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In this talk it is our main goal to describe multivariate Bessel-Potential Spaces defined on
cubes via spline quarklets. For that purpose in a first step we recall the construction of uni-
variate quarklets which have been introduced in the last decade in [3]. Those quarklets are
based on biorthogonal compactly supported Cohen-Daubechies-Feauveau spline wavelets
that have been enriched with polynomials. Boundary adapted versions of the quarklets
can be used to characterize univariate Bessel-Potential spaces Hs

r ((0, 1)) defined on inter-
vals. To obtain multivariate quarklets we apply tensor product methods. It is well-known
since many years that multivariate Sobolev spaces Hs

2(Ω) defined on cubes can be written
as an intersection of function spaces which have a tensor product structure, see [4] and
[1]. Very recently Hansen and Sickel found that such decompositions also hold in the case
of more general Bessel-Potential spaces Hs

r (Ω) with 1 < r < ∞. Consequently we can use
univariate quarklets in combination with tensor product methods to obtain multivariate
quarklet characterizations for Sobolev and Bessel-Potential spaces defined on unit cubes,
see [2] for the case of Sobolev spaces.
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