

FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT

AUFGABENTEIL

MODUL-ABSCHLUSSKLAUSUR ZUM

B-MODUL NR. 31531

THEORIE DER LEISTUNGSERSTELLUNG

TERMIN: 08. SEPTEMBER 2008, 09⁰⁰–11⁰⁰ UHR

PRÜFER: PROF. DR. DR. H.C. G. FANDEL

Aufgabe	1	2	3	4	5	Σ
maximale Punktzahl	20	15	20	25	40	120

DIESEN AUFGABENTEIL KÖNNEN SIE ABTRENNEN UND MITNEHMEN!

HINWEISE ZUR BEARBEITUNG

- Die Klausur besteht aus einem Aufgabenteil inklusive Lösungsbögen. Überprüfen Sie zunächst, ob Sie die korrekte Anzahl an 27 Seiten erhalten haben.
- Füllen Sie nun den Kopf des Deckblattes des Lösungsteils und der nachfolgenden Seiten des Lösungsteils aus!
- Die Klausur umfasst **fünf Aufgaben**. Die gesamte Bearbeitungszeit beträgt 120 Minuten. Bei jeder Aufgabe ist die maximal erreichbare Punktzahl angegeben. Insgesamt können maximal 120 Punkte erreicht werden.
- Die Lösungen müssen in die dafür vorgesehenen Lösungsbögen eingetragen werden. Bei Platzproblemen verwenden Sie bitte die Rückseiten und verweisen auf diese. Eigene mitgebrachte Blätter dürfen nicht verwendet werden!
- Schreiben Sie bitte nicht mit Bleistift (Ausnahme: Zeichnungen) und nicht mit Rotstiften!
- Bitte schreiben Sie leserlich! Unlesbarkeiten gehen zu Ihren Lasten!
- Sie können den Aufgabenteil abtrennen, aber trennen Sie bitte keine einzelnen Lösungsbögen aus dem Lösungsteil ab!
- Als Hilfsmittel sind neben Schreib- und Zeichengeräten ausschließlich Taschenrechner zugelassen, die
 - o nicht programmierbar sind,
 - o keine Texte oder Formeln speichern können,
 - o nicht drahtlos mit anderen Geräten kommunizieren können,
 - o über keine alphanumerische Tastatur verfügen und
 - o kein graphisches Display (z.B. zur Darstellung von Funktionsgraphen) besitzen.
- **Unterschreiben** Sie vor der Abgabe Ihre Klausur auf dem letzten beschrifteten Lösungsbogen!
- Teilen Sie sich Ihre Zeit ein! Als Anhaltspunkt für die Bearbeitungszeit der Aufgaben gilt: 1 Punkt entspricht ca. 1 Minute.

Viel Erfolg

Matrikelnummer:	
	Seite 1

Aufgabe 1: Grundlagen

Theorie der Leistungserstellung

20 Punkte

 a) Den Abbildungen 1 bis 6 auf den Lösungsbogen 1 bis 3 sind verschiedene Isoquantenverläufe dargestellt. Markieren Sie eindeutig die effizienten und – falls vorhanden – ineffizienten Bereiche. Sie können auch Punkte in die Abbildungen eintragen, um ihre Ergebnisse besser darzustellen. 12 Punkte

b) Erläutern Sie in einem Satz den Unterschied zwischen peripherer und alternativer Substitutionalität.

2 Punkte

c) Nennen Sie stichpunktartig die Hauptkosteneinflussgrößen des Produktionsbereichs.

6 Punkte

Seite 2

Aufgabe 2: Substitutionale Produktionsmodelle 15 Punkte

Betrachten Sie die folgende Produktionsfunktion:

$$x = g(r_1; r_2) = r_1^{\frac{2}{5}} \cdot r_2^{\frac{1}{5}}$$

- a) Um welche Art von Produktionsfunktion handelt es sich bei der Funktion $x = g(r_1; r_2)$? Welche Art von Substitutionalität liegt hier vor?
- b) Bestimmen Sie die Produktionselastizität des Faktors 1 (ϵ_1) und des Faktors 2 (ϵ_2) für die Produktionsfunktion $x = g(r_1; r_2)$.
- c) Bestimmen Sie für die Produktionsfunktion $x = g(r_1; r_2)$ die Skalenelastizität t. Welcher typische Kostenverlauf muss sich demzufolge bei totaler Faktorvariation ergeben?
- d) Der Faktorpreis für Faktor 1 betrage $q_1=8$, der Preis des Faktors 2 $q_2=4$. Bestimmen Sie für die Produktionsfunktion $x=g(r_1;r_2)$ die Kostenfunktion K(x) bei totaler Faktorvariation.
- e) Welche Mengen der Faktoren werden eingesetzt, um einen Output von $x_0=343$ Mengeneinheiten kostenminimal herzustellen?

Aufgabe 3: Leontief-Produktionsmodelle

20 Punkte

Einem Unternehmen stehen fünf linear-limitationale Produktionsprozesse zur Verfügung, die durch ihre Faktorfunktionen wie folgt gegeben sind:

> $r_1^I = x^I$ $r_2^I = 7 \cdot x^I$ Prozess I:

Prozess I: $r_1 = x$ $r_2 = /\cdot x^{-1}$ Prozess II: $r_1^{II} = 5 \cdot x^{II}$ $r_2^{II} = 4 \cdot x^{II}$ Prozess III: $r_1^{III} = 6 \cdot x^{III}$ $r_2^{III} = 2 \cdot x^{III}$ Prozess IV: $r_1^{IV} = 3 \cdot x^{IV}$ $r_2^{IV} = 6 \cdot x^{IV}$ Prozess V: $r_1^{V} = 2 \cdot x^{V}$ $r_2^{V} = 5 \cdot x^{V}$

Dabei bezeichnen x^i die hergestellte Outputmenge und r_1^i bzw. r_2^i die dafür einzusetzenden Mengen der Produktionsfaktoren 1 und 2 (i=I, II, III, IV, V). Alle Gütermengen seien beliebig teilbar, die Prozesse nicht kombinierbar.

a) Welche der verfügbaren Prozesse sind effizient, welche sind ineffizient?

3 Punkte 5 Punkte

b) Zeichnen Sie in das Koordinatensystem auf Lösungsbogen 6 für alle in a) als effizient identifizierten Prozesse die zugehörige Produktionsisoquante zum Outputniveau von x=20 Mengeneinheiten ein. Ermitteln Sie mit Hilfe Ihrer Grafik, welche Prozesse bei Kombinierbarkeit effizient und welche ineffizient sind.

c) Die Preise der Produktionsfaktoren seien mit $q_1=3$ und $q_2=5$ gegeben. Von Faktor 2 können maximal $\bar{r}_2 = 100$ Mengeneinheiten zur Produktion eingesetzt werden. Zeichnen Sie diese Mengenbeschränkung in Ihre Grafik ein. Wie lautet die Gesamtkostenfunktion des Unternehmens, wenn die Prozesse kombinierbar sind?

6 Punkte

d) Neben der Mengenbeschränkung aus Aufgabenteil c) sei von Faktor 1 maximal eine Menge von $\bar{r}_1 = 40$ Mengeneinheiten für die Produktion verfügbar. Zeichnen Sie diese Mengenbeschränkung ebenfalls in Ihre Grafik ein. Der Preis für Faktor 1 steige gegenüber Aufgabenteil c) auf $q_1=5$, der Preis für Faktor 2 betrage weiterhin $q_2=5$. Wie lautet nun die Gesamtkostenfunktion des Unternehmens?

6 Punkte

Hinweis:

• Beachten Sie die gegenüber Aufgabenteil c) veränderte Konstellation der Faktorpreise!

Aufgabe 4: Gutenberg-Produktionsmodelle

25 Punkte

In einem Unternehmen können zur Herstellung eines Produktes zwei kostenverschiedene, aber funktionsgleiche Maschinen eingesetzt werden. Beide Maschinen können mit einer Leistungsintensität zwischen 0 und 10 und maximal eine Zeit von 8 Zeiteinheiten eingesetzt werden. Für Maschine 1 gelte die folgende Kostenleistungsfunktion:

$$k_1(\lambda_1) = 64 \cdot \lambda_1^2 - 480 \cdot \lambda_1 + 2.520$$

Von Maschine 2 ist bekannt, dass sie in Abhängigkeit von der Leistungsintensität λ_2 verschiedene Mengen der Produktionsfaktoren 1, 2 und 3 verbraucht. Die Verbräuche sind durch die jeweiligen Faktorverbrauchsfunktionen gegeben zu:

Faktor 1:
$$a_{12}(\lambda_2) = \rho_{12}(\lambda_2) = 2 \cdot \lambda_2^2 - 15 \cdot \lambda_2 + 50$$

Faktor 2:
$$a_{22}(\lambda_2) = \rho_{22}(\lambda_2) = 10 \cdot \lambda_2^2 - 60 \cdot \lambda_2 + 150$$

Faktor 3:
$$a_{32}(\lambda_2) = \rho_{32}(\lambda_2) = 6 \cdot \lambda_2^2 - 6 \cdot \lambda_2 + 22$$

a) Berechnen Sie für Maschine 1 die Optimalintensität λ_1^* und bestimmen Sie die Kostenfunktion $K_1(x_1)$ und die Grenzkostenfunktion $K'_1(x_1)$ in Abhängigkeit von der Ausbringungsmenge x_1 , wenn Maschine 1 sowohl rein zeitlich als auch intensitätsmäßig angepasst werden kann.

5 Punkte

b) Berechnen Sie die Kostenleistungsfunktion $k_2(\lambda_2)$ von Maschine 2, wenn die Faktorpreise mit q_1 =4, q_2 =6 und q_3 =10 gegeben sind.

10 Punkte

Hinweis:

- Sollten Sie in Aufgabenteil b) kein Ergebnis erhalten, rechnen Sie mit der Funktion $k_2(\lambda_2)=107,52\cdot\lambda^2-403,2\cdot\lambda+2.088$ weiter.
- c) Bestimmen Sie die Kostenfunktion $K_2(x_2)$ und die Grenzkostenfunktion $K'_2(x_2)$ für Maschine 2 in Abhängigkeit von der Ausbringungsmenge x_2 wenn die Maschine sowohl rein zeitlich als auch intensitätsmäßig angepasst werden kann.

5 Punkte

d) Zur kostenoptimalen Produktion von insgesamt x=100 Mengeneinheiten des Produktes werden beide Maschinen intensitätsmäßig angepasst. Berechnen Sie, welche Mengen mit Maschine 1 und Maschine 2 jeweils produzieren.

5 Punkte

Hinweis:

• Für die Lösung von d) ist es nicht erforderlich, das komplette Verfahren der voroptimierten Grenzkostenfunktionen durchzuführen oder diverse Anpassungsintervalle zu berechnen.

Aufgabe 5: Erweiterungen

40 Punkte

Ein Unternehmen produziert genau eine Produktart durch Einsatz von zwei Produktionsfaktoren. Dem Unternehmen stehen dafür die effizienten Produktionsprozesse I und II mit den jeweilig angegebenen Inputfunktionen zur Verfügung:

Prozess I:
$$r_1^I = 2 \cdot x^I$$
, $r_2^I = 4 \cdot x^I$.

Prozess II:
$$r_1^{II} = 6 \cdot x^{II}$$
, $r_2^{II} = 2 \cdot x^{II}$.

Es bezeichne x^{π} die mit Prozess π hergestellten Outputmengeneinheiten und r_1^{π} bzw. r_2^{π} die jeweils zur Produktion verwendeten Faktormengen. Die Preise der Produktionsfaktoren betragen q_1 =4 Geldeinheiten für Faktor 1 und q_2 =5 Geldeinheiten für Faktor 2. Beide Prozesse sind zunächst nicht kombinierbar.

Es ist dem Unternehmen bekannt, dass der produktive Einsatz des Faktors 2 zur Emission von CO_2 in Höhe von x_2^U Mengeneinheiten führt. Die zugehörige Schadstofffunktion lautet:

$$x_2^U = 16 \cdot (r_2)^2$$

Man erwartet seitens des Unternehmens, dass die Emission von CO_2 mit einer Öko-Steuer in Höhe von $p_2^{NP} = 1/128$ Geldeinheiten je Mengeneinheit belegt werden soll.

- a) Erläutern Sie kurz den Begriff der Zertifikatssteuerung und inwiefern die Zertifikatssteuerung die Idee der Mengen- und der Abgabensteuerung miteinander verknüpft.
- b) Zeichnen Sie die Prozessstrahlen der beiden Produktionsprozesse in das Koordinatensystem auf Seite 14 ein.
- c) Stellen Sie die Kostenfunktionen $K^{\pi}(x)$ der beiden Produktionsprozesse $(\pi = I, II)$ ohne Berücksichtigung der Öko-Steuer auf. Stellen Sie ferner für beide Produktionsprozesse die jeweils zugehörige Gesamtschadstofffunktion $S^{\pi}(x)$, $(\pi = I, II)$ auf. Für welchen Prozess entscheidet sich das Unternehmen aus wirtschaftlichen Überlegungen?
- d) Stellen Sie unter Berücksichtigung der erwarteten Öko-Steuer die Gesamtkostenfunktionen $K^{\pi,A}(x)$, $(\pi=I,II)$ beider Produktionsprozesse auf. Bestimmen Sie den kritischen Output \tilde{x}_1 , ab dem ein Wechsel zum schadstoffärmeren Prozess lohnt.
- e) Prozess I und II seien ab jetzt kombinierbar. Die Erwartungen des Unternehmens hinsichtlich der Öko-Steuer sind nicht eingetreten, denn der Staat setzt auf Mengenregulierung. Das Unternehmen muss nun einen Emissionsgrenzwert von $\bar{x}_2^U = 4.096$ Mengeneinheiten CO_2 in der Produktion berücksichtigen. Skizzieren Sie im Koordinatensystem auf Seite 14, wie

6 Punkte

2 Punkte

7 Punkte

7 Punkte

8 Punkte

sich dieser Grenzwert auswirkt. Bestimmen Sie die Gesamtkostenfunktion und die Gesamtschadstofffunktion $S^{M}(x)$ des Unternehmens unter der genannten Mengenbegrenzung.

f) Das Unternehmen erhält die Möglichkeit, das emissionsfreie Produktionsverfahren III zu lizenzieren. Die Kostenfunktion des Verfahrens III lautet:

5 Punkte

$$K^{III}(x) = 25 \cdot x + 42 \text{ für } 0 \le x \le 10$$

Das Verfahren kann aus technischen Gründen nicht mit Verfahren I und II kombiniert werden. Vergleichen Sie die Kostenfunktion von Verfahren III mit Ihrem Ergebnis aus Aufgabenteil e). Ab welchem kritischen Output \tilde{x}_2 lohnt ein vollständiger Umstieg auf das emissionsfreie Verfahren? Welche neue Gesamtkostenfunktion $K^{M, \text{Neu}}(x)$ und welche neue Gesamtschadstofffunktion $S^{M, \text{Neu}}(x)$ ergäbe sich in dem Fall?

Hinweis:

- Sollten Sie in Aufgabenteil e) kein Ergebnis ermittelt haben, benutzen Sie stattdessen die Gesamtkostenfunktion aus Aufgabenteil c).
- g) Durch ein Umweltaudit wird bekannt, dass auch der produktive Einsatz des Faktors 1 zur Emission von CO_2 in Höhe von x_1^U Mengeneinheiten führt. Die zugehörige Schadstofffunktion lautet:

5 Punkte

$$x_1^U = 6 \cdot (r_1)^2$$

Stellen Sie die Schadstoffisoquante in der Form $S(r_1; r_2)$ auf und skizzieren Sie ihren Verlauf für den Grenzwert von 4.096 Einheiten (grober Verlauf genügt!). Zeigen Sie anhand Ihrer Skizze, in welchem Produktionspunkt der maximale Output \tilde{x}_2 bei dem gegebenen Verschmutzungsniveau liegt.

Hinweis:

• Die Prozesse sind immer noch kombinierbar.

LÖSUNGSTEIL MODUL-ABSCHLUSSKLAUSUR ZUM B-MODUL NR. 31531 THEORIE DER LEISTUNGSERSTELLUNG TERMIN: 08. SEPTEMBER 2008, 09°°–11°° UH								
VORNAME: MATRIKELNUMMER: LÖSUNGSTEIL MODUL-ABSCHLUSSKLAUSUR ZUM B-MODUL NR. 31531 THEORIE DER LEISTUNGSERSTELLUNG TERMIN: 08. SEPTEMBER 2008, 09°°–11°° UH		SCHAFT						
LÖSUNGSTEIL MODUL-ABSCHLUSSKLAUSUR ZUM B-MODUL NR. 31531 THEORIE DER LEISTUNGSERSTELLUNG TERMIN: 08. SEPTEMBER 2008, 0900–1100 UH	NAME:							
LÖSUNGSTEIL MODUL-ABSCHLUSSKLAUSUR ZUM B-MODUL NR. 31531 THEORIE DER LEISTUNGSERSTELLUNG TERMIN: 08. SEPTEMBER 2008, 09°°–11°° UH		VORNAME:						
MODUL-ABSCHLUSSKLAUSUR ZUM B-MODUL NR. 31531 THEORIE DER LEISTUNGSERSTELLUNG TERMIN: 08. SEPTEMBER 2008, 0900–1100 UH	MATRIKELNUMMER:							
B-MODUL NR. 31531 THEORIE DER LEISTUNGSERSTELLUNG TERMIN: 08. SEPTEMBER 2008, 09ºº–11ºº UH	LÖSUNGSTEIL							
THEORIE DER LEISTUNGSERSTELLUNG TERMIN: 08. SEPTEMBER 2008, 09ºº–11ºº UH	MODUL-ABSCHLUSSKLAUSUR ZUM							
TERMIN: 08. SEPTEMBER 2008, 09 ⁰⁰ –11 ⁰⁰ UH		B-MODUL NR. 31531						
	THEC	THEORIE DER LEISTUNGSERSTELLUNG						
PRÜFER: PROF DR DR H C G EANDEI	TERMIN:		08	8. SEPTI	EMBER	2008, 09	⁾⁰⁰ –11 ⁰⁰ U	JHR
I NOI LIN. I NOI . DIN. II.O. G. I'ANDEL	PRÜFER:		Р	ROF. DR	. DR. H.	C. G. FA	NDEL	
Aufgabe 1 2 3 4 5 Σ	Aufgabe	1	2	3	4	5	Σ	
maximale 20 15 20 25 40 120		20	15	20	25	40	120	
erreichte Punktzahl								
								•

Lösungsbogen für Aufgabe 1

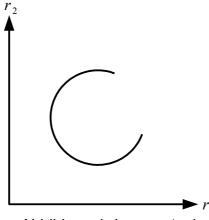
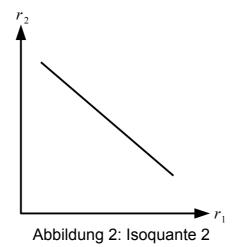



Abbildung 1: Isoquante 1

Lösungsbogen für Aufgabe 1

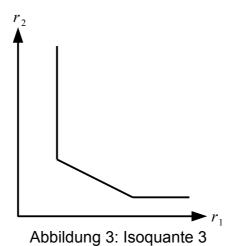
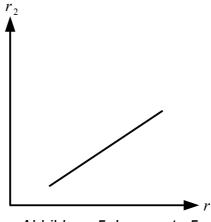
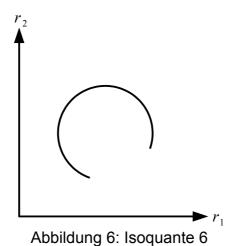
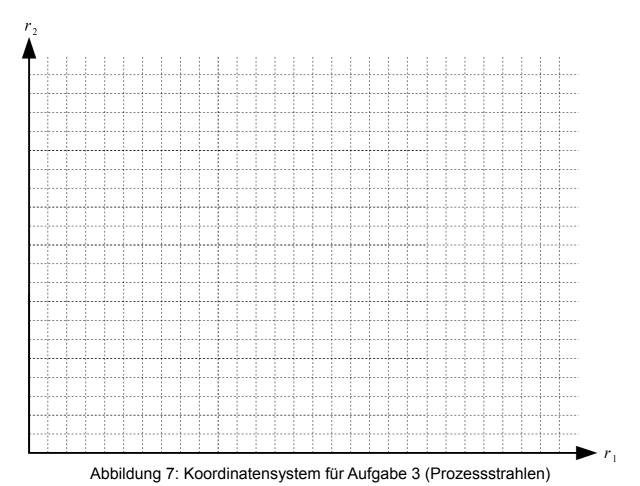


Abbildung 4: Isoquante 4

Lösungsbogen für Aufgabe 1


Abbildung 5: Isoquante 5

Matrikelnummer:	

Seite 6

Lösungsbogen für Aufgabe 3

Tipp:

Verwenden Sie eine Einteilung, in der 2 Kästchen 20 Mengeneinheiten entsprechen.

Lösungsbogen für Aufgabe 5

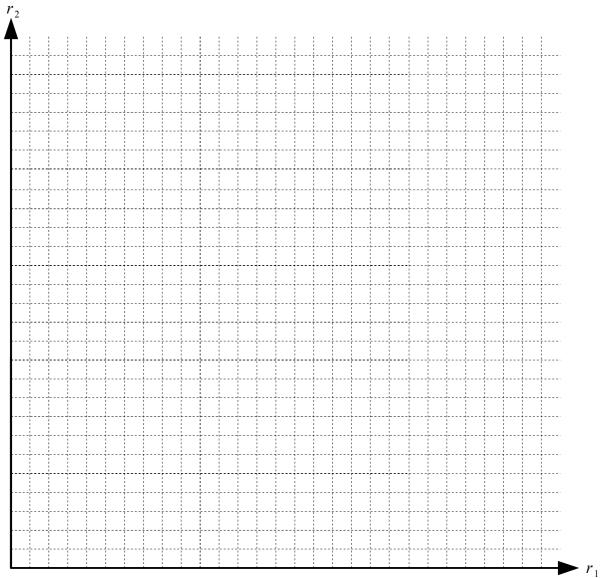


Abbildung 8: Koordinatensystem für Aufgabe 5

Tipp: Verwenden Sie eine Einteilung, in der 1 Kästchen 2 Mengeneinheiten entspricht.