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Abstract

This paper describes the application of machine
learning methods to determine parameters for
DeLite, a readability checking tool. DeLite pin-
points text segments that are difficult to under-
stand and computes for a given text a global read-
ability score, which is a weighted sum of nor-
malized indicator values. Indicator values are nu-
meric properties derived from linguistic units in
the text, such as the distance between a verb and
its complements or the number of possible an-
tecedents for a pronoun. Indicators are normal-
ized by means of a derivation of the Fermi func-
tion with two parameters. DeLite requires indi-
vidual parameters for this normalization function
and a weight for each indicator to compute the
global readability score.
Several experiments to determine these param-
eters were conducted, using different machine
learning approaches. The training data consists
of more than 300 user ratings of texts from the
municipality domain. The weights for the indica-
tors are learned using two approaches: i) robust
regression with linear optimization and ii) an ap-
proximative iterative linear regression algorithm.
For evaluation, the computed readability scores
are compared to user ratings. The evaluation
showed that iterative linear regression yields a
smaller square error than robust regression al-
though this method is only approximative. Both
methods yield results outperforming a first man-
ual setting, and for both methods, basically the
same set of non-zero weights remain.

1 Introduction
Cognitive difficulties for readers are often approximated by
a readability function returning a text readability score. The
calculation of such a function is typically done in two steps
[Flesch, 1948; Chall and Dale, 1995]:

• Determine several indicators for reading difficulty
from the surface structure of the text (usually includ-
ing indicators such as average sentence length and
word average length).

• Compute a linear combination of weighted indicator
values.

Readability scores have a long history and tradition, espe-
cially in English-speaking countries.

The parameters of a readability function may be derived
automatically as follows. Given a set of user ratings for a
certain text corpus, linear regression can be applied to de-
rive the parameters, minimizing the square difference be-
tween the user ratings and the readability score.

A well-known example of a readability function follow-
ing this schema is the Flesch Reading Ease Score [Flesch,
1948] for English texts, given in equation 1. It is based
on computing two indicators from the surface structure,
namely the average sentence length (ASL) and the average
word length (AWL). For German, similar formulas exist to
test the readability of texts (e.g. Amstad [1978]).

RFlesch = 206.835 − (1.015 · ASL)
− (0.846 · AWL) (1)

Readability functions of this type have several drawbacks.
First, the weights have no intuitive meaning. Therefore,
they are difficult to interpret and would be difficult to ad-
just manually. Second, a large number of indicators in such
a formula can easily lead to overfitting, which means that
additional work is required to reduce the number of indica-
tors to an optimal set.

For DeLite, our readability checking tool for German
texts, a different approach is employed. Before the indica-
tor values are combined they are mapped into the interval
[0, 1], which avoids the drawbacks described above and al-
lows a comparison of weights, e.g. for different types of
readers (for a detailed description see Section 4).

2 Readability Score and Indicators
DeLite is a readability checking tool for German texts. Its
graphical user interface is shown in Figure 2. The readabil-
ity checking in DeLite relies on a linguistic analysis of text
documents with the syntactico-semantic parser WOCADI
[Hartrumpf, 2003]. The experiments described here were
performed largely on German texts, because the natural
language processing tools rely on German resources, e.g.
a large German semantic lexicon. WOCADI parses texts
and returns their semantic representation, including analy-
sis results corresponding to the morphologic, lexical, syn-
tactic, semantic, and discourse level of linguistic units such
as words, phrases, or sentences. Natural language process-
ing results are represented as semantic networks based on
the MultiNet paradigm [Helbig, 2006]. These analysis re-
sults serve as a basis to derive 47 readability indicators,
which represent measurable properties of linguistic units.
Indicators are associated with one of the different levels of
linguistic analysis given above. Table 1 shows some typi-
cal examples of indicators. The readability indicators and
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Figure 1: Normalizing function N(x) derived from the
Fermi function for µ = 10, δ = 3.

their computation from natural language processing results
of the parser are described in more detail by Hartrumpf et
al. [2006] and Jenge et al. [2006].

3 Data Normalization
Unnormalized indicators have vast differences in their
value distribution, mean value and variance, e.g. the num-
ber of concepts in a compound usually varies between two
and five while the number of nodes in a semantic network,
representing a sentence, can easily exceed 20. Therefore,
indicator values are normalized, mapping them into the in-
terval [0, 1]. A simple method to normalize indicator val-
ues would be to employ a linear transformation based on
the maximum and minimum values. However, this may not
be a reliable solution for several reasons: In new texts, in-
dicator values may exceed the known extreme values. Usu-
ally such values are mapped to either zero or one. But in
this case, the normalization function will be no longer dif-
ferentiable on the whole value range, which makes it diffi-
cult to apply non-linear optimization techniques like least-
squares estimation [Greene, 1993]. Furthermore, this ap-
proach becomes very sensitive to outliers.

Many of these difficulties are avoided by the function
N(x) used in DeLite (see equation 2), a derivation of the
Fermi function. Figure 1 shows the graph of this function
for the parameter values µ = 10 and δ = 3.

N(x) =
1

1 + e
−x− µ

δ

(2)

The parameter µ is the location of the 0.5-intercept
(N(µ) = 0.5) and δ specifies the incline of the function.
For simplicity, its is presumed that indicator values are non-
negative and that high unnormalized indicator values cor-
respond to less readability.

One approach to determine the parameters consists of
applying a nonlinear optimization to all constituents of the
weighted sum and compute both weights and parameters
simultaneously. Several (in)equality constraints have to be
defined because all weights are expected to be non-negative
and normalized to sum up to one. However, estimating
more than 140 parameters (three for each indicator) with
a constrained nonlinear optimization algorithm is quite dif-
ficult and also rather slow.1 For DeLite, a more efficient
approach is chosen, which is also guaranteed to converge.

1Weight learning may have to be repeated several times, e.g.
for user groups with different cognitive impairments.

The parameter estimates derived by DeLite could be em-
ployed as an initial parameter guess for a nonlinear opti-
mization problem as described above.

The parameter µj of the normalization function for a
given indicator Ij determines the 0.5-intercept. It usually
corresponds to some point near the center of the distribu-
tion of the indicator values. Several methods to calculate
the parameters µj and δj of the individual normalization
functions were tested, including techniques based on ana-
lyzing conditional probabilities, utilizing quantiles, the me-
dian, and mean value. Selecting the mean value of the dis-
tribution for µj yielded the smallest error and proved to be
quite robust to outliers. The parameter δj was obtained by
computing the arithmetic mean for solutions of Nj(x) for
given values of µ and maximum and minimum values of
the indicator value Ij under consideration.

4 Data Combination
In DeLite, a readability score R for a text is calculated as
a weighted sum, combining all normalized indicator values
vj . Equation 3 shows the general structure of this function.

R =
m∑

j=1

wjvj (3)

In the remainder of this paper, normalized weights are as-
sumed, i.e. w1 + . . . + wm = 1 and w1 ≥ 0, . . . , wm ≥ 0.

To compute the readability score R, the weight wj and
the normalization parameters µj and δj have to be deter-
mined for each indicator Ij individually. Several machine
learning approaches to accomplish this are described and
evaluated in Section 5 and Section 6.1.

Note that the indicator weights reflect the importance of
each indicator with respect to global readability of a text. If
necessary, it would be easy to support manual adjustments,
i.e. changing user preferences via the user interface.

There is no need to determine the best set of indica-
tors. After the training period, all indicators with a weight
of zero are automatically eliminated from the readability
function, i.e. they do not contribute to the readability score.
However, all readability indicators – regardless of their
weight – are utilized to identify and pinpoint text passages
that are difficult to read.

5 Weight Learning
5.1 Problem Description
The parameters of the normalization function are deter-
mined as described in Section 3. Thus, to compute the
text readability score R, only the indicator weights (wj)
in the weighted sum remain to be found. Basically, two
types of machine learning algorithm have been applied to
solve such types of problems. These are on the one hand
algorithms that depend on a specific probability distribu-
tion and on the other hand algorithms which make no such
assumption. A method of the first type is for instance the
Expectation Maximization algorithm (EM, see Dempster et
al. [1977]). This algorithm cannot be applied on data where
the indicators are highly correlated among each other. A
transformation technique like Principal Component Analy-
sis (PCA, see [Jolliffe, 1986]) is necessary in this case to
create a new data set with independent indicators.

Since different indicators also have varying probability
distributions, an approach of the second type is preferred,
which includes regression techniques. Regression can also



Table 1: Linguistic levels of analysis and corresponding indicators.
Linguistic level Indicator (German example/English translation, value)

Morphologic Number of concepts in a compound (‘Mehrwertsteuererhöhungsdiskussion’/‘discussion to in-
crease value added taxes’, 4)

Lexical Word frequency class (‘Stadtverwaltungen’/‘municipal administration’, 36)
Syntactic Number of syntactic readings of a sentence (‘Polizei erschoss Mann mit Gewehr’/‘Police shot man

with gun’, 2)
Semantic Number of propositions per sentence (‘Die Familie besuchte die Tante und übernachtete dort’/‘The

family visited the aunt and spent the night there’, 2)
Discourse Number of reference candidates for a pronoun (‘Jutta und Maria trafen sich in ihrem Haus’/‘Jutta

and Maria met in her/their house’, ≥ 2 for the pronoun ‘ihrem’)

be used on highly correlated indicator values without the
necessity of any data transformation. However, for most
types of regression algorithms the indicator values still
have to be linearly independent of each other.

In common optimization algorithms, the optimal weights
are determined by minimizing the square error (see equa-
tion 4).

wopt = arg min
w

(
n∑

i=1

(yi −Xiw)2) (4)

The variables given above have the following meanings:

• n: The number of indicators.

• m: The number of rated texts.

• yi: The average user rating for text i. This value is
determined from the global readability ratings by the
users. Values of the discrete seven-point Likert scale
(Likert [1932], see Section 6.1) are converted into a
numeric value between zero and one by a linear trans-
formation. A value of one represents optimal, a value
of zero the worst readability.

• Xi : Vector notation for (xi1, . . . , xim). xij is an indi-
cator value between zero and one for indicator Ij and
text i.

• w : Vector notation for (w1, . . . , wm). wj is the
weight for the indicator Ij .

Because all weights are required to be non-negative, sim-
ple linear regression cannot be employed. Two alternative
approaches are investigated: robust regression with linear
optimization (see Section 5.2), and an approximative itera-
tive linear regression based method (see Section 5.3).

5.2 Robust Regression with Linear Optimization
Robust regression leads to estimating parameters by mini-
mizing the sum of the absolute error instead of the square
error. The minimization can be achieved via linear opti-
mization, usually applying the Simplex algorithm [Bertsi-
mas and Tsitsiklis, 1997]. This kind of regression is called
robust, since it is not as sensitive to outliers as linear re-
gression.

The minimization problem for determining the weights
of our readability function can be defined as follows:

wopt = arg min
w

(
n∑

i=1

(|yi −Xiw|)) (5)

In equation 5, |yi−Xiw| can be replaced by variables zi,
if the constraints zi ≥ |yi−Xiw| are added (see Bertsimas
and Tsitsiklis [1997]). Using the equivalence in equation

6, the optimization problem can be rewritten as shown in
equation 7.

zi ≥ |yi −Xiw| ⇔ zi ≥ (yi −Xiw)∧ zi ≥ −(yi −Xiw)
(6)

arg minw z1 + . . . + zm , with
zi ≥ xi1w1 + . . . + ximwm − yi ,
zi ≥ yi − xi1w1 − . . .− ximwm

(7)

and i = 1, ..., n.
This problem consists of linear equations only and can

therefore be solved by traditional linear optimization algo-
rithms.

5.3 Iterative Linear Regression
In this section, an approximative solution by using a re-
stricted linear regression problem is discussed. A general
restricted linear regression problem is given by equation 8.
L contains the coefficients of one or several linear equal-
ity restrictions. In addition, the restriction that all weights
sum up to one must be represented. Thus, L is set to the
vector (1, ..., 1). q represents the values of Lw, in our case
q = (1). The regression can be solved by equation 9 (see
Greene [1993]).

W =
[

X ′X L′

L 0

]
u =

[
XT y
q

]

W

[
w
λ

]
= u (8)[

w
λ

]
= W−1u (9)

Note that the resulting weights might be negative. Nega-
tive weights may have one of the following reasons: First,
they might occur if some of the indicators are not corre-
lated with our output (the readability score). Second, they
may result if some indicators are strongly correlated among
each other. The first problem is avoided by setting indicator
weights to zero for indicators which are not correlated with
the readability rating R, effectively eliminating the corre-
sponding indicators. The regression described above only
has to be applied on the remaining indicators.

The following iterative algorithm is proposed to solve
the second problem:

1. Execute the restricted regression as described above.

2. Determine all negative weights and remove the corre-
sponding indicators from the regression model.



Figure 2: Graphical user interface of the DeLite readability checking tool.

3. If any negative weights are found, continue with
step 1.

4. Return the set of computed weights.

A further improvement of this method may be to remove
indicators which are most correlated to indicators with neg-
ative weights at every iteration, since very highly correlated
(normalized) indicators are nearly exchangeable. However,
in the worst case the performance becomes exponential to
the number of indicators, since in every iteration several
solution paths have to be followed.

6 Evaluation and Implementation
6.1 Evaluation of Parameter Learning
Training data was collected via a web experiment in which
participants were asked to answer questions on the read-
ability of given short texts. The participants in the web
experiment were asked to judge the global readability of
a text. Answers were given on a seven-point Likert scale
labelled ‘I strongly agree’, ‘I agree’, ‘I agree somewhat’,
‘Undecided ’, ‘I disagree somewhat’, ‘I disagree’, and ‘I
strongly disagree’.

The training data for the weight learning approaches
consists of user ratings of 500 texts, primarily originat-
ing from the municipality domain. The user ratings were
obtained from more than 300 participants in a web experi-
ment. The data contains more than 2800 readability ratings.

The evaluation consists of measuring the absolute and
square error between the user ratings and the readability
scores calculated with weights learned by either iterative
linear regression or robust regression. The approximative
iterative linear regression method leads to very good re-
sults in practice: It always yields a smaller square error
than computing scores with the weights found by the robust

regression algorithm. Table 2 shows absolute and square
error for both methods together with the weights for the re-
maining indicators. Note that only a small number of the
47 indicators remain for computing the readability score.
There are several reasons for this effect, including data
sparseness and missing robustness for the semantic analysis
of the texts, which causes some indicators to be available
for a subset of textual units only. The table shows results
for a three-fold cross-validation (CV) as well.

Additionally, the user ratings were compared to the
scores obtained from a German variant of the Flesch Read-
ing Ease Score, the Amstad understandability index (Equa-
tion 10, see Amstad [1978]).

RAmstad = 180− ASL − ASW · 58.5 (10)

The relative and absolute errors for the Amstad index
are 0.203 and 0.245, respectively. The correlation between
user ratings and the Amstad index amounts to 0.165. This
relatively low correlation may reflect that the Amstad index
is not an adequate measure of text understandability, espe-
cially concerning texts of our selected municipal domain.
DeLite’s readability scores have a higher correlation with
user ratings, and in comparison, the absolute and square er-
rors are considerably lower (also shown in Table 2). These
improvements are mainly due to a larger number of indica-
tors and to indicators resulting from deep natural language
processing methods, i.e. indicators on the semantic and
discourse level.

In summary, if applied on the training data, the robust
regression algorithm yields a lower absolute error than it-
erative linear regression, while iterative linear regression
yields a lower square error. Since the differences between
errors from both methods are very small, this assertion
cannot necessarily be made if those methods are applied
on new data which is also shown by the cross-validation.



Table 2: Weights learned by robust and iterative linear re-
gression.

Learning algorithm

Normalized Robust Iterative
weight regression linear regression

w1 0.130 0.084
w2 0.153 0.176
w3 0.035 0.020
w4 0.032 0.031
w5 0.026 0.068
w6 0.169 0.143
w7 0.181 0.133
w8 0.065 0.058
w9 0.138 0.159

w10 0.010 0.013
w11 0.029 0.086
w12 0.029 0.029
w13 0.003 0.000

Absolute error 0.126 0.127
Square error 0.159 0.157

Absolute error (CV) 0.142 0.141
Square error (CV) 0.177 0.176

Starting with all 47 indicators, only 13 indicators remain
as factors of the readability function when using robust re-
gression (twelve if using iterative linear regression). In the
DeLite implementation, the iterative linear regression algo-
rithm is more than ten times faster than the robust regres-
sion.

6.2 The Readability Checking Tool DeLite
The readability formula as described above is used in the
readability checking tool DeLite. DeLite calculates the
global readability score and highlights text passages for
which the indicator value exceeds a certain threshold. Fig-
ure 2 shows the graphical user interface of the readabil-
ity checking tool. In the upper right corner, the readability
score is displayed as a sequence of stars as well as a numer-
ical value. On the top left, the input text is shown, which
consists of a relatively simple text with a single sentence
(‘Dr. Peters lädt Herrn Müller zum Essen ein, da er heute
Geburtstag hat’/‘Dr. Peters invites Mr. Müller to diner be-
cause he has birthday today.’). Below the input text, several
readability scores and indicator values are shown, including
the Amstad readability index. On the right side, a number
of indicators is aligned under the corresponding linguistic
level. If selected, the text passages violating readability
are highlighted. In the example, the pronoun ‘er’ is high-
lighted, because there are two reference candidates (‘Dr.
Peters’ and ‘Mr. Müller’), which affects a reader’s cogni-
tive ability to understand this text.

7 Conclusion and Outlook
In this paper, novel approaches to determine weights for
a readability function were investigated. When using nor-
malization, the importance of each indicator is denoted by
its weight, which allows to adapt settings manually. Fur-
thermore, a manual selection of a subset of readability in-
dicators to avoid overfitting is no longer necessary.

Two methods to determine parameters and weights for
the readability function were evaluated. The iterative lin-
ear regression technique outperforms the linear optimiza-

tion at the minimization of the average square error. Us-
ing the linear regression method, only twelve of a total of
47 indicators remain to be computed (i.e. with a non-zero
weight), with linear optimization, 13 indicators have a non-
zero weight, including all twelve indicators with non-zero
weights determined by linear regression.

For future work, we need to perform significance tests
to see if one method performs significantly better than the
other. We also intend to integrate nonlinear optimization
techniques. Finally, we plan to perform experiments with
different user groups sharing the same type of cognitive im-
pairments to see which indicators are affected, i.e. which
readability indicators are weighted differently compared to
settings for a group of typical users and correspond to the
type of cognitive impairment.
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