Kolmogorov Backward Equations with Singular Diffusion Matrices

Hermann Singer

Diskussionsbeitrag Nr. 518

Dezember 2019
Kolmogorov Backward Equations with Singular Diffusion Matrices

Hermann Singer

December 12, 2019

Abstract The Feynman-Kac formula is derived from the Kolmogorov formula by using a state extension, which permits the absorption of the potential term into the drift part of the backward equation. The resulting homogeneous equation with singular diffusion matrix can be solved by using importance sampling techniques based on a drift correction. The method is applied to the Cameron-Martin formula, the quantum mechanical linear oscillator and the pricing of arithmetic Asian options.

Keywords Feynman-Kac formula; Integrated variables; Monte Carlo method; Importance sampling; Drift correction; Stochastic differential equations
1 Introduction

Solutions of deterministic partial differential equations can be written as functional (path) integrals, which may in some cases be interpreted as probabilistic expressions [1, 31], [29] chs. 4, 5.7]. This was first demonstrated by Feynman in 1942 for the case of the Schrödinger equation [5, 12, 13]. Introducing imaginary time, a rigorous probabilistic theory was developed by Kac [25, 26, 27]. Later, the option pricing theory of Black, Scholes and Merton [3, 37, 38] lead to a partial differential equation, which may be solved by classical methods such as separation of variables, or by the discounted expectation value of a terminal condition [8]. This is especially intuitive to economists, who accomplish pricing by considering the mean of future cash flows. One advantage of probabilistic solutions of deterministic equations is the possibility of approximations by statistical averages including standard error estimates [2, 7, 15, 21, 48]. Furthermore, stochastic methods work well in higher dimensions, when spatial discretization methods suffer from excessive computational demand.

The main device used in this paper is the reduction of the backward equation with potential term to a homogenous equation by using a state extension [47, exercise 2.26, p. 421]. Then, the well known Kolmogorov formula implies the Feynman-Kac formula. Consequently, importance sampling (IS) techniques [30, 35, 41, 50, 55] for the former turn over to the latter equation. Moreover, models with integrated variables occurring, for example, in the case of memory effects [23] or in Asian options [16], are included as a special case. A drawback is the occurrence of a singular diffusion matrix, which requires special attention.

In the field of rare events simulation, adaptive importance sampling methods have been used [9, 20, 28, 52, 54, 57]. In this context, a duality between an optimal control problem and importance sampling can be derived. A solution is given in closed form in terms of a path integral. The measure transformation involved in Girsanov’s theorem introduces an additional drift term in the stochastic differential equation (SDE) which is used to evaluate the Feynman-Kac formula. This may be seen as a controlled version of the original SDE. The optimal choice of the control function in explicit form was given by Milstein [41, ch. 12] and Kloeden and Platen [30, ch. 16.2], but it requires knowledge of the solution.

In an application context, approximations of the solution must be computed [40], either iteratively or by using parametrized solutions of simpler problems. An adaptive iterative approach uses the Kullback-Leibler entropy [28, 58].

In the present paper, analytically known solutions of the inhomogenous backward equation, e.g. the Black-Scholes formula or Gaussian solutions for the Schrödinger equation with zero potential are used in order to implement suboptimal importance sampling. Nevertheless, substantial variance reduction can be achieved.

The article is organized as follows: after the definition of backward equations (Section 2), the main result is derived in Section 3. Then, integrated
variables are introduced in Section 4, and importance sampling is applied to the extended problem (Section 5). Finally in Section 6, we discuss applications to the multivariate Cameron-Martin formula, the Schrödinger equation with quadratic potential and to arithmetic Asian options.

2 Backward equations

The inhomogenous backward equation for the scalar concentration (density) field $C(x,t)$ is given by

$$C_t(x,t) + L(x,t)C(x,t) + v(x,t)C(x,t) = 0,$$

(1)

$t \leq T$, with terminal condition $C(x,T) = h(x)$. In Eq. (1), the partial differential operator

$$L(x,t) = f_\alpha(x,t) \partial_\alpha + \frac{1}{2} \Omega_{\alpha\beta}(x,t) \partial_\alpha \partial_\beta$$

$$= f^T(x,t) \nabla + \frac{1}{2} \text{tr} [\Omega(x,t) \nabla \nabla^T]$$

(2)

is the backward operator w.r.t. the 'spatial' variables $x = [x_1, ..., x_p]^T \in \mathbb{R}^{p \times 1}$, where T denotes the transpose of a vector or matrix, $t \in \mathbb{R}$ is time, $\partial_\alpha := \partial/\partial x_\alpha$, $\partial_\beta := \partial/\partial y$ and $C_t := \partial C(x,t)/\partial t, C_x := \partial C(x,t)/\partial x = \nabla C(x,t)$, with $\nabla := [\partial_1, ..., \partial_p]^T$, the gradient (nabla) operator. The drift vector is $f = f_\alpha, \alpha = 1, ..., p$ and the symmetric diffusion matrix is $\Omega = \Omega_{\alpha\beta}; \alpha, \beta = 1, ..., p$. We assume a sum convention $f_\alpha g_\alpha = \sum_\alpha f_\alpha g_\alpha = f^T g$, and $\text{tr}[A] = A_{\alpha\alpha}$ is the trace of a square matrix.

The backward equation (1) is a generalized diffusion (transport) equation including a drift term f and a source (potential) term vC \cite{1,22,31,50}. In a more narrow sense, only the equation without potential term is a Kolmogorov backward equation, but this name is also used for the general case \cite{30, chs. 4.8, 17.1}. Likewise, it is called a Cauchy problem for the backward heat equation with potential. Moreover, a term $g(x,t)$ can be included \cite{29, chs. 4.2, 5.7}. In this paper, the potential term is called an inhomogeneity, although it contains the solution C. Equations including stochastic terms are discussed by Holden et al \cite{22}.

More generally, one can also consider so-called quasi-linear equations, where the potential term is a nonlinear function of C and C_x \cite{10,39,43,46}. The solution can be represented by a pair of forward-backward stochastic differential equations (BSDE). For a linear function, the Feynman-Kac formula (see Sec. 3) is obtained as a special case. Adaptive importance sampling schemes based on BSDE equations are considered by Gobet and Turkedjiev \cite{17,18}, Gobet et al \cite{19}.
3 Kolmogorov- and Feynman-Kac formula

A well known stochastic representation of the solution $C(x, t)$ of Eq. (1) is given by the conditional expectation value (Feynman-Kac formula)

$$C(x, t) = E \left[e^{\int_t^T v(X(\tau), \tau)d\tau} h(X(T)) \bigg| X(t) = x \right],$$

(3)

where $X(\tau) = (x, \ldots, x, \ldots, x)^T \in \mathbb{R}^p$, $t \leq \tau \leq T$ is a vector stochastic process fulfilling the Itô stochastic differential equation

$$dX(\tau) = f(X, \tau)d\tau + G(X, \tau)dW(\tau)$$

(4)

with initial condition $X(t) = x$, volatility matrix $G : p \times r$, $GG^T = \Omega$, and $dW(\tau)$ denotes the increments of an r-dimensional Wiener process, i.e. $E[W_\alpha(t)] = 0$, $E[W_\alpha(t)W_\beta(t')] = \delta_{\alpha\beta}\min(t, t')$; $\alpha, \beta = 1, \ldots, r$. For a proof, see Karatzas and Shreve [29, ch. 5.7] and Appendix A. The (formal) derivative $\zeta_\alpha(t) = dW_\alpha(t)/dt$ is a white noise process with covariance function $E[\zeta_\alpha(t)\zeta_\beta(t')] = \delta(t - t')\delta_{\alpha\beta}$. Here, $\delta(t - t')$ is Dirac’s delta function [32] and $\delta_{\alpha\beta}$ denotes the Kronecker delta symbol.

This is the starting point for Monte Carlo (MC) approximations [2, 16], in which the expectation value in Eq. (3) is replaced by a mean value over independent or dependent replications.

In order to reduce the variance of the MC estimator, importance sampling using a modified drift term can be utilized [35, 36, 40, 41, 50, 51]. This new drift term in Eq. (4) is chosen such that, (important) trajectories $X(\tau)$ are simulated yielding nonzero values of the terminal condition $h(X(T))$ (see Section 5).

In the work of Melchior and Öttinger [35, 36], no potential term was considered. Therefore in the present context, it is desirable to derive a homogenous equation without potential term. To achieve this, the integrated potential term in Eq. (3) can be represented by the system extension

$$dY(\tau) = v(X(\tau), \tau)d\tau$$

(5)

with initial condition $Y(t) = 0$ [41, ch. 12-13], [39, ch. 17.1], [42, ch. 7].

For the extended system of equations (4, 5) we can use the Kolmogorov formula [31]

$$C(x, y = 0, t) = E \left[e^{Y(T)}h(X(T)) \bigg| X(t) = x, Y(t) = y = 0 \right].$$

(6)

This representation is the solution of the homogenous backward equation

$$C_t(x, y, t) + L(x, y, t)C(x, y, t) = 0, \quad t \leq T,$$

(7)

with

$$L(x, y, t) = f_\alpha(x, t)\partial_\alpha + v(x, t)\partial_y + \frac{1}{2}\Omega_{\alpha\beta}(x, t)\partial_\alpha\partial_\beta$$

(8)
and terminal condition \(C(x, y, T) = \exp(y)h(x) \). Due to the variable extension (the additional variable \(y \) is called integrated because of Eq. (5)), the extended diffusion matrix \(\tilde{\Omega} = \text{diag}(\Omega, 0) \) in Eq. (8) is singular and the drift of the system Eq. (4, 5) is of the form \(\tilde{\mathbf{f}} = [f^T, v]^T \). One has \(\mathbf{\nabla}^T := [\mathbf{\nabla}^T, \partial_y] = [\partial_1, \ldots, \partial_p, \partial_y] \); \(\mathbf{\nabla}^T \mathbf{\nabla}^T = \text{tr}(\mathbf{\nabla} \mathbf{\nabla}^T) = \text{tr}(\Omega \mathbf{\nabla} \mathbf{\nabla}^T) \).

With the ansatz \(C(x, y, t) = \exp(y)C(x, t) \) one recovers the inhomogenous equation (1), since

\[
v(x, t)\partial_y C(x, y, t) = v(x, t)C(x, y, t),
\]

and the term \(\exp(y) \) can be dropped. Thus one can identify

\[
C(x, y = 0, t) = C(x, t)
\]

\[
C(x, y = 0, T) = C(x, T) = h(x) \quad \text{(terminal condition)}.
\]

In summary, one has derived the Feynman-Kac formula Eq. (3) for the inhomogenous backward equation (1) by using the Kolmogorov formula for the extended system Eq. (4, 5) and the corresponding homogenous backward equation (7).

The main advantage of the extended system is the possibility to use variance reduction techniques for the Kolmogorov formula, even in the presence of an inhomogeneity (potential term) in Eq. (1).

A slight drawback is the higher dimensionality \(p + 1 \) of the extended diffusion process \([X^T(\tau), Y(\tau)]^T \) and the singular diffusion matrix \(\tilde{\Omega} \) (see also Section 4). Equations with zero diffusion matrix correspond to deterministic motions which can be described by the Liouville equation in statistical mechanics [53, p. 411]. Here one has both stochastic motion, Eq. (4), and deterministic motion, Eq. (5), without error term.

The transition density \(p(x_j, y_j, T|x, y, t) \), appearing in the conditional expectation Eq. (6), explicitly

\[
C(x, y, t) = \int \exp(y_j)h(x_j)p(x_j, y_j, T|x, y, t)dx_jdy_j,
\]

is known analytically only for linear systems and some special cases such as the Feller square root process [8, 11]. Therefore, one can insert the Chapman-Kolmogorov equation and use the product representation on the time slices \(\tau_j = t + j\delta \tau, j = 0, \ldots, J; \delta \tau = (T - t)/J \)

\[
p(\xi_J, T|\xi_0, t) = \prod_{j=0}^{J-1} \int p(\xi_{j+1}, \tau_{j+1}|\xi_j, \tau_j)d\xi_{j-1}\ldots d\xi_1,
\]

\(\xi_0 = \xi = [x^T, y]^T, \xi_J = [x^T_J, y_J]^T, \tau_J = T, \tau_0 = t \). For a small time step \(\delta \tau \), one can approximate the transition densities \(p \) by the Euler densities (cf. Eq. (4, 5))

\[
q(\xi_{j+1}, \tau_{j+1}|\xi_j, \tau_j) = \phi(\xi_{j+1}; \xi_j + \tilde{f}(\xi_j, \tau_j)\delta \tau, \tilde{\Omega}(\xi_j, \tau_j)\delta \tau),
\]
where \(\phi(x; \mu, \Sigma) = \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right) \) is the multivariate Gauss density and \(| \cdot | \) is the determinant. In this formula, it is assumed that the covariance matrix \(\Sigma \) is nonsingular. The extended drift function is of the form \(\tilde{f} = [f^T, v]^T \), but the diffusion matrix \(\tilde{\Omega} = \text{diag}(\Omega, 0) \) is singular. In this situation, one may

- either use the singular normal distribution \([34, \text{ch. 2.5.4}] \)
- or use a small parameter \(\epsilon > 0 \) (\(\tilde{\Omega} = \text{diag}(\Omega, \epsilon) \)) and finally consider the limit \(\epsilon \to 0 \).

The latter method leads to the desired result Eq. (3), which can be seen as follows. The explicit form of Eq. (10) is

\[
q(x_{j+1}, \tau_{j+1} | x_j, \tau_j) = \phi(x_{j+1}; x_j + f(x_j, \tau_j) \delta \tau, \Omega(x_j, \tau_j) \delta \tau) \\
\phi(y_{j+1}; y_j + v(x_j, \tau_j) \delta \tau, \epsilon^2 \delta \tau),
\]

(11)

where the second line can be considered as a delta sequence \(\delta_\epsilon(y_{j+1} - y_j - v(x_j, \tau_j) \delta \tau) \) with the property \(\lim_{\epsilon \to 0} \int \delta_\epsilon(x) f(x) dx = f(0) \), where \(f(x) \) is a test function. Thus the generalized function \(\delta(x) \) is represented by a function sequence \(\delta_\epsilon(x) \) \([32] \). Now the integration over the \(y \)-variables in Eq. (9) can be carried out, resulting in the term \(y_J = \sum_j v(x_j, \tau_j) \delta \tau \) for \(\epsilon \to 0 \), which is the Riemann sum of the integral \(\int_t^T v(x(\tau), \tau) d\tau \).

In contrast, the singular normal distribution uses the pseudo inverse \(\tilde{\Omega} = \text{diag}(\Omega, 0) \) and the second line in Eq. (11) is 1. Thus the result in Eq. (3) cannot be obtained by using this approach. Therefore in the sequel, we always assume a small parameter \(\epsilon \) and consider the limit \(\epsilon \to 0 \) in the final results.

4 Integrated variables

More generally, instead of the scalar process Eq. (5), one may use a \(q \)-dimensional vector process

\[
dY(\tau) = v(X(\tau), \tau) d\tau
\]

(12)

with initial condition \(Y(t) = y \) and consider the Kolmogorov representation

\[
C(x, y, t) = E [H(X(T), Y(T)) \mid X(t) = x, Y(t) = y]
\]

(13)

with terminal condition \(C(x, y, T) = H(x, y) \). For example, in case of scalar \(X(\tau) \) one can write

\[
dY_1(\tau) = v(X(\tau), \tau) d\tau \\
dY_2(\tau) = X(\tau) d\tau.
\]
The integrated variable approach thus permits equations with average values, e.g. memory effects, or arithmetic Asian options with terminal condition \(h(y_2) \) (see Section 6.3). In this case, one sets \(H(x, y_1, y_2) = \exp(y_1) h(y_2) \) and obtains

\[
C(x, y_1 = 0, y_2, t) = \mathbb{E} \left[e^{X(T)} h(Y_2(T)) \mid X(t) = x, Y_1(t) = 0, Y_2(t) = y_2 \right].
\]

(14)

The starting value \(Y_2(t) = y_2 = \int_0^t X(\tau) d\tau \) is the cumulated value of the so-called underlying \(X(\tau) \) from 0 to \(t \). At terminal time \(T \), the value of the option is \(C(x, 0, y_2, T) = h(y_2) = h(\int_0^T X(\tau) d\tau) \) and thus depends on the time average \(\bar{X}_T = T^{-1} \int_0^T X(\tau) d\tau \).

This shows that the system extension Eq. (12) has the double effect, that

1. the original inhomogeneous backward equation can be transformed to a homogeneous one
2. cumulated variables can be used as well.

The advantage is the possibility of importance sampling for the Kolmogorov formula Eq. (13), as discussed in the next section. A drawback is the occurrence of a singular diffusion matrix, but this happens at any rate in the presence of integrated variables. As mentioned above, the problem can be solved by introducing small parameters \(\epsilon_\alpha, \alpha = 1, \ldots, q, \) in the Gaussian transition densities Eq. (11), i.e. \(\epsilon^2 \to \text{diag}(\epsilon_1^2, \ldots, \epsilon_q^2) \), and by taking the limit \(\epsilon_\alpha \to 0 \) in the final results.

5 Importance sampling

The expectation value Eq. (13) can be written explicitly in the form

\[
C(\xi, t) = \int H(\xi_j) p(\xi_j, T|\xi, t) d\xi_j
\]

(15)

\[
= \int H(\xi_j) \frac{p(\xi_j, T|\xi, t)}{p_2(\xi_j, T|\xi, t)} p_2(\xi_j, T|\xi, t) d\xi_j
\]

(16)

where \(\xi := [x^T, y^T]^T \) and \(p_2 \) is an importance density, yielding a smaller variance of the MC estimator. Intuitively, \(p_2 \) should attain small values, when \(H(\xi_j) \geq 0 \) is small, since these values contribute little to the functional. The choice \(p_2 \propto Hp \) fulfills this condition and is even optimal [30, ch. 16.3]. However, the normalization \(C = \int Hp d\xi \) is the desired unknown quantity. Again, the transition densities can be expressed by the Chapman-Kolmogorov formula (9) and subsequent Euler approximation.

Assuming that \(p_2 \) is known, a variance reduced estimator of \(C \) (see Eq. (16)) can be written in the form

\[
\hat{C}(\xi, t; \delta\tau) = N^{-1} \sum_n H(\xi_n, t) \left(\frac{p}{p_2} \right)(\Xi_n, \tau|\xi, t)
\]

(17)
where $\Xi_n = [\xi_{n,1}, ..., \xi_{n,1}] \sim p_2$ is a replication of the path $\xi_n(\tau_j); j = 1, ..., J$, starting at $\xi_n(\tau_0) = \xi$, $\tau_0 = t$, and $p = \prod_{j=0}^{J-1} p(\xi_{j+1}, \tau_{j+1} | \xi_j, \tau_j), \tau = [\tau_j, ..., \tau_1]$. The optimal importance density is explicitly given by

$$p_2 = H(\xi_j) p(\Xi, \tau | \xi, t) / C(\xi, t) = p_{opt},$$

(18)

$\Xi = [\xi_j, ..., \xi_1]$, with corresponding Euler approximation $q_2 = q_{opt} = Hq/C$. In order to sample paths from p_2, one can find a new drift function $f_2 = f_{opt}$, so that the density $p(\Xi, \tau | \xi, t; f_2, \Omega)$ coincides with p_2. Then, one can simulate independent trajectories $\xi_n \sim p_2$ and compute the variance reduced estimator Eq. [17]. Since Ω remains invariant, the measures (with densities) p and p_2 are absolutely continuous w.r.t. each other and p/p_2 (or q/q_2 in the case of approximate Euler densities) exists in a continuum limit ($\delta \tau \to 0$).

It can be shown [30, ch. 16.2, p. 514] and Appendix B. Thus, the original drift is distorted (tilted) by an additional term, which produces trajectories with high values of the terminal condition $H(x_j, y_j)$. Clearly, in order to practically compute the importance drift, an approximation of the solution C must be known, e.g. a Gaussian solution for the Schrödinger equation with zero potential (example 6.2) or the Black-Scholes formula (example 6.3). The components of f_2 corresponding to the integrated variables are not distorted, since they only depend on the variables x, without error term; see Eq. [12]. Because of the special form of f_2

$$f_2(x, y, \tau) = f(x, \tau) + \Omega(x, \tau) \nabla_x \log C(x, y, \tau)$$

(19)

$$f_1 := f(x_j, \tau_j), f_2 := f_2(x_j, y_j, \tau_j), \text{ etc.}$$

[33] vol. I, p. 297], only depends on the original drift components $f(x, \tau)$ and the drift correction in

$$f_2(x, y, \tau) = f(x, \tau) + \Omega(x, \tau) \nabla_x \log C(x, y, \tau)$$

$$= f(x, \tau) + \delta f(x, \tau).$$

(20)

The parts of the density function depending only on y_j and $\nu(x_j, \tau_j)$ cancel (see Eq. [11], 3rd line), as well as the Jacobian terms $[2\pi \Omega_j]^{-1/2}$. Now, in analogy to the discussion following Eq. [11], the integration in Eq. [10] over the y-variables can be carried out and the delta functions $\delta(\nu_{j+1} - y_j - \nu(x_j, \tau_j) \delta \tau)$
generate the integrated variables \(y_j = \sum_{l=0}^J v(x_l, \tau_l) \delta \tau \) in the limit \(\epsilon_\alpha \to 0, \alpha = 1, \ldots, q \) (see Sections 3, 4). An alternative derivation using the Girsanov theorem is given in Appendix B. Thus the variance reduced MC estimator can be expressed in this limit as

\[
\hat{C}(x, y, t; \delta \tau) = \frac{1}{N} \sum_{n} e^{y_n J} h(x_n) \left(\frac{q_1}{q_2} \right)^2 \left(X_n, Y_n, \tau | x, y, t = 0, t \right), \tag{21}
\]

where \(X_n = [x_{nJ}, \ldots, x_{n1}], Y_n = [y_{nJ}, \ldots, y_{n1}], \tau = [\tau_J, \ldots, \tau_1]. \) The Euler-Maruyama approximation for the stochastic equations (4, 12) with modified drift \(\tilde{f}_2 \) reads

\[
x_{n,j+1} = x_{nj} + \tilde{f}_j(x_{nj}, y_{nj}, \tau_j) \delta \tau + G(x_{nj}, y_{nj}, \tau_j) \delta W_{nj}
\]

\[
y_{n,j+1} = v(x_{nj}, \tau_j) \delta \tau,
\]

\(x_{n0} = x, y_{n0} = y \) and \(\delta W_{nj} \sim N(0, I, \delta \tau), \) independent and identically distributed, and \(I \) is an \(r \)-dimensional unit matrix. The solution Eq. (15) is implicitly contained in the drift correction \(\Omega(x, \tau) \nabla_x \log C(x, y, \tau), t \leq \tau \leq T. \) For example, the solution Eq. (6) can be estimated as

\[
\hat{C}(x, t; \delta \tau) = \frac{1}{N} \sum_{n} e^{y_n J} h(x_n) \left(\frac{q_1}{q_2} \right)^2 \left(X_n, y_n, \tau | x, y = 0, t \right), \tag{22}
\]

without the integrated potential term \(y. \)

In contrast, in the case of Asian options (Eq. 14), one has \(C(x, y_1, y_2, \tau) = e^{y_1} C(x, y_2, \tau), \) so only the discount factor \(e^{y_1} \) cancels, but not the cumulated variable \(y_2. \)

6 Examples

6.1 The Cameron-Martin formula

The functional

\[
E[e^{-\frac{1}{2} \int_0^T W^2(\tau) d\tau} | W(0) = x] = \left. e^{-\frac{1}{2} x^2 \tanh(\gamma \rho)} \overline{\cosh(\gamma \rho)} \right|_{\rho = 0} \tag{24}
\]

of the Wiener process was computed analytically by Cameron and Martin \[6\], Gelfand and Yaglom \[13\]. See also Borodin and Salminen \[4\] p. 168, 1.9.3]. According to Eq. (3), it is the solution of the backward equation with the time invariant functions \(f = 0, \Omega = 1, \) quadratic potential \(v(x) = -\frac{1}{2} \gamma^2 x^2 \) and terminal condition \(C(x, t) = h(x) = 1. \) Explicitly, we have

\[
C_t(x, t) + \left[\frac{1}{2} \nabla_x^2 - \frac{1}{2} \gamma^2 x^2 \right] C(x, t) = 0; t \leq T. \tag{25}
\]
Now, since the system is autonomous, one can rewrite Eq. (3) as

$$C(x, T) = E \left[e^{\int_{T}^{T-t} v(X(\tau))d\tau} h(X(T - t)) \bigg| X(0) = x \right].$$

(26)

Setting $\rho = T - t$, one obtains the left hand side of Eq. (24). Since $f = 0$, $\Omega = 1$, one has $X = W$.

Liptser and Shiryayev [33, vol. 1, ch. 7.7.] derived a multivariate extension of Eq. (24), which serves as a comparison of Monte Carlo and numerical integration, based on a semi-discretization of the backward equation. For a p-dimensional Wiener process starting at x, one obtains

$$E \left[e^{\frac{1}{2} \int_{0}^{\rho} W^T(\tau) \Gamma(\tau) W(\tau) d\tau} \bigg| W(0) = x \right] = e^{\frac{1}{2} \int_{0}^{\rho} \text{tr}(\Gamma(\tau)) d\tau} e^{\frac{1}{2} x^T \Gamma(0) x},$$

(27)

where $\Gamma : p \times p$ is a symmetric positive semidefinite weight matrix and $\Gamma(\tau)$ is the solution of the matrix Riccati equation ($0 \leq \tau \leq \rho$)

$$\dot{\Gamma}(\tau) = \Gamma(\tau) - \Gamma(\tau)^2; \quad \Gamma(\rho) = 0.$$

(28)

In the case $p = 2$ one has the system

$$\begin{align*}
\dot{R}_{11} &= \gamma_1^2 - R_{11}^2 - R_{12}^2 \\
\dot{R}_{12} &= \gamma_2 - (R_{11} + R_{22}) R_{12} \\
\dot{R}_{22} &= \gamma_2^2 - R_{22}^2 - R_{12}^2.
\end{align*}$$

(29–31)

For diagonal Γ, the equation for R_{12} can be solved by

$$R_{12}(\tau) = e^{\int_{0}^{\rho} (R_{11} + R_{22}) d\tau} R_{12}(\rho) = 0.$$

Therefore for constant Γ, one obtains the solution (analogous for R_{22})

$$\begin{align*}
R_{11}(\tau) &= \gamma_1 \tanh(\gamma_1(\tau - \rho)) \\
R_{11}(0) &= -\gamma_1 \tanh(\gamma_1 \rho)
\end{align*}$$

and $\frac{1}{2} \int_{0}^{\rho} R_{11}(\tau) d\tau = -\frac{1}{2} \log \cosh \gamma_1 \rho$. Note that $\Gamma(0)$ is a function of ρ, denoted as $\Gamma(0, \rho)$. This implies the result

$$E \left[e^{\frac{1}{2} \int_{0}^{\rho} W^T(\tau) \text{diag}(\gamma_1^2, \gamma_2^2) W(\tau) d\tau} \bigg| W(0) = [x_1, x_2]^T \right] =$$

$$e^{-\frac{1}{2} \log \cosh \gamma_1 \rho - \frac{1}{2} \log \cosh \gamma_2 \rho} e^{-\frac{1}{2} x_1^2 \gamma_1 \tanh(\gamma_1 \rho) - \frac{1}{2} x_2^2 \gamma_2 \tanh(\gamma_2 \rho)}$$

(32)

which is, as expected, the product of the univariate formula Eq. (24). With off-diagonal $\gamma_{12} \neq 0$, the solution of Eq. (30) is not identically to zero and the system Eqs. (29,31) must be solved. One can use Runge-Kutta integration and compute the importance drift $\nabla \log C(x, u) = \Gamma(0, u) x$ (see Eq. (27) and below).

Fig. 1 shows a Monte Carlo approximation (Eq. 22) of the 2-dimensional solution Eq. (32) as a function of $x_1 = x_2 = x$ with sample size $N = 10$. The standard errors of the simulated solution were estimated as s/\sqrt{N},
where \(s \) is the standard deviation of the \(N \) random numbers in Eq. (21), i.e.

\[
e^{y_nT} h(x_nT)(q_1/q_2) (X_n, y_n, \rho \mid x, y = 0, t = 0).
\]

The formula was evaluated for the coordinates \(x_1 = x_2 = x = -3, \ldots, +3, \delta x = 0.25 \) with time step \(\delta \tau = 0.01 \). The weight matrix \(\Gamma = \text{diag}(1, 1) \) was set diagonal to have an analytical reference solution. Clearly, the simulated solution with optimal importance sampling (top) is very accurate. The standard deviations are about a factor \(10^{-1} \) smaller as compared to the naive MC estimator (bottom), and the relative error w.r.t. the exact solution is smaller than 2.5\%. In Fig. 2, the convergence over sample size \(N = 2, \ldots, 1000 \) is displayed (error bars: means ± standard errors).

It is interesting to compare the Monte Carlo results with approximations based on numerical integration (for details, see [51]). The functional integral Eq. (3) was first approximated on the time slices \(\tau_j = s + j\delta \tau, j = 0, \ldots, J; \delta \tau = (T - t)/J \) by a \((J - 1)\)-dimensional integral. Afterwards, in a second step, the integrals were replaced by Riemann sums on a ‘spatial’ grid \(x_a, \ldots, x_b \) with spacing \(\delta x \). The transition densities \(p(x_{j+1}, \tau_{j+1} \mid x_j, \tau_j) \) were evaluated on these sample points, resulting in transition matrices. Thus the functional integral is approximated by a \((J - 1)\)-fold matrix product.
Fig. 3 Two-dimensional Cameron-Martin formula (numerical integration). Left: Solution as a function of x. Same parameters as in Fig. 1, spatial discretization $x_a = [-5, -5]^T, \ldots, x_b = [5, 5]^T, \delta x = [0.25, 0.25]^T, \delta \tau = 0.01$. Exact solution and methods INT (blue), FD (green) (for details, see text). Right: relative error w.r.t. the analytical solution as a function of x.

Fig. 4 Two-dimensional Cameron-Martin formula (numerical integration). Left: relative error of MC solution (blue line: with importance sampling, green: without IS). Right: relative error with smaller spatial grid steps $\delta x = [0.1, 0.1]^T$. Methods INT, FD and ETK (yellow).

<table>
<thead>
<tr>
<th>p</th>
<th>N</th>
<th>10</th>
<th>100</th>
<th>1000</th>
<th>relative error</th>
<th>CPU time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>0.009</td>
<td>0.009</td>
<td>0.728</td>
<td>0.068</td>
<td>0.075</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0.025</td>
<td>0.017</td>
<td>0.566</td>
<td>0.253</td>
<td>0.066</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0.029</td>
<td>0.027</td>
<td>0.832</td>
<td>0.504</td>
<td>0.148</td>
</tr>
</tbody>
</table>

Table 1 Cameron-Martin formula: Maximum absolute relative error in the interval $x = -3, \ldots, 3$ and CPU time of Monte Carlo method versus semi-discretization methods for $p = 1, \ldots, 3$. Sample size $N = 10, 100, 1000, \delta \tau = 0.01$. Spatial discretization $x_a = [-5, -5]^T, \ldots, x_b = [5, 5]^T, \delta x = [0.25, \ldots, 0.25]^T$. For $p = 3, \delta x = [0.5, 0.5, 0.5]^T$ (see text).
The transition matrices were computed by 3 methods:

1. Euler transition kernel (ETK) based on the short time Gaussian approximation \(\phi(x_{j+1}; x_j + f_j \delta \tau; \Omega_j \delta \tau) \) (cf. Eq. (10)).

2. Matrix exponential \(\exp(F \delta \tau) \) of the discretized Fokker-Planck operator \(F = \mathbf{L}^T \). Here we used either finite differences (FD) or an integral representation (INT) \(F(x)h(x) = \int F(x, x')h(x')dx' \), where the integral kernel
is $F(x, x') = F(x)\delta(x - x')$, and $F = L^*$ is the adjoint of the backward operator Eq. (2). $F(x, x')$ was evaluated on the spatial grid, resulting again in a matrix $[51, 56]$.

Clearly, the size of the matrices scales with the power of model dimension p and gets excessively large. In contrast, the computational demand of the MC method should be of order Np^2, since the simulated data and involved densities depend on the $p \times p$ diffusion matrix Ω (cf. Eq. 21).

In Fig. (3), top picture, the exact solution Eq. (32) for the 2-dimensional model and the methods INT and FD are displayed. The relative error w.r.t. the exact solution (smaller than 0.04% (INT), 0.5% (FD)) is shown in the bottom picture, and for the MC estimates with sample size $N = 10$ (smaller than 2.5%) in the top picture of Fig. (4). Due to the large grid steps $\delta x = [0.25, 0.25]$ in the range $x_a = [-5, -5], ..., x_b = [5, 5]$ and $\delta \tau = 0.01$, the method ETK yields very large errors and is not displayed. In fact a smaller δx of order $\sqrt{\delta \tau} = 0.1$ should be used. However, this yields transition matrices of order $10^{201} \times 10^{201}$, which is computationally demanding. Now, the method ETK yields reasonable errors and the result is displayed in Fig. (4), bottom.

A comparison of the dimensions $p = 1, ..., 3$ is shown in table 1. The Cameron-Martin formula was computed for the 25 values $x_1 = ... = x_p = x = -3, ..., 3; \delta x = 0.25$ and $\delta \tau = 0.01$. The interval for the numerical integration was chosen larger ($x_a = [-5, ..., -5], ..., x_b = [5, ..., 5], \delta x = [0.25, ..., 0.25]$), to minimize errors in the region of interest. In the case $p = 3$, one would obtain a $41^3 \times 41^3 = 68921 \times 68921$ transition matrix, therefore the grid steps were doubled to $\delta x = [0.5, 0.5, 0.5]$ (9261 \times 9261 matrix). Then, the maximal absolute relative error of the 25 function values w.r.t. the analytical solution $(\max_{j=1,...,25}|C(x_j)/C(x_j) - 1|)$ and the CPU time was determined and tabulated. The times relate to a Intel Core i9 processor with 2,9 GHz and Mathematica 11.3. Sparse arrays and parallel computing were utilized. The MC method with importance sampling performs well in all dimensions $p = 1, ..., 3$, already for small sample size $N = 10$. In contrast, without importance sampling, a much bigger sample size $N > 1000$ is required. The semi-discretization methods INT and FD yield very small relative error, except for the case FD, $p = 3$ (similar to MC). In higher dimensions, the performance of these methods declines quickly. As noted above already for $p = 3$, the grid steps must be doubled to permit numerical computations. The small CPU time for the finite difference method FD is due to the tridiagonal form of the backward matrix $L = F^T$.

For the ETK method, the time discretization should be of order $\delta \tau = \delta x^2$, i.e. $0.25^2 = 0.0625, p = 1, 2$ and $0.5^2 = 0.25$ for $p = 3$. Therefore, the last column in the table was computed with these values.

In summary, the numerical integration methods work well for low dimensions $p = 1, 2$, but the size of the transition matrices scales with the power of p and CPU time and storage demand gets excessively large, despite using sparse arrays. In contrast, the MC methods also work for high dimensions, especially when using parallel computing (see Fig. 5).
Finally, we used a nondiagonal matrix Γ : 10×10 with main diagonal $\gamma_{ii} = i$ and $\gamma_{ij} = 1/2, i \neq j$ and computed the solution with exact and approximate importance sampling. In the former case, the Riccati equation (28) was solved using an Euler scheme yielding the log derivative $\nabla \log C(x, u) = R(0, u)x$. Approximate importance sampling was implemented using the product of univariate explicit formulas as in Eq. (32), equivalent to a diagonal Γ_{imp} in Eq. (20). The results are displayed in Fig. (6) for fixed $x = [0, ..., 0]^T$.

The MC estimates with standard errors were plotted over sample size $N = 2, ..., 2000$ with time steps $\delta t = 0.01$ (top) and $\delta t = 0.001$ (second from the top), both with exact importance sampling. Clearly, the bias of the estimates gets smaller with decreasing time step δt. The red line is the result computed with a 4th order Runge-Kutta scheme for Eq. (28). In Fig. (7), approximate importance sampling is displayed. The standard errors are larger, but also a substantial variance reduction is achieved.

6.2 Schrödinger equation

With respect to the time difference $\rho = T - t$, one obtains from Eq. (25) in forward direction $\rho \geq 0$

$$u_\rho(x, \rho) = \left[\frac{1}{2} \Delta - \frac{1}{2} \gamma^2 x^2 \right] u(x, \rho),$$ \hspace{1cm} (33)

where $u(x, \rho) = C(x, T - \rho)$. This can be considered as Euclidean version of the Schrödinger equation for the harmonic oscillator with quadratic potential $v(x) = \frac{1}{2} \gamma^2 x^2$, $m = h = 1$,

$$i \psi_\rho(x, \rho) = \left[-\frac{1}{2} \Delta + v(x) \right] \psi(x, \rho),$$ \hspace{1cm} (34)

$\rho \geq 0$, with the replacement $i \rho \rightarrow \rho$ (imaginary time) \[4, 13, \text{p. 168}\]. Using the initial condition $u(x, 0) = \delta(x - z)$, the solution of equation (33) reads (cf. Eq. (26))

$$u(x, \rho) = E \left[e^{-\frac{\rho}{2} \int_0^\rho W^2(\tau)d\tau} \delta(W(\rho) - z) \bigg| W(0) = x \right] = \sqrt{\frac{\gamma}{2\pi \sinh(\gamma \rho)}} \exp \left(\frac{\gamma \left[2xz - (x^2 + z^2) \cosh(\gamma \rho) \right]}{2 \sinh(\gamma \rho)} \right),$$ \hspace{1cm} (35)

A simulated solution of Eq. (33) using optimal importance sampling (Eq. (22)) is shown in Fig. 8 top row, as a function of initial localization $z = -1, ..., 2$. As importance drift, the representation Eq. (23) was inserted, using the analytical solution Eq. (35). In contrast, without importance sampling, one obtains much larger simulation errors (Fig. 8 middle). Now, since in practice the exact solution is unknown, one must use a suitable approximation to compute a suboptimal drift correction. Setting $\gamma = 0$, the oscillator equation coincides with the diffusion equation. The solution is $u(x, \rho) = \phi(x; \rho)$, $u(x, 0) = \delta(x - z)$. This function is used in the drift correction. In Fig. 8 bottom, the result is displayed. It is very similar to the optimal
Fig. 8 Schrödinger equation (linear oscillator). Left: Simulated Feynman-Kac formula as a function of $z = -1, ..., 2$, $x = 1$, $\rho = 1$, $\gamma = 1$, $\delta \tau = 0.01$. Sample size $N = 1000$, means and standard deviations in $M = 10$ replications. Top: optimal importance sampling. Middle: without importance sampling. Bottom: approximate importance sampling with $\gamma = 0$ (see text). Right: means and standard errors as a function of sample size $N = 2, ..., 1000$, $x = 1$, $z = 2$.

The approach (top). A plot over sample size displays some minor differences (Fig. 8 right column). Without importance sampling, very large sample sizes are required to obtain small standard deviations (middle, right). In Fig. 8 means and standard deviations (error bars) were computed over $M = 10$ replications of Eq. (22).

In Fig. 9 left column, the exact solution of the oscillator equation and the corresponding diffusion equation ($v(x) = 0$; $\gamma = 0$) are displayed for several time points. The logarithmic derivatives (right) for the importance drift are linear in both cases. For small times, the derivatives and thus the importance sampling Monte Carlo algorithms are very similar. Furthermore, Fig. 10 illustrates the tilted dynamics of the optimal trajectories, which are determined by the drift correction.
As explained in Sec. 6.1, one can solve the backward equation on a spatial grid (here from $x_a = -5,...,x_b = 5, \delta x = 0.1$). The results are displayed in Fig. 11. In the top picture, the exact solution (red) is displayed together with the three methods as described above. The relative error (smaller than 2%) w.r.t. the analytical solution is displayed in the middle picture. The results of INT and FTK are very similar. Similar small errors are obtained for the MC method ($N = 1000$) with exact and approximate (zero potential) importance
Fig. 11 Schrödinger equation. Comparison of MC with numerical integration (see text). Top: Analytical solution (red), finite differences (FD, green), Euler transition kernel (yellow) and integral operator (INT, blue) as a function of $z = -1, ..., 2$. Middle: relative error w.r.t. the analytical solution. The results of INT and FTK are very similar. Bottom: relative error of Monte Carlo approximations (optimal IS = blue, approximate IS (Gaussian) = green, $N = 1000$) w.r.t. the analytical solution. Without importance sampling (yellow), the error is very large.

Table 2 displays the maximum relative absolute error w.r.t. the exact solution and CPU time for several MC sample sizes $N = 10, 1000, 2000$ ($M = 10$ replications) and grid steps $\delta x = 0.2, 0.1, 0.05$. For exact or approximate importance sampling, similar error estimates are obtained ($< 2\%$ for $N =$
Table 2 Schrödinger equation. Maximum absolute relative error in interval $z = -1, \ldots, 2$ and CPU time (seconds) of Monte Carlo method versus semi-discretization methods. Sample size $N = 10, 1000, 2000$, $M = 10$ replications. Spatial discretization $x_a = -5, \ldots, x_b = 5$, $\delta x = 0.2, 0.1, 0.05$, $\delta \tau = 0.01$ (see text).

1000, 2000). Without importance sampling, larger sample sizes are required. For the semi-discretization methods, a spatial discretization of $\delta x \leq 0.1$ is required to obtain errors $< 2\%$. In this one-dimensional example, the numerical integration method is much faster than the MC method.

Numerical considerations

In the simulations, the initial condition $u(0, x) = \delta(x - z)$ was represented by the delta sequence $\delta_\epsilon(x) = \phi(x; 0, \epsilon^2) \text{[32]}$ with the smoothing parameter $\epsilon^2 = \delta \tau$. This can be motivated from the quadratic variation $dW^2(\tau) = d\tau$ of the Wiener process. Furthermore, the drift correction $\delta f = \nu \nabla_x \log u(x, \tau)$ was multiplied by a scaling factor $\nu \approx 0.8$ in order to obtain a minimal standard deviation. The optimal value may be determined by a minimization algorithm. The scaling factor can be motivated by the observation, that the function $h = \delta(W(\rho) - z)$ is very narrow (of order $\sqrt{\delta \tau} = 0.1$) and too large drifts lead to approximation errors. Alternatively, a scaled smoothing parameter can be used.

6.3 European and Asian options

As already mentioned in Sec. [4], the terminal value of a so called arithmetic Asian option depends on the time average of the underlying $X(t)$ (stock price etc.) in the interval $t_0 \leq t \leq T$. This time average can be generated by the inclusion of an integrated variable $Y(t) = \int_{t_0}^{t} X(u) du$.

In contrast, the terminal condition of a European option is given only by the last value $X(t) = x$. For example, a call option has terminal condition $C(x, T) = h(x) = \max(x - K, 0)$ where K is the strike price. In this simpler case, the option fulfills the Black-Scholes partial differential equation (PDE)

$$C_t(x, t) + L(x, t)C(x, t) - r C(x, t) = 0, \quad t \leq T,$$

(36)
with terminal condition $C(x,T) = h(x)$ and backward operator
\[
L(x,t) = rx \nabla_x + \frac{1}{2} \sigma^2 x^2 \nabla^2_x
\]
(37)
[see, e.g. 3, 29, 50]. Solving the PDE (36) leads to the Black-Scholes formula. Originally [3], separation of variables was used, but the stochastic representation
\[
C(x,t) = E \left[e^{-r(T-t)} h(X(T)) \mid X(t) = x \right]
\]
(38)
gives the same results. The stochastic process $X(\tau)$ fulfills the Itô equation
\[
dX(\tau) = rX(\tau) d\tau + \sigma X(\tau) dW(\tau),
\]
(39)
a geometric Brownian motion. The integral in Eq. (38) can be calculated analytically by noting that $X(t)$ is log-normally distributed. The results are displayed in Fig. (12) for a call option with sample size $N = 10$, strike price $K = 50$, volatility $\sigma = 0.2$, interest rate $r = 0.07$, time to maturity $T - t = 1$ and terminal condition $h(x) = \max(x - K, 0)$. Clearly, importance sampling yields a very strong variance reduction. Other simulation methods, option types and dynamics of the underlying are discussed in [15, 16, 43, 48, 50, 59].

In the case of arithmetic Asian options, according to Section 4, one has the stochastic representation
\[
C(x,y,t) = E \left[e^{-r(T-t)} h(Y(t)) \mid X(t) = x, Y(t) = y \right]
\]
(40)
where $Y(t) = \int_0^t X(u) du$ is an integrated variable. The processes X and Y fulfill the system of Itô equations (one could also join an equation for the state-dependent interest rate $v(x,\tau) = -r(x,\tau)$; see sect. 4)
\[
dX(\tau) = rX(\tau) d\tau + \sigma X(\tau) dW(\tau)
\]
\[
dY(\tau) = X(\tau) d\tau,
\]
with initial conditions $X(t) = x, Y(t) = y, t \leq \tau \leq T$. Since the integrated variable does not have an error term, a singular transition density

Fig. 12 Black-Scholes formula and simulated call option. Left: with optimal importance sampling. Right: without importance sampling. Sample size $N = 10$, strike price $K = 50$, volatility $\sigma = 0.2$, interest rate $r = 0.07$, $T = 1, t = 0$.
p(x_{j+1}, y_{j+1}|x_j, y_j) with covariance matrix \(\text{diag}(\Omega, 0) \) occurs (see Section 5). Clearly, Eq. (40) is the Feynman-Kac formula for the PDE (Ingersoll [24, ch. 17.10], Zvan et al [60])

\[
C_s + rxC_x + xC_y + \frac{1}{2}\sigma^2 x^2 C_{xx} - rC = 0; \quad t \leq T.
\]

\(C \equiv C(x, y, t) \) with terminal condition \(C(x, y, T) = h(y) \). For a call option, one sets

\[
h(y) = \max\left(\frac{y}{T-t_0} - K, 0\right).
\]

In this case, the solution is not known, but one can use the Black-Scholes formula to compute a suboptimal drift correction \(\Omega(x, \tau) \nabla_x C_{\text{ref}}(x, \tau) \). In this reference solution \(C_{\text{ref}}(x, \tau) \), appropriate parameters may be used, which give a better fit to the solution to be approximated. For example, the strike price \(K \) can be enlarged to generate smaller values of \(C_{\text{ref}} \). Fig. 13 (left) shows that the Asian option value is below the European one (used as reference solution) for \(x \)-values above \(K \). This may be understood from the observation that

\[
\mu(t) = E[X(t)] = x \exp(rt)
\]

\[
E[Y(t)/t] = \frac{1}{t} \int_0^t \mu(\tau) d\tau = \frac{x}{rt} (\exp(rt) - 1) < x \exp(rt) = \mu(t).
\]

Therefore, the expected time average is always smaller, at least for the geometric Brownian motion. From this it is plausible that also the expectation values of the terminal condition fulfil \(E[h(Y(t)/t)] < E[h(X(t))] \), for \(h(x) \) is linear above the strike price \(K \), leading to a higher option value for a European option ‘in the money’ (\(x > K \)). In general, this is not true, since a lower expectation value can be compensated by a higher variance leading to a higher expectation of \(h \).

Fig. 13 (right) displays the ratio of mean values and standard deviations, computed with and without importance sampling (see Eq. 21). The ratio of
standard deviations (green) shows a strong variance reduction for options out of the money ($x < K = 50$). In this case, many trajectories are lifted above the strike price K, whereas without importance sampling, they are suppressed by the terminal condition h. Actually, for Asian options only the time average of $X(u)$ must be above K.

7 Conclusion

The inhomogenous backward equation with potential term and integrated variables was transformed, using a state extension, to a singular form, where the inhomogeneity was absorbed in the drift term. Then, the Feynman-Kac formula can be represented as a Kolmogorov formula and the importance sampling method with distorted drift can be used, although the Feynman-Kac formula contains terms depending on the complete history from present time t to final time T. This embraces, e.g., state-dependent potentials (interest rates) and models with integrated variables, e.g. arithmetic Asian options, where the terminal value depends on the cumulated history. The resulting new probability measure p_2 expresses the optimal importance density in terms of a stochastic process with distorted drift, which only concerns the nonintegrated part. The integrated potential does not appear in the drift correction. Other integrated variables still appear in the correction term.

In one or two dimensions, methods using a spatial discretization are fast and accurate, but in higher dimensions, only the Monte Carlo approach yields feasible computations, since the computational demand only scales quadratically with dimension. Although the drift correction requires the knowledge of the solution, suboptimal importance sampling using approximate solutions leads to a substantial variance reduction.

In conclusion, the variance reduced Monte Carlo estimator for the Feynman-Kac representation can be computed by using a Kolmogorov formula with state extension, even in high dimensions.

Appendix A: The Feynman-Kac formula

The Feynman-Kac formula Eq. (3) can be proved by using the Itô lemma for the ‘discounted’ function $C_* = C(X(\tau), \tau) \beta(t, \tau)$, where $C(x, t)$ is a solution of Eq. (1) and $\beta(t, \tau) = \exp\left[\int_t^\tau v(X(u), u)du\right]$ is the discount factor [see 29, ch. 5.7]. One obtains $(C, \alpha := \partial_\alpha C)$

$$
\begin{align*}
\frac{d[C(X(\tau), \tau)\beta(t, \tau)]}{dt} &= dC \beta + C \frac{d\beta}{dt} \\
&= (C, \alpha dX_\alpha(\tau) + \frac{1}{2}C, \alpha \beta \Omega_{\alpha\beta} d\tau + C, \beta d\tau) + C, \beta vd\tau \\
&= \beta (LC + C, \tau + vC) d\tau + \beta C, \alpha G_{\alpha\beta} dW_{\beta}(\tau)
\end{align*}
$$

(41)
The first term in Eq. (41) is null due to the backward equation. Integrating from \(t \) to \(T \) one obtains
\[
C(X(T), T)\beta(t, T) - C(X(t), t)\beta(t, t) = \int_t^T \beta(t, \tau)C_{\alpha\beta}G_{\alpha\beta}dW_{\beta}(\tau).
\]
Taking the conditional expectation \(E[\cdot | X(t) = x] \) the result Eq. (3) is proved.

Appendix B: Milstein-Girsanov transformation

The drift correction used in Section 5, namely \(\delta f(x, y, \tau) = \Omega(x, \tau)\nabla_x \log C(x, y, \tau) \), can also be derived by the measure transformation approach [41, ch. 12], [30, ch. 16.2]. The aim is to compute the functional
\[
C(\xi, t) = E[H(\xi(T)) | \xi(t) = \xi],
\]
where \(d\xi = \tilde{f}dt + \tilde{G}dW \). By the Girsanov theorem, the ‘drifted’ Wiener process
\[
W_d(t) = W(t) - \int_0^t d(\xi_d, \tau)d\tau
\]
(cf. Eq. 42) is a Wiener process w.r.t. a transformed probability measure \(P_d \) with Radon-Nikodym density \(\frac{dP_d}{dP} = \frac{\Theta(T)}{\Theta(0)} \). The correction process \(\Theta(t) \) fulfills the stochastic equation
\[
d\Theta(\tau) = \Theta(\tau)\langle d(\xi_d, \tau), dW(\tau) \rangle
\]
with the explicit solution
\[
\Theta(T)/\Theta(t) = \exp \left[\int_t^T \langle d, dW(\tau) \rangle - \frac{1}{2} \langle d, d \rangle d\tau \right],
\]
de \(d = d(\xi_d, \tau) \), where \(\langle f, g \rangle = \sum_{\alpha} f_{\alpha}g_{\alpha} \) denotes the scalar product. Using the drifted Wiener process \(W_d \),
\[
d\xi_d = \tilde{f}d\tau + \tilde{G}dW_d = \tilde{f}d\tau - (\tilde{G}d)\tau + \tilde{G}dW
\]
is a transformed Itô process, which has the same properties as \(\xi(t) \) (w.r.t. the probability \(P_d \)). Therefore, the functional can be written as expectation w.r.t. the transformed process including a correction factor
\[
E[H(\xi(T)) | \xi(t) = \xi] = E[H(\xi_d(T))\Theta(T)/\Theta(t) | \xi_d(t) = \xi].
\]
It can be shown (Milstein [41], ch. 12, Kloeden and Platen [30], ch. 16.2.) that the optimal choice of the drift \(d \) is given by
\[
d(\xi, \tau) = -\tilde{G}^T \nabla_\xi \log C(\xi, \tau).
\]
Now, since \(\tilde{G}^T = [G^T, 0] \) and \(\xi = [x^T, y^T]^T \), we have \(d(\xi, \tau) = -G^T \nabla_x \log C(x, y, \tau) := -G^Ts \). Therefore, the drift correction appearing in the transformed Itô equation is
\[
-\tilde{G}d = \begin{bmatrix} GG^T \nabla_x \log C(x, y, \tau) \\ 0 \end{bmatrix} = \begin{bmatrix} \delta f \\ 0 \end{bmatrix},
\]
\(\Omega = GG^T \). Now, \(\langle d, d \rangle = \langle G^T \delta s, G^T \delta s \rangle = \langle \Omega \delta s, \Omega^{-1} \delta s \rangle = \langle \Omega^{-1} \delta f, \delta f \rangle \) and \(\langle d, dW \rangle = \langle G^T \delta s, dW \rangle = \langle \delta s, dx - f d\tau - \delta f d\tau \rangle = -\langle \delta f, \Omega^{-1} (dx - f d\tau - \delta f d\tau) \rangle \), assuming a nonsingular diffusion matrix. Thus, the correction factor can be written as

\[
\Theta(T) / \Theta(t) = \exp \int_t^T -\langle \delta f, \Omega^{-1} (dx - f d\tau - \frac{1}{2} \delta f d\tau) \rangle,
\]

which coincides with Eq. (19), after setting \(f_2 = f + \delta f \) and discretization of the integrals.

References

<table>
<thead>
<tr>
<th>Nr</th>
<th>Jahr</th>
<th>Titel</th>
<th>Autor/en</th>
</tr>
</thead>
<tbody>
<tr>
<td>420</td>
<td>2008</td>
<td>Stockkeeping and controlling under game theoretic aspects</td>
<td>Fandel, Günter</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Trockel, Jan</td>
</tr>
<tr>
<td>421</td>
<td>2008</td>
<td>On Overdissipation of Rents in Contests with Endogenous Intrisic Motivation</td>
<td>Schlepütz, Volker</td>
</tr>
<tr>
<td>422</td>
<td>2008</td>
<td>Maximum Entropy Inference for Mixed Continuous-Discrete Variables</td>
<td>Singer, Hermann</td>
</tr>
<tr>
<td>423</td>
<td>2008</td>
<td>Eine Heuristik für das mehrdimensionale Bin Packing Problem</td>
<td>Mack, Daniel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bortfeldt, Andreas</td>
</tr>
<tr>
<td>424</td>
<td>2008</td>
<td>Expected A Posteriori Estimation in Financial Applications</td>
<td>Mazzoni, Thomas</td>
</tr>
<tr>
<td>425</td>
<td>2008</td>
<td>A Genetic Algorithm for the Two-Dimensional Knapsack Problem with Rectangular Pieces</td>
<td>Bortfeldt, Andreas</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Winter, Tobias</td>
</tr>
<tr>
<td>426</td>
<td>2008</td>
<td>A Tree Search Algorithm for Solving the Container Loading Problem</td>
<td>Fanslau, Tobias</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bortfeldt, Andreas</td>
</tr>
<tr>
<td>427</td>
<td>2008</td>
<td>Dynamic Effects of Offshoring</td>
<td>Stijepic, Denis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wagner, Helmut</td>
</tr>
<tr>
<td>428</td>
<td>2008</td>
<td>Der Einfluss von Kostenabweichungen auf das Nash-Gleichgewicht in einem nicht-kooperativen Disponenten-Controller-Spiel</td>
<td>Fandel, Günter</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Trockel, Jan</td>
</tr>
<tr>
<td>429</td>
<td>2008</td>
<td>Fast Analytic Option Valuation with GARCH</td>
<td>Mazzoni, Thomas</td>
</tr>
<tr>
<td>430</td>
<td>2008</td>
<td>Conditional Gauss-Hermite Filtering with Application to Volatility Estimation</td>
<td>Singer, Hermann</td>
</tr>
<tr>
<td>431</td>
<td>2008</td>
<td>Web 2.0 auf dem Prüfstand: Zur Bewertung von Internet-Unternehmen</td>
<td>Christian Maaß</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gotthard Pietsch</td>
</tr>
<tr>
<td>432</td>
<td>2008</td>
<td>Zentralbank-Kommunikation und Finanzstabilität – Eine Bestandsaufnahme</td>
<td>Knütter, Rolf</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mohr, Benjamin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wagner, Helmut</td>
</tr>
<tr>
<td>434</td>
<td>2008</td>
<td>International Policy Coordination and Simple Monetary Policy Rules</td>
<td>Berger, Wolfram</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wagner, Helmut</td>
</tr>
<tr>
<td>435</td>
<td>2009</td>
<td>Matchingprozesse auf beruflichen Teilarbeitsmärkten</td>
<td>Stops, Michael</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mazzoni, Thomas</td>
</tr>
<tr>
<td>436</td>
<td>2009</td>
<td>Wayfindingprozesse in Parksituationen - eine empirische Analyse</td>
<td>Fließ, Sabine</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tetzner, Stefan</td>
</tr>
<tr>
<td>437</td>
<td>2009</td>
<td>ENTROPY-DRIVEN PORTFOLIO SELECTION a downside and upside risk framework</td>
<td>Rödder, Wilhelm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gartner, Ivan Ricardo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rudolph, Sandra</td>
</tr>
<tr>
<td>438</td>
<td>2009</td>
<td>Consulting Incentives in Contests</td>
<td>Schlepütz, Volker</td>
</tr>
<tr>
<td>Page</td>
<td>Year</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>439</td>
<td>2009</td>
<td>A Genetic Algorithm for a Bi-Objective Winner-Determination Problem in a Transportation-Procurement Auction"</td>
<td>Buer, Tobias Pankratz, Giselher</td>
</tr>
<tr>
<td>440</td>
<td>2009</td>
<td>Parallel greedy algorithms for packing unequal spheres into a cuboidal strip or a cuboid</td>
<td>Kubach, Timo Bortfeldt, Andreas Tilli, Thomas Gehring, Hermann</td>
</tr>
<tr>
<td>441</td>
<td>2009</td>
<td>SEM modeling with singular moment matrices Part I: ML-Estimation of time series</td>
<td>Singer, Hermann</td>
</tr>
<tr>
<td>442</td>
<td>2009</td>
<td>SEM modeling with singular moment matrices Part II: ML-Estimation of sampled stochastic differential equations</td>
<td>Singer, Hermann</td>
</tr>
<tr>
<td>443</td>
<td>2009</td>
<td>Konsensuale Effizienzbewertung und -verbesserung – Untersuchungen mittels der Data Envelopment Analysis (DEA)</td>
<td>Rödder, Wilhelm Reucher, Elmar</td>
</tr>
<tr>
<td>444</td>
<td>2009</td>
<td>Legal Uncertainty – Is Hamonization of Law the Right Answer? A Short Overview</td>
<td>Wagner, Helmut</td>
</tr>
<tr>
<td>445</td>
<td>2009</td>
<td>Fast Continuous-Discrete DAF-Filters</td>
<td>Mazzoni, Thomas</td>
</tr>
<tr>
<td>446</td>
<td>2010</td>
<td>Quantitative Evaluierung von Multi-Level Marketingsystemen</td>
<td>Lorenz, Marina Mazzoni, Thomas</td>
</tr>
<tr>
<td>447</td>
<td>2010</td>
<td>Quasi-Continuous Maximum Entropy Distribution Approximation with Kernel Density</td>
<td>Mazzoni, Thomas Reucher, Elmar</td>
</tr>
<tr>
<td>448</td>
<td>2010</td>
<td>Solving a Bi-Objective Winner Determination Problem in a Transportation Procurement Auction</td>
<td>Buer, Tobias Pankratz, Giselher</td>
</tr>
<tr>
<td>449</td>
<td>2010</td>
<td>Are Short Term Stock Asset Returns Predictable? An Extended Empirical Analysis</td>
<td>Mazzoni, Thomas</td>
</tr>
<tr>
<td>450</td>
<td>2010</td>
<td>Europäische Gesundheitssysteme im Vergleich – Effizienzmessungen von Akutkrankenhäusern mit DEA –</td>
<td>Reucher, Elmar Sartorius, Frank</td>
</tr>
<tr>
<td>451</td>
<td>2010</td>
<td>Patterns in Object-Oriented Analysis</td>
<td>Blaimer, Nicolas Bortfeldt, Andreas Pankratz, Giselher</td>
</tr>
<tr>
<td>452</td>
<td>2010</td>
<td>The Kuznets-Kaldor-Puzzle and Neutral Cross-Capital-Intensity Structural Change</td>
<td>Stijepic, Denis Wagner, Helmut</td>
</tr>
<tr>
<td>453</td>
<td>2010</td>
<td>Monetary Policy and Boom-Bust Cycles: The Role of Communication</td>
<td>Knüttter, Rolf Wagner, Helmut</td>
</tr>
<tr>
<td>455</td>
<td>2010</td>
<td>Consistent Modeling of Risk Averse Behavior with Spectral Risk Measures</td>
<td>Wächter, Hans Peter Mazzoni, Thomas</td>
</tr>
<tr>
<td>Volumen</td>
<td>Jahr</td>
<td>Titel</td>
<td>Autor(en)</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>--</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>456</td>
<td>2010</td>
<td>Der virtuelle Peer – Eine Anwendung der DEA zur konsensualen Effizienz-bewertung –</td>
<td>Reucher, Elmar</td>
</tr>
<tr>
<td>457</td>
<td>2010</td>
<td>A two-stage packing procedure for a Portuguese trading company</td>
<td>Moura, Ana</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bortfeldt, Andreas</td>
</tr>
<tr>
<td>458</td>
<td>2010</td>
<td>A tree search algorithm for solving the multi-dimensional strip packing problem with guillotine cutting constraint</td>
<td>Bortfeldt, Andreas</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Jungmann, Sabine</td>
</tr>
<tr>
<td>459</td>
<td>2010</td>
<td>Equity and Efficiency in Regional Public Good Supply with Imperfect Labour Mobility – Horizontal versus Vertical Equalization</td>
<td>Arnold, Volker</td>
</tr>
<tr>
<td>460</td>
<td>2010</td>
<td>A hybrid algorithm for the capacitated vehicle routing problem with three-dimensional loading constraints</td>
<td>Bortfeldt, Andreas</td>
</tr>
<tr>
<td>461</td>
<td>2010</td>
<td>A tree search procedure for the container relocation problem</td>
<td>Forster, Florian</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bortfeldt, Andreas</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reucher, Elmar</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mohr, Benjamin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wagner, Helmut</td>
</tr>
<tr>
<td>464</td>
<td>2011</td>
<td>Lösungskonzepte zur Allokation von Kooperationsvorteilen in der kooperativen Transportdisposition</td>
<td>Strangmeier, Reinhard</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fiedler, Matthias</td>
</tr>
<tr>
<td>465</td>
<td>2011</td>
<td>Grenzen einer Legitimation staatlicher Maßnahmen gegenüber Kreditinstituten zur Verhinderung von Banken- und Wirtschaftskrisen</td>
<td>Merbecks, Ute</td>
</tr>
<tr>
<td>466</td>
<td>2011</td>
<td>Controlling im Stadtmarketing – Eine Analyse des Hagener Schaffensterwettbewerbs 2010</td>
<td>Fließ, Sabine</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bauer, Katharina</td>
</tr>
<tr>
<td>467</td>
<td>2011</td>
<td>A Structural Approach to Financial Stability: On the Beneficial Role of Regulatory Governance</td>
<td>Mohr, Benjamin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wagner, Helmut</td>
</tr>
<tr>
<td>468</td>
<td>2011</td>
<td>Data Envelopment Analysis - Skaleneträge und Kreuzskalenerträge</td>
<td>Wilhelm Rödder</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Andreas Dellnitz</td>
</tr>
<tr>
<td>469</td>
<td>2011</td>
<td>Controlling organisatorischer Entscheidungen: Konzeptionelle Überlegungen</td>
<td>Lindner, Florian</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Scherm, Ewald</td>
</tr>
<tr>
<td>470</td>
<td>2011</td>
<td>Orientierung in Dienstleistungsumgebungen – eine explorative Studie am Beispiel des Flughafens Frankfurt am Main</td>
<td>Fließ, Sabine</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Colaci, Antje</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nesper, Jens</td>
</tr>
<tr>
<td>Page</td>
<td>Year</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>--</td>
<td>------------------------------</td>
</tr>
<tr>
<td>471</td>
<td>2011</td>
<td>Inequality aversion, income skewness and the theory of the welfare state</td>
<td>Weinreich, Daniel</td>
</tr>
<tr>
<td>472</td>
<td>2011</td>
<td>A tree search procedure for the container retrieval problem</td>
<td>Forster, Florian</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bortfeldt, Andreas</td>
</tr>
<tr>
<td>473</td>
<td>2011</td>
<td>A Functional Approach to Pricing Complex Barrier Options</td>
<td>Mazzoni, Thomas</td>
</tr>
<tr>
<td>474</td>
<td>2011</td>
<td>Bologna-Prozess und neues Steuerungsmodell – auf Konfrontationskurs mit universitären Identitäten</td>
<td>Jost, Tobias Scherm, Ewald</td>
</tr>
<tr>
<td>475</td>
<td>2011</td>
<td>A reduction approach for solving the rectangle packing area minimization problem</td>
<td>Bortfeldt, Andreas</td>
</tr>
<tr>
<td>476</td>
<td>2011</td>
<td>Trade and Unemployment with Heterogeneous Firms: How Good Jobs Are Lost</td>
<td>Altenburg, Lutz</td>
</tr>
<tr>
<td>477</td>
<td>2012</td>
<td>Structural Change Patterns and Development: China in Comparison</td>
<td>Wagner, Helmut</td>
</tr>
<tr>
<td>478</td>
<td>2012</td>
<td>Demografische Risiken – Herausforderungen für das finanzwirtschaftliche Risikomanagement im Rahmen der betrieblichen Altersversorgung</td>
<td>Merbecks, Ute</td>
</tr>
<tr>
<td>479</td>
<td>2012</td>
<td>“It’s all in the Mix!” – Internalizing Externalities with R&D Subsidies and Environmental Liability</td>
<td>Endres, Alfred Friese, Tim Rundshagen, Bianca</td>
</tr>
<tr>
<td>480</td>
<td>2012</td>
<td>Ökonomische Interpretationen der SkalenvARIABLEN u in der DEA</td>
<td>Dellnitz, Andreas Kleine, Andreas Rödder, Wilhelm</td>
</tr>
<tr>
<td>481</td>
<td>2012</td>
<td>Entropiebasierte Analyse von Interaktionen in Sozialen Netzwerken</td>
<td>Rödder, Wilhelm Brenner, Dominic Kulmann, Friedhelm</td>
</tr>
<tr>
<td>483</td>
<td>2013</td>
<td>Energy generation with Directed Technical Change</td>
<td>Kollenbach, Gilbert</td>
</tr>
<tr>
<td>484</td>
<td>2013</td>
<td>Monetary Policy and Asset Prices: When Cleaning Up Hits the Zero Lower Bound</td>
<td>Berger, Wolfram Kißmer, Friedrich</td>
</tr>
<tr>
<td>485</td>
<td>2013</td>
<td>Superknoten in Sozialen Netzwerken – eine entropieoptimale Analyse</td>
<td>Brenner, Dominic Rödder, Wilhelm Kulmann, Friedhelm</td>
</tr>
<tr>
<td>486</td>
<td>2013</td>
<td>Stimmigkeit von Situation, Organisation und Person: Gestaltungssüberlegungen auf Basis des Informationsverarbeitungsansatzes</td>
<td>Julmi, Christian Lindner, Florian Scherm, Ewald</td>
</tr>
<tr>
<td>487</td>
<td>2014</td>
<td>Incentives for Advanced Abatement Technology Under National and International Permit Trading</td>
<td>Endres, Alfred Rundshagen, Bianca</td>
</tr>
<tr>
<td>488</td>
<td>2014</td>
<td>Dynamische Effizienzbewertung öffentlicher Dreispartentheater mit der Data Envelopment Analysis</td>
<td>Kleine, Andreas Hoffmann, Steffen</td>
</tr>
<tr>
<td>Seite</td>
<td>Jahr</td>
<td>Titel</td>
<td>Autoren</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>489</td>
<td>2015</td>
<td>Konsensuale Peer-Wahl in der DEA -- Effizienz vs. Skalenertrag</td>
<td>Dellnitz, Andreas Reucher, Elmar</td>
</tr>
<tr>
<td>490</td>
<td>2015</td>
<td>Makroprudenziale Regulierung – eine kurze Einführung und ein Überblick</td>
<td>Velauthapillai, Jeyakrishna</td>
</tr>
<tr>
<td>491</td>
<td>2015</td>
<td>SEM modeling with singular moment matrices Part III: GLS estimation</td>
<td>Singer, Hermann</td>
</tr>
<tr>
<td>493</td>
<td>2016</td>
<td>Ungewissheit versus Unsicherheit in Sozialen Netzwerken</td>
<td>Rödder, Wilhelm Dellnitz, Andreas Gartner, Ivan</td>
</tr>
<tr>
<td>494</td>
<td>2016</td>
<td>Investments in supplier-specific economies of scope with two different services and different supplier characters: two specialists</td>
<td>Fandel, Günter Trockel, Jan</td>
</tr>
<tr>
<td>495</td>
<td>2016</td>
<td>An application of the put-call-parity to variance reduced Monte-Carlo option pricing</td>
<td>Müller, Armin</td>
</tr>
<tr>
<td>496</td>
<td>2016</td>
<td>A joint application of the put-call-parity and importance sampling to variance reduced option pricing</td>
<td>Müller, Armin</td>
</tr>
<tr>
<td>497</td>
<td>2016</td>
<td>Simulated Maximum Likelihood for Continuous-Discrete State Space Models using Langevin Importance Sampling</td>
<td>Singer, Hermann</td>
</tr>
<tr>
<td>498</td>
<td>2016</td>
<td>A Theory of Affective Communication</td>
<td>Julmi, Christian</td>
</tr>
<tr>
<td>499</td>
<td>2016</td>
<td>Approximations of option price elasticities for importance sampling</td>
<td>Müller, Armin</td>
</tr>
<tr>
<td>500</td>
<td>2016</td>
<td>Variance reduced Value at Risk Monte-Carlo simulations</td>
<td>Müller, Armin</td>
</tr>
<tr>
<td>502</td>
<td>2016</td>
<td>Measuring the domain-specificity of creativity</td>
<td>Julmi, Christian Scherm, Ewald</td>
</tr>
<tr>
<td>503</td>
<td>2017</td>
<td>Bipartite Strukturen in Sozialen Netzen – klassische versus MaxEnt-Analysen</td>
<td>Rödder, Wilhelm Dellnitz, Andreas Kulmann, Friedhelm Litzinger, Sebastian Reucher, Elmar</td>
</tr>
<tr>
<td>504</td>
<td>2017</td>
<td>Langevin and Kalman Importance Sampling for Nonlinear Continuous-Discrete State Space Models</td>
<td>Singer, Hermann</td>
</tr>
<tr>
<td>505</td>
<td>2017</td>
<td>Horizontal versus vertical fiscal Equalization</td>
<td>Anetsberger, Georg Arnold, Volker</td>
</tr>
<tr>
<td>506</td>
<td>2017</td>
<td>Formative and Reflective Measurement Models</td>
<td>Singer, Hermann</td>
</tr>
<tr>
<td>507</td>
<td>2017</td>
<td>Identifizierung von führenden Köpfen in terroristischen Netzwerken – ein entropiebasiertes Verfahren –</td>
<td>Dellnitz, Andreas Litzinger, Sebastian Rödder, Wilhelm</td>
</tr>
<tr>
<td>508</td>
<td>2017</td>
<td>Die Bedeutung der steuerlichen Norm § 5 Abs. 2 EStG für die handelsrechtliche Rechnungslegung</td>
<td>Meyering, Stephan</td>
</tr>
<tr>
<td>509</td>
<td>2018</td>
<td>Ein erweitertes Effizienzmaß für DMUs im BCC-Modell – eine ökonomiegerechte DEA-Anpassung –</td>
<td>Rödder, Wilhelm Dellnitz, Andreas Litzinger, Sebastian</td>
</tr>
<tr>
<td>Item</td>
<td>Year</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>---</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>510</td>
<td>2018</td>
<td>A concise proof of Gaussian smoothing</td>
<td>Singer, Hermann</td>
</tr>
<tr>
<td>511</td>
<td>2018</td>
<td>Empirical evidence on the topological properties of structural paths and some notes on its theoretical explanation</td>
<td>Stijepic, Denis</td>
</tr>
<tr>
<td>512</td>
<td>2018</td>
<td>On the predictability of economic structural change by the Poincaré-Bendixson theory</td>
<td>Stijepic, Denis</td>
</tr>
<tr>
<td>513</td>
<td>2018</td>
<td>On development paths minimizing the aggregate labor-reallocation costs in the three-sector framework and an application to structural policy</td>
<td>Stijepic, Denis</td>
</tr>
<tr>
<td>514</td>
<td>2018</td>
<td>Models of Continuous Dynamics on the 2-Simplex and Applications in Economics</td>
<td>Stijepic, Denis</td>
</tr>
<tr>
<td>515</td>
<td>2018</td>
<td>A Note on the Ideological Content of Modern Economic Dynamics Models and Ideology-Reducing Meta-Modeling</td>
<td>Stijepic, Denis</td>
</tr>
<tr>
<td>516</td>
<td>2018</td>
<td>Logistik für Versand von Studienmaterialien der FernUniversität in Hagen – Optimierte Bereitstellung bei der Kommissionierung</td>
<td>Brenner, Dominic Gädeke, Andre Kulmann, Friedhelm Kleine, Andreas</td>
</tr>
<tr>
<td>518</td>
<td>2019</td>
<td>Kolmogorov Backward Equations with Singular Diffusion Matrices</td>
<td>Singer, Hermann</td>
</tr>
</tbody>
</table>