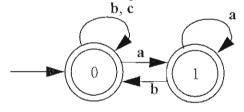
Aufgabe 1 (Reguläre Ausdrücke und endliche Automaten)

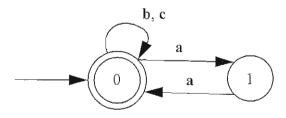

(a)

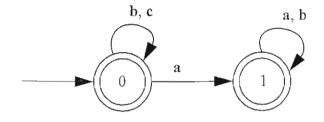
Im folgenden bezeichnen wir den regulären Audruck, der die Sprache L beschreibt mit reg(L).

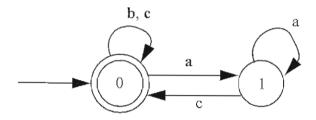
(i)
$$reg(L_1) = (\mathbf{a}^* \mathbf{b} | \mathbf{b} | \mathbf{c})^* \mathbf{a}^*$$

(ii) $reg(L_2) = (\mathbf{b} | \mathbf{c} | (\mathbf{a} (\mathbf{b} | \mathbf{c})^* \mathbf{a} (\mathbf{b} | \mathbf{c})^* \mathbf{a}))^*$
(iii) $reg(L_3) = (\mathbf{aa} | \mathbf{b} | \mathbf{c})^*$
(iv) $reg(L_4) = (\mathbf{b} | \mathbf{c})^* (\mathbf{a} | \mathbf{b})^*$
(v) $reg(L_5) = ((\mathbf{a}^* \mathbf{c}) | (\mathbf{c} | \mathbf{b}))^*$

(b)


Ein Automat, der L_1 erkennt ist:


Ein L_2 erkennender Automat ist:


 L_3 wird durch folgenden Automaten erkannt:

Der folgende Automat erkennt L_4 :

Die Sprache L_5 kann durch folgenden Automaten erkannt werden:

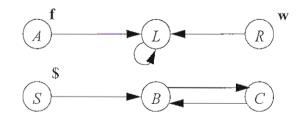
Aufgabe 2

(a)

-____

Die FIRST₁-Mengen sind:

```
FIRST(A) = \{i\}
FIRST(L) = \{t, \varepsilon\}
FIRST(S) = \{s\}
FIRST(B) = \{i\}
FIRST(R) = \{i\}
FIRST(C) = \{a, o, \varepsilon\}
```


Damit ergeben sich die folgenden initialen Steuermengen:

1:	$S \rightarrow \mathbf{s}A\mathbf{f}R\mathbf{w}B$		{ s }	ł
----	---	--	--------------	---

- $2: \quad A \to \mathbf{i} \, L \tag{i}$
- 3: $R \rightarrow iL$ {i}
- 4: $L \rightarrow \mathbf{t}\mathbf{i}L$ {t}
- 5: $L \to \varepsilon$ { ε }
- 6: $B \rightarrow iciC$ {i}
- $7: \quad C \to \mathbf{a}B \tag{a}$
- 8: $C \rightarrow \mathbf{o}B$ {**o**}
- 9: $C \rightarrow \varepsilon$ { ε }

(b)

Wir erhalten den folgenden Graphen:

Durch Propagieren der Knotenmarkierungen erhalten wir die folgenden FOLLOW-Mengen: FOLLOW $(A) = \{\mathbf{f}\}$ FOLLOW(L) = {**f**, **w**} FOLLOW(B) = {**\$**} FOLLOW(C) = {**\$**} FOLLOW(R) = {**w**} FOLLOW(S) = {**\$**}

(c)

Unter Verwendung der Nummerierung der Produktionen aus der Lösung zum Aufgabenteil (a) erhalten wir die folgende Parsetabelle:

	S	f	W	i	t	c	a	0	\$
S	1								
A		1		2					
R				3					
L		5	5		4	1			
B			1.2	6					
С							7	8	9

Aufgabe 3

Die FIRST₁-Mengen sind:

 $FIRST(A) = \{s\}$ $FIRST(B) = \{s\}$ $FIRST(C) = \{v\}$ $FIRST(D) = \{z\}$ $FIRST(E) = \{z\}$

Als kanonische LR(1)-Kollektion ergibt sich:

0	Startzustand	$A \rightarrow . B$	{\$}
		$B \rightarrow . sCtCuD$	{\$}
1	$0 \xrightarrow{B} 1$	$A \rightarrow B$.	{\$}
2	$0 \xrightarrow{s} 2$	$B \to \mathbf{s} \cdot C\mathbf{t}C\mathbf{u}D$ $C \to \cdot \mathbf{v}$	{\$} {t, w}
3	$2 \xrightarrow{c} 3$	$C \rightarrow . C \mathbf{w} \mathbf{v}$ $B \rightarrow \mathbf{s} C . \mathbf{t} C \mathbf{u} D$ $C \rightarrow C . \mathbf{w} \mathbf{v}$	{t, w} {\$} {t, w}
4	$2 \xrightarrow{v} 4$	$C \rightarrow \mathbf{v}$.	{ t , w }
5	$3 \xrightarrow{t} 5$	$B \rightarrow sC t . CuD$ $C \rightarrow . v$ $C \rightarrow . Cwv$	{\$} {u, w} {u, w}
6	$3 \xrightarrow{w} 6$	$C \rightarrow C \mathbf{w} \cdot \mathbf{v}$	{ t , w }
7	$5 \xrightarrow{C} 7$	$B \to sC \ tC \ uD$ $C \to C \ wv$	{\$} {u, w}
8	$5 \xrightarrow{v} 8$	$C \rightarrow \mathbf{v}$.	{ u , w }
9	$6 \xrightarrow{v} 9$	$C \rightarrow C \mathbf{w} \mathbf{v}$.	{ t , w }
10	$7 \xrightarrow{u} 10$	$B \rightarrow sC tCu \cdot D$ $D \rightarrow \cdot DxE$ $D \rightarrow \cdot DyE$	{\$} {\$, x, y} {\$, x, y}
		$D \rightarrow . E$ $E \rightarrow . \mathbf{z}$	$\{\$, x, y\}$ $\{\$, x, y\}$

$7 \xrightarrow{w} 11$	$C \rightarrow C \mathbf{w} \cdot \mathbf{v}$	{ u , w }
$10 \xrightarrow{D} 12$	$B \rightarrow sC tCuD.$ $D \rightarrow D. xE$ $D \rightarrow D. yE$	$\{\$\} \\ \{\$, x, y\} \\ \{\$, x, y\}$
$10 \xrightarrow{E} 13$	$D \rightarrow E$.	{\$, x, y}
10, 16, 17 \xrightarrow{z} 14	$E \rightarrow z$.	{\$, x, y}
$11 \xrightarrow{v} 15$	$C \to C \mathbf{w} \mathbf{v}$.	{ u , w }
$12 \xrightarrow{x} 16$	$D \to D\mathbf{x} \cdot E$ $E \to \mathbf{z}$	$\{\$, x, y\}\$ $\{\$, x, y\}$
$12 \xrightarrow{y} 17$	$D \to D\mathbf{y} \cdot E$ $E \to \mathbf{z}$	$\{\$, x, y\} \\ \{\$, x, y\}$
$16 \xrightarrow{E} 18$	$D \to D\mathbf{x}E$.	{\$, x, y}
$17 \xrightarrow{E} 19$	$D \to DyE$.	{\$, x, y}
	$10 \xrightarrow{D} 12$ $10 \xrightarrow{E} 13$ $10, 16, 17 \xrightarrow{z} 14$ $11 \xrightarrow{v} 15$ $12 \xrightarrow{x} 16$ $12 \xrightarrow{y} 17$ $16 \xrightarrow{E} 18$	$7 \xrightarrow{x} 11$ $B \rightarrow sC tCuD.$ $D \rightarrow D. xE$ $D \rightarrow D. yE$ $10 \xrightarrow{E} 13$ $D \rightarrow E.$ $10, 16, 17 \xrightarrow{z} 14$ $E \rightarrow z.$ $11 \xrightarrow{v} 15$ $C \rightarrow Cwv.$ $12 \xrightarrow{x} 16$ $D \rightarrow Dx. E$ $E \rightarrow .z$ $12 \xrightarrow{y} 17$ $D \rightarrow Dy. E$ $E \rightarrow .z$ $D \rightarrow DxE.$

Nummerierung der Produktionen:

- $1 \qquad A \to B$
- 2 $B \rightarrow sCtCuD$
- 3 $C \rightarrow C \mathbf{w} \mathbf{v}$
- 4 $C \rightarrow \mathbf{v}$
- 5 $D \rightarrow D\mathbf{x}E$
- $6 \qquad D \to D\mathbf{y}E$
- $7 \qquad D \to E$
- 8 $E \rightarrow \mathbf{z}$

	8	t	u	v	w	x	У	z	\$	A	B	C	D	E
0	s2						-				1			
1									acc	-		_		
2	1			s4						1		3		
3		s5			s6									
4		r4			r4									
5				s8								7		
6				s9										
7			s10		s11									
8			r4		r4									
9		r3			r3									
10	1					1		s14					12	13
11				s15							i			
12						s16	s17	1	r2					
13						r7	r7		r7	1	8			
14						r8	r8	-	r8					
15		i	r3		r3			-						
16								s14						18
17								s14					11- av -	19
18						r5	r5		r5					
19						r6	r6		r6					

Aufgabe 4

Eine LL(1)-Grammatik, die die Syntax der SQL-Abfrage analysiert ist:

 $G_{LL} = (\{alist, list, boolexpr, C, A\}, \{SELECT, FROM, WHERE, ID,,, COMP, AND, OR\}, P, A)$ mit

$$P = \{ A \rightarrow \textbf{SELECT} a list \textbf{FROM} a list \textbf{WHERE} boolexpr \\ a list \rightarrow \textbf{ID} list \\ list \rightarrow \textbf{,ID} list \\ | \varepsilon \\ boolexpr \rightarrow \textbf{ID} \textbf{COMP} \textbf{ID} C \\ C \rightarrow \textbf{AND} boolexpr \\ | \textbf{OR} boolexpr \\ | \varepsilon \}$$

Eine LR(1)-Grammatik, die dasselbe leistet ist:

 $G_{LR} = (\{list, boolexpr, A, C, S\}, \{SELECT, FROM, WHERE, ID,,, COMP, AND, OR\}, P', S)$ mit

 $P^{\circ} = \{ S \rightarrow A \\ A \rightarrow \textbf{SELECT} \text{ list FROM list WHERE boolexpr} \\ \text{list} \rightarrow \textbf{ID} \\ | \text{ list , ID} \\ \text{boolexpr} \rightarrow C \\ | \text{ boolexpr AND } C \\ | \text{ boolexpr OR } C \\ C \rightarrow \textbf{ID COMP ID} \}$

Aufgabe 5 (Syntaxgesteuerte Definition)

(a)

Die Grammatik $G=(N, \Sigma, P, S)$ erkennt die in der Aufgabenstellung beschriebene Sprache. Dabei sind:

$$N = \{S, expr\}$$

$$\Sigma = \{id, :=, num, ;, +, -, *, /, <, =, >, and, or, not \}$$

$$P = \{S \rightarrow id := expr;$$

```
expr → expr expr +

| expr expr -

| expr expr <

| expr expr =

| expr expr and

| expr expr or

| expr not

| num
```

}

(b)

Die Einführung weiterer Attribute ist für Elemente aus Σ nicht notwendig. Insgesamt erhalten wir:

```
A(id) = \{realval, boolval, error\}A(num) = \{val\}A(expr) = \{realval, boolval, error\}
```

Die Attributmengen aller anderen Symbole sind leer. Nun erweitern wir G um semantische Regeln, die die notwendigen Berechnungen durchführen:

```
S \rightarrow id := expr;
```

```
{ if expr.type != error then
     id.type := expr.type;
    if expr.type = bool then
       id.boolval := expr.boolval;
    else
       id.realval := expr.realval;
    end
  else
    id.type = error;
  end
}
expr \rightarrow num
{ expr.type := real;
  expr.realval := num.val;
}
expr_1 \rightarrow expr_2 not
{ if exp<sub>2</sub>.type = bool then
```

```
expr1.type := bool;
     expr1.boolval := not expr2.boolval;
  else
      expr_1.type := error;
  end
}
expr_1 \rightarrow expr_2 expr_3 +
{ if expr<sub>2</sub>.type = real and expr<sub>3</sub>.type = real then
     expr<sub>1</sub>.type := real;
     expr<sub>1</sub>.realval := expr<sub>2</sub>.realval + expr<sub>3</sub>.realval;
  else
      expr<sub>1</sub>.type := error;
  end
}
expr_1 \rightarrow expr_2 expr_3 -
{ if expr<sub>2</sub>.type = real and expr<sub>3</sub>.type = real then
      expr_1.type := real;
     expr<sub>1</sub>.realval := expr<sub>2</sub>.realval - expr<sub>3</sub>.realval;
  else
     expr_1.type := error;
  end
}
expr_1 \rightarrow expr_2 expr_3 >
{ if expr<sub>2</sub>.type = real and expr<sub>3</sub>.type = real then
      expr1.type := bool;
     expr<sub>1</sub>.boolval := expr<sub>2</sub>.realval > expr<sub>3</sub>.realval;
  else
      expr<sub>1</sub>.type := error;
  end
}
expr_1 \rightarrow expr_2 expr_3 =
{ if expr<sub>2</sub>.type = real and expr<sub>3</sub>.type = real then
     expr1.type := bool;
     expr<sub>1</sub>.boolval := expr<sub>2</sub>.realval = expr<sub>3</sub>.realval;
  else
     expr<sub>1</sub>.type := error;
  end
}
expr_1 \rightarrow expr_2 expr_3 and
```

```
{ if expr2.type = bool and expr3.type = bool then
    expr1.type := bool;
    expr1.boolval := expr2.boolval and expr3.boolval;
else
    expr1.type := error;
end
}
expr1 → expr2 expr3 or
{ if expr2.type = bool and expr3.type = bool then
    expr1.type := bool;
    expr1.boolval := expr2.boolval or expr3.boolval;
else
    expr1.type := error;
end
}
```

(c)

Die Grammatik enthält nur synthetisierte Attribute.

Aufgabe 6

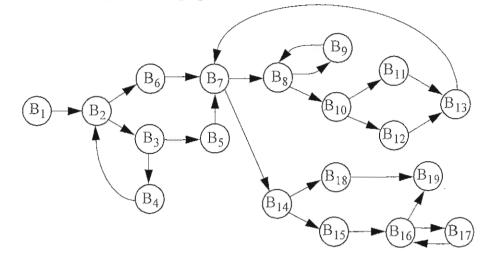
Der Code für die Funktion *fib* lautet:

```
(1) if n = 0 goto 13
(2) if n = 1 goto 15
(3) nl := n - l
(4) n2 := n - 2
(5) valparam nl
(6) call 1
(7) getresult fl
(8) valparam n2
(9) call 1
(10) getresult f2
(11) t := f1 + f2
(12) freturn t
(13) t := 0
(14) freturn t
(15) t := 1
(16) freturn t
```

Der Code der Prozedur main lautet dann:

```
(100) y := 7
(101) valparam y
(102) call 1
(103) getresult x
```

Aufgabe 7


(a)

Es ergibt sich die folgende Einteilung in Basisblöcke:

Block	Begründung für Blockanfang	Zeile	3AC-Anweisung
B ₁	Beginn der Prozedur	(1)	ТЗ := 0
· ·	•		T5 := T2 mod 2
B ₂	Sprungziel aus (9)	(2)	
		(3)	$T6 := T1 \mod 2$
D	Nech hadington Spring	(4)	if $T5 = 1$ goto 12
B ₃	Nach bedingtem Sprung	(5)	if $T6 = 1$ goto 10
B ₄	Nach bedingtem Sprung	(6)	T1 := T1 / 2
		(7)	T2 := T2 / 2
1		(8)	T3 := T3 + 1
D	Sprupozial aug (5)	(9)	goto 2
B ₅	Sprungziel aus (5)	(10)	T4 := -T2
Ъ	Seminarial and (4)	(11)	goto 13
B ₆	Sprungziel aus (4)	(12)	T4 := T1
B ₇	Sprungziel aus (11), (23)	(13)	if $T4 = 0$ goto 24
B ₈	Sprungziel aus (17)	(14)	$T6 := T4 \mod 2$
		(15)	if $T6 = 1$ goto 18
B ₉	Nach bedingtem Sprung	(16)	T4 := T4 / 2
		(17)	goto 14
B ₁₀	Sprungziel aus (15)	(18)	if T4 > 0 goto 21
B ₁₁	Nach bedingtem Sprung	(19)	T2 := -T4
		(20)	goto 22
B ₁₂	Sprungziel aus (18)	(21)	T1 := T4
B ₁₃	Sprungziel aus (20)	(22)	T4 := T1 - T2
		(23)	goto 13
B ₁₄	Sprungziel aus (13)	(24)	if T3 = 0 goto 30
B ₁₅	Nach bedingtem Sprung	(25)	T2 := T1
B ₁₆	Sprungziel aus(29)	(26)	if T3 < 2 goto 31
B ₁₇	Nach bedingtem Sprung	(27)	T2 := T2 * T1
		(28)	T3 := T3 - 1
		(29)	goto 26
B ₁₈	Sprungziel aus (24)	(30)	T2 := 1
B ₁₉	Sprungziel aus (26)	(31)	return T2
	Prozedurende		

(b)

Somit ergibt sich der folgende Flussgraph:

(c)

Man unterscheidet bei der Datenflussanalyse danach, ob sie im Flussgraphen *vorwärts* oder *rückwärts* gerichtet ist. Weiterhin unterscheidet man in beiden Gruppen, ob während der Analyse *alle* Böcke oder nur jeweils *ein* benachbarter Block berücksichtigt wird:

	any	all
forward	<i>UD-Verkettung</i> zur Angabe	Berechnung der verfügbaren
	aller Definitionen, die eine	Ausdrücke (zur Eliminierung
	Variablenmenge erreichen	redundanter Berechnungen)
backward	Ermittlung lebender und toter	Berechnung der
	Variablen	very busy expressions

(d)

Bei der Berechnung der vielbeschäftigten Ausdrücke handelt es sich um eine *backward-all-*Analyse.

Ein Ausdruck ist an einer Stelle p very busy, wenn er auf allen Wegen von dort aus benutzt wird, bevor eine Redefinition eines seiner Operanden erfolgt.

Die Menge von very busy Ausdrücken am Programmende $out(B_{19})$ ist leer. Ausdrücke sind very busy am Ende eines Blocks, wenn sie am Anfang jeden Nachfolgers ebenfalls very busy sind.

Am Anfang eines Blocks B_i sind diejenigen Ausdrücke very busy, die in B_i benutzt werden $(gen(B_i))$ sowie die, die am Ende von B_i bereits very busy sind und deren Operanden innerhalb des Blocks nicht redefiniert werden $(kill(B_i))$. Es gilt also:

$$out(B_{19}) = \emptyset \quad out(B_i) = \bigcap_{B_j \in suc(B_i)} in(B_i)$$
$$in(B_i) = gen(B_i) \cup (out(B_i) - kill(B_i))$$

Für jeden Block berechnen wir nun $gen(B_i)$ und $kill(B_i)$. Die Menge $gen(B_i)$ enthält alle Operationen X op Y oder op X aus B_i , deren Operanden X oder Y nicht vorher im Block B_i (re-) definiert worden sind. Die Menge $kill(B_i)$ enthält alle Ausdrücke X op Y oder op X aus B_i , deren Operanden X oder Y bis zum Ende des Blockes B_i nicht redefiniert werden.

Konstanten sowie einfache Speicher- bzw. Registerzugriffe betrachten wir hier nicht als Ausdrücke, da sie Zugriff ohne zusätzlichen Berechnungsaufwand darstellen. Wir erhalten die folgenden *kill*- und *gen*-Mengen:

i	gen(B _i)	$kill(B_i)$
1	Ø	Ø
2	{T2 mod 2, T1 mod 2}	{T2 mod 2, T1 mod 2}
3	Ø	Ø
4	{T1/2, T2/2, T3+1}	Ø
5	{-T2}	{-T2}
6	Ø	Ø
7	Ø	Ø
8	{T4 mod 2}	{T4 mod 2}
9	{T4/2}	Ø
10	Ø	Ø
11	{-T4}	{-T4}
12	Ø	Ø
13	${T1-T2}$	{T1-T2}
14	Ø	Ø
15	Ø	Ø
16	Ø	Ø
17	{T2*T1, T3-1}	Ø
18	Ø	Ø
19	Ø	Ø

Durch Anwendung der beschriebenen Regeln auf jeden Basisblock B_i können wir das Datenflussgleichungssystem aufstellen.

i	$out(B_i)$	$in(B_i)$
1	$in(B_2) = \{T2 \mod 2, T1 \mod 2\}$	$\emptyset \cup (\{\text{T2 mod } 2, \text{T1 mod } 2\} - \emptyset) =$
		{T2 mod 2, T1 mod 2}

i	$out(B_i)$	in(B _i)
2	$in(B_3) \cap in(B_6) = \emptyset$	${T2 \mod 2, T1 \mod 2} \cup (\emptyset - {T2 \mod 2,}$
		$T1 \mod 2$ = { $T2 \mod 2$, $T1 \mod 2$ }
3	$in(B_4) \cap in(B_5) = \{T1/2, T2/2, T3+1, \}$	$\varnothing \cup (\varnothing - \varnothing) = \varnothing$
	T2 mod 2, T1 mod 2} \cap {-T2} = \varnothing	
4	$in(B_2) = \{T2 \mod 2, T1 \mod 2\}$	${T1/2, T2/2, T3+1} \cup ({T2 \mod 2, T1 \mod 2}$
		$-\emptyset$) = {T1/2, T2/2, T3+1, T2 mod 2,
-		T1 mod 2}
5	$in(B_7) = \emptyset$	$\{-T2\} \cup (\emptyset - \{-T2\}) = \{-T2\}$
6	$in(B_7) = \emptyset$	$\varnothing \cup (\varnothing - \varnothing) = \varnothing$
7	$in(B_8) \cap in(B_{14}) = \emptyset$	$\varnothing \cup (\varnothing - \varnothing) = \varnothing$
8	$in(B_9) \cap in(B_{10}) = in(B_9) \cap \{\text{T1-T2}\}$	${T4 \mod 2} \cup (out(B_8) - {T4 \mod 2})$
9	$in(B_8)$	$\{T4/2\} \cup (out(B_9) - \emptyset)$
10	$in(B_{11}) \cap in(B_{12}) = \{-T4, T1-T2\} \cap$	$\emptyset \cup (\{T1-T2\} - \emptyset) = \{T1-T2\}$
	${T1-T2} = {T1-T2}$	
11	$in(B_{13}) = \{T1-T2\}$	$\{-T4\} \cup (\{T1-T2\} - \{-T4\}) = \{-T4, T1-T2\}$
12	$in(B_{13}) = \{T1-T2\}$	$\emptyset \cup (\{T1-T2\} - \emptyset) = \{T1-T2\}$
13	$in(B_7) = \emptyset$	${T1-T2} \cup (\emptyset - {T1-T2}) = {T1-T2}$
14	$in(B_{15}) \cap \iota v(B_{18}) = \emptyset$	$\varnothing \cup (\varnothing - \varnothing) = \varnothing$
15	$in(B_{16}) = \emptyset$	$\varnothing \cup (\varnothing - \varnothing) = \varnothing$
16	$in(B_{17}) \cap in(B_{19}) = \emptyset$	$\varnothing \cup (\varnothing - \varnothing) = \varnothing$
17	$in(B_{16}) = \emptyset$	$\{T2^*T1, T3^{-1}\} \cup (\emptyset - \emptyset) = \{T2^*T1, T3^{-1}\}$
18	$in(B_{19}) = \emptyset$	$\varnothing \cup (\varnothing - \varnothing) = \varnothing$
19	Ø	$\varnothing \cup (\varnothing - \varnothing) = \varnothing$

Nur für die Blöcke B₈ und B₉ können die *in*- und *out*-Mengen nicht direkt bestimmt werden.

Da wir eine *backward*-Analyse vornehmen, initialisieren wir zur iterativen Lösung des Gleichungssystems die $in(B_i)$ nicht mit \emptyset , sondern jeweils mit der Menge U aller im Programm vorkommenden Ausdrücke, $U=\{T2 \mod 2, T1 \mod 2, T1/2, T2/2, T3+1, -T2, T4 \mod 2, T4/2, -T4, T1-T2, T2*T1, T3-1\}.$

Wir setzen $in(B_i) = U$, 0 < i < 14, und berechnen in- und out-Mengen im Graphen jeweils von hinten nach vorne (in der Tabelle von unten nach oben, wobei immer das aktuellste Ergebnis verwendet wird). Dabei müssen wir nur noch B_8 und B_9 betrachten. Ergebnis der ersten Iteration:

$i out(B_i)$	$in(B_i)$
8 $in(B_9) \cap \{\text{T1-T2}\}$	$\{\mathrm{T4} \bmod 2\} \cup (out(B_{g}) - \{\mathrm{T4} \bmod 2\})$
$= U \cap \{T1-T2\} = \{T1-T2\}$	$= \{T4 \mod 2\} \cup (\{T1-T2\} -$
	{T4 mod 2})
	$= \{T4 \mod 2, T1-T2\}$

$i out(B_i)$	$in(B_i)$
9 in(B ₈)	${T4/2} \cup (out(B_9) - \emptyset)$
= Y	$= \{T4/2\} \cup (U - \emptyset)$
	= U

Zweite Iteration:

i	$out(B_i)$	$in(B_i)$
8	$in(B_9) \cap \{\text{T1-T2}\}$	${T4 \mod 2} \cup (out(B_8) - {T4 \mod 2})$
	$= \{T4/2, T4 \mod 2, T1-T2\} \cap \{T1-T2\}$	$= \{T4 \mod 2\} \cup (\{T1-T2\} -$
	= {T1-T2}	{T4 mod 2})
		$= \{T4 \mod 2, T1-T2\}$
9	$in(B_8) = \{\text{T4 mod } 2, \text{T1-T2}\}$	$\{T4/2\} \cup (out(B_9) - \emptyset)$
		$= \{T4/2\} \cup (\{T4 \mod 2, T1-T2\} - \emptyset)$
		$= \{T4/2, T4 \mod 2, T1-T2\}$

Dritte Iteration:

i	$out(B_i)$	$in(B_i)$
8	$in(B_9) \cap \{\text{T1-T2}\}$	${T4 \mod 2} \cup (out(B_8) - {T4 \mod 2})$
	= {T4/2, T4 mod 2, T1-T2} ∩ {T1-T2}	$= \{T4 \mod 2\} \cup (out(B_8) - \{T4 \mod 2\})$
	= {T1-T2}	$= \{T4 \mod 2, T1-T2\}$
9	$in(B_8) = \{T4 \mod 2, T1-T2\}$	$\{T4/2\} \cup (out(B_9) - \emptyset)$
		$= \{T4/2\} \cup (\{T4 \mod 2, T1-T2\} - \emptyset)$
		= {T4/2, T4 mod 2, T1-T2}

Auch jede weitere Iteration liefert dasselbe Ergebnis. Damit haben wir bereits einen Fixpunkt erreicht und das Gleichungssystem gelöst.