

FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT

AUFGABENTEIL

MODUL-ABSCHLUSSKLAUSUR ZUM

B-MODUL NR. 31531

THEORIE DER LEISTUNGSERSTELLUNG

TERMIN: 19. MÄRZ 2009, 09⁰⁰–11⁰⁰ UHR

PRÜFER: PROF. DR. DR. H.C. G. FANDEL

Aufgabe	1	2	3	4	5	Σ
maximale Punktzahl	15	15	20	35	35	120

DIESEN AUFGABENTEIL KÖNNEN SIE ABTRENNEN UND MITNEHMEN!

HINWEISE ZUR BEARBEITUNG

- Die Klausur besteht aus einem Aufgabenteil inklusive Lösungsbögen. Überprüfen Sie zunächst, ob Sie die korrekte Anzahl an 24 Seiten erhalten haben.
- Füllen Sie nun den Kopf des Deckblattes des Lösungsteils und der nachfolgenden Seiten des Lösungsteils aus!
- Die Klausur umfasst fünf Aufgaben. Die gesamte Bearbeitungszeit beträgt 120 Minuten. Bei jeder Aufgabe ist die maximal erreichbare Punktzahl angegeben. Insgesamt können maximal 120 Punkte erreicht werden.
- Die Lösungen müssen in die dafür vorgesehenen Lösungsbögen eingetragen werden. Bei Platzproblemen verwenden Sie bitte die Rückseiten und verweisen auf diese. Eigene mitgebrachte Blätter dürfen nicht verwendet werden!
- Schreiben Sie bitte nicht mit Bleistift (Ausnahme: Zeichnungen) und nicht mit Rotstiften!
- Bitte schreiben Sie leserlich! Unlesbarkeiten gehen zu Ihren Lasten!
- Sie können den Aufgabenteil abtrennen, aber trennen Sie bitte keine einzelnen Lösungsbögen aus dem Lösungsteil ab!
- Als Hilfsmittel sind neben Schreib- und Zeichengeräten ausschließlich Taschenrechner zugelassen, die
 - o nicht programmierbar sind,
 - o keine Texte oder Formeln speichern können,
 - o nicht drahtlos mit anderen Geräten kommunizieren können,
 - über keine alphanumerische Tastatur verfügen und
 - o kein graphisches Display (z. B. zur Darstellung von Funktionsgraphen) besitzen.
- Unterschreiben Sie vor der Abgabe Ihre Klausur auf dem letzten beschrifteten Lösungsbogen!
- Teilen Sie sich Ihre Zeit ein! Als Anhaltspunkt für die Bearbeitungszeit der Aufgaben gilt: 1 Punkt entspricht ca. 1 Minute.

Viel Erfolg

Aufgabe 1: Grundlagen

15 Punkte

a) Betrachten Sie die folgende substitutionale Produktionsfunktion

3 Punkte

$$x = f(r_1, r_2, r_3) = r_1 \cdot r_2^2 + r_3^2$$
.

Zwischen welchen Produktionsfaktoren besteht eine peripher-, zwischen welchen Produktionsfaktoren eine alternativ-substitutionale Beziehung?

b) Ein Unternehmen produziert eine Produktart in beliebig teilbaren Mengeneinheiten, wobei die folgende Kostenfunktion unterstellt sei: 12 Punkte

$$K(x) = \frac{1}{10} \cdot x^2 + \frac{1}{2} \cdot x + 40$$

und x ($x \ge 0$) die Outputmenge der Produktart bezeichne.

Bestimmen Sie für die gegebene Kostenfunktion die Funktion der variablen Kosten $K_{\nu}(x)$, die Funktion der fixen Kosten $K_{f}(x)$, die Funktion der variablen Stückkosten $k_{\nu}(x)$, die Funktion der fixen Stückkosten $k_{f}(x)$ sowie die Grenzkostenfunktion K'(x). Geben Sie für jeden Kostenverlauf an, ob lineare, progressive, degressive oder regressive Kosten vorliegen.

Hinweise:

- Nutzen Sie für Ihre Lösung die Tabelle auf Lösungsbogen 2.
- Sie können in der Tabelle die Art des Kostenverlaufs mit einem "L" (linear), "P" (progressiv), "D" (degressiv) und "R" (regressiv) angeben.

Theorie der Leistungserstellung

Matrikelnummer:	

Aufgabe 2: Substitutionale Produktionsmodelle 15 Punkte

Betrachten Sie die folgende Produktionsfunktion:

$$x = g(r_1; r_2) = \left(3 \cdot r_1^{\frac{1}{2}} + r_2^{\frac{1}{2}}\right)^2$$

- a) Um welche Art von Produktionsfunktion handelt es sich bei der Funktion $x = g(r_1; r_2)$? Welche Art von Substitutionalität liegt hier vor? Welche Besonderheit weisen Produktionsfunktionen dieses Typs auf?
- b) Die Einsatzmenge von Faktor 2 sei aufgrund technischer Gegebenheiten auf \bar{r}_2 =25 limitiert. Die Faktorpreise betragen q_1 =3 und q_2 =4. Stellen Sie die Kostenfunktion bei partieller Faktorvariation auf.

Seite 2

Aufgabe 3: Leontief-Produktionsmodelle

20 Punkte

Einem Unternehmen stehen drei linear-limitationale Produktionsprozesse zur Verfügung, die durch ihre Faktorfunktionen wie folgt gegeben sind:

Prozess I: $r_{1}^{I} = 4 \cdot x^{I}$ $r_{2}^{I} = 2 \cdot x^{I}$ Prozess II: $r_{1}^{II} = 2 \cdot x^{II}$ $r_{2}^{II} = 2 \cdot x^{II}$ Prozess III: $r_{1}^{III} = 1 \cdot x^{III}$ $r_{2}^{III} = 4 \cdot x^{III}$

Dabei bezeichnen x^i die hergestellte Outputmenge und r_1^i bzw. r_2^i die dafür einzusetzenden Mengen der Produktionsfaktoren 1 und 2 (i= I, II, III). Alle Gütermengen seien beliebig teilbar und die Prozesse kombinierbar. Die Faktorpreise seien nun mit q_1 =8 und q_2 =12 gegeben.

a) Zeichnen Sie die Prozessstrahlen für alle drei Prozesse in das Koordinatensystem auf Lösungsbogen 4 ein.

6 Punkte

b) Welchen Prozess wird das Unternehmen zur Produktion einsetzen?

5 Punkte

c) Auf welchen Betrag muss der Preis q_1 des Produktionsfaktors 1 mindestens ansteigen, damit das Unternehmen ausschließlich Prozess III zur Produktion einsetzt?

6 Punkte

d) Erläutern Sie kurz, warum das Unternehmen über substitutionale Produktionsmöglichkeiten verfügt.

3 Punkte

Aufgabe 4: Gutenberg-Produktionsmodelle

35 Punkte

Seite 4

Ein Unternehmen kann zur Produktion mehrere kostenverschiedene, aber funktionsgleiche Maschinen mit den folgenden Grenzkostenfunktionen einsetzen:

$$K'_{1}(x_{1}) = \begin{cases} 1.000 & 0 \le x \le 20 & \text{zeitliche Anpassung} \\ \frac{15}{16} \cdot x_{1}^{2} - 25 \cdot x_{1} + 1.125 & 20 \le x \le 120 & \text{intensitätsmäßige Anpassung} \end{cases}$$

$$K'_{2}(x_{2}) = \begin{cases} 800 & 0 \le x \le 30 & \text{zeitliche Anpassung} \\ \frac{9}{10} \cdot x_{2}^{2} - 36 \cdot x_{2} + 1.070 & 30 \le x \le 150 & \text{intensitätsmäßige Anpassung} \end{cases}$$

Für die Leistungsintensitäten und Maschinenlaufzeiten gelte

$$t_1 \in [0;4], \ \lambda_1 \in [0;30] \text{ und } t_2 \in [0;10], \ \lambda_2 \in [0;15].$$

a) Berechnen Sie für beide Maschinen die jeweilige Optimalintensität.

6 Punkte

7 Punkte

b) In Abbildung 2 (Lösungsbogen 6) sind die Verläufe der Grenzkostenfunktionen für Maschine 1 und Maschine 2 schematisch dargestellt. Geben Sie zu den eingezeichneten Punkten *A* und *B* die zugehörigen Outputs an. Runden Sie ggf. auf drei Nachkommastellen.

c) Übertragen Sie den groben Verlauf der Grenzkostenfunktion von Maschine 2 ins Koordinatensystem 1 auf Lösungsbogen 7. Beschriften Sie den Punkt, ab dem von der zeitlichen zur intensitätsmäßigen Anpassung gewechselt wird, sowie den Punkt maximalen Outputs.

4 Punkte

Das Unternehmen erwirbt eine dritte funktionsgleiche Maschine 3, die hinsichtlich ihrer Kostenwirkung, ihrer maximalen Intensität und Einsatzzeit exakt Maschine 2 entspricht. Nehmen Sie an, dass das Unternehmen nur die Maschinen 2 und 3 gemeinsam zur kostenminimalen Produktion einsetzt.

d) Skizzieren Sie den groben Verlauf der gesamten Grenzkosten für diesen Fall im Koordinatensystem 2 auf Seite 8. Beschriften Sie den Punkt, ab dem von der zeitlichen zur intensitätsmäßigen Anpassung gewechselt wird und sowie den Punkt maximalen Outputs.

6 Punkte

Es soll ein Output von x=320 unter Einsatz aller drei Maschinen kostenminimal produziert werden, indem alle drei Maschinen intensitätsmäßig angepasst werden.

e) In welchem Verhältnis müssen die Outputmengen x_2 und x_3 der Maschinen 2 und 3 in diesem Fall stehen? Berechnen Sie die in diesem Fall von den Maschinen jeweils produzierten Teilmengen x_1 , x_2 und x_3 .

12 Punkte

Hinweis:

• Nutzen Sie für Ihre Lösung die Überlegungen aus Aufgabenteil d).

Aufgabe 5: Erweiterungen

35 Punkte

Ein Unternehmen produziert genau eine Produktart durch Einsatz von zwei Produktionsfaktoren, wobei die beiden effizienten und kombinierbaren Prozesse I und II mit den jeweilig angegebenen Inputfunktionen zur Verfügung stehen:

Prozess I:
$$r_1^I = 6 \cdot x^I$$
, $r_2^I = 4 \cdot x^I$

Prozess II:
$$r_1^{II} = 2 \cdot x^{II}$$
, $r_2^{II} = 12 \cdot x^{II}$

Es bezeichne x^{π} die mit Prozess π hergestellten Outputmengeneinheiten und r_1^{π} bzw. r_2^{π} die jeweils zur Produktion verwendeten Faktormengen. Die Faktorpreise betragen q_1 =3 für Faktor 1 und q_2 =2 für Faktor 2.

a) Zeichnen Sie die Prozessstrahlen beider Produktionsprozesse in das Koordinatensystem auf Lösungsbogen 11 ein, und stellen Sie die Kostenfunktionen beider Prozesse auf. Welchen Prozess sollte das Unternehmen aus wirtschaftlichen Gründen zur Produktion heranziehen?

7 Punkte

Der produktive Einsatz beider Faktoren erzeugt ${\it CO}_2$ -Emissionen. Die zugehörige Schadstofffunktionen lauten:

$$x_1^{U,1} = 4 \cdot r_1$$
 und $x_2^{U,1} = r_2$

Dabei bezeichnet $x_i^{U,1}$ die Menge an CO_2 , die durch Einsatz des Faktors i in der Produktion entsteht. Das Unternehmen steht einem CO_2 -Grenzwert in Höhe von \bar{S}_1 =140 gegenüber.

b) Stellen Sie die Schadstoffisoquante für CO_2 zum Niveau \bar{S}_1 =140 in der Form $S_1(r_1; r_2)$ auf und zeichnen Sie diese in das Koordinatensystem auf Lösungsbogen 11 ein. Welche maximalen Produktionsmengen sind jeweils mit Prozess I und II unter Einhaltung des Grenzwerts maximal möglich?

8 Punkte

c) Geben Sie den kostenoptimalen Faktoreinsatz $r_1^M(x)$ und $r_2^M(x)$ sowie die Kostenfunktion $K^M(x)$ unter Beachtung des Grenzwerts für CO_2 an.

8 Punkte

Das Unternehmen stellt fest, dass der Einsatz der beiden Faktoren ebenfalls Feinstaubemissionen erzeugt. Für die gesamte Schadstoffmenge S_2 gilt:

$$S_2(r_1;r_2) = 26 \cdot r_1 + 9 \cdot r_2$$
.

Gehen Sie nun davon aus, dass in der Produktion sowohl der Grenzwert für CO_2 (\bar{S}_1 =140) als auch der Grenzwert für Feinstaub (\bar{S}_2 =1.080) einzuhalten ist.

d) Zeichnen Sie die Schadstoffisoquante für den Feinstaubgrenzwert \bar{S}_2 in das Koordinatensystem auf Lösungsbogen 11 ein. Welche Mengen der Faktoren werden eingesetzt, wenn beide Grenzwerte maximal ausgenutzt werden? Wie hoch ist der zugehörige Output? Welcher Output ist bei Vorliegen der beiden Grenzwerte maximal möglich?

8 Punkte

Modu	ılabschlussklausur zum B-Modul	Matrikelnummer:	
Theo	rie der Leistungserstellung		Seite 6
e)	e) Wie verändern sich kostenoptimaler Faktoreinsatz und Kostenfunktion aus Aufgabenteil d), wenn das Unternehmen beide Grenzwerte in der Produktion beachten muss?		4 Punkte

FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT

SCHAFT	
NAME:	
VODNAME.	
VORNAME:	
MATRIKELNUMMER:	

LÖSUNGSTEIL

MODUL-ABSCHLUSSKLAUSUR ZUM

B-MODUL NR. 31531

THEORIE DER LEISTUNGSERSTELLUNG

TERMIN: 19. MÄRZ 2009, 09⁰⁰–11⁰⁰ UHR

PRÜFER: PROF. DR. DR. H.C. G. FANDEL

Aufgabe	1	2	3	4	5	Σ
maximale Punktzahl	15	15	20	35	35	120
erreichte Punktzahl						

NOTE:	
DATUM:	
	LINTEDSCUDIET DES DDÜLEDS

Modulabschlussklausur zum B-Modul	Matrikelnummer:
Theorie der Leistungserstellung	

Matrikelnummer:	

Lösungsbogen für Aufgabe 1

Kostenart	Funktion	Verlauf
Gesamtkosten	$K(x) = \frac{1}{10} \cdot x^2 + \frac{1}{2} \cdot x + 40$	
Variable Kosten		
Fixe Kosten		
Variable Stückkosten		
Fixe Stückkosten		
Grenzkosten		

Tabelle 1: Lösungstabelle für Aufgabe 1b

Hinweis:

• Sie können die Art des Kostenverlaufs mit einem "L" (linear), "P" (progressiv), "D" (degressiv) und "R" (regressiv) angeben.

${\bf Modulabschlussklausur\ zum\ B-Modul}$	Matrikelnummer:
Theorie der Leistungserstellung	

Theorie der Leistungserstellung

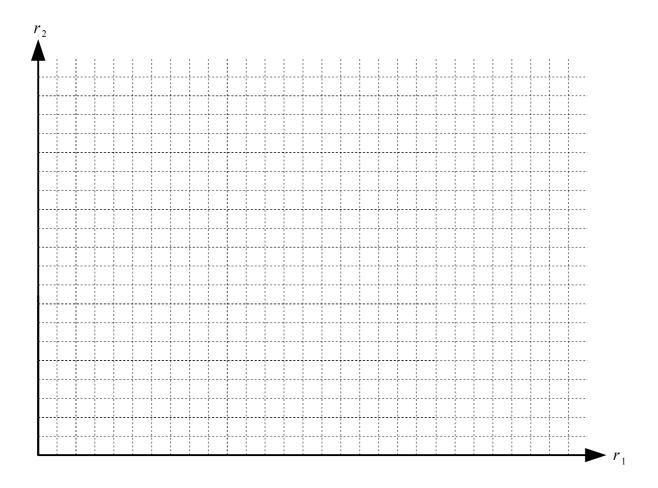


Abbildung 1: Koordinatensystem für Aufgabe 3 (Prozessstrahlen)

Modulabschlussklausur zum B-Modul	Matrikelnummer:
Theorie der Leistungserstellung	

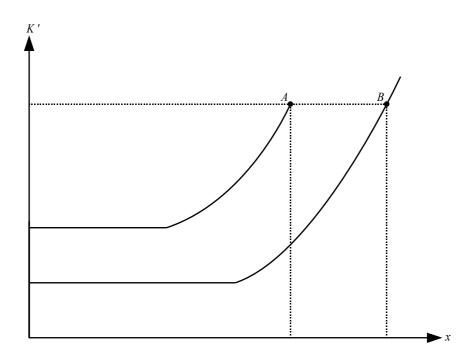


Abbildung 2: Schematische Verläufe der Grenzkostenfunktionen

Abbildung 3: Koordinatensystem 1 für Aufgabe 4

Abbildung 4: Koordinatensystem 2 für Aufgabe 4

Modulabschlussklausur zum B-Modul	Matrikelnummer:
Theorie der Leistungserstellung	

Modulabschlussklausur zum B-Modul	Matrikelnummer:
Theorie der Leistungserstellung	

Theorie der Leistungserstellung

Lösungsbogen für Aufgabe 5

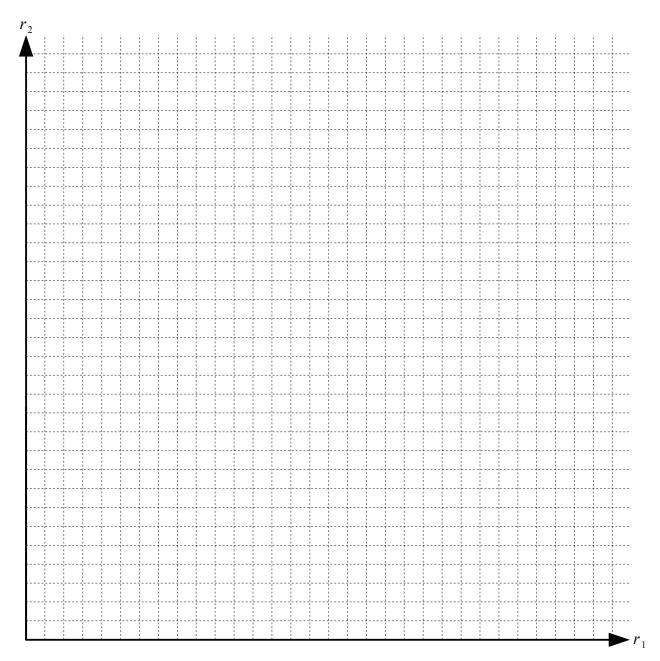


Abbildung 5: Koordinatensystem für Aufgabe 5

Tipp:

• Wählen Sie eine Einteilung, bei der 2 Kästchen 10 Mengeneinheiten entsprechen.

Modulabschlussklausur zum B-Modul	Matrikeln
Theorie der Leistungserstellung	

Matrikelnummer:	
	Seite 12

Modulabschlussklausur zum B-Modul	Matrikelnummer:
Theorie der Leistungserstellung	

Modulabschlussklausur zum B-Modul	Matrikelnummer:
Theorie der Leistungserstellung	

Modulabschlussklausur zum B-Modu	ul Matrikelnummer
Theorie der Leistungserstellung	