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Given a real or complex (n×n) matrix A and a multi-index α = (α1, α2, . . . , αn) ∈ (0, 1]n,
the α-characteristic function of the matrix A is defined as

pA,α(λ) := det (A− diag(λα1 , λα2 , . . . , λαn)) ,

and a complex number λ with pA,α(λ) = 0 is called an α-eigenvalue of A. Clearly, in the
case α = (1, 1, . . . , 1), this concept reduces to the classical eigenvalue in the sense of linear
algebra.

For an n-dimensional linear system of first oder differential equations, it is well known
that the location of the eigenvalues of the coefficient matrix determines the system’s stability
properties. Therefore, it is important to possess efficient methods for finding the eigenvalues.
When the system of differential equations comprises equations of fractional order, the same
is true if the classical eigenvalues are replaced by α-eigenvalues.

We present some theoretical results about the location of these α-eigenvalues. Also, we
discuss computational strategies that allow their practical calculation in certain special cases.
The question for a generally applicable efficient algorithm to compute all α-eigenvalues of a
given matrix is still an open problem.
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