SoSe 2011

Klausur am 24.09.2011:

Aufgabenstellungen

Die Lösungen aller Aufgaben müssen Sie begründen.

Aufgabe 1

Sei
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
. Mit A^n bezeichnen wir das n -fache Produkt, also $A^n = \underbrace{A \cdot A \cdot \cdots \cdot A}_{n \text{ Mal}}$

Sei $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$. Mit A^n bezeichnen wir das n-fache Produkt, also $A^n = \underbrace{A \cdot A \cdot \cdots \cdot A}_{n \text{ Mal}}$. Beweisen Sie mit vollständiger Induktion, dass $A^n = \begin{pmatrix} 1 & n & \frac{n(n-1)}{2} \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix}$ für alle $n \in \mathbb{N}$ gilt.

[8 Punkte]

Aufgabe 2

Bestimmen Sie die Treppennormalform und den Rang der Matrix $A = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ -1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}$

- 1. im Fall $A \in M_{44}(\mathbb{R})$.
- 2. im Fall $A \in M_{44}(\mathbb{F}_2)$.

$$[6 + 4 = 10 \ Punkte]$$

Aufgabe 3

Finden Sie einen 3-dimensionalen Unterraum von \mathbb{R}^4 , der keinen einzigen Vektor der Standardbasis von \mathbb{R}^4 enthält.

[10 Punkte]

Aufgabe 4

Sei V ein Vektorraum über einem Körper \mathbb{K} . Seien f und g lineare Abbildungen von V nach V. Beweisen Sie, dass $\operatorname{Kern}(f) \cap \operatorname{Kern}(g) \subseteq \operatorname{Kern}(f+g)$ gilt.

[6 Punkte]

Klausuraufgaben MG KL

Aufgabe 5

Beweisen Sie, dass die Folge (a_n) mit $a_n = \sum_{k=n}^{2n} \frac{1}{k}$ für alle $n \in \mathbb{N}$ konvergent ist.

[10 Punkte]

Aufgabe 6

Berechnen Sie

- 1. die Ableitung der Funktion $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = \sqrt[3]{\sin(2x)^2}$.
- 2. das Integral $\int\limits_a^b x^2\cos(x)dx$ mit $a,b\in\mathbb{R}$ und a< b.

 $[4 + 6 = 10 \ Punkte]$

Aufgabe 7

Untersuchen Sie (zum Beispiel mit Hilfe des Quotientenkriteriums) für welche $x \in \mathbb{R}$ die Reihe $\sum_{n=0}^{\infty} \frac{n}{n+1} x^n$ konvergent ist.

[8 Punkte]

Aufgabe 8

Sei $a \in \mathbb{R}$, a > 0. Sei $f: (0, \infty) \to \mathbb{R}$ definiert durch $f(x) = ax - \sqrt{x}$.

Bestimmen Sie die Intervalle, auf denen f monoton wachsend beziehungsweise monoton fallend ist. Bestimmen Sie die lokalen Extrema von f.

[8 Punkte]

Aufgabe 9

Seien P und Q zweistellige Relationen auf einem Universum U und c eine Konstante. Überführen Sie

$$\neg \exists x (\forall y P(y, x) \rightarrow \exists y Q(y, c))$$

schrittweise in eine Negations- und diese dann in eine pränexe Normalform.

Erläutern Sie stichwortartig die jeweils vorgenommenen Äquivalenzumformungen.

[10 Punkte]

Klausuraufgaben MG KL

Funktion	Definitionsbereich	Stammfunktion
$x \mapsto x^n, n \in \mathbb{N}_0$	R	$x \mapsto \frac{1}{n+1}x^{n+1}$
$x \mapsto x^{-n}, n \in \mathbb{N}, n \ge 2$	$\mathbb{R}\setminus\{0\}$	$x \mapsto \frac{1}{-n+1} x^{-n+1}$
$x \mapsto x^{-1}$	$(0,\infty)$	$x \mapsto \ln(x)$
$x \mapsto x^{-1}$	$(-\infty,0)$	$x \mapsto \ln(-x)$
$x \mapsto x^{\alpha}, \alpha \in \mathbb{R}, \alpha \neq -1$	$(0,\infty)$	$x \mapsto \frac{1}{\alpha + 1} x^{\alpha + 1}$
$x \mapsto \frac{1}{1+x^2}$	\mathbb{R}	$x \mapsto \arctan(x)$
$x \mapsto \frac{1}{\sqrt{1-x^2}}$	(-1,1)	$x \mapsto \arcsin(x)$
$x \mapsto \exp(x)$	\mathbb{R}	$x \mapsto \exp(x)$
$x \mapsto a^x, a > 0, a \neq 1$	\mathbb{R}	$x \mapsto \frac{1}{\ln(a)}a^x$
$x \mapsto \cos(x)$	\mathbb{R}	$x \mapsto \sin(x)$
$x \mapsto \sin(x)$	\mathbb{R}	$x \mapsto -\cos(x)$
$x \mapsto \frac{1}{\cos^2(x)}$	$\left ((k - \frac{1}{2})\pi, (k + \frac{1}{2})\pi), k \in \mathbb{Z} \right $	$x \mapsto \tan(x)$
$x \mapsto \frac{1}{\sin^2(x)}$	$(k\pi, (k+1)\pi), k \in \mathbb{Z}$	$x \mapsto -\cot(x)$