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1. Introduction

The European Union (EU) introduced the European Emissions Trading System (EU ETS) in

2005 as a key climate protection instrument. Overall, the EU ETS covers around 40% of total

greenhouse gas emissions within the European Union. This renders the EU ETS the most com-

prehensive cap-and-trade system in the world. The participating states issue emission allowances

partly free of charge, partly through auctions. A single allowance permits the emission of one ton of

CO2 equivalents. Annually, firms subject to reporting obligations are required to submit an emis-

sions report for the previous year and they are obligated to prove ownership of the corresponding

number of allowances by the compliance date.1 Market participants have the option of banking

allowances, given that the certificates maintain their validity not only within the compliance period

but also extending into a subsequent trading period and beyond. The right to freely trade emission

allowances establishes market prices for greenhouse gas emissions in both the spot and futures

market. A cap determines the total amount of greenhouse gas emissions allowed per trading period.

Insert Figure 1 here.

Since 2018, there have been rapid and substantial price increases for the market price of emission

allowances (see Figure 1). In this respect, several studies have explored the role of rational bubbles

in the EU ETS. For the latest research supporting the hypothesis that rational bubbles are driving

these price surges, see the studies of Friedrich, Fries, Pahle, and Edenhofer (2020), Wei, Li, and

Wang (2022), Huang and Wang (2024), and Terranova, Cozzarini, Reissl, and Tavoni (2024). If

the price hikes are indeed caused by a rational bubble, the incentive created by the EU ETS for

cost-effective emission reductions risks becoming ineffective. In this case, it would be advisable to

redesign the EU ETS to minimize the likelihood of (rational) bubbles in future trading periods.

Conversely, if the price increases are due to other factors, such as the anticipation of a future

shortage of certificates, interventions in the design of the EU ETS would be unnecessary and might

1 In accordance with Calel and Dechezleprêtre (2016), we use the term “firms subject to reporting obligations” to

refer to companies that operate at least one installation regulated by the EU ETS.
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undermine the efficiency of the trading system. Therefore, the primary objective of this paper is to

provide an empirical analysis to determine whether the price increases during the third and fourth

trading periods can genuinely be attributed to a rational bubble.

Under the conditions that fuel-switching, i.e., investing in transitioning the production process

from environmentally detrimental energy sources to environmentally friendly alternatives, is a per-

fect substitute for buying emission permits, producers will shift their production from cheaper but

environmentally harmful energy sources to more expensive but cleaner alternatives. This transition

will continue as long as the cost of reducing CO2 emissions is lower than the price of allowances.

In a scenario of market equilibrium without a rational bubble, the marginal abatement costs – i.e.,

the price within the EU ETS – will on average align with the switching costs associated with tran-

sitioning from cheaper, polluting energy sources to pricier, cleaner alternatives, see Montgomery

(1972), Rubin (1996) and Kling and Rubin (1997). This forms the rationale for the folk principle

considering switching costs as the fundamental in the EU ETS.

The interpretation of rational bubble tests based on switching costs assumes that purchasing

emission allowances is a perfect substitute for abatement solutions. This assumption does not

hold if market actors make decisions under uncertainty. For example, there may be uncertainty

about allowance price determinants, market demand for products and services provided by CO2

emitting firms, or policy uncertainty (see Zhao 2003, Chesney and Taschini 2012, Taschini 2021).

Additionally, the assumption fails if transaction costs, such as informational and contractual costs,

have an impact (see Baudry, Faure, and Quemin 2021). Therefore, the empirical evidence suggesting

a rational bubble in the EU ETS, derived from tests based on the fundamental, i.e., switching costs,

could be due to either the presence of a rational bubble in the EU ETS or the misspecification

of the empirical proxy used for the fundamental (see, among others, Phillips, Wu, and Yu 2011,

Phillips and Yu 2011, Phillips, Shi, and Yu 2015a,b, Harvey, Leybourne, Sollis, and Taylor 2016,

for tests against rational bubbles based on fundamentals).

We address this issue by employing a bubble testing approach that bypasses the need to specify

the fundamental. Instead, the employed method in this paper relies on market expectations, follow-

ing the approach of Pavlidis, Paya, and Peel (2017) and Pavlidis, Paya, and Peel (2018), utilizing
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futures prices as a proxy. Although the approach by Pavlidis, Paya, and Peel (2017, 2018) elimi-

nates the need to specify the fundamental, it assumes risk neutral market participants. However,

purchasers (sellers) of CO2 allowances can hedge against anticipated price increases (decreases) on

the futures market. Hence, it stands to reason that hedging pressure will arise, particularly in the

event of strong price dynamics (see, among others, Bessembinder 1992, Bessembinder and Chan

1992, De Roon, Nijman, and Veld 2000, Dewally, Ederington, and Fernando 2013, for empirical

evidence supporting the Hedging Pressure Hypothesis on futures markets).

We first demonstrate that an explosive price process has the potential to render the dollar risk

premium explosive, even if the risk premium expressed in percentage terms remains stationary.

This dynamic could lead to the erroneous conclusion that a rational bubble underlies the observed

price surge employing tests based on market expectations. However, we further show that a slight

modification of the methodology proposed by Pavlidis, Paya, and Peel (2017) is (asymptotically)

robust to the presence of an explosive risk premium, provided that the underlying fundamental

process has a unit root (is mildly explosive). Mildly explosive processes have been demonstrated

to effectively capture the features of moderately explosive behavior observed in various economic

and financial time series. It is worth noting that the assumption of the fundamental process being

a random walk is common in the bubble testing literature (see, for instance, Diba and Grossman

1988a,b). In this context, allowing for mild explosiveness in the fundamental process represents a

relaxation of this assumption. Such an extension is particularly relevant in the case of the EU ETS,

where explosive price behavior has been documented (see, for example, Friedrich, Fries, Pahle, and

Edenhofer 2020).

Utilizing the a slight modification of the framework of Pavlidis, Paya, and Peel (2017), under

the assumption that the fundamental process is either integrated of order one or mildly explosive,

we adopt an agnostic stance regarding the true behavior of the fundamental process and the risk

premium’s trend. Consequently, our approach accommodates the possibility of an explosive risk

premium, a phenomenon that may hold substantial economic relevance given the rapidly growing
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price expectations observed in the EU ETS during the period under study. In alignment with

Pavlidis, Paya, and Peel (2017), we propose a testing procedure that builds upon the predictive

regression framework introduced by Fama (1984), denoted as Fama Predictive Regressions (FPRs).

Specifically, we derive the slope coefficients for two predictive regressions under the null hypothesis

of no rational bubble, while explicitly accounting for the presence of a (explosively trending) risk

premium.

Furthermore, consistent with Pavlidis, Paya, and Peel (2017, 2018), we employ an endogenous

instrumental variable-based (IVX) method (see Phillips and Magdalinos 2009, Kostakis, Magdali-

nos, and Stamatogiannis 2015, Yang, Long, Peng, and Cai 2020) to test within the FPRs. This

approach enhances the robustness in the presence of a mildly explosive price process. Hence, esti-

mating FPRs using the IVX methodology enables robust inference on the presence of a rational

bubble, even when the fundamental process is unobserved and the risk premium exhibits explosive

behavior.

Moreover, to examine whether the third trading phase (2013-2020) and the fourth trading phase

(2021-ongoing) of the EU ETS have been free of rational bubbles (so far), we contribute with the

following exercises to the empirical literature on carbon trading:

(i) We first investigate whether the EU ETS contains explosive episodes during the third and

fourth trading period which is a necessary condition for a rational bubble in the EU ETS during

this period. At this juncture, it seems acceptable to make a slight anticipation: We find pronounced

explosiveness in EU ETS prices since 2018.

(ii) We estimate the predictive regression proposed by Fama (1984) employing the IVX technique

by Kostakis, Magdalinos, and Stamatogiannis (2015) and using the IVX-AR approach by Yang,

Long, Peng, and Cai (2020). This allows us to test against a rational bubble in the EU ETS in the

presence of an (explosively) trending risk premium.

The structure of the paper is as follows: The next section examines pricing equations within

the EU ETS, with a particular emphasis on switching costs and market expectations. Section 3
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highlights the economic significance of an explosively trending risk premium and outlines the econo-

metric testing procedure. Section 4 provides a comprehensive description of the data and presents

the empirical findings. Finally, Section 5 concludes the paper by discussing policy implications and

proposing potential directions for future research.

2. Pricing Equations for Emission Trading Systems

This section presents two fundamentally different approaches to price allowances in emissions

trading systems: One is based on switching costs and the other on market expectations. The first

approach relies on the implicit assumption that emission allowances are perfect substitutes for any

technological abatement solution. Under this assumption, the ETS price should be determined by

switching costs towards more CO2-efficient energy sources (see Montgomery 1972, Rubin 1996,

Kling and Rubin 1997, Carmona, Fehr, and Hinz 2009).

However, if market participants act under uncertainty (are faced with transaction costs), the

assumption that allowances and fuel-switching are perfect substitutes is violated. Considering that

investments in fuel-switching technologies often come with high costs, long-term durability, and

irreversible investment requirements, they are typically not viewed as a perfect substitute to emis-

sion permits (see Chesney and Taschini 2012, Taschini 2021). Hence, the current spot price might

reflect the expectation of scarcity of future emission allowances rather than current switching costs.

This section is structured in the following way: Initially, we explore an empirical modeling

approach centered on switching costs, demonstrating that its foundational assumptions are overly

restrictive and limit its reliability for empirical analysis. Subsequently, we shift to a more viable

approach focused on market expectations.

2.1. Pricing with Switching Costs

A rational bubble can be characterized as a situation where the price of an asset becomes discon-

nected from its underlying fundamental value. Within a rational expectations framework, rational

bubbles emerge solely from the expectations of market actors regarding future price increases (see

Flood and Hodrick 1990). Since rational price expectations are positive, the price of the asset
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surges beyond its intrinsic value during a rational bubble (see Tirole 1985, Diba and Grossman

1988a,b).2

We denote the price in the ETS as Pt, viz.

Pt =Ut +Bt with t= 1,2, . . . , T (1)

where Ut ≥ 0 is the fundamental value and Bt ≥ 0 is the bubble component. The decomposition is

orthogonal and hence, Ut and Bt are uncorrelated components of Pt. Blanchard (1979) suggests to

model the bubble component as

Bt =


1+ρ
π

×Bt−1 + ϵt with probability π,

ϵt with probability 1−π,

(2)

where ρ > 0 denotes the risk-free rate and ϵt is an independent and identically distributed (i.i.d.)

random variable with zero mean and variance σ2
ϵ , i.e., ϵt ∼ i.i.d. (0, σ2

ϵ ). We relax the i.i.d. assump-

tion to allow for a general linear process, e.g., a stationary and invertible AutoRegressive Moving

Average (ARMA) process. The bubble survives with probability π in period t. In this case, the

bubble expands at an increased rate of (1+ ρ)/π to compensate investors for the potential bubble

collapse. The bubble bursts with probability 1−π to a general linear process. We denote the con-

ditional expectation given the information set Ft available at time t by Et := E [· | Ft]. Since the

bubble is a sub-martingale process, i.e.,

Et [Bt+1]− (1+ ρ)Bt = 0, (3)

the bubble component of the price process Bt is explosive and expecting that Bt+1 >Bt is rational,

hence the term rational bubble (see Diba and Grossman 1988a). These characteristics are also

fulfilled, for example, by the periodically collapsing bubble process according to Evans (1991).

2 In line with the prevailing body of empirical research, our focus centers on rational extrinsic bubbles, as these

bubbles correspond with explosive price trends. This entails that the decomposition of the price into fundamental

and bubble components is orthogonal.
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A time series with no deterministic component is said to be integrated of order d, denoted as I (d),

if differencing the series d times results in a time series that has a stationary and invertible ARMA

representation (see Engle and Granger 1987). No finite number of differencing of an explosive

process has a stationary and invertible ARMA presentation, viz. an explosive process is I (∞)

and therefore, the bubble component is integrated of order infinity, i.e., Bt ∼ I (∞), see Diba and

Grossman (1988a). We use the notion of integration and the I (d)-notation in the following to

analyze the empirical implications for the ETS price given the presence or absence of a rational

bubble, respectively.

Next, we turn to modeling the fundamental Ut: Assuming that emission allowances can perfectly

substitute fuel-switching – meaning a transition from cheap but polluting to expensive but clean

energy sources – producers will adjust their production processes. This adjustment will occur as

long as the marginal cost of avoiding CO2 emissions does not surpass the price of allowances (see

Montgomery 1972, Rubin 1996, Kling and Rubin 1997). Hence, in market equilibrium and assuming

the absence of a rational price bubble, the price within the ETS aligns with the switching costs

towards CO2-efficient energy sources. Expanding upon the illustration provided in Carmona, Fehr,

and Hinz (2009) regarding the transition from coal to gas for power generation (power generation

is often seen as indicative for the whole industrial sector because it reflects the central short-term

abatement measure within the EU ETS), the switching costs in the EU ETS are given as

St =
ηgas ×P

(gas)
t − ηcoal ×P

(coal)
t

Ecoal −Egas

. (4)

Here, P
(gas)
t and P

(coal)
t denote the prices of natural gas and coal at time t, while Egas and Ecoal

represent their respective constant average CO2 emissions. Similarly, ηgas and ηcoal signify the heat

input coefficients associated with gas and coal. The precise numerical values for these constants

can be found, for instance, in Carmona, Fehr, and Hinz (2009).

Hence, the empirical pricing equation of emission allowances with Bt = 0 based on switching

costs as the fundamental value reads as

Pt =Ut =
ηgas

Ecoal −Egas

×P
(gas)
t − ηcoal

Ecoal −Egas

×P
(coal)
t + εt, (5)
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where P
(gas)
t and P

(coal)
t are time series that are assumed to be integrated of order one, respectively.

Further, let εt be a zero-mean innovation term integrated of order zero, i.e., εt ∼ I (0). Thus, εt

might follow a stationary and invertible ARMA process.

Time series are said to be co-integrated (co-explosive) when they share a common (explosive)

stochastic trend, meaning that there is a linear combination of these time series with a lower degree

of integration than the underlying variables. Under the above assumptions about the underlying

time series, the switching costs and the spot prices in the ETS are co-integrated (co-explosive)

with the testable co-integration (co-explosiveness) vector

(1,ψgas,ψcoal)
′
:=

(
1,− ηgas

Ecoal −Egas

,
ηcoal

Ecoal −Egas

)′

, (6)

since Pt ∼ I(1) (Pt ∼ I(∞)), P
(gas)
t ∼ I(1)

(
P

(gas)
t ∼ I(∞)

)
, P

(coal)
t ∼ I(1)

(
P

(coal)
t ∼ I(∞)

)
and Pt +

ψgas ×P
(gas)
t +ψcoal ×P

(coal)
t = εt ∼ I (0). This leads to the following pricing equation.3

Pricing Equation 1 With a potentially non-zero bubble component, it follows that the spot price

process in the emission trading system, if emission certificates and switching costs are perfect

substitutes, is given by

Pt︸︷︷︸
I(1)/ I(∞)

= Bt︸︷︷︸
I(∞)

−ψgas × P
(gas)
t︸ ︷︷ ︸

I(1)/ I(∞)

−ψcoal × P
(coal)
t︸ ︷︷ ︸

I(1)/ I(∞)

+ εt︸︷︷︸
I(0)

.

It becomes evident that when Bt > 0, the price dynamics Pt must exhibit explosiveness, and when

Bt = 0, the price dynamics could potentially be explosive, contingent upon an explosive coal and/or

gas price. Therefore, the presence of explosiveness in the price Pt alone does not provide adequate

grounds to ascertain the existence of a rational bubble. Yet, when Bt = 0, the differential between

the price and the switching costs is integrated to an order of zero, i.e., Pt − St = εt ∼ I(0), since

Pt and St are co-integrated or co-explosive, respectively. In contrast, when Bt > 0, the differential

exhibits explosiveness, viz. Pt −St =Bt + εt ∼ I(∞). To examine the presence of a rational bubble

3 There is the possibility of co-integration or co-explosiveness between gas and coal prices. Nevertheless, since these

instances are not pertinent to the subsequent analysis, they will not be elaborated upon here.
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within the ETS, one approach is to employ a right-sided unit root test on the differential between

the ETS price and the switching costs. Empirical evidence in favor of the alternative, i.e., that

Pt − St is explosive, could argue for the existence of a rational bubble. However, rejecting the

null hypothesis could stem from a misspecification of the fundamental, leading to inconclusive

outcomes. For example, Creti and Joëts (2017) determine the fundamental of the EU ETS as

0.520×P (gas)
t +0.632×P (oil)

t +0.514×St−0.260×P (stock)
t by principle component analysis, whereas

P
(oil)
t denotes the price for crude oil and P

(stock)
t is the value of an appropriate stock market index at

time t. Specifying the fundamental in this way is in marked contrast to the specification based solely

on switching costs from coal to gas as in Equation (5), highlighting the different interpretations of

the true underlying fundamental in the ETS and the possibility of misspecification.

Consequently, discovering a method to identify a rational bubble without the need to explicitly

define a fundamental is essential, particularly in the context of an ETS. It becomes even more

crucial considering an additional limitation of the switching costs approach which assumes that

investments in fuel-switching technologies and the acquisition of emission allowances are perfect

substitutes. In situations where market participants are faced with transaction costs or if market

actors anticipate alterations in future switching costs, varying penalties for non-compliance, or a

potential adjustment in the quantity of certificates available, the perfect substitutes assumption

might be violated and the validity of Pricing Equation 1 would be compromised (see Zhao 2003,

Chesney and Taschini 2012, Taschini 2021, Baudry, Faure, and Quemin 2021). Especially due to

dynamic political measures to reduce CO2 emissions, the assumption that market actors decide

under certainty appears unrealistic (see Pahle, Günther, Osorio, and Quemin 2023). The next

section provides an approach which does not require the assumption that fuel-switching and buying

certificates are perfect substitutes.4

4 Given that the assumptions of an empirical study based on the switching costs approach seem too restrictive, we

avoid analyzing Pricing Equation 1 using cointegration or coexplosivity methods in the subsequent empirical analysis.

However, note that there are several studies that analyze a potential co-integration equilibrium between switching
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2.2. Pricing with Market Expectations

Building on the findings by Hitzemann and Uhrig-Homburg (2018), this section introduces a pricing

equation grounded in market expectations to analyze rational bubbles in the ETS. We adopt a

perspective that incorporates banking, ensuring a realistic alignment with the context of the EU

ETS. Banking in the context of this paper means that market actors are allowed to use certificates

beyond the current compliance date T and they exercise this option when they anticipate an

increase in allowance prices. In order to fix ideas, consider an ETS where banking is not allowed, and

a forward contract is established at time t with a delivery date of T : If the delivery date coincides

with the compliance date T , the speculative bubble component is removed from the forward price,

since the delivered certificate can only be used for compliance purposes and not for speculation.

Moreover, if it is possible to bank, speculation can continue beyond T , and the bubble component

does not necessarily disappear from the price expectations. Therefore, inferring a bubble based on

market expectations appears challenging if banking is permitted. However, as noted by Pavlidis,

Paya, and Peel (2017, 2018), under rational bubbles and in the absence of significant trading

frictions, i.e., with banking allowed, the weighting of the bubble component in price expectations

differs from its weighting in the actual spot price. As the fundamental components are weighted

equally in the equations for prices and price expectations, explosiveness in the differential between

price expectations and the actual prices indicates conclusively a rational bubble.

Specifically, Hitzemann and Uhrig-Homburg (2018) propose a stochastic equilibrium model that

takes banking directly into account. The authors demonstrate that the equilibrium permit price

can be represented as a sequence of European binary call options written on aggregate emissions

across the entire economy. Therefore, assuming discrete time, the fundamental reads as

Ut =

NT∑
p=k

(1+ ρ)
−(Tp−t)×Et

[
ϖTp ×

(
1−PTp

)]
=

NT∑
p=k

(1+ ρ)
−(Tp−t)×Et

[
UTp

]
, (7)

costs and emission prices (see Creti, Jouvet, and Mignon 2012, Koch, Fuss, Grosjean, and Edenhofer 2014, Rickels,

Görlich, and Peterson 2015). Further, see Hintermann, Peterson, and Rickels (2016) for a comprehensive review on

the empirical literature about allowance price dynamics during phase II.
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whereas t∈ (Tk−1,Tk], ρ > 0 is the risk-free rate, NT denotes the number of compliance periods of

the ETS, ϖTp is the penalty for non-compliance and 1−PTp represents the likelihood of economy-

wide cumulative emissions surpassing the economy-wide permit holdings in trading period Tp. It is

important to emphasize that the standard cost-of-carry no-arbitrage condition remains intact here,

as the futures price still includes the rational bubble component if banking is allowed. The orthog-

onal relationship between the fundamental and rational bubble components yields the following

pricing equation.

Pricing Equation 2 If banking is allowed in the emission trading system, the spot price in the

ETS is determined as

Pt =

NT∑
p=k

(1+ ρ)
−(Tp−t)×Et

[
UTp

]
+Bt.

Hence, the price with a bubble component at time t+n is given by

Pt+n =Ut+n +Bt+n =

NT∑
p=k

(
(1+ ρ)

−(Tp−t−n)×Et+n

[
UTp

])
+Bt+n

=

NT∑
p=k

(
(1+ ρ)

−(Tp−t−n)×Et+n

[
UTp

])
+

(
1+ ρ

π

)n

Bt + ϵt+n

(8)

with (t+n)∈ (Tk−1,Tk]. For the price expectations at time t about time t+n, we receive

Et [Pt+n] =

NT∑
p=k

(
(1+ ρ)

−(Tp−t−n)×Et

[
UTp

])
+Et [Bt+n]

=

NT∑
p=k

(
(1+ ρ)

−(Tp−t−n)×Et

[
UTp

])
+(1+ ρ)

n ×Bt

(9)

with (t+n)∈ (Tk−1,Tk]. The differential between actual and expected ETS prices is given by

Dt+n := Pt+n −Et [Pt+n] = ϑt+n +(1+ ρ)
n

(
1

πn
− 1

)
×Bt + ϵt+n, (10)

whereas the prediction error of the fundamental component reads as

ϑt+n =

NT∑
p=k

(
(1+ ρ)

−(Tp−t−n)×Et+n

[
UTp

])
−

NT∑
p=k

(
(1+ ρ)

−(Tp−t−n)×Et

[
UTp

])
(11)

and ϵt+n is the prediction error for the bubble component. Note that ϑt+n when Bt = 0 and

ϑt+n+ϵt+n when Bt > 0 correspond to the prediction which minimizes the mean-squared prediction
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error (MSPE). This is because, by definition, conditional expectation minimizes the MSPE under

quadratic loss, see Granger (1969) and Baumeister (2023).

With ϑt+n ∼ I (0) and ϑt+n + ϵt+n ∼ I (0), respectively, we receive for Bt = 0,

Dt+n︸ ︷︷ ︸
I(0)

= ϑt+n︸︷︷︸
I(0)

(12)

and for Bt > 0, we obtain

Dt+n︸ ︷︷ ︸
I(∞)

= ϑt+n︸︷︷︸
I(0)

+(1+ ρ)
n

(
1

πn
− 1

)
× Bt︸︷︷︸

I(∞)

+ ϵt+n︸︷︷︸
I(0)

. (13)

Hence, the differential Dt+n does not depend on the market fundamental, see Pavlidis, Paya, and

Peel (2017, 2018). This implies that the explosive dynamics of the differential between spot (see

Equation 8) and expected spot prices (see Equation 9) are due solely to the presence of a rational

bubble. As a result, one might consider using a right-sided unit root test to examine the potential

explosiveness in Dt+n. However, it is important to notice that Et [Pt+n] is not directly observable.

Consequently, market expectations must be approximated using futures prices. This approach

introduces the complication that the risk premium – defined as the difference between futures

prices and spot price expectations – can distort the results due to its own explosively trending

behavior in the absence of a rational bubble.5

3. Testing against Rational Bubbles in the Presence of a Risk
Premium

The predominant empirical method for evaluating rational bubbles has been introduced by Phillips

and Yu (2011) and Phillips, Shi, and Yu (2015a,b). Their proposed approach involves testing

against explosive behavior in the differential between fundamental and price series. Moreover, these

scholars present robust right-sided unit root tests, aiming to overcome concerns raised by Evans

5 It is important to note that Hamilton and Wu (2014) propose a method for estimating market expectations. However,

this approach inherently involves estimation errors which can propagate to right-sided unit root tests used for rational

bubble inference, potentially leading to significant size distortions. To mitigate this issue, we refrain from estimating

market expectations in the initial stage and subsequently using these estimates for bubble testing in the second stage.
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(1991) regarding the limited power of standard unit root and co-integration tests in detecting

periodically collapsing bubbles. One limitation of employing explosiveness testing in the differential

between fundamental and price series to assess rational bubbles is its dependence on a proxy for

the fundamental process. Although this concern might be manageable in the realm of stocks, where

the dividend process is observable and can act as a substitute for the fundamental, the preceding

chapter underscored the challenges associated with defining the fundamental in the context of an

ETS.

Pavlidis, Paya, and Peel (2017, 2018) address this challenge by investigating market expectations

instead of opting for a proxy for the fundamental. Consequently, Pavlidis, Paya, and Peel (2017)

utilize the continuous futures price at time t with a delivery date of t+ n, represented as Fn,t,

as a proxy of market expectations. However, this approach comes with a limitation, as the risk

premium which accounts for the difference between the futures price and the market expectation,

remains unobservable. The method outlined below avoids the need for observing market expecta-

tions directly and does not impose restrictive assumptions on the trend behavior of the differential

between market expectations and its proxy, i.e., the futures price.

3.1. The Role of the Risk Premium

As stated previously in Section 2.2, Equation (10) predicts a stationary equilibrium between actual

prices and price expectations in the absence of a rational bubble. Should the researcher opt for

assuming a stationary risk premium, denoted as RPn,t ∼ I (0) where

RPn,t := Fn,t −Et [Pt+n] , (14)

she can apply a stationarity test to

Pt+n −Fn,t = ϑt+n +(1+ ρ)
n

(
1

πn
− 1

)
×Bt −RPn,t + ϵt+n (15)

to test against the presence of a rational bubble. However, rejecting the null hypothesis of sta-

tionarity for Pt+n − Fn,t could result from either the presence of a bubble price component or a

violation of the assumption of a stationary risk premium. Furthermore, if the researcher assumes a
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risk premium integrated of order one, i.e., RPn,t ∼ I(1), a right-sided unit root test may be applied.

In this context, rejecting the null hypothesis of no rational bubble could indicate either the exis-

tence of a rational bubble or a violation of the assumed risk premium dynamics, specifically if the

risk premium is not integrated of order one but instead exhibits explosive behavior, specifically

RPn,t ∼ I(∞).

3.1.1. Is an explosive risk premium a phenomenon that holds economic relevance?

To answer this question, we define the risk premium as in Equation (14), a negative (positive)

risk premium indicates normal backwardation (normal contango) in the futures market, i.e., Fn,t <

Et [Pt+n] (Fn,t >Et [Pt+n]). Originally proposed by Keynes (1930) and Hicks (1939), the notion

of normal backwardation posits that hedgers typically maintain short positions as an insurance

against the market price risk. The Insurance Hypothesis implies that the futures price should be

lower than the expected future spot price, acting as compensation to the speculator for furnish-

ing insurance to the producer. More generally, the Hedging Pressure Hypothesis states that, in

normal backwardation (normal contango), the risk premium is driven by sellers (buyers) engaged

in future contracts to insure against anticipated price decreases (increases), see, among others,

Bessembinder (1992), Bessembinder and Chan (1992), De Roon, Nijman, and Veld (2000), and

Dewally, Ederington, and Fernando (2013) for empirical support in favor of the Hedging Pressure

Hypothesis.

In the context of an ETS, firms regulated and holding surplus emission certificates may choose

to sacrifice a premium to shift the price risk to the long position, viz. they are willing to receive

the certainty equivalent Et [U (Pt+n)] whereas Et [U (Pt+n)] < Et [Pt+n]. In this case U (·) denotes

the utility function of a representative agent holding the short position. Conversely, firms facing

a shortage of certificates might be inclined to pay a premium to transfer the price risk to the

short position, viz. these agents are willing to pay the certainty equivalent Et [U (Pt+n)] whereas

Et [U (Pt+n)] > Et [Pt+n]. In this case U (·) denotes the utility function of a representative agent

holding the long position.



16

To account for the possibility that a non-zero risk premium, Et [U (Pt+n)]−Et [Pt+n], may depend

on the price process, and recognizing that the price process could be potentially explosive, the risk

premium is also potentially explosive. We explicitly model the risk premium using the framework

proposed by Baumeister (2023) below.

3.1.2. Modeling risk premia. Building on the framework established by Baumeister (2023),

we model the final payoff of a long position in an n-period futures contract initiated at time t as

Pt+n −Fn,t

Fn,t

= λ0n +λ′
1nxt + vt+n. (16)

Here, xt is defined as a (K × 1) vector comprising proxies or latent risk factors and vt+n is a

prediction error with mean zero. Further, λ0n represents a horizon-specific intercept, while λ1n

denotes a vector of horizon-specific slope coefficients. Note that we refer to that as the risk premium

in percentage terms.

Re-writing equation (16) yields

Pt+n = Fn,t (1+λ0n +λ′
1nxt + vt+n) ,

and applying conditional expectations leads to

Et [Pt+n] = Fn,t (1+λ0n +λ′
1nxt) .

Furthermore, substituting RPn,t +Et [Pt+n] for Fn,t and simplifying gives

−RPn,t =RPn,t (λ0n +λ′
1nxt)+Et [Pt+n] (λ0n +λ′

1nxt) .

Finally, solving for RPn,t yields

RPn,t =Et [Pt+n]×− (λ0n +λ′
1nxt)

(1+λ0n +λ′
1nxt)

=: ϱn,tEt [Pt+n] , (17)

which implies that the certainty equivalent, i.e., Fn,t, is given by (1+ ϱn,t)Et [Pt+n]. In the context

of the EU ETS, the median regulated firm may be willing to incur ϱn,t as a premium to hedge
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against the risk of increasing certificate prices. Consequently, assuming a stationary process ϱn,t

with a positive mean appears reasonable in this context, suggesting that normal contango is likely

to be the prevailing market condition. Hence, this modeling approach implies that the risk premium

would proportionally scale with the potentially explosive price expectations, i.e.,

RPn,t =Et [U (Pt+n)]−Et [Pt+n] = (1+ ϱn,t)Et [Pt+n]−Et [Pt+n] = ϱn,tEt [Pt+n] . (18)

To simplify the exposition, we treat ϱn,t as a non-zero constant, specifically assuming ϱn,t = ϱn

for all t. However, it is important to note that this assumption can be relaxed without difficulty.

Under the constant ϱn assumption, we obtain

RPn,t = ϱn(1+ ρ)nBt + ϱnθ
nUt. (19)

This result implies the presence of normal contango when ϱn > 0 and normal backwardation when

ϱn < 0. Consequently,

Cov (Bt,RPn,t) = ϱn(1+ ρ)nVar (Bt) and Cov (Ut,RPn,t) = ϱnθ
nVar (Ut) (20)

since Cov (Ut,Bt) = 0 (extrinsic bubble). Further, Var (·) and Cov (·, ·) denote the population vari-

ance and covariance, respectively.

3.2. Fama Predictive Regressions

Fama (1984) presents two predictive regression models (hereafter referred to as FPRs) to analyze

the time-varying premiums of forward exchange rates. In this section, we contend that these FPRs

have the capability to infer rational bubbles and are robust against the time-trending patterns of

the risk premium.

Fama (1984) splits the futures price at time t and delivery date t+n into the expected price at

time t with respect to time t+n and a risk premium RPn,t, i.e.,

Fn,t =Et [Pt+n] +RPn,t (21)

to receive the differential between the futures price and the current price, i.e.,

Fn,t −Pt =Et [Pt+n]−Pt +RPn,t, (22)
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and to obtain the differential between the futures price and future spot price, i.e.,

Fn,t −Pt+n =Et [Pt+n]−Pt+n +RPn,t. (23)

Bearing this in mind, Fama (1984) considers the two regressions

(FPR 1) Fn,t −Pt+n = µ1,n +β1,n (Fn,t −Pt)+ e1,t+n,

(FPR 2) Pt+n −Pt = µ2,n +β2,n (Fn,t −Pt)+ e2,t+n,

whereas µ1,n and µ2,n are constants, β1,n and β2,n are slope coefficients and e1,t+n and e2,t+n are

errors with mean zero. Given that there is no rational bubble, we obtain from Equation (10),

Equation (22) and Equation (23) the slope coefficient of FPR 1 as

β1,n :=
Cov (Fn,t −Pt+n,Fn,t −Pt)

Var (Fn,t −Pt)
=

Cov (−ϑt+n +RPn,t,Et [Pt+n]−Pt +RPn,t)

Var (Fn,t −Pt)
, (24)

For Cov (ϑt+n,RPn,t) = 0 and Cov (ϑt+n, Pt) = 0, we receive

β1,n =
Var (RPn,t)+Cov (RPn,t,Et [Pt+n]−Pt)

Var (RPn,t)+Var (Et [Pt+n]−Pt)+ 2Cov (RPn,t,Et [Pt+n]−Pt)
. (25)

Apparently, the risk premium may introduce an upward bias in the estimator of β1,n when testing

the null hypothesis of H0 : β1,n = 0 to infer the presence of a rational bubble (see Maynard 2003).

For β2,n, i.e., the slope coefficient of FPR 2, we obtain

β2,n :=
Cov (Pt+n −Pt,Fn,t −Pt)

Var (Fn,t −Pt)
=

Cov (Et [Pt+n]−Pt +ϑt+n,Et [Pt+n]−Pt +RPn,t)

Var (Fn,t −Pt)
(26)

and with the above argument, i.e., Cov (ϑt+n,RPn,t) = 0 and Cov (ϑt+n, Pt) = 0, we receive

β2,n =
Var (Et [Pt+n]−Pt)+Cov (RPn,t,Et [Pt+n]−Pt)

Var (RPn,t)+Var (Et [Pt+n]−Pt)+ 2Cov (RPn,t,Et [Pt+n]−Pt)
. (27)

Fama (1984) notes that both FPRs convey identical information, resulting in β1,n+β2,n = 1, µ1,n+

µ2,n = 0 and the disturbances sum up to zero for each time period t.



19

3.2.1. Slope Coefficients β1,n and β2,n under an Ongoing Rational Bubble. Note that

in the following we assume that

(i) Cov (Ut,Bt) = 0, i.e., the bubble is extrinsic;

(ii) the fundamental evolves according to a mildly explosive process; specifically Ut = θUt−1+ϑt,

where θ = 1+ c× T−α with c > 0 and α ∈ (0,1), as detailed in Phillips and Magdalinos (2007), or

c= 0, representing a random walk;

(iii) the risk premium is generated by Equation (19);

(iv) that the variance of the bubble dominates the variance of the fundamental. Specifically,

Var (Ut)→∞ (since the fundamental follows a random walk or is mildly explosive), Var (Bt)→∞

(since the bubble is a submartingale and explosive), and Var (Ut)/Var (Bt)→ 0 as T → 0.

Building upon these assumptions, we conduct an analysis of β1,n and β2,n both in the absence

and presence of a rational bubble, taking into account the influence of a trending risk premium.

Hence, we obtain in the absence of a bubble, i.e., Bt = 0,

β1,n → 1 and β2,n → 0 for c > 0 as T →∞,

β1,n = 1 and β2,n = 0 for c= 0.

In contrary, we obtain in the presence of a bubble, i.e., Bt > 0,

β1,n →C and β2,n → 1−C for c > 0 as T →∞,

β1,n =C and β2,n = 1−C for c= 0,

whereas C < 1 is a constant that only depends on the autoregressive coefficient of the bubble(
1+ρ
π

)n
, on (1+ ρ)

n
, and on ϱn. Refer to Figure 2 for an illustration of 1−C. A detailed derivation

of C is provided in Appendix A.

Insert Figure 2 here.

To summarize our theoretical findings on the FPRs: In the absence of a risk premium, the efficient

market hypothesis is characterized by H0 : β1,n = 0 and H0 : β2,n = 1. Conversely, when a risk

premium is present, and under assumptions (i) to (iii), the efficient market hypothesis corresponds

to H0 : β1,n = 1 and H0 : β2,n = 0.
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3.2.2. Drawing Inference on β1,n and β2,n. Based on the findings above, we can use a

statistical testing procedure for testing the hypotheses

H0 : β1,n = 1 (no rational bubble) vs. HA : β1,n ̸= 1 (rational bubble),

H0 : β2,n = 0 (no rational bubble) vs. HA : β2,n ̸= 0 (rational bubble)

using the conventional t-test based on the OLS method without the need to specify the fundamental

or impose assumptions on the trending behavior of the risk premium. However, with a significant

level of persistence in the explanatory variable, the conventional t-test results derived from the

OLS method lose their validity. Stambaugh (1999) has demonstrated convincingly that this issue

becomes more pronounced when the disturbances in the predictive regression are strongly correlated

with the regressor’s innovations.

Kostakis, Magdalinos, and Stamatogiannis (2015) present the IVX procedure that strengthens

the robustness of inference concerning the degree of persistence of the explanatory variable, encom-

passing mildly explosive behavior. More explicitly, employing an instrument zn,t for the regressor,

denoted here as xn,t := Fn,t − Pt, where zn,t represents a transformed version of xn,t designed to

achieve a controllable level of persistence, results in a robust inference procedure that effectively

accounts for the impacts of non-stationarity. We focus in the following on FPR 2 and denote the

regressand by yn,t, i.e., yn,t := Pt+n − Pt. The IVX estimator of the slope coefficient of FPR 2 is

given by

β̂2,n =

∑T

t=1 zn,tỹn,t∑T

t=1 zn,tx̃n,t

, (28)

whereas x̃n,t and ỹn,t denote demeaned counterparts of xn,t and yn,t, respectively. Kostakis, Mag-

dalinos, and Stamatogiannis (2015) demonstrate the convergence of β̂2,n to a mixed Gaussian

limiting distribution, a result that remains valid irrespective of the level of persistence exhibited by

the regressor in the model. Consequently, this feature facilitates the development of a Wald-type

statistic to test β2,n = 0, denoted as Wβ̂2
which converges to a standard χ2-distribution, i.e.,

Wβ̂2,n
=

(
β̂2,n −β2,n

)2

V̂ ar
(
β̂2,n

) =
β̂2
2,n

V̂ ar
(
β̂2,n

) ⇒ χ2
(1) as T →∞, (29)
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whereas ⇒ denotes convergence in distribution and V̂ ar
(
β̂2,n

)
is the estimated variance of β̂2,n

(see Kostakis, Magdalinos, and Stamatogiannis 2015, for details).

3.2.3. Monte Carlo Simulation. In finite samples and under normal contango, β̂2,n tends

to be above zero in the absence of a rational bubble, as the variance of the fundamental does not

completely vanish from the numerator of β2,n (see Appendix A). This may result in small-sample

size distortions when using the Wald test to test β2,n = 0 against β2,n ̸= 0. To investigate the

implications of this bias, we conduct a Monte Carlo simulation with 10,000 replications, comparing

the size performance of the FPR approach to that of the KPSS method.

For this size analysis, we evaluate the rejection rates of the Wald statistic, as proposed by

Kostakis, Magdalinos, and Stamatogiannis (2015), under the null hypothesis H0 : β2,n = 0. In this

scenario, the price process is defined as Pt = Ut, where the fundamental Ut evolves according to

the autoregressive model

Ut = θUt−1 +ϑt, θ= 1+ c×T−α, ϑt ∼ i.i.d. N(0,1), (30)

with c = 0.1, α ∈ {0.7,0.75,0.8,0.85}, and U0 = 100. We examine two sample sizes, T = 150 and

T = 300. Figure 3 provides a representative example, demonstrating that the process exhibits

long-term increasing behavior.

Insert Figure 3 here.

As a natural competitor, we apply the KPSS test to Pt+1 − F1,t, following the methodology of

Kwiatkowski, Phillips, Schmidt, and Shin (1992). Additionally, the risk premium RP1,t is modeled

under two configurations. If ϱn > 0, it follows RP1,t = ϱnθUt; otherwise, it is generated as RP1,t =

0.5RP1,t−1 +φt, where φt ∼ i.i.d. N(0,1).

Insert Table 1 here.

The results, summarized in Table 1, indicate that the IVX-based Wald statistic achieves nominal

size under all configurations. Thus, in an empirically relevant set-up, the small-sample bias is
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negligible. In contrast, the KPSS test exhibits significant size distortions, particularly for larger

values of ϱn and higher persistence parameters, highlighting the advantages of the FPR approach

in finite samples.6

4. Data and Empirical Results

Prior to exploring the empirical findings, we begin this section by introducing the EU ETS (futures)

price data used in our empirical analysis. Next, we examine whether market and futures prices

exhibit explosive behavior using the GSADF test (see Phillips, Shi, and Yu 2015a,b). Subsequently,

we shift our focus to the core of our analysis, testing H0 : β2,n = 0 against H1 : β2,n ̸= 0. To this end,

we employ the approach by Yang, Long, Peng, and Cai (2020), applied within a rolling window

framework. The latter approach addresses potential size distortions in the testing procedure of

Kostakis, Magdalinos, and Stamatogiannis (2015) which can arise when serial correlation and

heteroskedasticity are present in the error term of the predictive regression.

4.1. Data

We utilize weekly price data from the Bloomberg database spanning from January 4, 2013, to

October 11, 2023, encompassing a total of T = 563 observations. The Bloomberg abbreviation for

the spot price is ICEDEU3 Index. All fundamental contracts were actively traded and monitored on

the Intercontinental Currency Exchange (ICE). Based on these contracts, our analysis focuses on

generic continuous futures prices (as required by Pricing Equation 2) with a delivery date of one,

two, three and four months, respectively. Since we consider weekly data, we receive n∈ {4,8,12,16},

i.e., delivery in 4, 8, 12 and 16 weeks.7

4.2. Is there an Explosive Episode in EU ETS Spot and Futures Rates?

We start our empirical exercise with testing against explosive episodes in the EU ETS price and

futures price series over the full sample from 2013 to 2023. Explosiveness in spot prices is a necessary

6 For a detailed power analysis of the FPR approach against the GSADF test applied to Dt+n, we refer the reader to

Pavlidis, Paya, and Peel (2017).

7 Note that contracts with n > 16 (4 months) are traded far less frequently than those with n ≤ 16. Therefore, we

omit consideration of n> 16 due to this liquidity constraint.
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but, as described above, not a sufficient condition for a rational bubble. Nevertheless, the timing of

when the spot price becomes explosive holds significance for subsample analysis, such as predictive

regression and co-explosiveness analysis, in the subsequent sections.

We employ the GSADF test on the spot and futures price series in its original levels, and we find

evidence for explosive behavior at the 5% significance level indicated by superscript r, as reported

in Table 2.

Insert Table 2 here.

The critical values for the GSADF test are determined by wild bootstrapping with 999 repetitions

accounting for multiplicity and heteroskedasticity (see Phillips and Shi 2020). Further, the test

uses T = 563 observations and a minimum window size of r0 :=
⌊
0.01+1.8

√
T
⌋
= 42 observations,

following the rule proposed by Phillips, Shi, and Yu (2015a,b). Furthermore, as highlighted by

Vasilopoulos, Pavlidis, and Mart́ınez-Garćıa (2022), simulations provide evidence suggesting the

effective performance of the GSADF test when a limited fixed number of lags is employed. In

contrast, utilizing information criteria for lag selection may lead to notable distortions in size. As a

result, we adopt the approach proposed by Pavlidis, Yusupova, Paya, Peel, Mart́ınez-Garćıa, Mack,

and Grossman (2016), employing two variations of a fixed number of lags. Specifically, we integrate

one and four lags within the augmented Dickey-Fuller regression.

Subsequently, our next objective is to date-stamp the beginning and the end of the explosive

periods. Hence, we use the Backward Supremum Augemented Dickey Fuller (BSADF) sequence

with critical values obtained by wild bootstrap (see Phillips, Shi, and Yu 2015a,b, Phillips and Shi

2020). Overall, our findings for the spot and futures price series reveal (i) consistent indications of

explosiveness across all series, and (ii) a notably similar timing pattern of the explosive phases in

spot and futures prices during the third and fourth trading phase. The results are summarized by

Figure 4 and Figure 5, indicating episodes of explosive behavior during the end of the third and

during the fourth trading period.

Insert Figures 4 and 5 here.
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4.3. Is there a Rational Bubble in the EU ETS?

As the date stamping indicates periods of explosive price behavior during the third trading period

from 2018 to its conclusion in 2021, as well as at the onset of the fourth trading period from 2022

to 2023, we conclude that there is empirical evidence supporting the fulfillment of the first-order

condition for a rational bubble.

We conduct a rolling window analysis using the Fama predictive regressions estimated via the

approach outlined in Yang, Long, Peng, and Cai (2020) for the period from January 2013 to

October 2023. Specifically, we employ a window size of w0 := T2 − T1 = 90 observations, and the

lag length in the method proposed by Yang, Long, Peng, and Cai (2020) is selected based on the

Bayesian Information Criterion (BIC). To account for the issue of multiple hypothesis testing, we

follow Pavlidis, Paya, and Peel (2017) and apply a Bonferroni correction. Specifically, we adjust

the nominal significance level by dividing it by the number of hypotheses tested. Hence, we test

the null hypothesis H0 : β2,n = 0 against the alternative β2,n ̸= 0 using the sequence of test statistics

Wn :=
{
Wβ̂2,n

}T2

t=T1

.

The null hypothesis H0 : β2,n = 0 is rejected if sup{Wn} > F−1

χ2
1
(1− δ/w0), where F

−1

χ2
1
(1− δ/w0)

represents the (1− δ/w0)-quantile of the chi-squared distribution with 1 degree of freedom. Here, δ

denotes the significance level. Specifically, rejection occurs if sup{Wn}>F−1

χ2
1
(1−0.05/90) = 11.92.

Table 3 summarizes the supremum of the sequences. We fail to reject the null hypothesis in all

cases considered, as shown in Table 3.

Insert Table 3 here.

Further, the upper panel of Figures 6 to 9 illustrate the sequences of test statistics along with their

corresponding critical values.

Insert Figures 6 to 9 here.

Furthermore, we highlight the importance of incorporating additional lags in predictive regressions,

specifically by adopting the approach of Yang, Long, Peng, and Cai (2020) as an augmentation to
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the method developed by Kostakis, Magdalinos, and Stamatogiannis (2015). To address the bias

introduced by correlated regression errors in the Kostakis, Magdalinos, and Stamatogiannis (2015)

framework, Yang, Long, Peng, and Cai (2020) use autoregressive prewhitening. To evaluate this

adjustment, we analyze the sequence of a Wald statistic to test the joint hypothesis that all included

lags of the error term are equal to zero. The results, presented in the lower panel of Figures 6 to

9, indicate that the null hypothesis is rejected whenever the test statistic exceeds F−1

χ2
5
(1− 0.05) =

11.07, given the inclusion of up to 5 lags. In the majority of cases, the null hypothesis is clearly

rejected, underscoring the necessity of this augmented approach.

5. Conclusion, Discussion and Future Research

The importance of tackling climate change underscores the critical need for effective regulation,

specifically through optimally functioning carbon taxation or emission trading systems (refer to

Stroebel and Wurgler 2021, for a survey of the prevailing views among academics, professionals, and

regulators regarding the primary risks anticipated for typical businesses and investors in the next

five years). Therefore, it is crucial to leverage the insights acquired from previous trading phases

for shaping the design of future emission trading systems and for implementation of best possible

regulations. As emission trading schemes play a central role in climate policy, understanding their

market dynamics and potential for improvement is of paramount importance.

The empirical investigation, in particular, aims to enhance our understanding of whether the

notable rise in EU ETS prices since 2018 can be linked to a rational bubble. However, the analysis

reveals no evidence of a rational bubble being the driving force behind the surge in allowance prices

in 2018. Instead, it implies that the surge in EU ETS prices could be attributed to the expectation

of impending scarcity, stemming from significant policy changes affecting emission caps. This is

supported by the parallel (explosive) trend behavior inferred in future spot and futures rates.

Although we refrain from asserting the superiority of a Pigouvian tax or a trading system in

mitigating carbon emissions, a significant drawback of a trading system would be (rational) bubble

formation. After all, the price signal originating from the emission allowance market stands as a
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critical factor influencing the abatement decisions of regulated companies. These decisions may not

be optimal if the market prices are somehow distorted. We alleviate concerns regarding rational

bubble formation in previous trading phases. Therefore, in our perspective, there is no necessity

for policy intervention to prevent potential rational bubbles in the EU ETS architecture, given the

analysis of historical data at our disposal.

Our research opens up various possibilities for future research. First, we have demonstrated

that FPRs can be used to test against rational bubbles also in the presence of an explosive risk

premium. Hence, FPRs can be employed across various asset classes where futures prices are

observable, without the necessity of assuming the trend behavior of the risk premium or establishing

a fundamental. This encompasses bonds, stocks, and notably commodities and currencies, where

the presence of a risk premium in the futures price holds significant sway (see Bessembinder 1992).

Second, Quemin and Pahle (2023) developed a diagnostic toolkit to assess the extent and impact

of speculation in emission trading systems, applying it to the EU ETS. However, increased specu-

lation does not necessarily indicate market inefficiency. Incorporating FPRs with a rolling window

approach could enhance this toolkit, offering a real-time view of inefficiencies in future trading

phases of the EU ETS and other emission trading systems globally.
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Appendix
A.1: Derivation of β1,n and β2,n for a mildly explosive process

In this section we present the derivation of β1,n and β2,n under a non-zero risk premium and in the

presence or absence of an ongoing rational bubble.

Consider the slope coefficients of FPR 1 and FPR 2, i.e.,

β1,n :=
Cov (Fn,t −Pt+n,Fn,t −Pt)

Var (Fn,t −Pt)
and β2,n :=

Cov (Pt+n −Pt,Fn,t −Pt)

Var (Fn,t −Pt)
.

Hence, under the above assumption, we obtain the numerator of β1,n as

Cov (Fn,t −Pt+n,Fn,t −Pt)

=Cov

(
−ϑt+n − (1+ ρ)

n

(
1

πn
− 1

)
Bt − ϵt+n +RPn,t, (θ

n − 1)Ut +((1+ ρ)
n − 1)Bt +RPn,t

)
=Var (RPn,t)− (1+ ρ)

n

(
1

πn
− 1

)
((1+ ρ)

n − 1)︸ ︷︷ ︸
=:γ1,n

Var (Bt)− (1+ ρ)
n

(
1

πn
− 1

)
(θn − 1)Cov (Bt,Ut)︸ ︷︷ ︸

=0

+

(
2 (1+ ρ)

n −
(
1+ ρ

π

)n

− 1

)
︸ ︷︷ ︸

=:γ2,n

Cov (Bt,RPn,t)+ (θn − 1)Cov (Ut,RPn,t)

− (θn − 1)Cov (ϑt+n,Ut)︸ ︷︷ ︸
=0

− ((1+ ρ)
n − 1)Cov (ϑt+n,Bt)︸ ︷︷ ︸

=0

−Cov (ϑt+n,RPn,t)︸ ︷︷ ︸
=0

− (θn − 1)Cov (ϵt+n,Ut)︸ ︷︷ ︸
=0

− ((1+ ρ)
n − 1)Cov (ϵt+n,Bt)︸ ︷︷ ︸

=0

−Cov (ϵt+n,RPn,t)︸ ︷︷ ︸
=0

,

and the numerator of β2,n as

Cov (Pt+n −Pt,Fn,t −Pt)

=Cov

(
(θn − 1)Ut +ϑt+n +

((
1+ ρ

π

)n

− 1

)
Bt + ϵt+n, (θ

n − 1)Ut +((1+ ρ)
n − 1)Bt +RPn,t

)
=

((
1+ ρ

π

)n

− 1

)
((1+ ρ)

n − 1)︸ ︷︷ ︸
=:γ3,n

Var (Bt)+ (θn − 1)
2
Var (Ut)

+

((
1+ ρ

π

)n

− 1

)
︸ ︷︷ ︸

=:γ4,n

Cov (Bt,RPn,t)+ (θn − 1)Cov (Ut,RPn,t)

+(θn − 1)Cov (ϑt+n,Ut)︸ ︷︷ ︸
=0

+((1+ ρ)
n − 1)Cov (ϑt+n,Bt)︸ ︷︷ ︸

=0

+Cov (ϑt+n,RPn,t)︸ ︷︷ ︸
=0

+(θn − 1)Cov (ϵt+n,Ut)︸ ︷︷ ︸
=0

+((1+ ρ)
n − 1)Cov (ϵt+n,Bt)︸ ︷︷ ︸

=0

+Cov (ϵt+n,RPn,t)︸ ︷︷ ︸
=0

.
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For the denominator of β1,n and of β2,n, we receive

Var (Fn,t −Pt) =Var (RPn,t +(θn − 1)Ut +((1+ ρ)
n − 1)Bt)

=Var (RPn,t)+ ((1+ ρ)
n − 1)

2︸ ︷︷ ︸
=:γ2

n

Var (Bt)+ (θn − 1)
2
Var (Ut)

+2((1+ ρ)
n − 1)︸ ︷︷ ︸

=:γn

Cov (Bt,RPn,t)+ 2(θn − 1)Cov (Ut,RPn,t) .

Null hypothesis of no rational bubble. Under the null, the population variances and covari-

ances are multiples of the variance of the fundamental. Hence, we have

β1,n =
Var (RPn,t)+ (θn − 1)Cov (Ut,RPn,t)

Var (RPn,t)+ (θn − 1)
2
Var (Ut)+ 2(θn − 1)Cov (Ut,RPn,t)

=
ϱ2nθ

2n +(θn − 1)ϱnθ
n

ϱ2nθ
2n +(θn − 1)

2
+2(θn − 1)ϱnθn

.

Substitution of the definition of a mildly explosive process yields

ϱ2n(1+ cT−α)2n +((1+ cT−α)n − 1)ϱn(1+ cT−α)n

ϱ2n(1+ cT−α)2n +((1+ cT−α)n − 1)
2
+2((1+ cT−α)n − 1)ϱn(1+ cT−α)n

.

Further, the binomial expansion (1 + cT−α)κ ≈ 1+ κcT−α is applied for small cT−α, i.e., valid as

T →∞. In the numerator, (1+cT−α)2n ≈ 1+2ncT−α and (1+cT−α)n−1≈ ncT−α are substituted.

This leads to

ϱ2n(1+2ncT−α)+ (ncT−α)ϱn(1+ncT−α).

In the denominator, the same approximations are used. The terms become

ϱ2n(1+2ncT−α)+ (ncT−α)2 +2(ncT−α)ϱn(1+ncT−α).

The dominant term in both numerator and denominator as T →∞ is ϱ2n. This reduces the fraction

to

ϱ2n
ϱ2n

= 1 as T →∞.

For β2,n, we receive

β2,n =
(θn − 1)

2
Var (Ut)+ (θn − 1)Cov (Ut,RPn,t)

Var (RPn,t)+ (θn − 1)
2
Var (Ut)+ 2(θn − 1)Cov (Ut,RPn,t)

=
(θn − 1)

2
+(θn − 1)ϱnθ

n

ϱnθn +(θn − 1)
2
+2(θn − 1)ϱnθn

.
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Substitution of the definition of a mildly explosive process yields

((1+ c×T−α)n − 1)
2
+((1+ c×T−α)n − 1)ϱn(1+ c×T−α)n

ϱ2n(1+ c×T−α)2n +((1+ c×T−α)n − 1)
2
+2((1+ c×T−α)n − 1)ϱn(1+ c×T−α)n

,

whereas the binomial expansion (1 + cT−α)κ ≈ 1 + κcT−α is applied for small cT−α, i.e., valid as

T →∞. In the numerator, (1+ cT−α)n − 1≈ ncT−α and (1+ cT−α)n ≈ 1+ncT−α are substituted.

This leads to

(ncT−α)
2
+(ncT−α)ϱn (1+ncT−α)

ϱ2n (1+2ncT−α)+ (ncT−α)
2
+2(ncT−α)ϱn (1+ncT−α)

.

Simplifying further gives

ncT−2α +ncT−αϱn
ϱ2n +2ncT−αϱ2n +n2c2T−2α +2ncT−αϱn

.

As T →∞, the dominant term in the numerator is ncT−2α which vanishes faster than the leading

term ϱ2n in the denominator. This reduces the fraction to

0

ϱ2n
= 0 as T →∞.

Hence, we receive β1,n +β2,n = 1 under the null hypothesis of no bubble.

Alternative hypothesis of a rational bubble. Under the alternative, the population vari-

ances and covariances are multiples of the variance of the fundamental. Hence, we have

β1,n =
Var (RPn,t)− γ1,nVar (Bt)+ γ2,nCov (Bt,RPn,t)+ (θn − 1)Cov (Ut,RPn,t)

Var (RPn,t)+ γ2
nVar (Bt)+ (θn − 1)

2
Var (Ut)+ 2γnCov (Bt,RPn,t)+ 2(θn − 1)Cov (Ut,RPn,t)

with the numerator

ϱ2n(1+ρ)
2nVar (Bt)+ϱ

2
nθ

2nVar (Ut)−γ1,nVar (Bt)+γ2,nϱn(1+ρ)
nVar (Bt)+(θn − 1)ϱnθ

nVar (Ut)

and the denominator

ϱ2n(1+ ρ)2nVar (Bt)+ ϱ2nθ
2nVar (Ut)+ γ2

nVar (Bt)+ (θn − 1)
2
Var (Ut)

+2γnϱn(1+ ρ)nVar (Bt)+ 2(θn − 1)ϱnθ
nVar (Ut) .
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Using the assumption Var (Ut)/Var (Bt)→ 0 as T →∞, the dominant terms are those involving

Var (Bt), so the numerator becomes

Var (Bt)
[
ϱ2n(1+ ρ)2n − γ1,n + γ2,nϱn(1+ ρ)n

]
.

The denominator simplifies to

Var (Bt)
[
ϱ2n(1+ ρ)2n + γ2

n +2γnϱn(1+ ρ)n
]
.

Hence, taking the limit as T →∞ whereas Var (Ut)/Var (Bt)→ 0 as T →∞, β1,n becomes

β1,n =
ϱ2n(1+ ρ)2n − γ1,n + γ2,nϱn(1+ ρ)n

(ϱn(1+ ρ)n + γn)
2 =:C for T →∞.

Finally, we have

β2,n =
γ3,nVar (Bt)+ (θn − 1)

2
Var (Ut)+ γ4,nCov (Bt,RPn,t)+ (θn − 1)Cov (Ut,RPn,t)

Var (RPn,t)+ γ2
nVar (Bt)+ (θn − 1)

2
Var (Ut)+ 2γnCov (Bt,RPn,t)+ 2(θn − 1)Cov (Ut,RPn,t)

with the numerator

γ3,nVar (Bt)+ (θn − 1)
2
Var (Ut)+ γ4,nϱn(1+ ρ)nVar (Bt)+ (θn − 1)ϱnθ

nVar (Ut)

and the denominator as for β1,n. Using the assumption Var (Ut)/Var (Bt)→ 0, the dominant terms

are those involving Var (Bt), so the numerator becomes

Var (Bt) [γ3,n + γ4,nϱn(1+ ρ)n] .

Hence, taking the limit as T →∞ whereas Var (Ut)/Var (Bt)→ 0, β2,n becomes

β2,n =
γ3,n + γ4,nϱn(1+ ρ)n

(ϱn(1+ ρ)n + γn)
2 for T →∞.

Adding β1,n and β2,n, their combined numerator becomes

ϱ2n(1+ ρ)2n − γ1,n + γ2,nϱn(1+ ρ)n + γ3,n + γ4,nϱn(1+ ρ)n.

Substituting the definitions of γn, γ1,n, γ2,n, γ3,n, γ4,n, we simplify the combined numerator to

ϱ2n(1+ ρ)2n + γ2
n +2γnϱn(1+ ρ)n = (ϱn(1+ ρ)n + γn)

2
.

The denominator of β1,n and β2,n is identical. Hence, we conclude β1,n + β2,n = 1, also under the

alternative of a rational bubble.
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A.2: Tables and Figures

Table 1: Monte Carlo Simulation of the size of the FPR approach.

Fama Predictive Regressions

ϱn T α 0.7 0.75 0.8 0.85

0
150 0.05 0.05 0.05 0.05

300 0.05 0.05 0.04 0.05

0.01
150 0.06 0.05 0.05 0.05

300 0.05 0.05 0.05 0.05

0.1
150 0.04 0.04 0.05 0.06

300 0.04 0.04 0.06 0.06

KPSS

ϱn T α 0.7 0.75 0.8 0.85

0
150 0.04 0.05 0.04 0.06

300 0.04 0.06 0.05 0.05

0.01
150 0.30 0.20 0.14 0.12

300 0.67 0.46 0.30 0.22

0.1
150 1.00 0.98 0.94 0.87

300 1.00 0.98 0.96 0.92

Explanations: The table reports the rejection rates for testing H0 : β2,n = 0 against H1 : β2,n ̸= 0

using the IVX methodology applied within the FPR framework (left panel) and the rejection rates

of the KPSS test applied to the difference Pt+1 −F1,t (right panel).
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Table 2: Testing explosiveness of EU ETS spot and futures rates

Lags Pt F4,t F8,t F12,t F16,t

GSADF 1 4.96r 4.97r 4.98r 4.97r 4.97r

4 5.43r 5.45r 5.46r 5.45r 5.43r

Explanations: The table presents the test statistics of the GSADF test applied to the spot and

futures rates. Superscript r indicates rejection at the 5% significance level whereas critical values

are obtained by bootstrapping with 999 repetitions.

Table 3: Testing rational bubbles in the EU ETS by the FPR approach

n 4 8 12 16

sup{Wn} 10.41 10.95 11.31 10.41

Explanations: The table presents test statistics derived as the supremum of the sequences Wn.

The null hypothesis is rejected at the nominal significance level of five percent when sup{Wn}>

11.92.
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Figure 1: Spot price series of emission allowances in the EU ETS
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Explanations: The dotted vertical line indicates the (supposed) start of the price surge (2018).

The solid vertical line indicates the start of the fourth trading period (2021).
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Figure 2: Illustration of 1−C as a function of ρ
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Explanations: This illustrates 1 − C for varying ρ ∈ [0.025,0.1] with fixed values of π = 0.99,

ϱn ∈ {0.025,0.05,0.1}, and n= 1.
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Figure 3: Illustration of a mildly explosive process.
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Explanations: The figure illustrates the behavior of sightly explosive process (refer to the text

for details on the specification).

Figure 4: Timing of explosiveness in EU ETS spot and futures prices
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Explanations: The regions shaded in gray signify explosive periods, as determined by the BSADF

procedure at a 5% significance level, employing one lag and a minimum window size of 36 obser-

vations. ”Spot” denotes the date stamping for the spot price, while ”Futures Price 1” corresponds

to the futures price with delivery in one month (4 weeks), and so forth.
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Figure 5: Timing of explosiveness in EU ETS spot and futures prices (cont’d)
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Explanations: The regions shaded in gray signify explosive periods, as determined by the BSADF

procedure at a 5% significance level, employing four lag and a minimum window size of 36 obser-

vations. ”Spot” denotes the date stamping for the spot price, while ”Futures Price 1” corresponds

to the futures price with delivery in one month (4 weeks), and so forth.
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Figure 6: Test statistic sequences for n= 4
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Explanations: The upper panel shows the the sequence Wn. The dashed line corresponds to the

critical value F−1

χ2
1
(1− 0.05/90) = 11.92. The lower panel shows the sequence of a Wald statistic

sequence to test the joint hypothesis that all coefficients attached to the included lags of the error

term are equal to zero. The dashed line corresponds to the critical value F−1

χ2
5
(1− 0.05) = 11.07.
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Figure 7: Test statistic sequences for n= 8

2016 2018 2020 2022

0
5

10
15

20

Date

S
ta
tis
tic

Critical Value
Test Statistic

2016 2018 2020 2022

0
20
0

60
0

10
00

Date

S
ta
tis
tic

Explanations: The upper panel shows the the sequence Wn. The dashed line corresponds to the

critical value F−1

χ2
1
(1− 0.05/90) = 11.92. The lower panel shows the sequence of a Wald statistic

sequence to test the joint hypothesis that all coefficients attached to the included lags of the error

term are equal to zero. The dashed line corresponds to the critical value F−1

χ2
5
(1− 0.05) = 11.07.
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Figure 8: Test statistic sequences for n= 12
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Explanations: The upper panel shows the the sequence Wn. The dashed line corresponds to the

critical value F−1

χ2
1
(1− 0.05/90) = 11.92. The lower panel shows the sequence of a Wald statistic

sequence to test the joint hypothesis that all coefficients attached to the included lags of the error

term are equal to zero. The dashed line corresponds to the critical value F−1

χ2
5
(1− 0.05) = 11.07.
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Figure 9: Test statistic sequences for n= 16
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Explanations: The upper panel shows the the sequence Wn. The dashed line corresponds to the

critical value F−1

χ2
1
(1− 0.05/90) = 11.92. The lower panel shows the sequence of a Wald statistic

sequence to test the joint hypothesis that all coefficients attached to the included lags of the error

term are equal to zero. The dashed line corresponds to the critical value F−1

χ2
5
(1− 0.05) = 11.07.
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