = 0, P− a.s. (2.31)

and this follows as we in the proof of Theorem 2.14.

G1

G2

G3

G1 ∪G2 ∪G3

Figure 2.4: G1, G2 and G3 have a non connected union graph: the heat distribution will
converge towards the average of the initial datum u0 on each connected component of
G1 ∪G2 ∪G3.
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Chapter 3

The heat equation on a metric graph

In the previous chapter we have obtained and then analyzed a random evolution

system on combinatorial graphs. Now the aim is to generalize that model in the framework

of metric graphs.

As anticipated in the Introduction, in a metric graph the edges are interpreted as one-

dimensional intervals. We will see that we can consider a metric graph as a topological

space and we will equip it with a metric. Furthermore, we will see that it makes sense to

define a Lebesgue measure on it and consequently several spaces of measurable functions

acting on each edge.

At this point, the next natural step is to consider differential operators on these

function spaces. In this work, we will only focus on one simple parabolic PDE studied

on a metric graph, namely the heat diffusion equation. Before analyzing it in a random

evolution’s framework, it is reasonable to illustrate the model on one fixed metric graph.

Hence, we first need to present the main properties about metric graphs, in order to better

understand in which sense we can talk albout PDEs on graphs.

All the results reported in this chapter are well-known: we will only remark those ones

which are necessary to generalize the random evolution in this new setting. In particular,

we will especially refer to the books [5, 22] and to the articles [20] and [3]. In addition,

it will be necessary to apply several results about the classical theory of semigroups: in

this thesis, we assume all the basic notions on evolution semigroups and their generators

to be known. A complete presentation of these topics can be found for instance in [2, 6,

13, 24]: in particular, we will mainly refer to Section II.6 of [13] and to Chapter 1 of

[24].
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3.1 Introduction to metric graphs

The aim of this section is to introduce metric graphs in a rigorous way, following the

guidelines of [5]. As the combinatorial ones, metric graphs have a structure composed

by a set of vertices and a set of edges. However, what really makes these two classes of

graphs so different from each other is explained in an intuitive way by G. Berkolaiko and

P. Kuchment in [5]: “now one will need to imagine the edges not as abstract relations

between vertices, but rather as physical “wires” connecting them.”.

Therefore, a metric graph is defined by a set V of vertices and a set E of edges, where

in particular the latters are interpreted as one-dimensional intervals, each one with a

certain length `e ∈ (0,+∞]. We will never discuss about graphs with infinite length and,

additionally, we will only deal with finite graphs also in this framework. Furthermore, we

will exclude those vertices which are not incident to any edge.

Metric graphs have a topological structure of one-dimensional CW-complexes: roughly

speaking, they can be represented as a certain number of 1-cells (the edges) and 0-cells

(the vertices), glued to each other in a suitable way. In this structure, vertices in common

between more edges are identified.

We will often refer to a metric graph G as the couple (G, `), where G is the support

of G, i.e. the combinatorial graph with vertices, edges and orientation induced by G.

Additionally G is equipped with the weight `e for each edge e ∈ E: such a graph is called

weighted graph.

At this point, one can naturally introduce all the topological properties: in particular,

also in this case, we are interested in the notion of connectedness, which is equivalent to

the path-connectedness in this finite setting.

Definition 3.1. A metric graph G is said to be connected when for any two points of G
there exists a path joining them.

If G is disconnected, then as in the combinatorial setting it is given by a disjoint union

of connected components.

Since each e ∈ E is like an interval, we can introduce a parametrization on every edge.

In fact, taken e ∈ E with incident vertices u and v, then the surjection {0, `e} → {u, v}
ensures that each edge can be identified as follows:

e ∼= [0, `e], ∀e ∈ E.

In particular, the image of 0 and the image of `e will be respectively called initial and

terminal vertex. Now we can assign an increasing coordinate xe ∈ [0, `e] to each edge of
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the graph.

Notice that in this way we have imposed an orientation on G, given by the natural

orientation from 0 to `e of every edge. As one can expect, if we would like to reverse the

orientation of some e ∈ E, the relation between the old and the new coordinate x̃e will be

x̃e = `e − xe. It is also possible to define a notion of distance between two points in the

same connected component of the metric graph G. Obviously, if x and y belong to the

same edge, we choose the Euclidean metric d(x, y) = |x − y|. Otherwise, if x and y are

placed in two different intervals (or, in particular, they are vertices), then d(x, y) is given

by the total length of the minimal path connecting x and y.

Thanks to this system of coordinates which identify every point of G, it seems rea-

sonable to define functions on a metric graph: the natural idea is to consider functions

acting edgewise. Therefore, ordering in a certain way the edges E = {e1, . . . , em}, a func-

tion f defined on a metric graph G is identified by the m-tuple (f1, . . . , fm), where for all

j = 1, . . . ,m, fj has ej ∼= [0, `j] as corresponding domain.

We are especially interested in a particular class of functions. Based on how we

have described metric graphs, we can naturally define the Lebesgue measure dx on them.

Hence, a function f = (fe)e∈E is measurable if every fe : (0, `e) → C is measurable. In

addition, f is integrable if so does fe for all e ∈ E and we define

ˆ
G
f(x)dx =

∑
e∈E

ˆ `e

0

fe(xe)dxe.

We are now able to well define the Lebesgue space

L2(G) :=
⊕
e∈E

L2(0, `e)

with scalar product given by

(f, g)L2(G) :=

ˆ
G
f(x)g(x)dx =

∑
e∈E

(fe, ge)L2(0,`e), f, g ∈ L2(G)

and induced norm

‖f‖L2(G) :=

(∑
e∈E

‖fe‖2
L2(0,`e)

) 1
2

, f ∈ L2(G).

If we denote by f (k) = (f
(k)
e ) the |E|-tuple of the weak derivatives of order k = 1, 2 of fe
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for all e ∈ E, we can also introduce the Sobolev spaces

H̃k(G) :=
⊕
e∈E

Hk(0, `e), k = 1, 2,

whose scalar product can be expressed in terms of those in L2(G) and Hk(0, `e)

(f, g)H̃k(G) :=
∑
n≤k

(f (n), g(n))L2(G)

=
∑
e∈E

(fe, ge)Hk(0,`e), f, g ∈ H̃k(G)

and induced norm

‖f‖H̃k(G) :=

(∑
n≤k

‖f (n)‖2
L2(G)

) 1
2

=

(∑
e∈E

‖fe‖2
Hk(0,`e)

) 1
2

, f ∈ H̃k(G).

Notice that these definitions do not depend on the orientation of the metric graph.

3.2 Diffusion on a metric graph

In the previous section, we have presented the main properties of metric graphs and

how to suitably define some function spaces on them. Additionally, we pointed out that

once introduced Lebesgue and Sobolev spaces, it is now natural to consider differential

operators acting on metric graphs.

In particular, the aim of this section is to illustrate one of the first simple PDE

problems which can be studied on a graph: the heat diffusion equation. As in the classical

setting, the differential operator governing the evolution is still the (continuous) Laplacian.

Therefore, we first are going to introduce how a Laplace operator on a metric graph can

be defined. Then, we proceed the discussion describing in detail the diffusion problem,

its well-posedness and its asymptotic behaviour.

All the results of this chapter are already well-known and in particular we will follow

the guidelines of [5, 20, 22].

3.2.1 Introduction to the Kirchhoff-Laplace operator

Throughout this section we will consider a metric graph G = (G, `) over a finite

oriented combinatorial graph G = (V,E) with vertices V = {v1, . . . , vn} and edges
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E = {e1, . . . , em}. In the metric framework, we admit also graphs with multiple edges

and loops.

In order to introduce the Laplace operator on G, the natural idea is to define a second

derivative operator on each edge ej ∈ E:

uj 7→
d2

dx2
j

uj, uj : [0, `j]→ C, ej ∈ E.

Notice that this definition does not depend on the choice of orientation of the edge ej for

all j = 1, . . . ,m.

Therefore, we will call Laplace operator on G and we will denote it by ∆ the operator

which acts on functions u = (u1, . . . , um) as follows:

∆: D(∆) ⊂ L2(G)→ L2(G),

∆ :=

Ü
d2

dx21
0

. . .

0 d2

dx2m

ê
, ∆u :=

Å
d2

dx2
1

u1, . . . ,
d2

dx2
m

um

ã
.

(L)

The next step is to understand how the domain D(∆) is defined. Clearly, since we

are working with a differential operator in a network setting, we need to impose suitable

boundary conditions at each junction and node. Since these constraints will involve values

of functions at the vertices of G, they are also referred as vertex conditions. In order to

find their nature, first of all we suppose that the Laplacian acts on H̃2(G). Thanks to

the Sobolev embedding and trace theorems in the 1D framework, we deduce that each

uj and their first derivatives are continuous, thus they admit well-defined values at the

endpoints of each edge ej ∈ E. On the other hand, this does not hold for second derivatives

of functions in H2(0, `j), which just belong to L2(0, `j) and are not well-defined at the

vertices. Then, the vertex conditions we are going to prescribe will involve only values of

uj and
duj
dxj

at each vertex.

The most natural – and also simple – choice is to consider the so-called standard

vertex conditions, which require that a function u = (ue)e∈E on G is in D(∆) if and only

if

• u is continuous on G, i.e. it does not admit discontinuity jumps at each vertex:

∀v ∈ V : uj(v) = uh(v), ∀ ej, eh ∈ Ev; (1)
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• u satisfies the Kirchhoff condition at each vertex, namely

∀v ∈ V :
∑
ej∈E−v

duj
dxj

(v)−
∑
ej∈E+

v

duj
dxj

(v) = 0, (2)

where

Ev := {e ∈ E : e is incident to v},

E+
v := {e ∈ E : v is the terminal vertex of e},

E−v := {e ∈ E : v is the initial vertex of e}.

In order to rewrite these conditions in a more compact form, we introduce the fol-

lowing n×m matrices:

φ+ =
(
ϕ+
ij

)
, ϕ+

ij :=

1 if ej ∈ E+
vi

0 otherwise,

φ− =
(
ϕ−ij
)
, ϕ−ij :=

1 if ej ∈ E−vi
0 otherwise.

Then, we define

φ := φ+ − φ−,

which is the incidence matrix of the graph G, already introduced in Chapter 1. We are

now able to express (1) and (2) in terms of these matrices. In fact, one easily notices that

the continuity in (1) is equivalent to require that

∃ d ∈ Cn s.t. (φ−)>d =

Ü
u1(0)

...

um(0)

ê
=: u(0)

and

(φ+)>d =

Ü
u1(`1)

...

um(`m)

ê
=: u(`)

(Cc)

Additionally, we get a more efficient way of writing Kirchhoff condition, namely

φ+ d

dx
u(`)− φ− d

dx
u(0) = 0, (Kc)
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where with d
dx
u we mean that function defined on G whose components are given by the

derivatives of ujs with respect to the spatial coordinate xj.

Remark 3.2. Since these conditions are expressed in terms of matrices φ+ and φ− which

clearly depend on the orientation of G, one might suspect that (Cc) and (Kc) do the

same. However, this is not true: in fact, they remain unchanged if we choose a differ-

ent orientation. To better understand it and how (Cc) and (Kc) work, we propose the

following

Example 3.3. Let us consider a metric graph G = (G, `) where G is the finite and

oriented graph represented by

v1

v2

v3 v4

e1

e2

e3

with V = {v1, v2, v3, v4} and E = {e1, e2, e3}. Looking at the picture, we can easily

construct φ+ and φ− as

φ+ =

à
0 0 0

0 0 0

1 1 0

0 0 1

í
, φ− =

à
1 0 0

0 1 0

0 0 1

0 0 0

í
,

thus

φ =

à
−1 0 0

0 −1 0

1 1 −1

0 0 1

í
.

Hence, applying condition (Cc) one obtains the expected formula

∃ d = (d1, d2, d3, d4)> ∈ C4 :


d1 = u1(0),

d2 = u2(0),

d3 = u3(0)

and


d3 = u1(`1),

d3 = u2(`2),

d4 = u3(`3),

(3.1)

where expression (3.1) imposes in particular that the function’s value d3 at v3 is uniquely

determined.
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After some easy computations, condition (Kc) gives

d
dx1
u1(0) = 0,

d
dx2
u2(0) = 0,

− d
dx3
u3(0) + d

dx1
u1(`1) + d

dx2
u2(`2) = 0,

d
dx3
u3(`3) = 0,

(3.2)

which is more intuitive than the compact form (Kc). First of all, this example let us re-

mark that prescribing (Kc) at a vertex with degree 1 (as v1, v2, v4) is equivalent to impose

a Neumann condition. Secondly, looking at the image above and at (3.2), we can also

understand the reason of the name Kirchhoff. In fact, if we interpret G as an electric

circuit, then (3.2) is similar to the well-known Kirchhoff’s law of Electrodynamics: at

each node v, the total corrent density flowing into v has to be equal to the total corrent

density flowing out of v.

If we now reverse the orientation of e3, just considering the new coordinate x̃3 =

`3 − x3, we obtain a new oriented graph:

v1

v2

v3 v4

e1

e2

e3

Obviously, φ+ and φ− are now different, but applying again the definitions of (Cc) and

(Kc) one has

(Cc) :



d1 = u1(0),

d2 = u2(0),

d3 = u1(`1) = u2(`2) = u3(`3),

d4 = u3(0)

(3.3)

and

(Kc) :



d
dx1
u1(0) = 0,

d
dx2
u2(0) = 0,

d
dx3
u3(`3) + d

dx1
u1(`1) + d

dx2
u2(`2) = 0,

d
dx3
u3(0) = 0,

(3.4)

which basically represent the same relations with another parametrization. For instance,
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the value di at each vertex vi remains unchanged and both third equations of (3.2) and

(3.4) represent the sum of the exterior derivatives computed at v3.

Remark 3.4. One can also wonder how these conditions are interpreted when we deal

with loops. In order to explain it, take a graph composed by a single loop:

0 ≡ `

In this case, the initial and the terminal ends coincide, therefore if we apply (Cc) and

(Kc), we get the periodic conditionsu(0) = u(`),

d
dx
u(0) = d

dx
u(`).

Finally, once introduced the standard vertex conditions, the operator ∆ given by (L)

is more precisely called Kirchhoff-Laplace operator on G and its domain is defined as

D(∆) =
¶
u ∈ H̃2(G) | u satisfies (Cc) and (Kc)

©
. (3.5)

This is the first example of quantum graph, namely a metric graph, equipped with a

differential operator and with suitable vertex conditions.

3.2.2 The continuous heat equation on a metric graph

As we have already said, we are interested in the operator ∆ because it is the leading

operator of the abstract Cauchy problem (ACP) describing a diffusion phenomenon on

the network G.

Suppose we want to study the continuous heat equation (CHE) on a fixed metric

graph G with V = {v1, . . . , vn} and E = {e1, . . . , em}. If we set all the conductance

coefficients equal to 1 and we denote

u̇ :=
d

dt
and u′ :=

d

dx
,
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where from now on x is the spatial coordinate for each edge, we get the following parabolic

problem:

u̇j(t, x) = u′′j (t, x), t ≥ 0, x ∈ (0, `j), j = 1, . . . ,m,

uj(t, vi) = uh(t, vi), t ≥ 0, j, h ∈ Evi , i = 1, . . . , n,∑
e∈E+

vi
u′e(vi)−

∑
e∈E−vi

u′e(vi) = 0, t ≥ 0, i = 1, . . . , n,

uj(0, x) = fj(x), x ∈ (0, `j), j = 1, . . . ,m.

(CHE)

In system (CHE), uj(t, ·) represents the heat distribution along ej ∈ E at time t; in

addition, we consider f := (f1, . . . , fm) as initial heat distribution on G, while as boundary

conditions we impose (Cc) and (Kc). As in the combinatorial case, we can hide the space

dependence and rewrite (CHE) as an abstract Cauchy problem:u̇(t) = ∆u(t), t ≥ 0

u(0) = f,
(ACP)

where the leading operator is exactly the Kirchhoff-Laplace operator of the metric graph

G and the boundary conditions in (CHE) are contained in D(∆). Now our goal is to study

in detail (ACP), proving that it is well-posed in L2(G) and to analyze the asympotic be-

haviour of its solution.

We start introducing the following sesquilinear form on L2(G):

a : V × V → C

a(f, g) =
m∑
j=1

ˆ `j

0

f ′j(x)g′j(x)dx, f, g ∈ V,
(3.6)

where

V = D(a) :=
¶
f ∈ H̃1(G) | ∃ d ∈ Cn s.t. (φ−)>d = f(0) and (φ+)>d = f(`)

©
: =
¶
f ∈ H̃1(G) | f satisfies (Cc)

©
.

(3.7)

Since for j = 1, . . . ,m, fj and gj are in H1(0, `j), then their derivatives belong to L2(0, `j),

thus the product f ′jg
′
j ∈ L1(0, `j) itself and each integral in (3.6) is finite. Hence, a is well

defined and satisfies additionally several properties, which we are going to show following

the techniques of [20].

Lemma 3.5. The sesquilinear form a is densely defined in L2(G) and its domain V is

closed in H̃1(G), in particular V is a Hilbert space with scalar product induced by H̃1(G).
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Proof. First of all, since H̃1(G) is a subspace of L2(G), it follows that V is a subspace of

L2(G). We notice that
⊕m

j=1 C
∞
c (0, `j) is contained in V and then, since it is also dense

in L2(G), the density of V follows.

Regarding its closedness, we just recall that for every j = 1, . . . ,m and x ∈ (0, `j) the

evaluation function from H1(0, `j) to C defined as {fj 7→ fj(x)} is linear and bounded.

Hence, one has just to take a sequence in V convergent in H̃1(G): then, due to the

continuity of the evaluation functions at the involved vertices, it is easy to show that the

limit still fulfills (Cc).

The previous lemma allows us to study this evolution problem in terms of the theory

on sesquilinear forms, based on results in Chapter 1 of [24]. In this case, we denote

(H, ‖ · ‖H) =
(
L2(G), ‖ · ‖L2(G)

)
and (V, ‖ · ‖V ) = (V, ‖ · ‖H̃1(G)),

which are both separable Hilbert spaces with V continuously and densely embedded in

H. At this point, in the following lemma we are going to show some properties statisfied

by the sesquilinear form a.

Lemma 3.6. Let a be the sesquilinear form defined in (3.6)-(3.7). Then a is

(i) symmetric, i.e. a(f, g) = a(g, f), ∀f, g ∈ V ;

(ii) accretive, in particular positive, i.e. Re a(f, f) = a(f, f) ≥ 0, ∀f ∈ V ;

(iii) continuous, i.e. ∃M > 0 : |a(f, g)| ≤M‖f‖V ‖g‖V , ∀f, g ∈ V ;

(iv) closed, i.e. V is complete with respect to ‖f‖a :=
√
a(f, f) + ‖f‖2

V ;

(v) of Lions type, i.e. ∃M > 0 : |Im a(f, f) ≤M‖f‖V ‖f‖H , ∀f ∈ V ;

(vi) H-elliptic, i.e. ∃µ > 0 and ∃ω ∈ R : Re a(f, f) + ω‖f‖2
H ≥ µ‖f‖2

V , ∀f ∈ V .

Proof. (i) Due to the symmetry of the L2-scalar product, for all f, g ∈ V we have

a(g, f) =
m∑
j=1

ˆ `j

0

g′j(x)f ′j(x)dx =
m∑
j=1

ˆ `j

0

f ′j(x)g′j(x)dx = a(f, g).

(ii) Thanks to the symmetry of a, it follows that a(f, f) ∈ R for every f ∈ V and

accretivity and positivity are, thus, the same property. One then easily obtains that

a(f, f) =
m∑
j=1

ˆ `j

0

|f ′j(x)|2dx ≥ 0, ∀f ∈ V.
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(iii) Using the Cauchy-Schwarz inequality, we have

|a(f, g)| =

∣∣∣∣∣∣
m∑
j=1

ˆ `j

0

f ′j(x)g′j(x)dx

∣∣∣∣∣∣
≤

m∑
j=1

∣∣∣∣∣
ˆ `j

0

f ′j(x)g′j(x)dx

∣∣∣∣∣
≤

m∑
j=1

‖f ′j‖L2(0,`j) ‖g′j‖L2(0,`j)

≤
m∑
j=1

‖fj‖H1(0,`j) ‖gj‖H1(0,`j)

≤

(
m∑
j=1

‖fj‖2
H1(0,`j)

) 1
2
(

m∑
j=1

‖gj‖2
H1(0,`j)

) 1
2

= ‖f‖V ‖g‖V , ∀f, g ∈ V.

(iv) Due to the fact that ‖·‖a = ‖·‖V , the closedness of a follows as a trivial consequence.

(v) Since a(f, f) ∈ R, the property is trivially satisfied due to the posivity of norms:

∀M > 0 : 0 ≤M‖f‖V ‖f‖H , f ∈ V.

(vi) Taking into account that

– ‖f‖2
V = ‖f‖2

H + a(f, f),

– Re a(f, f) = a(f, f),

H-ellipticity’s inequality

a(f, f) + ω‖f‖2
H ≥ µ‖f‖2

V = µ a(f, f) + µ‖f‖2
H

holds for 1 ≥ µ > 0 and for ω ≥ µ > 0. For instance, taking µ = ω = 1 we get an

equality.

Definition 3.7. Take a general sesquilinear form a : V ×V → C. We define the operator

(A,D(A)) associated with a as follows:

D(A) = {f ∈ V | ∃h ∈ H such that a(f, g) = (h, g)H , ∀g ∈ V },

Af = −h.
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Notice that due to the density of V in H, the operator associated with a is univocally

defined.

Lemma 3.8. The operator associated with a is the Laplacian ∆ with standard vertex

conditions.

Proof. To prove this lemma we follow the proof of Lemma 2.3 in [20] in the simpler case

µj = cj ≡ 1 for all j = 1, . . . ,m.

Based on Definition 3.7, we have to show that D(A) = D(∆) = D and Af = ∆f

∀f ∈ D. We start showing that ∆ ⊂ A. Let f ∈ D(∆), then, integrating by parts, for all

g ∈ V we have

a(f, g) =
m∑
j=1

ˆ `j

0

f ′j(x)g′j(x)dx

=
m∑
j=1

î
f ′j(x)gj(x)

ó`j
0
−

m∑
j=1

ˆ `j

0

f ′′j (x)gj(x)dx.

(3.8)

Observing the first term of (3.8), we notice that to evaluate each f ′j and gj at 0 and `j

means to compute their value at the endpoints of each edge ej ∈ E. Then, we can rewrite

the first part in terms of φ+ and φ− asî
f ′j(x)gj(x)

ó`j
0

=
m∑
j=1

n∑
i=1

(ϕ+
ij − ϕ−ij)f ′j(vi)gj(vi).

In this way, now it is more convenient to use (Cc) satisfied by g ∈ V . In fact, since the

continuity at the vertices holds, we can reformulate

∃ d ∈ Cn such that (φ−)>d = g(0) and (φ+)>d = g(`)

and say that there exist d1, . . . , dn ∈ C such that gj(vi) = di, j ∈ Ei, i = 1, . . . , n. Then,

∀g ∈ V we get

a(f, g) =
n∑
i=1

di

m∑
j=1

(ϕ+
ij − ϕ−ij)f ′j(vi)︸ ︷︷ ︸

=0

−
m∑
j=1

ˆ `j

0

f ′′j (x)gj(x)dx

= −(∆f, g)H ,

(3.9)

where the first term vanishes since f fulfills (Kc). Notice that the equality (3.9) makes

sense because ∆f ∈ H and proves that ∆ ⊂ A.

Now, we start from a function f ∈ D(A); then by definition there exists h ∈ H such
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that
m∑
j=1

ˆ `j

0

f ′j(x)g′j(x)dx = a(f, g) = (h, g)H =
m∑
j=1

ˆ `j

0

hj(x)gj(x)dx, (3.10)

for all g ∈ V . Let us consider the following function

gj :=



0
...

gj
...

0

← jth row, gj ∈ H1
0 (0, `j), j = 1, . . . ,m.

We notice that hj ∈ V for all j = 1, . . . ,m and hence we can use it as a test function in

(3.10)

ˆ `j

0

f ′j(x)g′j(x)dx =

ˆ `j

0

hj(x)gj(x)dx, gj ∈ H1
0 (0, `j), j = 1, . . . ,m. (3.11)

In particular, (3.11) holds for all gj ∈ C∞c (0, `j); then we deduce that −hj ∈ L2(0, `j) is

the weak derivative of f ′j ∈ L2(0, `j). This implies that f ′j ∈ H1(0, `j) for all j = 1, . . . ,m,

thus f ∈ H̃2(G). Now, we just have to integrate by parts (3.10) as done for (3.8) and for

all test functions we still obtain

n∑
i=1

di

m∑
j=1

(ϕ+
ij − ϕ−ij)f ′j(vi) = 0, (3.12)

where the right-hand side of (3.12) is 0 thanks to the definition of weak derivative of

f ′j and di is the joint value attained by gj at the vertex vi, for all ej ∈ Ei. Due to the

arbitrariness of g ∈ V , it follows that

m∑
j=1

(ϕ+
ij − ϕ−ij)f ′j(vi) = 0

and so f satisfies (Kc), too. In this way, we have proved that f ∈ D(∆) and for all g ∈ V :

−(∆f, g)H = −
m∑
j=1

ˆ `j

0

f ′′j (x)gj(x)dx =
m∑
j=1

ˆ `j

0

h(x)gj(x)dx.

This implies that ∆f = −h = Af and so the proof is complete.

The lemma we have just proved is fundamental, because it let us associate the op-

erator ∆ with the sesquilinear form a. In this way, we are now able to apply the whole
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theory of operators associated with sesquilinear forms reported in [24], where in particular

Proposition 1.22 states the following result.

Proposition 3.9. If A is the operator associated with a densely defined, accretive, con-

tinuous and closed sesquilinear form a, then A is densely defined and for every λ > 0, the

operator λI − A is invertible (from D(A) into H).

As a consequence, we deduce that

Corollary 3.10. The Kirchhoff-Laplace operator ∆ is densely defined in H and λI −∆

is invertible for every λ > 0.

At this point, we define the adjoint a∗ of a sesquilinear form a as

a∗(f, g) := a(g, f), f, g ∈ V = D(a) = D(a∗).

By some easy computations, one can check that a∗ is densely defined, accretive, continuous

and closed, provided that so is a. In order to find the operator associated with a∗, we

prove the following

Lemma 3.11. The operator associated with a∗ is A∗, i.e. the adjoint of the operator

associated with a.

Proof. We follow the argument of Proposition 1.24 in [24].

First of all, we recall that the adjoint A∗ of an operator A is defined as follows

D(A∗) = {f ∈ H | ∃h ∈ H such that (Ag, f)H = (g, h)h, ∀g ∈ D(A)}

A∗f = h.

Now, denoting by B the operator associated with a∗, our goal is to prove that D(B) =

D(A∗) and Bf = A∗f for all f ∈ D(A∗). We start considering f ∈ D(B), then by

definition for all g ∈ V we obtain

(−Bf, g)H = a∗(f, g) = a(g, f) = (−Ag, f)H = (f,−Ag)H = (−A∗f, g).

Thus, f ∈ D(A∗), namely D(B) ⊂ D(A∗) and Bf = A∗f for all f ∈ D(B).

On the other hand, take f ∈ D(A∗) and consider (I−A∗)f ∈ H. By Proposition 3.9,

(I −B) is surjective, thus ∃g ∈ D(B) such that

(I − A∗)f = (I −B)g.
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Since A∗ = B in D(B), we obtain

(I − A∗)f = (I − A∗)g

and, hence, for all h ∈ D(A):

(f − g, (I − A)h)H = ((I∗A)(f − g), h)H = 0.

Due to the invertibility of (I − A) and the density of D(A) in H, we get

(f − g, h)H = 0 ∀h ∈ H,

thus f = g and the thesis follows.

Corollary 3.12. The Kirchhoff-Laplace operator ∆ on G is self-adjoint.

Proof. The proof is a simple consequence of symmetry of a. In fact, for all f, g ∈ V , one

gets

a∗(f, g) = a(g, f) = a(f, g).

Since a = a∗, then their associated operators agree with each other too:

(∆, D(∆)) = (∆∗, D(∆∗)).

From this corollary, it follows that

Corollary 3.13. The Kirchhoff-Laplace operator ∆ is closed, i.e. its graph G(∆) =

{(f,∆f) ∈ D(∆)×H} is closed in H ×H.

Proof. This follows from the fact that a linear densely defined operator A on H has its

adjoint A∗ closed. In particular, every self-adjoint operator is closed.

In fact, we only need to consider the operator matrix

U :=

(
0 Id

−Id 0

)
,

which is unitary on H ×H (i.e. U is invertible and U−1 = U∗). Then, denoting by
(
· | ·
)

and (·, ·)H the scalar products on H × H and on H respectively, for all f ∈ D(A) and
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g ∈ D(A∗) we get (
(g, A∗g) | U(f, Af)

)
=
(
(g, A∗g) | (Af,−f)

)
= (g, Af)H − (A∗g, f)H

= (g, Af)H − (g, Af)H = 0,

hence, this implies that the G(A∗) ⊂ U(G(A))⊥.

On the other hand, take (g, h) ∈ U(G(A))⊥, then for all f ∈ D(A) the vectors (g, h)

and U(f, Af) are orthogonal, thus

0 =
(
(g, h) | (Af,−f)

)
= (g, Af)H − (g, h)H .

Therefore, we obtain (Af, y)H = (f, h)H , and, due to the density of D(A) in H, h = A∗g,

(g, h) = (g, A∗g) ∈ G(A∗) and G(A∗) ⊃ U(G(A))⊥. Since U(G(A))⊥ is an orthogonal

subspace, it follows that G(A∗) is closed.

In order to finally prove the well-posedness of (ACP), we need to establish one last

property fulfilled by ∆, namely

Corollary 3.14. The Kirchhoff-Laplace operator ∆ on G is dissipative, i.e.

Re(∆f, f) ≤ 0, ∀f ∈ D(∆)

.

Proof. We just have to use the accretivity (which is equivalent to the positivity in this

case) of the sesquilinear form a. In fact

0 ≤ a(f, f) = Re a(f, f) = −Re(∆f, f)H ,

for every f ∈ D(∆). Thus,

Re(∆f, f)H ≤ 0

follows.

We are now able to apply the Lumer-Phillips Theorem, namely1

Theorem 3.15 (Lumer-Phillips). For a densely defined, closed, dissipative operator (A,D(A))

on a Banach space X the following statements are equivalent.

(i) A generates a contraction semigroup.

1We follow the text book [13].

62



(ii) rg (λI − A) is dense in X for some (hence all) λ > 0.

In this context, X = H and we are dealing with the operator (∆, D(∆)) which is:

– densely defined,

– dissipative,

– closed

and additionally

– for every λ > 0 the operator (λI −∆) is surjective, hence its range is clearly dense

in H.

Thus, by the Lumer-Phillips Theorem, it follows that

Theorem 3.16. The Kirchhoff-Laplace operator generates a contractive strongly contin-

uous semigroup, denoted by
{
et∆
}
t≥0

.

Based on the good properties satisfied by ∆, we expect that its associated (ACP)

is well-posed. The relation between the well-posedness of an abstract Cauchy problem

associated with an operator A and the generation of a semigroup by A is well-known. For

completeness, we recall the fundamental Theorem 6.7 in [13].

Theorem 3.17. Let X be a Banach space and let A : D(A) ⊂ X → X be a closed

operator. For the associated abstract Cauchy problemu̇(t) = Au(t), t ≥ 0,

u(0) = f
(ACP)

we consider the following existence and uniqueness condition:

for every f ∈ D(A), there exists a unique

classical solution u(·, x) of (ACP),
(EU)

namely a continuously differentiable function u : R+ → X, such that u(t) ∈ D(A) for all

t ≥ 0 and (ACP) holds.

Then the following are equivalent.

(i) A generates a strongly continuous semigroup.
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(ii) (ACP) is well-posed, i.e. A satisfies (EU) and continous dependence on the data

holds, i.e. for every sequence {fn}n≥0 ⊂ D(A) satisfying limn→∞ fn = 0 one has

limn→∞ u(t, fn) = 0 uniformly in compact intervals [0, t0]. Additionally, A has dense

domain.

Thus, we finally obtain

Theorem 3.18 (Well-posedness of (ACP)). The abstract Cauchy problemu̇(t) = ∆u(t), t ≥ 0

u(0) = f
(ACP)

is well-posed, i.e. for every f ∈ D(∆) there exists a unique (classical) solution

u(t) := et∆f, ∀t ≥ 0.

Moreover, continuous dependence on the data holds.

Once found the solution of (ACP), the next goal is to analyze its asymptotic behaviour

as t → +∞ as we have done in the finite-dimensional settings. In fact, the idea is still

to interpret the convergence results in terms of the structure of the metric graph. The

positive fact is that we will find a similar situation as in the case of the discrete heat

equation studied on a combinatorial graph.

3.2.3 On the spectrum of the Kirchhoff-Laplace operator

Before talking about long-time behaviour of the studied evolution model, we first need

to briefly present how the spectrum of the Kirchhoff-Laplace operator is composed. In

fact, as in the combinatorial framework we frequently applied the spectral decomposition

of the semigroup generated by the leading operator (the minus discrete Laplacian), we

will see also here that the knowledge of some main spectral properties of ∆ will be helpful.

In order to recall those information about the spectrum σ(∆) which are necessary for

our research, we will mainly refer to [20].

Lemma 3.19. The spectrum of (∆, D(∆)) is purely discrete, i.e. consists of real eigen-

values only. Moreover, its eigenvalues are negative and s(∆) = 0 ∈ σ(∆), where

s(∆) = sup{|λ| : λ ∈ σ(∆)}

is the spectral radius.
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Proof. We follow the proof of Lemma 4.1 in [20].

First of all, the function 1 = (1, . . . , 1) which is identically equal to 1 on each edge

of G is in D(∆) and ∆1 = 0. This means that ∆ is not invertible and thus 0 ∈ σ(∆).

Moreover, let us suppose that ∆ is a dissipative operator:

Re(∆f, f)H ≤ 0 ∀f ∈ D(∆).

We take λ eigenvalue of ∆ with eigenfunction f , then by dissipativity we get

Re(∆f, f)H = (∆f, f)H = λ(f, f)H ≤ 0

and due to the positivity of the scalar product (·, ·)H it follows that λ ≤ 0. Hence any

eigenvalue of ∆ is negative.

Furthermore, one can prove (see [20] and [13]) that the resolvent of ∆ is compact and

this implies that the Kirchhoff-Laplace operator has only point spectrum. Additionally,

being ∆ also self-adjoint and given f eigenfunction associated with some eigenvalue λ, by

sesquilinearity we obtain

λ(f, f)H = (∆f, f)H = (f,∆f)H = λ(f, f)H ,

thus λ = λ and we conclude that all the eigenvalues of ∆ are real.

The study of the Laplacian’s spectrum is still an open problem: right now, only

in few cases it is fully determined and in general just some upper and lower bounds of

eigenvalues are known. In this work, we are going to remark only one property of σ(∆),

which is also true in the combinatorial framework and for this reason frequently used in

Chapter 2. However, before that we want to introduce an important class of functions.

Let us consider a metric graph with the combinatorial graph G as support. In general, G

is given by the disjoint union of G(h) = (V (h), E(h)), h = 1, . . . , l connected components.

Then we define

1h =

1 if x ∈ ej, ej ∈ E(h),

0 otherwise,

for all h = 1, . . . , l. Notice that these functions defined on each edge ej, j = 1, . . . ,m are

in H̃2(G) and satisfy (Cc) and (Kc): thus, they all belong to D(∆).

Proposition 3.20. Let G = (G, `) be a finite metric graph with support G = (V,E).

Assume that G is given by the disjoint union of G(h) = (V (h), E(h)), h = 1, . . . , l connected

components.

Then, the multiplicity of 0 as eigenvalue of the Kirchhoff-Laplace operator agrees with
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the number of connected components of the metric graph G. In particular, a possible basis

of ker ∆ is given by the piecewise constant functions {1h}lh=1.

Proof. We have expanded Case 2 of the proof of Theorem 4.3 in [20].

We want to solve the equation

∆f = 0, f ∈ D(∆).

In this simple case, it is easy to see that the eigenfunctions corresponding to the eigenvalue

0 has the form

f(x) =

Ü
f1(`1)

...

fm(`m)

ê
=

Ü
a1x1 + b1

...

amxm + bm

ê
=

Ü
a1 0

. . .

0 am

êÜ
x1

...

xm

ê
+

Ü
b1

...

bm

ê
= Ax+ b,

where aj, bj ∈ C, j = 1, . . . ,m. We can now use (Cc) and then, evaluating f in each

vertex, for some d ∈ Cn we get

f(0) = b = (φ−)>d

f(`) =

Ü
f(`1)

...

f(`m)

ê
= A

Ü
`1

...

`m

ê
+ (φ−)>d = (φ+)>d,

then Ü
a1

...

am

ê
= Lφ>d,

where L := diag( 1
`1
, . . . , 1

`m
). Hence, the eigenfunction f has to be of the form

f(x) = (φ−)>d+ x>Lφ>d.

Applying (Kc), it follows that

φ+Lφ>d = φ−Lφ>d ⇐⇒ φLφ>d = 0,

i.e. d ∈ ker
(
φLφ>

)
. The n× n matrix

φLφ>

66



is known as the discrete Laplacian of the weighted oriented graph G: its kernel is l-

dimensional (where l is the number of connected component of G) and it is spanned by

functions ϕh ∈ Cn, h = 1, . . . , l defined on each vertex vi as follows

(ϕh)i :=

1 if vi ∈ V (h)

0 otherwise.

Since {ϕh}lh=1 is a basis of ker
(
φLφ>

)
, then {fh}lh=1 forms a basis for ker ∆, where

fh(x) = (φ−)>ϕh + x>Lφ>ϕh.

This proves that the multiplicity of 0 as eigenvalue of ∆ is actually equal to l. Moreover,

after some easy computations, one can find that

fh ≡ 1h, ∀h = 1, . . . , l.

Conversely, by linearity we see that for all h = 1, . . . , l, 1h also exhausts all possible

eigenfunctions of λ = 0 and the thesis is complete.

3.2.4 Asympotics

Having introduced some properties related to the spectrum of the Kirchhoff-Laplace

operator, the idea is now to apply the Spectral Theorem for (possibly unbounded) self-

adjoint operators (see, for instance, Theorem 7.1 in [22]) and its corollaries to our frame-

work.

First of all, we check that V is not only continuously and densely, but also compactly

embedded in H. To show it, we just need to apply Rellich’s Theorem, which in particular

provides that for all j = 1, . . . ,m, H1(0, `j) is compactly embedded in L2(0, `j). From

this result, one can easily prove the same for their cartesian products and deduce that

H̃1(G) is also compactly embedded in L2(G) = H. As a consequence, being V a subspace

of H̃1(G), we conclude that so does V .

At this point, we are in position to apply Corollary 7.3 of [22], namely

Corollary 3.21. The following statements hold.

(i) There exists an orthonormal basis {ek, k ≥ 1} of H, composed by eigenfunctions of

∆;

(ii) for all k ≥ 1 the eigenspaces associated with the eingenvalue λk of ∆ is finite-

dimensional;
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(iii) denoting the associated eigenvalues λk ∈ R− by

0 = λ1 ≤ |λ2| ≤ . . . ≤ |λk| ≤ . . . ,

then they can only accumulate at infinity:

lim
k→+∞

|λk| = +∞.

(iv) ∆ has the following spectral representation

D(∆) =

{
f ∈ H :

+∞∑
k=1

λ2
k (f, ek)

2
H < +∞

}
,

∆f =
+∞∑
k=1

λk Pkf, f ∈ D(∆),

where Pk is the orthogonal (with respect (·, ·)H) projection onto the subspace spanned

by the eigenvector ek

Pkf = (f, ek)H ek, f ∈ H.

As remarked in [3], the orthonormal basis {ek, k ≥ 1} is clearly not unique. However,

given any eigenfunction g ∈ D(∆), i.e. ∆g = λg for some eigenvalue λ, then g belongs to

span{ek, λk = λ} = ker(∆−λ). This also means that λk is actually the kth eigenvalue of ∆

counting the multiplicity. Regarding the eigenvalue λ = 0, we can construct one possible

orthonormal basis of ker ∆ just by normalizing the basis {1h, h = 1, . . . , l}, provided

that the graph is composed by l connected components according to the hypotheses in

Proposition 3.20. After easy computations, it follows that

eh :=

Ñ ∑
j:ej∈E(h)

`j

é− 1
2

1h, h = 1, . . . , l. (3.13)

In the next theorem, we are going to report a result of Corollary 7.5 in [22] and in

particular to generalize Corollary 5.2 of [20] (where the authors propose only the case of

a connected metric graph). As a consequence of the results in Corollary 3.21, one can

write

et∆f =
+∞∑
k=1

etλk (f, ek)H ek, f ∈ H

and finally prove the following
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Theorem 3.22 (Asymptotic behaviour of (ACP)). Let P be the orthogonal projection

onto the eigenspace of ∆ associated with λ = 0, namely the orthogonal projection onto the

kernel of the Kirchhoff-Laplace operator. Then the following hold:

1. The limit Pf := limt→+∞ e
t∆f exists for every f ∈ H;

2. For every ε > 0, there exists a constant M > 0 such that

‖et∆ − P‖L(H) ≤Me(λ2+ε)t, ∀t ≥ 0,

where λ2 is the largest nonzero eigenvalue of the generator ∆.

In other words, the previous theorem states that the semigroup generated by the

Kirchhoff-Laplace operator converges strongly and also exponentially uniformly to the

eigenprojection P . As we expected, we have found the same result as in the combinatorial

case, even if the framework is now more complicated.

Theorem 3.22 determines also the convergence rate of the semigroup towards P , which

agrees with the absolute value of the second largest eigenvalue λ2 of ∆. As pointed out

in [20], it is important to remark that the convergence to equilibrium holds regardless of

the intrisic structure of the graph on which we are studying the heat diffusion. On the

other hand, since there exist estimates of the largest nonzero eigenvalue (for instance, see

[21]) which depend on some properties of combinatorial graphs, the speed of convergence

is directly related to the network.

Anyway, despite the convergence towards equilibrium always holds in this evolution

model, the projection P obviously varies depending on the connectivity of the graph. For

this reason, we want to conclude this chapter by analyzing in detail what P represents

both in the cases of a connected and a disconnected graph.

Suppose we are studying the heat diffusion on a finite metric graph G = (G, `). Then,

we can consider two different cases.

1. When G is connected, then 0 is a single eingenvalue for ∆. As a consequence,

the kernel of the Kirchhoff-Laplacian is one-dimensional and composed by all the

possible functions constant on the edges and, since (Cc) is satisfied, on the whole

graph too. In particular ker ∆ can be spanned by the single constant eigenfunction

e1 =
1Ä∑m

j=1 `j
ä 1

2

(1, . . . , 1).
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When we apply P to an initial datum f ∈ D(∆), we obtain

Pf = (f, e1)H e1 =
1∑m
j=1 `j

m∑
j=1

ˆ `j

0

fj(x)dx (1, . . . , 1).

We notice that the constant function Pf can be interpreted as an average of the

initial datum f computed on the graph G. Then, also in the metric case we can

denote

−
ˆ
G
f :=

1∑m
j=1 `j

m∑
j=1

ˆ `j

0

fj(x)dx

and it turns out that P agrees with the orthogonal projection onto the constant

functions on all the edges of the graph. For resemblance with the combinatorial

setting, we decide to denote this projection by P0.

As one can expect knowing the classical results about the heat equation on finite

one-dimensional domains with Neumann boundary conditions, also in this case for

long times the heat spreading will tend to the constant distribution

P0f =

Å
−
ˆ
G
f, . . . ,−

ˆ
G
f

ã
.

2. The situation is different if G is non connected. As usual, we can suppose that it

is given by the disjoint union of connected components G(1), . . . , G(l). According to

Proposition 3.20, 0 is an eigenvalue with multiplicity mult(0) = l, thus an orthonor-

mal basis for ker ∆ is given by the functions defined in 3.13. So, the kernel contains

not only the constants on the whole graph, but also all those piecewise constant

functions, which – due to (Cc) – have to attain the same value on each connected

component of G.

In this case, the limit distribution agrees with

Pf =
l∑

h=1

(f, eh)H eh

=
1∑

j:j∈E(1) `j

∑
j:j∈E(1)

ˆ `j

0

f(x)dx 11 + . . .+
1∑

j:j∈E(l) `j

∑
j:j∈E(l)

ˆ `j

0

f(x)dx 1l.

(3.14)

Expression (3.14) seems complicated to read, but each coefficient is actually the

70



average of the initial datum f on the corresponding connected component

−
ˆ
G(h)

f :=
1∑

j:j∈E(h) `j

∑
j:j∈E(h)

ˆ `j

0

f(x)dx, h = 1, . . . , l.

Then, in the case of a disconnected graph, the limit distribution of (ACP)’s solution

is just the average of f on the connected components of G

Pf(x) = −
ˆ
G(h)

f, x ∈ G(h).

This result is reasonable: in fact, in such a model each connected component consists

of one indipendent system where we can study a different heat evolution, starting

from the distribution f restricted on G(h), h = 1, . . . , l. Therefore, recalling the pre-

vious case of a connected graph, we expect that for long times each heat distribution

on a different component G(h) will converge towards the average of the intial datum

on the same one.

Those illustrated in this chapter are the main results about one simple example of

diffusion on a fixed metric graph. The next goal, as we have done in the combinatorial

setting, is to study the continuous heat equation on a network which is no longer fixed in

time.
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Chapter 4

Random evolution on metric graphs

We are finally able to generalize the random evolution model to the framework of

metric graphs. Studying the diffusion on a fixed metric graph G in Chapter 3, we have

seen that its dynamics behaves for long times in a way similar to the corresponding

combinatorial model. The heat spreads along the edges tending towards a homogeneous

distribution, which depends on the connectivity of G.

For this reason, we expect that all the results obtained in Chapter 2 still hold in

an infinite-dimensional context. In fact, as long as some proofs are extended from the

discrete to the continuous case, all the known results we have used (such as the techniques

of [1] and [12]) are still valid.

In the end, we will obtain again a necessary and sufficient condition for the con-

vergence of the evolution operator to P0. However, while almost every definition and

property can be naturally generalized, there is a concept which we will focus on, as it is

not obvious to be treated in the metric setting: the union of two (or more) metric graphs.

In fact, in the literature a general concept of union graph which we can refer to is not

available. Therefore, we are going to introduce a reasonable definition of union when all

the metric graphs share the same number of edges. In this way, we shall obtain the metric

version of the characterization of Theorem 2.14.

4.1 Evolution problems with variable coefficients.

Generalization to infinite dimension

As we have done in Chapter 2, we first propose a general non autonomous model,

where the leading operator varies at every integer time.

Consider a finite family K = {A0, . . . , AN−1} such that for all i = 0, . . . , N − 1

Ai : D(Ai) ⊂ X → X
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is a linear operator on a Banach space X. We also assume that every Ai generates a

strongly continuous semigroup
{
etAi
}
t≥0

. All the results about the well-posedness of the

abstract Cauchy problem 
du

dt
(t) = Aiu(t), t ≥ 0,

u(0) = u0 ∈ X
(ACPi)

are assumed to be known (see Theorem 3.17 and Chapter II.6 of [13]).

We are interested in analyzing the following non autonomous problem:
d+u

dt
(t) = Ajku(t), t ∈ [k, k + 1), k ∈ N,

u(0) = u0 ∈ X,
(4.1)

where {jk}k≥0 is a sequence taking values in {0, . . . , N − 1}. Looking at the system (4.1),

it is apparent that a classical solution is in general mot expected. In fact, unless we require

that u(k) ∈ D(Ajk), for all k ≥ 0, there is no hope that a possible solution is differentiable

even at each integer time k. Hence, as we have done in the finite-dimensional case, we

can only weaken the concept of solution with the following

Definition 4.1. A continuous function u : [0,+∞) → X is called mild solution of (4.1)

if u(0) = u0 ∈ X and

u(t) = u0 +
k−1∑
h=0

Ajh

ˆ h+1

h

u(s)ds+ Ajk

ˆ t

k

u(s)ds, t ∈ [k, k + 1], k ∈ N. (4.2)

Notice that (4.2) is well defined: in fact, since every (Ajk , D(Ajk)) generates a C0-

semigroup, it follows that

ˆ h+1

h

u(s)ds ∈ D(Ajh), ∀h = 0, . . . , k − 1 and

ˆ t

k

u(s)ds ∈ D(Ajk).

In addition, one can naturally generalize the proof of Theorem 2.3 to the current frame-

work and, hence, prove that if problem (4.1) admits a mild solution, then this is also

unique.

Following the guidelines of Chapter 2, we now introduce the evolution operator in

the space of bounded operators B(X)

S(t) :=

etAj0 t ∈ [0, 1],

e(t−k)AjkS(k) t ∈ [k, k + 1],
∀t ≥ 0, (4.3)
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which is still strongly continuous since so are etAjk for all k ≥ 0 and, also in this case,

{S(t)}t≥0 is no longer a semigroup. We are going to prove that

Theorem 4.2. The continuous function given by

t 7→ S(t)u0, ∀t ≥ 0 (4.4)

is the unique mild solution of (4.1).

Proof. Since we have already remarked that the uniqueness holds, we only need to verify

that (4.4) satisfies (4.2) and the initial condition. The latter is clearly verified due to the

property of the semigroup generated by Aj0 .

Then, for every t > 0 let k ∈ N such that t ∈ (k, k + 1] and consider the following

abstract Cauchy problem
du

dt
(t) = Ajku(t), t ∈ [k, k + 1)

u(k) = eAjk−1eAjk−2 · · · eAj0u0 ∈ X.
(4.5)

It is well known that one can express the unique mild solution of (4.5) in terms of the

semigroup generated by Ajk is given by

e(t−k)Ajku(k) = u(k) + Ajk

ˆ t

k

e(s−k)Ajku(k)ds (4.6)

and since s ∈ [k, k + 1], (4.6) can be rewritten as

u(t) = u(k) + Ajk

ˆ t

k

u(s)ds. (4.7)

Now we consider the problem
du

dt
(t) = Ajk−1

u(t), t ∈ [k − 1, k),

u(k) = eAjk−2eAjk−3 · · · eAj0u0 ∈ X.
(4.8)

This admits a unique mild solution u(·) which can be continuously extended to t = k by

computing

u(k) := lim
t→k−

u(t).
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In this way, u(·) uniquely solves (4.8) also on [k, k + 1] and verifies

u(k) = eAjk−1u(k − 1)

= u(k − 1) + Ajk−1

ˆ k

k−1

e(s−(k−1))Ajk−1u(k − 1)ds

= u(k − 1) + Ajk−1

ˆ k

k−1

u(s)ds.

(4.9)

Hence, by substituing (4.9) in expression (4.7), we get

u(t) = u(k − 1) + Ajk−1

ˆ k

k−1

u(s)ds+ Ajk

ˆ t

k

u(s)ds.

Therefore, it is clear that, proceeding recursively, u(t) satisfies (4.2) for all t > 0.

We will still be interested in studying the asymptotic behaviour of models like (4.1).

In particular, we want to know whether S(t) converges uniformly towards some bounded

operator M , namely

lim
t→+∞

‖S(t)−M‖L(X) = 0.

Similarly to the finite-dimensional setting, when {jk}k≥0 is a Markov chain with state

space {0, . . . , N − 1}, the notion of almost sure convergence

P
Å

lim
t→+∞

‖S(t)−M‖L(X) = 0

ã
= 1

remains the same.

Passing to the limit for t → +∞, we will obtain an infinite (random) product of

linear operators, written in terms of semigroups generated by A0, . . . , AN−1. In addition,

when we study the random diffusion on metric graphs, we will see that every factor of

the infinite product will be a contraction. Hence, in this case it is still possible to apply

results in [1] and [12].

4.2 The continuous heat equation on evolving graphs

4.2.1 An introductive example

In order to introduce the reader to the dynamics of a random evolution model in the

continuous framework, we first propose a simple example.

Consider one interval of length ` = 2, along which we intend to study the heat
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equation u̇(t, x) = u′′(t, x), x ∈ [0, 2],

u(0, x) = u0(x),

where u0 ∈ L2(0, 2) and as usual we adopt the notations u̇ = d
dt

and u′ = d
dx

. In particular,

we are going to analyze two different and well-known boundary value problems: in one

case, we decide to impose two Neumann conditions at x = 0 and x = 2, whereas the sec-

ond setting keeps the same constraints at the boundaries, plus one additional Neumann

condition at the middle point x = 1.

N N N N N

0 02 21

Model A Model B

Model A can be interpreted as an example of diffusion problems studied in Chapter

3. Here the graph is trivial, since it is just one edge of length ` = 2, and the leading

operator ∆1 is the Kirchhoff-Laplacian

∆1u(x) = u′′(x), x ∈ [0, 2],

with domain

D(∆1) =
{
u ∈ H2(0, 2) : u′(0) = 0 = u′(2)

}
.

Based on what we have shown in Chapter 3, we deduce that ∆1 is densely defined, closed,

self-adjoint and generates a contractive C0-semigroup
{
et∆1

}
t≥0

. In this simple example,

we are also able to fully determine the spectrum of ∆1, which is given by

σ(∆1) =

ß
λk = −k

2π2

4
, k = 0, 1, 2, . . .

™
,

with associated eigenfunctions

e0(x) =
1√
2
, x ∈ [0, 2],

ek(x) = cos

Å
kπ

2
x

ã
, x ∈ [0, 2], k ≥ 1.
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In this way, for every initial condition u0 ∈ L2(0, 2), we can explicitly write the mild

solution in terms of the spectral representation

u(t) = et∆1u0 =
+∞∑
k=0

etλk(u0, ek)L2(0,2) ek

and, as we expect, the limit distribution for long times agrees with the average of u0

computed on the interval [0, 2]

lim
t−→+∞

u(t) = P0u0 =
1

2

ˆ 2

0

u0(x)dx = −
ˆ

[0,2]

u0.

Regarding Model B, the leading operator is still the second derivative

∆2u(x) = u′′(x), x ∈ [0, 2],

but with different domain

D(∆2) = {u ∈ L2(0, 2) : u1 := u
∣∣
(0,1)
∈ H2(0, 1), u2 := u

∣∣
(1,2)
∈ H2(1, 2),

u′1(0) = u′1(1) = 0 = u′2(1) = u′2(2)}.
(4.10)

Here the dynamics is completely different from the previous one: in fact, the Neumann

condition placed in x = 1 acts like an insulating “wall” through which heat exchanges are

not allowed. Hence, we are studying two parallel and isolated diffusion systems: one on

[0, 1], one on [1, 2].

This suggests that, also in this case, an efficient and equivalent way of analazying

Model B is based on those diffusion models presented in Chapter 3. In fact, one can

easily see that

L2(0, 2) and L2(0, 1)⊕ L2(0, 1)

are identified by the isometric isomorphism

Φ: L2(0, 2) → L2(0, 1)⊕ L2(0, 1)

u 7→ (u1, u2),

where

Φ(u(x̃)) =

(
u1(x)

u2(x)

)
=

(
u(x̃)

u(x̃− 1)

)
, x ∈ [0, 1], x̃ ∈ [0, 2].
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Through Φ, we notice that Model B is equivalent to a new diffusion problem, where

∆2 := Φ∆2,

∆2

(
u1(x)

u2(x)

)
=

(
u′′1(x)

u′′2(x)

)

corresponds to the Laplace operator of a graph G with two disconnected edges {e1, e2} of

equal length `1 = `2 = 1.

N N N

0 21

e1 e2

0 1 10

G

In this new framework, one can show that the heavy notation of expression (4.10)

gets simple and the domain of ∆2 is actually

D(∆2) =
{
u ∈ H2(G) : u satisfies (Cc) and (Kc)

}
.

Hence, ∆2 has all the nice properties of ∆1 and also in this case we are able to find

the spectrum

σ(∆2) =
{
µk = −k2π2, k = 0, 1, 2, . . .

}
,

where every eigenvalue has now double multiplicity. It is convenient to change notation

and count all the eigenvalues twice as follows

0 = µ0 = µ1 < |µ2| = |µ3| < . . . < |µ2k| = |µ2k+1| < . . .

One orthonormal basis of eigenfunctions is then given by

f0 =

(
1

0

)
, f1 =

(
0

1

)

and

f2k =

(√
2 cos (kπ·)

0

)
, f2k+1 =

(
0√

2 cos (kπ·)

)
, ∀k ≥ 1.

Applying again the Spectral Theorem, for every intial condition g ∈ L2(G), one gets

u(t) = et∆2f =
+∞∑
k=0

etµk(g, fk)L2(G) fk
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and then for long times

lim
t−→+∞

u(t) = (g, f0)L2(G) f0 + (g, f1)L2(G) f1 =

Ö ´ 1

0
g(x)dx

´ 1

0
g(x)dx

è
=

Ö
−́G(1) g

−́G(2) g

è
,

namely the heat distribution converges towards the average on each connected component.

Going back to the initial framework and starting from Φ−1g =: u0 ∈ L2(0, 2), the limit

distribution will agree withÖ´ 1

0
u0(x)dx

´ 2

1
u0(x)dx

è
=

Ü
−́

[0,1]
u0

−́
[1,2]

u0

ê
,

which is consistent with what one expects from the classical results about diffusion prob-

lems. In particular, as represented in Fig. 4.1, notice that the averages of u0 on [0, 1] and

on [1, 2] are generally different and clearly

−
ˆ

[0,1]

u0 + −
ˆ

[1,2]

u0 6= −
ˆ

[0,2]

u0.

e1 e2 G

Figure 4.1: Possible configuration of the limit distribution on graph G, given by the
average of the initial datum on each edge.

Remark 4.3. It is convenient to point out that also Model A can be equivalently studied

as a diffusion problem on a new graph G ′ with two edges. In fact, adding an internal

vertex at the middle and requiring continuity of functions and their derivatives do not

change the dynamics of the model. Through isomorphism Φ, one can still consider the

Kirchhoff-Laplace operator ∆1 := Φ∆1 on the new connected graph:
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e1 e2

G ′

The spectrum σ(∆1) remains unchanged, but now the eigenfunctions in D(∆1) ⊂
L2(0, 1)⊕ L2(0, 1) are

e0 =

(
1√
2

1√
2

)
, ek =

(
cos
(
kπ
2
·
)

cos
(
kπ
2
·
)) , k ≥ 1.

Clearly, given an initial datum g ∈ L2(0, 1) ⊕ L2(0, 1), the long time behaviour does not

vary and we obtain again the convergence of the solution towards a constant function on

the whole graph G ′:

lim
t−→+∞

u(t) = (g, e0)L2(G′) e0

=
1

2

Çˆ 1

0

g1(x)dx+

ˆ 1

0

g2(x)dx

å(
1

1

)

=
1

2

Çˆ 1

0

u0(x)dx+

ˆ 2

1

u0(x)dx

å(
1

1

)

=

(
−́

[0,2]
u0

−́
[0,2]

u0

)

which is actually the same constant as in the old framework based on (∆1, D(∆1)).

e1 e2
G ′

Figure 4.2: The heat distribution converges to the average −́
[0,2]

u0 (in orange) for some

initial condition u0 ∈ L2(0, 2).

Starting from these two models, we now introduce the following scenario: imagine

that we are going to study the heat diffusion along the interval [0, 2] with Neumann

boundary conditions. However, problem’s features are not the same during the evolution

in time: in fact, at each integer time we can decide to add or remove one third Neumann
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condition at x = 1. In particular, the choice of considering three or two constraints is

determined by some suitable random law (for instance, a Markov chain).

This means that the system may continuously switch from Model A to Model B:

hence, it is like we were analyzing a problem composed of two subsystems, which are

linked in some intervals and isolated in others, according to the chosen random law. As

one may guess, a problem like this can be easily described through one of the models

presented in Section 4.1. In particular, at every integer time the Markov chain governing

the random evolution can jump from the connected graph G ′ to the disconnected graph

G and vice versa.

N N N N N

0 02 21

Model A Model B

At this point, we wonder how this system behaves for long times: we would like to

understand which configuration will more influence the limit heat distribution. Will the

heat exchanges through x = 1 help to reach an uniform distribution along the whole

interval like in Fig. 4.2? Or, on the contrary, will we get an asymptotic behaviour similar

to the one in Fig. 4.1, due to the presence of the barrier during some time intervals?

Obviously, this will depend on the particular mechanism driving the jumps from one to

the other graph.

In the next section, we will discuss on this and other general models, where the system

can also assume more than two configurations described by various metric graphs. Thanks

to the results we will prove, which are similar to those presented in the combinatorial case,

we will see what happens for long times in this first example. Provided that we require

the irreducibility of the Markov chain, the solution will converge to the average of the

initial datum over the entire interval [0, 2].

4.2.2 The general model

In this section we give a generalization of the analysis made in Chapter 2, studying

diffusion problems on metric graphs which are no longer autonomous.
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As we have seen in Chapter 3, fixed a metric graph G constant in time, the long-time

behaviour of the C0-semigroup generated by the Kirchhoff-Laplace operator depends on

the topological structure of the graph. In fact, the connectivity of the network plays a

fundamental role, as the example introduced above confirms. When G is connected, the

limit heat distribution is an average of the initial datum on the whole graph, otherwise

the average is computed on each connected component.

As a consequence, according to the idea proposed at the end of the previous section,

we would like to understand what happens when we study a diffusion on an environment

which does not remain the same during time. In addition, what influence these changes

may have on the dynamics of the system? The previous example gives us an intuitive idea:

we can imagine a scenario where the non autonomous element is given by the presence or

the absence of a central Neumann condition. The latter randomly joins and disjoins the

network on which the heat spreads, making the dynamics change.

The same approach can be repeated for more general cases, as we have done in the

finite-dimensional framework. However, we first need to point out a substantial difference

between the heat equation in metric and combinatorial settings. In the latter, the heat

is only concentrated at the vertices: in fact, its distribution is given by a vector with |V |
complex components, each of them indicating the concentration at every node. In this

model, edges only represent the possible communication between their endpoints, namely

they give an idea about the general connectivity of the combinatorial graph.

The situation is reversed in the continuous framework, which is certainly closer to

the physical problem: in fact, as the adjective “continuous” suggests, here the heat no

longer involves only the vertices of the graph. The heat distribution is always a vector,

but now it has |E| components, where each one is an L2-function on an edge. Therefore,

we can understand that values at points are not even taken into account singularly: what

is really important is to study the heat distribution along the edges. Here vertices have

to join the edges, they now represent the connectivity of the metric graph and, through

the standard node conditions, they govern the heat transfer at the junctions.

Heuristically, edges and vertices exchange their roles in discrete and continuous set-

tings. Based on this “duality”, we can now better understand what we mean when we talk

about random evolution of metric graphs. As in the combinatorial case, we are interested

in studying a network environment whose connectivity randomly changes in time. Hence,

if in Chapter 2 this is modeled by the evolution of edges, here we will focus on the changes

of the vertices during time.

Consider a family of metric graphs C = {G1, . . . ,GN} which are finite, but not nec-

essarily simple. These represent the possible stages reached by the network environment
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during the time, based on the same idea as for the discrete random evolution. While in

Chapter 2 we require that graphs in C have the same set V , here it is not necessary. What

is really fundamental is that G1, . . . ,GN share the same set of edges

E = {e1 ≡ [0, `1], . . . , em ≡ [0, `m]},

whereas vertices can have different configurations graph by graph.

Also in this case, we introduce a probability space (Ω,F ,P) and a stationary Markov

chain {jk}k≥0 which still takes values in the set of graphs C. Based on the results proved

in Chapter 2, it seems reasonable to request that {jk}k≥0 is still irreducible.

At this point, we can consider the Kirchhoff-Laplace operator associated with each

graph in C:
(∆1, D(∆1)), . . . , (∆N , D(∆N)).

As we have seen in the previous chapter, they satisfy several nice properties, in particular

they all generate a contractive strongly continuous semigroup
{
et∆i

}
t≥0

, for i = 1, . . . , N .

Hence, we now can focus on the unknown function of the model we are about to

present, namely

u(t) =

Ü
u1(t)

...

um(t)

ê
∈

m⊕
j=1

L2(0, `j),

which represents the heat distribution at time t along every edge. Hence, based on systems

in Section 4.1, the continuous random evolution (CRE) on metric graphs is given by
d+u

dt
(t) = ∆(jk)u(t), t ∈ [k, k + 1), k ∈ N,

u(0) = f ∈
⊕m

j=1 L
2(0, `j).

(CRE)

We immediately notice that (CRE) and the discrete random evolution model (DRE)

has the same structure: they both are described by an evolution problem whose leading

operator is non autonomous and stochastic, according to the evolution of {jk}k≥0. There-

fore, we are still interested in analyzing the dynamics of (CRE) trajectory by trajectory,

fixing an arbitrary realization ω ∈ Ω.

Based on the evolution of (DRE), the reader can already imagine how the dynamics

works. In fact, during every unit time interval, also in this case the system describes

the heat diffusion on the graph determined by the chain. However, in order to better

understand how the passages from one to another graph occur, let us see a simple example.

Graphs in Fig. 4.3 are taken all equilateral, namely all the edges have the same length,

which we set equal to 1. They have different structure from each other, so it may be
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G1 G2

G3 G4

Figure 4.3: Possible graphs contained in family C: the path graph G1 = I(L) of total length
L = 3; the complete graph G2 = KV with V = 3 vertices; the star graph G3 = S(L,E) of
total length L = 3 and E = 3 edges; the flower graph G4 = F(L,E) of total length L = 3
and E = 3 edges, also called petals.

difficult to realize how (CRE) model is meant in this case.

Looking at the Gis, one can guess that the diffusion on every network does not follow

the same dynamics. In fact, in every configuration the edges are differently linked to each

other by the nodes and consequently the standard vertex conditions change every time.

For instance, in the path graph G1, the external edges are not directly connected and heat

exchanges between them necessarily occurs through the central one. On the other hand,

the structure of the triangle K3 makes every edge joined to the others.

Furthermore, one can explicitly compute the nonzero largest eigenvalue λ1(Gi) (also

called spectral gap) of the Kirchhoff-Laplacian of these graphs. It is well-known (see, for

instance, [19]) that

λ1(G1) = −π
2

9
, λ1(G2) = −4π2

9
, λ1(G3) = −π

2

4
, λ1(G1) = −π2.

Hence, despite the solution always converges towards

P0f =
1

3

3∑
j=1

ˆ 1

0

fj(x)dx, f ∈
3⊕
j=1

L2(0, 1),

this limit distribution is reached at a different convergence rate |λ1(Gi)|, depending on the

specific case.
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Let us going back to (CRE) model: fixing a realization ω ∈ Ω, a sequence of graphs

{jk(ω)}k≥0 is determined. Roughly speaking, at every integer time we freeze the system

on which we are working and we pass to a new graph, where we study the diffusion for the

next unit time interval. In this way, for all t = k, k ∈ N, each edge ej of the new network

– now differently organized – inherits as initial condition the final heat distribution on

the same ej of the old graph.

Referring to the example in Fig. 4.3, this means that the evolution can switch, for

instance, from the complete graph (where the heat has two passageways on every edge)

to the star graph (where there is only one vertex joining the three edges and their second

endpoints have a Neumann boundary condition respectively). And again, after one unit

time interval, we may reach the flowergraph, whose edges are all linked by one single

common vertex, and so on.

This is how (CRE) behaves when C contains only connected graph. Obviously, when

the Markov chain visits graphs which can also be disconnected, this further influences the

dynamics’ evolution.

Coming back to mathematical aspects, applying results of Section 4.1, the unique

mild solution of (CRE) is given by

u(t) = S(t)u0 = e(t−k)∆(jk)e∆(jk−1) · · · e∆(j0)u0, t ∈ [k, k + 1]

and the stochastic evolution operator {S(t)}t≥0 – despite it is no longer a semigroup –

inherits both contractivity and strong continuity from the semigruops of the ∆(jk)s.

Asympotics and union of metric graphs

Now we focus on the long-time behaviour of {S(t)}t≥0. As we have remarked in

Section 4.1, studying the limit of this operator for t → +∞ means dealing with an

infinite random product, where each term is given by a contraction semigroup of the form

e∆(jk). As long as we easily extend some proofs to the infinite-dimensional framework, we

prove the same results proposed in Chapter 2.

Given the identically 1-function 1 = (1, . . . , 1)>, we still denote by

P0 :
m⊕
j=1

L2(0, `j)→ 〈1〉

the orthogonal projection onto the constants on the whole graph. Therefore, we focus

again on the following
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Problem (P): Determine whether and under which conditions the evolution operator

{S(t)}t≥0 converges almost surely to the projection P0.

At this point, we introduce the orthogonal projection

P :
m⊕
j=1

L2(0, `j)→
N⋂
i=1

ker∆i, (4.11)

whose range is the intersection of all the kernels of the initial Kirchhoff-Laplace operators.

Then, we are able to extend

Theorem 4.4. Let us consider model (CRE) and let {jk}k≥0 be an irreducible Markov

chain. Then the evolution operator S(t) converges uniformly and almost surely towards

the projection P , namely

P
Å

lim
t−→+∞

S(t) = P

ã
= 1.

Proof. We can still follow the guidelines in [1] and [12], where the authors also deal with

an infinite-dimensional framework.

We only need to check that

ker ∆i = Fix et∆i , ∀t > 0, i = 1, . . . , N (1)

and

‖et∆if‖ < ‖f‖, ∀f /∈ ker∆i, ∀t > 0, i = 1, . . . , N. (2)

Since each semigroup et∆i can be still spectral represented, one can easily extend to

the infinite-dimensional case the computations shown in Lemma 1.3 and Lemma 2.12.

Thus, (1) and (2) follow and, arguing as in Lemma 2.16, Lemma 2.17 and Theorem 2.18,

the proof is achieved.

As we can easily guess, Theorem 4.4 directly implies some corollaries.

Corollary 4.5. Consider family C = {G1, . . . ,GN} containing the initial metric graphs of

model (CRE). Then

(i) If C contains only connected graphs, then the evolution operator {S(t)}t≥0 converges

uniformly to the orthogonal projection P0:

lim
t→+∞

S(t) = P0 uniformly.
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(ii) If C has at least one connected graph, then then the evolution operator {S(t)}t≥0

converges uniformly to the orthogonal projection P0:

lim
t→+∞

S(t) = P0 P-almost surely.

Proof. One immediately notice that with at least one connected graph in C, then its kernel

exactly agrees with the subspace of constant functions on each edge. Thus

rgP =
N⋂
i=1

ker ∆i = 〈1〉 = rgP0

and, by uniqueness of the orthogonal projection onto a closed subspace of an Hilbert

space, it follows that P ≡ P0.

Taking into account the proof of Proposition 2.7, the thesis follows.

Therefore, when we study the diffusion on a network which is infinitely often con-

nected, then the heat spreads until converging to the average on the whole set of edges.

This is also the situation which occurs in the introductive example described at the very

beginning, where family C contains two graphs and one of them is connected.

Remark 4.6. Theorem 4.4 confirms that the connectedness of at least one graph in C is

sufficient, but also not a necessary condition. In fact, we recall that (P) holds if and only

if the orthogonal projections P and P0 coincide, namely when their ranges agree:

N⋂
i=1

ker ∆i = 〈1〉. (4.12)

We can easily show that (4.12) is satisfied even if no one ker ∆i is the subspace of con-

stant functions (i.e. no one graph is connected). For instance, suppose N = 2 and

E = {e1, e2, e3}; additionally assume that the kernels of ∆1 and ∆2 are respectively

spanned by

ker ∆1 = 〈

Ö
1

1

0

è
,

Ö
0

0

1

è
〉,

ker ∆2 = 〈

Ö
1

0

0

è
,

Ö
0

1

1

è
〉.
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Then, one can prove that given f ∈ ker ∆1 ∩ ker ∆2, f is necessarily constant and (4.12)

follows.

The next goal to achieve is to find a necessary and sufficient condition in order that

(P) is solved. Based on the results proved in the discrete setting, one may suppose that

the correct hypothesis to be imposed is linked to the connectedness of the union of graphs

in C. This is reasonable, but not obvious: in fact, a formal and rigorous definition of union

of metric graphs is not present in literature.

Given two combinatorial graphs G = (V1, E1) and G2 = (V2, E2), we can then define

the notion of their union, as long as we enumerate both sets of vertices. For instance,

assuming that |V1| < |V2|, let us denote by

V1 = {v1, . . . , vk}, for some k = |V1| ≥ 1

and

V2 = {v1, . . . , vk, . . . , vh}, for some h = |V2| ≥ 1.

In this way, we are able to identify each vertex in V1 with one in V2 and, thus, the definition

G1 ∪G2 = (V1 ∪ V2, E1 ∪ E2) (U)

is well-posed. Notice that (U) is not invariant under automorphism of Vi, i = 1, 2. In

fact, if we change the enumeration of one or both set of vertices, we will obtain a different

union graph.

Coming back to the continuous framework, let us consider now two metric graphs G1

and G2. In particular, we are only interested in the case when they share the same set

of edges E = {e1, . . . , em}. In order to introduce a corresponding notion of (U), the first

intuitive idea one may have is to consider the union graph of the combinatorial supports

of the Gis. In fact, let

G1 = (G1, `) and G2 = (G2, `),

where G1 = (V1, E), G2 = (V2, E) and ` is the edge weight function

` : E → (0,+∞)

e 7→ `e.
(4.13)

Hence, we may introduce the union G1 ∪ G2 as a metric graph with the same edge
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weight function (4.13) and with combinatorial support

G1 ∪G2 = (V1 ∪ V2, E), (U’)

provided that V1 and V2 are enumerated in a suitable way and then comparable.

Though, this definition is not well-posed, as the following example shows.

Example 4.7. We consider again graphs G and G ′ introduced in the introductive example

and we enumerate their vertices as shown in Fig. 4.4. Looking at this example, one

G ′ G G ′ ∪ G ?

v1 v1 v1v2 v2 v2v3 v3v3 v4 v4

Figure 4.4

intuitively expects that the union gives again the graph G ′. Instead, applying (U’), we

obtain the graph in Fig. 4.4, which is not G ′ and it does not even have the same set E of

the two initial graphs.

In view of the above example, we give a more reasonable and consistent definition,

for which the union graph contains all the junctions of both G1 and G2.

We start by considering again the notion of metric graph: we are going to give a more

formal version of the definition introduced in Chapter 3. Let us consider an initial family

of intervals

E = {e1, . . . , em},

where each of them has two endpoints, which we denote by e−j and e+
j . Let

E± = {e−1 , e+
1 , . . . , e

−
m, e

+
m}

be the set of the 2m points of the intervals in E. Hence, every equivalence relation R

defined on E± induces an oriented metric graph with set of edges E and set of vertices

given by the quotient

V :=
aE±

R
.

In addition, let S ⊂ E± × E± and consider the reflexive, symmetric and transitive

closure S of S, obtained just by adding:

– every (x, x) for all (a, b) ∈ S, where x = a or x = b (reflexive closure);
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– every (y, x) for all (x, y) ∈ S (symmetric closure);

– every (x, z) for all (x, y), (y, z) ∈ S (transitive closure).

By construction, S is the smallest equivalence relation containing S. Hence, it follows

that the reflexive, symmetric and transitive closure of any subset of E± × E± defines a

metric graph.

We can now consider some intuitive examples, starting from the family

E = {e1, e2, e3},

where, from now on, the orientation of each ej is represented by an arrow with tail e−j
and head e+

j .

1. Let

R1 = E± × E±,

then we obtain the flower graph with three petals, where every endpoint is identified

with each other.

2. Consider the following subset of E± × E±:

S =
{

(e−1 , e
−
2 ), (e−2 , e

−
3 ), (e−1 , e

−
3 ), (e+

1 , e
+
2 ), (e+

2 , e
+
3 ), (e+

1 , e
+
3 )
}
.

If we take its reflexive and the symmetric closure denoted by R2, then the transitivity

follows, too. Hence, the equivalence relation R2 induces the pumpkin graph with

three slices.

3. Take

T =
{

(e+
1 , e

−
2 ), (e+

2 , e
−
3 ), (e+

3 , e
−
1 )
}

and we denote by R3 its reflexive, symmetric closure, which is automatically tran-

sitive again. In this case, the equivalence relation R3 induces the complete graph

with three vertices, namely a clockwise-oriented triangle.

e1

e2

e3

e1 e2

e3

e1 e2

e3

Figure 4.5: A flower graph, a pumpkin graph and a complete graph induced by the
equivalence relations R1, R2, R3, respectively.
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We are now able to give a definition of union of N = 2 oriented metric graphs, which

can be easily generalized for every N ≥ 1.

Definition 4.8 (Union of metric graphs). Let G1 and G2 be two oriented metric

graphs which share the same set of edges E. Moreover, let R1, R2 ⊂ E± × E± be the

equivalence relations on E± which induce G1 and G2, respectively. Consider the symmetric

and transitive closure of R1 ∪R2 ⊂ E± × E± and denote it by R∪.

Then, we call union graph G1 ∪ G2 the oriented metric graph induced by R∪.

Remark 4.9. The union of two equivalence relations is not necessarily an equivalence

relation, because only the reflexivity is invariant under this operation. For this reason, in

the above definition we need to consider the symmetric and transitive closure of R1 ∪R2.

In Fig. 4.6 we can consider some examples of union graphs.

G1 G2 G1 ∪ G2

e1

e1 e1

e2

e2 e2

e3

e3 e3

G1 G2 G1 ∪ G2

e1 e1 e1e2 e2 e2

G1

e1 e2

e3

G2

e1 e2

e3

e1

e3

e2

G1 ∪ G2

Figure 4.6: Some examples of union graph.

Remark 4.10. We want to stress that the notion of union just introduced is not invariant

under the orientation imposed on each initial graph. For instance, we can take the same
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graphs G1 and G2 in the third example in Fig. 4.6 and just reverse the orientation of one

edge as shown in Fig. 4.7.

G1

e1 e2

e3

G2

e1 e2

e3

G1 ∪ G2

e1 e2

e3

Figure 4.7: If we reverse the orientation of just one edge, the resulting union is different.

We notice that the resulting union gives the star graph again, which is clearly different

from the previous G1 ∪ G2. This is reasonable, in fact changing the orientation in G1 is

related to considering a different equivalence relation R1 on E±, which induces a different

oriented metric graph, even though the topological structure is the same as the previous

one. Therefore, since Definition 4.8 directly depends on R1 and R2, we can easily deduce

why the union G1∪G2 is different from the previous case. On the other hand, it turns out

that the union is invariant under the simultaneous reversion of every edge of both graphs.

We recall that the goal is to find a necessary and sufficient condition for (P), in

particular we would like to obtain again

(P) is solved ⇐⇒ the union of graphs in C is connected. (??)

In view of this, the dependence on the orientation highlighted in Remark 4.10 may be a

problem. In fact, since the diffusion problem is invariant under orientation, the latter is

never fixed on graphs in C. Hence, depending on a particular choice of orientation of the

single graphs, we could obtain diffent unions G1 ∪ . . .∪GN , among which some of them is

not connected, and this would make (??) unconsistent.

We show that this cannot happen thanks to the following

Lemma 4.11. Let G1, . . . ,GN be metric graphs, with associated Kirchhoff-Laplace opera-

tors ∆1, . . . ,∆N . Then

G := G1 ∪ . . . ∪ GN is connected ⇐⇒
N⋂
i=1

ker ∆i = 〈1〉. (4.14)

Notice that this lemma is exactly the metric version of Lemma 2.11 and the proof

will be similar, indeed. One has only to extend the result, taking into account the new
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definition of union.

Proof. We show the proof for N = 2, then one can easily extend the result for an arbitrary

N by induction. In general, both G1 and G2 have a certain number of disjoint connected

components:

G(1)
1 , . . . ,G(m)

1 s.t. G1 =
m⊔
j=1

G(j)
1 , for some m ∈ N

and

G(1)
2 , . . . ,G(n)

2 s.t. G2 =
n⊔
k=1

G(k)
1 , for some n ∈ N.

Since the connectedness is just a topological property, notice that they do not change and

depend on the particular choice of orientation.

Now assume that G is connected: we need to show that every function ker ∆1 ∩
ker ∆2 ⊆ 〈1〉. Thus, we take f ∈ ker ∆1 ∩ ker ∆2, in particular from the theory presented

in Chapter 3 it is well-known that f is constant on each connected component of both

G1 and G2. Take x, y ∈ G and without loss of generality we can assume that x ∈ eh and

y ∈ el with h 6= l. Hence, by connectedness of G, there exists a path of incident edges

Γxy = {eh, ei1 , . . . , eiM , el} linking x and y:

x ∈ eh ∼ ei1 ∼ · · · ∼ eiM ∼ el 3 y,

where here∼means the incidence relation. In particular, edges in Γxy can be incident in G1

and/or in G2. Thus, taking into account that f is constant on the connected components

of both graphs, we deduce that f is constant along Γxy and in particular

f(x) = f(y).

Byr the arbitrariness of x, y, we conclude that f is constant.

In order to prove the opposite implication, we are going to show that if G is dis-

connected, then we can find a non constant function such that f ∈ ker ∆1 ∩ ker ∆2. For

simplicity, assume that G has only two connected components: G(A) and G(B). Then, both

contain a certain number of connected components of G1 and G2. In particular, we set

JA =
¶
j ∈ {1, . . . ,m} : G(j)

1 ⊆ G(A)
©
, JB =

¶
j ∈ {1, . . . ,m} : G(j)

1 ⊆ G(B)
©

and

KA =
¶
k ∈ {1, . . . , n} : G(k)

2 ⊆ G(A)
©
, KB =

¶
k ∈ {1, . . . , n} : G(k)

2 ⊆ G(B)
©
.
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Due to the fact that G is disconnected, it follows that

JA ∩ JB = ∅, KA ∩KB = ∅,

in fact there cannot exist some connected components of G1 or G2 shared by G(A) and

G(B). This is always true, even if, roughly speaking, we reverse the endpoints of some edge

in one of the initial graphs. Since the connected components of G1 and G2 are invariant

under orientation, we will never find an orientation for which some index j is in JA ∩ JB
or some k is in KA ∩ KB. Hence, taking the characteristic functions on each connected

component such that

ker ∆1 = 〈{11,j}mj=1〉 and ker ∆2 = 〈{12,k}nk=1〉,

it is always true that ∑
j∈JA

11,j = 1A =
∑
k∈KA

12,k (4.15)

and ∑
j∈JB

11,j = 1B =
∑
k∈KB

12,k. (4.16)

At this point, we only need to take some function of the form

f = α1A + β1B, α, β ∈ C

and from (4.15) and (4.16) one gets that f can be written as a linear combination of both

basis of ker ∆i, i = 1, 2:

f = α
∑
j∈JA

1j + β
∑
j∈JB

1j =⇒ f ∈ ker ∆1

and

f = α
∑
k∈KA

1k + β
∑
k∈KB

1k =⇒ f ∈ ker ∆2.

Thus, the proof is complete.

This lemma is fundamental, since we have just characterized the connectedness of the

union graphs in terms of the intersection of all the kernels ker ∆i. Hence, from the fact

that every Kirchhoff-Laplace operator does not depend on the orientation of graphs in C,
we can conclude that so does the connectedness of G.

At this point, in order to verify that (??) holds, we follow the same argumentation
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made in Chapter 2 and we extend the following

Lemma 4.12. Let G1, . . . ,GN be metric graphs, with associated Kirchhoff-Laplace opera-

tors ∆1, . . . ,∆N . Let G := G1 ∪ . . . ∪ GN be their union with associated Kirchhoff-Laplace

operator ∆. Then

ker ∆ =
N⋂
i=1

ker ∆i. (4.17)

Remark 4.13. Before proving this lemma, we underline that also ker ∆ does not depend

on the orientation of the graphs in C. It only refers to the connected components of G,

which do not vary. In fact, one has just to focus on each component and consider it, in

turn, as an union of subgraphs of the Gis. Therefore, applying Lemma 4.11, it turns out

that even the connectedness of these is invariant under orientation.

Proof. Once proved Lemma 4.11, this proof is similar to the one of Lemma 2.15, as long

as we modify the basis of ∆i, i = 1, . . . , N. We show the case when N = 2 and, to avoid a

further heavy notation, assume that the union graph has only two connected components.

After proving the thesis under these hypotheses, it will be easy to obtain the general case.

Then, if the union graph has G(A) and G(B) as connected components, then as we

know the kernel of ∆ is spanned by the characteristic functions

{1A,1B}.

In the previous proof, we have obtained that∑
j∈JA

11,j = 1A =
∑
k∈KA

12,k (4.18)

and ∑
j∈JB

11,j = 1B =
∑
k∈KB

12k, (4.19)

where JA, JB, KA, KB have the same definition as before.

Then, if f ∈ ker ∆, we have shown in the proof of Lemma 4.11 that this implies that

f ∈ ker ∆i, for all i = 1, 2.

On the other hand, we now take f ∈ ker ∆1 ∩ ker ∆2, and so f can be written as

f = α111,1 + · · ·+ αm11,m (4.20)

and

f = β112,1 + · · ·+ βn12,n. (4.21)
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Then, as we have done in the discrete case, we compare the expressions (4.20) and

(4.21), so that by construction we obtain that equality holds if and only if

αj = βk = cA, ∀ j ∈ JA, ∀ k ∈ KA,

αj = βk = cB, ∀ j ∈ JB, ∀ k ∈ KB.

Hence, recalling (4.18)-(4.19), we deduce that f can also be expressed in terms of the

characteristic functions associated with G(A) and G(B), thus

f = cA1A + cB1B,

and f ∈ ker ∆.

Once proved Lemma 4.12, we can finally state that (??) still holds in the continuous

framework. In fact, as we have found in Chapter 2, now projection P introduced in (4.11)

exactly coincide with

P :
m⊕
j=1

L2(0, `j)→ ker ∆

and then, by Theorem 4.4 and Lemma 4.11, we get the following

Theorem 4.14. Let us consider model (CRE) and let {jk}k≥0 be an irreducible Markov

chain. Moreover, let C be a finite family of graphs with union G = G1 ∪ . . . ∪ GN .

Then the evolution operator S(t) converges uniformly and almost surely towards the

projection P . In particular,

(i) When G is connected, then P coincides with the orthogonal projection onto the con-

stant functions on the edges E = {e1, . . . , em}. In addition, for any initial datum

f ∈
⊕m

j=1 L
2(0, `j), the solution of (CRE) converges strongly and almost surely to-

wards the average of f computed on E:

lim
t−→+∞

u(t) = P0f =
1∑m
j=1 `j

m∑
j=1

ˆ `j

0

fj(x)dx =: −
ˆ
G
f

(ii) When G is not connected and given by a disjoint union of G(1), . . . ,G(L), then P is

the orthogonal projection onto the constant functions on each connected component

of the union. In addition, for any initial datum f ∈
⊕m

j=1 L
2(0, `j), the solution of

(CRE) converges strongly and almost surely towards the average of f computed on

G(1), . . . ,G(L):

lim
t−→+∞

u(t) = Pf,
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where

Pf(x) =
1∑

j:ej∈G(h) `j

∑
j:ej∈G(h)

ˆ `j

0

fj(x)dx =: −
ˆ
G(h)

f, x ∈ G(h).

G1 G2

G1 ∪ G2

e1 e2

e3 e1

e2

e3

e3e1

e2

Figure 4.8: Example of two disconnected graphs with connected union: in this case the
limit heat distribution assumes the same constant value on e1, e2 and e3.
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e1 e2

e3 e1 e2

e3

G1 G2

e1 e2

e3

G1 ∪ G2

Figure 4.9: Example of two disconnected graphs with disconnected union: in this case
the limit heat distribution assumes two different constant values on e1, e2 and on e3.
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Chapter 5

Final remarks and conclusions

As we have seen, the asympotic behaviour of the proposed evolution problems can be

described in terms of the convergence of infinite products of matrices and, more generally,

contractive operators on Hilbert spaces. We have often mentioned and directly applied

results in [1, 12] about random products of contractive operators, however there is a

wide theory about the convergence of infinite and deterministic products of matrices,

where the fundamental papers [9, 10] by I. Daubechies and J. C. Lagarias are the most

representative. They have introduced the following

Definition 5.1. A set Σ = {M1, . . . ,MN} of complex square matrices is called LCP

set (left-convergent product) if all the infinite products whose factors are in Σ are left-

convergent (with respect to the matrix norm).

In these articles, they provide a set of necessary and sufficient conditions in order

that Σ is LCP by means of the eigenvalues, the eigenspaces and the spectral radii of the

involved matrices. In particular, we recall Theorem 4.1 in [9]

Theorem 5.2. Let Σ = {M1, . . . ,MN} be a finite set of square matrices. Then the

following are equivalent.

(i) Σ is LCP set whose limit function is identically 0 for every possible infinite product.

(ii) The joint spectral radius satisfies

ρ̂(Σ) := lim sup
k→+∞

(ρ̂k(Σ))
1
k < 1,

where1

ρ̂k(Σ) := sup

{∥∥∥∥∥
k∏
i=1

Mi

∥∥∥∥∥ : Mi ∈ Σ, 1 ≤ i ≤ k

}
.

1Being the supremum of a finite set, ρ̂k(Σ) is actually a maximum.

99



The problems studied by Daubechies and Lagarias are exactly the starting point and

the general framework of the models introduced in this thesis. In fact, concerning the

finite-dimensional setting, let

Σ =
¶
M1 = Qe−L(G1), . . . ,MN = Qe−L(GN )

©
,

where each one of these matrices is related to one graph on which we study the random

evolution. Hence, we recall that problem (P), namely proving that the evolution opera-

tor S(t) converges uniformly towards the orthogonal projection P0 onto the subspace of

constant functions, is equivalent to showing that

lim
t→+∞

‖QS(t)‖ = 0.

Since QS(t) is expressed by means of a product of matrices in Σ, then it immediately

follows that (P) can be solved referring to the LCP property of Σ.

However, if we only consider the results in [9, 10] and in particular Theorem 5.2,

we do not obtain satisfying results, because it turns out that Σ is LCP under restrective

hypotheses. More precisely, we recall that for Proposition 2.7 the evolution operator

converges uniformly to P0 for every possible sequence given by {jk}k≥0 (thus, Σ is LCP)

provided that every graph in C is connected. This can also be verified considering the

joint spectral radius of Σ. In fact, according to Lemma 2.6, we know that

‖Mi‖ < 1, ∀Mi ∈ Σ,

hence ∥∥∥∥∥
k∏
i=1

Mi

∥∥∥∥∥ ≤
k∏
i=1

‖Mi‖ < 1, ∀Mi ∈ Σ, 1 ≤ i ≤ k, ∀k

and taking the supremum

ρ̂k(Σ) < 1.

This implies that

ρ̂(Σ) = lim sup
k→+∞

(ρ̂k(Σ))
1
k < 1,

then Theorem 5.2 confirms the statement of Proposition 2.7.

The LCP property no longer holds when at least one graph in the family C is not

connected. In fact, assuming that the only disconnected graph is G1 and denoting by L1

its Laplacian, one gets that

M1 = Qe−L1

has norm 1. This is easily shown by taking f ∈ rgQ ∩ kerL1 (which is non empty if G is
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non connected), in fact

M1f = f =⇒ ‖M1‖ = 1.

Taking the same f as before, we can prove that every kth power of M1 has norm 1 and

then

ρ̂k(Σ) ≥ ‖Mk
1 ‖ = 1.

Additionally, since we are dealing with contractions, it also holds that

ρ̂k(Σ) ≤ 1,

hence

ρ̂k(Σ) = 1

and condition (ii) is not satisfied: we conclude that Σ is not LCP in this case.

In order to accept more general families C, where graphs are not supposed to be

all connected, one has to leave the framework of LCP sets. In fact, we have decided

to weaken the notion of convergence: instead of analyzing deterministic non autonomous

diffusion models, from the beginning we requested that a Markov chain leads the evolution.

Consequently, we have studied the almost sure convergence of the stochastic operator S(t),

excluding all those products which happen with probability 0.

This suggests to introduce the following definition, as a stochastic version of the

notion according to Definition 5.1 of LCP set proposed by Daubechies and Lagarias.

Definition 5.3. Let Σ = {M1, . . . ,MN} be a set of square matrices and let (Ω,F ,P) be

a probability space. Moreover, let j = {jn}n≥0 be a stochastic process with values in the

set of indexes σ = {1, . . . , N}.
We say that Σ is stochastically LCP if the limit product

M(j) =
∞∏
n=0

Mjn := lim
n→∞

MjnMjn−1 · · ·Mj0

exists P-almost surely. We say that Σ is stochastically LCP0 set if it is LCP and addi-

tionally M(j) = 0 P-almost surely.

This is clearly weaker than the LCP property, because it only requires the convergence

of the sequences with positive probability. However, it is the most suitable notion to

consider in the framework of the random evolution models. In this way, imposing certain

conditions on the stochastic process {jn}n≥0, we are able to present the convergence results

proved in Chapter 2 by means of the stochastic LCP property.
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Theorem 5.4. Let Σ = {e−L(G1), . . . , e−L(GN )} and consider the framework of the random

evolution model (DRE) on combinatorial graphs in C = {G1, . . . , GN}, governed by an

irreducible Markov chain {jk}k≥0.

Then the following are equivalent.

(i) Σ is stochastically LCP with limit product M(j) = P0.

(ii) The union graph G = (V,E1 ∪ . . . ∪ EN) is connected.

Equivalently, given QΣ = {Qe−L(G1), . . . Qe−L(GN )}, the following are equivalent.

(i) QΣ is stochastically LCP0.

(ii) The union graph G = (V,E1 ∪ . . . ∪ EN) is connected.

In a similar way, one can extend the definition of the stochastic LCP property to

contractive operators on infinite-dimensional Hilbert spaces and, hence, obtain the version

of Theorem 5.4 for the random evolution model on metric graphs.

Since the stochastic LCP property provides an elegant way to express all the re-

sults of our work, this suggests that many other evolution problems, even not related

to graphs, could be solved in the same terms. In fact, it would be challenging to find

necessary and/or sufficient conditions to ensure the stochastic LCP notion for the set Σ

of all the matrices (or bounded operators) composing a certain evolution operator S(t).

Concerning the possible modifications and improvements starting from the random

evolution models proposed in this thesis, there are several open problems to be discussed in

the next future. First of all, we have proved the convergence of S(t) towards an equilibrium

in both the combinatorial and the metric settings, but we have not yet investigated the

rate of convergence. Hence, the first goal to achieve is to estimate it, based on the

knowledge from the diffusion models on a fixed graph, where the speed of convergence is

well-known. Intuitively, this rate will still depend on the spectral gap of every Laplace

operator, but we guess that it will be lower than in the problem on one fixed network. In

fact, we imagine that the continuous jumps from one to another graph can slow down the

diffusion and then the convergence process towards P0.

Another challenging work is to make the stochasticity of the models more complicated,

replacing the simple Markov chain with a different Markov process. The first idea is to

choose a continuous time pure jump Markov process: all the good properties of the Markov

chain would be preserved, but the waiting times between two consecutive jumps would

be random variables, too. We guess that everything will still work, even if the framework

is now more complicated. In fact, as a consequence, every factor in the product S(t)
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would depend on two types of stochasticity: one provided by the chain governing the

jumps, the other one represented by the times. This would mean to deal with a set of

matrices/operators Σ which is no longer finite, hence more sophisticated arguments would

be needed to prove the stochastic LCP property.

Regarding the random evolution on metric graphs, it would be interesting to consider

more general operators instead of the Kirchhoff-Laplace one. We could consider different

elliptic operators: based on the well-known results about PDEs on fixed networks, it

should not be difficult to generalize our results. Alternatively, we could still deal with

the Laplacian and consider different vertex conditions which randomly vary in time. We

intend to find which additional hypotheses we need to impose in order to have analogous

results.

In this way, we could obtain evolution models capable of describing more complicated

scenarios. For instance, one could apply them in the area of epidemiology: in our opinion,

it would be interesting to study the diffusion of an epidemic disease among individuals

whose interactions – represented by graphs – changing randomly in time. This is just

an example of application: in fact, graphs are studied in several areas within physics

and chemistry, but also in sociology, ecology, neurobiology, etc., because they can depict

several types of real networks and, as it happens in most cases, the latters are not constant

during the time.

For this reason, having dynamical systems capable of dealing with the (random)

time evolution of newtworks would be challenging and useful. In this context, the re-

sults presented in our work can be considered as one simple and first step towards more

complicated and sophisticated models.
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Appendix A

Some notions of Markov chains

In this appendix, we are going to show some results about Markov chains we have

used in the proof of Theorem 2.14. In order to give a clear presentation, we are going to

breafly recall some important properties, too. We assume the basic notions about Markov

chains to be known: the reader can refer for instance to [4, 18] for a detailed presentation

of the topic.

A.1 Preliminaries

Let {Xn} be a Markov chain with state space E and transition matrix T . We assume

that X is irreducible, i.e. for any initial state x there exists a positive probability of hitting

any state y in finite time,

P(Ty <∞ | X0 = x) = H(x, y) > 0, (x, y) ∈ E × E.

Alternatively, we say that X is irreducible if for any couple of states (x, y) there exist times

n,m ∈ N such that T n(x, y)Tm(y, x) > 0. We say that a state is recurrent if H(x, x) = 1.

In a finite chain, there always exists a recurrent state. Further, if the chain is irreducible,

then all the states are recurrent.

Let us introduce the mean return time µ(y) = E[Ty | X0 = y]. Intuitively, its inverse

is the frequency of returns: the following result makes precise this intuition.

Theorem A.1. Denote Ny;n the number of passages in the state y up to time n:

Ny;n = #{k ≤ n : Xk = y}.
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Then

P
Å
Ny;n

n
→ 1

µ(y)
as n→∞ | X0 = x

ã
= H(x, y).

In particular, if H(x, y) = 1 then P(Ny =∞ | X0 = x) = 1.

A.1.1 Period

The period of a state is the gcd (greatest common divisor) of the set of times when

a return is possible:

d(x) = gcd {n > 1 : T n(x, x) > 0} .

Thus, a state has period d if and only if the chain can return to x only at multiples of the

period d, and d is the largest such integer. A state x is aperiodic if d(x) = 1 and periodic

otherwise. If the Markov chain is irreducible then all the states has the same period; we

can speak then about the period of the chain (or, the chain being periodic or aperiodic).

If a Markov chain is periodic, then we can partition the state space in classes, ac-

cording to the period. Let x0 be an arbitrary state in E. Then for any k = 0, 1, . . . , d− 1

we let

Ak = {x ∈ E : ∃n ≥ 0 s.t. T nd+k(x0, x) > 0}.

Notice that for x ∈ Ak and y ∈ Aj then T n(x, y) > 0 implies that n ≡ j − k(mod d).

If we consider the d-step Markov chain {Yn = Xnd, n ≥ 0} on E with transition

matrix T ′ = T d, then we see that it is reducible, and its final classes are exactly the cyclic

classes A0, . . . , Ad−1. In particular, the reduced chain on every class is irreducible and

aperiodic.

A.1.2 Invariant distribution

Given an irreducible Markov chain X, positively recurrent (in particular, this is the

case if the state space is finite) then there exists a positive distribution π on E that is left

invariant for the transition matrix T : πT = π. Moreover, π is explicitly given in terms of

the mean return times:

π(x) =
1

µ(x)
, x ∈ E.
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In the above assumptions, we can prove the following almost sure convergence:

T n(x, y)→ 1

µ(x)
as n→∞.

Let us consider what this means for the case of periodic chains. We first recall that

the d-step chain Y is reducible, which means that we shall consider it separately on the

various cyclic classes. Then Y |Ak is irreducible, aperiodic with transition matrix (T d)
∣∣
Ak

.

It follows that

(
(T d)

∣∣
Ak

)n
(x, y)→ 1

µd(y)
, x, y ∈ Ak,

where the mean return time µd(y) is computed with respect to the reduced matrix (T d)
∣∣
Ak

.

But then the mean return time for the original Markov chain X is d-times the previous

one:

T nd(x, y)→ d

µ(y)
, x, y ∈ Ak. (A.1)

Notice that, being x and y in the same cyclic class, it also holds

T nd+k(x, y) = 0, k = 1, . . . , d− 1.

Moreover, if the states are in different cyclic classes, it holds

T nd+(j−k)(x, y)→ d

µ(y)
, x ∈ Ak, y ∈ Aj. (A.2)

A.2 Multistep chains

In this section, we consider a Markov chain X on a finite state space E. For simplicity

we assume that X is irreducible and, in a first moment, that it is aperiodic. This Markov

chain induces another process Y by setting

Y0 = (X0, X1), Y1 = (X2, X3), . . . Yk = (X2k, X2k+1).

The state space is the subset E2 ⊂ E × E of admissible pairs:

E2 = {(x1, x2) : T (x1, x2) > 0}.
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The transition probability matrix associated to the Markov chain Y is

P (x, y) = T (x2, y1)T (y1, y2).

Moreover,

P n(x, y) = T 2n−1(x2, y1)T (y1, y2).

Since the original chain is irreducible and aperiodic, definitely T 2n−1(x2, y1) > 0, hence Y

is irreducible and aperiodic as well. In particular, given any admissible pair a = (a1, a2),

the chain Y visits this state infinite times, a.s..

Previous construction can be extended to the case of vectors of length k without

difficulty. Instead, we are now interested to discuss the case of periodic chains.

Let d be the period of the irreducible chain X. We consider sequences of length k

where d | k and introduce the space Ek of admissible sequences

Ek = {x = (x0, x1, . . . , xk−1), : p(x) =
∏

T (xj, xj+1) > 0}.

If x is an admissible sequence then there exists ` such that

x0 ∈ A`, x1 ∈ A`+1, . . . , xj ∈ A`+j, . . . , xk−1 ∈ A`−1,

where we assume the indexes are computed modulo d. The transition probability matrix

associated to the Markov chain Y is

P (x, y) = T (xk−1, y0)p(y).

Notice that by formula (A.2) it follows that

P n(x, y) = T (n−1)k+1(xk−1, y0)p(y)

is positive for n large enough; therefore, the Markov chain Y is irreducible and aperiodic,

and every admissible sequence is visited infinite times, a.s..
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