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Abstract

We show that two-stage least squares (2SLS) estimates of interactions can be misleading
in settings with essential heterogeneity (e.g., selection into gains) and where complier
status to the instrument depends on the interaction variable. The 2SLS estimator cannot
disentangle interaction effects from shifts in complier groups. Estimating marginal
treatment effects addresses this problem by fixing the underlying population and
unobserved heterogeneity. We illustrate this using the example of gene-environment
studies, where the central parameter is the interaction effect between an endogenous,
instrumented measure of environment or behavior and a predetermined measure of
genetic endowment. Our application examines the effect of education on cognitive
performance in old age. The results show complementarities between education and
genetic predisposition in determining cognitive abilities. The marginal treatment effect
estimates reveal a substantially larger gene-environment interaction, exceeding the
2SLS estimate by a factor of at least 2.5.
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1 Introduction

The recent availability of genetic data has revived the old debate in the social sciences
about nature versus nurture in determining success over the life course (see, e.g., Behrman
and Taubman, 1989; Plug and Vijverberg, 2003; Björklund and Salvanes, 2011). The focus
is on estimating gene-environment interactions to assess how the effects of environmental
exposures or individual decisions vary by genetic endowment. These interaction models
typically take the form of

Yi = β0 + β1Ei + β2Gi + β3Gi × Ei + X′γ + εi, (1)

where Yi measures (long-run) outcomes, Ei indicates an endogenous environmental expo-
sure or individual decision, Gi denotes pre-determined genetic endowment, and X is a
vector of controls. Recent studies revolve around the causal identification of β1, β2, and β3,
for example, by instrumenting Ei and Gi × Ei or by removing factors correlated with the
environment from Gi (see, e.g., Schmitz and Conley, 2017; Barcellos et al., 2018; Biroli et al.,
2022; Pereira et al., 2022; Barcellos et al., 2021).

Our paper focuses on how the central parameter in the gene-environment literature, the
interaction coefficient β3, is estimated. In its intended interpretation, it measures how
the causal effect of the environment varies with genetic endowment, all else being equal.
However, as we show here, the widely used two-stage least squares (2SLS) approach may
not provide a reliable estimate of this effect, even with a valid instrumental variable. This
is the case when two conditions hold simultaneously. First, compliers to the instrument
for Ei have different unobserved characteristics between different values of Gi. Second,
the (individual) treatment effects of Ei exhibit essential heterogeneity. This occurs when
the propensity to take the treatment correlates with the unobserved effect heterogeneity
(Heckman et al., 2006). A prominent example of essential heterogeneity is self-selection
into treatment based on unobserved gains. These conditions frequently occur in real-world
settings that are investigated with causal methods. As a result, 2SLS conflates two different
changes when estimating the G × E coefficient: first, how the local average treatment effect
(LATE) of Ei on Yi changes with Gi, which is the interaction we aim to estimate. Second,
how the complier subpopulation of this LATE shifts as Gi varies.

In this paper, we (1) comprehensively describe the problem, (2) propose a solution, and (3)
apply it to a real-world setting. Using a numerical example, we show that relying on 2SLS
estimates of β3 to provide evidence on how genes and the environment interact can be
misleading in a setting with essential heterogeneity and a substantial gradient in the first-
stage coefficients across different Gi. In our simulation example, the 2SLS coefficient even
has the opposite sign of the actual interaction effect. We propose a solution that maintains
a fixed underlying population when comparing the effect of Ei on Yi for different values
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of Gi. Estimating marginal treatment effects (MTEs) offers a suitable approach to achieve
this (Heckman and Vytlacil, 2005). Finally, we apply this method to the long-term effect of
education Ei on cognitive abilities Yi using data from English Longitudinal Study of Aging
(ELSA). We select our sample around the pivotal cohort of a compulsory schooling reform,
which extended the minimum school-leaving age from 14 to 15 for individuals born after
1933. Cognitive ability is measured by the word recall test in six waves between 2002
and 2012 when individuals in our sample were between 65 and 80 years old. To measure
genetic endowment, we use a polygenic score (PGS), a summary measure that predicts
educational attainment based on genetic makeup. When estimating MTEs, we rely on a
recently developed partial identification method by Mogstad et al. (2018), also used by
Rose and Shem-Tov (2021).

The problem we describe is not limited to the gene-environment literature and is, in princi-
ple, relevant to any interaction effects between an endogenous (and instrumented) and a
pre-determined variable. However, gene-environment applications are a natural choice
to illustrate it since the target parameter is the interaction coefficient. Our contribution
is mainly methodological, but we also contribute substantively to the literature on gene-
environment interactions – a highly dynamic research field with many recent papers in
areas related to ours. Possible problems with 2SLS estimation of the gene-environment
interaction effects are also briefly mentioned in Barcellos et al. (2021). They find differences
in returns to schooling between individuals with different genetic endowments in terms
of socioeconomic status and use a linear MTE estimation to check whether unobserv-
able factors can explain these differences, which is not the case in their study. We are
unaware of any study estimating the causal effects of education and its interaction with
genetic makeup on cognition in later life. Ding et al. (2019) study the relationship between
genes/educational attainment and cognition using data from the Health and Retirement
Study (HRS) but do not use exogenous variation in education. Anderson et al. (2020) esti-
mate a positive bi-directional relationship between educational attainment and intelligence
using genetic variants as instruments. Schmitz and Conley (2017) study whether the effect
of the Vietnam War draft lottery on schooling outcomes differs by a genetic predisposition
for education. Going beyond educational outcomes, Barcellos et al. (2018) estimate whether
genetic predisposition to obesity moderates the effect of education on health using the UK
compulsory schooling reform for the 1957 birth cohort as an exogenous variation but a
different data set and outcomes (health). Besides Schmitz and Conley (2017) and Barcellos
et al. (2018), the earliest study in economics on how education can compensate for the
effects of genetic differences is, probably, Papageorge and Thom (2020), who study the
impact on labor market outcomes.

Our results are as follows: Applying a benchmark 2SLS estimator, we find a zero effect of
education on cognition for individuals in the lowest quintile of Gi, that is, those with the
lowest genetic propensity for education. On average, moving to a higher quintile of Gi
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goes along with an increase in the effect of Ei on Yi by an insignificant 0.16 words correctly
recalled. Using marginal treatment effects, we still find a zero effect of Ei in the lowest
quintile of Gi. However, the interaction effect is much larger. Here, moving from one
quintile of Gi to a higher one increases the effect of Ei on Yi by 0.39–0.46 words, on average.
This corresponds to roughly 10–15 percent of the standard deviation of the outcome
variable. While education does not improve cognitive abilties in the group with the lowest
genetic endowment, it increases word recall by 1.6–1.8 words in the highest quintile of
Gi. 2SLS would considerably underestimate the gene-environment complementarity. In
our application, genetic endowment is correlated with the complier status: The share of
compliers to the education reform is highest in the lowest quintile of Gi (65 percent) and
monotonically decreases to 35 percent in the highest quintile. Moreover, there is evidence
of selection into gains. Overall, the 1947 UK compulsory schooling reform we use has
increased schooling, especially for those with lower genetic propensity for schooling (first
stage results). However, there are no returns to schooling in terms of cognitive abilities
for these individuals. Instead, the large returns are seen for those with a higher genetic
propensity.

The paper proceeds as follows: Section 2 outlines the challenges in identifying the gene-
environment interplay from an econometric perspective and presents our suggested so-
lution. Section 3 describes the institutional setting of our application and the data used.
Section 4 presents 2SLS estimates of gene-environment interactions in our application and
tests if the necessary conditions that interfere with the interpretation of 2SLS estimates
apply. Section 5 gives an overview of the partial identification approach to estimate MTEs
and presents our main results. Section 6 concludes.

2 Potential identification problems of interaction effects

2.1 The problem

We are interested in the effect of a particular environment or life decision (here, education),
Ei, on an outcome Yi (here, old-age cognitive abilities) and how this effect interacts with
genetic endowment Gi. For simplicity, first assume that Ei and Gi are binary variables and
that the potential outcomes of individual i are defined by the following functions: Y jg

i =

µjg(Xi) + ε
jg
i , j ∈ {0, 1}, g ∈ {0, 1}, where j denotes potential outcomes for education

status and Gi for the genetic endowment, µjg(Xi) is a function of observable characteristics
and ε

jg
i is an unobservable part. Each individual has four potential outcomes, e.g., Y10

i
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with a high educational level (Ei = 1) and a low genetic propensity (Gi = 0). However,
only one of the four is realized and observed by the researcher. The observation rule is

Yi = Ei · Gi · Y11
i + Ei · (1 − Gi) · Y10

i + (1 − Ei) · Gi · Y01
i + (1 − Ei) · (1 − Gi) · Y00

i

= Y00
i + (Y10

i − Y00
i )Ei + (Y01

i − Y00
i )Gi + (Y11

i − Y01
i − (Y10

i − Y00
i ))Ei · Gi

The second equality represents the link to Eq. (1), the workhorse estimating equation used
in the literature. The gene-environment interaction effect is given by Y11

i − Y01
i − (Y10

i −
Y00

i ), that is, the difference in the effect of Ei on Yi when Gi = 1 (which is Y11
i − Y01

i ) and
the effect of Ei on Yi when Gi = 0 (which is Y10

i − Y00
i ).

Assume that Gi is pre-determined while Ei is a choice variable and, therefore, endogenous.1

We model the choice Ei in a generalized Roy framework (Roy, 1951), where individuals
choose Ei if the (expected) returns to education exceed monetary and/or non-monetary
costs Ci = µC(Xi, Gi, Zi) + UC,i. Costs depend on Gi, the observable characteristics Xi,
and an instrumental variable Zi, in our case, being born in or after the pivotal cohort
of an education reform. Note that Zi does not directly affect Y jg

i . Ci also includes an
unobservable term UC,i. The decision rule for Ei (depending on the realization of Gi = g)
reads:

Ei(Gi = g) = 1 ⇔ Y1g
i − Y0g

i > Ci

⇔ µ1g(Xi)− µ0g(Xi)− µ
g
C(Xi, Zi) > −(ε

1g
i − ε

0g
i − Ug

C,i)

⇔ µ
g
E(Xi, Zi) > Vg

i

While not necessary for any theoretical result, µ
g
E(Xi, Zi) = µ1g(Xi)− µ0g(Xi)− µ

g
C(Xi, Zi)

can be represented as a linear index, such as:

µ
g
E(Xi, Zi) = π0 + π1Gi + π2Zi + π3Zi × Gi + πXi + Vg

i

where Vg
i = −(ε

1g
i − ε

0g
i − UC

i ) is the unobservable term. The decision rule implies that Ei

correlates with ε
1g
i and ε

0g
i (and Vg

i ), which renders Ei endogenous.

As a common approach to solve the endogeneity problem and to estimate, among other
parameters, β3 from Eq. (1), researchers usually use Zi and Zi ×Gi as instrumental variables
in two-stage least squares regressions for the endogenous variables Ei and Ei × Gi. We set
up a simple simulation model to visualize potential problems with this approach. Assume

1The extension of our framework to an endogenous Gi entails the same kind of problems. Our proposed
solution applies to this case but is not straightforward in applications as it requires an instrumental variable
for Gi. In Schmitz and Westphal (2024), we apply marginal treatment effect (MTE) estimation with two
endogenous variables in a different context, namely causal mediation analysis. However, the estimation of
interaction effects with two endogenous variables is beyond the scope of this paper.
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the following arbitrary parameterizations of the potential outcomes, where, for simplicity,
we leave out observable variables Xi:

Y11
i = 2.3 + ε1

i , Y10
i = 0.5 + ε1

i , Y01
i = 0.3 + ε0

i , Y00
i = 0 + ε0

i

Ei = 1{0.23 + 2.5Gi − 4Zi + 3Zi × Gi > −(ε1
i − ε0

i )}
Zi, Gi = Bernoulli distributed with p = 0.5,

where ε0
i = ε

0g
i and ε1

i = ε
1g
i are error terms, here (not in the application later) assumed to

follow a bivariate normal distribution with the following parameters:2(
ε1

i
ε0

i

)
∼ N

[(
0
0

)
,

(
2 0.4

0.4 2

)]
.

This simplified model generates a constant gene-environment interaction of Y11
i − Y01

i −
(Y10

i − Y00
i ) = 1.5 for each individual. Yet, 2SLS estimation of parameter β3 in Eq. (1)

returns an estimate of -1.3. The reason is that 2SLS identifies

β̂3 = E
[
Y11

i − Y01
i |C(Gi = 1)

]
− E

[
Y10

i − Y00
i |C(Gi = 0)

]
,

where C(Gi = 1) represents the subgroup of individuals who are compliers to the edu-
cation instrument, i.e., who take Ei = 1 if and only if Zi = 1 when Gi = 1. C(Gi = 0)
stands for the subgroup of individuals who are compliers when Gi = 0. Therefore, the first
part of the equation is identified for a group complying when Gi = 1, while the second
part is identified for a group complying when Gi = 0. See Appendix A for a more formal
derivation. Researchers who use 2SLS in this setting implicitly make the assumptions
about the counterfactuals, namely: E[Y11

i − Y01
i |C(Gi = 1)] = E[Y11

i − Y01
i |C(Gi = 0)]

and/or E[Y10
i − Y00

i |C(Gi = 1)] = E[Y10
i − Y00

i |C(Gi = 0)]. If these assumptions hold,
2SLS estimates a well-defined causal effect.

There are two conditions under which these assumptions do not hold. For at least two
values of Gi, g′ ̸= g′′:

1. Complying types must differ between Gi such that C(Gi = g′) ̸= C(Gi = g′′). This is
the necessary condition.

2. There must be unobserved effect heterogeneity such that E[Y1g′

i −Y0g′

i |C(Gi = g′)] ̸=
E[Y1g′

i − Y0g′

i |C(Gi = g′′)], the sufficient condition (as the first condition is nested).

2In the simulation study we make the simplifying assumption that ε11 = ε10
i = ε1

i and ε01
i = ε00

i = ε0
i .

This does not affect the main line of argumentation in this section and is merely for a simple exposition.
It restricts the gene-environment effect to 1.5 for each complier type. Assuming four different error terms
allows for a different gene-environment interaction effect by complier type. Our argument is not affected by
that, and neither does our solution need this restriction, nor do we make this assumption in the application
in Sections 3 to 5.
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In our example data-generating process, these conditions hold by design. Thus, the 2SLS
comparison is not a well-defined causal effect for this data-generating process, which we
illustrate in Figure 1. Set up as an illustrative example, it shows the average effects of Ei

on Yi (depending on Gi) for four groups in the simulated data. Normally, these effects are
unobserved by the researcher. The blue circles show Y11

i − Y01
i , while the red circles show

Y10
i − Y00

i . Group 1 are always-takers (AT), irrespective of their realization of Gi. This
is because their unobserved gains from Ei (that is, ε1

i − ε0
i ) are so large that they choose

more education regardless of Zi and Gi. The example also produces individuals that are
always-takers when Gi = 1 but compliers (C) when Gi = 0 (Group 2), compliers when
Gi = 1 and never-takers (NT) when Gi = 0 (Group 3) and never-taker, irrespective of Gi

(Group 4).

Group 1:
AT (Gi=1)
AT (Gi=0)

Group 2:
AT (Gi=1)
C (Gi=0)

Group 3:
C (Gi=1)

NT (Gi=0)

Group 4:
NT (Gi=1)
NT (Gi=0)-5

-4

-3

-2

-1

0

1

2

3

4

5

6

Y
i1g

 - 
Y

i0g

E[Yi
11 - Yi

01] 
E[Yi

10 - Yi
00]

Figure 1: Effects of Ei on Yi by Gi and complier type in the simulation model
Notes: This figure visualizes stylized potential outcomes from our simulation model. The differences in potential
outcomes are defined by the data-generating process outlined above.

We sort these four groups on the horizontal axis according to their willingness to take
education. Those on the left are most willing, and those on the right are least willing.
According to the data-generating process, our stylized example is set up so that the gene-
environment interaction effect (blue circle minus red circle) equals 1.5 for each group.
However, 2SLS calculates this effect as the difference between the filled red circle (where
Y10

i − Y00
i = 1.42) and the filled blue circle (where Y11

i − Y01
i = 0.13). Thus, it makes an

inadequate comparison with a different estimate. This extreme example yields a negative
2SLS estimate while the true interaction is positive.

It is equally important to understand when this problem will not occur. First, whenever Gi

does not affect the complier status of individuals such that groups with C(Gi = 1) and
C(Gi = 0) do not differ on average. This is the case when Gi does not affect Ei. Second,
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when there is no selection into gains, that is, individuals do not self-select into education
based on the unobserved gain from treatment εi1 − εi0, leading to Cov(Ei, εi1 − εi0) = 0.
Then the effects of Ei on Yi do not differ by complier type. Without selection into gains,
all red circles are on a horizontal line, and so are all blue circles. We argue that both
conditions are not unlikely to apply in many real-world scenarios. Selection into gains has
widely been documented in the context of education (Carneiro et al., 2011, Nybom, 2017,
Kamhöfer et al., 2019, Westphal et al., 2022). Moreover, Barcellos et al. (2018) and Barcellos
et al. (2021) show differences in first-stage responses to a compulsory schooling reform
according to Gi. Biroli et al. (2022) discuss self-selection into environments according to
genetic makeup as ”active gene-environment correlation” where the environment mediates
the effect of genes on the outcome.

2.2 The solution

We suggest going beyond estimating the two points that form the 2SLS estimate. Instead,
we propose to estimate the MTE curve (see, e.g., Heckman and Vytlacil, 2005) by genetic
endowment Gi. The MTE approach naturally sorts all individuals according to their
willingness to take the treatment. It expands the sorting by stylized groups from Figure 1
to the continuous unit interval. In the spirit of Heckman and Vytlacil (2005) we rewrite the
choice equation as:

E(Gi) = 1
{

µ
g
E(Xi, Zi) ≥ Vg

i
}

= 1
{

FVg
i

(
µ

g
E(Xi, Zi)

)
≥ FVg

i
(Vg

i )
}

= 1
{

Pr
(
Vg

i ≤ µ
g
E(Xi, Zi)

)
≥ FVg

i
(Vg

i )
}

= 1
{

Pr
(
E(Gi = 1)|Xi, Zi)

)
≥ UE

i
}

= 1
{

PS(Gi, Xi, Zi) ≥ UE
i
}

The second step applies the monotonic transformation FVg
i
(·) – which is the cumulative

density of Vg
i – to both sides of the inequality. FVg

i
(·) evaluated at the point µ

g
E(Xi, Zi)

is defined as Pr(Vg
i ≤ µ

g
E(Xi, Zi)) and, referring to the choice equation, the same as

Pr(E(Gi = 1)|Xi, Zi). This choice probability based on observable characteristics is the
propensity score, and we abbreviate it by PS(Gi, Xi, Zi). Irrespective of the underlying
distribution of Vg

i , the unobserved term UE
i is uniformly distributed on the unit interval

and comprises the unobserved heterogeneity correlating with the decision to take Ei. Low
values of unobserved resistance to more education UE

i increase PS(Gi, Xi, Zi), leading to
Ei = 1. This corresponds to high unobserved preferences for Ei, whereas large values of
UE

i indicate a high distaste for Ei.
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MTEs are estimates of the causal effect of education on the outcome Yi at certain values
of UE

i = u. That is, we estimate E[Y1g − Y0g|UE
i = u]. The MTEs are identified by those

individuals who, at UE
i = u, are indifferent between choosing Ei = 0 and Ei = 1. Referring

to the choice equation, this is the group for whom the realization p of the propensity score
PS(Gi, Xi, Zi) = p = u. See Heckman and Vytlacil (2005) for an extensive introduction to
MTEs, their derivation, and traditional ways to estimate them with continuous instruments.
For our framework, the quantities E[Y1g

i |UE
i = u] and E[Y0g

i |UE
i = u] are essential (as their

difference is the MTE). We follow the literature and call these quantities marginal treatment
response curves (MTRs). We provide details on estimating MTEs and MTRs in Section 5.
Figure 2 shows the MTE curves based on our simulation example. The interaction effect is
calculated as the difference between the blue and red curves. According to our simulation
example, the interaction effect is 1.5 and constant over the entire UE

i range.

In practice, when the two curves are not parallel, the interaction effect differs by UE
i . Thus,

there are several ways to estimate interaction effects. One possibility is to compute the
difference at a specific value of UE

i , say UE
i = 0.4. The advantage of this over a 2SLS

estimation is that unobserved heterogeneity is fixed. Thus, it will be a consistent estimate,
albeit very local, i.e., only at UE

i = 0.4. MTEs can be used to estimate all treatment
parameters, depending on how they are aggregated and how MTEs in different areas of
the unit interval are weighted. In principle, it is possible to compute interaction effects
using the MTE curves with 2SLS weights either for C(Gi = 1) or C(Gi = 0). In our
application below, we use a simpler solution. We will aggregate the MTE results to receive
the average interaction effect for all individuals on the UE

i interval between 0.6 and 0.8,
visualized by the two vertical lines in Figure 2. In this interval, all MTEs are weighted
uniformly. MTEs from other parts of the UE

i range are not considered. We choose this
interval since most of the compliers to the education instrument in our application are
located in this area.3 Furthermore, we use an area where most compliers are located to
maintain comparability to 2SLS/LATE estimates.

2.3 Going beyond a binary representation of G

The problem and its solution are not specific to cases where Gi is binary. On the one hand,
our solution requires a discrete Gi because we will estimate separate curves by Gi. On
the other hand, generating a binary indicator of genetic endowment from a continuous
polygenic score entails a loss of information. In our application below, we transform the
continuous PGS into a discrete measure that takes the values g ∈ {1, 2, 3, 4, 5}, indicating
the PGS quintiles. Consequently, the number of potential outcomes we estimate increases
from four to ten. In Table 1, we list these potential outcomes and how to calculate the effect
of Ei on Yi and the G × E interaction by genetic type, i.e., quintile of the PGS.

3We will show robustness checks for larger intervals.
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Figure 2: Marginal treatment effects of Ei on Yi by Gi in the simulation model
Notes: This figure shows stylized marginal treatment effect curves in our simulation model. The differences in potential
outcomes are defined by the data-generating process outlined above.

Table 1: Potential outcomes and calculation of MTEs using quintiles of
the polygenic score

Ei = j Individual treatment effects for

0 1 the effect of Ei on Yi the gene-environment interaction

Gi = g

1 Y01
i Y11

i Y11
i − Y01

i (Y11
i − Y01

i )− (Y11
i − Y01

i )
2 Y02

i Y12
i Y12

i − Y02
i (Y12

i − Y02
i )− (Y11

i − Y01
i )

3 Y03
i Y13

i Y13
i − Y03

i (Y13
i − Y03

i )− (Y11
i − Y01

i )
4 Y04

i Y14
i Y14

i − Y04
i (Y14

i − Y04
i )− (Y11

i − Y01
i )

5 Y05
i Y15

i Y15
i − Y05

i (Y15
i − Y05

i )− (Y11
i − Y01

i )

Notes: This table lists all combinations of potential outcomes when Gi corresponds to quintiles of the
PGS such that G ∈ {1, 2, 3, 4, 5} (left panel). The right panels show how to compute different individual
treatment effects, including the interaction effects at every quintile we are after.

Extending the setting to a more complex (but still discrete) classification has advantages.
We can use more of the rich variation the PGS offers and allow for possible non-linearities
in the interaction effects between different sections of the PGS distribution. Of course, the
choice to use quintiles is arbitrary. Barcellos et al. (2018) and Barcellos et al. (2021) show
differences in their results according to the terciles of the education PGS. This is already
considerably less restrictive than using a binary representation. The use of quintiles offers
a further improvement over terciles. It strikes a balance between estimating non-linear
interaction effects and comparing subsets of the PGS that are relevant in terms of size.

9



3 Institutional Setting and Data

3.1 Compulsory schooling reform in the UK

In our application, we exploit exogenous variation from a compulsory schooling reform
in the UK. Based on the Education Act of 1944, two reforms were enacted to raise the
minimum school leaving age in England, Scotland, and Wales. We use the first reform,
which took effect on April 1, 1947. This reform raised the minimum age for leaving school
from 14 to 15.4 Given that students in the UK typically enter school at the age of 5, this
reform effectively extended compulsory education from nine to ten years. The first birth
cohorts to be affected by the change, i.e., the first to be required to attend school for
an additional year (the ”pivotal cohort”), were those born in April 1933. This reform is
presented in detail in Clark and Royer (2013) and has served as an exogenous variation for
compulsory schooling in studies on the effect of education on health (Clark and Royer,
2013) and cognitive abilities (Banks and Mazzonna, 2012). Since we are interested in
studying cognitive abilities in old age, we use the first reform in 1947. Cohorts affected by
the second reform in 1972 are - for the most part - still too young at data collection of the
English Longitudinal Study of Ageing.

To demonstrate the strong response to the compulsory schooling reform from 1947, Figure
3 shows aggregated cohort-level data from ELSA. It depicts the share of individuals with
different levels of schooling by birth year cohort. The pivotal cohorts of both compulsory
schooling reforms are marked with vertical lines. The highest line (circle markers) shows
how the 1947 reform caused a significant increase in the share of students leaving school
at age 15 or later from about 40% to almost 100%. The middle line shows how the second
reform in 1972 lead to a still remarkable but comparably smaller increase in the share
of leaving school at 16 or later from 75% to about 90%. The lowest line can be read as a
placebo test, showing the general trend in increased years of schooling but no discontinuity
at the two reform cut-offs (Clark and Royer, 2013).

3.2 Sample and Variables

Sample
We use data from the English Longitudinal Study of Ageing (ELSA), a large representative
microdata set providing information on health and other socioeconomic characteristics of
individuals aged 50 and over in England (Banks et al., 2023). ELSA was launched in 2002
and is conducted every two years. It currently comprises ten waves of interviews.5 We use

4The second part was enacted much later, in 1972, raising the school leaving age to 16.
5For details of the ELSA sampling procedure, questionnaire content, and fieldwork methodology, see

Steptoe et al., 2013.
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Figure 3: Education by birth cohort
Notes: This figure illustrates the shares of students leaving school at 15 or later, 16 or later, and 17 or later changed over
birth cohorts and how these shares were affected by two compulsory schooling reforms. Vertical dashed lines indicate
the first affected birth cohorts of two school-leaving age increases. The three groups are not mutually exclusive and
do not add up to 100%. The illustration is adapted from Clark and Royer (2013) to fit our definition of educational
attainment and uses data from ELSA waves 1–9, totaling 76,829 obs. from 17,063 individuals.

individuals aged 65–80 from waves 1–6 of ELSA. Data collection for wave 6 took place
in 2012 and 2013 when individuals born in 1933 – our cutoff – turned 80. Thus, starting
with wave 7, only individuals born after the cutoff can theoretically enter the sample.
We drop the 1933 birth cohort because we do not have information on birth month and
cannot correctly assign this cohort to pre- or post-reform (the cutoff is April 1933). We
also restrict the data to birth cohorts ten years before and after the reform cut-off. Finally,
for our main analysis, we need to limit the data to individuals for whom genetic data is
available. This reduces the number of individuals substantially by about 50 percent. This
may introduce a selection bias if the compulsory schooling reform affects the willingness
to be genotyped. We find that the sample is selective regarding the outcome variable:
Individuals who consent to be genotyped have higher recall scores on average (see Table
C.2 in the appendix). However, we do not find evidence of a statistically significant effect
of the compulsory schooling reform on the probability of being genotyped. Similarly, the
willingness to be genotyped does not interact with the impact of compulsory schooling on
the probability of going to school until at least the age of 15 (see Table D.4 in the appendix).
Our final sample includes 11,027 observations from 3,009 individuals born between 1923
and 1943 and observed between 2002 and 2013.
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Cognitive Abilities
Cognitive abilities – as a broad concept – include “the ability to reason, plan, solve prob-
lems, think abstractly, comprehend complex ideas, learn quickly and learn from experience.
It is not merely book learning, a narrow academic skill, or test-taking smarts. Rather, it
reflects a broader and deeper capability for comprehending our surroundings – ’catching
on,’ ’making sense’ of things, or ’figuring out’ what to do.” (Gottfredson, 1997). The sum of
these abilities is called intelligence (Schiele and Schmitz, 2023). A wide range of cognitive
tests measure different aspects of cognitive abilities to accommodate this multifaceted
notion. ELSA contains several measures, such as memory capacity, temporal orientation,
literacy, and numerical ability. We use test scores from the word recall test. In the word
recall test, an interviewer reads ten words to the respondent, who is then asked to recall
as many words as possible. This test is administered twice: immediately after the words
are read (immediate recall) and five minutes later (delayed recall). The total number of
words recalled at both times is added together. The total recall score combines the two
and can range from 0 to 20. It serves as a measure of episodic memory, susceptible to
aging (Rohwedder and Willis, 2010). The test is considered a fluid intelligence component,
reflecting the innate cognitive ability to store and retrieve information. It is distinct from
crystallized intelligence that people learn over a lifetime (using their fluid intelligence). In
our estimation sample, the total recall score, our dependent variable, has a mean of 9.67
correctly recalled words (out of 20) with a standard deviation (SD) of 3.37 words (see Table
2).

Education
ELSA does not offer information on respondents’ years of education but on the age at
which they finished their continuous full-time education. However, the data is aggregated
at the low (finished age 14 or earlier) and high (finished age 19 or later) ends. Our treatment
variable Ei is a binary variable equal to one if the individual has left school at 15 or later
and zero otherwise. By design, and as observable in Figure 3, the proportion of individuals
having left school at 15 or later (i.e., having stayed in school for at least ten years) is affected
by the 1947 education reform that raised the minimum school leaving age from 14 to 15.

Genes
We use an Educational Attainment Polygenic Score (PGS) provided by ELSA and based on
Lee et al. (2018) to measure genetic makeup. This indicator predicts educational attainment
based on differences in genetic variants across individuals. The education PGS we use
explains 11-13 percent of the variation in educational attainment in the original discovery
sample (Lee et al., 2018). An individual’s polygenic score can be considered their genetic
propensity (or genetic “risk”) for a particular trait – in our case, education (Biroli et al.,
2022). For a more detailed explanation of polygenic scores and their construction, see
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Appendix B. The education polygenic score is normally distributed. Individuals whose
genetic endowment puts them on the left side of this distribution have a lower genetic
propensity to pursue education; individuals on the right side have a higher propensity.6

Our analysis uses the quintiles of the PGS, yielding five equally sized groups.

When estimating gene-environment interactions, researchers usually use a polygenic score
of the outcome they are investigating since it is the obvious choice and will produce an
effect. However, the choice is not set in stone. As Biroli et al. (2022) point out, “any PGI
could be used if warranted by theory or for empirical reasons”. We target the polygenic
score towards the environmental variable (education) by using an education polygenic
score, and the outcome we investigate is cognitive ability. Education polygenic scores
are associated with several different outcomes besides educational attainment: wealth at
retirement (Barth et al., 2020), labor market earnings (Papageorge and Thom, 2020) and
socioeconomic success (Belsky et al., 2018). In our setting, we can use the education PGS
to demonstrate heterogeneous responses to the education reform by genetic endowment.
At the same time, the effect of education on cognition likely varies with genetic propensity
for education – which is what we want to estimate.

As it is established in the gene-environment literature (see, e.g., Barth et al., 2020; Barcellos
et al., 2018; Pereira et al., 2022), we include the first ten principal components of the genetic
information as controls to make comparisons between ”individuals within a common
lineage and from the same genetic pool” (Biroli et al., 2022). Principal components are
linear combinations of genetic markers that summarize the major patterns of gene varia-
tion across a population into fewer dimensions. They reflect population stratification, i.e.,
different frequencies of genetic variants among subpopulations that could be responsible
for spurious correlations with outcomes of interest. Price et al. (2006) show that includ-
ing principal components as controls can mitigate the confounding effects of population
stratification, ensuring that differences in ancestry or population structure do not drive
observed associations between genetic variants and traits.

3.3 Descriptive Statistics

Table 2 shows descriptive statistics of our main sample of individuals for whom genetic
information is available as well as of “treatment“ (Ei = 1) and “control“ (Ei = 0) groups
separately. Overall, about three-quarters of the observations in the sample are in the
treatment group; 66 percent were born in 1933 or later, and 52 percent are female. The
treatment group scores significantly higher in recall than the control group. More educated
individuals (Ei = 1) exhibit a more favorable genetic endowment (significantly less

6As the choice equations in Section 2 emphasize, this propensity is not deterministic. Individuals with a
high PGS do not necessarily have to be highly educated, and vice versa.
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observations in the first and more in the top quintile). Unsurprisingly, individuals in the
treatment group are, on average, younger since they are more likely to be born after the
compulsory schooling reform. Table C.1 extends the statistics for the principal components
and birth year. Table C.3 in the appendix shows the sample means by quintiles of the
education PGS. Instrument assignment, age, and proportion of women do not vary across
quintiles of the education PGS. However, individuals in higher quintiles perform better on
the recall test. The difference between an average person in the lowest PGS quintile and
an average person in the highest quintile is 1.24 words, a sizable difference compared to
the overall mean of 9.67. Not surprisingly, the probability of having more schooling is also
higher in higher education PGS quintiles.

Table 2: Descriptive statistics

Main sample By Ei

Mean (SD) Ei=1 Ei=0 Difference (SE)

Outcome Yi
Recall score 9.67 (3.37) 10.11 8.08 2.03 (0.07)∗∗∗

Treatment Ei
Left school ≥ 15 0.78 (0.41) 1.00 0.00 1.00

Polygenic score Gi
1st PGS quintile 0.20 (0.40) 0.18 0.25 −0.07 (0.01)∗∗∗

2nd PGS quintile 0.19 (0.40) 0.19 0.21 −0.02 (0.01)∗∗

3rd PGS quintile 0.20 (0.40) 0.21 0.19 0.02 (0.01)∗∗

4th PGS quintile 0.21 (0.41) 0.21 0.20 0.01 (0.01)
5th PGS quintile 0.20 (0.40) 0.22 0.15 0.07 (0.01)∗∗∗

Instrument Zi
Born 1933 or later 0.66 (0.47) 0.82 0.13 0.69 (0.01)∗∗∗

Selected Controls (for a complete list, see Table C.1)
Female 0.52 (0.50) 0.52 0.50 0.02 (0.01)∗∗

Age 71.82 (4.29) 70.89 75.10 −4.21 (0.09)∗∗∗

Observations 11,027 8,590 2,437

Notes: This table presents descriptive statistics. We include the mean and standard deviation
of the main sample and means by Ei , the difference of means, and standard errors of a t-test
for equality of means. ∗p < 0.1, ∗∗p < 0.05, and ∗∗∗p < 0.01.
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4 Benchmark 2SLS estimation

4.1 Empirical Strategy

We start by estimating the gene-environment interactions using “conventional” methods.
Since education is a choice variable, an OLS regression will yield biased estimates. We
estimate the following 2SLS regression:

Ei = π0 + π1Gi + π2Zi + π3Gi × Zi + X′γ + f (t) + ui (2)

Yi = β0 + β1Gi + β2“Ei + β3◊�Gi × Ei + X′δ + f (t) + εi (3)

Eq. (2) is the first stage, where we regress education Ei on our instrument Zi, genetic
predisposition Gi and the interaction of Gi and Zi.7 Eq. (3) shows the second stage. Here,
we regress the outcome variable Yi (the total recall score for individual i) on the predicted
values “Ei from the first stage, Gi and the predicted values ◊�Gi × Ei. In both stages, we add
the same controls Xi that include the first ten principal components of the genetic data (see
Section 3.2 for a description) as well as f (t), a function that captures a linear cohort trend
and its interaction with the instrument Zi. This specification estimates a fuzzy regression
discontinuity model with the re-centered distance to the reform cohort of 1933 (the cohort
trend) as the running variable. Finally, ui and εi capture all unobserved factors that affect
outcome variables in their respective stages. We cluster standard errors at the individual
level in all analyses.

Besides the potential problems due to essential heterogeneity, this specification linearizes
the G × E effect (and the effect of G itself). This may also mask potentially interesting non-
linearities. To be more flexible, we extend our analysis by fully saturating our specification
using information on the quintiles of the polygenic score. Therefore, these effects compare
better to our MTE approach because we directly estimate effects by quintiles. Accordingly,
we estimate the following adapted model:

Ei =
5

∑
g=1

[
π

f
g,01[Gi = g] + π

f
g,∆1[Gi = g]× Z

]
+X′γ f + f (t) + ωi (4)

Yi =
5

∑
g=1

β
f
g,01[Gi = g] + β

f
1,1
“Ei +

5

∑
g=2

β
f
g,1

¤�
1[Gi = g]× Ei + X′δ f + f (t) + ηi (5)

This is the equivalent of the 2SLS model described above in Eqs. (2) and (3), but with
sets of indicator variables for the five gene quintiles (Gi = g with g ∈ {1, 2, 3, 4, 5}). To

7Note that there are technically two first stages, one with the dependent variable Ei and one with the
dependent variable Gi × Ei. Depending on how Gi is included, there are more. With Gi as quintiles of the
PGS, there are six first stages. We only show one of them here.
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distinguish the coefficients from the base model, we add the superscript f . While in the
baseline first stage (Eq. 2), π2 informs about the share of compliers in the data, the π

f
1,∆ to

π
f
5,∆ of Eq. (4) inform about the share of compliers by PGS quintile. In the second stage (Eq.

5), we include Êi as the reference category that captures the LATE for the lowest quintile
(βj

1,1). The coefficients β
f
2,1 to β

f
5,1 inform about gene-environment interactions relative to

the first quintile.

4.2 Assumptions

We need to assume that the compulsory schooling reform is a valid instrument to identify
the causal effects of extending schooling beyond the age of 14. Specifically, the cutoff at
the 1933 birth cohort needs to be exogenous to the individuals in our sample. Clark and
Royer (2013) convincingly show that this reform can be a credible instrument (especially
for studying the outcomes of older individuals, as they find no effects on mortality). For
this reform to be a valid instrument, we assume that only compulsory schooling changes
for individuals born after April 1933 and nothing else. Two important events took place
roughly when the cohorts in our sample were born: The Great Depression and the Second
World War. While they may have been exposed to rationing or evacuations, individuals
on either side of the 1933 cutoff were likely affected similarly (Clark and Royer, 2013).
Taken together, it seems plausible that the compulsory schooling instrument is valid.
Furthermore, we assume that genes are exogenous, i.e., determined before age 14 when
individuals were exposed to the reform, depending on their birth cohort. For the gene-
environment interaction, our setting also needs the effects of genes to be predetermined
before secondary education. Lastly, assessing the graphical evidence on the first stage and
reduced form by Gi (Figure D.1 in the Appendix ) shows that changes occur at the cutoff,
and linear trends approximate the data well.

4.3 Results

OLS and second-stage results
Table 3 presents the OLS and 2SLS regression results of the second stage (Eq. 5). Panel A
includes the nonlinear estimates for each quintile; Panel B uses the standardized PGS as
a continuous interaction variable to show linear effects. The G × E interaction in Panel
A is computed to compare the bottom quintile (the reference category) and respective
higher quintiles. The OLS coefficients of Gi = 2 to Gi = 5 suggest that, in general, only
individuals in the highest PGS quintile score statistically significantly higher on the recall
test relative to individuals in the lowest — about 0.83 words higher than individuals in
the lowest quintile. This positive relationship between an education PGS and cognitive
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performance is also documented by Jeong et al. (2024), who use data from the US Health
and Retirement Study. An additional year of education (Ei) is associated with an increase
of about 0.74 words in the 20-item recall summary score later in life. This association refers
to individuals in the lowest PGS quintile because we control for the interaction between Ei

and all higher quintiles. The markups on this association for individuals in the four higher
PGS quintiles (Ei × (Gi = g)) are positive across all quintiles. However, their magnitude
varies. For individuals in the third quintile, an additional year of schooling results in
about 0.47 more words recalled than for individuals in the first quintile. For the fourth
quintile, this relative premium increases to 0.77. Except for the interaction coefficient for
the fourth quintile, they are not statistically significant, but importantly, they all indicate a
positive gene-environment interaction. All in all, this suggests that the association between
genes, more education, and cognition are mutually reinforcing. When we include the
standardized PGS as a continuous variable (in a separate regression, shown in Panel B), its
interaction coefficient suggests that a one standard deviation increase in PGS is associated
with an additional rise in recall score by 0.2 words.

This complementarity implies higher returns to education in terms of cognitive abilities
later in life for individuals whose genetic markers predict more years of education. This
would mean that the education reform exacerbated differences in cognition between those
in the bottom quintile and those in higher quintiles. This is in line with what Barcellos et al.
(2021) find for socioeconomic status. However, our OLS results only represent correlations.

Our 2SLS estimates are reported in Column (2). For education, the 2SLS regression finds
a zero effect of an additional year of schooling on cognition later in life for those in the
lowest PGS quintile (Ei coefficient) and a positive estimate for individuals in the second,
third and fifth quintile and a slight negative one for those in the fourth quintile. The
standard errors are large, so we cannot be certain that these interactions differ from zero,
especially in quintiles 3 and 4, where the estimates are very small. The linear interaction
effect using a standardized PGS (Panel B) is also close to zero. Based on these results, we
would conclude that, after resolving the endogeneity problem with Ei by instrumenting —
if anything — there may only be a small positive interaction effect that cannot be precisely
estimated. The returns to education are likely not higher for individuals with higher
genetic endowment. However, consistent with the problem outlined in Section 2, recall
that when comparing the effects between two quintiles, the complier group also changes,
which may offset the small and monotonic gene-environment interaction.

First-stage results
We report the coefficients of Zi by Gi, that is, π

f
1,∆ to π

f
5,∆ of Eq. (4) in Figure 4.8 It shows that

overall, there is a large share of compliers to the education reform in the data. However, it

8Regression results are reported in Table D.5 in the Appendix.
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Table 3: OLS and 2SLS estimates of the G × E interaction

Dependent variable – total recall score

OLS 2SLS
(1) (2)

Panel A: nonlinear G × E effect with Gi as quintiles

Ei 0.742 (0.244)∗∗∗ −0.042 (0.460)

Gi = 1 reference category reference category
Gi = 2 0.182 (0.272) 0.196 (0.403)
Gi = 3 0.255 (0.271) 0.631 (0.455)
Gi = 4 0.237 (0.271) 0.946 (0.462) ∗∗

Gi = 5 0.827 (0.316)∗∗∗ 0.819 (0.621)

Ei × (Gi = 1) reference category reference category
Ei × (Gi = 2) 0.391 (0.327) 0.423 (0.504)
Ei × (Gi = 3) 0.469 (0.328) 0.071 (0.555)
Ei × (Gi = 4) 0.774 (0.330)∗∗ −0.043 (0.591)
Ei × (Gi = 5) 0.524 (0.367) 0.649 (0.726)

Panel B: linear G × E effect with continuous Gi

Ei × Gi 0.214 (0.111)∗ 0.066 (0.216)

Controls Yes Yes
Observations 11,027 11,027

Notes: This table presents OLS and 2SLS estimates of the interaction between a polygenic score for
education and staying in school until at least the age of 15 (our treatment) on cognitive abilities later
in life. In panel A, we use quintiles of the polygenic score (Gi) and estimate non-linear (interaction)
effects. Panel B shows estimates of a linear effect when including the standardized PGS as a continu-
ous variable. Coefficients in both panels are obtained from separate regressions. Controls in each
case include a linear cohort trend, its interaction with the instrument (born in 1933 or later), gender,
and the first ten principal components of the genetic data. Standard errors clustered at the individual
level shown are in parentheses. ∗p < 0.1, ∗∗p < 0.05, and ∗∗∗p < 0.01.

varies substantially over the quintiles of the PGS. Complier share monotonically decreases
along the PGS. In the lowest quintile (Gi = 1), 64 percent of all individuals increased their
length of education due to the reform. The share of compliers reduces to a still sizable 36
percent in the highest quintile. The compulsory schooling reform had a more substantial
impact on individuals in the lowest quintiles of the PGS, who are disadvantaged in terms of
the genetic endowment that predicts education. Therefore, the reform was likely effective
in targeting disadvantaged children. It drastically increased their probability of staying
in school until at least age 15. Our estimates in Table 3 suggest that the reform may not
have successfully reduced differences in the cognitive returns to education but may have
increased them. This finding is consistent with Barcellos et al. (2021), who document
that the UK’s 1972 compulsory schooling reform reduced disparities in education and
qualifications between children from different backgrounds but ultimately increased
differences in socioeconomic status.

This finding provides the first piece of evidence that a 2SLS estimation of the G × E effect
might be problematic in our setting. As mentioned before, two prerequisites need to
jointly hold for this to be the case: 1) the individual response to the compulsory schooling
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reform depends on Gi, and 2) the instrument response types for Ei = 1 (always-takers and
treated compliers) and Ei = 0 (never-takers and untreated compliers) need to exhibit a
specific heterogeneity that implies essential heterogeneity. Our first stage results show that
complier status is correlated with genetic type, the first of the two requirements that cause
2SLS to make potentially problematic comparisons. The second one – evidence of essential
heterogeneity – will be discussed in the next section, where we estimate marginal treatment
effects. This will allow us to make statements about whether this kind of selection occurs
in the data.
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Figure 4: Strength of the first stage by quintiles of the polygenic score
Notes: The figure shows the five estimated coefficients π

f
1,∆ to π

f
5,∆ of Eq. (4), which correspond to the complier shares

by PGS quintile. We add 95% confidence intervals. We report the point estimates and their standard errors in the
appendix in Table D.5.

5 MTE estimation of the G×E interaction

5.1 Setup

There are many different ways to estimate marginal treatment effects, depending on
the underlying data, setting (e.g., continuous or binary instrumental variables) and the
assumptions the researcher wants to impose (e.g., functional form assumptions for the
MTE, separability between observed and unobserved terms). In our case, with a binary
instrument, there are three options. The first entails estimating separate potential outcomes
E[Y1g

i |AT], E[Y1g
i |C], E[Y0g

i |C], and E[Y0g
i |NT] for each value of Gi. Plotted on the UE

i
unit interval and assuming linearity, we can fit lines through each pair of points, one for
treated and one for untreated potential outcomes (Brinch et al., 2017). As conventional
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in the literature, we call these average potential outcomes conditional on UE
i (and Gi for

our specific setting) marginal treatment response curves (MTRs): E[Y jg
i |UE

i = u, Gi = g].
The linearity ensures that the lines run through the respective (type-specific) midpoints
on the UE

i scale. The difference between the two MTR lines is the linear MTE by Gi, and
the four differences between the five Gi-specific MTEs inform about the interaction effects.
The second option relaxes the linearity assumption but imposes additive separability
between controls Xi and error terms. This allows variation in Xi to parametrically or
semi-parametrically identify the MTEs, since binary instrument alone cannot provide this
(Brinch et al., 2017). The third option is to allow for a wide range of flexible polynomial
shapes of the MTEs and subsequently restrict the shapes. This can be achieved by requiring
the curves to reproduce observable sample analogs and imposing further reasonable
assumptions derived from theory and the data. The target parameter the researcher aims
to identify can be bounded by the two shapes that produce minimum and maximum
values (Mogstad et al., 2018).

A linearity assumption is hard to justify a priori. Furthermore, although additive separa-
bility is commonly assumed across the entire literature that uses regression models, we
do not benefit from it for a semi-parametric identification of the MTEs. This is because
we only use a sparse set of control variables that do not add sufficient variation in the
propensity score, which would help identify substantially more than the four points from
the first approach. Overall, the third approach seems most appropriate for our setting.
Nevertheless, we first estimate linear MTEs according to Brinch et al. (2017). They help
illustrate the setting and show general trends. They are also informative about underlying
shape restrictions. For our main results, we ease this linearity restriction and allow for
flexible polynomials

We begin by estimating the type-specific group means E[Y1g
i |AT], E[Y1g

i |C], E[Y0g
i |C], and

E[Y0g
i |NT] as well as the shares of AT, C, and NT for each quintile of the PGS. Appendix F

presents the details on generating these 35 values by applying the Imbens and Rubin (1997)
method. We visualize the 20 means (circles) as well as the type shares (horizontal lines
at the bottom) for the bottom PGS quintile (Gi = 1) in Figure 5. Again, we sort the three
types according to their willingness to take education on the UE

i scale. Always-takers have
the highest willingness and are located at the left. The share of always-takers AT(Gi = 1)
is 22 percent. The share of compliers with Gi = 1 is 68 percent. They are located between
0.22 and 0.9 on the UE

i unit interval. The remaining 10 percent are never-taker. Following
Kowalski (2023), we use the midpoints of the range where each type is located to place
the dots on the x-axis, while the y-axis measures the estimated potential outcomes. The
blue dots denote treated potential outcomes E[Y1g

i ] while the red dots denote untreated
potential outcomes E[Y0g

i ]. The numbers next to the dots refer to the realization of Gi.
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Figure 5: Linear potential outcome curves
Notes: This figure shows the 20 estimated potential outcomes E[Y jg

i ]. The lines through them represent linear MTRs.
Red color refers to potential outcomes for Ei = 0; blue to Ei = 1. Thus, for example, the red line labelled “1” shows our
estimate of Y01

i ; the blue line labelled “3” shows the estimate for Y13
i . Horizontal lines at the bottom show type shares

and their location on the unit interval. For readability, we only report type shares for Gi = 1

The lines through the points produce the MTRs under a linearity assumption that allows
us to identify them by the two points. In principle, the lines can be extrapolated to the
full unit interval. Taking differences between E[Y1g

i ] and E[Y0g
i ] yields the MTEs by Gi

and the comparison of the resulting 5 MTEs informs about (non-linear effects of) the
gene-environment interaction. However, as mentioned above, the linearity assumption,
which will drive the final results, is hard to defend a priori. Nevertheless, this analysis has
important implications for our bounding approach to compute our main results (Section
5.2). Treated potential outcomes (blue) are higher for always-takers than compliers, causing
the E[Y1g

i |UE
i = u]-MTR curves to have a negative slope. Therefore, there seems to be

a correlation between types and our dependent variable, word recall. Moreover, the
E[Y1g

i |UE
i = u] MTR curves are fairly parallel, with no substantial slope differences. They

represent level shifts in treated outcomes by Gi. We base the following assumptions for
our bounding approach on these findings: 1) the MTR-curves E[Y1g

i |UE
i = u] are declining

over a relevant area on the unit interval and 2), the curves for different values of Gi are
parallel, i.e., there is additive separability between observed Gi and unobservable factors
that materialize in the shapes of the MTRs.

The picture is less clear for the untreated outcomes (red). Here, we see that the outcomes
of the untreated compliers are, on average, slightly smaller than those of the treated
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compliers, suggesting positive effects of education on cognition. We can replicate the 2SLS
finding of a zero effect for C(Gi = 1) and positive effects for C(Gi = 2) and C(Gi = 5).
However, the estimated results for never-takers are less clear, as they are above those for
the untreated compliers for the first and second quintiles, resulting in positive slopes of
the two lowest E[Y0g

i |UE
i = u]-MTRs. Given this ambiguous result and the small share

of never-takers in the data, we include a robustness check of our main result where we
estimate MTEs without relying on never-takers in Section 5.4.

5.2 Estimation using Mogstad, Santos, and Torgovitsky (2018)

We now sketch a partial estimation method suggested by Mogstad et al. (2018) and recently
applied by Rose and Shem-Tov (2021) that allows a transparent and credible estimation
of marginal treatment effects when the instrument is binary or when the variation in
the instrument does not sufficiently identify marginal treatment effects over the whole
support of the propensity score. This is the third approach we briefly mentioned in Section
5.1. This approach uses the estimated potential outcomes and the type shares from the
previous chapter, flexibly approximates possible MTEs, and computes bounds on the
gene-environment interaction effect. Using a bounding approach reduces the strength of
the assumptions like linearity. Its drawbacks are that the bounds may not be informative,
i.e., not tight enough to use them for inference. However, we show that it is possible to
estimate informative bounds using reasonable assumptions on the shape of the MTRs.

Possible MTRs are approximated using Bernstein polynomials constructed from a linear
combination of simpler “basis” versions of themselves. This provides a natural way to
build up more complex curves from simpler ones and allows for representing flexible
and complicated forms of unobserved heterogeneity. See Figure F.3 in the Appendix for a
graphical representation of Bernstein functions. We denote the polynomials that define the
MTRs by E[Y jg

i |UE
i = u, Gi = g] = mk(u, g). The MTEs are computed as E[Y1g

i −Y0g
i |UE

i =

u, Gi = g] = m1(u, g)− m0(u, g). The Bernstein polynomials themselves are defined as

mj(u, g) =
n

∑
v=0

θ
jg
v

(
n
v

)
uv(1 − u)n−v,

where u is a specific point on the unit interval, Gi is a bin of the interaction variable
(quintile of the polygenic score), j refers to the treatment state, and n is the polynomial
degree. We choose n = 5. Therefore, we have n + 1 = 6 parameters (θ jg

0 , . . . , θ
jg
n ) that

determine each MTR function mj(u, g). In total, there are 60 parameters: 6 times 2 (treated
and untreated cases) times 5 (different values of Gi). Estimating the bounds (i.e., choosing
the 60 parameters) involves solving a linear programming problem where constraints on
the Bernstein polynomial shapes can be represented as constraints on the parameters θ
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(Rose and Shem-Tov, 2021). We find mj(u, g) that fulfill several restrictions and maximize
and minimize our target parameter

βG×E(0.6, 0.8) :=

∫ 0.8
0.6

[
m1(u, 5)− m0(u, 5)

]
−
[
m1(u, 1)− m0(u, 1)

]
du

5 − 1
(6)

This is a linearized gene-environment interaction effect on the UE
i -range that is always

covered with compliers from every quintile. The denominator ensures a normalization of
the effect to a one-unit increase in Gi. We optimize the interaction effect of the difference
between the first and fifth quintile as the natural choice covering the entire PGS distribution.
In Section 5.4, we report robustness checks to show this choice is not crucial.

The restrictions on the linear programming problem are:

1. All values of mj(u, g) are on the support of Yi, that is between 0 and 20.

2. Averaged over the type-specific UE
i range, the resulting mj(u, g) reproduce the

type-specific outcome means E[Y1g
i |AT], E[Y1g

i |C], E[Y0g
i |C], and E[Y0g

i |NT] (the
y-coordinates from Figure 5). This also implies that m1(u, g)− m0(u, g) reproduces
the LATEs for each Gi.

3. Monotone treatment selection (see Manski, 1997): E[Y1g
i |UE

i = u] decreases in UE
i for

every Gi quintile. See our discussion of Figure 5 as a justification.

4. No selection into losses: The MTE m1(u, g) − m0(u, g) is not allowed to increase
in UE

i , the distaste for the treatment. Suppose the treatment is a choice and the
outcome is beneficial (or correlates with such a variable). This is likely in our setting
with education as treatment and cognitive abilities as outcome. In that case, we
may expect selection into gains (MTEs decrease in UE

i ). The literature on the effect
of education on earnings and cognitive skills documents overwhelming empirical
evidence of selection into gains (Carneiro et al., 2011; Nybom, 2017; Kamhöfer et al.,
2019; Westphal et al., 2022). Note that we allow our MTEs to exhibit no essential
heterogeneity (i.e., horizontal MTEs, a setting in which a 2SLS estimation of G × E is
non-problematic). In Appendix E, we provide suggestive evidence that selection into
losses is unlikely in our setting.

5. Additive Separability in terms of Gi: The slope of m1(u, g), m0(u, g), and m1(u, g)−
m0(u, g) does not depend on Gi. This assumption is explicitly or implicitly made
when estimating MTEs (and 2SLS regressions are specified). While generally a strong
assumption, Figure 5 suggests it can be reasonable.

Lastly, we make the problem finite and evaluate u at 20 equidistant grid points (as Rose
and Shem-Tov, 2021).
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5.3 Results

Our main results are visualized in Figure 6. Each panel compares the bounded marginal
treatment effects from the first PGS quintile (in red) to the remaining four (in blue).
The MTE curves that produce the minimum possible interaction effect are the dashed
curves, and the solid curves are MTEs that produce the maximum. They almost coincide,
suggesting that the effects are practically point-identified. Accordingly, the differences
between the solid MTE curves for quintiles 2–4 and the reference category produce an
estimate of the maximal gene-environment interaction effect. The difference between the
blue and red dashed curves in each panel yields an estimate of the minimum interaction
effect. For example, in the top panel, the area between the blue and red curves indicates
how the effect of education on cognitive ability changes in the population when Gi “moves”
from the first to the second quintile. Recall that we set up the linear programming approach
to optimize the G × E effect in the interval UE

i ∈ [0.6, 0, 8]. This is because the compliers
from all quintiles are located in this range. In Section 5.4, we show that our results are
robust to variations of this range.

The results have the same sign as our 2SLS estimates. The interaction effect is positive for
each quintile comparison. This suggests that individuals with a higher polygenic score
for education benefit more from an additional year of education due to the compulsory
schooling reform in terms of their cognitive abilities later in life. Our approach also allows
us to capture possible nonlinearities in the interaction effect across the PGS. Indeed, the
estimated magnitude of the interaction differs across comparisons. Not surprisingly, the
highest quintile has the largest interaction effect. However, the size of the interaction for
the second quintile is substantial. Those in the third and fourth quintiles have the smallest
effects.

We present estimates of the nonlinear interaction effects in Panel A of Table 4. While the
previously discussed 2SLS results from Table 3 are reported in column (1) as a benchmark,
columns (2) and (3) present the bounds of the marginal treatment effects from Figure 6
aggregated over the UE

i range from 0.6 to 0.8. As in Table 3, the effect on Ei in the first
row indicates the baseline effect in the bottom quintile. The direct effects on Gi in the
subsequent rows are not of immediate interest, but we present them for completeness. Our
focus is on the interaction effects (which are again relative to the reference category, the
bottom quintile). In addition, we construct a linearized interaction effect from the quintile
coefficients (Panel B) that is our main measure of the gene-environment interaction effect.
This measure is simply the slope of a line through the interaction effect estimates at the
lowest and highest quintiles (or the difference standardized to a one-quintile change).9

This parameter can be calculated for each method, allowing us to compare linear effects

9The linear slope is calculated as (β
f
5,1 − β

f
1,1)/4. The interaction coefficient for the bottom quintile is

zero since this quintile serves as the reference category.
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Figure 6: Quintile comparisons of the interaction effect
Notes: This figure shows the four comparisons of gene-environment interactions from our bounding approach.
For every PGS quintile, we estimate bounds: maxima (solid lines) and minima (dashed lines) at which the
interaction effect is maximized/minimized. The bounds for quintiles 2-4 (in blue) are compared to those
of the bottom quintile (in red), our reference category, yielding four comparisons. The gene-environment
interaction is the difference between the blue and red curves at UE

i ∈ [0.6, 0, 8]. The thick part of the curves
indicates the size of the complier share and its location on the UE

i scale, both of which differ by PGS quintile.
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across methods to infer whether unobserved effect heterogeneity and different proportions
of compliers in Gi — which we fix by estimating marginal treatment effects — affected the
2SLS coefficients.

Table 4: Estimates of the G × E interaction

Dependent variable – total recall score

2SLS MTEmin MTEmax
(1) (2) (3)

Panel A: nonlinear G × E effect with Gi as quintiles

Ei −0.042 (0.460) 0.137 (0.459) 0.137 (0.459)

Gi = 1 reference category reference category reference category
Gi = 2 0.196 (0.403) −0.388 (0.444) −0.325 (0.436)
Gi = 3 0.631 (0.455) −0.428 (0.592) −0.425 (0.602)
Gi = 4 0.946 (0.462)∗∗ −0.152 (0.470) −0.170 (0.535)
Gi = 5 0.819 (0.621) 0.201 (0.858) −0.083 (0.913)

Ei × (Gi = 1) reference category reference category reference category
Ei × (Gi = 2) 0.423 (0.504) 1.294 (0.610)∗∗ 1.281 (0.645)∗

Ei × (Gi = 3) 0.071 (0.555) 1.180 (0.738) 1.232 (0.734)
Ei × (Gi = 4) −0.043 (0.591) 0.804 (0.682) 0.866 (0.725)
Ei × (Gi = 5) 0.649 (0.726) 1.834 (0.873)∗∗ 2.154 (0.959)∗∗

Panel B: linearized Gi × Ei effect from quintile coefficients

Ei × Gi 0.162 (0.182) 0.459 (0.218)∗∗ 0.539 (0.240)∗∗

Controls Yes Yes Yes
Observations 11,027 11,027 11,027

Notes: This table presents estimates of the effect of staying in school until at least age 15 (Ei), an education PGS (Gi)
and their gene-environment interaction (G × E) on cognition later in life. Panel A shows estimates for which we use
quintiles of the PGS to estimate possible nonlinear effects across Gi . Estimates that include Gi are computed relative
to the reference category, the bottom quintile. Panel B shows a linearized slope of a line through the coefficients for
G = 1 and G = 5 from Panel A. 2SLS estimates from Table 3 are included for reference in Column (1). The MTE
estimates in column (2) refer to the minimal effects where the underlying optimization minimizes the linearized
interaction effect. Estimates in column (3) are the maximal effects estimated accordingly. The controls in each case
include a linear cohort trend, its interaction with the instrument (being born in 1933 or later), gender, and the first
ten principal components of the genetic data. Results in different panels are obtained from separate regressions.
Standard errors clustered at the individual level shown are in parentheses. For MTE bounds, standard errors are
bootstrapped with 100 repetitions. ∗p < 0.1, ∗∗p < 0.05, and ∗∗∗p < 0.01.

Overall, four features characterize our results. First, the MTE method yields informative
and narrow upper and lower bounds of the interaction MTE, which almost point-identify
the effect. Second, in contrast to the 2SLS estimates, even the minimum MTE results
indicate substantially higher effect sizes. The linearized lower bound is about 2.5 times
larger than the linearized 2SLS coefficient. While we could not detect significant gene-
environment effects with 2SLS, we now find significant effects at the 5 percent level. This
significance level is more conservative than necessary because it is based on a two-sided
test, despite us only being interested in inference of the true MTE, not the identified set.
Imbens and Manski (2004) suggests that a one-sided test is sufficient and would lead all
interaction coefficients except for (E × Gi = 2) to shift one significance level (i.e., gain
one star). Third, our estimates suggest that the gene-environment interaction is more
substantial for individuals with higher PGS while 2SLS estimates suggest a zero or small
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and statistically insignificant interaction effect. On average, “moving” to a higher PGS
quintile leads to an additional increase of 0.46 words in the impact of compulsory education
on recall due to the education reform. This finding reveals substantial heterogeneity and
suggests a high complementarity between education and “nature” as measured by the
PGS. Individuals with a higher PGS have higher returns to schooling in terms of cognitive
ability later in life. This result is independent of observable and unobservable factors,
both of which we can fix by estimating marginal treatment effects. Fourth, the interaction
effect size does not appear linear along the PGS, as was already indicated by the visual
differences in the interaction effects between each panel in Figure 6. The MTE results
suggest that individuals in the highest quintile experience a large additional increase in
recall of between 1.83 and 2.15 words relative to those in the first quintile. The increases for
individuals in quintiles 3 and 4 may not be statistically different from the interaction for
individuals in the lowest quintile, although the point estimates are positive and substantial.

5.4 Robustness

We perform several robustness checks and report the linearized estimates in Table 5. First,
we estimate the interaction over wider UE

i ranges. While the range UE
i ∈ [0.6, 0.8] covers

most compliers from all quintiles well, we show that this particular choice is not critical
to our main results (see Panel A). Over wider UE

i , the range for which we identify MTE
interaction effects is only marginally wider. Nevertheless, calculating our estimate over a
wider UE

i range could theoretically pick up local changes in the slope of the MTEs and,
ultimately, the interaction effect. Thus, in all subsequent robustness checks, we report
results for UE

i ∈ [0.6, 0.8], the range over which we compute our main results, and for
the larger range UE

i ∈ [0.5, 0.9]. We do not go beyond the latter since the never-takers are
predominantly located to the right of UE

i = 0.9.

Our data set consists of repeated cross-sections (waves) of ELSA. Some individuals are
observed only once, others several times. Panel B shows our main result when we use only
the most recent observation for each individual. This reduces the number of observations
but not the number of individuals in the analysis. For our main UE

i range, especially the
maximum interaction effect is larger, so are standard errors. Over the bigger UE

i range, the
minimum is smaller and the maximum larger, increasing the possible effect range slightly.
To further show that the composition of our sample does not change our results, we plot
the estimates when we include individuals under the age of 65 in Panel C. The minimum
is slightly smaller, but the maximum effect is very similar to our main specification with
higher statistical significance. The choice of polynomial to control for cohort trends is
not obvious. In Panel D, we show what happens to the results when we use quadratic
trends instead of linear ones. The minimum interaction effects are slightly smaller for our
main UE

i range, and the maximum effects slightly larger. The effects for UE
i ∈ [0.5, 0.9] are
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almost identical to our main result. Next, we remove never-takers from the analysis (see
Section 5.1 for a discussion of never-takers). As the robustness check in Panel E shows,
their presence helps to tighten the bounds. However, even without them, the minimum
and maximum MTEs are informative. The interaction effect’s lower and upper bounds are
still positive, although the lower bound may not be statistically different from zero. The
upper bound is larger than in our main result. This is to be expected, since never-takers
have lower expected outcomes. Not including them in the analysis means that the MTE
bounds do not have to reproduce these lower means. As a result, the resulting MTE curves
will look different if the bounds are computed without relying on these sample moments
of the never-takers. We visualize the quintile comparisons when computing interaction
effects without never-takers in Figure F.4 in the Appendix.

Table 5: Robustness

Dependent variable – total recall score

MTEmin MTEmax
(1) (2)

Panel A: Baseline

– UE
i ∈ [0.6, 0.8] (main result, Table 4) 0.459 (0.218)∗∗ 0.539 (0.240)∗∗

– UE
i ∈ [0.55, 0.85] 0.456 (0.216)∗∗ 0.537 (0.236)∗∗

– UE
i ∈ [0.5, 0.9] 0.454 (0.213)∗∗ 0.547 (0.227)∗∗

Panel B: Using last panel observation of each individual

– UE
i ∈ [0.6, 0.8] 0.470 (0.246)∗ 0.653 (0.285)∗∗

– UE
i ∈ [0.5, 0.9] 0.376 (0.243) 0.779 (0.259)∗∗∗

Panel C: Keeping individuals below age 65

– UE
i ∈ [0.6, 0.8] 0.359 (0.214)∗ 0.576 (0.211)∗∗∗

– UE
i ∈ [0.5, 0.9] 0.353 (0.208)∗ 0.587 (0.202)∗∗∗

Panel D: Squared trends

– UE
i ∈ [0.6, 0.8] 0.387 (0.220)∗ 0.657 (0.233)∗∗∗

–UE
i ∈ [0.5, 0.9] 0.457 (0.216)∗∗ 0.538 (0.212)∗∗

Panel E: No never taker

– UE
i ∈ [0.6, 0.8] 0.222 (0.156) 1.093 (0.161)∗∗∗

– UE
i ∈ [0.5, 0.9] 0.189 (0.155) 1.163 (0.162)∗∗∗

Notes: This table presents robustness checks for the linearized gene-environment estimates. Panel A
shows our main result from Table 4 alongside results when using larger UE

i ranges. We compute all
other robustness checks for UE

i ∈ [0.6, 0.8], the range over which we calculate our main results and
UE

i ∈ [0.5, 0.9]. Panel B includes a robustness check where we reduce our dataset (repeated cross-sections)
and only keep the most recent observation for each individual. In Panel C, we show results when
increasing the age range of our sample to individuals below age 65. Panel D includes estimates controls
where we for squared (age) trends. Panel E shows results when we exclude never-takers. Standard errors
are bootstrapped with 200 repetitions. ∗p < 0.1, ∗∗p < 0.05, and ∗∗∗p < 0.01.
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Finally, we show the robustness of our estimation method for the underlying optimization
of the interaction effect (see Eq. 6). In our main specification, we maximize/minimize the
difference between the first and the fifth quintile. Here, we additionally estimate linearized
effects of the final interaction effect when the optimization maximizes/minimizes the
difference between the first and each of the other quintiles. We visualize the result in
Figure G.5 in the Appendix. The results show that optimizing for different comparisons
does not produce substantial changes in the final interaction effect, especially not in the
crucial UE

i range where we estimate our MTEs. The choice of quintile comparisons for
the underlying optimization is not critical. The reason is that the MTRs must reproduce
the data in form of group means, and given our shape constraints, the range of possible
meaningful candidate MTRs that produce maximum and minimum MTEs is limited.

6 Conclusion

The growing gene-environment literature aims to estimate interactions between genetic
endowments and environmental exposure (e.g., behavior or choice variables like educa-
tion) in their effect on an outcome of interest. The goal is to assess whether the effect of
the environment varies by genetic endowment (or vice versa) while all else is equal. Since
environmental variables are often endogenous, a popular choice is using instruments or
natural experiments as a source of exogenous variation. This usually involves estimating a
two-stage least squares model. Estimating gene-environment interactions by two-stage
least squares regression identifies gene-specific effects of the environment. However,
they may not retain the desired interpretation as interaction effects if (1) the first stage
is heterogeneous across different values of Gi and (2) the empirical setting entails essen-
tial heterogeneity in Ei (the unobserved heterogeneities for the outcome and treatment
correlate). If both conditions hold, then two properties differ between gene-specific local
average treatment effects: the genetic endowment and the unobserved effect heterogeneity.
While the former is precisely what researchers want to isolate (the interaction), 2SLS cannot
account for the latter. Thus, 2SLS estimates may not reflect complementarity between
genes and the environment. We suggest solving this problem by estimating marginal
treatment effects. MTEs allow for the computation of G × E estimates while accounting
for unobserved heterogeneity.

While gene-environment interactions are a natural choice to illustrate this problem, since
the central parameter is the instrumented interaction estimate, it theoretically applies to
all interactions estimated by 2SLS. The two conditions that generate it, non-overlapping
complier groups due to variations in the interaction variable and unobserved effect hetero-
geneity correlated with treatment propensity, could be present in other real-world scenarios
involving choice variables. Nevertheless, there are likely also many settings where they
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are not present or the 2SLS comparisons are inconsequential. For example, Barcellos et al.
(2021) find no differences between 2SLS and linear MTE estimates of their gene-education
interaction. Moreover, in many applications, heterogeneous first stages by the interaction
variable are unlikely and studies that estimate only reduced form (gene-environment)
interaction effects avoid wrong 2SLS comparisons all together.

Our empirical application studies the long-run effects of education, genetic predisposition
for education, and their interaction on old-age cognitive abilities using data from the
English Longitudinal Study of Ageing. To identify the effect of education, we use a
compulsory schooling reform from 1947 that increased the minimum school-leaving age
in the UK to 15. Our baseline 2SLS estimates document a zero effect of education on
recalled words (our measure of cognitive abilities) for individuals in the lowest PGS
quintile. Effects for higher quintiles are positive, but we lack the precision to estimate them
precisely with 2SLS. We find evidence that both conditions for 2SLS to make the wrong
comparisons apply in our setting. We see a strong gradient in the first stage across the
quintiles of the education polygenic score and essential heterogeneity is present, more
precisely, selection into gains. This is well documented for educational decisions. We
estimate marginal treatment effects using the partial identification approach from Mogstad
et al. (2018). Building on reduced–form evidence, we generate minimal and maximal
G × E effects consistent with the data. We add further benign restrictions (such as additive
separability and negative MTE slopes that imply selection into gains) to gain precision and
tighten the bounds. The resulting bounds almost point-identify the interaction effect.

Our main finding is that, holding unobserved heterogeneity across Gi fixed, even the lower
bound G × E effect is 2.5 times larger than the corresponding 2SLS estimate. In absolute
terms, the gene-environment complementarity is substantial: on average, the effect of
education on recalled words increases by 0.46–0.54 with each PGS quintile. This means
that the MTE results imply higher returns to education for cognitive abilities later in life for
those with a higher polygenic score. The complementarity between education and genetic
predisposition that widens existing gaps in returns to education is larger than initially
estimated with two-stage least squares. Not accounting for essential heterogeneity limits
the usefulness of the 2SLS estimates.
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A What 2SLS is estimating

Assume that Ei and Gi are binary. There are four potential outcomes Y jg
i , j ∈ {0, 1}, g ∈

{0, 1} of individual i . Only one is observed. The observation rule is

Yi = Ei · Gi · Y11
i + Ei · (1 − Gi) · Y10

i + (1 − Ei) · Gi · Y01
i + (1 − Ei) · (1 − Gi) · Y00

i

= Y00
i + (Y10

i − Y00
i )Ei + (Y01

i − Y00
i )Gi + (Y11

i − Y01
i − (Y10

i − Y00
i ))Ei · Gi

The second equation is the individual potential-outcome representation of the workhorse
interaction model

Yi = β0 + β1Ei + β2Gi + β3Gi × Ei + εi

Expressing this interaction equation as separate regressions for Gi = 0 and Gi = 1 yields

Yi = β0 + β1 Ei + ε for Gi = 0

Yi = (β0 + β2) + (β1 + β3)Ei + ε for Gi = 1

Environment Ei is often a choice variable, therefore endogenous and instrumented by Zi, a
binary instrument. In Wald notation, separately estimating 2SLS regressions for Gi = 0
and Gi = 1 yields:

β̂1 =
E[Yi|Zi = 1, Gi = 0]− E[Yi|Zi = 0, Gi = 0]
E[Ei|Zi = 1, Gi = 0]− E[Ei|Zi = 0, Gi = 0]

for Gi = 0

β̂1 + β̂3 =
E[Yi|Zi = 1, Gi = 1]− E[Yi|Z =i 0, Gi = 1]
E[Ei|Zi = 1, Gi = 1]− E[Ei|Zi = 0, Gi = 1]

for Gi = 1

Using the LATE theorem (Imbens and Angrist, 1994 – 2SLS estimates are average treatment
effects for the compliers), we can rewrite these expressions as:

β̂1 = E[Y10
i − Y00

i |C(Gi = 0)]

β̂1 + β̂3 = E[Y11
i − Y01

i |C(Gi = 1)]

The mechanics of the LATE require that the group-specific effects (β̂1 and β̂1 + β̂3) are
average treatment effects for the Gi-specific compliers. Without further covariates, the joint
interaction regression specification is as flexible as the separate ones. The mechanics of
interaction models attribute any difference in the causal effects of Ei on Yi between Gi = 0
and Gi = 1 to the interaction coefficient. In essence, the interaction model is numerically
identical to separate estimations. In the interaction model, any difference between the
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Gi-specific LATEs is mechanically attributed to β̂3. Hence, using the expressions above,
this difference amounts to:

β̂3 = (β̂1 + β̂3)− β̂1 = E[Y11
i − Y01

i |C(Gi = 1)]− E[Y10
i − Y00

i |C(Gi = 0)]

This demonstrates that the interaction coefficient reflects differences in Gi-specific LATEs.
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B Polygenic scores

The human genome has about 3 billion base pairs, the pairs of nucleic acids that make up
the DNA. However, any two people differ by only about 0.1 percent of the base pairs. Most
of these genetic differences are substitutions of a single base (adenine, thymine, cytosine,
or guanine) for another at a specific location in the genome, called ”single nucleotide
polymorphisms” (SNPs) that are common across the whole genome. These substitutions
result in different genetic variants (alleles) that vary among parts of the population.10

For example, at a specific SNP location, the DNA sequence might have an adenine base
in some individuals, while others may have a thymine base at the same position. One
is (arbitrarily) chosen as the reference variant. Then, each SNP can be represented as a
count variable of occurrences of the reference variant at this location that can either be
0, 1 or 2, since there are two copies of each chromosome. Large research projects called
genome-wide association studies (GWAS), correlate each j = 1, . . . , J SNPs with a disease
or trait, e.g., diabetes, years of education, or smoking. This entails running J regressions of
type

Yi = β jSij + X′
iδ + ζi (7)

where Yi is the outcome of interest (in our case educational attainment) of individual i, β j

is the individual effect of each SNP j, Sij is the count variable of the reference variant of
the SNP with Sij ∈ {0, 1, 2}, Xi is a vector of controls that typically include age, gender
and principal components of the genetic data, which control for population stratification,
i.e., common ancestry11. The PGS is then calculated as a weighted sum of all Sij’s, where
the weights correspond to the (correlation-adjusted) β j’s obtained in the GWAS:

PGSi =
J

∑
j=1

β̃ jSij (8)

Polygenic scores for various traits or behaviors (personality, mental and physical health,
health behaviors, and more) have been calculated for the ELSA sample based on various
GWAS and are readily available.

10The generally agreed-upon threshold for a substitution to be regarded a SNP is common occurrence in
at least one percent of the population.

11Principal components are linear combinations of genetic markers that summarize the major patterns of
genetic variation across a population into fewer dimensions. They reflect population stratification, i.e., different
frequencies of genetic variants among subpopulations that could be responsible for spurious correlations
with outcomes of interest. Price et al. (2006) show that including principal components as controls can
mitigate the confounding effects of population stratification, ensuring that observed associations between
genetic variants and traits are not driven by differences in ancestry or population structure.
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C Additional sample information

Table C.1: Descriptive statistics (extended)

Main sample By Ei

Mean (SD) Ei=1 Ei=0 Difference (SE)

Outcome Yi
Recall score 9.67 (3.37) 10.11 8.08 2.03 (0.07)∗∗∗

Treatment Ei
Left school ≥ 15 0.78 (0.41) 1.00 0.00 1.00 (0.00)

Polygenic score Gi
1st PGS quintile 0.20 (0.40) 0.18 0.26 −0.08 (0.01)∗∗∗

2nd PGS quintile 0.20 (0.40) 0.20 0.21 0.02 (0.01)∗

3rd PGS quintile 0.20 (0.40) 0.20 0.19 0.01 (0.01)
4th PGS quintile 0.20 (0.40) 0.20 0.19 0.01 (0.01)
5th PGS quintile 0.20 (0.40) 0.21 0.15 0.07 (0.01)∗∗∗

Instrument Zi
Born 1933 or later 0.66 (0.47) 0.82 0.13 0.69 (0.01)∗∗∗

Controls
Female 0.52 (0.50) 0.52 0.50 0.02 (0.01)∗∗

Principal components (standardized):
– 1 – 0.00 (1.00) 0.00 −0.01 0.02 (0.02)
– 2 – 0.00 (1.00) 0.01 −0.02 0.03 (0.02)
– 3 – 0.00 (1.00) 0.01 −0.04 0.05 (0.02)∗∗

– 4 – 0.00 (1.00) −0.01 0.02 −0.03 (0.02)
– 5 – 0.00 (1.00) 0.00 0.00 0.00 (0.02)
– 6 – 0.00 (1.00) 0.02 −0.07 0.09 (0.02)∗∗∗

– 7 – 0.00 (1.00) 0.01 −0.03 −0.04 (0.02)∗

– 8 – 0.00 (1.00) 0.00 0.02 −0.02 (0.02)
– 9 – 0.00 (1.00) 0.01 −0.02 0.02 (0.02)
– 10 – 0.00 (1.00) 0.01 −0.02 0.02 (0.02)

Age pattern
Birth year 1934.89 (5.00) 1936.29 1929.92 6.37 (0.10)∗∗∗

Age 71.82 (4.29) 70.89 75.10 −4.21 (0.09)∗∗∗

Observations 11,027 8,590 2,437

Notes: This table presents extended descriptive statistics including the first 10 principal components of
the genetic data. We include mean and standard deviation of the main sample as well as means by Ei ,
the difference of means and standard errors of a t-test for equality of means. ∗p < 0.1, ∗∗p < 0.05, and
∗∗∗p < 0.01.
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Table C.2: Descriptive statistics by availability of genetic information

Full sample By availability of
genetic information

Mean (SD) Yes No Difference (SE)

Outcome Yi
Recall score 9.32 (3.50) 9.67 8.76 0.91 (0.05)∗∗∗

Treatment Ei
Left school ≥ 15 0.76 (0.43) 0.78 0.72 0.06 (0.01)∗∗∗

Instrument Zi
Born 1933 or later 0.65 (0.48) 0.66 0.62 0.04 (0.01)∗∗∗

Controls
Female 0.52 (0.50) 0.52 0.52 0.00 (0.01)

Age pattern
Birth year 1934.67 (5.10) 1934.89 1934.32 0.57 (0.08)∗∗∗

Age 71.90 (4.26) 71.82 72.02 −0.20 (0.07)∗∗∗

Observations 17,884 11,027 6,857

Notes: This table presents descriptive statistics. We include mean and standard deviation of the main
sample as well as means by Ei , the difference of means and standard errors of a t-test for equality of means.
∗p < 0.1, ∗∗p < 0.05, and ∗∗∗p < 0.01.

Table C.3: Descriptive statistics by PGS quintiles

1st quintile 2nd quintile 3rd quintile 4th quintile 5th quintile

Outcome Yi
Recall score 8.99 9.48 9.73 9.80 10.33

Treatment Ei
Left school ≥ 15 0.71 0.77 0.79 0.79 0.84

Instrument Zi
Born 1933 or later 0.67 0.65 0.65 0.68 0.67

Controls
Female 0.53 0.51 0.54 0.49 0.50

Age pattern
Birth year 1934.87 1934.87 1934.96 1934.77 1934.96
Age 71.72 71.84 71.87 71.86 71.81

Observations 2,206 2,205 2,206 2,205 2,205

Notes: This table presents sample means by quintiles of the education polygenic score.

37



D Additional regression results

Table D.4: The 1947 UK compulsory schooling reform and
providing genetic information to ELSA

Provided Left school at
genetic information 15 or later (Ei)

(1) (2)

Zi −0.018 (0.030) 0.453 (0.037)∗∗∗

Provided genetic information ×Zi 0.035 (0.046)

Controls Yes Yes
Observations 17,884 17,884

Notes: In this table we show that our instrument, the 1947 UK compulsory schooling reform did not
affect the probability of providing genetic information to ELSA and that providing genetic information
does not interact with our first stage, the effect of the reform on staying in school until at least 15.
Column 1 shows estimates of a linear regression of the instrument Zi on the probability to provide
genetic information to ELSA. Controls include gender, the running variable (distance to 1933 birth
cohort) and its interaction with the instrument. Column 2 shows estimates of the first stage interacted
with a dummy for providing genetic information to ELSA. Controls include gender, running variable
and interactions with the running variable. Both regressions are estimated in a larger sample that
fulfils all criteria outlined in section 3.2 but still includes individuals without genetic data available.
Standard errors in both regressions are clustered at the individual level. ∗p < 0.1, ∗∗p < 0.05, and
∗∗∗p < 0.01.

Table D.5: Estimates of the first stage by PGS quintile

Left school at 15 or later (Ei)

Coefficient Standard error
(1) (2)

Zi × (Gi = 1) 0.642 (0.018)∗∗∗

Zi × (Gi = 2) 0.537 (0.018)∗∗∗

Zi × (Gi = 3) 0.477 (0.018)∗∗∗

Zi × (Gi = 4) 0.419 (0.018)∗∗∗

Zi × (Gi = 5) 0.356 (0.018)∗∗∗

Controls Yes
Observations 11,027

Notes: This table presents estimates of the effect of the 1947 UK compulsory
schooling reform on the probability of attending school until at least age 15 by
quintiles of the education polygenic score. These effects are obtained from the
coefficients π

f
1,∆ to π

f
5,∆ of eq. 4, which correspond to the complier shares in the

respective quintile. Standard errors clustered at the individual level shown are
in parentheses. ∗p < 0.1, ∗∗p < 0.05, and ∗∗∗p < 0.01.
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Figure D.1: First Stage and reduced form by Gi
Notes: This figure shows a visualization of the first stage (upper panel) and the reduced form (lower panel) results of our regression
discontinuity design by quintiles of the education polygenic score Gi ∈ 1, 2, 3, 4, 5 detailed in Section 4.
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E Testing ”no selection into losses” (non-positive MTE

slopes)

An important constraint we apply in our linear programming approach is “no selection-
into-losses”, i.e. no MTEs that increase in UE. To test this in our setting, we follow Imbens
and Rubin (1997) and use the instrument to compute mean outcomes for always-taker,
treated and untreated complier, and never-taker. For simplicity, we test this condition
globally and do not distinguish between cells of Gi (we show the complete Gi-specific
means in Figure 5). We present the results in Table E.6. In Panel A, we focus on differences
between always-takers and treated compliers (Column 3) and untreated compliers and
never-takers (Column 6). The differences are informative about whether the treated
outcome E[Y1

i |UE = u] and the untreated outcome E[Y0
i |UE = u] – the difference of which

is the MTE – are heterogeneous in UE.

Column (3) presents the mean recall difference between always-takers and treated compli-
ers. It shows a substantial and statistically significant heterogeneity: Always-taker recall
about 1.25 words more. Intuitively, this is unsurprising, as always-taker to a compulsory
schooling reform will, on average, have more years of education, will be more likely to hold
advanced degrees, or may be positively selected in terms of unobserved characteristics (if
we have selection into gains, which we want to argue). Furthermore, this result shows that
E[Y1

i |UE = u] has a negative slope. Likewise, we do the same with untreated compliers
and never-taker. Here, the heterogeneity is less pronounced and not statistically significant.
If we conclude that both groups do not have different outcomes, we can stop as in this case,
the difference in the first two groups proves that we have essential heterogeneity. If the
insignificant difference is meaningful, things may change. The difference is also negative,
contrasting the existing empirical evidence for the slope of the untreated outcome (see,
e.g., Carneiro and Lee, 2009; Westphal et al., 2022). However, it is essential to mention that
never-taker should not exist with a compulsory schooling reform, where everyone should
be forced to stay in school until age 15. If this group has never existed, this might be a
measurement error. If these individuals had special exemptions from the rule change (and
therefore existed), the difference between never-taker and untreated compliers may not
inform about the global course of the curve. Assessing the multiple complier groups that
we gain by stratifying by Gi (see Figure 5) indeed suggests that never-taker are different
and E[Y0

i |UE = u] indeed increases when UE < 0.95.

Nonetheless, with only a binary instrument and without exploiting covariate heterogeneity
together with the additive separability assumption (which we will do below), an additional
linearity assumption is necessary (due to the never-taker) to point-identify a marginal
treatment effect via the method introduced by Brinch et al. (2017). We document a formal
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Table E.6: Mean outcomes by instrument response types and test for
essential heterogeneity

Unobserved heterogeneity

in the treated outcome in the untreated outcome

(1) (2) (3) (4) (5) (6)
Always- Treated Difference Untreated Never- Difference

taker Complier (2)− (1) Complier taker (5)− (4)

Panel A:
Mean recall: 9.500 8.306 −1.245∗∗∗ 8.109 7.679 −0.353

(0.215) (0.332) (0.454) (0.215) (0.340) (0.396)

Share: 0.456 0.489 0.489 0.055
(0.035) (0.036) (0.036) (0.011)

Panel B:
Test for essential heterogeneity:

(sufficient condition, may be uninformative if heterogeneity is nonlinear )

Slope of E[Y1
i |UE = u] −2.631∗∗∗

(0.961)

Slope of MTE E[Y1
i − Y0

i |UE = u] −1.326
(1.423)

Notes: This table presents estimates of mean outcomes for always-taker, treated and untreated complier, and
never-taker (panel A) as well as results of a test for essential heterogeneity (panel B). We compute the type-
specific shares using the specification of Eq. (2) without Gi . The complier share is the coefficient on Zi , the
always-taker share is the constant (as all variables are demeaned), and the never-taker share is the remainder.
For the type-specific outcome means, we compute means by Ei and Zi (and their interaction) using a reduced-
form specification to regress recall on the same controls and full interactions of Ei and Zi . As compliers
never appear alone in these means, we use the formula provided in Imbens and Rubin (1997) and the type-
specific shares. Standard errors are computed using 200 bootstrap replications and are shown in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01 indicate significance levels for the differences.

test of the slope of E[Y1
i |UE = u] and E[Y1

i − Y0|UE = u] in Panel B.12 It shows that the
slope of the treated outcome is negative and statistically significant (as shown in Panel A).
The slope of the linear MTE is also negative and still large in magnitude. However, likely
due to the concerns about never-taker outlined above, it is not statistically significant,
albeit with a negative sign. Again, evidence from the Gi-specific complier groups strongly
suggests that the E[Y0

i |UE = u] increases at least for a relevant range when UE < 0.95. We
conclude that we likely face essential heterogeneity in our setting. Combined differences in
the first stage induced by Gi, the result may be that 2SLS cannot recover the true interaction
parameter. We would need to make accurate statements about the interaction effect.

12The exact formula reads

∂E[Y1
i |UE = u]
∂UE

=
YCT

i − YAT
i

πC+πAT

2

,
∂E[Y1

i − Y0
i |UE = u]

∂UE
=

YCT
i − YAT

i
πC+πAT

2

−
YNT

i − YCU
i

πC+πNT

2

,

where YAT
i , YCT

i , YCU
i , and YNT are means from Columns (1), (2), (4), and (5), respectively and πAT , πC, πNT

are the corresponding shares (compliers do not need to be differentiated).
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F Details on the MTE estimation

We run the following two regressions:

Ei =
5

∑
g=1

1

∑
k=0

[
π

f
g,k1[Gi = g]× [Zi = k]

]
+ controls + ωi (9)

Yi =
5

∑
g=1

1

∑
j=0

1

∑
k=0

[
δ

f
g,j,k1[Gi = g]× [Ei = j][Zi = k]

]
+ controls + ηi. (10)

The first equation estimates Gi-specific first-stage from which the complier types can be
inferred. The second equation estimates conditional means of Yi, conditional on Gi, Zi,
and Yi when covariates are fixed. On these estimates, we apply the Imbens and Rubin
(1997) formula to compute Gi-specific outcome means for always-taker (AT), never-taker
(NT), and (treated on untreated) compliers (C) the are plotted in Figure 5:

E[Y1g
i |C, Gi = g] =

δg,1,1πg,1 − δg,1,0πg,0

πg,1 − πg,0

E[Y0g
i |C, Gi = g] =

δg,0,0πg,0 − δg,0,1πg,1

πg,1 − πg,0

E[Y0g
i |NT, Gi = g] = δg,0,1

E[Y1g
i |AT, Gi = g] = δg,1,0

These linear potential outcome curves could already solve the problems associated with
2SLS estimation of interactions while using richer variations of the polygenic score. Based
on them, we can calculate the (interaction) effects according to Table 1 in the interval
0.6 ≤ UD ≤ 0.8. Graphically, this would entail subtracting the blue from the red lines for
each quintile. However, this would require extrapolating the lines with Ei = 0 to the left
or the lines with Ei = 1 to the right, demonstrating the general extrapolation problem that
we could solve here by a linearity restriction. If we are willing to make this extrapolation,
it yields five MTE curves for the effect of Ei on Yi, one for each quintile, which can then be
used to calculate the interaction effects.

In the paper, we are unwilling to make such an assumption and apply the partial identifica-
tion method by Mogstad et al. (2018). As one input, the method uses the conditional means
that the coefficients (δ f

g,j,k and the corresponding π
f
g,k) reflect. These are the ”moments”

for the linear programming method by Mogstad et al. (2018). Figure F.2 plots the results
of this approach, where the slightly transparent, horizontal lines are the ”moments” (Gi-
specific outcome means and their placement on the unit-interval, which we derive from
the complier shares). The blue (for the treated outcome) and red (for the untreated) lines
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are the output of this linear programming approach. They reflect the minimal (the dashed
lines) and maximal (the solid lines) possible interaction effect (defined in the main text)
that the MTR lines (Bernstein polynomials, see Figure F.3) produce while being consistent
with the shape restrictions and matching the moments.

2
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min E(Y0) max E(Y0)
min E(Y1) max E(Y1) 
Moments for E=1 by UE Moments for E=0 by UE

Figure F.2: Potential outcome curves estimated with Bernstein polynomials
Notes: This figure shows the minima and maxima of the ten potential outcome curves estimated via linear program
with Bernstein polynomials. Blue indicates curves and moments for Ei = 1, and red indicates Ei = 0. Solid lines
are maxima; dashed lines are minima of the potential outcome curves. There are five pairs of curves for Ei = 1 and
five for Ei = 0, one pair for every PGS quintile. Every pair consists of a minimum and a maximum that bound the
potential outcome curve for its respective quintile. The vertical bars indicate the moments the curves must pass
and the UE ranges of individuals contributing to these means.
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Figure F.3: Graphical representation of the Bernstein base functions
Notes: This figure depicts the six Bernstein base functions that compose a Bernstein polynomial of degree five. The
formula for each base function reads bv,n(u) = (n

v)u
v(1 − u)n−v, where n = 5 is the degree, v denotes the specific

base function and u is a specific grid point on the unit interval. The formula that obtains the MTE by the sum of
all base functions weighted by the corresponding parameter θ

jg
v reads mj(u, g) = ∑n

v=0 θ
jg
v bv,n(u), where Gi is the

genetic bin, j the treatment state (as defined above) in addition to the variables and parameters defined above.
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Figure F.4: Quintile comparisons of the interaction effect without never-taker
Notes: This figure shows the quintile comparisons of the interaction effect from Figure 6 when never-taker (their sample moments) are
not used to construct the MTE bounds. For every PGS quintile, we estimate bounds: maxima (solid lines) and minima (dashed lines)
at which the interaction effect is maximized/minimized. The bounds for quintiles 2-4 (in blue) are compared to those of the bottom
quintile (in red), our reference category, yielding four comparisons. The gene-environment interaction is the difference between the
blue and red curves at UE ∈ [0.6, 0, 8]. The thick part of the curves indicates the size of the complier share and its location on the UE
scale, both of which differ by PGS quintile.
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Figure G.5: MTEs when the target G × E parameter is adjusted to specific quintiles
Notes: This figure shows robustness checks for our main result in Figure 6. Here, we optimize the interaction effect for different
comparisons. Whereas our preferred specification optimizes the difference between the first and the fifth quintile (see Eq. 6), we
generalize this approach and optimize differences between the first any other quintile such that βG×E(0.6, 0.8, g) = 1

g−1

∫ 0.8
0.6 [m

1(u, g)−
m0(u, g)]− [m1(u, 1)− m0(u, 1)]du ∀g ∈ {2, 3, 4, 5}. The solid lines correspond to optimizing g = 5, our main result. The dashed lines
show the optimization for g = 4, the dotted for g = 3, and the dashed-dotted line for g = 2. The respective quintile Gi used for the
target parameter βG×E(0.6, 0.8, g) is highlighted in bold. Maximized and minimized MTEs are shown separately, maximized MTEs in
the left and minimized MTEs in the right column. The rows present pairwise comparisons between the first and another PGS quintile
(the second quintile in the first row, the third in the second row, ...).
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