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CHAPTER 1

Introduction

The foundations of graph theory are usually traced back to the problem
The Seven Bridges of Königsberg, which was solved as early as 1736 by
Leonard Euler with methods that are now considered graph theoretical. In
contrast, the mathematical concept of quantum graphs, understood as metric
graphs equipped with certain operators, is relatively new and has only in
recent years become a separate area of research. First survey articles and
dedicated books, e.g. [8, 23, 26], were published in the last two decades.
Although the field seems to be a recent trend, this impression may be
deceiving, because works that deal with structures that fit today’s definition
of a quantum graph started to appear already in the 1930s, in a wide variety
of applications, among others in physics, chemistry and biology.

The range of applications for the quantum graph as a simplification
of physical systems is immense, the book [8] gives an extensive overview,
including hundreds of references for a multitude of separate research areas.
Equipping metric graphs with a variety of differential operators makes it
possible to study heat conduction, diffusion or wave propagation in a one
dimensional complex, to name only a few fields of application.

Unfortunately, the term quantum graph is not consistently defined. A
metric or equivalently weighted graph structure is always neccessary to set up
the appropriate function spaces, but while some authors explicitly demand
the self-adjointness of the used operator, see e.g. [4], others accept a more
general definition, see e.g. [8]. For the purpose of our study, we will see in
Theorem 5.1 that self-adjointness of the quantum graph operator makes
generation of a chaotic semigroup impossible. That is why we follow the
latter idea and introduce a quantum graph Γ = (G, A, V C) in Chapter 4 as
the triple of a metric graph G, equipped with a linear operator A and an
appropriate set of vertex conditions V C that contrary to most applications
do not necessarily result in a self-adjoint operator. We will see that the vertex
conditions, which can be thought of as boundary conditions of the operator
on each edge, already describe the complete topology of the graph.

The second mathematical concept used in this thesis in addition to
quantum graphs are one-parameter semigroups of linear operators, or just
semigroups for short, and in Chapter 3 we establish the theory to the extent
needed in this thesis. A strongly continuous semigroup (T (t))t≥0 is a family
of bounded linear operators, so that for t ∈ [0,∞) and for an initial value f
the map t 7→ T (t)f can be thought of as the solution to the abstract Cauchy
problem {

d
dtu(t) = Au(t), for t ≥ 0,

u(0) = f,
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2 1. INTRODUCTION

which, if we consider the variable t to represent time, is a Banach space valued
initial value problem. In this case the operator A is called the generator of
the semigroup. Since operator semigroups can also be seen as dynamical
systems, the question of stability is an important factor when analyzing their
properties. From the particular viewpoint of this thesis, the different kinds of
stability, see e.g. [15], are not relevant, and we will focus on chaotic behavior.

Chaoticity is in general a very undesirable characteristic for dynamical
systems, which was first systematically examined in [11], and since then in
various different publications for a variety of distinct cases, see e.g. [9, 17,
18, 24, 25, 28]. Not only is chaoticity undesirable, it also seems not to be
very common, as not many explicit examples of chaotic semigroups have
been discovered yet. Some are known in the context of first and second order
partial differential equations, see e.g. [24, 25, 28] and [10], respectively, and
a larger collection of examples can be found in [17, Chapter 7]. Also unlike
e.g. in the case of contractive semigroups, where every semigroup operator is
by definition a contraction itself, it was shown in [7] that there are chaotic
strongly continuous semigroups that do not contain any chaotic operator.

In Section 3.2 we present the conditions for an operator A to be the
generator of a strongly continuous semigroup, and Section 3.3 is dedicated
to the study of chaotic semigroups and the spectral characteristics of their
generators.

Examination of the semigroup that is generated by the operator of a
quantum graph combines the two mentioned areas of research, and was
subject of a number of publications, see e.g. [14, 20–22, 26]. In Chapter 5 we
will follow this approach and investigate if certain quantum graph operators
generate chaotic semigroups, which it seems has not yet been addressed in any
existing articles. To this end, we first make some general observations about
semigroups on quantum graphs and possible chaoticity in Section 5.1 and 5.2,
then we define and study a model problem of diffusion-advection-reaction
type and some variations.



CHAPTER 2

Preliminaries

As a start, this chapter introduces aspects concerning graph theory,
functional analysis and operator theory that will be utilized later on. It
is also used to establish the necessary notational framework for the thesis.
Most definitions and theorems are tailored to the needs of this thesis and
not presented in the most general form, we refer to [1, 13, 29, 30] and the
references in the sections below for further information on the subjects.

2.1. Graph Theory

The following basic notations, definitions and theorems are, where not
otherwise specified, based on [8] and [13]. In this section we introduce the
notions of graph and digraph as well as further basic concepts concerning
these structures. The assumptions on the topology of graphs and digraphs
that we make at the end of the section will be in effect for the rest of the
thesis.

Before we can give the formal definition of a graph, we need the following
convention. Let V be a set and k ∈ N. Then we denote by

(
V
k

)
the set of

subsets of V with exactly k elements, i.e.(
V

k

)
= {U ⊂ V : |U | = k} ,

where | · | denotes the cardinality of a set.

Definition 2.1. A triple G = (V,E, ∂) of sets V , E and the incidence map

∂ : E →
(
V
2

)
∪
(
V
1

)
is called graph. Elements of V and E are called vertices

and edges, respectively.

Example 2.2. Figure 1 illustrates the graph Gb = (V,E, ∂), where

V = {vi : i ∈ {1, . . . , 8}}, E = {ei : i ∈ {1, . . . , 7}},
∂(e1) = {v1, v2}, ∂(e2) = {v1, v3}, ∂(e3) = {v1, v4}, ∂(e4) = {v1, v5},

∂(e5) = {v2, v4}, ∂(e6) = {v6, v7}, ∂(e7) = {v8}.

The edge e7 is an example of a loop, see Definition 2.6(iv).

Remark 2.3. It is possible to describe the topology of a graph with two
matrices,

• the adjacency matrix, that contains the information about which ver-
tices are connected by an edge, and
• the incidence matrix, that describes which vertices are the endpoints

of which edge.

3
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Figure 1. The graph Gb.

These matrices are especially important when working with discrete operators
on graphs, but since we want to study the continuous structure of metric
and quantum graphs, we do not go into more detail on these concepts, see
any book on graph theory, e.g. [13], for more information.

The edges of a graph do not have any direction and only represent links
between the connected vertices. For our purposes, it is preferable to use edges
with an orientation, which leads to the next definition.

Definition 2.4. A triple D = (V,E, ∂) of two sets V , E and the incidence
map ∂ : E → V × (V ∪ {∞}) is called a directed graph or digraph.

Example 2.5. Figure 2 illustrates the digraph Db = (V,E, ∂), where

V = {vi : i ∈ {1, . . . , 7}}, E = {ei : i ∈ {1, . . . , 7}},
∂(e1) = (v1, v2), ∂(e2) = (v1, v3), ∂(e3) = (v4, v7), ∂(e4) = (v5, v1),

∂(e5) = (v2, v4), ∂(e6) = (v7, v6), ∂(e7) = (v2,∞).

The edge e7 is an example of a lead, see Definition 2.6(iv).
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Figure 2. The digraph Db.

We now introduce some important terminology concerning graphs and
digraphs.

Definition 2.6. Let the vertices v, w and edges in the following list be either
of a graph or digraph, depending on the context.

(i) An edge e ∈ E with ∂(e) = {v, w} is called incident to the vertices
v, w ∈ V . An edge e ∈ E with ∂(e) = (v, w) is called positively
incident to v, negatively incident to w and incident to both vertices.
In the digraph case, the vertices v, w are called initial and terminal
vertex of e, respectively. When the relation to the edge is important,
these are alternatively written as einit and eterm.
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(ii) The sets E+
v , E−v denote the sets of edges that are positively and

negatively incident to v ∈ V , respectively. The set Ev, denotes the
set of edges incident to v ∈ V .

(iii) The vertex v ∈ V is called isolated, if Ev = ∅.
(iv) The edge e ∈ E is called

• directed edge or arc, if ∂(e) = (v, w),
• loop, if ∂(e) = (v, v) for a digraph, or |∂(e)| = 1 for a graph,
• lead, if ∂(e) = (v,∞),
• reversal of f ∈ E with ∂(f) = (v, w), if e = (w, v) and we

write e = f .
A lead can be thought of as incident to only one vertex, with the
other end leading to infinity.

(v) The edges e1, e2 ∈ E, e1 6= e2 with ∂(ei) ∈ V × V for i = 1, 2 are
called
• parallel, if ∂(e1) = ∂(e2),
• anti-parallel, if ∂(e1) = ∂(e2),

Note that we exclude leads from the definition of parallel edges, i.e.
there can be multiple leads incident to one vertex. This is consistent
with the assumption that∞ is not simply another vertex, but rather
the concept of the edges going on indefinitely.

(vi) A (di-)graph is called
• finite, if n ∈ N exists so that |E| = n, otherwise it is called

infinite,
• locally finite, if for every v ∈ V a nv ∈ N exists so that
|Ev| ≤ nv,
• simple, if no loops or parallel edges exist.

Further on we need the concept of connection in graphs and digraphs,
which basically means that when choosing two arbitrary vertices it is pos-
sible to find a string of edges that connects them. We state this notion
mathematically precise in the following definitions.

Definition 2.7. Let G = (V,E, ∂) be a graph. For two vertices v, w ∈ V ,
v 6= w, a graph P = (V ,E, ∂), where V ⊂ V , E ⊂ E and for every e ∈ E,
∂(e) = ∂(e) holds, is called v, w-path in G, if

• v, w ∈ V ,
• there are no parallel edges or loops in E,
• there is exactly one edge e ∈ E incident to v and exactly one edge
f ∈ E incident to w, the case e = f may occur if V \ {v, w} = ∅,
• for all u ∈ V \ {v, w} there are exactly two edges e, f ∈ E with
∂(e) ∩ ∂(f) = {u}.

The graph G is called connected, if a v, w-path exists for all v, w ∈ V .

In order to transfer this concept to digraphs, we define the structures of
an orientation of a graph and the underlying graph of a digraph.

Definition 2.8. Let I be an arbitrary index set, D = (VD, ED, ∂D) a digraph
with ED = {ei}i∈I , and G = (VG, EG, ∂G) a graph with EG = {fi}i∈I . The
digraph D is called orientation of G, if VD = VG and for every edge fi with
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∂G(fi) = {vj , vk}, there holds

∂D(ei) = (vj , vk) or ∂D(ei) = (vk, vj)

for the arc ei.
The graph G is called underlying graph of D, if VG = VD and for every

arc ei with ∂D(ei) = (vj , vk) there holds

∂G(fi) = {vj , vk}
for the edge fi.

For finding an orientation of a graph, we assume an arbitrary direction
for every edge, and for finding the underlying graph of a digraph, we forget
the direction of every arc. In general more than one orientation of a graph
exist, but the underlying graph of a digraph D is unique and we denote it
by U(D). Using these terms, we can carry the concept of connection over to
digraphs.

Definition 2.9. Let D be a digraph and U(D) the corresponding underly-
ing graph. Then D is called connected, if U(D) is connected according to
Definition 2.7.

We have seen from the preceding definitions, that the topological structure
of graphs and digraphs can become very complicated even for relatively small
numbers of vertices and edges. That is why for the purpose of this thesis, we
restrict our analysis to subcategories of graphs which retain a certain level
of regularity.

Assumption 2.10. For the rest of this thesis we will only consider graphs
and digraphs that are

(i) simple,
(ii) connected,
(iii) locally finite and
(iv) have no isolated vertices.

Remark 2.11. The restriction to simple graphs is not really a limitation for
most applications in quantum graphs, as described in [8, Remark 1.3.3] and
[26, Remark 2.39]. Parallel edges and loops can be broken up by inserting new
vertices somewhere along the edges. In the setting of quantum graphs with
second order differential operators, see Chapter 4, we then need to prescribe
certain vertex conditions at the inserted vertices, where we essentially claim
continuity of the functions and continuity of the first derivative in these
vertices.

2.2. Functional Analysis

Now we recall a few definitions from functional analysis that will be used
in the next chapters. This section is based on [2] and [1].

First we recall that a normed space X is called separable, if a dense
subset D ⊂ X, i.e. D = X, exists, that is at most countably infinite. Here D
denotes the topological closure of a set.

We use the standard declaration for the Lebesgue spaces

Lp(Ω) = {f : Ω→ C : ‖f‖Lp(Ω) <∞},
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in the sense of equivalence classes of functions, where Ω ⊂ R is an open set,
and

‖f‖Lp(Ω) =

(∫
Ω
|f(x)|p dx

) 1
p

for 1 ≤ p <∞,

‖f‖L∞(Ω) = ess supx∈Ω |f(x)| for p =∞.

This one-dimensional setting is sufficient for the purposes of this thesis. A
more general definition can be found in [2] or [30]. For 1 < p <∞, q ∈ R is
called conjugated exponent of p, if p−1 + q−1 = 1. For the case p = 1 we set
q =∞ and vice versa.

Since dealing with quantum graphs involves differential operators, we
use the spaces Ck(Ω), k ∈ N, of k-times continuously differentiable functions
and the following Sobolev spaces.

Definition 2.12. Let k ≥ 0 be an integer, p ∈ [1,∞] and Ω an open subset
of R. The function space

W k,p(Ω) = {f ∈ Lp(Ω) : f (i) ∈ Lp(Ω), 0 ≤ i ≤ k},

where f (i) denotes the i-th weak derivative of f , is called Sobolev space.
Equipped with the norms

‖f‖Wk,p(Ω) =

(
k∑
i=0

‖f (i)‖pLp(Ω)

) 1
p

for 1 ≤ p <∞,

‖f‖Wk,∞(Ω) = max
0≤i≤k

‖f (i)‖L∞(Ω) for p =∞,

the Sobolev spaces W k,p(Ω) are Banach spaces, see [1]. In the case p = 2 we
write Hk(Ω) = W k,2(Ω).

The spaces L2(Ω) and Hk(Ω) equipped with the inner products

(f, g)L2(Ω) =

∫
Ω
f(x)g(x) dx,

(f, g)Hk(Ω) =

k∑
i=0

(f (i), g(i))L2(Ω),

become Hilbert spaces. Here z denotes the complex conjugate of z ∈ C.
Later in Section 4.2 we use metric graphs as topological setting, which

are collections of one-dimensional intervals with certain endpoints identified
with each other. To define the appropriate function spaces on this type of
structure, we need to consider the direct sum of a set of Banach spaces.

Definition 2.13. Let {Xi}i∈I be a family of Banach spaces, where I is an
arbitrary index set. The space

X =
⊕
i∈I

Xi =

{
(fi)i∈I ∈

∏
i∈I

Xi : fi 6= 0 only for finitely many i

}
,
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where
∏
i∈I Xi denotes the Cartesian product of the spaces {Xi}i∈I , is called

direct sum of {Xi}i∈I . Using one of the norms

‖f‖Xp =

(∑
i∈I
‖fi‖pXi

) 1
p

for 1 ≤ p <∞,

‖f‖X∞ = sup
i∈I
‖fi‖Xi for p =∞,

where f = (fi)i∈I ∈ X, to complete the space X, we get the Banach spaces
Xp and X∞. If |I| <∞, we have⊕

i∈I
Xi =

∏
i∈I

Xi.

2.3. Operator Theory

To conclude this preliminary chapter, we present relevant definitions and
results from the study of linear operators on Hilbert and Banach spaces,
based on [30].

Definition 2.14. Let X1, X2 be normed spaces. A mapping A : D(A)→ X2,
where D(A) is a linear subspace of X1, satisfying

A(αf + βg) = αA(f) + βA(g),

for all f, g ∈ D(A) and α, β ∈ C, is called linear operator from X1 in X2 and
linear operator in X, if X = X1 = X2.

For a linear operator A we will usually write Af instead of A(f). We
now collect some useful terms in connection with linear operators.

Definition 2.15. LetX1,X2,X3 be normed spaces andA,B linear operators
from X1 in X2.

(i) The linear subspace D(A) of X1 from Definition 2.14 and the set
R(A) = {Af : f ∈ D(A)} ⊂ X2 are called domain and range of A,
respectively.

(ii) The linear operator A is called
• extension of B, if D(B) ⊂ D(A) and Af = Bf for all f ∈
D(B), we then write B ⊂ A,
• equal to B, if A is an extension of B and B is an extension of
A, we then write A = B,
• densely defined, if its domain is dense in X1, i.e. D(A) = X1,
• bounded, if there is C ∈ R so that for all f ∈ X1 the estimate
‖Af‖X2 ≤ C‖f‖X1 holds,
• closed, if for every convergent sequence (fk)k∈N in D(A) with
fk → f for which the sequence (Afk)k∈N is convergent in X2

with Afk → g follows that f ∈ D(A) and Af = g.
(iii) The linear operator A in a Banach space X is called

• dissipative, if the estimate ‖(λI −A)f‖ ≥ λ‖f‖ holds for all
λ > 0 and f ∈ D(A),
• m-dissipative, if it is dissipative and R(I −A) = X holds.

(iv) The linear operator A in a separable Banach space X is called
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• hypercyclic, if f ∈ X exists, so that the set {f}∪{Anf : n ∈ N}
is dense in X,
• chaotic, if it is hypercyclic and the set {f ∈ X : there is a n ≥

1 so that Anf = f} is dense in X.
(v) Let C be a linear operator from X1 in X2 and D a linear operator

from X2 in X3. Then the product DC is a linear operator from X1

in X3 that is defined by

(DC)f = D(Cf) for f ∈ D(DC),

D(DC) = {f ∈ D(C) : Cf ∈ D(D)}.

As is the case in real and complex analysis, the notion of continuity is of
importance in the setting of functional analysis, which leads to the following
definition.

Definition 2.16. Let X1, X2 be normed spaces. The mapping A : D(A)→
X2, D(A) ⊂ X1, is called continuous in f ∈ D(A), if Afk → Af holds for
every sequence (fk)k∈N ⊂ D(A) with fk → f . A is called continuous, if it is
continuous in every f ∈ D(A).

This definition can be hard to verify, but for linear operators continuity
can be characterized more conveniently: A linear operator is continuous if
and only if it is bounded, see e.g. [30, Theorem 2.1].

We denote by B(X1, X2) the space of bounded linear operators A from
X1 in X2 for which D(A) = X1. If X = X1 = X2, we write B(X). The
operator norm of a linear operator A ∈ B(X1, X2) is well-defined by

‖A‖B(X1,X2) = sup
‖f‖X1

=1
‖Af‖X2 ,

and

‖A‖ = inf{C ∈ R : ‖Af‖ ≤ C‖f‖ for all f ∈ D(A)}
holds. Furthermore the operator norm is sub-multiplicative, i.e.

(2.1) ‖AB‖ ≤ ‖A‖ ‖B‖

holds for A,B ∈ B(X). As already done in this section, we will drop the
index of any norm and just write ‖ · ‖, if no confusion can arise.

Definition 2.17. Let X be a complex normed space. The space

X ′ = {F : X → C : F linear and continuous},

is called (topological) dual space of X and the elements of X ′ are called linear
continuous functionals on X.

With the operator norm ‖ · ‖B(X,C) the dual space X ′ is a normed space
and since C is complete, X ′ is a Banach space, see [30, Satz 2.12].

Definition 2.18. A Banach space X is called reflexive, if the natural linear
injection J : X → X ′′ into its second dual space X ′′ = (X ′)′, which is defined
by

Jf(g) = g(f), f ∈ X, g ∈ X ′,
is surjective.
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For p ∈ [1,∞) the dual spaces Lp(Ω)′ of the Lebesgue spaces can be
identified with Lq(Ω), where q is the conjugated exponent of p, as the following
proposition shows.

Proposition 2.19. Let q ∈ R be the conjugated exponent of p ∈ [1,∞]. Then
every function f ∈ Lq(Ω) generates a linear bounded functional

Ff (g) =

∫
Ω
f(x)g(x) dx,

in Lp(Ω). The mapping f 7→ Ff is linear and isometric. For p ∈ [1,∞) the
mapping Lq(Ω) → Lp(Ω)′, f 7→ Ff is surjective, i.e. every linear bounded
functional in Lp(Ω) is generated by a function f ∈ Lq(Ω).

Proof. The proof can be found in [30, Satz 2.16]. �

By the above proposition, the dual spaces of the Lebesgue spaces with p ∈
[1,∞) are isometrically isomorphic to the Lebesgue spaces with conjugated
exponents q, i.e. Lp(Ω)′ ∼= Lq(Ω), see also [1, Theorem 2.44 and 2.45]. By
[1, Theorem 2.46], the Lebesgue spaces Lp(Ω) are reflexive for p ∈ (1,∞).
While L1(Ω) is separable, its dual space that is isometrically isomorphic to
L∞(Ω) is not, which means that neither of these spaces can be reflexive.

From linear algebra we are familiar with the concept of the spectrum, i.e.
the eigenvalues, of a linear operator in finite-dimensional vector spaces. For
the general infinite-dimensional case additional concepts are necessary. For a
linear operator A in a normed space X we use the standard definitions of
the resolvent set

ρ(A) = {λ ∈ C : (λI −A) injective, R(λI −A) = X, (λI −A)−1 bounded},

the resolvent

R(·, A) : ρ(A)→ B(X), λ 7→ (λI −A)−1,

and the spectrum

σ(A) = C \ ρ(A).

If X is a Banach space and A a closed operator, the definition of the resolvent
set can be simplified to

ρ(A) = {λ ∈ C : (λI −A) bijective} = {λ ∈ C : (λI −A)−1 ∈ B(X)}.

For a comprehensive introduction to spectral theory of linear operators see
e.g. [30]. We denote the standard decomposition of the spectrum into the
disjoint parts continuous, residual and point spectrum by σc(A), σr(A) and
σp(A), respectively. For any linear operator A we call the number

s(A) = sup{Re(λ) : λ ∈ σ(A)}

spectral bound of A.
We now get to the fundamental term of the adjoint operator, which will

lead to the concept of self-adjoint operators. These linear operators form an
important category and appear often in applications.
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Definition 2.20. Let X1, X2 be Hilbert spaces and A a linear operator
from X1 in X2 with D(A) = X1. Then the linear operator A∗ from X2 in
X1 defined by

D(A∗) = {g ∈ X2 : there is a h ∈ X1,

where (Af, g)X2 = (f, h)X1 for all f ∈ D(A)},
A∗g = h for g ∈ D(A∗), if for all f ∈ D(A) : (Af, g)X2 = (f, h)X1 ,

is unique and called the adjoint operator of A. If X1 = X2 and A = A∗, then
A is called self-adjoint.

A very fundamental result of operator theory in Hilbert spaces is that
the spectrum of every self-adjoint operator A is real, i.e. σ(A) ⊂ R, see e.g.
[30, Satz 5.14].





CHAPTER 3

Chaotic C0-Semigroups

Describing the solutions of abstract Cauchy problems, a form of evolu-
tion equation, one-parameter operator semigroups are closely connected to
dynamical systems. In Section 3.1 and 3.2 we give a short introduction on
the basics of the subject, for a more general examination of the subject and
the proofs of the stated results we refer to [15, 16, 27].

In the context of semigroups describing dynamical systems, an important
area of research is stability, which has a strong connection to the spectral
properties of the operators and the generator of the semigroup, see e.g. [15,
Section V.3]. As a kind of antithesis to stability, we are interested in the
concept of hypercyclicity and chaoticity of strongly continuous semigroups,
and we explore these concepts in Section 3.3.

When we mention a semigroup we always mean a one-parameter semi-
group of linear operators, and we will use the terms C0- and strongly contin-
uous semigroup interchangeably.

3.1. Operator Semigroups

In general, a parameterized family of operators (T (t))t≥0 is an operator
semigroup, if it satisfies a certain semigroup property, which we state in
the next definition. To give a semigroup more structure there are different
concepts, like uniform continuity or strong continuity. While uniform con-
tinuity is a very nice property, the class of uniformly continuous operator
semigroups is too small to encompass the arising problems from applications,
and the weaker concept of strong continuity is needed.

Definition 3.1. Let X be a Banach space and (T (t))t≥0 a family of bounded
linear operators in X. The family (T (t))t≥0 is called strongly continuous
(or C0-)semigroup (of linear operators), if the semigroup property

(SP)

{
T (t+ s) = T (t)T (s) for t, s ≥ 0,

T (0) = I,

holds and the orbit maps ξf : [0,∞)→ X, t 7→ ξf (t) = T (t)f , are continuous
for every f ∈ X. The range of the orbit map R(ξf ) = {T (t)f : t ≥ 0} is
called orbit of f .

Strongly continuous semigroups can be characterized in the following
way.

Lemma 3.2. Let X be a Banach space and (T (t))t≥0 a semigroup on X.
Then the following statements are equivalent:

(i) (T (t))t≥0 is strongly continuous.
(ii) limt↘0 T (t)f = f , for f ∈ X.

13
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(iii) There are constants δ > 0 and M ≥ 1 and a dense subset D ⊂ X,
so that
• ‖T (t)‖ ≤M , for t ∈ [0, δ],
• limt↘0 T (t)f = f , for f ∈ D.

Proof. The proof can be found in [15, Proposition I.1.3]. �

Proposition 3.3. Let (T (t))t≥0 be a strongly continuous semigroup. Then
there are constants ω ∈ R, M ≥ 1, so that for t ≥ 0

(3.1) ‖T (t)‖ ≤Meωt

holds.

Proof. For the proof see [15, Proposition I.1.4]. �

Using the above proposition, we can identify several categories of C0-
semigroups. A strongly continuous semigroup is called bounded, if ω = 0 is
possible and contractive, if ω = 0 and M = 1 is possible. It is called isometric,
if ‖T (t)f‖ = ‖f‖ for all t ≥ 0 and all f ∈ X. We call the number

ω0 = inf
{
ω ∈ R : there is Mω ≥ 1 so that ‖T (t)‖ ≤Mωe

ωt for all t ≥ 0
}

growth bound of the semigroup (T (t))t≥0.

3.2. The Generator of a C0-Semigroup

It is possible to show, see e.g. [16, Lemma II.1.1], that given a strongly
continuous semigroup (T (t))t≥0 on X, if for f ∈ X the orbit map ξf is
differentiable on R+, then it is right differentiable at t = 0. So for the
subspace consisting of those f ∈ X with differentiable orbit map, the right
derivative at t = 0 yields an operator which is characteristic of the semigroup.

Definition 3.4. Let X be a Banach space and (T (t))t≥0 a strongly continu-
ous semigroup on X. The operator A defined by

Af =
dξf
dt

(0) = lim
h↘0

(T (h)f − f)

h
,

D(A) = {f ∈ X : ξf is differentiable in [0,∞)},

is called generator of (T (t))t≥0.

Operator semigroups appear naturally when we examine the Banach
space valued abstract Cauchy problem

(ACP)

{
d
dtu(t) = Au(t) for t ≥ 0,

u(0) = f,

that can be seen as a type of evolution equation. Here A is a linear operator
in a Banach space X and f ∈ X. The variable t represents time and a
function u : [0,∞)→ X, t 7→ u(t), is called a classical solution of (ACP), if

• u satisfies (ACP),
• u ∈ C1([0,∞)) and
• u(t) ∈ D(A) for all t ≥ 0.
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It turns out that if the operator A generates a strongly continuous semigroup
(T (t))t≥0, then for every initial value f ∈ D(A), the function t 7→ u(t) = T (t)f
is a classical solution of (ACP). In order to analyze problems of this type, it
is important to know characterizations of the operator A from (ACP) which
make it the generator of a strongly continuous semigroup.

It is relatively easy to prove, see e.g. [16, Theorem I.3.7], that for a
Banach space X, the operators A ∈ B(X) generate semigroups (T (t))t≥0 of
the form

T (t) = etA =

∞∑
n=0

tnAn

n!
,

which are uniformly continuous in the sense that the mapping t 7→ T (t) ∈
B(X) is continuous for t > 0 in the operator norm topology on B(X). This
definition of course implies strong continuity. Uniform continuity is a nice
property, but many natural semigroups do not meet this condition, see e.g.
the examples in [16, Section I.4.c].

That is why we need to consider the weaker concept of strong continuity
instead and must find additional criteria for generators of these semigroups.
In preparation for these theorems, we need the following lemmata.

Lemma 3.5. The generator of a strongly continuous semigroup is a closed
and densely defined linear operator. It is unique.

Proof. For the proof we refer to [15, Theorem II.1.4]. �

Lemma 3.6. Let X be a Banach space, (T (t))t≥0 a strongly continuous
semigroup on X with generator A and constants ω,M ∈ R, M ≥ 1, so that

‖T (t)‖ ≤Meωt

holds for t ≥ 0, see Proposition 3.3.
Then the following properties hold for A:

(i) If λ ∈ C so that Rλf :=
∫∞

0 e−λsT (s)f ds exists for all f ∈ X, then
λ ∈ ρ(A) and R(λ,A) = Rλ.

(ii) If Re(λ) > ω, then λ ∈ ρ(A) and the resolvent is given by the
integral expression in (i).

(iii) ‖R(λ,A)‖ ≤ M
Re(λ)−ω for all λ with Re(λ) > ω.

Proof. The proof can be found in [15, Theorem II.1.10]. �

As an immediate implication of the preceding lemma, we can state the
following relation between growth bound of a semigroup and spectral bound
of its generator.

Corollary 3.7. Let (T (t))t≥0 be a strongly continuous semigroup and A its
generator, then

−∞ ≤ s(A) ≤ ω0 <∞
holds.

In Definition 3.4 of the generator, the strongly continuous semigroup
is assumed, and the generator is constructed. In contrast, the following
theorems define the characteristics a given linear operator needs in order to
be the generator of a strongly continuous semigroup.
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Theorem 3.8 (Hille-Yosida, [15, Theorem II.3.5]). Let X be a Banach space
and A a linear operator in X. Then the following statements are equivalent:

(i) A is the generator of a strongly continuous contractive semigroup.
(ii) A is closed, densely defined and for λ > 0

‖λR(λ,A)‖ ≤ 1 and λ ∈ ρ(A)

holds.
(iii) A is closed, densely defined and for λ ∈ C with Re(λ) > 0

‖R(λ,A)‖ ≤ 1

Re(λ)
and λ ∈ ρ(A)

holds.

Proof. We only state the idea of the proof. Reviewing Lemma 3.5
and Lemma 3.6, there is only (ii)⇒(i) left to show. We use the Yosida
approximants

An = nAR(n,A) = n2R(n,A)− nI, n ∈ N,

which are bounded and thus generate uniformly continuous semigroups
(Tn(t))t≥0. The proof is then completed by proving the existence of operators
T (t)f = limn→∞ Tn(t)f , showing that they form a contractive semigroup
with generator A. �

The above theorem characterizes the generator of contractive strongly
continuous semigroups, the next theorem does the same for the general case.

Theorem 3.9 (Feller-Miyadera-Phillips). Let X be a Banach space, A a
linear operator in X and ω ∈ R, M ≥ 1 constants. Then the following
statements are equivalent:

(i) A is the generator of a strongly continuous semigroup (T (t))t≥0

with

‖T (t)‖ ≤Meωt for t ≥ 0.

(ii) A is closed, densely defined and for λ > ω and n ∈ N

‖((λ− ω)R(λ,A))n‖ ≤M and λ ∈ ρ(A)

holds.
(iii) A is closed, densely defined and for λ ∈ C with Re(λ) > ω and

n ∈ N

‖R(λ,A)n‖ ≤ M

(Re(λ)− ω)n
and λ ∈ ρ(A)

holds.

Proof. For the proof we refer to [15, Theorem II.3.8]. �

Theorem 3.9 shows that for a given linear operator A to be the generator
of a strongly continuous semigroup, the following conditions must be satisfied:

(i) The spectrum σ(A) must be contained in a left half plane.
(ii) The linear operator A must be closed and densely defined.
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(iii) Estimates of the form

‖R(λ,A)n‖ ≤ M

(Re(λ)− ω)n
,

must hold for the resolvent on a right half plane.

Every strongly continuous semigroup can be re-scaled to a bounded
semigroup, see [15, Section I.1.10], and for every bounded semigroup, an
equivalent norm can be constructed to make the semigroup contractive, as [15,
Lemma 3.10] shows. This motivates a closer look at contractive semigroups,
for which a characterization of the generator alternate to Theorem 3.8 is
possible, without having to rely on the estimates for the resolvent.

Theorem 3.10 (Lumer-Phillips). Let X be a Banach space and A a densely
defined, dissipative operator in X. Then the following statements are equiva-
lent:

(i) The closure A of A is the generator of a contractive semigroup.
(ii) The range R(λI −A) of (λI −A) is dense in X for some, and thus

all, λ > 0.

Proof. The proof can be found in [15, Theorem II.3.15]. �

From the above theorem we get the two following corollaries, which can
be applied to easily show the generator property of an operator.

Corollary 3.11. Let X be a Banach space, A a densely defined, closed and
dissipative linear operator in X and let λ > 0 exist with λ ∈ ρ(A). Then A
generates a contractive semigroup.

Proof. The assumptions satisfy all conditions of Theorem 3.10, and for
a closed operator A = A holds. �

Corollary 3.12. Let X be a Banach space and A a densely defined dissipative
operator in X. If the adjoint operator A∗ is dissipative, then the closure A
of A generates a contractive strongly continuous semigroup.

Proof. See [15, Corollary II.3.17] for a proof. �

We conclude this section with some results from spectral and perturbation
theory for generators of operator semigroups, which we will use in the
examples for chaotic semigroups in Section 3.3 and Section 5.4.

The first proposition states that the generator property of a linear
operator is preserved under a bounded perturbation.

Proposition 3.13. Let X be a Banach space, A a linear operator that
generates a strongly continuous semigroup on X and B ∈ B(X). Then
C = A+B, D(C) = D(A), generates a strongly continuous semigroup on X.

Proof. See [16, Theorem III.1.3] for a proof. �

If we relax the condition B ∈ B(X) and allow unbounded perturbations,
we need additional assumptions so that the resulting operator still generates
a strongly continuous semigroup.
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Proposition 3.14. Let X be a Banach space and A a linear operator that
generates a contractive C0-semigroup on X. Let B be a dissipative linear
operator with D(B) ⊃ D(A) and

‖Bf‖ ≤ α‖Af‖+ β‖f‖,

for f ∈ D(A), where 0 ≤ α < 1 and β ≥ 0. Then A + B generates a
contractive C0-semigroup.

Proof. For the proof see [27, Corollary 3.3.3]. �

The next proposition is called spectral mapping theorem for the point
spectrum and relates the point spectrum of the generator to the spectra of
the semigroup operators.

Proposition 3.15. Let X be a Banach space and A a linear operator that
generates the strongly continuous semigroup (T (t))t≥0. Then the identities

(i) σp(T (t)) \ {0} = etσp(A), for t ≥ 0,

(ii) ker(λI −A) =
⋂
t≥0 ker(eλtI − T (t)), for λ ∈ C,

(iii) ker(eλtI − T (t)) = span
{⋃

n∈Z ker
((
λ+ 2πni

t

)
I −A

)}
, for t > 0,

hold.

Proof. For the proof we refer to [16, Theorem IV.3.7 and Corollary
IV.3.8]. �

3.3. Hypercyclicity and Chaoticity

We now investigate some aspects of the dynamic behavior of strongly
continuous semigroups. In finite-dimensional spaces every linear operator A
can be represented by a matrix and is always bounded, thus always generates
a uniformly continuous semigroup that takes the form of the exponential
matrix

T (t) = etA =
∞∑
n=0

tnAn

n!
, t ≥ 0.

For these matrix semigroups there are three typical types of behavior for
t→∞: The semigroup etA can be

• stable, i.e. limt→∞ ‖T (t)‖ = 0, which is equivalent to all eigenvalues of
A having negative real part, see the Liapunov stability theorem, e.g. in
[16, Theorem I.2.10],
• periodic, i.e. there is t0 > 0 so that et0A = I, which is in our finite-

dimensional case equivalent to σ(A) ⊂ αiZ for some α > 0 and the
corresponding eigenvectors spanning the space X, see e.g. [16, Theorem
IV.2.26],
• divergent, i.e. ‖T (t)‖ → ∞ as t→∞.

Additional concepts of long term behavior can occur in infinite dimensions,
which we will examine in this section. We mainly follow [11] and [17] for our
observations.
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Let X be a Banach space, (T (t))t≥0 a strongly continuous semigroup on
X and A its generator. We will need the following subsets of X:

X∞ = {f ∈ X : ∀ε > 0 ∃(g ∈ X, t > 0) : (‖g‖ < ε ∧ ‖T (t)g − f‖ < ε)},
X0 = {f ∈ X : lim

t→∞
T (t)f = 0},

Xp = {f ∈ X : ∃t > 0 : T (t)f = f}.

The elements of Xp are called periodic points of (T (t))t≥0.

Definition 3.16. Let X be a separable Banach space and (T (t))t≥0 a
strongly continuous semigroup on X. The semigroup (T (t))t≥0 is called
hypercyclic, if f ∈ X exists, so that the range R(ξf ) of its orbit map is dense
in X. It is called chaotic, if additionally Xp is dense in X.

The book of Devaney [12] includes a definition of chaos, which required
an arbitrary continuous mapping in a metric space to

• be transitive,
• have a dense set of periodic points and
• have sensitive dependence on the initial conditions,

in order to be chaotic. The third item turned out to be redundant, as proved
in [6], and our definition is consistent with this approach.

While hypercyclicity is rather common, as it was showed in [9] that every
separable infinite-dimensional Banach space admits a uniformly continuous
hypercyclic semigroup, chaoticity on the other hand seems to be different.
Only a few examples of chaotic semigroups are known, many of them are
summed up in [17, Chapter 7], and a full characterization of the generator of
a chaotic strongly continuous semigroup has not been found yet.

The first sufficient spectral condition for the generator of a chaotic
semigroup, which was later generalized in [5], was given in [11]. In order to
present the proof of this theorem, we need the following lemmata.

Lemma 3.17 ([11, Theorem 2.2]). Let X be a separable Banach space
and (T (t))t≥0 a strongly continuous semigroup on X. Then the following
statements are equivalent:

(i) (T (t))t≥0 is hypercyclic.
(ii) For all g, h ∈ X and ε > 0 exist f ∈ X and t > 0 so that ‖g−f‖ < ε

and ‖h− T (t)f‖ < ε.
(iii) For all ε > 0 there is a dense subset D ⊂ X so that for all h ∈ D

there is a dense subset D̂ ⊂ X so that for all g ∈ D̂ there are f ∈ X
and t > 0 so that ‖g − f‖ < ε and ‖h− T (t)f‖ < ε.

Proof. (i)⇒ (ii): Let e ∈ X have dense orbit R(ξe) = {T (t)e : t ≥ 0}.
Such an element exists due to the assumed hypercyclicity of (T (t))t≥0. Then
for s > 0 the set {T (t)e : t > s} is also dense. Now take g, h ∈ X and
ε > 0, then there is s > 0 so that ‖g − T (s)e‖ < ε and there is u > s so that
‖h− T (u)e‖ < ε. Finally set f = T (s)e and t = u− s.

(ii)⇒ (i): Let (hi)i∈N be a dense sequence in X. We now construct two
sequences (gi)i∈N ⊂ X and (ti)i∈N ⊂ [0,∞) in the following way:

• Set g1 = h1 and t1 = 0.



20 3. CHAOTIC C0-SEMIGROUPS

• For n > 1 find gn, tn so that

(3.2) ‖gn − gn−1‖ ≤
2−n

sup{‖T (tj)‖ : j < n}
,

and

‖hn − T (tn)gn‖ ≤ 2−n.

Then (3.2) implies that ‖gn − gn−1‖ ≤ 2−n, so that the sequence (gi)i∈N has
a limit f . Using the above two inequalities, we get the estimate

‖hn − T (tn)f‖ ≤ ‖hn − T (tn)gn‖+ ‖T (tn)‖ ‖gn − f‖

≤ ‖hn − T (tn)gn‖+
∞∑

i=n+1

‖T (tn)‖ ‖gi − gi−1‖

≤ 2−n +

∞∑
i=n+1

2−i = 2−n+1.

Given h ∈ X and ε > 0, arbitrarily large n ∈ N exist, so that ‖h− hn‖ < ε
2 .

With n large enough so that 2−n+1 < ε
2 , we have

‖h− T (tn)f‖ ≤ ‖h− hn‖+ ‖hn − T (tn)f‖ < ε.

This implies that the orbit R(ξf ) of f is dense.

(ii)⇒ (iii): Put D = D̂ = X.

(iii) ⇒ (ii): Let h ∈ X, ε > 0 and choose h̃ ∈ D so that ‖h − h̃‖ < ε
2 .

Then specify D̂ in accordance with (iii) using h̃ instead of h and ε
2 instead of

ε. Choose for g ∈ X a g̃ ∈ D̂ so that ‖g̃−g‖ < ε
2 . Now pick t and e according

to (iii) with ε
2 , g̃, h̃ instead of ε, g, h and get the estimates

‖T (t)f − h‖ ≤ ‖T (t)f − h̃‖+ ‖h̃− h‖ < ε,

‖f − g‖ ≤ ‖f − g̃‖+ ‖g̃ − g‖ < ε. �

Lemma 3.18 ([11, Theorem 2.3]). Let X be a separable Banach space and
(T (t))t≥0 a strongly continuous semigroup on X. If X0 and X∞ are dense
subsets of X, then (T (t))t≥0 is hypercyclic.

Proof. We use Lemma 3.17(iii), setting D = X∞, which is independent

of ε, and setting D̂ = X0, which is independent of ε and h. Let h ∈ X∞ and
g ∈ X0. Then for every ε > 0 exist arbitrarily large t > 0 and e ∈ X so that

‖T (t)e− h‖ < ε

2
and ‖e‖ < ε.

As g ∈ X0, we get ‖T (t)g‖ < ε
2 for t sufficiently large. Setting f = g + e, we

see that the estimates

‖h− T (t)f‖ ≤ ‖h− T (t)e‖+ ‖T (t)g‖ < ε

and

‖g − f‖ = ‖e‖ < ε

hold. �
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We can now prove the following spectral conditions for the generator of
a chaotic semigroup. The theorem is taken from [11] and is sometimes called
Desch-Schappacher-Webb- or (DSW)-criterion for chaoticity. In the following,
〈·, ·〉 denotes the canonical duality pairing of elements of the considered space
with elements of its dual space. Before stating the theorem, we introduce the
definition of weak holomorphy of a function.

Definition 3.19. Let U ⊂ C be an open set and f : U → X a function. f is
called weakly holomorphic, if for every f∗ ∈ X ′ the complex valued mapping
z 7→ 〈f(z), f∗〉 is holomorphic on U .

It is clear that every holomorphic function is weakly holomorphic.

Theorem 3.20 ([11, Theorem 3.1]). Let X be a separable Banach space,
(T (t))t≥0 a strongly continuous semigroup on X with A its generator, U ⊂
σp(A) an open subset of the point spectrum of A and fλ ∈ ker(λI − A) an
eigenvector to the eigenvalue λ ∈ U . If

(i) U ∩ iR 6= ∅,
(ii) for each f∗ ∈ X ′ the function Ff∗ : U → C, Ff∗(λ) = 〈f∗, fλ〉 is

analytic and
(iii) Ff∗ does not vanish identically unless f∗ = 0,

then (T (t))t≥0 is chaotic.

Proof. First we prove the following claim: Let V ⊂ U be an arbitrary
subset that has an accumulation point in U , then YV = span{fλ : λ ∈ V } is
dense in X. We prove this claim by contradiction: The Hahn-Banach theorem,
see e.g. [2, Theorem 4.15], guarantees the existence of f∗ ∈ X ′ so that f∗ 6= 0
and 〈f∗, f〉 = 0 for all f ∈ YV . This implies that Ff∗(λ) = 〈f∗, fλ〉 = 0 for all
λ ∈ V . The set V having an accumulation point in U and Ff∗ being analytic
on U implies by the identity theorem that Ff∗ ≡ 0 on U , which contradicts
the assumption.

We will now show that (T (t))t≥0 is hypercyclic by showing that the
subspaces X0 and X∞ are dense in X, which implies the assertion according
to Lemma 3.18. Then we show that additionally Xp is dense, which is the
definition of chaoticity for a C0-semigroup.

Let V be a subset of {λ ∈ U : Re(λ) < 0} that has an accumulation
point in U . Then for λ ∈ V the eigenvector fλ is contained in X0. X0 is a
subspace, which means that YV ⊂ X0. The density of YV implies the density
of X0 in X.

Now let V be a subset of {λ ∈ U : Re(λ) > 0} that has an accumulation
point in U . The equation

n∑
j=1

αjf
λj = T (t)

 n∑
j=1

αje
−λjtfλj


holds, which means that for every f ∈ YV also f ∈ X∞ holds. As before,
density of YV implies the density of X∞.

Now let V = {λ1, λ2, . . .}, where Re(λi) = 0 and Im(λi) ∈ Q for all i ∈ N
and so that (λi)i∈N is a convergent sequence. Then each fλi is periodic with
a period which is a rational multiple of π. This also means that every linear
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combination
n∑
i=1

αiλi

is periodic. Therefore the dense subspace YV is contained in Xp which again
implies the density of Xp. �

In [5] it was shown that the restriction U ⊂ σp(A) in Theorem 3.20
is indeed implicit. While the (DSW)-criterion can be used to check if the
semigroup generated by a given operator A is chaotic, the next theorems
give conditions by which this can be dismissed. First we need another lemma,
the proof can be reviewed in [17, Theorem 7.16].

Lemma 3.21. Let (T (t))t≥0 be a hypercyclic C0-semigroup, and p 6= 0 a
polynomial. Then for all t > 0 the operator p(T (t)) has dense range.

Theorem 3.22 ([17, Proposition 7.18]). Let X be a separable complex Ba-
nach space and A a linear operator in X that is the generator of a chaotic
C0-semigroup. Then for all n ∈ N

|σp(A) ∩ iR| > n

holds.

Proof. By assumption the set Xp is dense in X. By the point spectral
mapping theorem for semigroups, see Proposition 3.15,

Xp =
⋃
t>0

ker(I − T (t)) =
⋃
t>0

span

{⋃
n∈Z

ker

(
2πni

t
I −A

)}

⊂ span

{⋃
t>0

⋃
n∈Z

ker

(
2πni

t
I −A

)}
holds and the density of Xp implies X = span

{⋃
λ∈iR ker(λI −A)

}
.

Assume n ∈ N exists, so that |σp(A) ∩ iR| ≤ n. Then finite collections of
nk ∈ Z, tk > 0, k ∈ {1, . . . , N} would exist, so that

(3.3) Xp ⊂ span

{
N⋃
k=1

ker

(
2πnki

tk
I −A

)}
.

Again by Proposition 3.15

(3.4) ker

(
2πnki

tk
I −A

)
⊂ ker(I − T (tk))

holds for k ∈ {1, . . . , N}. From (3.3) and (3.4) follows that the linear operator

T = (I − T (t1)) · · · (I − T (tN ))

vanishes on Xp and since this set is dense this implies T = 0. This contradicts
Lemma 3.21 by which T should have dense range. �

Combining the results from Corollary 3.7 and Theorem 3.22, we get
another criterion.

Corollary 3.23. Let (T (t))t≥0 be a strongly continuous semigroup with
growth bound ω0. If ω0 < 0, then (T (t))t≥0 is not chaotic.
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The assertion of this corollary is of course also immediately clear from
the characterization of uniform exponential stability of a strongly continuous
semigroup using the growth bound, see e.g. [15, Section V.3.b].

Theorem 3.24 ([11, Theorem 3.3]). Let X be a separable complex Banach
space and (T (t))t≥0 a hypercyclic semigroup on X with generator A. Then
the following statements hold:

(i) If f∗ ∈ X ′, f∗ 6= 0, then the range of its orbit map R(ξ∗f∗) =

{T ∗(t)f∗ : t ≥ 0} is unbounded.
(ii) The point spectrum σp(A

∗) of the dual of the generator is empty.

Proof. (i): By the hypercyclicity assumption, there is f ∈ X so that
the range of its orbit R(ξf ) = {T (t)f : t ≥ 0} is dense in X. Assume that
for f∗ ∈ X ′, f∗ 6= 0 the orbit is bounded, that means ‖T ∗f∗‖ ≤M for M > 0
and for all t ≥ 0. Let g ∈ X be so that |〈f∗, g〉| > 3M‖f‖, and choose t > 0

so that ‖T (t)f − g‖ ≤M ‖f‖
‖f∗‖ . Then the estimate

3M‖f‖ < |〈f∗, g〉| ≤ |〈f∗, T (t)f〉|+ |〈f∗, T (t)f − g〉|

= |〈T ∗(t)f∗, f〉|+ |〈f∗, T (t)f − g〉| ≤M‖f‖+ ‖f∗‖
M‖f‖
‖f∗‖

= 2M‖f‖

holds, which is a contradiction.
(ii): Assume λ ∈ σp(A

∗), which means A∗f∗ = λf∗ for f∗ 6= 0. Then

T ∗(t)f∗ = eλtf∗, and by (i) we see that Re(λ) > 0. The equation

〈f∗, T (t)f〉 = eλt〈f∗, x〉

means that either f∗(R(ξf )) = 0 or

|〈f∗, T (t)f〉| ≥ |〈f∗, f〉|, for t ≥ 0.

The first case would imply f∗ = 0, because the range R(ξf ) of the orbit of f
is dense in X. Now let g ∈ X be so that 〈f∗, f〉 = 0 and choose t so that the
inequality

‖T (t)f − g‖ ≤ |〈f∗, f〉|
2‖f∗‖

holds. Then we can estimate

|〈f∗, T (t)f〉| ≤ |〈f∗, g〉|+ ‖f∗‖‖T (t)f, g‖ < 1

2
|〈f∗, x〉|,

which is a contradiction to the second case. �

Remark 3.25. We briefly summarize the negative indicators for chaoticity.
A linear operator A does not generate a chaotic C0-semigroup, if

(i) it does not have an infinite number of eigenvalues on the imaginary
axis, see Theorem 3.22,

(ii) its adjoint operator has eigenvalues, i.e. σp(A
∗) 6= ∅, see Theo-

rem 3.24.

To illustrate the concept of chaoticity, we will give an example of a chaotic
semigroup using the (DSW)-criterion.



24 3. CHAOTIC C0-SEMIGROUPS

Example 3.26 ([11, Example 4.12]). Let X = L2([0,∞)) and consider the
problem

∂

∂t
u(x, t) = a

∂2

∂x2
u(x, t) + b

∂

∂x
u(x, t) + cu(x, t),

u(0, t) = 0 for t ≥ 0,

u(x, 0) = g(x) for x ≥ 0, g ∈ X,

where a, b, c > 0 and c < b2

2a < 1. Then the solution semigroup is chaotic.

Proof. First we define the operators

A1f =
d2f

dx2
on D(A1) = {f ∈ H2([0,∞)) : f(0) = 0},

B1f =
df

dx
on D(B1) = {f ∈ H1([0,∞))},

A = aA1 + bB1 + cI.

Then A1 is the generator of a contractive semigroup, B1 is dissipative,
D(A1) ⊂ D(B1) and for all f ∈ D(A1)

(3.5) ‖bB1f‖ ≤
b√
2a

(‖aA1f‖+ ‖f‖)

holds. Now Proposition 3.14, the assumption b√
2a
< 1 and (3.5) imply that

aA1 + bB1 is the generator of a contractive semigroup. By Proposition 3.13
this means that A generates a strongly continuous semigroup. To show that
this semigroup is chaotic, we check the conditions of the (DSW)-criterion,
Theorem 3.20.

We choose U ⊂ C to be the set

U =

{
λ ∈ C :

∣∣∣∣λ− (c− b2

4a

)∣∣∣∣ < b2

4a
, Im(λ) 6= 0 if Re(λ) ≤ c− b2

4a

}
.

Then U has nonempty intersection with the imaginary axis because c < b2

2a .
Now we find appropriate functions for λ ∈ U and prove that they are

eigenfunctions with eigenvalues λ. Let fλ be defined as

fλ(x) = exp

(
− b

2a
x

)
sin

(
x

√
c− λ
a
− b2

4a2

)
.

By differentiation we see that

a
d2fλ

dx2
+ b

dfλ

dx
+ cfλ = λfλ, fλ(0) = 0,

and we can estimate

|fλ(x)| ≤ exp

(
− b

2a
x

)
exp

(
x

∣∣∣∣∣
√
c− λ
a
− b2

4a2

∣∣∣∣∣
)

≤ exp

[
x√
a

(
−
√
b2

4a
+

√∣∣∣∣λ− (c− b2

4a

)∣∣∣∣
)]

.
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For λ ∈ U the exponent in the last term is negative, so fλ ∈ X. Similarly

we can show d2fλ

dx2
∈ X, and thus fλ ∈ D(A). This shows, that the functions

fλ are eigenvectors of A to eigenvalues λ ∈ U .
Let Ff∗ be defined as

Ff∗(λ) = 〈f∗, fλ〉,
for λ ∈ U and f∗ ∈ X ′. By Proposition 2.19 we know X ′ = X. Let

ψ(x) =

{
exp

(
− b

2ax
)
f∗(x) if x ≥ 0,

0 if x < 0.

Then we can write Ff∗ using the Fourier transform Ψ of ψ as

Ff∗(λ) =
1

2i

[
Ψ

(
−
√
c− λ
a
− b2

4a2

)
−Ψ

(√
c− λ
a
− b2

4a2

)]
.

The integrals of the Fourier transform converge absolutely, and the square
root is analytic for λ ∈ U , it is possible to show that Ff∗ depends analytically
on λ ∈ U . Thus, if Ff∗ vanishes on U , we deduce

Ψ(µ) = Ψ(−µ), for µ ∈ R
by analyticity. This means that ψ is an even function and since it vanishes
on the negative half-line, it vanishes on R. This implies that f∗ = 0.

All conditions of Theorem 3.20 have been shown to hold, thus the
semigroup generated by A is chaotic. �





CHAPTER 4

Operators on Graphs

In many applications the physical structure of the problem is defined by
a strong dependence on only one spatial direction, e.g. wave propagation
through very thin, quasi-one-dimensional structures like carbon nanotubes.
Metric graphs offer an ideal simplified scheme to describe the physical prop-
erties of these cases and equipped with the appropriate differential operator
become quantum graphs, which can be used to tackle these challenging
problems.

In Section 2.1 we already mentioned metric and quantum graphs and now
we will examine this concept further. The definitions and theorems follow [8]
and [26].

4.1. Metric Graphs

First we need to define and describe the structure of a metric graph to
some detail. The concept of metric graphs is very similar to that of weighted
graphs or networks, and they can in fact be identified with each other, as
described in [4, Section 2] and [26, Section 3.2].

Definition 4.1. A tuple G = (D, l), where D = (V,E, ∂) is a digraph and
l : E → (0,∞], l(e) = le is the length function, is called metric graph, if

(i) every arc e ∈ E is assigned a coordinate xe ∈ [0, le] which increases
in the direction of the edge,

(ii) e, f ∈ E and f = e implies
• lf = le and
• xf = le − xe.

An edge e ∈ E with infinite length le =∞ is called lead, see also Definition 2.6.

In a metric graph we do not only consider the vertices as points of the
graph, but also every point on the edges. We will use the slight abuse of
notation by writing einit ∈ V and eterm ∈ V for the points xe = 0 and xe = le,
respectively.

Example 4.2. Consider the metric graph Gb = (Db, lGb), where Db =
(V,E, ∂) is the digraph from Example 2.5 and

lGb : E → (0,∞), lGb(ei) = lei , i ∈ {1, 2, . . . , 6}.

Figure 3 illustrates the graph Gb and further shows how the coordinates xei
are defined along the edges ei in the direction of the arc.

The term metric graph is justified, since it is possible to define a natural
metric on the graph structure. We do this in three steps: First we introduce
the concept of distance between two vertices.

27
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v1

v2

v3

v4

v5

v6

v7

xe1

xe2

xe3

xe4

xe5

xe6

xe7

(a) Representation of Gb with coordinates xei .

v6

le6

v7

0xe6

(b) Detail of edge e6.

Figure 3. The metric graph Gb.

Definition 4.3. Let G = (D, l) be a metric graph with D = (V,E, ∂). The
distance distG(vi, vj) of two vertices vi, vj ∈ V is defined by

distG(vi, vj) = inf

∑
e∈E

l(e) : P = (V ,E, ∂) is vi, vj-path in U(D)

 .

Then we define the subdivision of a graph at a point on an edge.

Definition 4.4. Let G = (D, l) be a metric graph with D = (V,E, ∂) and

x ∈ (0, lei) for some ei ∈ E. The metric graph G̃ = (D̃, l̃) with set of vertices

Ṽ = V ∪{vx}, set of edges Ẽ = (E\{ei})∪{e′i, e′′i }, incidence map ∂̃ : Ẽ → Ṽ
with

∂̃(e) =


∂(e) for e /∈ {e′i, e′′i },
(einit
i , vx) for e = e′i,

(vx, e
term
i ) for e = e′′i ,

and length function l̃ : Ẽ → (0,∞] with

l̃(e) =


l(e) for e /∈ {e′i, e′′i },
x for e = e′i,

lei − x for e = e′′i ,

is called subdivision of G at x. If x ∈ V , then G̃ = G.

Figure 4 shows the result of subdividing an edge of a metric graph G at
an arbitrary point x. Observe in particular the new vertex vx and the new
edges e′i, e

′′
i with their respective coordinates xe′i , xe′′i . By definition, we get

lei = le′i + le′′i .
Finally we can extend the distance concept between vertices from Defini-

tion 4.3 to all points of a metric graph by considering the distance between
vertices on a subdivision.

Definition 4.5. Let G = (D, l) be a metric graph and x, y two arbitrary

points on G. Let G̃ be the subdivision of G at x and y. The distance distG(x, y)
is defined by

distG(x, y) = distG̃(vx, vy),

using the notation of Definition 4.4.

Verification that the function distG(x, y) is indeed a metric is straight forward.
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vj = einit
i

0

vk = eterm
i

le

x

ei

(a) Detail of G around x on ei.

vj

0

vk

le′′i

le′i

vx

e′i

xe′i

e′′i

xe′′i

(b) Detail of G̃ around vx.

Figure 4. Subdivision of a metric graph G at point x.

Definition 4.6. A metric graph G = (D, l) is called equilateral, if l is
constant.

Even though in some applications it can be useful, a metric graph in
general is not embedded in an Euclidean space.

4.2. Function Spaces on Metric Graphs

By defining the coordinates xe on a metric graph G = (D, l) it is possible
to study not only discrete functions defined at the vertices, but also functions
on the entire graph including the edges. For this purpose we introduce the
following function spaces on G.

Definition 4.7. Let G = (D, l) be a metric graph. For p ∈ [1,∞] denote
by Xp the completion of the direct sum

⊕
e∈E L

p(0, le) with respect to the
norms

‖f‖pLp(G) =
∑
e∈E
‖fe‖pLp(0,le)

=
∑
e∈E

∫ le

0
|fe(xe)|p dxe for p ∈ [1,∞),

‖f‖L∞(G) = inf
e∈E
{c ∈ R : |fe(xe)| ≤ c for a.e. xe ∈ (0, le)},

see Definition 2.13. Then the space Lp(G) is defined as

Lp(G) =
{
f ∈ Xp : ‖f‖Lp(G) <∞

}
.

Definition 4.8. Let G = (D, l) be a metric graph and denote by X2 the
completion of the direct sum

⊕
e∈E H

1(0, le) with respect to the norm

‖f‖2H1(G) =
∑
e∈E
‖fe‖2H1(0,le)

.

Then the space H1(G) is defined as

H1(G) =
{
f ∈ X2 : f continuous on G, ‖f‖H1(G) <∞

}
.

The condition for f to be continuous on G in the above definition means
that for each vertex v ∈ V the functions fe(v) assume the same value for all
e ∈ Ev.
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In order to examine problems of higher order, we need to introduce higher
order Sobolev spaces on the metric graph G, which are not defined in the
natural way of H1(G), but without any continuity condition at the vertices.

Definition 4.9. For k ∈ N, the Sobolev space H̃k(G) is defined as the
completion of

⊕
e∈E H

k(0, le) with respect to the norm

‖f‖2
H̃k(G)

=
∑
e∈E
‖fe‖2Hk(0,le)

.

A function f is an element of H̃k(G), if fe ∈ Hk(0, le) and ‖f‖
H̃k(G)

<∞. It

is clear from the definition, that in the case k = 0 we get H̃0(G) = L2(G).

According to [26, Section 3.2], the spaces L2(G) and H1(G), using the
inner products defined by

(f, g)L2(G) =
∑
e∈E

∫ le

0
fe(xe)ge(xe) dxe,

(f, g)H1(G) = (f, g)L2(G) + (f ′, g′)L2(G),

are Hilbert spaces, and H1(G) is a dense subspace of L2(G).

4.3. Quantum Graphs

After defining metric graphs and the corresponding function spaces on
them, we are now able to introduce the main object of interest.

Definition 4.10. A quantum graph Γ = (G, A, V C) is a triple of a metric
graph G, a linear operator A in an appropriate function space, whose domain
D(A) is defined by a set of vertex conditions V C.

Typical examples of vertex conditions are given in Example 4.13.

Remark 4.11. The operator A can be an arbitrary linear operator. Most
commonly analyzed in the field of quantum graphs is the operator acting as

the negative second derivative − d2

dx2e
on each edge. Because of its frequent

use in literature and applications, we will mainly consider this operator in
the rest of this section.

We continue by establishing additional notations. Let f = (fe)e∈E ∈
H̃2(G) be a function defined on some metric graph G. For a vertex v ∈ V
the number dv = |Ev| is called degree of v. The vector

F (v) = (fe(v))Te∈Ev

then consists of the values that f takes at v on the edges incident to v and
the vector

F ′(v) = (f ′e(v))Te∈Ev
of the values of the first weak derivative. For continuous functions, e.g. from
the space H1(Ω), the components of F (v) will be identical. By Assump-
tion 2.10(iii), these vectors have a finite number of components.

In order to treat second order differential operators on the edges, exactly
two boundary conditions are required for every edge, which means that at
each vertex v ∈ V we need dv conditions. For functions in H2(Ω), the value
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of the function and of the first derivative can be considered. This means,
that we can write all possible homogeneous conditions for a H2(Ω) function
in the form

(4.1) AvF (v) +BvF
′(v) = 0,

where Av, Bv ∈ Cdv×dv . The matrix (AvBv) ∈ Cdv×2dv needs to have full
rank dv to guarantee the necessary number of independent conditions at each
vertex.

The vertex conditions have a crucial influence on the properties of the
operator on a quantum graph.

Theorem 4.12 ([8, Theorem 1.4.4]). Let G be a finite metric graph and

consider the operator A acting as the negative second derivative − d2

dx2e
on

each edge, with domain of functions in H̃2(G) that satisfy vertex conditions
specified in terms of function and derivative values. The operator A is self-
adjoint if and only if the vertex conditions can be written in the form:

(i) For every v ∈ V two dv × dv matrices Av, Bv exist, so that the
dv × 2dv matrix (AvBv) has maximal rank,

(ii) the matrix AvB
∗
v is self-adjoint,

(iii) the boundary values of f satisfy AvF (v) +BvF
′(v) = 0.

Proof. The proof can be found in [8, Theorem 1.4.4]. �

Example 4.13. We will now give some examples of vertex conditions on
quantum graphs.

(i) δ-type condition: The condition at a vertex v ∈ V reads as{
f is continuous at v,∑

e∈Ev f
′
e(v) = αvf(v),

where αv is a fixed parameter at every vertex. Using the notation
from Theorem 4.12, this condition can be expressed by the matrices

Av =



1 −1 0 · · · 0

0 1 −1
. . .

...
...

. . .
. . .

. . . 0

0
. . . 1 −1

−αv 0 · · · 0 0

 , Bv =



0 0 · · · · · · 0
...

...
...

...
...

...

0 0 · · · · · · 0
1 1 · · · · · · 1

 .

We clearly see that AvB
∗
v is self-adjoint if and only if αv ∈ R,

which would by Theorem 4.12 result in a self-adjoint quantum
graph operator. If αv ∈ C is allowed, we call it a generalized δ-type
condition.

(ii) Kirchhoff-Neumann condition: This condition is the special case of
the δ-type condition for the parameter value αv = 0, which implies
e.g. conservation of the current in the vertices when considering
electrical networks.

The name is reminiscent of this mentioned application, where
Gustav Kirchhoff was a significant contributor.
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(iii) Dirichlet condition: Here the function vanishes at the vertices:{
f is continuous at v,

f(v) = 0.

The Dirichlet condition is a decoupling condition, as it removes the
link between the edges connected by the vertex. It can also be seen
as a special case of the δ-type condition, for the case αv →∞.

Example 4.14. To better visualize the concept, consider the quantum graph
Γb = (Gb, A, V C), where Gb = (Db, lGb) is the metric graph from Example 4.2
and the operator A is defined as the second negative derivative on each

edge − d2

dx2e
with vertex conditions of Kirchhoff-Neumann-type. Then by

Theorem 4.12 the quantum graph operator is self-adjoint. Figure 5 shows
the structure of the graph around the vertex v1 with the applied vertex
conditions.

v1

fe1(0) = fe2(0) = fe4(le4)
f ′e1(0) + f ′e2(0) + f ′e4(le4) = 0

xe1

xe2 xe4

Figure 5. Kirchhoff-Neumann vertex conditions at v1.

For an infinite graph, there need to be additional assumptions in order
to guarantee the self-adjointness of the graph operator, which are given in
the next theorem.

Theorem 4.15. Let Γ(G, A, V C) be a quantum graph that satisfies the con-
ditions from Theorem 4.12 and additionally the following assumptions:

(i) The length of the edges is uniformly bounded from below, i.e. l0 ∈ R
exists, so that 0 < l0 ≤ le for all e ∈ E.

(ii) The vertex conditions are given in the form (4.1), and the estimate

‖B(−1)
v AvQv‖ ≤ S <∞

holds uniformly for all vertices, where Qv denotes the orthogonal

projection on the range R(B∗v) of the adjoint of Bv, B
(−1)
v is the

inverse of Bv with domain R(B∗v), and the norm is the operator
norm induced by the l2-norm.

Then the operator A is self-adjoint.

Proof. For the proof we refer to [8, Theorem 1.4.19] �

The vertex conditions described above are all considered local, so no
interrelation between distinct vertices is allowed. This is not necessary though,
since the topological information of a graph is contained entirely in the vertex
conditions, and non-local conditions can be localized by identifying all vertices
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of a given graph. This turns it into a graph with only one vertex, where
each edge is bent into a loop. The type of the vertex conditions does not
necessarily stay the same after this procedure, see [8, Section 1.4.6].

Finally to conclude this section and to get a clearer understanding
of quantum graphs, we give another example and explicitly calculate the
spectrum of the graph, i.e. the spectrum of the operator with the applied
vertex conditions.

Example 4.16 ([8, Example 1.4.3]). Consider the metric graph Gn =
((V,En, ∂), ln) where n ∈ N, V = {w, v1, . . . , vn}, En = {e1, . . . , en}, ∂(ei) =
(vi, w) and ln(ei) = lei ∈ (0,∞) for i ∈ {1, . . . , n}. The graph Gn is essentially
a star graph with all arcs directed to the central vertex, as shown in Figure 6.
We complement the graph Gn with the operator acting as the negative second

v1

v2

v3

v4

v5

w

e1

e2

e3

e4

e5

Figure 6. Exemplary depiction of a metric graph G5.

derivative on each edge, which we can write as

A = −An = −


d2

dx2e1
0

. . .

0 d2

dx2en

 ,

and Kirchhoff-Neumann vertex conditions. The operator A thus has the
domain

D(A) = {f ∈ H̃2(Gn) : AvF (v) +BvF
′(v) = 0 for all v ∈ V },

where Avi = 0 and Bvi = 1 for i ∈ {1, . . . , n} and Aw, Bw is defined as the
matrices from Example 4.13(i) with αw = 0. We know from Theorem 4.12
that A is self-adjoint.

When we want to calculate the eigenvalues of the quantum graph operator,
we need to solve the problem

Af = λf,

which boils down to solving for every e ∈ En the ordinary differential equation

−d2fe
dx2

e

= λfe.

To this end, we adopt the convention of using the outgoing derivative at
each vertex, as mentioned in [8, Section 1.4]. Using the Kirchhoff-Neumann
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conditions at the outer vertices, we get the solutions

fe(xe) = ae cos
(√

λxe

)
on each edge. The outgoing derivative at the central vertex then becomes

f ′e(le) = ae sin
(√

λle

)
and we get the expressionsae1 cos

(√
λle1

)
= . . . = aen cos

(√
λlen

)
= C,∑n

i=1 aei sin
(√

λlei

)
= 0,

for the vertex conditions at the central vertex. To keep the example short we
do not worry about the case C = 0 and assume C 6= 0. We see by dividing
the second equation by C, that λ is an eigenvalue, if

(4.2)
n∑
i=1

tan
(√

λlei

)
= 0.

To make the example more tangible, we consider the explicit case of G3 with
lei = i for i ∈ {1, 2, 3}, as depicted in Figure 7. Calculating all eigenvalues
in this case is a hard task in itself, so we restrict our observations to some
eigenvalues which can be seen directly from the above conditions.

We immediately see that λ = 0 is an eigenvalue and that it leads to
eigenvectors which are constant on all edges. The values λ = (2kπ)2, k ∈ Z,
are also obviously eigenvalues of this graph, which result in eigenvectors
that are cosine functions on each arc with increasing frequency as |k| is
incremented.

v1

v2

v3

w

e1

e2 e3

Figure 7. The metric graph G3, where l3(ei) = i for i ∈ {1, 2, 3}.



CHAPTER 5

Chaotic C0-Semigroups on Quantum Graphs

We now combine the concepts that we introduced separately in Section 3.3
and Chapter 4. We first give some conditions for the existence of chaotic
C0-semigroups on quantum graphs in Section 5.2. Then in Section 5.3, we
construct a model problem, on the basis of which we further study chaoticity
of the generated semigroups in Section 5.4.

5.1. Quantum Graphs and Abstract Cauchy Problems

The synthesis of the fields considered in the previous two chapters is all
but trivial. In this section, we will clarify what we mean when speaking of
the application of semigroup methods on quantum graphs.

We recall from Chapter 3, that the setting where operator semigroups
naturally appear are abstract Cauchy problems of the type

(ACP)

{
d
dtu(t) = Au(t) for t ≥ 0,

u(0) = f,

where, if A is generator of a strongly continuous semigroup (T (t))t≥0 and if
f ∈ D(A), the mapping

t 7→ u(t) = T (t)f

represents the classical solutions for (ACP).
In order to use this setting in the context of quantum graphs, we need to

consider problems on metric graphs, which result in or can be converted into
problems of the type (ACP). For this section we will use the examples of
advection and diffusion type problems, which in their simplest variant take
the forms

∂ue
∂t

(t, xe) =
∂ue
∂xe

(t, xe), t ≥ 0, xe ∈ (0, le), e ∈ E, and(5.1)

∂ue
∂t

(t, xe) =
∂2ue
∂x2

e

(t, xe), t ≥ 0, xe ∈ (0, le), e ∈ E,(5.2)

on a metric graph G, equipped with appropriate vertex conditions V C and
initial conditions ue(0, xe) = f(xe). In the setting of the function spaces
defined in Section 4.2, we can interpret these problems as (ACP) with the
operator A for advection and diffusion respectively defined by

Aaf =



dfe1
dxe1

0 · · · · · ·

0
. . .

. . .
...

. . . dfei
dxei

. . .

...
. . .

. . .

 , Adf =



d2fe1
dx2e1

0 · · · · · ·

0
. . .

. . .
...

. . . d2fei
dx2ei

. . .

...
. . .

. . .

 ,

35
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with domains

D(Aa) = {f ∈ H̃1(G) : f satisfies V C},
and

D(Ad) = {f ∈ H̃2(G) : f satisfies V C}.
At the same time, these problems can be seen from the viewpoint of Chapter 4,
as the quantum graph Γ = (G, A, V C), with the operator A defined as above.

When we talk about C0-semigroups on quantum graphs, we mean the
strongly continuous semigroup that is generated by the quantum graph
operator, in view of a problem similar to the type (5.1) or (5.2) on each edge
of a metric graph. Of course the generator property of the quantum graph
operator needs to be verified in every individual case, i.e. for different vertex
conditions the operator may or may not be a generator.

5.2. General Considerations

We briefly examine the kind of quantum graph that is analyzed in most of
the literature covering the subject, see e.g. [8], [22] and [23]. The main focus
in these publications lies on quantum graphs, where the vertex conditions
result in a self-adjoint linear operator. We described a characterization of
these kinds of vertex conditions in Theorem 4.12 and 4.15.

Theorem 5.1. Let X be a Hilbert space and A a self-adjoint linear operator
in X. Then A does not generate a chaotic C0-semigroup.

Proof. Assume that A is generator of a strongly continuous semigroup,
otherwise we are already done. From the final remark in Section 2.3 we know
that the spectrum of a self-adjoint operator is real, therefore so is the point
spectrum, i.e.

(5.3) σp(A) ⊂ R.

Assume A generates a chaotic C0-semigroup, then by Theorem 3.22

|σp(A) ∩ iR| > n

holds for all n ∈ N. Using (5.3) we get the estimate

|σp(A) ∩ iR| ≤ |R ∩ iR| = 1,

which contradicts the assumption. Thus A does not generate a chaotic
semigroup. �

The theorem implies that when studying quantum graphs, where the
vertex conditions result in a self-adjoint quantum graph operator, chaotic
semigroups can not occur. This means that all the standard vertex condi-
tions for finite metric graphs equipped with the standard negative second
derivative operator on each edge, such as Dirichlet-, Kirchhoff-Neumann-
and δ-conditions from Example 4.13 can be ruled out, if we are searching for
generators of chaotic semigroups.

Another category of problems where chaotic semigroups can not occur,
is the case of finite dimensional spaces X. This is an immediate consequense
of Theorem 3.24(ii), as every linear operator in Cn, n ∈ N, has non-empty
point spectrum. This may be relevant in the context of the finite element
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method for quantum graphs that was introduced in a recent publication, see
[3].

5.3. A Model Problem

For the next part of our investigation, we introduce a model problem of
diffusion-advection-reaction type, which we will use for our further examina-
tion of chaotic C0-semigroups on quantum graphs.

Consider the metric graph Gn = (Dn, l), where Dn = ({v}, En, ∂), En =
{ei : i ∈ {1, . . . , n}} for a fixed n ∈ N and ∂(ei) = (v,∞) for i ∈ {1, . . . , n}.
The graph Gn is essentially a star graph with n leads, as shown in Figure 8
for the case n = 5. Let X = L2(Gn) = L2([0,∞))n and let A be the linear
operator defined by the problem

∂ue
∂t

(t, xe) = ae
∂2ue
∂x2

e

(t, xe) + be
∂ue
∂xe

(t, xe) + ceue(t, xe),(5.4)

ue(t, 0) = 0 for t ≥ 0,

ue(0, xe) = ge(xe) for xe ≥ 0, ge ∈ L2([0,∞)),

on each edge e ∈ En in the sense of Section 5.1, where for each e ∈ En the
edgewise constant parameters ae, be, ce satisfy the conditions ae, be, ce > 0,
ce < 1 and

(5.5) ce <
b2e

2ae
,

b2e
ae

< 1.

For n ∈ N we define the operators

An =


d2

dx2e1
0

. . .

0 d2

dx2en

 , Bn =


d

dxe1
0

. . .

0 d
dxen

 ,

with domains

D(An) = {f ∈ H̃2(Gn) : fe(0) = 0 for all e ∈ En},

D(Bn) = H̃1(Gn).

v

xe1

xe2

xe3 xe4

xe5

(a) The metric graph G5 with five leads.

v

0

∞

ei

xe4

(b) Detail of the edge e4.

Figure 8. Depiction of the metric graph G5.
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Note that for n = 1 we get the operators A1 and B1 from Example 3.26. We
can now describe the quantum graph operator A by

A = diag(aei)An + diag(bei)Bn + diag(cei)I,

D(A) = D(An),

where diag(di) is defined as

diag(di) =

d1 0
. . .

0 dn

 .

5.4. Semigroups for the Model Problem

We will now analyze different variations of the model problem, starting
with the original version, and later changing parameters and vertex conditions
to investigate the effects on the generated semigroup. Table 1 offers a short
overview of the different variations of the model problem that we consider in
this section.

Table 1. Variations of the model problem.

PDE Vertex condition Semigroup Reference

second order (ae 6= 0) Dirichlet chaotic Theorem 5.2
generalized δ-type chaotic Theorem 5.5

first order (ae = 0) Dirichlet not chaotic Theorem 5.3
Kirchhoff-Neumann not applicable Remark 5.4
δ-type not applicable Remark 5.4
continuity not generated Remark 5.4
mass conservation not chaotic Theorem 5.6

Theorem 5.2. Consider the model problem. Then A generates a chaotic
C0-semigroup on X.

Proof. We claim that Bn is dissipative: By Definition 2.15(iii) we need
to show that ‖(λI −Bn)f‖L2(Gn) ≥ λ‖f‖L2(Gn) for all λ > 0 and f ∈ D(Bn).

Using the definition of the L2-norm on a metric graph from Definition 4.7
and the knowledge that B1 is dissipative from Example 3.26, we get

‖(λI −Bn)f‖L2(Gn) =

√∑
e∈En

‖(λI −B1)fe‖2L2([0,∞))

≥
√∑
e∈En

λ2‖fe‖2L2([0,∞))

= λ‖f‖L2(Gn),

(5.6)

where f ∈ H̃1(Gn) = D(Bn), which proves our claim.
As described in Example 4.13(iii), the imposed Dirichlet condition at the

vertex v is a decoupling condition, so from the generator property in the
one dimensional case, see Example 3.26, follows the correlating property in
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this metric graph setting, i.e. An generates a contractive strongly continuous
semigroup, see also e.g. [14, 22].

We also see from the definitions that D(An) ⊂ D(Bn) and, using (3.5)
and Young’s inequality, that for all f ∈ D(An) the estimate

‖diag(bei)Bnf‖L2(Gn) =

√∑
e∈En

‖beB1fe‖2

≤

√√√√∑
e∈En

b2e
2ae

(‖aeA1fe‖+ ‖fe‖)2

≤
√
rm

∑
e∈En

(‖aeA1fe‖2 + ‖fe‖2)

≤
√
rm

√∑
e∈En

‖aeA1fe‖2 +

√∑
e∈En

‖fe‖2


=
√
rm(‖diag(aei)Anf‖L2(Gn) + ‖f‖L2(Gn))

(5.7)

holds, where we set rm = maxe∈En

{
b2e
ae

}
. From (5.5) we get

√
rm < 1 and

thus by Proposition 3.14 the operator diag(aei)An + diag(bei)Bn generates a
contractive strongly continuous semigroup, which, using Proposition 3.13,
implies that A generates a C0-semigroup.

We will now check the conditions of the (DSW)-criterion from Theo-
rem 3.20. Let U be the set

U =
⋂
e∈En

Ue,

where

Ue =

{
λ ∈ C :

∣∣∣∣λ− (ce − b2e
4ae

)∣∣∣∣ < b2e
4ae

, Im(λ) 6= 0 if Re(λ) ≤ ce −
b2e

4ae

}
.

We know that U ∩ iR 6= ∅, because by assumption ce <
b2e

2ae
for all e ∈ En.

For λ ∈ U define the function

fλ(x) =


fλe1(xe1)

...

fλen(xen)

 =


exp

(
− be1

2ae1
xe1

)
sin

(
xe1

√
ce1−λ
ae1
− b2e1

4a2e1

)
...

exp
(
− ben

2aen
xen

)
sin

(
xen

√
cen−λ
aen

− b2en
4a2en

)
 .

By differentiation we can calculate the identity

Afλ = diag(aei)Anf
λ + diag(bei)Bnf

λ + diag(cei)f
λ

=


ae1

d2fλe1
dx2e1
...

aen
d2fλen
dx2en

+


be1

dfλe1
dxe1
...

ben
dfλen
dxen

+


ce1f

λ
e1

...

cenf
λ
en

 = λfλ,
(5.8)
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and the validity of the boundary condition

fλ(0) =

f
λ
e1(0)

...
fλen(0)

 = 0

is obvious. Since for all e ∈ En the estimate

|fλe (xe)| ≤ exp

 xe√
ae

−√ b2e
4ae

+

√∣∣∣∣λ− (ce − b2e
4ae

)∣∣∣∣


holds and the exponent of the exponential function is negative for λ ∈ U , we
can conclude that

‖fλ‖L2(Gn) =

(∑
e∈En

‖fλe ‖2L2([0,∞))

) 1
2

<∞,

and thus fλ ∈ X. In the same way we can show that Anf
λ ∈ X, so that

fλ ∈ D(A). Combined with (5.8) this means that fλ and λ are eigenvectors
and eigenvalues of A, respectively.

From Proposition 2.19 and the definition of the space L2(Gn) we can
deduce that X ′ = X. Now choosing f∗ ∈ X ′, we define the map Ff∗ : U → C,

λ 7→ 〈f∗, fλ〉. Then let the function ψ be defined as

ψ(x) =

ψe1(xe1)
...

ψen(xen)

 ,

where

ψe(xe) =

{
exp

(
− be

2ae
xe

)
f∗e(xe) if xe ≥ 0,

0 if xe < 0.

Using the Fourier transforms Ψe of ψe we can write the function Ff∗ as

Ff∗(λ) =
1

2i

∑
e∈En

[
Ψe

(
−

√
ce − λ
ae

− b2e
4a2

e

)
−Ψe

(√
ce − λ
ae

− b2e
4a2

e

)]
.

Since the integrals involved in the Fourier transforms converge absolutely,
and the square root is analytic for λ ∈ U , it is possible to show that Ff∗(λ)
depends analytically on λ ∈ U .

We can deduce by analyticity that Ψe(µ) = Ψe(−µ) for all µ ∈ R if Ff∗
vanishes on the set U , and thus see that ψe is an even function. Since ψe = 0
on the negative half line, this means that ψe ≡ 0 which implies f∗e = 0 for
all e ∈ En, which means f∗ = 0.

This concludes the proof of the conditions for Theorem 3.20, and thus
shows that the semigroup generated by the linear operator A is chaotic. �

The theorem is in fact an adaption of the one-dimensional case of a
chaotic semigroup from Example 3.26, set on the metric graph Gn with a
Dirichlet vertex condition at the vertex v. This type of vertex condition,
as described in Example 4.13, is a decoupling condition, because the link
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between the edges is neglected. This reduces the value of the presented
example of a chaotic semigroup on a quantum graph to some degree.

In order to extend our understanding of the model problem, we now
examine some alterations of the model problem. First we consider the case
ae = 0, so that no second order derivatives appear.

Theorem 5.3. Consider the model problem where ae = 0, for all e ∈ En,
and condition (5.5) is dismissed. Then A does not generate a chaotic C0-
semigroup on X.

Proof. Assume that A is the generator of a strongly continuous semi-
group, otherwise we are already finished. We now show that the necessary
spectral condition for the generator of a chaotic semigroup,

(5.9) |σp(A) ∩ iR| > n for all n ∈ N,

from Theorem 3.22 is not met. Let A = diag(bei)Bn+diag(cei)I with adapted
domain

D(A) = D(Bn) = {f ∈ H1(Gn) : f(0) = 0}

to incorporate the vertex condition. In order to find the eigenvalues of the
linear operator A, we need to consider the eigenvalue problem

Af = λf, f ∈ D(A) ⇔ diag(bei)Bnf = (λI − diag(cei)I)f

⇔ dfe
dxe

=
λ− ce
be

fe, e ∈ En,
(5.10)

For these ordinary differential equations we get the general solutions

fe(xe) = de exp

(
λ− ce
be

xe

)
, e ∈ En,

where de is an arbitrary constant. Using the boundary condition fe(0) = 0 on
each edge, we see that (5.10) has only the trivial solution. This means that
condition (5.9) can not hold, thus A does not generate a chaotic strongly
continuous semigroup on X. �

Remark 5.4. While in the case of Theorem 5.2 the Dirichlet vertex condition
was essential in translating the one-dimensional example of a chaotic semi-
group to the quantum graph, it is now responsible for the lack of eigenvalues
of the quantum graph operator.

Due to their definition, the Kirchhoff-Neumann or δ-type condition are
not applicable in this setting with a first order differential operator. Dropping
the Dirichlet condition f(0) = 0 and leaving just the continuity condition
in the vertex v would result in only n− 1 boundary conditions for the first
order operator, which thus can not be the generator of a strongly continuous
semigroup.

For the next case, we study the original problem with a different, not
decoupling kind of vertex condition.

Theorem 5.5. Consider the model problem with the Dirichlet vertex con-
dition replaced by a generalized δ-type condition with αv ∈ C \

⋃
e∈En Ve,
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where

Ve =

z ∈ C : z =
n
√
ae

−√ b2e
4ae
−

√
λ−

(
ce −

b2e
4ae

) , λ ∈ Ue
 ,

with Ue defined by

Ue =

{
λ ∈ C :

∣∣∣∣λ− (ce − b2e
4ae

)∣∣∣∣ < b2e
4ae

, Im(λ) 6= 0 if Re(λ) ≤ ce −
b2e

4ae

}
.

Then A generates a chaotic C0-semigroup on X.

Proof. As before, we prove the conditions of the (DSW)-criterion. First
note that the domain of An has changed to

D(An) = {f ∈ H̃2(Gn) : AvF (v) +BvF
′(v) = 0},

due to the new vertex condition. The n × n-matrices Av and Bv take the
form of the matrices introduced in Example 4.13(i).

The proof of the generator property of A is analogous to Theorem 5.2:
An generates a contractive semigroup, see e.g. [20], Bn is dissipative by (5.6)
and due to (5.7) Proposition 3.14 can be applied. Finally Proposition 3.13
shows that A generates a strongly continuous semigroup.

For the following part of the proof we consider the set U =
⋂
e∈En Ue.

Now consider the functions

fλ =

f
λ
e1
...
fλen

 ,

where for all e ∈ En the functions fλe are defined as

fλe (xe) = exp

(
− be

2ae
xe

)[(
Ce
Λe

+ 1

)
exp(Λexe) +

(
1− Ce

Λe

)
exp(−Λexe)

]
,

with

Λe =

√
b2e

4a2
e

+
λ− ce
ae

and Ce =
2αvae + nbe

2nae
.

We can see that Λe 6= 0 for λ ∈ U . Since by assumption ce <
b2e

2ae
, we know

that U ∩ iR 6= ∅. We now show that the functions fλ are eigenvectors of A
to the eigenvalues λ.

By differentiation and some technical calculations, we can verify the
identity

Afλ = diag(aei)Anf
λ + diag(bei)Bnf

λ + diag(cei)f
λ = λfλ,

and we also immediately see that

fλei(0) = fλej (0)

holds for every choice of i, j ∈ {1, . . . , n}, thus satisfying continuity in the
vertex v. By another calculation, we prove that∑

e∈En

dfλe
dxe

(0) =
∑
e∈En

(
2Ce −

be
ae

)
=
∑
e∈En

2αv
n

= αvf
λ(0)
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holds, where fλ(0) is the, due to continuity unique, value of fλ at the vertex.
Now let

dme = max

{∣∣∣∣CeΛe
+ 1

∣∣∣∣ , ∣∣∣∣1− Ce
Λe

∣∣∣∣} ,
then we can estimate for each e ∈ En

|fλe (xe)| ≤ dme exp

(
− be

2ae
xe

)
|(exp(Λexe) + exp(−Λexe))|

= 2dme exp

(
− be

2ae
xe

) ∣∣∣∣∣cos

(√
ce − λ
ae

− b2e
4a2

e

xe

)∣∣∣∣∣
≤ 2dme exp

(
− be

2ae
xe

)
exp

(∣∣∣∣∣
√
ce − λ
ae

− b2e
4a2

e

∣∣∣∣∣xe
)

≤ 2dme exp

 xe√
ae

−√ b2e
4ae

+

√∣∣∣∣λ− (ce − b2e
4ae

)∣∣∣∣
 ,

which by the same argument as in the proof of Theorem 5.2 shows that
fλ ∈ L2(Gn) for λ ∈ U , and similarly Anf

λ ∈ L2(Gn), so that fλ ∈ D(A).
This concludes the verification of the eigenvector property of the functions
fλ.

It remains to show that for every f∗ ∈ X ′ = X, the map Ff∗ : U → C,

λ 7→ 〈f∗, fλ〉, is analytic and Ff∗ does not vanish on U unless f∗ = 0. We
again define the function ψ edgewise by

ψe(xe) =

{
exp

(
− be

2ae
xe

)
f∗e(xe) if xe ≥ 0,

0 if xe < 0.

Then we can write the function Ff∗ , again using the Fourier transform Ψe of
ψe, as

Ff∗(λ) =
∑
e∈En

[(
Ce
Λe

+ 1

)
Ψe(iΛe) +

(
1− Ce

Λe

)
Ψe(−iΛe)

]
,

and analogous to the proof of Theorem 5.2 we see that Ff∗ is analytic for
λ ∈ U . Again similar to the proof of Theorem 5.2, if Ff∗ vanishes on U , we
conclude that

Ψe(µ) = −Λe − Ce
Λe + Ce

Ψe(−µ)

for all e ∈ En, and by this ψe is, for αv ∈ V , an odd or respectively even
function up to a multiplicative constant for Λe > Ce and Λe < Ce. For
αv ∈ V , we would get Λe + Ce = 0 for a λ ∈ U for at least one e ∈ En.

Since ψe = 0 on the interval (−∞, 0), each component of ψ vanishes on
R and thus f∗ = 0. �

Finally we want to discuss another variation of the first order case of the
model problem. Therefore we introduce a new kind of vertex condition for
the case of a transport operator on a metric graph.

We first adapt the problem by changing the following parameters: Set
n ≥ 2, n > k ∈ N, ae = 0 for all e ∈ En, dismiss condition (5.5) and set
bei < 0 for i ∈ {1, . . . , k}, while for i ∈ {k + 1, . . . , n} still bei > 0 holds.
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The problem is now similar to the case examined in [26, Section 4.5]
where instead of positively and negatively incident edges at the vertex in
combination with strictly positive coefficients to account for inflow and
outflow, we only have negatively incident edges, but allow a reverse direction
of transport using coefficients of the first order term with different signs.

This convention results in a direction of transport towards the central
vertex on all edges where be is positive, and away from the vertex where the
coefficient is negative. This is visualized in Figure 9 for k = 2 and the graph
G5.

We then impose the conditions

fe1(v) =
1

k

n∑
i=k+1

fei(v),

...

fek(v) =
1

k

n∑
i=k+1

fei(v),

(5.11)

for the k edges with direction of transport away from the vertex, which
represent conservation of mass at the central vertex: mass that is transported
on an edge towards v is split uniformly on the outgoing edges.

v

e1

e2

e3 e4

e5

Figure 9. The graph G5 for the transport case of the model
problem with k = 2, dashed arrows indicate the direction of
transport.

Theorem 5.6. Consider the model problem with n ≥ 2, n > k ∈ N, ae = 0
for all e ∈ En, bei < 0 for i ∈ {1, . . . , k}, bei > 0 for i ∈ {k + 1, . . . , n}, and
vertex condition (5.11). Then A generates a strongly continuous semigroup
that is not chaotic.

Proof. The assumed changes of the model problem result in the operator
A = diag(bei)Bn + diag(cei)I with domain

D(A) = D(Bn) = {f ∈ H̃1(Gn) : f satisfies (5.11)}.

Observe that, as mentioned above, we are considering the case of a transport
problem similar to the problem in [26, Section 4.5]. By [26, Remark 4.63(1)]
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in combination with [19] we conclude that A generates a strongly continuous
semigroup.

Now consider the eigenvalue problem of the operator A, which is of the
same form as (5.10) with general solutions

fe(xe) = de exp

(
λ− ce
be

xe

)
of the resulting ordinary differential equations, where de is an arbitrary
constant. In order for f ∈ X to hold, fe needs to be a L2-function for each
e ∈ En, which translates to the condition

Re(λ)− ce
be

< 0.

Keeping in mind that by definition be1 , . . . , bek < 0 and bek+1
, . . . , ben > 0,

we get the conditions

Re(λ) > ce1 and Re(λ) < cen

for the functions fe1 and fen , respectively. Since by assumption ce > 0 for all
e ∈ En, we see that in the possibly nonempty intersection of these conditions
λ always has positive real part, and thus by Theorem 3.22 the generated
semigroup is not chaotic. �





CHAPTER 6

Conclusion and Future Research

The focus of this thesis was to introduce the reader to chaoticity of
strongly continuous semigroups in the sense of Devaney, specified in his book
[12], and its application on quantum graphs. To this end, we first had to
establish the appropriate mathematical framework using mainly graph and
operator theory, where we stated several results from literature. We then
gave an overview of criteria for showing or disproving if a given operator
generates a chaotic semigroup, relying mainly on [11], which we then used in
the final chapter to examine chaoticity of semigroups generated by quantum
graph operators.

In detail, we showed that in the cases of the in literature most frequently
used quantum graphs, where the vertex conditions result in a self-adjoint
quantum graph operator, chaoticity of the generated semigroup is impossible.
On the other hand, we were able to show that for a more general definition of
quantum graphs, chaotic solution semigroups of certain problems on metric
graphs do exist. For the used model problem of diffusion-advection-reaction
type on a general star graph with n leads we showed chaoticity of the
generated semigroup for certain parameter ranges in the case of Dirichlet and
generalized δ-type vertex conditions. Although this is not a general result, it
shows that the possibility of solution semigroups on quantum graphs being
chaotic needs to be considered in applications.

It seems there are no published research articles concerned with chaotic
semigroups on quantum graphs. Taking the results from this thesis as a
starting point, the next step for further research in this area could be
investigating the existence of chaotic semigroups on more complicated graph
structures than the star graph we used. One possible option would be a
spiderweb graph, where concentric cycles are added to the star structure.

In Chapter 5 we used the sufficient (DSW)-criterion and its generalizations
to prove and the necessary criteria summarized in Remark 3.25 to disprove
whether a given operator generates a chaotic strongly continuous semigroup. A
still open research item, though out of the direct focus of this text and beyond
the scope of a master’s thesis, is a full characterization of chaotic strongly
continuous semigroups through the spectral properties of its generator.
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Nomenclature

⊕
i∈I Xi . . . . . direct sum of {Xi}i∈I , page 7.∏
i∈I Xi . . . . . . Cartesian product of {Xi}i∈I , page 7.
〈·, ·〉 . . . . . . . . . . canonical duality pairing, page 21.
(·, ·)X . . . . . . . . inner product of space X, page 7.
‖ · ‖X . . . . . . . . norm of space X, page 7.
(T (t))t≥0 . . . . . C0-semigroup, page 13.
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