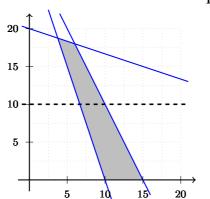
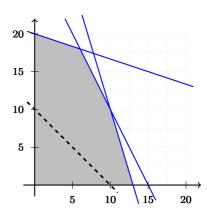
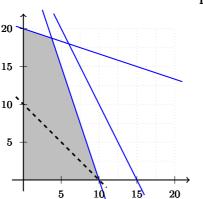
Aufgabe B0509

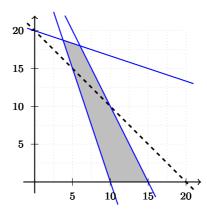

Lineare Optimierung

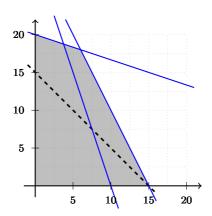
Ein Unternehmen fertigt zwei Produkte, die beide zum gleichen Verkaufspreis verkauft


werden. Gegeben sei die Rohstoffverbrauchsmatrix
$$\mathbf{R} = \begin{pmatrix} 3 & 1 \\ 8 & 4 \\ 3 & 9 \end{pmatrix}$$
 und der Vektor

 $\mathbf{v}_{max} = (v_2, v_3)^T = (120, 180)^T$, der maximal zur Verfügung stehenden Rohstoffmengen. Bei Rohstoff v_1 handelt es sich um ein Recyclingmaterial, von dem mindestens 30 Mengeneinheiten verbraucht werden sollen. Bestimmen Sie die Grafiken, die das Optimierungsproblem darstellen können, wenn der Erlös maximiert werden soll. (Hinweis: Die Zielfunktion ist gestrichelt dargestellt.)


A)


B)


C)

D)

Aufgabe B0509 (Lösungshinweise)

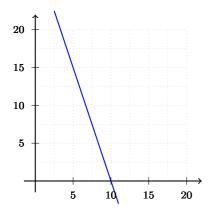
Es gilt:

 $x_1 = \text{Produkt } 1, x_2 = \text{Produkt } 2$

$$\mathbf{R} = \begin{pmatrix} 3 & 1 \\ 8 & 4 \\ 3 & 9 \end{pmatrix}$$

$$\mathbf{v}_{max} = (v_2, v_3)^T = (120, 180)^T$$

 $v_1 = \text{mindestens } 30 \text{ ME.}$


Die Verkaufspreise der beiden Produkte x_1 und x_2 sind gleich und die Erlöse sollen maximiert werden: $E = p \cdot x = p \cdot (x_1 + x_2)$. Daraus ergibt sich folgende Zielfunktion: $\max p \cdot (x_1 + x_2)$.

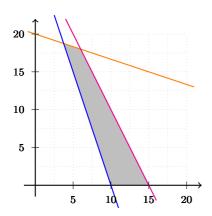
Aus der Multiplikation der beiden Produkte mit der Rohstoffverbrauchsmatrix ergibt sich für die jeweiligen Rohstoffe:

$$(x_1 x_2) \cdot \begin{pmatrix} 3 & 1 \\ 8 & 4 \\ 3 & 9 \end{pmatrix} = \begin{pmatrix} 3x_1 & x_2 \\ 8x_1 & 4x_2 \\ 3x_1 & 9x_2 \end{pmatrix}$$
$$v_1 = 3x_1 + x_2$$
$$v_2 = 8x_1 + 4x_2$$
$$v_3 = 3x_1 + 9x_2$$

Von v_1 sollen mindestens 30 ME, von v_2 maximal 120 ME und von v_3 maximal 180 ME verbraucht werden. Aus diesen Komponenten lässt sich das LP aufstellen:

Dieses LP lässt sich in ein Koordinatensystem übertragen:

Rohstoff v_1 :


$$3x_1 + x_2 \ge 30$$

$$3x_1 \ge 30 - x_2 \quad | : 3$$

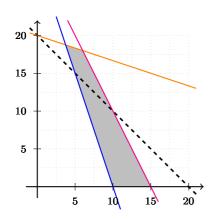
$$x_1 \ge 10 - \frac{1}{3}x_2$$

$$x_2 \ge 30 - 3x_1$$

Der Bereich, der rechts von der Geraden liegt, ist im Lösungsraum.

Rohstoff v_2 :

$$8x_1 + 4x_2 \le 120$$
$$x_1 \le 15 - 0.5x_2$$
$$x_2 \le 30 - 2x_1$$


Rohstoff v_3 :

$$3x_1 + 9x_2 \le 180$$
$$x_1 \le 60 - 3x_2$$
$$x_2 \le 20 - \frac{1}{3}x_1$$

Der Bereich unter der Geraden stellt den Lösungsraum dar.

Zielfunktion:

$$p(x_1 + x_2) = px_1 + px_2$$

Die Aussagen A), B), C) und E) sind nicht wahr.

Die Aussage D) ist wahr.