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For the efficient numerical solution of elliptic variational inequalities on closed
convex sets, multigrid methods based on piecewise linear basis function have
been investigated over the past decades [5]. Essential to their success is the ap-
propriate approximation of the constraint set on coarser grids which is based on
function values for piecewise linear basis functions. On the other hand, there are
a number of problems which profit from higher order approximations. Among
these are problems of pricing American options, formulated as a parabolic free
boundary value problem involving for example the Black-Scholes equation or the
Heston-equation. The Heston equation is a parabolic partial differential equa-
tion depending on the underlying price and the volatility with a convection and
diffusion term. We formulate the free boundary problem containing the Heston
equation as a parabolic variational inequality and show the existence and unique-
ness of the weak solution by using the result of [4].
In addition to computing the apriori unknown free boundary (the optimal exercise
price of the option), of particular importance are accurate pointwise derivatives
of the value of the stock option or volatility up to order two (the so-called Greek
letters). We propose a monotone multigrid method for discretizations in terms
of tensor product B-splines of arbitrary order and coincidental nodes in the in-
terior in space and Crank-Nicolson in time to solve the parabolic asymmetric
variational inequality on a closed convex set. To have a better approximation of
the payoff function, which is only continuous in one point, by using high order
B-splines, we let the nodes be coincidental in this specific point in the interior.
Former works are about the monotone multigrid method with B-splines of high
order without considering coincidental nodes and the application to the one di-
mensional Black-Scholes equation [2], or discretizing the free boundary problem
(American option) or boundary value problem (European option) containing the
two dimensional Heston-equation by finite difference- or finite element methods
[1, 3, 6, 8]. We construct restriction operator and monotone coarse grid approxi-
mation for tensor product B-splines of order k with k−1 coincidental nodes in the
interior. Additionally, a suitable smoother for the asymmetric discretised varia-
tional inequality is needed. Therefore an iterative method the so called projected
Jacobi overrelaxation method is presented [7]. Finally, the method is applied to a
discretized variational inequality, which is derived by the free boundary problem
containing the Heston-equation. In particular, it is shown that a discretization of
the asymmetric variational inequality based on tensor product B-splines of order
four enables us to compute the second derivative of the value of the stock option
pointwise to high precision.
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