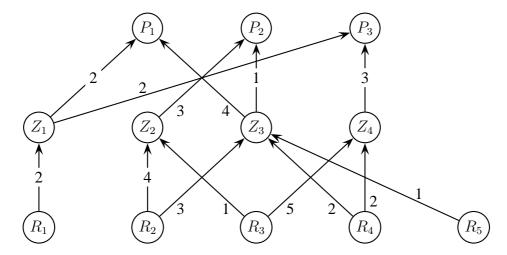
Aufgabe B0513

Lineare Optimierung

Ein Unternehmen stellt drei Endprodukte P_1 , P_2 und P_3 her. Die jeweils zur Produktion einer Mengeneinheit des jeweiligen Endproduktes benötigten Mengeneinheiten des Zwischenproduktes sind in dem folgenden Gozintographen dargestellt.



- a) Stellen Sie die Matrizen der benötigten Rohstoffe $R, 1, \ldots, R_5$ zur Herstellung jeweils 1 ME der Zwischenprodukte Z_1, \ldots, Z_4 sowie der benötigten Zwischenprodukte zur Herstellung jeweils 1 ME der Endprodukte P_1, P_2, P_3 auf.
- b) Wie viele ME der Rohstoffe werden jeweils zur Herstellung einer ME der Endprodukte P_1, P_2, P_3 benötigt?
- c) Wie viele ME der Rohstoffe werden zur Herstellung von 100 ME von P_1 , 250 ME von P_2 und 50 ME von P_3 benötigt?
- d) Die Rohstoffe kosten je ME für R_1 1,50 €, für R_2 3,00 €, für R_3 2,75 €, für R_4 0,50 € und für R_5 1,25 €. Weiterhin fallen variable Stückkosten für die Zwischenprodukte an: $Z_1 = 2,00$ €, $Z_2 = 3,75$ €, $Z_3 = 4,20$ € und $Z_4 = 5,00$ €. Die fixen Kosten betragen 15 000 €. Es sollen 100 ME von P_1 , 250 ME von P_2 und 50 ME von P_3 hergestellt werden. Wie hoch sind die Gesamtkosten?
- e) Berechnen Sie den Gewinn mit den angegebenen Kosten aus Teilaufgabe c), wenn P_1 für $250 \in P_2$ für $275 \in$ und P_3 für $512 \in$ verkauft werden.
- f) Stellen Sie das zugehörige Gleichungssystem zu dem oben dargestellten Gozintographen auf und berechnen Sie die Gesamtbedarfe x_i für $i=1,\ldots,12$, wenn 100 ME von P_1 , 250 ME von P_2 und 50 ME von P_3 hergestellt werden.

Die zu ermittelnden Gesamtbedarfe werden wie folgt bezeichnet:

 x_1 : Gesamtbedarf in ME an P_1

 x_2 : Gesamtbedarf in ME an P_2

 x_3 : Gesamtbedarf in ME an P_3

 x_4 : Gesamtbedarf in ME an Z_1

 x_5 : Gesamtbedarf in ME an Z_2

 x_6 : Gesamtbedarf in ME an Z_3

 x_7 : Gesamtbedarf in ME an Z_4

 x_8 : Gesamtbedarf in ME an R_1

 x_9 : Gesamtbedarf in ME an R_2

 x_{10} : Gesamtbedarf in ME an R_3

 x_{11} : Gesamtbedarf in ME an R_4

 x_{12} : Gesamtbedarf in ME an R_5

Aufgabe B0512 (Lösungshinweise)

a) Um die entsprechenden Matrizen aufzustellen, werden die Informationen aus dem Gozintographen zunächst in eine Tabelle übertragen.

b) Zur Berechnung der benötigten Rohstoffe zur Herstellung von jeweils einer ME der Endprodukte P_1, P_2, P_3 werden die in Teilaufgaben a) aufgestellten Matrizen A und

B multipliziert.

$$C = A \cdot B = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 4 & 3 & 0 \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 2 & 0 & 2 \\ 0 & 3 & 0 \\ 4 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix} = \begin{pmatrix} 4 & 0 & 4 \\ 12 & 15 & 0 \\ 0 & 3 & 15 \\ 8 & 2 & 6 \\ 4 & 1 & 0 \end{pmatrix}$$

Zur Herstellung einer ME werden von

 P_1 : 4 ME von R_1 , 12 ME von R_2 , 0 ME von R_3 , 8 ME von R_4 , 4 ME von R_5 P_2 : 0 ME von R_1 , 15 ME von R_2 , 3 ME von R_3 , 2 ME von R_4 , 1 ME von R_5 P_3 : 4 ME von R_1 , 0 ME von R_2 , 15 ME von R_3 , 6 ME von R_4 , 0 ME von R_5 benötigt.

c) Um die benötigte Anzahl an Rohstoffen für die Herstellung von $P_1=100$, $P_2=250$ und $P_3=50$ zu bestimmen, wird die Matrix C aus Teilaufgabe b) mit der herzustellenden Menge von P_1,P_2,P_3 multipliziert.

$$\mathbf{D} = \mathbf{C} \cdot \begin{pmatrix} 100 \\ 250 \\ 50 \end{pmatrix} = \begin{pmatrix} 4 & 0 & 4 \\ 12 & 15 & 0 \\ 0 & 3 & 15 \\ 8 & 2 & 6 \\ 4 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 100 \\ 250 \\ 50 \end{pmatrix} = \begin{pmatrix} 600 \\ 4950 \\ 1500 \\ 1600 \\ 650 \end{pmatrix}$$

Es werden von R_1 600 ME, von R_2 4950 ME, von R_3 1500 ME, von R_4 1600 ME und von R_5 650 ME benötigt.

d) Für die Berechnung der Rohstoffkosten wird der Vektor D aus Aufgabenteil c) mit den entsprechenden Kosten für R_1, \ldots, R_5 multipliziert:

$$(1,50, 3,00, 2,75, 0,5, 1,25) \cdot \begin{pmatrix} 600 \\ 4950 \\ 1500 \\ 1600 \\ 650 \end{pmatrix} = 21487,50$$

Die benötigte Anzahl an Zwischenprodukten Z_1, \ldots, Z_4 berechnet sich durch die Mulitplikation von Matrix B mit der herzustellenden Menge von P_1, P_2, P_3 .

$$\mathbf{F} = \mathbf{B} \cdot \begin{pmatrix} 100 \\ 250 \\ 50 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 2 \\ 0 & 3 & 0 \\ 4 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix} \cdot \begin{pmatrix} 100 \\ 250 \\ 50 \end{pmatrix} = \begin{pmatrix} 300 \\ 750 \\ 650 \\ 150 \end{pmatrix}$$

Der Vektor F wird mit den Stückkosten der jeweiligen Zwischenprodukte multipliziert.

$$(2,00, 3,75, 4,20, 5,00) \cdot \begin{pmatrix} 300 \\ 750 \\ 650 \\ 150 \end{pmatrix} = 6892,50$$

Im letzten Schritt werden die oben berechneten Kosten mit den Fixkosten i.H.v. 15 000 € addiert.

$$21487,50 + 6892,50 + 15000 = 43380 \in$$

Die Gesamtkosten belaufen sich auf 43 380 €.

e) Der Gewinn berechnet sich durch Erlös minus Kosten

$$G = E - K$$

$$G = \begin{pmatrix} 250, 175, 512 \end{pmatrix} \cdot \begin{pmatrix} 100 \\ 250 \\ 50 \end{pmatrix} - 43380$$

$$G = 119350 - 43380$$

$$G = 75970$$

Der Gewinn beträgt 75 970 €

f)
$$P_1: x_1 = 100$$

 $P_2: x_2 = 250$
 $P_3: x_3 = 50$
 $Z_1: x_4 = 2x_1 + 2x_3$
 $Z_2: x_5 = 3x_2$
 $Z_3: x_6 = 4x_1 + x_2$
 $Z_4: x_7 = 3x_3$
 $R_1: x_8 = 2x_4$
 $R_2: x_9 = 4x_5 + 3x_6$

$$R_3: x_{10} = x_5 + 5x_7$$

$$R_4: x_{11} = 2x_6 + 2x_7$$

$$R_5: x_{12} = x_6$$

$$x_1 = 100$$

$$x_2 = 250$$

$$x_3 = 50$$

$$x_4 = 2 \cdot 100 + 2 \cdot 50 = 300$$

$$x_5 = 3250 = 750$$

$$x_6 = 4 \cdot 100 + 250 = 650$$

$$x_7 = 3 \cdot 50 = 150$$

$$x_8 = 2 \cdot 300 = 600$$

$$x_9 = 4 \cdot 750 + 3 \cdot 650 = 4950$$

$$x_{10} = 750 + 5 \cdot 150 = 1500$$

$$x_{11} = 2650 + 2 \cdot 150 = 1600$$

$$x_{12} = 650$$

Wie zu erkennen ist, handelt es sich bei x_1, x_2, x_3 um die herzustellenden Mengen von P_1, P_2, P_3 . Die Werte von x_4 bis x_7 enthält der Vektor \mathbf{F} und die von x_8 bis x_{12} der Vektor \mathbf{D} .