Aufgabe 2-7-6

Das Netzwerk \vec{N} in Abbildung 1 sei die Darstellung eines Umladeproblems.

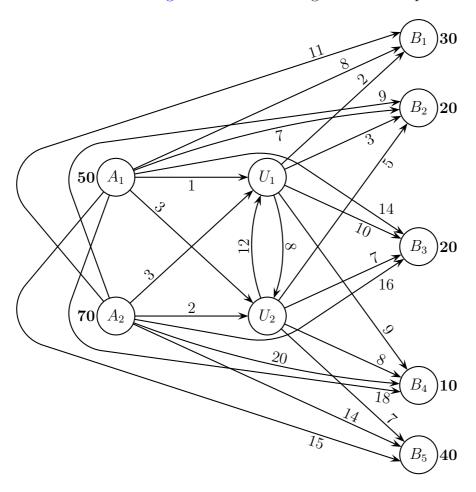


Abbildung 1: Netzwerk \vec{N} zur Darstellung eines Umladeproblems

Die Bewertung der Pfeile in \vec{N} gibt wie gewohnt die Einheitstransportkosten an. Die Werte an den Knoten der Angebotsorte A_1 und A_2 sind die jeweiligen Vorratsmengen, die Werte an den Knoten der Bedarfsorte B_1 , B_2 , B_3 , B_4 , B_5 die jeweiligen Bedarfsmengen. Beschränkungen für die zu transportierenden Mengen sind nicht vorhanden. Allerdings kann B_5 von U_1 aus nicht beliefert werden. Auch eine Belieferung des Ortes B_1 ist von U_2 aus nicht möglich.

- a) Erstellen Sie das Ausgangstableau für die Anwendung der Vogel-Approximations-Methode.
 - Da es sich um ein Umladeproblem handelt, sind bei der Erstellung des Tableaus einige Dinge zu beachten:
 - Jeder Umladeknoten ist Nachfrage- und Angebotsknoten zugleich, existiert im Tableau also zweimal.
 - In jedem Umladeknoten kann die maximal zu verladende Menge höchstens dem Gesamtangebot bzw. der Gesamtnachfrage entsprechen.
 - Da die tatsächlich umgeladene Menge zunächst nicht bekannt ist, wird ein fiktiver Transport von jedem Umladeknoten zu sich selbst zugelassen.
 - Stellen Sie bereits durch die Wahl der Transportkosten für die Verbindungen $\langle U_1, B_5 \rangle$ und $\langle U_2, B_1 \rangle$ sicher, dass diese im Algorithmus nicht ausgewählt werden.
- b) Nachdem das Ausgangstableau erstellt ist, bestimmen nun Sie die Kostendifferenzen Δc .
- c) Ermitteln Sie die erste Transportverbindung, die mit der Vogel-Approximations-Methode ausgewählt wird. Notieren Sie die zugehörigen Transportmenge und korrigieren Sie Angebots- und Nachfragemengen.

Lösungshinweise

Die Lösung zu allen Teilaufgaben ist in Tabelle 1 dargestellt.

 B_1 U_1' U_2' B_2 B_3 B_4 B_5 a_i 0 Δc 8 18 7 14 15 3 A_1 50 2 11 9 16 20 14 3 2 70 A_2 1 2 3 10 9 ∞ 50 8 U_1 120 1 $\frac{7}{40}$ ∞ 5 7 12 50 8 120 2 U_2 (1.) **_** 40 b_j 30 20 20 10 120 120 6 2 7 2 3 1 1 Δc 0 1.

Tabelle 1: Vogels-Approximations-Methode

- a) Die Umladeknoten sind sowohl sowohl der Angebots- wie der Nachfrageseite zuzuordnen. In Tabelle 1 steht U_1 bzw. U_2 deshalb in der ersten Spalte und U_1' bzw. U_2' in der ersten Zeile des Tableaus.
 - Die Summe der Angebote ist mit Wert 120 gleich der Summe der nachgefragten Menge. Laufen alle Transporte über U_1 , kommen dort also maximal 120 ME an, die weiterverteilt werden. Für U_2 ist dieser Wert dann gleich 0. Umgekehrt können 120 ME in U_2 ankommen und nichts geht über U_1 . Da die Transportwege noch nicht bekannt sind, wird $a_{U_1} = a_{U_2} = 120$ gesetzt.

Analog gilt auf der Nachfrageseite $b_{U'_1} = b_{U'_2} = 120$.

• Die meisten Kostenwerte c_{ij} sind in Abbildung 1 angegeben und können direkt ins Tableau übernommen werden.

Für die fehlenden Verbindungen $\langle U_1, B_5 \rangle$ und $\langle U_2, B_1 \rangle$ müssen sehr hohe Werte eingetragen werden, damit diese bei Anwendung der Vogel-Approximations-Methode nicht ausgewählt werden. In Tabelle 1 wurde deshalb dort ∞ notiert.

Wie sind jedoch die fiktiven Transporte von jedem Umladeknoten zu sich selbst zu bewerten? Hier muss sichergestellt sein, dass die Transportmengen – wenn überhaupt – zuletzt eingetragen werden, um den beschriebenen Ausgleich zur maximal möglichen Menge herzustellen. Der Kostenwert muss deshalb größer als alle übrigen Werte sein, ausgenommen ∞ . In dieser Aufgabe wurde der Wert 50 gewählt.

- b) Es wurden die Differenzen zwischen dem kleinsten und dem zweitkleinsten Kostenwert berechnet und in Spalte bzw. Zeile Δc in Tabelle 1 eingetragen.
- c) In der Spalte B_5 ist der Wert von Δc maximal, und somit wird diese Spalte ausgewählt. Darin ist der Wert 7 das Minimum, und die Verbindung $< U_2$, $B_5>$ ist festgelegt. Transportiert werden können maximal min $\{40,120\}=40$ ME.