SEM modeling with
singular moment matrices

Part I: ML-Estimation of time series

Hermann Singer

Diskussionsbeitrag Nr. 441
August 2009
SEM modeling with
singular moment matrices

Part I: ML-Estimation of time series

Hermann Singer
FernUniversität in Hagen *
August 28, 2009

Abstract

A structural equation model (SEM) with deterministic intercepts is introduced. The gaussian likelihood function does not contain determinants of sample moment matrices and is thus well defined for only one statistical unit. The SEM is applied to the dynamic state space model and compared with the Kalman filter (KF) approach. The likelihoods of both methods are shown to be equivalent, but for long time series numerical problems occur in the SEM approach, which are traced to the inversion of the latent state covariance matrix. Both approaches are compared on several aspects. The SEM approach is now open for idiographic analysis and estimation of panel data with correlated units.

Key Words: Structural Equation Models (SEM); Time series; Kalman Filtering (KF); State Space Models; Maximum Likelihood (ML) Estimation.

1 Introduction

Structural equation models (SEM) are well known and widely applied tools of specifying multivariate relations between latent states and their measured indicators. Usually one considers cross sectional data and analyzes the relations of a latent p-vector η, measured with independent replications of the indicators $y_n, n = 1, \ldots, N$. In the case of panel data $y_{nt}, t = 0, \ldots, T$ one can fill the time series for each panel unit into the components of the indicators and analyze

*Lehrstuhl für angewandte Statistik und Methoden der empirischen Sozialforschung, D-58084 Hagen, Germany, hermann.singer@fernuni-hagen.de
the time dependence as a multivariate vector (cf., e.g. Möbus and Nagl; 1983; Oud et al.; 1993; Arminger and Müller; 1990).

However, in the time series case \(N = 1 \) an apparent problem occurs: The sample moment matrix is singular, since only one observation vector \(y = \{y_{10}, \ldots, y_{1T}\} \) is present. Nevertheless, the theory of time series analysis and Kalman filtering shows (cf., e.g. Schweppe; 1965; Jazwinski; 1970; Caines; 1988), that the likelihood function is well defined and ML estimates can be computed. There were attempts to create artificial samples with \(N > 1 \) by layering pieces of the times series in the data matrix, but then the statistical units \(n \) are dependent.

In this paper it is shown that such procedures are not necessary at all, since the likelihood function of a SEM is well defined even for \(N = 1 \) (cf. also Singer; 2007). In some well known programs ML fit functions are used which depend on the log determinant of the singular moment matrix, but these terms do not occur in the exact likelihood.

The likelihood computed by the SEM is compared with the likelihood obtained recursively by the Kalman filter (KF) and both procedures yield identical results. For long time series and panels, there are numerical differences, since the SEM involves matrices of order \((T+1)p \times (T+1)p\), whereas the KF only uses matrices of order \(p \times p\), where \(p\) is the dimension of the latent state component \(\eta_{nt}\).

This will be detailed in the further sections. Section 2 gives the definition of a SEM model including deterministic intercept terms and states the Gaussian likelihood function. In section 3 the case of time series data with measurement error is treated. The likelihood function of the SEM representation is explicitly transformed to the prediction error decomposition and numerical differences are detected. In an appendix, computational aspects are shortly discussed.

2 SEM modeling

In the following the SEM model

\[
\begin{align*}
\eta_n & = B\eta_n + \Gamma x_n + \zeta_n \\
y_n & = \Lambda \eta_n + \tau x_n + \epsilon_n
\end{align*}
\]

\(n = 1, \ldots, N\), will be considered. The structural matrices have dimensions \(B : P \times P\), \(\Gamma : P \times Q\), \(\Lambda : K \times P\), \(\tau : K \times Q\) and \(\zeta_n \sim N(0, \Sigma_\zeta)\), \(\epsilon_n \sim N(0, \Sigma_\epsilon)\) are independent normally distributed error terms \((\Sigma_\zeta : P \times P, \Sigma_\epsilon : K \times K)\). In the structural and the measurement model, the variables \(x_n\) are deterministic control variables. They can be used to model intercepts and for dummy coding. Stochastic exogenous variables \(\xi_n\) are included by extending the latent variables
\[\eta_n = B_1(\Gamma x_n + \zeta_n) \]
\[E[\eta_n] = B_1 \Gamma x_n \]
\[\text{Var}(\eta_n) = B_1 \Sigma \zeta B_1^\prime \]
\[E[y_n] = \mu_{yn} = \Lambda E[\eta_n] + \tau x_n = [\Lambda B_1 \Gamma + \tau] x_n := C x_n \]
\[\text{Var}[y_n] = \Sigma_y = \Lambda \text{Var}(\eta_n) \Lambda' + \Sigma_\epsilon = \Lambda B_1 \Sigma \zeta B_1' \Lambda' + \Sigma_\epsilon. \]

In the equations above, it is assumed that \(B_1 := (I - B)^{-1} \) exists. Thus, the log likelihood function for the \(N \) observations \(\{y_n, x_n\} \) is

\[l = -\frac{N}{2} \left(\log |\Sigma_y| + \text{tr} \left(\Sigma_y^{-1} \frac{1}{N} \sum_n (y_n - \mu_{yn})(y_n - \mu_{yn})^\prime \right) \right). \]

Inserting \(\mu_{yn} \) (eqn. 3) and using the data matrices \(Y' = [y_1, ..., y_N] : K \times N \), \(X' = [x_1, ..., x_N] : Q \times N \), the log likelihood is

\[l = -\frac{N}{2} \left(\log |\Sigma_y| + \text{tr} \left(\Sigma_y^{-1} (M_y + C \Sigma \zeta C' - M_{yx} C' - C M_{xy}) \right) \right), \]

with the moment matrices \(M_y = Y'Y : K \times K \), \(M_x = X'X : Q \times Q \), \(M_{yx} = Y'X : K \times Q \).

In order to implement arbitrary restrictions on the structural matrices, it is assumed that they depend on an \(u \)-dimensional parameter vector \(\psi \), e.g. \(\Sigma_\zeta = \Sigma_\zeta(\psi) \) etc. For example, setting \(\Sigma_\zeta = G(\psi)G(\psi)^\prime \) with \(G = \) lower triangular matrix, the structural error covariance is positive semidefinite. Another example is the use of the matrix exponential function in the definition of the exact discrete model (Singer 2009).

The likelihood function (8) is well defined for \(N = 1 \), since no log determinants of the sample moment matrices are involved, as is suggested by the ML fitting function of LISREL (cf. LISREL 8 reference guide, p. 21, eqns. 1.14, 1.15, p. 3).
The covariance matrix of the indicators, Σ_y (eqn. 7), must be nonsingular, however.

In order to make the discussion more transparent and explicit, the representation of time series as SEM will be considered.

3 Time series and SEM modeling

3.1 SEM representation of a dynamical state space model

The discrete time dynamical state space model (vector autoregression VAR(1) with measurement model) is defined by

$$
y_{i+1} = \alpha_i y_i + \beta_i x_i + u_i; \ i = 0, \ldots, T - 1
$$

$$
z_i = H_i y_i + D_i x_i + \epsilon_i; \ i = 0, \ldots, T
$$

with independent Gaussian errors $E[u_i] = 0, \operatorname{Var}(u_i) = \Omega_i, E[\epsilon_i] = 0, \operatorname{Var}(\epsilon_i) = R_i$. The dimensions of the dynamic structural matrices are $\alpha_i : p \times p, \beta_i : p \times q, \Omega_i : p \times p, H_i : k \times p, D_i : k \times q, R_i : k \times k$. The initial distribution is assumed to be $y_0 \sim N(\mu, \Sigma)$ independent of u_0 and x_i are deterministic control variables.

This model is very general and permits the treatment of ARIMAX models, dynamic factor analysis, colored noise models etc. (Akaike; 1974; Watson and Engle; 1983; Caines; 1988). All structural matrices depend on a parameter vector ψ.

It can be treated recursively by the Kalman filter or simultaneously by the matrix equation ($N = 1$)

$$
\eta = B\eta + \Gamma x + \zeta
$$

$$
y = \Lambda\eta + \tau x + \epsilon
$$

where $\eta' = [y_0', \ldots, y_T'] : 1 \times (T + 1)p$ is the latent state, $\zeta' = [\zeta_0', u_0', \ldots, u_{T-1}'] : 1 \times (T + 1)p$ is a vector of process errors, $y' = [z_0', \ldots, z_T'] : 1 \times (T + 1)k$ are the measurements and $x' = [1, x'_0, \ldots, x'_T] : 1 \times (1 + (T + 1)q)$ are (deterministic) exogenous variables.

\footnote{Otherwise the singular normal distribution can be used (Mardia et al.; 1979, p. 41).}

\footnote{Moreover, the system matrices may depend on lagged measurements $Z' = \{z_i, \ldots, z_0\}$, and the measurement matrices H_i, d_i, R_i on Z'^{-1} in order to specify ARCH effects. This so called conditional Gaussian model can be treated by the Kalman filter (Liptser and Shiryaev; 2001, vol. II), but not by SEM.}
The structural matrices are (system model)

\[B = \begin{bmatrix}
0 & 0 & 0 & \cdots & 0 \\
\alpha_0 & 0 & 0 & \cdots & 0 \\
0 & \alpha_1 & 0 & \cdots & 0 \\
\vdots & 0 & \ddots & 0 & \vdots \\
0 & 0 & \cdots & \alpha_{T-1} & 0
\end{bmatrix} \]

\[\Gamma = \begin{bmatrix}
\mu & 0 & 0 & 0 & \cdots & 0 \\
0 & \beta_0 & 0 & 0 & \cdots & 0 \\
0 & 0 & \beta_1 & 0 & \cdots & 0 \\
\vdots & 0 & 0 & \ddots & 0 & \vdots \\
0 & 0 & 0 & \cdots & \beta_{T-1} & 0
\end{bmatrix} \]

\[\text{Var}(\zeta) = \Sigma_\zeta = \begin{bmatrix}
\Sigma & 0 & 0 & \cdots & 0 \\
0 & \Omega_0 & 0 & \cdots & 0 \\
0 & 0 & \Omega_1 & \cdots & 0 \\
\vdots & 0 & 0 & \ddots & 0 \\
0 & 0 & \cdots & 0 & \Omega_{T-1}
\end{bmatrix} \]

Furthermore

\[\Lambda = \begin{bmatrix}
H_0 & 0 & 0 & \cdots & 0 \\
0 & H_1 & 0 & \cdots & 0 \\
0 & 0 & H_2 & \cdots & 0 \\
\vdots & 0 & 0 & \ddots & 0 \\
0 & 0 & \cdots & 0 & H_T
\end{bmatrix} \]

\[\tau = \begin{bmatrix}
0 & D_0 & 0 & 0 & \cdots & 0 \\
0 & 0 & D_1 & 0 & \cdots & 0 \\
0 & 0 & 0 & D_2 & 0 & \cdots \\
\vdots & \vdots & 0 & 0 & \ddots & 0 \\
0 & 0 & 0 & 0 & 0 & D_T
\end{bmatrix} \]

\[\text{Var}(\epsilon) = \Sigma_\epsilon = \begin{bmatrix}
R_0 & 0 & 0 & \cdots & 0 \\
0 & R_1 & 0 & \cdots & 0 \\
0 & 0 & R_2 & \cdots & 0 \\
\vdots & \vdots & 0 & \ddots & 0 \\
0 & 0 & \cdots & 0 & R_T
\end{bmatrix} \]

are the factor loading, deterministic intercept and error parameter matrices of the measurement model. If there are missing data present in \(z_i \), the respective rows in \(\Lambda \) are dropped (cf. example sect. 3.4).
Solving for \(\eta \) one obtains the solution of the VAR(1) (eqn. 9) for the time points \(t_i \)

\[
\eta = (I - B)^{-1}(\Gamma x + \zeta).
\]

(13)

In this equation, the initial condition is represented by \(\eta_0 = y(t_0) = \mu + \zeta_0 \sim N(\mu, \Sigma) \). This may be seen more explicitly by noting that

\[
(I - B)^{-1} = \sum_{i=0}^{T} B^i
\]

since \(B \) is nilpotent (\(B^l = 0; l > T \)). For example, setting \(T = 4 \) one obtains

\[
(I - B)^{-1} = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\alpha_0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\alpha_1 \alpha_0 & \alpha_1 & 1 & 0 & 0 & 0 & 0 & 0 \\
\alpha_2 \alpha_1 \alpha_0 & \alpha_2 \alpha_1 & \alpha_2 & 1 & 0 & 0 & 0 & 0 \\
\alpha_3 \alpha_2 \alpha_1 \alpha_0 & \alpha_3 \alpha_2 \alpha_1 & \alpha_3 \alpha_2 & \alpha_3 & 1 & 0 & 0 & 0 \\
\alpha_T \alpha_{T-1} \alpha_{T-2} \alpha_{T-3} \alpha_0 & \alpha_T \alpha_{T-1} \alpha_{T-2} \alpha_{T-3} \alpha_1 & \alpha_T \alpha_{T-1} \alpha_{T-2} \alpha_{T-3} & \alpha_T \alpha_{T-1} & 1 & 0 & 0 & 0 \\
\end{bmatrix}
\]

Inserting in eqn. (13) one can compute the explicit solution of (9), in components

\[
y_0 = \mu + \zeta_0 \sim N(\mu, \Sigma)
\]

\[
y_i = \left(\prod_{l=i-1}^{0} \alpha_l \right) y_0 + \sum_{j=0}^{i-1} \left(\prod_{l=0; l \geq j}^{i-j-2} \alpha_{l-1} \right) (\beta_j x_j + u_j),
\]

(14)

\(i = 1, \ldots, T \),

where the time ordering must be respected (\(\alpha_i \) left of \(\alpha_j \) for times \(i > j \)). In the special case of constant \(\alpha \) one gets the familiar form

\[
y_i = \alpha^i y_0 + \sum_{j=0}^{i-1} \alpha^{i-j-1} (\beta_j x_j + u_j).
\]

3.2 Likelihood function with singular moment matrices

If the structural matrices do not depend on measurements \(z_i \) (see footnote 2), the system is multivariate Gaussian and the log likelihood function reads

\[
l = -\frac{1}{2} \left(\log |\Sigma_y| + \text{tr} \left[\Sigma_y^{-1} (M_y + CM_x C' - M_{yx} C' - CM_{yx}) \right] \right),
\]

(15)

with the singular moment matrices \(M_y = yy' : K \times K \), \(M_x = xx' : Q \times Q \), \(M_{yx} = yx' : K \times Q \) and \(K = (T + 1) k, Q = (T + 1) q + 1 \) and \(C = \Lambda B_1 \Gamma + \tau \).
3.2.1 Likelihood function without measurement model

In the special case without measurement model \((y = \eta)\), the likelihood may be simplified using

\[
\Sigma_y = B_1 \Sigma \zeta B_1'
\]

and thus

\[
I = -\frac{1}{2} (\log |\Sigma_\zeta| + \text{tr} \left[\Sigma_\zeta^{-1}(I - B)(y - \mu_y)(y - \mu_y)'(I - B)' \right]),
\]

where it has been used that \(|I - B| = 1\) and \(\text{tr}[AB] = \text{tr}[BA]\). Noting that \(\mu_y = B_1 \Gamma x\), we find

\[
I = -\frac{1}{2} \left(\log |\Sigma_\zeta| + \text{tr} \left[\Sigma_\zeta^{-1}\left[(I - B)y - \Gamma x \right]\left[(I - B)y - \Gamma x \right]' \right] \right)
\]

Using the special structure of \(B\) we obtain \(\zeta_0 = y_0 - \mu, \zeta_{i+1} = y_{i+1} - \alpha_i y_i - \beta_i x_i, i = 0, \ldots, T - 1\). Inserting the blockdiagonal form of \(\Sigma_\zeta\) one gets the explicit result

\[
I = -\frac{1}{2} \left(\log |\Sigma_\zeta| + \text{tr} \left[\Sigma_\zeta^{-1} \left[(I - B)y - \Gamma x \right]\left[(I - B)y - \Gamma x \right]' \right] \right)
\]

But this is the prediction error decomposition of the likelihood which is directly obtained from the dynamical model \((9)\). One can write

\[
E[y_{i+1}|y_i] = \alpha_i y_i + \beta_i x_i
\]

\[
\text{Var}(y_{i+1}|y_i) = \Omega_i
\]

and thus, using the Markov property of \(y_i\),

\[
I = \log p(y_T, \ldots, y_0) = \log [p(y_T|y_{T-1}) \ldots p(y_1|y_0)p(y_0)]
\]

\[
= \log p(y_0) + \sum_{i=0}^{T-1} \log p(y_{i+1}|y_i),
\]

where \(p(y_{i+1}|y_i) = \phi(y_{i+1}; \alpha_i y_i + \beta_i x_i, \Omega_i)\) (conditional normal distribution) and \(p(y_0) = \phi(y_0; \mu, \Sigma)\). Up to constants \((\propto \log 2\pi)\) the expressions \((16)\) and \((18)\) coincide.
3.2.2 Likelihood function with measurement model

In this case the likelihood

\[p(y) = p(z_T, \ldots, z_0) \]
\[= |2\pi \Sigma_y|^{-1/2} \exp\left(-\frac{1}{2} \text{tr} \left[\Sigma_y^{-1} (y - \mu_y)(y - \mu_y)' \right] \right) \]
\[\mu_y = (\Lambda B_1 \Gamma + \tau)x \]
\[\Sigma_y = \Lambda B_1 \Sigma \zeta B_1' + \Sigma_\epsilon \]

cannot be decomposed into \(p(z_T|z_{T-1}) \ldots p(z_1|z_0) \), since \(z_i \) is not Markovian due to the measurement model [i.e. \(p(z_i|z_{i-1}, \ldots, z_0) \neq p(z_i|z_{i-1}) \)]. This may be seen as follows:

Using the Bayes formula one can condition on earlier measurements \(Z^i = \{z_i, \ldots, z_0\} \) and write

\[p(y) = p(z_T, \ldots, z_0) \]
\[= p(z_T|z_{T-1}, \ldots, z_0)p(z_{T-1}, \ldots, z_0) \]
\[= \prod_{i=0}^{T-1} p(z_{i+1}|Z^i)p(z_0). \]

Since \(y = \{z_0, \ldots, z_T\} \) is a Gaussian system, the conditional distributions are Gaussian as well with parameters (see eqn. 10)

\[E[z_{i+1}|Z^i] = H_{i+1}E[y_{i+1}|Z^i] + D_{i+1}x_{i+1} \]
\[\text{Var}(z_{i+1}|Z^i) = H_{i+1}\text{Var}(y_{i+1}|Z^i)H_{i+1}' + R_{i+1}. \]

This is the optimal prediction of \(z_{i+1} \) in the mean square sense using the information set \(Z^i \), with error covariance \(\text{Var}(z_{i+1}|Z^i) \).

The conditional expectations of the latent variables \(y_i \) can be computed recursively using the dynamical model (9)

\[E[y_{i+1}|Z^i] = \alpha_i E[y_i|Z^i] + \beta_i x_i \]
\[\text{Var}(y_{i+1}|Z^i) = \alpha_i \text{Var}(y_i|Z^i)\alpha_i' + \Omega_i \]
\[i = 0, \ldots, T-1 \]

since \(\text{Var}(u_i|Z^i) = \Omega_i \) (this may depend on \(Z^i \)). The recursion is usually abbreviated as:

time update, a priori moments:

\[\mu_{i+1|i} = \alpha_i \mu_{i|i} + \beta_i x_i \] \hspace{1cm} (19)
\[\Sigma_{i+1|i} = \alpha_i \Sigma_{i|i} \alpha_i' + \Omega_i \] \hspace{1cm} (20)
\[i = 0, \ldots, T-1. \]
The equal time (a posteriori) expectations are given in terms of earlier a priori moments (theorem on normal correlation, Liptser and Shiryaev (2001, vol. II); see eqn. 30):

measurement update, a posteriori moments:

\[
\begin{align*}
\mu_{i|i} &= \mu_{i|i-1} + \Sigma_{i|i-1}H_i^\prime \Gamma_i^{-1} \nu_i \\
\Sigma_{i|i} &= \Sigma_{i|i-1} - \Sigma_{i|i-1}H_i^\prime \Gamma_i^{-1} H_i \Sigma_{i|i-1} \\
\nu_i &= z_i - (H_i \mu_{i|i-1} + D_i x_i) \\
\Gamma_i &= H_i \Sigma_{i|i-1} H_i^\prime + R_i \\
i &= 0, \ldots, T - 1.
\end{align*}
\]

\((\Gamma_i^{-} = \text{pseudo(g)-inverse if singular})\). The prediction error and its conditional covariance matrix (filter error covariance)

\[
\begin{align*}
\nu_i &= z_i - E[z_i|Z^{i-1}] \\
\Gamma_i &= \text{Var}(z_i|Z^{i-1})
\end{align*}
\]

are obtained by the time update formulas (19–20). The iteration is started with the initial condition:

\[
\begin{align*}
\mu_{0|0} &= \mu_{0|0} + \Sigma_{0|0} H_0^{\prime} \Gamma_0^{-} \nu_0 \\
\Sigma_{0|0} &= \Sigma_{0|0} - \Sigma_{0|0} H_0^{\prime} \Gamma_0^{-} H_0 \Sigma_{0|0}^{-} \\
\nu_0 &= z_0 - (H_0 \mu_{0|0} + D_0 \kappa_0) \\
\Gamma_0 &= H_0 \Sigma_{0|0} H_0^{\prime} + R_0
\end{align*}
\]

and setting the expectations \(\mu_{0|0} = E[y_0] = \mu, \Sigma_{0|0} = \text{Var}[y_0] = \Sigma\) equal to the initial conditions of the latent state \(y_0\). This is because at time \(i = 0\) we just have the information in \(z_0\), but no presample information \(z_{-1}, \ldots\). Thus we have derived the Kalman filter algorithm:

Kalman filter algorithm:

\[
\begin{align*}
\text{initial condition} & \quad \mu_{0|0}, \Sigma_{0|0} \\
\text{likelihood} & \quad p(z_0) = \phi(z_0; E[z_0], \text{Var}(z_0)) \\
\text{recursion} & \quad i = 0, \ldots, T - 1 \\
\text{time update} & \quad \mu_{i+1|i}, \Sigma_{i+1|i} \\
\text{measurement update} & \quad \mu_{i+1|i+1}, \Sigma_{i+1|i+1} \\
\text{likelihood} & \quad p(z_{i+1}|Z^i) = \phi(z_{i+1}; E[z_{i+1}|Z^i], \text{Var}(z_{i+1}|Z^i))
\end{align*}
\]
It is a sequence of extrapolation steps (time update) and measurement updates (normal correlation) in order to compute the conditional moments

\[E[z_{i+1}|Z^i] = H_{i+1}\mu_{i+1} + D_{i+1}\chi_{i+1} \]
\[\text{Var}(z_{i+1}|Z^i) = H_{i+1}\Sigma_{i+1|i}H_{i+1}^\prime + R_{i+1}. \]

for the likelihood function \(\phi(z_{i+1}; E[z_{i+1}|Z^i], \text{Var}(z_{i+1}|Z^i)) \) of measurement \(z_{i+1} \). From the recursions it is seen that all earlier measurements are contained in the conditional moments, thus \(z_i \) is not Markovian. Nevertheless, the likelihood in the prediction error decomposition has a simple structure, since the prediction errors are uncorrelated, i.e.

\[
p(z_T, \ldots, z_0) = \prod_{i=0}^{T-1} p(z_{i+1}|Z^i)p(z_0) = \prod_{i=0}^{T-1} \phi(z_{i+1}; E[z_{i+1}|Z^i], \text{Var}(z_{i+1}|Z^i))p(z_0) = \prod_{i=0}^{T-1} \phi(\nu_{i+1}; 0, \Gamma_{i+1})p(z_0). \tag{27}
\]

with initial distribution \(p(z_0) = \phi(z_0; E[z_0], \text{Var}(z_0)) = \phi(z_0; H_0\mu + D_0\chi_0, H_0\Sigma H_0^\prime + R_0) \).

In the case without measurement model \((z_i = y_i) \), one recovers the Markovian structure \(\nu_{i+1} = y_{i+1} - E[y_{i+1}|Y^i] = y_{i+1} - E[y_{i+1}|y_i]; \Gamma_{i+1} = \Omega_{i+1} \) (cf. eqn. 17).

3.3 Numerical example: AR(2) time series with measurement error

In order to facilitate the theoretical discussion with a practical example, an autoregressive time series of the form

\[
y_{i+2} = \phi_1 y_{i+1} + \phi_2 y_i + \beta + u_i; \quad i = 0, \ldots, T - 1
\]
\[
z_i = y_i + \epsilon_i; \quad i = 0, \ldots, T
\]

is considered. In state space form this reads

\[
\begin{bmatrix}
y_{i+1} \\
y_{i+2}
\end{bmatrix} =
\begin{bmatrix}
0 & 1 \\
\phi_2 & \phi_1
\end{bmatrix}
\begin{bmatrix}
y_i \\
y_{i+1}
\end{bmatrix} +
\begin{bmatrix}
0 \\
\beta
\end{bmatrix}
\begin{bmatrix}
u_i \\
1 + u_i
\end{bmatrix};
\]
\(i = 0, \ldots, T - 1 \) \tag{28}

\[
z_i =
\begin{bmatrix}
1 & 0
\end{bmatrix}
\begin{bmatrix}
y_i \\
y_{i+1}
\end{bmatrix} + \epsilon_i; \quad i = 0, \ldots, T \tag{29}
\]

3The prediction errors \(\nu_{i+1} = z_{i+1} - E[z_{i+1}|Z^i] \) are martingale differences, i.e. \(E[\nu_{i+1}|Z^i] = 0 \) and thus uncorrelated, since for \(i > j \) we have \(E[\nu_i\nu_j'] = E[E[\nu_i\nu_j'|Z^{i-1}]] = E[\nu_i E[\nu_j'|Z^{i-1}]] = 0 \).

For system matrices independent of the measurements they are Gaussian and thus even independent (cf. Liptser and Shiryayev, loc. cit., ch. 13)
Figure 1: AR(2) time series with missing data \((T = 50) \): Measurements \(z_i \) (dots), true trajectory \(y_i \) (red) and smoothed states \(E[y_i|Z^T] \) (blue). Also displayed are 95% HPD confidence bands \(E[y_i|Z^T] \pm 1.96 \cdot \text{Std}[y_i|Z^T] \) (green).

The parameter values were chosen as \(\phi_1 = 1, \phi_2 = -0.5, \beta = 1, \Omega = \text{Var}(u_i) = 1 = g^2, R = \text{Var}(\epsilon_i) = 10^{-2} \). The initial condition is distributed as \([y_0, y_1] \sim N([0, 0], \text{diag}(1, 1)) \). The eigenvalues of the structural matrix \(\alpha \) are the solutions of

\[
|\alpha - \lambda I| = 0 = -\lambda(\phi_1 - \lambda) - \phi_2,
\]

\[
\lambda_{1,2} = \phi_1/2 \pm \sqrt{\phi_1^2/4 + \phi_2} = 1/2 \pm i/2 = r(\cos \omega + i \sin \omega).
\]

Thus one obtains a stationary process with damped oscillations of angular frequency \(\omega_{1,2} = \pm \pi/4 \) and period \(T_o = 2\pi|\omega_{1,2}| = 8 \).

The dynamic state space model \((28) \) was represented as a SEM model and the measured and latent data \((y, \eta) \) were simulated from this system. Fig. 1 shows the data \(z_i \) (dots), the true trajectory \(y_i \) (red) and smoothed states \(E[y_i|Z^T] \) (blue), together with 95% HPD confidence bands \(E[y_i|Z^T] \pm 1.96 \cdot \text{Std}[y_i|Z^T] \) (green). It was assumed that at times \(i = \{4, 5, 6, 7, 19, 20, 21\} \) the data are missing. This is reflected in the figure by larger confidence bands. The smoothed trajectory was computed from the SEM by using the theorem on normal correlation

\[
E[\eta|y] = E[\eta] + \text{Cov}(\eta, y)\text{Var}(y)^{-1}(y - E[y]) \quad (30)
\]

\[
\text{Var}[\eta|y] = \text{Var}[\eta] - \text{Cov}(\eta, y)\text{Var}(y)^{-1}\text{Cov}(y, \eta). \quad (31)
\]

(\(\text{Var}(y)^{-1} = \text{pseudo(g)}\)-inverse).

\(^4\)highest posterior probability
Table 1: AR(2) model, $T = 20$. Comparison of SEM and KF ML-estimates and likelihood. The results for $T = 50$, $T = 100$ are similar.

This corresponds to the regression estimator of Thompson in factor analysis. In figure 1, the true parameter values were used.

They can be estimated by maximum likelihood using the SEM likelihood (15) or by the prediction error decomposition (25) using the Kalman filter. The results for $T = 20$, $T = 50$ and $T = 100$ are very similar (cf. table 1 for $T = 20$).

There are small numerical differences, especially in the standard errors computed from the Hessian $H = \nabla^2 l_{\text{SEM}}$ at the ML estimate $\hat{\psi}$, i.e. $\hat{\text{Var}}(\hat{\psi}) \approx (-H)^{-1}$.

It is interesting to investigate the likelihood surface $l(\psi)$ for several sample sizes T, since the dimensions of the SEM matrices are proportional to $(T + 1)p$ and $(T + 1)k$ ($p = 2$, $k = 1$). Indeed, as fig. 2 shows for parameter ϕ_2, there are numerical problems for parameter values far from the true ones, which are stronger for larger sample size. In contrast, the Kalman filter likelihood is always well behaved since only $k \times k$ matrices must be inverted. The use of the g-inverse Σ_y^{-} does not improve the results, in fig. 2 $T = 50$ (middle), they are even worse. Nevertheless, near the true values, the likelihoods are very similar and almost the same estimates are obtained.

The numerical problems can be traced to very large as well as negative and complex eigenvalues for the covariance matrix Σ_y of the observations (starting with $\phi_2 \approx -1.5$, $\phi_2 = 1.5$, $T = 50$), which is positive semidefinite theoretically (figure 3). In the likelihood function, the determinant and the inverse is computed. A variant uses the singular normal distribution, where the product of positive eigenvalues and the g-inverse is used for the Gaussian density (Mardia et al.; 1979, p. 41).

3.4 Discussion

In this section the results of SEM vs. KF in time series analysis ($N = 1$) will be summarized.

- Kalman Filter:

 + The use of the recursive structure of the dynamical model leads to a decoupled ‘white noise form’ of the likelihood, where only matrices of
Figure 2: AR(2) time series: comparison of likelihood surface $l(\phi_2)$ for sample sizes $T = 20, 50, 100$. SEM (inverse /g-inverse) vs. KF. The true value is $\phi_2 = -.5$.
Figure 3: AR(2) time series, $T = 50$: log determinant $\log(\det(\Sigma_y(\phi_2)))$ (top) and the first 25 eigenvalues of $\Sigma_y(\phi_2)$. One detects very large as well as complex and negative values, although the matrix is positive semidefinite theoretically.
order $k \times k$ and $p \times p$ are involved. Thus numerical problems are of smaller size.

+ One can compute the outer product of gradients (OPG) form of the Fisher information matrix, $F = \sum_{i=0}^{T} E[s_is'_i]$; $s_i = \partial I(z_i|Z_{i-1})/\partial \psi$, which may be used for the asymptotic standard errors, including the sandwich form $J^{-1}FJ^{-1}$ ($J = -\partial^2 I/\partial \psi\psi'$ = observed information matrix) when misspecification is present; e.g. nongaussian data, but using likelihood (25).

+ The recursive form allows the treatment of conditionally Gaussian models, where the parameter matrices depend on lagged measurements. Thus a state space treatment of ARCH models is possible.

− Recursive implementation can lead to performance loss in interpreter languages.

− In the panel case $N > 1$ the Kalman recursions must be computed for all units $n = 1, \ldots, N$, although there are simplifications possible (matrix recursions for all filter states; the variances are independent of the data, etc; cf. Singer (1991, 1993)).

• SEM:

+ One can use matrix expressions, which is an advantage in interpreter languages (loops are slow). Moreover, the usage of several processor kernels is sometimes supported in the linear algebra routines (e.g. Mathematica).

+ In the panel case the likelihood depends on moment matrices, which are computed only once.

+ Time series models not fitting to the VAR scheme are easily specified. Moreover, multivariate models can be estimated for $N = 1$, if enough restrictions are present (idiographic analysis).

− Large matrices of order $k(T+1) \times k(T+1)$ must be inverted which can be problematic.

− If the missing data structure is dependent on the panel unit, moment matrices cannot be used any more. Instead, in the individual likelihood approach, each panel unit must be treated separately leading to degraded performance.

− Conditionally Gaussian models cannot be treated, since the joint distribution of all observations is not Gaussian anymore.
4 Conclusion

It has been shown that the representation of a dynamic state space model in terms of SEM leads to a well defined likelihood function, even for only one panel unit (time series case). More generally, multivariate models not fitting to the VAR(1) scheme can be estimated on \(N = 1 \) (idiographic analysis), if enough restrictions are present. This will be discussed elsewhere. Furthermore, panel models with correlated panel units (e.g. including random time effects \(\tau_t \)) can be treated by stacking the data in one observation vector (Singer 2008).

The likelihood of the SEM was transformed explicitly to the prediction error decomposition of Kalman filtering. Both approaches lead to theoretically identical results, but numerical problems occur in the SEM for long time series.

In a second part of the paper (Singer 2009), the representation of sampled continuous time stochastic processes in terms of the exact discrete model and its representation as SEM is treated.

Appendix: Numerical considerations

All computations were done using Mathematica 7, which is an interpreter language. The Kalman filter approach is implemented in the LSDE and SDE packages, whereas the SEM computations are obtained with the equations of section 2.5.

Both the SEM and the SDE approach permit arbitrary nonlinear matrix restrictions, since all system matrices are functions of a parameter vector \(\psi \) (e.g. \(\Sigma_(\psi) \)). Using a product of lower triangular matrices \(G(\psi)G'(\psi) \), a positive semidefinite parametrization is obtained. Likewise, the function \(\frac{1}{2}[c_1 + c_2 + (c_1 - c_2) \tanh(\psi)] \) is in the interval \((c_1, c_2) \) etc.

In the SEM approach, the structural matrices (of order \((T + 1)p \times (T + 1)p\)) are computed automatically by block matrix operations, which may be somewhat tedious in other systems.

The ML estimator was obtained by using a quasi Newton algorithm with BFGS secant updates (Dennis Jr. and Schnabel 1983) and numerical scores. At the end of the iteration the asymptotic standard errors were computed from the observed Fisher information \(J = -\frac{\partial^2 l}{\partial \psi \partial \psi'}(\hat{\psi}) \). In the SDE approach, which may be used for time series too, analytical score functions were implemented (Singer 1990, 1993, 1995).

Generally, in my experience, the SEM approach only works satisfactorily (in terms of numerical stability and speed) if \((T + 1)p \leq 100\). The KF approach is only limited by the dimensions \(p \) and \(k \) of the state variables.

5see:
http://www.fernuni-hagen.de/imperia/md/content/ls_statistik/sde.zip,
http://www.fernuni-hagen.de/imperia/md/content/ls_statistik/publikationen/semarchive.exe
References

Die Diskussionspapiere ab Nr. 183 (1992) bis heute, können Sie im Internet unter http://www.fernuni-hagen.de/FBWIWI einsehen und zum Teil downloaden.

Die **Titel** der Diskussionspapiere von Nr 1 (1975) bis 182 (1991) können bei Bedarf in der Fakultät für Wirtschaftswissenschaft angefordert werden:

FernUniversität, z. Hd. Frau Huber oder Frau Mette, Postfach 940, 58084 Hagen

Die Diskussionspapiere selber erhalten Sie nur in den Bibliotheken.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Jahr</th>
<th>Titel</th>
<th>Autor/en</th>
</tr>
</thead>
<tbody>
<tr>
<td>322</td>
<td>2001</td>
<td>Spreading Currency Crises: The Role of Economic Interdependence</td>
<td>Berger, Wolfram Wagner, Helmut</td>
</tr>
<tr>
<td>323</td>
<td>2002</td>
<td>Planung des Fahrzeugumschlags in einem Seehafen-Automobilterminal mittels eines Multi-Agenten-Systems</td>
<td>Fischer, Torsten Gehring, Hermann</td>
</tr>
<tr>
<td>324</td>
<td>2002</td>
<td>A parallel tabu search algorithm for solving the container loading problem</td>
<td>Bortfeldt, Andreas Gehring, Hermann Mack, Daniel</td>
</tr>
<tr>
<td>325</td>
<td>2002</td>
<td>Die Wahrheit entscheidungstheoretischer Maximen zur Lösung von Individualkonflikten - Unsicherheitssituationen -</td>
<td>Mus, Gerold</td>
</tr>
<tr>
<td>326</td>
<td>2002</td>
<td>Zur Abbildungsgenauigkeit des Gini-Koeffizienten bei relativer wirtschaftlicher Konzentration</td>
<td>Steinrücke, Martin</td>
</tr>
<tr>
<td>327</td>
<td>2002</td>
<td>Entscheidungsunterstützung bilateraler Verhandlungen über Auftragsproduktionen - eine Analyse aus Anbietersicht</td>
<td>Steinrücke, Martin</td>
</tr>
<tr>
<td>328</td>
<td>2002</td>
<td>Die Relevanz von Marktzinssätzen für die Investitionsbeurteilung – zugleich eine Einordnung der Diskussion um die Marktzinsmethode</td>
<td>Terstege, Udo</td>
</tr>
<tr>
<td>329</td>
<td>2002</td>
<td>Evaluating representatives, parliament-like, and cabinet-like representative bodies with application to German parliament elections 2002</td>
<td>Tangian, Andranik S.</td>
</tr>
<tr>
<td>331</td>
<td>2002</td>
<td>Theoretische Grundlagen der Gründungsfinanzierung</td>
<td>Bitz, Michael</td>
</tr>
<tr>
<td>332</td>
<td>2003</td>
<td>Historical background of the mathematical theory of democracy</td>
<td>Tangian, Andranik S.</td>
</tr>
<tr>
<td>333</td>
<td>2003</td>
<td>MCDM-applications of the mathematical theory of democracy: choosing travel destinations, preventing traffic jams, and predicting stock exchange trends</td>
<td>Tangian, Andranik S.</td>
</tr>
<tr>
<td>334</td>
<td>2003</td>
<td>Sprachregelungen für Kundenkontaktmitarbeiter – Möglichkeiten und Grenzen</td>
<td>Fliß, Sabine Möller, Sabine Momma, Sabine Beate</td>
</tr>
<tr>
<td>Page</td>
<td>Year</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>335</td>
<td>2003</td>
<td>A Non-cooperative Foundation of Core-Stability in Positive Externality NTU-Coalition Games</td>
<td>Finus, Michael Rundshagen, Bianca</td>
</tr>
<tr>
<td>336</td>
<td>2003</td>
<td>Combinatorial and Probabilistic Investigation of Arrow’s dictator</td>
<td>Tangian, Andranik</td>
</tr>
<tr>
<td>337</td>
<td>2003</td>
<td>A Grouping Genetic Algorithm for the Pickup and Delivery Problem with Time Windows</td>
<td>Pankratz, Giselher</td>
</tr>
<tr>
<td>341</td>
<td>2003</td>
<td>Equalizing regional unemployment indices in West and East Germany</td>
<td>Tangian, Andranik</td>
</tr>
<tr>
<td>343</td>
<td>2003</td>
<td>Stability of Climate Coalitions in a Cartel Formation Game</td>
<td>Finus, Michael van Ierland, Ekko Dellink, Rob</td>
</tr>
<tr>
<td>344</td>
<td>2003</td>
<td>The Effect of Membership Rules and Voting Schemes on the Success of International Climate Agreements</td>
<td>Finus, Michael J.-C., Altamirano-Cabrera van Ierland, Ekko</td>
</tr>
<tr>
<td>345</td>
<td>2003</td>
<td>Equalizing structural disproportions between East and West German labour market regions</td>
<td>Tangian, Andranik</td>
</tr>
<tr>
<td>346</td>
<td>2003</td>
<td>Auf dem Prüfstand: Die geldpolitische Strategie der EZB</td>
<td>Kißmer, Friedrich Wagner, Helmut</td>
</tr>
<tr>
<td>347</td>
<td>2003</td>
<td>Globalization and Financial Instability: Challenges for Exchange Rate and Monetary Policy</td>
<td>Wagner, Helmut</td>
</tr>
<tr>
<td>Seite</td>
<td>Jahr</td>
<td>Titel</td>
<td>Autoren</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>348</td>
<td>2003</td>
<td>Anreizsystem Frauenförderung – Informationssystem Gleichstellung am Fachbereich Wirtschaftswissenschaft der FernUniversität in Hagen</td>
<td>Fließ, Sabine Nonnenmacher, Dirk</td>
</tr>
<tr>
<td>349</td>
<td>2003</td>
<td>Legitimation und Controller</td>
<td>Pietsch, Gotthard Scherm, Ewald</td>
</tr>
<tr>
<td>350</td>
<td>2003</td>
<td>Controlling im Stadtmketing – Ergebnisse einer Primärerhebung zum Hagener Schaufenster-Wettbewerb</td>
<td>Fließ, Sabine Nonnenmacher, Dirk</td>
</tr>
<tr>
<td>351</td>
<td>2003</td>
<td>Zweiseitige kombinatorische Auktionen in elektronischen Transportmärkten – Potenziale und Probleme</td>
<td>Pankratz, Giselher</td>
</tr>
<tr>
<td>352</td>
<td>2003</td>
<td>Methodisierung und E-Learning</td>
<td>Strangmeier, Reinhard Bankwitz, Johannes</td>
</tr>
<tr>
<td>353 a</td>
<td>2003</td>
<td>A parallel hybrid local search algorithm for the container loading problem</td>
<td>Mack, Daniel Bortfeldt, Andreas Gehring, Hermann</td>
</tr>
<tr>
<td>353 b</td>
<td>2004</td>
<td>Übernahmeangebote und sonstige öffentliche Angebote zum Erwerb von Aktien – Ausgestaltungsmöglichkeiten und deren Beschränkung durch das Wertpapiererwerbs- und Übernahmegesetz</td>
<td>Wirtz, Harald</td>
</tr>
<tr>
<td>354</td>
<td>2004</td>
<td>Open Source, Netzeffekte und Standardisierung</td>
<td>Maaß, Christian Scherm, Ewald</td>
</tr>
<tr>
<td>355</td>
<td>2004</td>
<td>Modesty Pays: Sometimes!</td>
<td>Finus, Michael</td>
</tr>
<tr>
<td>356</td>
<td>2004</td>
<td>Nachhaltigkeit und Biodiversität</td>
<td>Endres, Alfred Bertram, Regina</td>
</tr>
<tr>
<td>357</td>
<td>2004</td>
<td>Eine Heuristik für das dreidimensionale Strip-Packing-Problem</td>
<td>Bortfeldt, Andreas Mack, Daniel</td>
</tr>
<tr>
<td>358</td>
<td>2004</td>
<td>Netzwerkökonomik</td>
<td>Martiensen, Jörn</td>
</tr>
<tr>
<td>359</td>
<td>2004</td>
<td>Competitive versus cooperative Federalism: Is a fiscal equalization scheme necessary from an allocative point of view?</td>
<td>Arnold, Volker</td>
</tr>
<tr>
<td>361</td>
<td>2004</td>
<td>Dynamic Planning of Pickup and Delivery Operations by means of Genetic Algorithms</td>
<td>Pankratz, Giselher</td>
</tr>
<tr>
<td>Seite</td>
<td>Jahr</td>
<td>Titel</td>
<td>Autoren</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>362</td>
<td>2004</td>
<td>Möglichkeiten der Integration eines Zeitmanagements in das Blueprinting von Dienstleistungsprozessen</td>
<td>Fließ, Sabine, Lasshof, Britta, Meckel, Monika</td>
</tr>
<tr>
<td>363</td>
<td>2004</td>
<td>Controlling im Stadtmarketing - Eine Analyse des Hagener Schaufensterwettbewerbs 2003</td>
<td>Fließ, Sabine, Wittko, Ole</td>
</tr>
<tr>
<td>364</td>
<td>2004</td>
<td>Ein Tabu Search-Verfahren zur Lösung des Timetabling-Problems an deutschen Grundschulen</td>
<td>Desef, Thorsten, Bortfeldt, Andreas, Gehring, Hermann</td>
</tr>
<tr>
<td>365</td>
<td>2004</td>
<td>Die Bedeutung von Informationen, Garantien und Reputation bei integrativer Leistungserstellung</td>
<td>Prechtl, Anja, Völker-Albert, Jan-Hendrik</td>
</tr>
<tr>
<td>366</td>
<td>2004</td>
<td>The Influence of Control Systems on Innovation: An empirical Investigation</td>
<td>Littkemann, Jörn, Derfuß, Klaus</td>
</tr>
<tr>
<td>367</td>
<td>2004</td>
<td>Permit Trading and Stability of International Climate Agreements</td>
<td>Altamirano-Cabrera, Juan-Carlos, Finus, Michael</td>
</tr>
<tr>
<td>368</td>
<td>2004</td>
<td>Zeitdiskrete vs. zeitstetige Modellierung von Preismechanismen zur Regulierung von Angebots- und Nachfragemengen</td>
<td>Mazzoni, Thomas</td>
</tr>
<tr>
<td>370</td>
<td>2004</td>
<td>Die Konzentration der Forschung als Weg in die Sackgasse? Neo-Institutionalistische Überlegungen zu 10 Jahren Anreizsystemforschung in der deutschsprachigen Betriebswirtschaftslehre</td>
<td>Süß, Stefan, Muth, Insa</td>
</tr>
<tr>
<td>372</td>
<td>2004</td>
<td>Pension Reforms in the New EU Member States</td>
<td>Wagner, Helmut</td>
</tr>
<tr>
<td>373</td>
<td>2005</td>
<td>Die Bundestrainer-Scorecard Zur Anwendbarkeit des Balanced Scorecard Konzepts in nicht-ökonomischen Fragestellungen</td>
<td>Eisenberg, David, Schulte, Klaus</td>
</tr>
<tr>
<td>375</td>
<td>2005</td>
<td>Zeitstetige Modellbildung am Beispiel einer volkswirtschaftlichen Produktionsstruktur</td>
<td>Mazzoni, Thomas</td>
</tr>
<tr>
<td>Page</td>
<td>Year</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>---</td>
<td>------------------------------</td>
</tr>
<tr>
<td>376</td>
<td>2005</td>
<td>Economic Valuation of the Environment</td>
<td>Endres, Alfred</td>
</tr>
<tr>
<td>378</td>
<td>2005</td>
<td>Diversity management’s diffusion and design: a study of German DAX-companies and Top-50-U.S.-companies in Germany</td>
<td>Süß, Stefan, Kleiner, Markus</td>
</tr>
<tr>
<td>379</td>
<td>2005</td>
<td>Fiscal Issues in the New EU Member Countries – Prospects and Challenges</td>
<td>Wagner, Helmut</td>
</tr>
<tr>
<td>380</td>
<td>2005</td>
<td>Mobile Learning – Modetrend oder wesentlicher Bestandteil lebenslangen Lernens?</td>
<td>Kuszpa, Maciej, Scherm, Ewald</td>
</tr>
<tr>
<td>381</td>
<td>2005</td>
<td>Zur Berücksichtigung von Unsicherheit in der Theorie der Zentralbankpolitik</td>
<td>Wagner, Helmut</td>
</tr>
<tr>
<td>382</td>
<td>2006</td>
<td>Effort, Trade, and Unemployment</td>
<td>Altenburg, Lutz, Brenken, Anke</td>
</tr>
<tr>
<td>383</td>
<td>2006</td>
<td>Do Abatement Quotas Lead to More Successful Climate Coalitions?</td>
<td>Altamirano-Cabrera, Juan-Carlos, Finus, Michael, Dellink, Rob</td>
</tr>
<tr>
<td>384</td>
<td>2006</td>
<td>Continuous-Discrete Unscented Kalman Filtering</td>
<td>Singer, Hermann</td>
</tr>
<tr>
<td>385</td>
<td>2006</td>
<td>Informationsbewertung im Spannungsfeld zwischen der Informationstheorie und der Betriebswirtschaftslehre</td>
<td>Reucher, Elmar</td>
</tr>
<tr>
<td>386</td>
<td>2006</td>
<td>The Rate Structure Pattern: An Analysis Pattern for the Flexible Parameterization of Charges, Fees and Prices</td>
<td>Pleß, Volker, Pankratz, Giselher, Bortfeldt, Andreas</td>
</tr>
<tr>
<td>387a</td>
<td>2006</td>
<td>On the Relevance of Technical Inefficiencies</td>
<td>Fandel, Günter, Lorth, Michael</td>
</tr>
<tr>
<td>387b</td>
<td>2006</td>
<td>Open Source und Wettbewerbsstrategie - Theoretische Fundierung und Gestaltung</td>
<td>Maaß, Christian</td>
</tr>
<tr>
<td>388</td>
<td>2006</td>
<td>Induktives Lernen bei unvollständigen Daten unter Wahrung des Entropieprinzips</td>
<td>Rödder, Wilhelm</td>
</tr>
<tr>
<td>389</td>
<td>2006</td>
<td>Banken als Einrichtungen zur Risikotransformation</td>
<td>Bitz, Michael</td>
</tr>
<tr>
<td>390</td>
<td>2006</td>
<td>Kapitalerhöhungen börsennotierter Gesellschaften ohne börslichen Bezugsrechtshandel</td>
<td>Terstege, Udo, Stark, Gunnar</td>
</tr>
<tr>
<td>391</td>
<td>2006</td>
<td>Generalized Gauss-Hermite Filtering</td>
<td>Singer, Hermann</td>
</tr>
<tr>
<td>Page</td>
<td>Year</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>392</td>
<td>2006</td>
<td>Das Göteborg Protokoll zur Bekämpfung grenzüberschreitender Luftschadstoffe in Europa: Eine ökonomische und spieltheoretische Evaluierung</td>
<td>Ansel, Wolfgang Finus, Michael</td>
</tr>
<tr>
<td>393</td>
<td>2006</td>
<td>Why do monetary policymakers lean with the wind during asset price booms?</td>
<td>Berger, Wolfram Kißmer, Friedrich</td>
</tr>
<tr>
<td>394</td>
<td>2006</td>
<td>On Supply Functions of Multi-product Firms with Linear Technologies</td>
<td>Steinrücke, Martin</td>
</tr>
<tr>
<td>395</td>
<td>2006</td>
<td>Ein Überblick zur Theorie der Produktionsplanung</td>
<td>Steinrücke, Martin</td>
</tr>
<tr>
<td>396</td>
<td>2006</td>
<td>Parallel greedy algorithms for packing unequal circles into a strip or a rectangle</td>
<td>Timo Kubach, Bortfeldt, Andreas Gehring, Hermann</td>
</tr>
<tr>
<td>397</td>
<td>2006</td>
<td>C&P Software for a cutting problem of a German wood panel manufacturer – a case study</td>
<td>Papke, Tracy Bortfeldt, Andreas Gehring, Hermann</td>
</tr>
<tr>
<td>398</td>
<td>2006</td>
<td>Nonlinear Continuous Time Modeling Approaches in Panel Research</td>
<td>Singer, Hermann</td>
</tr>
<tr>
<td>399</td>
<td>2006</td>
<td>Auftragsterminierung und Materialflussplanung bei Werkstattfertigung</td>
<td>Steinrücke, Martin</td>
</tr>
<tr>
<td>400</td>
<td>2006</td>
<td>Import-Penetration und der Kollaps der Phillips-Kurve</td>
<td>Mazzoni, Thomas</td>
</tr>
<tr>
<td>401</td>
<td>2006</td>
<td>Bayesian Estimation of Volatility with Moment-Based Nonlinear Stochastic Filters</td>
<td>Grothe, Oliver Singer, Hermann</td>
</tr>
<tr>
<td>402</td>
<td>2006</td>
<td>Generalized Gauss-Hermite Filtering for Multivariate Diffusion Processes</td>
<td>Singer, Hermann</td>
</tr>
<tr>
<td>403</td>
<td>2007</td>
<td>A Note on Nash Equilibrium in Soccer</td>
<td>Sonnabend, Hendrik Schlepütz, Volker</td>
</tr>
<tr>
<td>404</td>
<td>2007</td>
<td>Der Einfluss von Schaufenstern auf die Erwartungen der Konsumenten - eine explorative Studie</td>
<td>Fließ, Sabine Kudermann, Sarah Trell, Esther</td>
</tr>
<tr>
<td>405</td>
<td>2007</td>
<td>Die psychologische Beziehung zwischen Unternehmen und freien Mitarbeitern: Eine empirische Untersuchung des Commitments und der arbeitsbezogenen Erwartungen von IT-Freelancern</td>
<td>Süß, Stefan</td>
</tr>
<tr>
<td>406</td>
<td>2007</td>
<td>An Alternative Derivation of the Black-Scholes Formula</td>
<td>Zucker, Max Singer, Hermann</td>
</tr>
<tr>
<td>407</td>
<td>2007</td>
<td>Computational Aspects of Continuous-Discrete Extended Kalman-Filtering</td>
<td>Mazzoni, Thomas</td>
</tr>
<tr>
<td>408</td>
<td>2007</td>
<td>Web 2.0 als Mythos, Symbol und Erwartung</td>
<td>Maaß, Christian Pietsch, Gotthard</td>
</tr>
<tr>
<td>409</td>
<td>2007</td>
<td>„Beyond Balanced Growth“: Some Further Results</td>
<td>Stijepic, Denis Wagner, Helmut</td>
</tr>
<tr>
<td>Page</td>
<td>Year</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>410</td>
<td>2007</td>
<td>Herausforderungen der Globalisierung für die Entwicklungsländer: Unsicherheit und geldpolitisches Risikomanagement</td>
<td>Wagner, Helmut</td>
</tr>
<tr>
<td>411</td>
<td>2007</td>
<td>Graphical Analysis in the New Neoclassical Synthesis</td>
<td>Giese, Guido Wagner, Helmut</td>
</tr>
<tr>
<td>412</td>
<td>2007</td>
<td>Monetary Policy and Asset Prices: The Impact of Globalization on Monetary Policy Trade-Offs</td>
<td>Berger, Wolfram, Kilmer, Friedrich Knüttner, Rolf</td>
</tr>
<tr>
<td>413</td>
<td>2007</td>
<td>Entropiebasiertes Data Mining im Produktdesign</td>
<td>Rudolph, Sandra Rödder, Wilhelm</td>
</tr>
<tr>
<td>415</td>
<td>2007</td>
<td>Qualitätsmanagement in Unternehmenskooperationen - Steuerungsmöglichkeiten und Datenintegrationsprobleme</td>
<td>Meschke, Martina</td>
</tr>
<tr>
<td>416</td>
<td>2007</td>
<td>Modernisierung im Bund: Akteursanalyse hat Vorrang</td>
<td>Pietsch, Gotthard Jamin, Leander</td>
</tr>
<tr>
<td>417</td>
<td>2007</td>
<td>Inducing Technical Change by Standard Oriented Environmental Policy: The Role of Information</td>
<td>Endres, Alfred Berger, Regina Rundshagen, Bianca</td>
</tr>
<tr>
<td>418</td>
<td>2007</td>
<td>Der Einfluss des Kontextes auf die Phasen einer SAP-Systemimplementierung</td>
<td>Littkemann, Jörn Eisenberg, David Kuboth, Meike</td>
</tr>
<tr>
<td>419</td>
<td>2007</td>
<td>Endogenous in Uncertainty and optimal Monetary Policy</td>
<td>Giese, Guido Wagner, Helmut</td>
</tr>
<tr>
<td>420</td>
<td>2008</td>
<td>Stockkeeping and controlling under game theoretic aspects</td>
<td>Fandel, Günter Trockel, Jan</td>
</tr>
<tr>
<td>421</td>
<td>2008</td>
<td>On Overdissipation of Rents in Contests with Endogenous Intrinsic Motivation</td>
<td>Schlepütz, Volker</td>
</tr>
<tr>
<td>422</td>
<td>2008</td>
<td>Maximum Entropy Inference for Mixed Continuous-Discrete Variables</td>
<td>Singer, Hermann</td>
</tr>
<tr>
<td>423</td>
<td>2008</td>
<td>Eine Heuristik für das mehrdimensionale Bin Packing Problem</td>
<td>Mack, Daniel Bortfeld, Andreas</td>
</tr>
<tr>
<td>424</td>
<td>2008</td>
<td>Expected A Posteriori Estimation in Financial Applications</td>
<td>Mazzoni, Thomas</td>
</tr>
<tr>
<td>425</td>
<td>2008</td>
<td>A Genetic Algorithm for the Two-Dimensional Knapsack Problem with Rectangular Pieces</td>
<td>Bortfeld, Andreas Winter, Tobias</td>
</tr>
<tr>
<td>426</td>
<td>2008</td>
<td>A Tree Search Algorithm for Solving the Container Loading Problem</td>
<td>Fanslau, Tobias Bortfeld, Andreas</td>
</tr>
<tr>
<td>427</td>
<td>2008</td>
<td>Dynamic Effects of Offshoring</td>
<td>Stijepic, Denis Wagner, Helmut</td>
</tr>
<tr>
<td>428</td>
<td>2008</td>
<td>Der Einfluss von Kostenabweichungen auf das Nash-Gleichgewicht in einem nicht-kooperativen Disponenten-Controller-Spiel</td>
<td>Fandel, Günter Trockel, Jan</td>
</tr>
<tr>
<td>429</td>
<td>2008</td>
<td>Fast Analytic Option Valuation with GARCH</td>
<td>Mazzoni, Thomas</td>
</tr>
<tr>
<td>430</td>
<td>2008</td>
<td>Conditional Gauss-Hermite Filtering with Application to Volatility Estimation</td>
<td>Singer, Hermann</td>
</tr>
<tr>
<td>431</td>
<td>2008</td>
<td>Web 2.0 auf dem Prüfstand: Zur Bewertung von Internet-Unternehmen</td>
<td>Christian Maaß Gotthard Pietsch</td>
</tr>
<tr>
<td>Page</td>
<td>Year</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>432</td>
<td>2008</td>
<td>Zentralbank-Kommunikation und Finanzstabilität – Eine Bestandsaufnahme</td>
<td>Knütter, Rolf Mohr, Benjamin</td>
</tr>
<tr>
<td>434</td>
<td>2008</td>
<td>International Policy Coordination and Simple Monetary Policy Rules</td>
<td>Berger, Wolfram Wagner, Helmut</td>
</tr>
<tr>
<td>435</td>
<td>2009</td>
<td>Matchingprozesse auf beruflichen Teilarbeitsmärkten</td>
<td>Stops, Michael Mazzoni, Thomas</td>
</tr>
<tr>
<td>436</td>
<td>2009</td>
<td>Wayfindingprozesse in Parksituationen - eine empirische Analyse</td>
<td>Fließ, Sabine Tetzner, Stefan</td>
</tr>
<tr>
<td>437</td>
<td>2009</td>
<td>ENTROPY-DRIVEN PORTFOLIO SELECTION a downside and upside risk framework</td>
<td>Rödder, Wilhelm Gartner, Ivan Ricardo Rudolph, Sandra</td>
</tr>
<tr>
<td>438</td>
<td>2009</td>
<td>Consulting Incentives in Contests</td>
<td>Schleputz, Volker</td>
</tr>
<tr>
<td>439</td>
<td>2009</td>
<td>A Genetic Algorithm for a Bi-Objective Winner-Determination Problem in a Transportation-Procurement Auction"</td>
<td>Buer, Tobias Pankratz, Giselher</td>
</tr>
<tr>
<td>440</td>
<td>2009</td>
<td>Parallel greedy algorithms for packing unequal spheres into a cuboidal strip or a cuboid</td>
<td>Kubach, Timo Bortfeldt, Andreas Tilli, Thomas Gehring, Hermann</td>
</tr>
<tr>
<td>441</td>
<td>2009</td>
<td>SEM modeling with singular moment matrices Part I: ML-Estimation of time series</td>
<td>Singer, Hermann</td>
</tr>
<tr>
<td>442</td>
<td>2009</td>
<td>SEM modeling with singular moment matrices Part II: ML-Estimation of sampled stochastic differential equations</td>
<td>Singer, Hermann</td>
</tr>
</tbody>
</table>