Selbstkontrollarbeit 2

Vertiefung der

Wirtschaftsmathematik

und Statistik

(Teil Statistik)

Aufgabe 1

Fassadenverkleidungen aus 3 verschiedenen Materialien (A, B, C) wurden auf ihre Lebensdauer untersucht. Prüfen Sie, ob bei einem Signifikanzniveau von $\alpha = 0.1$ ein Zusammenhang zwischen Material und Lebensdauer besteht.

	Ver	kleid	ung	
Lebensdauer	A	B	C	\sum
über 5 Jahre	10	20	20	50
unter 5 Jahre	10	10	30	50
\sum	20	30	50	100

Aufgabe 2

Um den laufenden Gerüchten entgegenzutreten, dass die Mitglieder einer bestimmten Partei es einfacher hätten, höhere öffentliche Ämter zu besetzen, hat der Bürgermeister einer deutschen Großstadt ein unabhängiges Institut mit einer Untersuchung beauftragt. Das Institut erstellt daraufhin eine Statistik über die Einstellung von insgesamt 150 Kommunalbeamten in den letzten 5 Jahren:

	Par	rteizugehörigkeit	
	Partei	andere Partei bzw.	
Posten	A	ohne Parteibuch	\sum
mittlere Posten	15	60	75
gehobene Posten	15	30	45
höchste Posten	19	10	29
Stadtdirektor	1	0	1
\sum	50	100	150

Kann aus den zur Verfügung stehenden Daten bei einem Signifikanzniveau von $\alpha=0.01$ auf eine Abhängigkeit zwischen Ämtervergabe und Parteizugehörigkeit geschlossen werden?

Gegeben sei das lineare Regressionsmodell

$$Y_n = \alpha + \beta X_n + \epsilon_n, \qquad 1 \le n \le N,$$

mit den Daten

$$N = 10,$$
 $\sum_{n=1}^{10} y_n = 8,$ $\sum_{n=1}^{10} x_n = 40,$

$$\sum_{n=1}^{10} y_n^2 = 26, \quad \sum_{n=1}^{10} x_n^2 = 200, \quad \sum_{n=1}^{10} y_n x_n = 20.$$

3.1

Berechnen Sie für das gegebene Datenmaterial die Werte der KQ-Schätzer für die Regressionskoeffizienten α und β .

3.2

Berechnen Sie für die obigen Daten den Wert eines erwartungstreuen Schätzers für die Varianz σ^2 der Störvariablen ϵ_n .

3.3

Bestimmen Sie die proportionale Fehlerreduktion bei Verwendung der Prognoseregel $\hat{\alpha}+\hat{\beta}X$ und interpretieren Sie den Wert.

3.4

Überprüfen Sie mittels des t-Tests die Hypothese $H_0:\beta=0$ zum Signifikanzniveau 0.05.

3.5

Geben Sie das zweiseitige und die einseitigen 95%-Konfidenzintervalle für β an.

3.6

Bestimmen Sie das 98%-Konfidenzintervall für die Regressionsgerade und geben Sie den minimalen Wert an.

Überprüfen Sie mittels des globalen F-Tests die Hypothese $H_0: \beta = 0$ zum Signifikanzniveau 0.01.

Aufgabe 4

Gegeben sei das folgende lineare Regressionsmodell

$$Y_n = \alpha + \beta X_n + \epsilon_n, \qquad 1 \le n \le N,$$

mit

$$X_n = \begin{cases} 1 & \text{für } n = 1, ...N_1, \\ 0 & \text{für } n = N_1 + 1, ..., N. \end{cases}$$

4.1

Geben Sie die KQ-Schätzer für α und β an und überprüfen Sie deren Erwartungstreue.

4.2

Berechnen Sie die Varianzen der KQ-Schätzer $\hat{\alpha}$ und $\hat{\beta}$.

4.3

Wie lautet die Testgröße zum Testen der Hypothese $H_0: \alpha = 0$?

Aufgabe 5

Gegeben ist die Höhe (in cm) von 42 Pflanzen einer bestimmte Sorte, die mit 7 verschiedenen Düngemittel behandelt wurden.

Mittel			Höhe	in cm	,	
I	119	90	102	85	113	136
II	123	121	159	138	178	138
III	130	163	159	140	121	142
IV	144	172	165	143	179	146
V	159	172	210	171	232	190
VI	139	146	161	149	124	137
VII	156	183	146	169	147	150

Berechnen Sie die Varianzanalysetabelle für die Einfachklassifikation $Y_{ij} = \mu_i + \epsilon_{ij}$ nach dem Faktor Düngemittel und prüfen Sie die Hypothese, dass das Düngemittel keinen Einfluss auf die Höhe hat ($\alpha = 0.01$) (Ohne die SPSS-Prozedur ANOVA).

5.2

Überprüfen Sie die Ergebnisse aus 5.1 mittels der SPSS-Prozedur ANOVA.

5.3

Geben Sie das vorliegende Modell in der Effektdarstellung an, berechnen Sie die Schätzer der Effekte und überprüfen Sie für die Schätzer die gegebene Restriktion.

Aufgabe 6

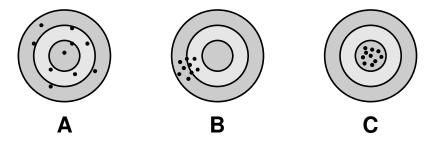
Gegeben sei die Behauptung "Wenn der Kurs einer bestimmten Aktie sinkt, dann verkauft ein Anleger seine vorhandenen Aktien oder er kauft zusätzliche Aktien oder er wartet ab". Überprüfen Sie folgende Aussagen auf Ihre Richtigkeit.

- Die Behauptung ist falsch.
- Die Behauptung ist wahr. Es liegt eine Tautologie vor.
- Die Behauptung ist falsifizierbar.
- Die Behauptung trifft für viele Anleger zu, aber nicht für alle.

Aufgabe 7

Gegeben sei folgende Hypothese:

Wenn Kinder viel am Computer spielen, dann erhöht sich deren Aggressivität (Formal: Wenn das Verhalten X_1 verstärkt wird, dann erhöht sich die Auftretenswahrscheinlichkeit eines bestimmten Ereignisses Y_1).


Geben Sie eine Aussage an, welche die Hypothese widerlegt.

8.1

Erklären Sie die Gütekriterien Objektivität und Reliabilität.

8.2

Das Gütekriterium Validität untersucht die inhaltliche Bedeutung bzw. die Gültigkeit einer Aussage, Untersuchung bzw. Theorie. Beurteilen Sie folgende Abbildungen bezüglich der Gütekriterien Reliabilität bzw. Validität.

Aufgabe 9

Zur Bestimmung der Reliabilität r kann ein sogenannter Paralleltest durchgeführt werden, d.h. zwei äquivalente Tests X und X' werden an denselben Probanden nacheinander durchgeführt $(X = T + \epsilon, X' = T + \epsilon')$ mit E(X) = E(X') und Var(X) = Var(X'). Die Ähnlichkeit der Testergebnisse stellt ein Maß für die Paralleltest-Reliabilität dar. Gegeben seien die 5 Axiome der klassischen Testtheorie, wobei ρ dem Korrelationskoeffizienten entspricht:

- 1. $X = T + \epsilon$, wobei X der beobachtbare Wert, T der wahre Wert und ϵ ein Meßfehler ist.
- $2. E(\epsilon) = 0$
- 3. $\rho(T, \epsilon) = 0$
- 4. $\rho(T, \epsilon') = 0$
- 5. $\rho(\epsilon, \epsilon') = 0$

Zeigen Sie, dass die Reliabilität dem Quadrat der Korrelation des beobachteten Wertes mit dem wahren Wert entspricht.

9.2

Zeigen Sie, dass $r=\frac{\mathrm{Var}(T)}{\mathrm{Var}(X)}=\rho(X,X')$ gilt, d.h. bei Durchführung eines Paralleltests entspricht die Reliabilität eines Tests der Korrelation mit dem Paralleltest.

Aufgabe 10

Zwei Professoren beurteilen die Seminararbeit von 100 Studenten. Es soll die Übereinstimmung der Beurteilungen mit Hilfe von κ untersucht werden.

		Prof	esso	r A		
Professor B	1	2	3	4	5	\sum
1	7	2	1	0	0	10
2	5	10	2	3	0	20
3	0	10	25	5	0	40
4	0	2	6	15	2	25
5	0	0	1	1	3	5
\sum	12	24	35	24	5	100

10.1

Bestimmen Sie
$$\kappa = \frac{G(+) - G(-)}{1 - G(-)}$$

10.2

Geben Sie den Prozentsatz der Fehler und den Prozentsatz der Fehler bei Unabhängigkeit der Merkmale an.

Aufgabe 11

In einer Studie wurden 100 Studenten nach ihrer Teilnahme an Präsenzübungen $(P\ddot{U})$ und ihrer Studienleistung im Fach Statistik befragt.

	Studie	enleistun	g		
Teilnahme an PÜ	schlecht	mittel	gut	sehr gut	\sum
selten	10	3	4	3	20
manchmal	0	25	3	2	30
oft	5	2	23	20	50
\sum	15	30	30	25	100

Es wurde folgende Hypothese eines Zusammenhangs zwischen der Teilnahme an Präsenzübungen und der Studienleistung aufgestellt: "Gute und sehr gute Studenten besuchen oft Präsenzübungen, Studenten mit einer mittleren Studienleistung gehen manchmal zu Präsenzübungen, schlechte Studenten nehmen selten an Präsenzübungen teil". Berechnen Sie den Koeffizienten κ .

Aufgabe 12

12.1

Zugrundegelegt wird ein simultanes Testverfahren mit k Tests, bei dem die Bonferroni-Korrektur verwendet wird. Wie groß ist bei Ablehnung der Nullhypothese die maximale Überschreitungswahrscheinlichkeit p?

12.2

Geben Sie nach der Bonferroni-Korrektur die simultane Irrtumswahrscheinlichkeit für $\alpha = 0.1$ und k = 2, 5, 10 an.

Aufgabe 13

Zugrundegelegt wird die empirische Kovarianzmatrix

$$S = \frac{1}{N-1} \sum_{n} (x_n - \bar{x})(x_n - \bar{x})',$$

s. Formel 13.5. Geben Sie $(x_1 - \bar{x})(x_1 - \bar{x})'$ und S in der allgemeinen Matrix-schreibweise

$$A = \left(\begin{array}{ccc} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{array}\right)$$

an.

Zugrundegelegt wird der Datensatz main2.xls.sav. Betrachtet wird das Regressionsmodell

$$LoyalU_n = \alpha + \beta * GESCHLECHT_n + \epsilon_n$$

(GESCHLECHT=0 (m), GESCHLECHT=1 (w)), wobei folgende Ergebnisse vorliegen:

Gruppenstatistiken

	GESCHLECHT	N	Mittelwert	Standardabweic hung	Standardfehler des Mittelwertes
LoyalU	weiblich	204	,0759	1,04077	,07287
	männlich	162	-,0986	,94284	,07408

Modellzusammenfassung

Abhängige Variable:LoyalU

Gleichung		М	odellzusammenfa	ssung	
	R-Quadrat	F	Freiheitsgrade 1	Freiheitsgrade 2	Sig.
Linear		2,759	1	364	,098

Die unabhängige Variable ist GESCHLECHT.

14.1

Bestimmen Sie mittels der gemachten Angaben die Größen $p, \hat{\alpha}, \hat{\beta}, s_{*x}$ und r^2 .

14.2

Überprüfen Sie die Hypothese $H_0: \mu_0 = \mu_1$ zum Signifikanzniveau $\alpha = 0.05$ mittels des Konfidenzintervalls für $\mu_0 - \mu_1$ für gleiche Varianzen und geben Sie die Prüfgröße des t-Tests an, in dem Sie die Angaben aus der Tabelle "Modellzusammenfassung" verwenden.

14.3

Interpretieren Sie die Koeffizienten β und r im Fall dichotomer nominalskalierter Variablen X.

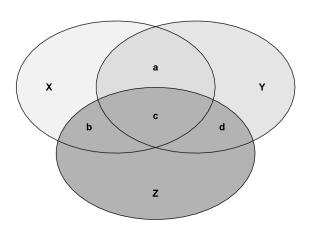
15.1

Erläutern Sie in Zusammenhang mit bivariater Korrelation den Unterschied zwischen symmetrischen und asymmetrischen Maßen.

15.2

Erläutern Sie den Begriff der biserialen Korrelation.

15.3


Erläutern Sie den Begriff der partiellen Korrelation.

15.4

Zugrundegelegt wird das lineare Regressionsmodell $Y_n = \alpha + \beta X_n + \epsilon_n$ mit den üblichen Annahmen. Weiter sei bekannt, dass der Zusammenhang zwischen X und Y von einer Drittvariablen Z beeinflusst wird. Folgendes Venn-Diagramm stellt die Varianzen der drei Variablen dar. Mit den Bezeichnungen X,Y,Z ist hier die Gesamtfläche der entsprechenden Ellipse gemeint, während a,b,c,d Teilflächen bezeichnen.

Geben Sie die Flächen an, welche dem bivariaten und dem partiellen Korrelationskoeffizienten entsprechen. Es gilt

$$SQT = (N-1)S_y^2 = (N-1)(1 - R_{xy}^2)S_y^2 + (N-1)R_{xy}^2S_y^2 = SQR + SQE.$$

Untersucht wird das Image einer Ladenkette in Abhängigkeit von der Schulung des Personals. Gegeben sei folgende Kreuztabelle:

ger	neinsame absolute Hä	ufigkeiten: h_{ij}	
	keine Schulung	Schulung	$h_{i.}$
Unzufrieden	15	0	15
Zufrieden	5	30	35
$h_{.j}$	20	30	50

16.1

Bestimmen Sie ohne SPSS die symmetrischen Zusammenhangsmaße χ^2 , K und ϕ .

16.2

Bestimmen Sie ohne SPSS die Richtungsmaße Goodman-Kruskal λ ($x \leftrightarrow y$ (symmetrisches Maß mit λ_s bezeichnet), $x \to y$, $y \to x$) und Goodman-Kruskal τ ($x \to y$, $y \to x$).

$$\lambda_s = \frac{G_x(+) + G_y(+) - G_x(-) - G_y(-)}{2 - G_x(-) - G_y(-)}$$

$$\tau(x \to y) = \frac{G(+) - G(-)}{1 - G(-)}$$

mit $G(+)=\sum_{ij}f_{ij}^2/f_{.j}$ als Gütemaß mit Prädiktion und $G(-)=\sum_if_{.i}^2$ als Gütemaß ohne Prädiktion.

16.3

Überprüfen Sie mittels SPSS die von Ihnen berechneten Maße.

Betrachtet werden die Variablen X (Körpergröße) und Y (Gewicht), wobei folgende Ergebnisse der Varianzanalyse vorliegen.

ANOVA^b

Modell		Quadratsumm e	df	Mittel der Quadrate	F	Sig.
1	Regression	3644,374	1	3644,374		,000 ^a
	Nicht standardisierte Residuen	2424,601	38	63,805		
	Gesamt	6068,975	39			

a. Einflußvariablen: (Konstante), Größe

b. Abhängige Variable: Gewicht

17.1

Welche Hypothese wird hier mittels des F-Tests betrachtet. Berechnen Sie die Prüfgröße. Wird die Hypothese abgelehnt?

17.2

Bestimmen Sie den Korrelationskoeffizienten R.

17.3

Wieviel Prozent der Variation von Y wird durch X erklärt?

Aufgabe 18

Untersucht werden soll die Abhängigkeit der Reaktionszeit von der Farbintensität. Dazu werden 30 Personen vor ein Schaltpult mit 3 verschiedenen Knöpfen gesetzt (1=blau, 2=grün, 3=rot). Sobald einer der Knöpfe blinkt, soll dieser ausgeschaltet werden. Zugrundegelegt wird das Grundmodell der einfaktoriellen Varianzanalyse.

18.1

Vervollständigen Sie in der ANOVA-Tabelle die fehlenden Werte. Liegt ein signifikanter Unterschied vor ($\alpha=0.05$)? Wenn ja, geben Sie an, welche Gruppen sich unterscheiden.

ONEWAY ANOVA

reaktion

	Quadratsumm e	df	Mittel der Quadrate	F	Signifikanz
Zwischen den Gruppen		2	1440,000		,012
Innerhalb der Gruppen	7390,000				
Gesamt	10270,000	29			

18.2

Die Durchführung von Post Hoc Tests (Bonferroni) führt zu folgendem Ergebnis. Geben Sie an, in welchen Gruppen signifikante Unterschiede festzustellen sind ($\alpha=0.05$). Wie lautet das adjustierte Signifikanzniveau. Welche Alternativmöglichkeit besteht, die einzelnen Mittelwertsunterschiede durchzuführen.

Post-Hoc-Tests

Mehrfachvergleiche

reaktion Bonferroni

(I) Farbe	(J) Farbe				95%-Konfid	enzintervall
		Mittlere Differenz (I-J)	Standardfehle r	Signifikanz	Untergrenze	Obergrenze
1	2	-12,000	7,399	,349	-30,88	6,88
	3	-24,000	7,399	,009	-42,88	-5,12
2	1	12,000	7,399	,349	-6,88	30,88
	3	-12,000	7,399	,349	-30,88	6,88
3	1	24,000	7,399	,009	5,12	42,88
	2	12,000	7,399	,349	-6,88	30,88

18.3

Im Folgenden sind drei einzelne t-Tests angegeben. Welche Vergleiche sind hier signifikant ($\alpha=0.05$)

۲<u>.</u> ۲

Test bei unabhängigen Stichproben: Vergleich Farbe 1 und 2

	Levene-Test der Varianzgleichheit	est der sichheit			[-]	T-Test für die Mittelwertgleichheit	vertgleichheit		
								95% Konfidenzintervall der Differenz	zintervall der enz
	LL	Signifikanz	-	₽	Sig. (2-seitig)	Mittlere Differenz	Standardfehle r der Differenz	Untere	Obere
reaktion Varianzen sind gleich	1,976	771,	-1,434	18	,169	-12,000	8,367	-29,578	5,578
Varianzen sind nicht gleich			-1,434	13,347	,175	-12,000	8,367	-30,027	6,027

Test bei unabhängigen Stichproben: Vergleich Farbe 1 und 3

				,)			
	Levene-Test der Varianzgleichheit	est der eichheit			Ĺ	T-Test für die Mittelwertgleichheit	vertgleichheit		
								95% Konfidenzintervall der Differenz	zintervall der enz
	ш	Signifikanz	-	₽	Sig. (2-seitig)	Mittlere Differenz	Standardfehle r der Differenz	Untere	Obere
reaktion Varianzen sind gleich	2,821	,110	-2,915	18	600'	-24,000	8,233	-41,296	-6,704
Varianzen sind nicht gleich			-2,915	12,739	,012	-24,000	8,233	-41,823	-6,177

Test bei unabhängigen Stichproben: Vergleich Farbe 2 und 3

	ızintervall der renz	Obere	-1,196	-1,191
ertgleichheit	95% Konfidenzintervall der Differenz	Untere	-22,804	-22,809
		Standardfehle r der Differenz	5,142	5,142
T-Test für die Mittelwertgleichheit		Mittlere Differenz	-12,000	-12,000
ii i		Sig. (2-seitig)	,031	,032
		₽	18	17,874
		⊢	-2,334	-2,334
Levene-Test der Varianzgleichheit		Signifikanz	629'	
Levene- Varianzg		L	,241	
			reaktion Varianzen sind gleich	Varianzen sind nicht gleich
			reaktion	

Untersucht wird der Zusammenhang zwischen Jahresumsatz X und Anzahl LKW Y von 10 Speditionen. Weiter wurde die Anzahl der Mitarbeiter Z erhoben.

19.1

Berechnen Sie für folgenden Datensatz mit SPSS sowohl die bivariaten als auch die partiellen Korrelationen und interpretieren Sie das Ergebnis.

Umsatz in Mio. €	Mitarbeiter	Anzahl LKW
1	150	20
5	220	40
2	150	40
4	200	60
6	230	40
2	160	10
4	190	20
3	170	50
7	280	60
10	300	100

19.2

Geben Sie die Residualstreuungen $\widehat{\mathrm{Cov}}(\tilde{X},\tilde{X}),\,\widehat{\mathrm{Cov}}(\tilde{Y},\tilde{Y})$ und die entsprechenden Werte der gemittelten Kovarianmatrix MQR an.

$$\begin{array}{rcl} \widehat{\mathrm{Cov}}(\tilde{X},\tilde{X}) & = & \widehat{\mathrm{Cov}}(X,X) - \widehat{\mathrm{Cov}}(X,Z)\widehat{\mathrm{Cov}}(Z,Z)^{-1}\widehat{\mathrm{Cov}}(Z,X) \\ & = & S_{XX} - S_{XZ}S_{ZZ}^{-1}S_{ZX} \\ \widehat{\mathrm{Cov}}(\tilde{Y},\tilde{Y}) & = & \widehat{\mathrm{Cov}}(Y,Y) - \widehat{\mathrm{Cov}}(Y,Z)\widehat{\mathrm{Cov}}(Z,Z)^{-1}\widehat{\mathrm{Cov}}(Z,Y) \\ & = & S_{YY} - S_{YZ}S_{ZZ}^{-1}S_{ZY} \end{array}$$

19.3

Zeigen Sie, dass allgemein $\mathrm{Cov}(y,\hat{y}) = \mathrm{Cov}(\hat{y},\hat{y}) = \mathrm{Var}(\hat{y})$ gilt.

Zeigen Sie, dass nach der allgemeinen Spearman-Brown-Formel (k Test-Teile) für die Reliabiliät gilt:

$$rel = \frac{\operatorname{Var}(T)}{\operatorname{Var}(X)}$$

$$= \frac{k^2 \sigma_{ij}}{\sum_i \sigma_i^2 + \sum_{i \neq j} \sigma_{ij}}$$

$$= \frac{k \rho_{ij}}{1 + (k-1)\overline{\rho}}$$

Aufgabe 21

Gegeben ist folgende Reliabilitätsanalyse des Konstrukts Filialgestaltung.

Itemstatistiken

	Mittelwert	Standardabwe ichung	N
FFREUNDL	2,0640	,95411	375
FEINLADE	2,1867	,93496	375
FAGENEHM	2,1200	,93018	375
FRUHIG	2,2640	,97682	375

Inter-Item-Korrelationsmatrix

	FFREUNDL	FEINLADE	FAGENEHM	FRUHIG
FFREUNDL	1,000	,835	,814	,449
FEINLADE	,835	1,000	,823	,452
FAGENEHM	,814	,823	1,000	,504
FRUHIG	,449	,452	,504	1,000

Item-Skala-Statistiken

	Skalenmittelw ert, wenn Item weggelassen	Skalenvarianz , wenn Item weggelassen	Korrigierte Item-Skala- Korrelation	Quadrierte multiple Korrelation	Cronbachs Alpha, wenn Item weggelassen
FFREUNDL	6,5707	5,866	,816	,747	,811
FEINLADE	6,4480	5,927	,823	,758	,809
FAGENEHM	6,5147	5,892	,839	,743	,803,
FRUHIG	6,3707	7,015	,498	,260	,933

21.1

Berechnen Sie Cronbachs alpha für standardisierte Items.

Berechnen Sie die Itemschwierigkeiten.

21.3

Was gibt die Trennschärfe an. Wozu wird sie berechnet. Geben Sie die Trennschärfen des Konstrukts Filialgestaltung an.

21.4

Bestimmen Sie die itemspezifische Homogenität.

Aufgabe 22

22.1

Worin liegt der Unterschied des Begriffs "Faktor" in der Varianz- und Faktorenanalyse?

22.2

Wie hängen Faktorenanalyse und Hauptkomponentenanalyse zusammen?

22.3

Geben Sie 4 Verfahren zur Extraktion von Faktoren an.

22.4

Welches graphische Hilfsmittel kennen Sie, mittels das die optimale Anzahl von Faktoren direkt abgelesen werden kann? Erläutern Sie kurz die Vorgehensweise.

22.5

Zeigen Sie, dass $E(\xi|\mathbf{x}) = \Lambda' \Sigma^- - 1\mathbf{x} = M_1^{-1/2}\mathbf{y}_1$ gilt.

Gegeben ist folgende Faktoren
analyse (Extraktion von 2 Faktoren) des Konstrukts Loyalität.

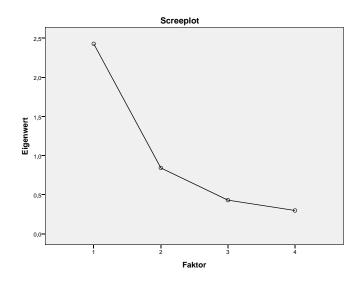
Deskriptive Statistiken

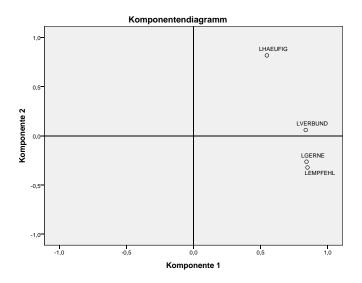
	Mittelwert	Standardabwe ichung	Analyse N
LHAEUFIG	2,6866	1,13677	367
LGERNE	2,1226	1,00202	367
LEMPFEHL	1,8501	1,02264	367
LVERBUND	2,2561	1,20101	367

Korrelationsmatrix

		LHAEUFIG	LGERNE	LEMPFEHL	LVERBUND
Korrelation	LHAEUFIG	1,000	,283	,242	,403
	LGERNE	,283	1,000	,690	,553
	LEMPFEHL	,242	,690	1,000	,599
	LVERBUND	,403	,553	,599	1,000

Erklärte Gesamtvarianz


Komponente	ļ	Anfängliche Eigen	werte	Summen von quadrierten Faktorladunge n für Extraktio n
	Gesamt	% der Varianz	Kumulierte %	Gesamt
1	2,429	60,714	60,714	2,429
2	,842	21,060	81,773	,842
3	,431	10,767	92,541	
4	,298	7,459	100,000	


Extraktionsmethode: Hauptkomponentenanalyse.

Erklärte Gesamtvarianz

Komponente	Summen von quadrierten Faktorladungen für Extraktion		
	% der Varianz Kumulierte %		
1	60,714	60,714	
2	21,060	81,773	
3			
4			

Extraktionsmethode: Hauptkomponentenanalyse.

Komponentenmatrix^a

	Komponente		
	1 2		
LHAEUFIG	,547	,816	
LGERNE	,842	-,263	
LEMPFEHL	,849	-,322	
LVERBUND	,836	,059	

Extraktionsmethode: Hauptkomponentenanalyse.

a. 2 Komponenten extrahiert

Bestimmen Sie anhand des gegebenen Outputs die Schäter der Kommunalitäten.

23.2

Wieviel % der Gesamt-Varianz wird vom ersten Faktor erklärt?

23.3

Welches Item passt nicht zu den anderen und an welcher Komponente ist dies besonders deutlich zu erkennen?