Finite-Sample Properties of GARCH Models in the Presence of Time-Varying Unconditional Variance. A Simulation Study

Oliver Old

Diskussionsbeitrag Nr. 519

Januar 2020
A Simulation Study

Oliver Old*

Abstract

In this paper, the finite-sample properties of symmetric GARCH and asymmetric GJR-GARCH models in the presence of time-varying long term variance are considered. In particular, the deterministic spline-GARCH model is investigated by Monte-Carlo simulation, where the true parameter values are taken from estimated real equity index data. As a proxy for the behaviour of equity indices of developed countries, the S&P500 Index is estimated with the Quasi-Maximum-Likelihood (QML) method for different conditional heteroscedastic models (GARCH, GJR-GARCH, spline-GARCH and spline-GJR-GARCH). The estimated S&P500 parameter values are used to simulate a broad range of 6 different time-series lengths \{100, 500, 1000, 5000, 10000, 25000\} and 4 different numbers of spline knots \{1,4,9,14\}, combining to a total amount of 60 different model setups. To the best of my knowledge, there exist only a few limited simulation studies that focus on the spline-GARCH model. The main contribution of this paper is therefore to highlight the behaviour of the QML estimates when the long-term variance is implemented by the spline-GARCH model. Beside this, the paper provides a least-square approach to get useful starting values for the numerical estimation routine.

Keywords: Finite-sample distribution; spline-GARCH model; time-varying unconditional variance; simulation study.

*Research Assistant at the chair of Applied Statistics & Methods of Empirical Social Research (Univ.-Prof. Dr. Hermann Singer), Department of Economics and Business Administration, FernUniversität Hagen, Universitätsstraße 41, 58097 Hagen, Tel.: +49 2331/9871275. Home page: https://www.fernuni-hagen.de/is_statistik/, E-mail: oliver.old@fernuni-hagen.de.
1 Introduction

The ability to model important stylised-facts of financial returns series like volatility clustering, first explored by Engle (1982) with the so-called Autoregressive Conditional Heteroscedastic (ARCH) model and later generalised by Bollerslev (1986) (GARCH), made considerable progress in the description and forecasting of volatility, in particular for a short period. So one key assumption of these models is the fluctuation of the short-term conditional variance around a constant long-term unconditional variance in a mean-reversion process. Along with this assumption, many long empirical time series, especially financial ones, reveal a high persistent volatility in a near unit-root state. This so-called integrated GARCH (IGARCH) effect (Engle and Bollerslev, 1986) is based on the often violated assumption of a constant unconditional variance over varying states of volatility. This specious assumption is a consequence of neglected structural breaks and regime switches in GARCH models as proved by Mikosch and Starica (2004) and Hillebrand (2005) beside others. A remedy is to find change points or regimes in between the unconditional variance as well as the estimated parameters are locally constant, but vary among these segments. Some prominent representatives of this approach are Time-Varying models (Mercurio and Spokoiny, 2004; Medeiros and Veiga, 2009), Smooth-Transition models (González-Rivera, 1998) and Markov-Regime-Switching models (Hamilton, J.D., Susmel, R. 1994; Cai, 1994). Another approach is to mitigate the assumption of a constant and stationary unconditional variance for the whole sample and each possible segment within. This is done by decomposing the variance in a short-term stationary part and in a multiplicative linked long-term non-stationary part. Thereby smoothing the short-term volatility process for a lower volatility persistence. Within this proposal, the parameters are estimated globally for the whole sample. Beside some others, an early semi-parametric approach by Feng (2004) modeled the unconditional variance as a scale function by kernel estimation and the parameters of the conditional variance by maximum-likelihood estimation. In this context, Engle and Rangel (2008) proposed to model the long term variance as an exponential function with a quadratic truncated power basis function, the so-called spline-GARCH-model. As the knots of the spline basis functions are arranged equidistant over all sampled time points, within the spline-GARCH framework there is no need to identify break points or segments in advance. Beside smoothing the long-term volatility process, another issue of their paper is to analyse the economic source of volatility. They analysed the in-sample properties by means of a comprehensive study of the short-term volatility of various real equity indices and their impact due to various exogenous economic determinants. In the spline-GARCH-model, the high-frequent and the low-frequent volatility have the same time index. So if low-frequent exogenous variables are included, the low-frequent component is averaged and therefore constant over a fixed time span. Following the Mixed Data Sampling approach (Ghysels et al., 2007), Engle et al. (2013) addresses this issue with a fully parametric approach called GARCH-MIDAS. Within this framework, the long-term volatility component, which included exogenous variables in a different frequency, could vary in the same frequency as the short-term component by estimating a rolling window. The ability of models to capture structural breaks in the volatility process in an immanent way is indicated by the persistence of volatility. As mentioned by Engle et al. (2013), although they are conceived to, the spline-GARCH, as well as the GARCH-MIDAS models do not capture all breaks, in particular not fundamental ones.

The main contribution of this study is the examination of the finite-sample properties of the parameters of univariate GARCH and GJR-GARCH models, when the innovation series is smoothed by a long-term component, in particular by a spline-GARCH-model (Engle...
and Rangel, 2008) and to explore under which circumstances, within the applied simulation setup, the estimated parameters are consistent and the asymptotic theory for maximum-likelihood-estimators holds. This paper offers, therefore, a comprehensive simulation study of 10 different Data-Generating-Processes (DGP) explored with 6 different time series lengths, each with $M = 1000$ replications, resulting in 60000 simulated paths. The linkage between the volatility of equity returns and its exogenous sources are not further illuminated. The results of this study provide some evidence for empirical researchers, in particular, whether some of the central assumptions of the spline-GARCH model are applicable in the same way for different time series lengths and different numbers of knots. A desirable and important side effect arises, as the standard GARCH and GJR-models are further illuminated under the broad applied simulation setup within this study.

This paper is organized as follows. Section 2 gives a short recap of classic GARCH models with the problems caused by and introduce the applied model specifications. Within this section, the relationship between long-memory processes and structural breaks and their impact to the assumptions of GARCH models are briefly discussed. Section 3 describes the simulation setup, the origin of the Data Generating Processes and the simulation results. Section 4 concludes.

2 Model Specifications

Let p_t be the observed price, y_t the resulting log-returns and ϵ_t the innovations of a financial asset at time $t \in \mathbb{Z}$. Here the time is measured in days. $\Psi_{t-1} = \{p_{t-1}, p_{t-2}, \ldots\}$ is the information set the observer have up to $t - 1$. The log-returns series

$$y_t = \ln \left(\frac{p_t}{p_{t-1}} \right) \cdot 100$$

(1)

$$y_t = \mu_t + \epsilon_t$$

(2)

$$\mu_t = \phi_1 y_{t-1} + \phi_2 y_{t-2}$$

(3)

is multiplied by 100 to get a percentage of returns. The conditional mean $E[y_t | \Psi_{t-1}] = \mu_t$ is a dynamic linear function of lagged values of the dependent variable and possibly exogenous independent variables. Without theoretical reason, the mean process (3) will be assumed to follow an AR(2)-process without a constant term, i.e. $E[y_t] = 0$ by assumption. ϕ_1 and ϕ_2 are constant autoregressive parameters. ϵ_t is the deviation of a return to the expected return at time t, with respect to Ψ_{t-1}. In time series literature this unexpected difference is often called innovation. The variation around the mean of the return series is measured by the variance respectively the standard deviation. This variation is called volatility, which is indicated by the innovation series. Unlike the innovation series, the volatility is not observable and has to be estimated by data. By the assumptions of an efficient market [Fama, 1970], one key property of the innovation series is the independence of past values $E[\epsilon_t | \Psi_{t-1}] = 0$, i.e. ϵ_t is a martingale difference. From this orthogonality condition, it could be derived that the innovations are uncorrelated $\text{Cov}[\epsilon_t, \epsilon_s] = 0$ for $t \neq s$. But the marginal distribution of financial time series innovations often appear to be leptokurtic, i.e. $\kappa(\epsilon_t) \geq \kappa(z_t)$, whereby $\kappa(z_t)$ is the kurtosis of the process generating variable and $\kappa(\epsilon_t)$ is the kurtosis of the innovation series. So even if the observed innovations are uncorrelated, they are not necessarily independent which will be illuminated later in this paper.

Figure 1 depicts the observed daily spot-prices p_t from Standard & Poor’s 500 composite

1 $E[g(\epsilon_t)f(\epsilon_s)] \neq E[g(\epsilon_t)]E[f(\epsilon_s)]$ for $t \neq s$ and arbitrary functions g, f
stock market index (S&P 500) and the resulting log-returns y_t for the period from January 2, 1980 to December 31, 2018. Table 1 summarises the drawn sample, which is used throughout this paper for illustrative purposes and later as Data Generating Processes (DGP) for the simulation study. The S&P 500 sample was chosen because it stands as a proxy for developed countries’ stock market indices. The estimated innovation series from the AR(2)-process will be used as an independent variable for modeling the different conditional variances. Table 2 presents the descriptive statistics and the AR(2) model.

![S&P 500 Index](image1.png)

Figure 1: S&P 500 Index. Spot-prices p_t (left), log-returns y_t (right)

<table>
<thead>
<tr>
<th>Definition</th>
<th>Sample Period</th>
<th>Observations</th>
<th>Frequency</th>
<th>Source</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>y_t</th>
<th>$\hat{\epsilon}_t$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.0322</td>
<td>0.0343</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>1.1055</td>
<td>1.1040</td>
</tr>
<tr>
<td>Skewness</td>
<td>-1.1429</td>
<td>-1.2496</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>29.5017</td>
<td>30.0626</td>
</tr>
<tr>
<td>Minimum</td>
<td>-22.8997</td>
<td>-23.1424</td>
</tr>
<tr>
<td>Maximum</td>
<td>10.9572</td>
<td>10.5913</td>
</tr>
</tbody>
</table>

$\hat{\epsilon}_t = y_t - 0.0269y_{t-1} - 0.0422y_{t-2}$

AR(2)-model

Table 1: Sample

Table 2: Descriptive Statistics and AR(2)-model

2.1 Short Term Volatility

2.1.1 symmetric GARCH model

Some well-known stylised facts about financial time series like volatility clustering, leptokurtic unconditional distribution and no independent elements in the innovation series are captured by symmetric models of the ARCH-family, like the famous GARCH(P,Q) model
In GARCH models the innovation series
\[\epsilon_t = \sqrt{h_t} z_t \]
(4)
is generated by a random variable \(z_t \) rescaled by the conditional variance \(h_t \) of the \(\epsilon_t \) series. If for the standardised innovations \(z_t \) the assumptions \(E[z_t] = 0 \) and \(E[z_t^2] = 1 \) hold, then the innovation series is generated by a (semi-) strong GARCH process and if additionally \(z_t \) is assumed i.i.d., the innovation series is generated by a strong GARCH process, following the definitions from Drost and Nijman (1993). Hence \(E[z_t] = 0 \), \(E[\epsilon_t] = 0 \). Hereby, \(z_t \) could be assumed to be Gaussian or differently distributed. Holding the assumption of a (semi-)strong GARCH process with \(z_t \sim N(0, 1) \), the innovation series is conditional Gaussian \(\epsilon_t | \Psi_{t-1} \sim N(0, h_t) \). Within this paper all simulated processes are generated by a strong - GARCH process with \(z_t \text{i.i.d.} \sim N(0, 1) \) and with a kurtosis
\[\kappa(z_t) = E[z_t^4]/(E[z_t^2])^2 = 3. \]
(5)
The following equations (6a) and (6b)
\[
E[\epsilon_t^2 | \Psi_{t-1}] = h_t = \alpha_0 + \left(\sum_{p=1}^{P} \alpha_p z_{t-p}^2 + \sum_{q=1}^{Q} \beta_q h_{t-q} \right) \\
E[\epsilon_t^2 | \Psi_{t-1}] = h_t = \alpha_0 + (\alpha_1 z_{t-1}^2 + \beta_1) h_{t-1}
\]
(6a) (6b)
reveal the important property of volatility-clustering. As there is empirical evidence for the superiority of GARCH models with order \(P = 1 \) and \(Q = 1 \) (Hansen and Lunde 2001, 2005), hereafter and for the subsequent simulation study, only the GARCH(1,1) will be considered. To have a clear and concise notation of the kurtosis, the autocorrelation and the volatility persistence later, this paper follows the account from He and Teräsvirta (1999), where \(\nu_{S,t} = \alpha_1 z_t^2 + \beta_1 \) and \(\eta_e = E[\nu_t^2] \). So for the GARCH(1,1) case \(\eta_{S,1} = \alpha_1 + \beta_1 \) and \(\eta_{S,2} = 3\alpha_1^2 + 2\alpha_1\beta_1 + \beta_1^2 \) apply to \(z_t \text{i.i.d.} \sim N(0, 1) \), where the subscript \(S \) denotes symmetric GARCH models.

Since the conditional variance series \(h_t \) cannot be negative by definition, Bollerslev (1986) recommend to constrain the parameters \(\alpha_0 > 0 \), \(\alpha_p \geq 0, p = 1, ..., P \) and \(\beta_q \geq 0, q = 1, ..., Q \).

Applying the law of iterated expectation,
\[
E[\epsilon_t^2] = E[E[\epsilon_t^2 | \Psi_{t-1}]] = E[h_t]E[z_t^2] = \frac{\alpha_0}{1 - \eta_{S,1}} = \sigma^2
\]
(7)
provides the second moment of the unconditional distribution of the innovation series. So even if the observed innovation series is conditionally heteroscedastic, it is unconditionally homoscedastic. The assumption of a time-invariant unconditional variance, provides a stationary mean-reverse-process. As by the law of large numbers, the sample variance approaches the unconditional variance as \(T \to \infty \), the unconditional variance can also be assumed to be the long-term variance. To build a model for a weak stationary short term GARCH (1,1) process,
\[
E[h_t] < \infty \iff \eta_{S,1} < 1
\]
(8)
the parameter constraints derive from (7). But a constant unconditional variance is rarely observed, in particular not in long time series. To highlight this problem is one of the
key features of the spline-GARCH model. To capture the stylised-fact of a leptokurtic unconditional distribution, the fourth-moment conditions

$$\kappa(\epsilon_t) = \frac{E[\epsilon_t^4]}{(E[\epsilon_t^2])^2} = \kappa(z_t) \frac{E[h_t^2]}{(E[h_t])^2}$$ \hspace{1cm} (9)

describe the stylised-fact of a leptokurtic unconditional distribution. The fourth-moment conditions

$$\kappa(\epsilon_t) = \frac{E[\epsilon_t^4]}{(E[\epsilon_t^2])^2}$$

of a GARCH(1,1) have to be taken into considerations. \(\kappa(\epsilon_t)\) is the kurtosis of the innovation series \(\epsilon_t\), with \(\kappa(z_t)\) as defined in (5). It, therefore, follows that

$$E[\epsilon_t^4] = \kappa(z_t) E[h_t^2] \quad \text{(10a)}$$

$$E[h_t^2] = \alpha_0^2 + \eta S,2 E[h_{t-1}^2] + 2\alpha_0 \eta S,1 E[h_{t-1}]$$

$$= \frac{\alpha_0^2 + 2\alpha_0 \eta S,1 E[h_{t-1}]}{1 - \eta S,2} = \frac{\alpha_0^2(1 + \eta S,1)}{(1 - \eta S,2)(1 - \eta S,1)} \quad \text{(10b)}$$

with \(E[h_t]\) like defined in (7). The kurtosis for a specific GARCH(1,1) model in (9) is accordingly defined as

$$\kappa(\epsilon_t) = \kappa(z_t) \frac{1 - \eta S,2^2}{1 - \eta S,2} \geq \kappa(z_t). \quad \text{(11)}$$

Here \(\alpha_1\) is the decisive parameter. For \(\alpha_1 = 0\), there is no autoregressive conditional heteroscedasticity and the process is distributed as the process generating series \(z_t\). For a large \(\alpha_1\) GARCH(1,1) models a large kurtosis. Closely associated with the kurtosis, is the decaying pattern of the process. The general autocorrelation function of the univariate GARCH family is given by

$$\rho_1 = \frac{\bar{\eta}_1(1 - \eta_1^2) - \eta S,1(1 - \eta_2)}{3(1 - \eta S,1) - (1 - \eta_2)}$$

$$\rho_j = (\eta S,1)^{j-1} \rho_1 \quad \text{for} \quad j \geq 1 \quad \text{(12a)}$$

where \(\bar{\eta}_1 = 3\alpha_1 + \beta_1\) and \(\eta S,1 = \alpha_1 + \beta_1\) is the exponential decay rate of the autocorrelation function. Financial time series often display heavy tails and a slowly decaying pattern of its autocorrelation function. So the chosen model has to be capable to capture these properties. Within this study, no parameter constraints are imposed. The different conditional variance models will be estimated by maximum-likelihood, with \(z_t \stackrel{i.i.d.}{\sim} \mathcal{N}(0,1)\) and \(\theta \in \mathbb{R}^v\),

$$L_T(\theta) = \sum_{t=1}^{T} l_t(\theta)$$

$$l_t(\theta) = -\frac{1}{2} \ln(2\pi h_t) - \frac{1}{2} \left(\frac{\epsilon_t^2}{h_t} \right)$$

$$\hat{\theta} = \arg \max_{\theta} L_T(\theta) \quad \text{(13)}$$

where \(\theta = (\alpha_0, \alpha_1, \beta_1)'\) is a \((v \times 1)\) unknown parameters vector, where \(v\) is the number of elements of the parameter vector. The initial values \(\theta_0\) are chosen by empirical knowledge. Even if the assumption of a normal distribution of the process generating variable \(z_t\) is violated, the maximum-likelihood approach yields consistent and approximately normal distributed
estimators $\hat{\theta}$. This so-called quasi-maximum-likelihood approach requires the computation of robust-standard errors $\text{se}(\hat{\theta})$, as described by Bollerslev and Wooldridge (1992):

\[
J(\hat{\theta}) = G_T(\hat{\theta})G_T'\hat{\theta}
\]

\[
\Sigma(\hat{\theta}) = H^{-1}(\hat{\theta}) \cdot J(\hat{\theta}) \cdot H^{-1}(\hat{\theta})
\]

\[
\text{se}(\hat{\theta}) = \left[\text{diag} \left(\Sigma(\hat{\theta}) \right) \right]^{\frac{1}{2}}
\]

(14)

where $\Sigma(\hat{\theta})$ is the $(v \times v)$ asymptotic covariance matrix, $H(\hat{\theta})$ is the $(v \times v)$ Hessian, a consistent estimator of the Fisher information matrix, G_T is a $(v \times T)$ gradient matrix and $J(\hat{\theta})$ is the $(v \times v)$ Outer Product of the Gradients (OPG) matrix. Every following example and every DGP is estimated by a quasi-maximum-likelihood approach, with a BFGS optimisation with line searching algorithms. Despite the findings by Fiorentini et al. (1996), gradients and Hessians are computed using finite differencing for demonstrative purpose, as commonly used in most software packages. The optimisation algorithm, gradients and Hessians are adapted from Dennis and Schnabel (1983) pseudo-codes. The models and the likelihood functions are implemented by self-written MATLAB code.

Example 1. S&P500 (cf. tables 1,2) GARCH(1,1)

\[
\hat{h}_t = 0.0154 + 0.0847\epsilon_{t-1}^2 + 0.9032\hat{h}_{t-1}
\]

\[
\hat{\eta}_{S,1} = 0.9879 \Rightarrow E[h_t] < \infty
\]

\[
\hat{\eta}_{S,2} = 0.9903 \Rightarrow E[h_t^2] < \infty
\]

\[
\hat{\sigma}^2 = 1.273 \quad (\hat{s}^2 = 1.219)
\]

\[
\hat{\kappa}(\epsilon_t) = 7.46 \quad (\hat{k}^s = 30.06)
\]

\[
\hat{\rho}_1 = 0.29 \quad (\hat{\tau}_1 = 0.12) \quad \hat{\rho}_{50} = 0.16 \quad (\hat{\tau}_{50} = 0.03) \quad \hat{\rho}_{100} = 0.09 \quad (\hat{\tau}_{100} = 0.03)
\]

The robust standard-errors are presented in parentheses under the estimated parameter values. \hat{s}^2 is the sample variance, \hat{k}^s is the sample kurtosis and $\hat{\tau}_j$ are the sample autocorrelation functions.

2.1.2 Asymmetric GJR-GARCH model

Another important stylised fact of financial time series first described by Black (1976): “[...] A negative return will be tied to a rise in volatility, and a positive return will be tied to a fall in volatility”. This so-called leverage effect is neglected in symmetric GARCH models (6b). There only the size, but not the sign of each innovation affects the volatility process. A remedy are asymmetric GARCH models like the Exponential GARCH model (Nelson 1991), the Power-GARCH model (Ding et al., 1993), the Threshold-GARCH model (Zakoian, 1994) and the Glosten-Jagannathan-Runkel (Glosten et al., 1993) (GJR)-GARCH model. As its volatility process is modeled in the same way as the GARCH(P, Q) model and its asymptotic behaviour is well-known, the GJR-GARCH model

\[
h_t = \alpha_0 + \left(\sum_{p=1}^{P} (\alpha_p + \delta_p \mathbb{1}_{\epsilon_{t-p} < 0}) \right) z_{t-p}^2 + \sum_{q=1}^{Q} \beta_q h_{t-q}
\]

(15a)

\[
h_t = \alpha_0 + \left((\alpha_1 + \delta_1 \mathbb{1}_{\epsilon_{t-1} < 0}) z_{t-1}^2 + \beta_1 \right) h_{t-1}
\]

(15b)
will be applied within this paper. Here the conditional variance \(h_t \) depends also on the sign of \(\epsilon_{t-p} \). The function \(\mathbb{1}_{\epsilon_{t-p}<0} \) indicates the subset \(\epsilon_{t-p} < 0 \) of the observed innovation series. For values of \(\epsilon_t \) within this subset, the additional parameter \(\delta_p \) have to be estimated. If \(\delta_p > 0 \), then the leverage effect exists. For the sake of consistency, the GJR-GARCH model will also be considered with order \(P = 1 \) and \(Q = 1 \) and generated by \(z_t \sim i.i.d. \mathcal{N}(0, 1) \). For the GJR-GARCH(1,1) model \(\nu_{A,t} = (\alpha_1 + \delta_1 \mathbb{1}_{\epsilon_{t}<0}) z_t^2 + \beta_1 \) and consequently \(\eta_{A,1} = \alpha_1 + \beta_1 + \frac{1}{2} \delta_1 \), \(\tilde{\eta}_{A,1} = 3(\alpha_1 + \frac{1}{2} \delta_1) + \beta_1 \) and \(\eta_{A,2} = 3\alpha_1^2 + 2\alpha_1\beta_1 + 3\alpha_1 \delta_1 + \beta_1 \delta_1 + \beta_1^2 + \frac{3}{2} \delta_1^2 \), where the subscript \(A \) denotes asymmetric GARCH models.

As in the symmetric case of the GARCH(1,1) model, the unconditional variance \(\sigma^2 \) in the asymmetric GJR-GARCH(1,1) case is also constant

\[
E[\epsilon_t^2] = E[E[\epsilon_t^2 | \psi_{t-1}]] = E[h_t]E[z_t^2] = \frac{\alpha_0}{1 - \eta_{A,1}} = \sigma^2
\]

and so the process is weakly stationary if

\[
1 - \eta_{A,1} < 1.
\]

The fourth moment conditions, the kurtosis and the autocorrelation function given by equations \([9] - [12b] \) are similar to the GARCH(1,1) model. As in the GARCH(1,1) case, optimised parameter values \(\hat{\theta} = (\hat{\alpha}_0, \hat{\alpha}_1, \hat{\beta}_1, \hat{\delta}_1)' \) are determined by maximum-likelihood estimation, cf. [13].

Example 2. S&P500 (cf. tables [1] [2]) GJR-GARCH(1,1)

\[
\hat{h}_t = 0.0215 + (0.0216 + 0.1259\mathbb{1}_{\epsilon_{t-1}<0})\epsilon_{t-1}^2 + 0.8980\hat{h}_{t-1}^{(0.0025)} (0.0018) (0.0018) (0.0018)
\]

\[
\hat{\eta}_{A,1} = 0.983 \Rightarrow E[h_t] < \infty
\]

\[
\hat{\eta}_{A,2} = 0.9915 \Rightarrow E[h_t^2] < \infty
\]

\[
\hat{\sigma}^2 = 1.233 \quad (\hat{s}^2 = 1.219)
\]

\[
\hat{\kappa}_e = 12.25 \quad (\hat{k}^* = 30.06)
\]

\[
\hat{\rho}_1 = 0.33 \quad (\hat{r}_1 = 0.12) \quad \hat{\rho}_{50} = 0.14 \quad (\hat{r}_{50} = 0.03) \quad \hat{\rho}_{100} = 0.06 \quad (\hat{r}_{100} = 0.03)
\]

The robust standard-errors are presented in parentheses under the estimated parameter values. \(\hat{s}^2 \) is the sample variance, \(\hat{k}^* \) is the sample kurtosis and \(\hat{r}_j \) are the sample autocorrelation functions.

2.1.3 Long-Range Dependence and Structural Breaks

The innovations \(\epsilon_t \) are uncorrelated, the absolute and squared innovations are correlated, i.e. the innovations are not independent, which is a well-known fact of financial time series innovations, as noted above. Estimating the Sample Autocorrelation Function (SACF) of \(\epsilon_t^2 \) for long periods mostly reveals a slowly decaying pattern in the first lags, approximating to a positive constant for larger lags. This is called the long-memory or long-range-dependence (LRD) property of a time series [Beran et al. 2013] p. 19ff). A common measure of LRD is

\[
\rho_j \sim c_p |j|^{2d-1} \quad d \in (0, 0.5) \quad (18a)
\]

\[
\sum_{j=-\infty}^{\infty} \rho_j = \infty \quad (18b)
\]
where c_ρ is a constant. For large j the autocorrelation converges to zero if $d < 0.5$. The higher d is estimated, the longer the memory of the process is. This measure cannot distinguish between stationary long-memory processes and non-stationary time series (Mikosch and Starica, 2004). The autocorrelation of ARCH type models has an exponential decaying pattern as (12a) and (12b) reveal. Therefore, the persistence of the variance in GARCH(1,1) models is characterised by the sum $\alpha_1 + \beta_1 = \eta_{S,1}$ and in GJR-GARCH(1,1) models by the sum $\alpha_1 + 0.5\delta_1 + \beta_1 = \eta_{A,1}$, the so-called volatility persistence (hereafter VP). The estimation of the VP for long financial series with GARCH models often appear in a nearly unit-root state, i.e. $\hat{\eta}_{S,1} \approx 1$ or $\hat{\eta}_{A,1} \approx 1$. Estimators of Example 1 and 2, where $\hat{\eta}_{S,1} = 0.9879$ respectively $\hat{\eta}_{A,1} = 0.983$, are in line with this assumption. This undisputed stylised-fact of long financial time series motivated Engle and Bollerslev (1986) to the so-called integrated GARCH (IGARCH) model, where $\alpha_1 + \beta_1$ are assumed to sum up to 1. Even though the IGARCH model got some good in-sample and out-of-sample estimation results, there is a lack in the theoretical reasoning of the random walk process of the variance. Diebold (1986) firstly supposed that persistence in volatility is due to the failure in modeling regime switches for the intercept α_0. Later Lamoureux and Lastrapes (1990) proved, that in small samples, the VP is considerably lower than in large samples and that for long periods there are disregarded changes in the structure of the process, which results in the appearance of a very high persistence in a near non-stationary state. As the variance is not observable, it is not possible to assess if a long-memory process generated the data, or if there are neglected structural breaks (Hillebrand and Medeiros, 2008). Hillebrand (2005) stated, that before estimating a GARCH model, a change point detection test is needed. If there are changes in the structure of the process, which were ignored in the estimation of global parameters, the resulting high persistence volatility is spurious, what he called “spurious-almost-integration”. Hillebrand (2005) proved, that the reason for a VP almost one, are neglected parameter changes, i.e. different regimes of the unconditional variance σ^2 which are not accounted for. If there are
Figure 3: GARCH(1,1) model with $\hat{\beta}_1 = 0.9032$ (left-hand side), GJR-Garch model with $\hat{\beta}_1 = 0.898$ (right-hand side) and the identity curve (black). The red crosses identify $\sigma_{1980-1999}^2$ and the yellow crosses identify $\sigma_{1999-2018}^2$. Both unconditional variances lie on the identity line. h_t values greater than 2 are not displayed for clarity.

one or more breaks in the structure of the time series process with different unconditional means in each segment, global estimated parameters of a GARCH model capture these different means. In particular, $\hat{\beta}_1$ is picking up the slope of the identity line, which crosses the different means of each segment, and $\hat{\alpha}_1$ or $(\hat{\alpha}_1 + \frac{1}{2}\hat{\delta}_1)$ are assumed to be $\hat{\alpha}_1 \approx 1 - \hat{\beta}_1$ or $(\hat{\alpha}_1 + \frac{1}{2}\hat{\delta}_1) \approx 1 - \hat{\beta}_1$, as figure 3 shows (cf. Hillebrand, 2004). The process is getting integrated. Hillebrand (2004, 2005) shows for the GARCH(1,1) case, that in the occurrence of structural breaks $\hat{\beta}_1$ is globally overestimated and $\hat{\alpha}_1$ is globally underestimated. Figure 2 reveals, that there are breaks in the structure of the process and that both GARCH-models are more sensitive to the high-volatility period than to the low-volatility period.

In Example 1 and 2 the unconditional variances are estimated over the whole sample. In figure 4 the estimated unconditional variances are displayed for the whole sample, as well as for the first and the second half of the sample. There is evidence for the drawn sample, that the unconditional variance is not constant, as well in the GARCH(1,1) model as in the GJR-GARCH(1,1) model. These findings are in accordance with those of Hillebrand (2004, 2005) and Mikosch and Starica (2004). So there is evidence, that the estimated high VP in long financial time series is not trustworthy and the so-called IGARCH effect is more due to neglected changes in the process than to a true LRD.

For the GARCH(1,1) model, the unconditional variance is higher in the second segment and in the case of the GJR-GARCH(1,1) model the other way around. This is due to the crash in October 1987, which is illuminated by the spike around time point 2000. There were negative returns from about 23% in one day. The GJR-GARCH framework weights these negative returns due to an extra parameter and therefore the unconditional variance (c.f. 15b) is more sensitive for negative returns.
Figure 4: Conditional and unconditional variances. GARCH(1,1) (left-hand side), GJR-GARCH(1,1) (right-hand side)

2.2 Long Term Volatility

As underlined in the previous section, the assumption of a constant unconditional variance could lead to spurious integrated processes. To face these problems, several approaches like Markov-Regime-Switching [Hamilton, J.D., Susmel, R., 1994; Cai, 1994], Time-Varying GARCH [Mercurio and Spokoiny, 2004; Medeiros and Veiga, 2009; Čížek and Spokoiny, 2009] or Smooth-Transition models [González-Rivera, 1998], just to mention the most influential models, have been established. More recent approaches, tend to decompose the conditional variance process in a short term and a long term part. An early exploration in this field has been done by Engle and Lee (1999). They decomposed the conditional variance by the two aforementioned components additively. More recent approaches, decompose the conditional variance by multiplicative long- and short-run components. Two important models are the so-called GARCH-MIDAS [Engle et al., 2013] and the Spline-GARCH model [Engle and Rangel, 2008]. A multivariate extension to the spline-GARCH model dealing with a factor framework is the factor-spline-GARCH model by Rangel and Engle (2012). Amado et al. (2018) give a good outline over further models with multiplicative decomposed conditional variances. Conrad and Kleen (2018) examined the statistical properties of multiplicative GARCH models. To the best of my knowledge, there exists a few other studies dealing with estimation conditional variance by splines. So, for example, Audrino and Bühlmann (2009) build stochastic B-spline basis functions to model the logarithm of the general conditional variance. Brownlees and Gallo (2010) modeled the long-term volatility part as penalized B-spline. The use of the term “nonparametric” for spline smoothing or spline interpolation is widespread in literature, but somewhat misleading, as spline basis functions are estimated by parameters. In that regard, Eilers and Marx (1996) recommend to use the terms “overparametric techniques“ or “anonymous models“. From the statistical point of view, the term “smoothing“ will be preferred within this paper.

2.2.1 Spline-GARCH model

The principal reasons for introducing the Spline-GARCH model by Engle and Rangel (2008) were to explain the sources of financial time series volatility by exogenous macro-economic variables. As these variables are typically measured in a different frequency, the spline-GARCH model seems to be the first one capable to embedding those variables. Beside

3The original paper from Engle and Rangel (2008) will be referred to as “original framework“.
this, it has been shown, that the problems with a VP in a near unit-root state could be mitigated, which is a gratifying side effect that will be further illuminated within this paper. The innovation series

\[\epsilon_t = z_t \sigma_t \quad (19) \]

\[\sigma^2_t = h_t \tau_t \quad (20) \]

is also generated by a random variable \(z_t \) assumed to be standard normal and i.i.d. and the conditional variance \((20) \) is decomposed into a short-term part \(h_t \) and a long-term part

\[\tau^o_t = c \cdot \exp \left(w_0 t + \sum_{i=1}^{K} w_i ((t - t_{i-1})_+)^2 + \gamma x_t \right) \quad (21a) \]

\[\tau_t = \exp \left(c' + w_0 \frac{t}{T} + \sum_{i=1}^{K} w_i \left(\frac{(t - t_{i-1})_+}{T} \right)^2 \right) \quad (21b) \]

In the original framework in \((21a) \), \(\tau^o_t \) is constructed as an exponential spline for modeling exogenous sources of volatility embedded by the variable \(x_t \). To the end of this paper, some modifications to the spline-GARCH model has been made in \((21b) \). As recommended by \cite{Laurent2013}, the time is rescaled by \(T \) to keep the optimisation numerically stable. The constant is modeled as \(c' = \exp(c) \) to ensure \(\tau_t > 0 \). For purposes of this study, only the deterministic part of the spline function, but no exogenous variables will be considered. The spline bases are truncated power functions

\[(t - t_i)_+^2 = \begin{cases} (t - t_i)^2 & \text{if } t > t_i \\ 0 & \text{otherwise} \end{cases} \]

with equidistant knots as illustrated in figure \cite{EngleRangel2008}. \cite{EngleRangel2008} recommend to estimate different spline orders by models with a range of different numbers of knots and choose the optimal model by the Bayesian Information Criterion (BIC). In the context of the S&P500 sample, the GARCH(1,1)-spline(9) and the GJR-GARCH(1,1)-spline(9) models (cf. tables \cite{EngleRangel2008} and \cite{EngleRangel2008}) are the optimal choice and will be used for illustrative purposes within this section. Spline smoothing with truncated power series basis functions has some serious drawbacks. \cite{deBoor2001} (p. 84ff) shows that truncated spline functions tend to be linear dependent, if the knots are very nonuniform and if the distance between two adjacent knots are too close. Additionally, if the knots are too close to each other the estimators are getting insignificant. Both problems are relevant for the spline-GARCH framework if the knots/observation ratio is very high.
As noted above, classic GARCH models, with the assumption of a constant unconditional variance, are only capable to capture some of the most important stylised-facts for short periods. So within the original framework, the short-term volatility h_t is modeled as a GARCH(1,1) model and within this study extended by the GJR-GARCH(1,1) model. Both models are now smoothed by the long-term volatility τ_t. The definition of the conditional variances in the spline-GARCH model

\[h_t = \alpha_0 + \alpha_1 \left(\frac{\epsilon_{t-1}^2}{\tau_{t-1}} \right) + \beta_1 h_{t-1} = \alpha_0 + \left(\alpha_1 z_{t-1}^2 + \beta_1 \right) h_{t-1} \]
\[h_t = \alpha_0 + (\alpha_1 + \delta_1 1_{t-1<0}) \left(\frac{\epsilon_{t-1}^2}{\tau_{t-1}} \right) + \beta_1 h_{t-1} \]

\[= \alpha_0 + \left((\alpha_1 + \delta_1 1_{t-1<0}) z_{t-1}^2 + \beta_1 \right) h_{t-1} \]

(22a)

(22b)

shows the similarity to the standard GARCH models in (6a) and (6b), with the difference, that the process of the innovations in (19) is now smoothed by τ_t. Multiplying both sides with τ_t results in the well-known form of (20). As τ_t is deterministic it holds that $E[\tau_t] = \tau_t$ and $E[\tau_t z_t^2] = 0 \quad \forall t, s$. To insulate the time-varying effect of τ_t and to avoid identification problems within the model, the variance is targeted as described in Engle and Mezrich (1996) resulting in a so-called unit-GARCH process. Hereafter α_0 is modeled as

\[\alpha_0 = 1 - \eta_{S,1} \]
\[\alpha_0 = 1 - \eta_{A,1} \]

(23a)

(23b)

\[\Rightarrow E[h_t] = \sigma^2 = 1 \]

\[\Rightarrow E[h_t^2] = \frac{(1 - \eta_1)(1 + \eta_1)}{1 - \eta_2} \]

This representation reveals the linkage between the unconditional variance σ^2 and the long-term volatility τ_t, as

\[E[\epsilon_t^2] = E[h_t \tau_t z_t^2] = \tau_t E[h_t] = \tau_t. \]

(24)

As intended, the spline-GARCH framework is capable to model the unconditional variance time-varying. So even if the exogenous sources of volatility are hidden within this paper, their impact on long-term patterns is to some extent picked up by the deterministic spline
basis functions. In [Conrad and Kleen (2018)], the kurtosis for multiplicative GARCH models is derived. But the assumptions made in their paper are not met by the spline-GARCH model, because here the time-varying unconditional variance is represented by a deterministic function \[24\].

The likelihood function contains the conditional variance \(\sigma_t\) as defined in \[20\] and a vector of unknown parameters \(\theta = (\alpha_1, \beta_1, \delta_1, c', w_0, w_1, ..., w_K)\)

\[
l_t(\theta) = -\frac{1}{2} \ln(2\pi \sigma_t) - \frac{1}{2} \left(\frac{\epsilon_t^2}{\sigma_t} \right)
\]

\[
\hat{\theta} = \arg \max_\theta L_T(\theta)
\]

(25)

The optimisation of a spline-GARCH model is more demanding and more sensible to chosen initial values than in a GARCH(1,1) or in a GJR-GARCH(1,1) model. So the choice of good starting values is required. Therefore a two-step estimation procedure is recommended. In the first step the GARCH(1,1) and the GJR-GARCH(1,1) parameters \(\hat{\theta}_{0G}\) are estimated like in \[13\]. With these parameter values, the \(\hat{h}_{0t}\) series is evaluated. In the second step, an ordinary least squares (OLS) approach is applied. Before calculating the OLS estimator, \(\tau_t\) is approximated by \(\tau_t\), which is received by the following transformation

\[
\epsilon_t = \sqrt{\hat{h}_{0t} \tau_t} \Rightarrow \epsilon_t^2 = \hat{h}_{0t} \tau_t^2 \Rightarrow \tau_t = \epsilon_t^2 / (\hat{h}_{0t} \tau_t^2),
\]

where \(z_t\) is a standard-normally distributed random number and \(\epsilon_t\) is the observed innovation series. After taking the logarithm of the computed \(\tau_t\) values

\[
\ln\tau_t = c_0 + w_0 \frac{t}{T} + \sum_{i=1}^{K} w_i \left(\frac{(t - t_{i-1})+}{T} \right)^2
\]

(26)

the initial parameter vector \(\hat{\theta}_{0t}\) is obtained by OLS estimation

\[
\begin{bmatrix}
\ln\tau_{01} \\
\ln\tau_{02} \\
\vdots \\
\ln\tau_{0T}
\end{bmatrix} = \begin{bmatrix}
1 & \frac{1}{T} \left(\frac{(1-t_0)}{T} \right)^2 & \cdots & \frac{1}{T} \left(\frac{(1-t_{K-1})}{T} \right)^2 \\
1 & \frac{2}{T} \left(\frac{(2-t_0)}{T} \right)^2 & \cdots & \frac{2}{T} \left(\frac{(2-t_{K-1})}{T} \right)^2 \\
\vdots & \vdots & \ddots & \vdots \\
1 & \frac{T}{T} \left(\frac{(T-t_0)}{T} \right)^2 & \cdots & \frac{T}{T} \left(\frac{(T-t_{K-1})}{T} \right)^2
\end{bmatrix} \begin{bmatrix}
c_0 \\
w_{00} \\
w_{01} \\
\vdots \\
w_{0K}
\end{bmatrix} + \begin{bmatrix}
u_1 \\
u_2 \\
\vdots \\
u_T
\end{bmatrix}
\]

(27a)

\[
\hat{\theta}_{0t} = (X'X)^{-1}X'Y,
\]

(27b)

where \(\hat{\theta}_{0t} = (\hat{c}_0, \hat{w}_0, \hat{w}_1, ..., \hat{w}_K)\). To improve the initial values, the second step is replicated and \(L_T(\hat{\theta}_{0t})\) is evaluated \(x = 1000\) times. The parameter vector \(\hat{\theta}_{0t}\) with the largest \(L_T(\hat{\theta}_{0t})\) was chosen. The resulting starting values are \(\hat{\theta}_0 = (\hat{\theta}_{0G}, \hat{\theta}_{0t})\).

Example 3.

3.1. S&P500 (cf. tables [12]) Spline(9)-GARCH(1,1)

\[
\hat{h}_t = 0.0319 + 0.0881 \frac{\epsilon_{t-1}^2}{\tilde{T}_{t-1}} + 0.88 \hat{h}_{t-1}
\]

\[
\hat{\theta}_t = (0.276, -4.08, 15.39, 16.41, -152.92, 345.81, -455.28, 369.37, -185.18, 7.98, 148.69)
\]

(0.018) (0.024) (0.034) (0.144) (0.061) (0.134) (0.42) (0.66) (0.219) (0.325) (5.96)
Figure 6: S&P500 (cf. tables 1, 2) GARCH(1,1) and spline(9)-GARCH(1,1) models. GARCH(1,1) model with variance targeting and constant unconditional variance σ^2 (left column) and spline(9)-GARCH(1,1) model with time-varying unconditional variance τ_t (right column). In the top row, all estimated variance values are plotted. To zoom in, in the bottom row only variance values in the range [0, 4] are displayed.

3.2. S&P500 (cf. tables 1, 2) Spline(9)-GJR-GARCH(1,1)

$$\hat{h}_t = 0.03695 + (0.0101 + 0.14911\epsilon_{t-1} < 0) \left(\frac{\epsilon^2_{t-1}}{\tau^2_{t-1}} \right) + 0.8784\hat{h}_{t-1}$$

$$\hat{\theta}_3 = (0.357, -3.26, 16.38, -1.95, -108.24, 284.21, -390.81, 322.22, -161.93, 12.06, 97.59)$$

Regarding example 3, figures 6 and 7 corroborate some of the theoretical considerations made. One intended consequence is the reduced VP, which declines from 0.988 to 0.968 for the GARCH(1,1) case and from 0.983 to 0.963 for the GJR-GARCH(1,1) case.

3 Simulation Study

In this section, the finite-sample properties of the GARCH parameters $(\alpha_1, \beta_1, \delta_1)$ in the presence of a time-varying unconditional variance τ_t will be stressed. To the best of my knowledge there exist only a few limited simulation studies for the spline-GARCH-model so far. Goldman and Wang (2015) compared their so-called spline-threshold-GARCH model with the original spline-GARCH model by the means of a single simulation of $T = 5000$ datapoints with $M = 200$ replications and a fixed number of $K = 9$ knots. Goldman and Shen (2017) conducted a similar simulation setup with $M = 400$ replications and a broader...
Figure 7: S&P500 (cf. tables 1, 2) GJR-GARCH(1,1) and spline(9)-GJR-GARCH(1,1) models. GJR-GARCH(1,1) model with variance targeting and constant unconditional variance σ^2 (left column) and spline(9)-GJR-GARCH(1,1) model with time-varying unconditional variance τ_t (right column). In the top row, all estimated variance values are plotted. To zoom in, in the bottom row only variance values in the range $[0, 4]$ are displayed.

set of reference models. Within this paper, a more extensive simulation study is conducted, based on the continuously used S&P500 sample.

With the initial sample of 9835 spot prices p_t and the resulting log-returns y_t, the innovation series ϵ_t is obtained by an AR(2) model (cf. table 1). With the innovation series, 10 different conditional variance models are estimated. The obtained estimates from each of the $N = 10$ models are used as DGP for the simulation study (cf. tables 4 and 5). Each DGP is then applied to 6 different time series lengths $T \in \{100, 500, 1000, 5000, 10000, 25000\}$, leading to $N \times 6$ different model setups with $M = 1000$ replications each. So there were 60000 paths simulated and the related parameters estimated. Each simulation is generated by $z_t \sim \mathcal{N}(0, 1)$. Table 3 summarises the simulation setup.

As aforementioned, to obtain finite second or higher-order moments, some equality, inequality and positivity restrictions have to be imposed. These restrictions may lead to likelihood optimisation problems near the imposed boundaries, in particular, if the actual optimisation algorithm is built to solve unconstrained optimisation problems (Silvennoinen, 2006, p. 155-167). Therefore the positivity constraint by the exponential form of τ_t in (21b) is the only restriction imposed within this paper. For this reason, some of the proposed replications didn’t converge, wherefore $m = 1, ..., M$ is indexed. After simulating $M = 1000$ replications for $N = 10$ different DGP applied to six different time series lengths, each of the $N \times M \times 6$ simulated time series are estimated with the quasi-maximum-likelihood approach described in equations (13) and (25).

As mentioned in section 2.1.1, every DGP is estimated by the presented optimisation routine and implemented in MATLAB by following Dennis and Schnabel (1983) pseudo-codes. For computational purposes, the estimation of the 60000 simulated times series, is done by the
The occurrence of a VP in a near-unit root state, may cause the spurious assumption of a long-memory process and ignoring the existence of breaks in the structure of the process (c.f. section 2.1.3). So one intention of the spline-GARCH model is to mitigate the integrated GARCH effect, by allowing the unconditional variance to vary over time and so expose slow-moving regime switches, which are covered by global parameter estimation. In tables 4 and 5 are the estimates of the 10 DGP listed. To be concise, GARCH(1,1) or GJR-GARCH(1,1) models are displayed as zero knot spline-GARCH models. To emphasise that the DGP are themselves estimates of an unknown process and to distinguish these parameters from the estimators of the replications, the DGP parameters are specified by $\hat{\theta}_n$. Referring to the deterministic character of the spline part of the model, no initial data points were eliminated. The initial values $h_0 = 1$ and $c^2_0 = 1$ are chosen arbitrarily for the simulations. The initial values for the estimation procedure h_0 and c^2_0 are chosen by $1/T \sum_{t=1}^{T} \epsilon_t^2$, following the suggestion from Bollerslev (1986).
3.1.1 Sample Statistics

The subscripts \(m \) describe the \(m^{th} \) replication of DGP \(n \) and the corresponding time series length \(T \). The vector of estimated parameters \(\hat{\theta}_{mnT} \) contains \(v(n) \) elements of the \(m^{th} \) replication. \(\hat{\theta}_n \) is the vector of the particular DGP. Every parameter vector is a \([v \times 1]\) column vector. The resulting \([v \times M_{nT}]\) matrix \(\hat{\Theta}_{mnT} \) contains all of the converged estimates. \(\hat{\Theta}_{mnT}^c = \hat{\Theta}_{mnT} - \bar{\hat{\theta}}_{nT} \) is a centered matrix. The considered statistics

\[
\hat{E}[\hat{\theta}_{nT}] = \frac{\sum_{m=1}^{M_{nT}} \hat{\theta}_{mnT}}{M_{nT}} = \bar{\hat{\theta}}_{nT} \tag{28}
\]

\[
\hat{\text{Cov}}[\hat{\theta}_{nT}, \hat{\theta}'_{nT}] = \frac{\hat{\Theta}_{mnT}^c \hat{\Theta}_{mnT}'}{M_{nT} - 1} = \hat{s}(\hat{\theta}_{nT}, \hat{\theta}'_{nT}) \tag{29}
\]

\[
\hat{\text{Var}}[\hat{\theta}_{nT}] = \text{diag}\left(\hat{s}(\hat{\theta}_{nT}, \hat{\theta}'_{nT})\right) = \hat{s}^2(\hat{\theta}_{nT}) \tag{30}
\]

\[
\hat{\text{Std}}[\hat{\theta}_{nT}] = \sqrt{\hat{\text{Var}}[\hat{\theta}_{nT}]} = \hat{s}(\hat{\theta}_{nT}) \tag{31}
\]

\[
\text{bias} = |\bar{\hat{\theta}}_{nT} - \tilde{\theta}_n| \tag{32}
\]

\[
\hat{\text{Var}}[\hat{\eta}_{S,1nT}] = \hat{\text{Var}}[\hat{\alpha}_{1nT}] + \hat{\text{Var}}[\hat{\beta}_{1nT}] + \frac{\hat{\text{Cov}}[\hat{\alpha}_{1nT}, \hat{\beta}_{1nT}]}{\hat{s}^2(\hat{\theta}_{nT})} = \hat{s}^2(\hat{\eta}_{S,1nT}) \tag{33}
\]

\[
\hat{\text{Var}}[\hat{\eta}_{A,1nT}] = \hat{\text{Var}}[\hat{\alpha}_{1nT}] + \hat{\text{Var}}[\hat{\beta}_{1nT}] + \frac{1}{4} \hat{\text{Var}}[\hat{\delta}_{1nT}] + \frac{1}{2} \left(\frac{\hat{\text{Cov}}[\hat{\delta}_{1nT}, \hat{\alpha}_{1nT}]}{\hat{s}^2(\hat{\theta}_{nT})} + \frac{\hat{\text{Cov}}[\hat{\delta}_{1nT}, \hat{\beta}_{1nT}]}{\hat{s}^2(\hat{\theta}_{nT})}\right) = \hat{s}^2(\hat{\eta}_{S,1nT}) \tag{34}
\]

as the VP is a sum of dependent variables. The bias (32) is measured as Euclidean norm. For the variances of the VP (33) and (34), the covariance between each parameter has to be taken into account. To assess the assumption of normality the one-sample Kolmogorov-Smirnov-Test (KS)

\[
d_{M_{nT}}^+ = \max \left[\frac{\max_{m=1, \ldots, M_{nT}} \left(F_{M_{nT}}(\hat{\theta}_{mnT}) - F_0(\hat{\theta}_{mnT}) \right)}{0} \right] \tag{35a}
\]

\[
d_{M_{nT}}^- = \max \left[\frac{\max_{m=1, \ldots, M_{nT}} \left(F_0(\hat{\theta}_{mnT}) - F_{M_{nT}}(\hat{\theta}_{mnT}) \right)}{0} \right] \tag{35b}
\]

\[
d_{M_{nT}} = \max(d_{M_{nT}}^+, d_{M_{nT}}^-) \tag{35c}
\]
is conducted. Here $F_0(\hat{\theta}_{mnT})$ is the theoretical continuous distribution, in this case, the standard normal distribution. $F_{M_{nT}}(\hat{\theta}_{mnT})$ is a step function of the ascending ordered normalised parameter estimators with discontinuities at M_{nT} points. So for each replication with the particular estimator $\hat{\theta}_{mnT}$, $F_{M_{nT}}(\hat{\theta}_{mnT})$ gives the fraction of values smaller than $\hat{\theta}_{mnT}$ over all replications. The maximum distance between the theoretical and the empirical distribution function is measured by $d_{M_{nT}}$. The quantiles are approximated by

$$d_{M_{nT},1-\alpha} \approx \sqrt{-\frac{1}{2M_{nT}} \ln \alpha}$$ \hspace{1cm} (36)$$
in this case, $\alpha = 0.05$ to be consistent with assumptions above. The mean and the standard deviation for normalisation are received by (28), respectively (29). For further detailed description see Rao (2002, p. 420ff).

3.1.2 Asymptotic Statistics

Although every time series is generated by a $z_t \sim N(0,1)$ standardised innovation process, for each replication and each related converged estimator the robust asymptotic covariance matrix $\Sigma(\hat{\theta}_{mnT})$ and the resulting robust-standard error $se(\hat{\theta}_{mnT})$ (14) were estimated, to force $\Sigma(\hat{\theta}_{mnT})$ being p.s.d. for the demanding estimation process with up to 19 parameters. With the $se(\hat{\theta}_{mnT})$ confidence intervals (CI) around each estimated parameter with a significance level of 95% was constructed. The fraction of $\tilde{\theta}_n$ covered by each CI around $\hat{\theta}_{mnT}$ is measured by the so-called coverage probability (p_c)

$$95\% \text{ CI: } \hat{\theta}_{mnT} \pm 1.96 \cdot se(\hat{\theta}_{mnT})$$ \hspace{1cm} (37)$$

$$\hat{p}_c = \frac{\#\{\tilde{\theta}_n \in \text{CI}\}}{M_{nT}}$$ \hspace{1cm} (38)$$

Bernoulli Standard Error: $\sqrt{\frac{\hat{p}_c(1-\hat{p}_c)}{M_{nT}}}$, \hspace{1cm} (39)$$

following Lumsdaine (1995). The bias (30) is applied to test consistency $\tilde{\theta}_{nT} \overset{p}{\to} \hat{\theta}_n$ assumption. To examine asymptotically normality $\sqrt{T}(\bar{\theta}_{nT} - \theta_n) \overset{d}{\to} N(\theta_n, \Sigma(\theta_n))$ a Gaussian kernel estimator of $\bar{\theta}_{nT}$ will be compared with related Gaussian distribution. The kernel bandwidth is chosen by $b = 1.06 \hat{s}(\hat{\theta}_{nT}) T^{-1/5}$ according to the proposals by Silverman (1998, Equation (3.28)). To keep the presentation concise, only a few of the total amount of 150 different parameter distributions will be depicted in figures 14, 15, 19, 20 and 21.

3.2 Results

Before considering the results of the simulation study, the DGP will be described. In the original paper by Engle and Rangel (2008), 48 real equity return time series with realised volatilities as exogenous variable x_t in (21a) were examined. In the global view no appreciable
difference between the standard GARCH and the spline-GARCH model for the ARCH effect (α_1) were apparent. For the GARCH effect (β_1) a decrease from GARCH to spline-GARCH was observed, but independent to the number of knots. This independence is due to the global view over all 48 time series. For the purposes of this paper, just one real equity return time series is considered. Just to keep in mind, every DGP process was originally estimated for a $T = 9835$ time series. A look into the estimations of DGP in tables 4 and 5 reveals some of the general patterns of the spline-GARCH model. In contrast to the global view of the original paper, a dependence with the number of knots seems obvious, even if within this study, the spline-GJR-GARCH model is also analysed. Referring to the GARCH case includes the standard GARCH(1,1) model as well as the spline(K)-GARCH(1,1) model. The same holds for the GJR-GARCH case. So unlike in the GARCH case, where initially a slight increase between 1 and 4 knots appears, for the GJR-models the VP decline continuously. As mentioned in section 2.1.3, it is in particular $\tilde{\beta}_1$ driving the VP. So regarding just the $\tilde{\beta}_1$ parameters, there is a continuous decline from approximately 0.9 to 0.87 observable for both cases. So a lowering of the VP is an immanent pattern within the the spline-GARCH and the spline-GJR-Garch model. Regarding the other single parameters some differences appear. In line with the findings in the original paper, the $\tilde{\alpha}_1$ parameter increase slightly in the GARCH case, but decrease substantially in the GJR-GARCH case from 0.02 to 0.007. For the spline-GJR-GARCH models, the $\tilde{\delta}_1$ parameters increase from zero knot case to the 14 knots case from 0.12 to 0.16. So a time-varying pattern of the unconditional variances seems to strengthen the leverage effect. The black curves in figure 8 represent the values of the DGP.

In regard to the results of the simulation study, for $T \in \{100, 500, 1000\}$, referred to as the small samples, the replications are very compressed compared to the original process. So some of the $M = 1000$ ML optimisations didn’t converge. In particular, the small samples with $K = 14$ had convergence rates only between 55% – 80%. For $T \in \{5000, 10000, 25000\}$, referred to as the large samples, the convergence rates are on or just below 100%. Additionally, as discussed above, there were only parameter constraints in the τ_t equation imposed. Subsequently the time series lengths $T \in \{100, 500\}$ had a considerable fraction of explosive parameter constellations and negative estimators, in particular for $\tilde{\alpha}_{mzt}$ in GJR models. Nevertheless, for all GARCH models, the condition $h_t > 0 \ \forall t$ holds. The GJR-GARCH models, in contrast, had a significant number of negative h_t for some t in different model setups. So, in particular, all GJR-GARCH models with $K = 9$ over all time series lengths occurred negative h_t for some t. For GJR-GARCH models with $K \in \{0, 1, 4, 15\}$ for $T \in \{10000, 25000\}$ no further negative values for h_t occur. Within the time series lengths $T \in \{1000, 5000, 10000, 25000\}$, every single estimation met the recommended covariance stationary constraints (cf. (8) and (17)). In advance, it can be noted, that the results of the large samples are more robust than the small samples. As some GJR-GARCH models generated negative conditional variances, the results for the GJR-GARCH models have to be analysed selectively. As mentioned above, de Boor (2001, p. 84ff) recommended not using truncated spline functions, when adjacent knots are very close. In the small samples with a high knots/observation ratio, this problem occurs and could indicate some of the occurred problems with related estimators. All estimators and related statistics can be found in tables 6-9.

In figures 8 - 10 the behaviour of the the VP in presence of different spline models is depicted. In figure 8 the estimated VP are presented. As the black curve provides the VP of the true values, it can be seen at the first glance, that bias declines with increasing time series length, even if there is a rise with an increasing number of knots (figure 9). Also in line with asymptotic maximum-likelihood-theory are the standard-deviations $s^2(\hat{\eta}_{nT})$ of the
VP. As figure 10 reveals, the variance also declines with increasing time series length, but rises with an increasing number of knots, as one might expect. There are no noteworthy differences between the values and the global pattern between the sample statistics of the symmetric and asymmetric GARCH models, in the case of large samples.

The \hat{p}_c results are listed in table 10 and depicted in figures 11 - 13. For the zero knot case the results are in line with those by Lumsdaine (1995) and approach the determined significance level with rising time series length for the $\hat{\alpha}_1$ and $\hat{\beta}_1$ parameters. The advertised significance level is clearly understated for all three parameters in the GJR-GARCH zero knot case. For the spline-GJR-GARCH model the coverage probabilities for $\hat{\alpha}_1$ and $\hat{\delta}_1$ rise continuously from 1 to 14 knots and matches the determined significance level for $T \in \{5000, 25000\}$. For the $\hat{\beta}_1$ parameters, a decline between zero and 9 knots and an increase for 14 knots to a fraction clearly below 95% is evident. Considering the spline-GARCH models another picture emerges, as there is no stringent pattern throughout all parameters within all CI apparent. With the occurrence of 1 knot, the \hat{p}_c of both parameters break down, for $\hat{\beta}_1$ even to nearly zero. With increasing number of knots, the coverage probability for the $\hat{\beta}_1$ parameters rise throughout, whereas for the $\hat{\alpha}_1$ the coverage probability has no such clear pattern. On the one hand, as the CI is computed with normality assumption, there is evidence, that for some model orders, the normality assumption could be violated. As also for the large samples, the advertised significance level is mostly understated, the assumption of asymptotic normality could not be met by all parameters. On the other hand, the CI is also computed with robust-standard-errors and here the same pattern as for the \hat{p}_c is apparent for the $\text{se}(\hat{\theta}_{mT})$. So in some cases, the CI is very narrow and accordingly the \hat{p}_c is low.

Comparing the results of the coverage probability with the KS-statistics, the picture differs considerably, as can be seen in tables 11 and 12. Throughout all zero-knot GARCH and GJR-GARCH maximum-likelihood-estimators for $T \in \{1000, 5000, 10000, 25000\}$ are significantly normally distributed. For the spline-GARCH models, all ML-estimators for $T \in \{5000, 10000, 25000\}$ are significantly normally distributed. Regarding the depicted distributions of the GARCH parameters in figures 14, 15 and for the GJR-GARCH parameters in figures 19, 20 and 21 there is evidence, that the approximation to the normal distribution decelerate with increasing number of knots. For the small samples the distributions of the $\hat{\beta}_{1,mnT}$ parameters are heavily skewed, whereas the $\hat{\alpha}_{1,mnT}$ and $\hat{\delta}_{1,mnT}$ parameters are symmetrically distributed. In the GARCH case the distributions of the $\hat{\beta}_{1,mnT}$ parameters are bimodal, with major mode around the mean. The minor mode rises with an increasing number of knots. In the GJR-GARCH case, the minor knot is clearly smaller, than in the GARCH case for all number of knots. In both zero knot cases, there is even in the small samples no bimodal distribution for the $\hat{\beta}_{1,mnT}$ parameters. The same applies to all $\hat{\alpha}_{1,mnT}$ and $\hat{\delta}_{1,mnT}$ parameters throughout all models. The tails of the small samples are fatter than normal, more pronounced in the GARCH case. When parameters are restricted, this issue is often observed, also for large samples, and called pile-up effect. Within this study, no restrictions for short-term volatility parameters are imposed. The fat tails of the small sample distributions are therefore the result of the data.

5 even if Lumsdaine (1995) just examine CI for $T \in \{200, 500\}$ and with different DGP.

6 $\text{se}(\hat{\theta}_{mT})$ results on request.
Figure 8: VP $\hat{\eta}_{1nT}$. GARCH(1,1) (top row) and GJR-GARCH(1,1) (bottom row). Small samples $T \in \{100, 500, 1000\}$ (left-hand side), large samples $T \in \{5000, 10000, 25000\}$ (right-hand side). The black curve represents the true values $\tilde{\eta}_{S,1nT}$ and $\tilde{\eta}_{A,1nT}$. Some GJR-GARCH replications and related ML estimators result to some negative h_t.

Figure 9: Bias $\|\tilde{\eta}_{1nT} - \hat{\eta}_{1nT}\|_2$. GARCH(1,1) (top row) and GJR-GARCH(1,1) (bottom row). Small samples $T \in \{100, 500, 1000\}$ (left-hand side), large samples $T \in \{5000, 10000, 25000\}$ (right-hand side). Some GJR-GARCH replications and related ML estimators result to some negative h_t.
Figure 10: Standard deviation $\hat{s}(\hat{\eta}_{1,nT})$. GARCH(1,1) (top row) and GJR-GARCH(1,1) (bottom row). Small samples $T \in \{100, 500, 1000\}$ (left-hand side), large samples $T \in \{5000, 10000, 25000\}$ (right-hand side). Some GJR-GARCH replications and related ML estimators result to some negative h_t.

Figure 11: Coverage Probability of $\hat{\alpha}_1$. GARCH(1,1) (top row) and GJR-GARCH(1,1) (bottom row). Small samples $T \in \{100, 500, 1000\}$ (left-hand side), large samples $T \in \{5000, 10000, 25000\}$ (right-hand side). Some GJR-GARCH replications and related ML estimators result to some negative h_t.

23
Figure 12: Coverage Probability of $\tilde{\beta}_1$ Garch(1,1) (top row) and GJR-Garch(1,1) (bottom row). Small samples $T \in \{100, 500, 1000\}$ (left-hand side), large samples $T \in \{5000, 10000, 25000\}$ (right-hand side). Some GJR-GARCH replications and related ML estimators result to some negative h_t.

Figure 13: Coverage Probability of $\tilde{\delta}_1$ GJR-Garch(1,1). Small samples $T \in \{100, 500, 1000\}$ (left-hand side), large samples $T \in \{5000, 10000, 25000\}$ (right-hand side). Some GJR-GARCH replications and related ML estimators result to some negative h_t.
Figure 14: Asymptotic Normality of $\hat{\alpha}_1$ in GARCH(1,1) case. The black curves represent the kernel density estimator for $\hat{\alpha}$, the red curve the related normal distribution. In the top row the spline(14)-GARCH(1,1) distribution for $T \in \{100, 1000, 5000, 25000\}$ is depicted. The subjacent rows are the spline(K)-GARCH(1,1) models with $K \in \{0, 1, 4, 9\}$ and the same time series lengths.
Figure 15: Asymptotic Normality of $\hat{\beta}_1$ in GARCH(1,1) case. The black curves represent the kernel density estimator for $\hat{\beta}_1$, the red curve the related normal distribution. In the top row the spline(14)-GARCH(1,1) distribution for $T \in \{100, 1000, 5000, 25000\}$ is depicted. The subjacent rows are the spline(K)-GARCH(1,1) models with $K \in \{0, 1, 4, 9\}$ and the same time series lengths.
4 Conclusion

The intention of the spline-GARCH model of Engle and Rangel (2008) was to relax the assumption of constant long-term variance, on which standard GARCH models are based. This is achieved by decomposing the variance into a short horizon component, the standard GARCH model and a long horizon component, the exponential spline function. One objective of the latter is to smooth the innovation process and so lowering the geometric decay rate of the VP. This may reduce the doubt on a spurious long-memory effect, but may not detect every break in the structure of the process, as stated by Engle et al. (2013). In this paper the Data Generating Processes (DGP) were estimated by real equity data and confirmed some of the results within the original paper. With these DGP, 60000 different time series were simulated and 60 different models were estimated to stress the finite-sample properties of the related symmetric and asymmetric GARCH parameters ($\alpha_1, \beta_1, \delta_1$) when the unconditional variance is time-varying. The results for the parameters of the spline function were not discussed within this paper. They are available on request.

For the spline-GARCH model more parameters have to be estimated, than in standard GARCH models. Therefore the optimisation routine for the ML method is demanding and very sensitive for good starting values. In this paper, an ordinary-least-squares approach to receive appropriate starting values was introduced. The optimisation routine could easily end up in a local maximum or a saddle point far away from the global maximum, starting with bad values. For the simulation study, the estimated parameters of the DGP process have been used as starting values.

First of all, the volatility persistence decreases with an increasing number of knots. This behaviour could already be observed with the estimations of the DGP. For the replications, a similar picture arises, but with a tremendous lowering of the volatility persistence for the small samples. But these results have to be treated with caution, as there could occur problems with parameter estimators of the truncated spline function. The estimations get closer to the true values with longer time series. So for all large samples, the bias is in a reasonable range of 1%. The same holds for the zero knot cases, but here also for the small samples. On the whole, the bias of the single parameters shows the same behaviour. Also in line with asymptotic ML theory are the variances of the volatility persistences and the single parameters. Such a clear pattern is not apparent regarding the coverage probability. Here some irregularities rise to doubts on the assumption of asymptotic normality for some parameters in some model setups. This behaviour of the coverage probability could be explained by narrow confidence intervals due to small robust-standard-errors for some model setups. Unlike the coverage probability, the Kolmogorov-Smirnov-statistics are based on the sample statistics. For all large samples, the assumption of asymptotic normal distributed parameters following the Kolmogorov-Smirnov-statistic holds. It can be emphasised that the ML-estimators of the GARCH and GJR-GARCH parameters in the spline-GARCH model are consistent and asymptotically normally distributed, even though some GJR-GARCH replications had problematic parameter constellations. But empirical researchers should be suspicious using the spline-GARCH model for short horizons, even if there is a vast reduction of the VP apparent.

It should be stressed, that the applied model setups rely on only one arbitrarily chosen sample, the S&P500 equity index from 1980-1999. Some of the simulated time series are heavily compressed or stretched, as the original sample contains $T = 9835$ data points. Whether the events happened within the original sample period, are applicable to each and every simulation is not evident. But as a typical developed market long time series, with the S&P500 sample, some of the intentions of the spline-GARCH model could be examined. Based on
the results of this article, further studies should examine different parameter constellations. Another issue is the omitted restrictions on the estimation of the short-term volatility. There may be different results imposing parameter restriction, in particular in small samples and for the most of the considered GJR-GARCH models.

Acknowledgements

Parts of this paper were presented at the annual meeting of the German Statistical Society (DStatG) in Trier 2019. I would like to thank my supervisor Prof. Dr. Hermann Singer for constructive criticism and many insightful conversations.
References

URL: https://econpapers.repec.org/RePEc:aah:create:2018-14

URL: http://dx.doi.org/10.1007/978-3-642-35512-7

URL: http://www.loc.gov/catdir/enhancements/fy0817/2001049644-d.html

URL: http://www.cls.dk/caf/wp/wp-84.pdf

Table 4: GARCH(1,1): Estimated Parameter Values from S&P500 Sample and DGP

<table>
<thead>
<tr>
<th></th>
<th>GARCH(1,1)</th>
<th>Spline(1)</th>
<th>Spline(4)</th>
<th>Spline(9)</th>
<th>Spline(14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{\alpha}_1$</td>
<td>0.0804</td>
<td>0.0856</td>
<td>0.0866</td>
<td>0.0881</td>
<td>0.0876</td>
</tr>
<tr>
<td></td>
<td>(0.0142)</td>
<td>(0.0006)</td>
<td>(0.0010)</td>
<td>(0.0263)</td>
<td>(0.0014)</td>
</tr>
<tr>
<td>$\hat{\beta}_1$</td>
<td>0.9036</td>
<td>0.8999</td>
<td>0.8977</td>
<td>0.8800</td>
<td>0.869</td>
</tr>
<tr>
<td></td>
<td>(0.0183)</td>
<td>(0.0001)</td>
<td>(0.0041)</td>
<td>(0.13)</td>
<td>(0.0077)</td>
</tr>
<tr>
<td>$\hat{\alpha}_1 + \hat{\beta}_1$</td>
<td>0.9840</td>
<td>0.9855</td>
<td>0.9843</td>
<td>0.9681</td>
<td>0.9566</td>
</tr>
<tr>
<td>\hat{c}'</td>
<td>0.4054</td>
<td>-0.0401</td>
<td>-0.276</td>
<td>-0.109</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0342)</td>
<td>(0.0796)</td>
<td>(3.89)</td>
<td>(0.0326)</td>
<td></td>
</tr>
<tr>
<td>$\hat{\bar{w}}_0$</td>
<td>-0.6443</td>
<td>7.31</td>
<td>-4.08</td>
<td>19.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0854)</td>
<td>(0.701)</td>
<td>(0.364)</td>
<td>(0.0682)</td>
<td></td>
</tr>
<tr>
<td>$\hat{\bar{w}}_1$</td>
<td>0.2259</td>
<td>-23.7</td>
<td>15.4</td>
<td>-248.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0876)</td>
<td>(0.221)</td>
<td>(1.98)</td>
<td>(0.0905)</td>
<td></td>
</tr>
<tr>
<td>$\hat{\bar{w}}_2$</td>
<td>37.4</td>
<td>16.4</td>
<td>440.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.47)</td>
<td>(1.69)</td>
<td>(0.505)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\hat{\bar{w}}_3$</td>
<td>-20.7</td>
<td>-153.0</td>
<td>-257.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(7.16)</td>
<td>(1.31)</td>
<td>(0.116)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\hat{\bar{w}}_4$</td>
<td>5.21</td>
<td>346.0</td>
<td>-35.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.83)</td>
<td>(0.204)</td>
<td>(0.0893)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\hat{\bar{w}}_5$</td>
<td>-455.0</td>
<td>100.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.66)</td>
<td>(1.19)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\hat{\bar{w}}_6$</td>
<td>369.0</td>
<td>282.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.839)</td>
<td>(1.49)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\hat{\bar{w}}_7$</td>
<td>-185.0</td>
<td>-458.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.218)</td>
<td>(0.604)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\hat{\bar{w}}_8$</td>
<td>7.98</td>
<td>84.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.336)</td>
<td>(2.01)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\hat{\bar{w}}_9$</td>
<td>149.0</td>
<td>52.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6.36)</td>
<td>(0.201)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\hat{\bar{w}}_{10}$</td>
<td>409.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.57)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\hat{\bar{w}}_{11}$</td>
<td>-851.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.19)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\hat{\bar{w}}_{12}$</td>
<td>780.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(17.3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\hat{\bar{w}}_{13}$</td>
<td>-497.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(55.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\hat{\bar{w}}_{14}$</td>
<td>599.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(58.9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIC</td>
<td>2.6681</td>
<td>2.6700</td>
<td>2.6716</td>
<td>2.6675</td>
<td>2.6684</td>
</tr>
<tr>
<td></td>
<td>GJR-GARCH(1,1)</td>
<td>Spline(1)</td>
<td>Spline(4)</td>
<td>Spline(9)</td>
<td>Spline(14)</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>(\hat{\alpha}_1)</td>
<td>0.0203</td>
<td>0.015</td>
<td>0.015</td>
<td>0.0101</td>
<td>0.00696</td>
</tr>
<tr>
<td></td>
<td>(0.0008)</td>
<td>(0.0019)</td>
<td>(0.00216)</td>
<td>(0.00241)</td>
<td>(0.00341)</td>
</tr>
<tr>
<td>(\hat{\beta}_1)</td>
<td>0.9</td>
<td>0.894</td>
<td>0.892</td>
<td>0.878</td>
<td>0.867</td>
</tr>
<tr>
<td></td>
<td>(0.00336)</td>
<td>(0.0082)</td>
<td>(0.0003)</td>
<td>(0.0009)</td>
<td>(0.0004)</td>
</tr>
<tr>
<td>(\hat{\delta}_1)</td>
<td>0.116</td>
<td>0.137</td>
<td>0.14</td>
<td>0.149</td>
<td>0.155</td>
</tr>
<tr>
<td></td>
<td>(0.00106)</td>
<td>(0.0065)</td>
<td>(0.00343)</td>
<td>(0.00131)</td>
<td>(0.00521)</td>
</tr>
<tr>
<td>(\hat{\alpha}_1 + \hat{\beta}_1 + \frac{1}{2} \hat{\delta}_1)</td>
<td>0.9783</td>
<td>0.978</td>
<td>0.977</td>
<td>0.9626</td>
<td>0.9515</td>
</tr>
<tr>
<td>(\hat{c}')</td>
<td>0.521</td>
<td>0.18</td>
<td>0.357</td>
<td>−0.00339</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.00757)</td>
<td>(0.00937)</td>
<td>(0.0103)</td>
<td>(0.00879)</td>
<td></td>
</tr>
<tr>
<td>(\hat{\upsilon}_0)</td>
<td>−0.924</td>
<td>5.29</td>
<td>−3.26</td>
<td>19.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0584)</td>
<td>(0.271)</td>
<td>(0.0142)</td>
<td>(0.0365)</td>
<td></td>
</tr>
<tr>
<td>(\hat{\upsilon}_1)</td>
<td>0.197</td>
<td>−18.8</td>
<td>16.4</td>
<td>−229.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0645)</td>
<td>(0.109)</td>
<td>(0.101)</td>
<td>(0.0505)</td>
<td></td>
</tr>
<tr>
<td>(\hat{\upsilon}_2)</td>
<td>30.0</td>
<td>−1.95</td>
<td>386.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.783)</td>
<td>(0.0217)</td>
<td>(0.0538)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\hat{\upsilon}_3)</td>
<td>−16.1</td>
<td>−108.0</td>
<td>−214.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.25)</td>
<td>(0.12)</td>
<td>(0.0288)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\hat{\upsilon}_4)</td>
<td>0.0683</td>
<td>284.0</td>
<td>−25.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.147)</td>
<td>(0.115)</td>
<td>(0.0242)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\hat{\upsilon}_5)</td>
<td>−391.0</td>
<td>71.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.252)</td>
<td>(0.0283)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\hat{\upsilon}_6)</td>
<td>322.0</td>
<td>285.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.519)</td>
<td>(0.3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\hat{\upsilon}_7)</td>
<td>−162.0</td>
<td>−481.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0688)</td>
<td>(0.213)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\hat{\upsilon}_8)</td>
<td>12.1</td>
<td>190.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.471)</td>
<td>(0.515)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\hat{\upsilon}_9)</td>
<td>97.6</td>
<td>−80.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3.74)</td>
<td>(1.45)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\hat{\upsilon}_{10})</td>
<td>472.0</td>
<td>472.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.34)</td>
<td>(1.34)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\hat{\upsilon}_{11})</td>
<td>−810.0</td>
<td>−810.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4.24)</td>
<td>(4.24)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\hat{\upsilon}_{12})</td>
<td>664.0</td>
<td>664.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(18.1)</td>
<td>(18.1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\hat{\upsilon}_{13})</td>
<td>−331.0</td>
<td>−331.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(60.0)</td>
<td>(60.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\hat{\upsilon}_{14})</td>
<td>285.0</td>
<td>285.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(45.1)</td>
<td>(45.1)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5: GJR-GARCH(1,1): Estimated Parameter Values from S&P500 Sample and DGP
Table 6: Volatility Persistence. The sample statistics are computed as given in equations \((32)-(34)\). The red highlighted numbers indicate that some GJR-GARCH replications and related ML estimators result to some negative \(\hat{h}_t\).
<table>
<thead>
<tr>
<th>knots</th>
<th>$\hat{\alpha}_1$</th>
<th>bias</th>
<th>$\hat{s}(\hat{\alpha}_1)$</th>
<th>RMSE</th>
<th>M_{nT}</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>0.0528</td>
<td>0.0276</td>
<td>0.1210</td>
<td>0.1241</td>
<td>973</td>
</tr>
<tr>
<td>1</td>
<td>-0.0296</td>
<td>0.1153</td>
<td>0.1236</td>
<td>0.1690</td>
<td>910</td>
</tr>
<tr>
<td>4</td>
<td>-0.0578</td>
<td>0.1444</td>
<td>0.1206</td>
<td>0.1881</td>
<td>872</td>
</tr>
<tr>
<td>9</td>
<td>-0.0701</td>
<td>0.1581</td>
<td>0.1480</td>
<td>0.2166</td>
<td>841</td>
</tr>
<tr>
<td>14</td>
<td>-0.0697</td>
<td>0.1573</td>
<td>0.1459</td>
<td>0.2145</td>
<td>804</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$T = 500$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>0.0802</td>
<td>0.0001</td>
<td>0.0276</td>
<td>0.0276</td>
<td>950</td>
</tr>
<tr>
<td>1</td>
<td>0.0812</td>
<td>0.0044</td>
<td>0.0332</td>
<td>0.0335</td>
<td>944</td>
</tr>
<tr>
<td>4</td>
<td>0.0649</td>
<td>0.0217</td>
<td>0.0454</td>
<td>0.0503</td>
<td>898</td>
</tr>
<tr>
<td>9</td>
<td>0.0393</td>
<td>0.0488</td>
<td>0.0628</td>
<td>0.0796</td>
<td>895</td>
</tr>
<tr>
<td>14</td>
<td>0.0217</td>
<td>0.0659</td>
<td>0.0651</td>
<td>0.0926</td>
<td>660</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$T = 1000$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>0.0811</td>
<td>0.0008</td>
<td>0.0174</td>
<td>0.0174</td>
<td>937</td>
</tr>
<tr>
<td>1</td>
<td>0.0839</td>
<td>0.0017</td>
<td>0.0195</td>
<td>0.0196</td>
<td>909</td>
</tr>
<tr>
<td>4</td>
<td>0.0805</td>
<td>0.0061</td>
<td>0.0209</td>
<td>0.0218</td>
<td>865</td>
</tr>
<tr>
<td>9</td>
<td>0.0752</td>
<td>0.0129</td>
<td>0.0274</td>
<td>0.0302</td>
<td>927</td>
</tr>
<tr>
<td>14</td>
<td>0.0649</td>
<td>0.0227</td>
<td>0.0357</td>
<td>0.0423</td>
<td>595</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$T = 5000$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>0.0803</td>
<td>0.0001</td>
<td>0.0073</td>
<td>0.0073</td>
<td>977</td>
</tr>
<tr>
<td>1</td>
<td>0.0849</td>
<td>0.0008</td>
<td>0.0080</td>
<td>0.0080</td>
<td>983</td>
</tr>
<tr>
<td>4</td>
<td>0.0860</td>
<td>0.0006</td>
<td>0.0083</td>
<td>0.0083</td>
<td>975</td>
</tr>
<tr>
<td>9</td>
<td>0.0868</td>
<td>0.0012</td>
<td>0.0094</td>
<td>0.0094</td>
<td>974</td>
</tr>
<tr>
<td>14</td>
<td>0.0864</td>
<td>0.0012</td>
<td>0.0096</td>
<td>0.0097</td>
<td>938</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$T = 10000$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>0.0802</td>
<td>0.0002</td>
<td>0.0054</td>
<td>0.0054</td>
<td>992</td>
</tr>
<tr>
<td>1</td>
<td>0.0851</td>
<td>0.0005</td>
<td>0.0059</td>
<td>0.0059</td>
<td>996</td>
</tr>
<tr>
<td>4</td>
<td>0.0866</td>
<td>0.0000</td>
<td>0.0059</td>
<td>0.0059</td>
<td>990</td>
</tr>
<tr>
<td>9</td>
<td>0.0882</td>
<td>0.0001</td>
<td>0.0062</td>
<td>0.0062</td>
<td>983</td>
</tr>
<tr>
<td>14</td>
<td>0.0871</td>
<td>0.0004</td>
<td>0.0067</td>
<td>0.0067</td>
<td>978</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$T = 25000$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>0.0803</td>
<td>0.0001</td>
<td>0.0035</td>
<td>0.0035</td>
<td>995</td>
</tr>
<tr>
<td>1</td>
<td>0.0856</td>
<td>0.0000</td>
<td>0.0037</td>
<td>0.0037</td>
<td>999</td>
</tr>
<tr>
<td>4</td>
<td>0.0864</td>
<td>0.0001</td>
<td>0.0037</td>
<td>0.0037</td>
<td>995</td>
</tr>
<tr>
<td>9</td>
<td>0.0880</td>
<td>0.0001</td>
<td>0.0042</td>
<td>0.0042</td>
<td>995</td>
</tr>
<tr>
<td>14</td>
<td>0.0874</td>
<td>0.0002</td>
<td>0.0043</td>
<td>0.0043</td>
<td>990</td>
</tr>
</tbody>
</table>

Table 7: α_1. The sample statistics are computed as given in equations (28)-(31). The red highlighted numbers indicate, that some GJR-GARCH replications and related ML estimators result to some negative h_t.
Table 8: $\hat{\beta}_1$.
The sample statistics are computed as given in equations (28)-(31). The red highlighted numbers indicate, that some GJR-GARCH replications and related ML estimators result to some negative h_l.
<table>
<thead>
<tr>
<th>T</th>
<th>$\hat{\delta}_1$</th>
<th>Bias</th>
<th>$\hat{s}(\hat{\delta}_1)$</th>
<th>RMSE</th>
<th>$M_{n,T}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>-0.1163</td>
<td>0.0037</td>
<td>0.1738</td>
<td>0.1739</td>
<td>1000</td>
</tr>
<tr>
<td>1</td>
<td>0.1224</td>
<td>0.0151</td>
<td>0.1979</td>
<td>0.1965</td>
<td>886</td>
</tr>
<tr>
<td>4</td>
<td>0.1199</td>
<td>0.0293</td>
<td>0.1924</td>
<td>0.1947</td>
<td>823</td>
</tr>
<tr>
<td>9</td>
<td>0.1214</td>
<td>0.0276</td>
<td>0.1820</td>
<td>0.1841</td>
<td>780</td>
</tr>
<tr>
<td>14</td>
<td>0.1365</td>
<td>0.0187</td>
<td>0.1986</td>
<td>0.1994</td>
<td>789</td>
</tr>
<tr>
<td>500</td>
<td>-0.1163</td>
<td>0.0026</td>
<td>0.0452</td>
<td>0.0453</td>
<td>948</td>
</tr>
<tr>
<td>1</td>
<td>0.1446</td>
<td>0.0072</td>
<td>0.0514</td>
<td>0.0519</td>
<td>937</td>
</tr>
<tr>
<td>4</td>
<td>0.1463</td>
<td>0.0081</td>
<td>0.0630</td>
<td>0.0633</td>
<td>898</td>
</tr>
<tr>
<td>9</td>
<td>0.1369</td>
<td>0.0122</td>
<td>0.0680</td>
<td>0.0699</td>
<td>762</td>
</tr>
<tr>
<td>14</td>
<td>0.1314</td>
<td>0.0237</td>
<td>0.0710</td>
<td>0.0749</td>
<td>648</td>
</tr>
<tr>
<td>1000</td>
<td>-0.1163</td>
<td>0.0039</td>
<td>0.0306</td>
<td>0.0308</td>
<td>945</td>
</tr>
<tr>
<td>1</td>
<td>0.1425</td>
<td>0.0051</td>
<td>0.0311</td>
<td>0.0315</td>
<td>940</td>
</tr>
<tr>
<td>4</td>
<td>0.1474</td>
<td>0.0072</td>
<td>0.0341</td>
<td>0.0348</td>
<td>910</td>
</tr>
<tr>
<td>9</td>
<td>0.1552</td>
<td>0.0061</td>
<td>0.0416</td>
<td>0.0420</td>
<td>911</td>
</tr>
<tr>
<td>14</td>
<td>0.1552</td>
<td>0.0061</td>
<td>0.0481</td>
<td>0.0481</td>
<td>552</td>
</tr>
<tr>
<td>5000</td>
<td>-0.1163</td>
<td>0.0002</td>
<td>0.0118</td>
<td>0.0118</td>
<td>955</td>
</tr>
<tr>
<td>1</td>
<td>0.1380</td>
<td>0.0006</td>
<td>0.0136</td>
<td>0.0136</td>
<td>984</td>
</tr>
<tr>
<td>4</td>
<td>0.1423</td>
<td>0.0021</td>
<td>0.0142</td>
<td>0.0144</td>
<td>989</td>
</tr>
<tr>
<td>9</td>
<td>0.1529</td>
<td>0.0038</td>
<td>0.0155</td>
<td>0.0160</td>
<td>983</td>
</tr>
<tr>
<td>14</td>
<td>0.1584</td>
<td>0.0033</td>
<td>0.0158</td>
<td>0.0161</td>
<td>888</td>
</tr>
<tr>
<td>10000</td>
<td>-0.1163</td>
<td>0.0004</td>
<td>0.0091</td>
<td>0.0091</td>
<td>990</td>
</tr>
<tr>
<td>1</td>
<td>0.1380</td>
<td>0.0006</td>
<td>0.0096</td>
<td>0.0096</td>
<td>991</td>
</tr>
<tr>
<td>4</td>
<td>0.1410</td>
<td>0.0008</td>
<td>0.0099</td>
<td>0.0099</td>
<td>993</td>
</tr>
<tr>
<td>9</td>
<td>0.1500</td>
<td>0.0009</td>
<td>0.0106</td>
<td>0.0106</td>
<td>985</td>
</tr>
<tr>
<td>14</td>
<td>0.1565</td>
<td>0.0014</td>
<td>0.0112</td>
<td>0.0119</td>
<td>971</td>
</tr>
<tr>
<td>25000</td>
<td>-0.1163</td>
<td>0.0000</td>
<td>0.0053</td>
<td>0.0053</td>
<td>1000</td>
</tr>
<tr>
<td>1</td>
<td>0.1380</td>
<td>0.0000</td>
<td>0.0060</td>
<td>0.0060</td>
<td>996</td>
</tr>
<tr>
<td>4</td>
<td>0.1407</td>
<td>0.0004</td>
<td>0.0061</td>
<td>0.0061</td>
<td>997</td>
</tr>
<tr>
<td>9</td>
<td>0.1495</td>
<td>0.0004</td>
<td>0.0067</td>
<td>0.0067</td>
<td>994</td>
</tr>
<tr>
<td>14</td>
<td>0.1555</td>
<td>0.0004</td>
<td>0.0071</td>
<td>0.0071</td>
<td>996</td>
</tr>
</tbody>
</table>

Table 9: δ_1. The sample statistics are computed as given in equations (28)-(31). The red highlighted numbers indicate that some GJR-GARCH replications and related ML estimators result to some negative h_t.

37
<table>
<thead>
<tr>
<th>GARCH(1,1)</th>
<th>GJR-GARCH (1,1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T = 100)</td>
<td>(T = 100)</td>
</tr>
<tr>
<td>knots</td>
<td>(\hat{\alpha}_1)</td>
</tr>
<tr>
<td>-</td>
<td>0.5827</td>
</tr>
<tr>
<td>1</td>
<td>0.2374</td>
</tr>
<tr>
<td>4</td>
<td>0.1170</td>
</tr>
<tr>
<td>9</td>
<td>0.0345</td>
</tr>
<tr>
<td>14</td>
<td>0.0162</td>
</tr>
</tbody>
</table>

\(T = 500 \)	\(T = 500 \)							
knots	\(\hat{\alpha}_1 \)	\(\hat{\beta}_1 \)	\(\delta_1 \)	\(\hat{M}_{nT} \)	\(\hat{\alpha}_1 \)	\(\hat{\beta}_1 \)	\(\delta_1 \)	\(\hat{M}_{nT} \)
-	0.9179	0.9284	950	0.2605	0.5359	0.2848	948	
1	0.5657	0.3739	944	0.4877	0.2407	0.2615	937	
4	0.7617	0.7494	898	0.4766	0.2737	0.2899	898	
9	0.6335	0.6235	895	0.4344	0.4121	0.4572	762	
14	0.4776	0.2561	660	0.3842	0.3596	0.3719	648	

\(T = 1000 \)	\(T = 1000 \)							
knots	\(\hat{\alpha}_1 \)	\(\hat{\beta}_1 \)	\(\delta_1 \)	\(\hat{M}_{nT} \)	\(\hat{\alpha}_1 \)	\(\hat{\beta}_1 \)	\(\delta_1 \)	\(\hat{M}_{nT} \)
-	0.9316	0.9157	937	0.2148	0.5365	0.2042	945	
1	0.3597	0.1694	909	0.4585	0.1035	0.1372	940	
4	0.7792	0.6913	865	0.5143	0.1253	0.2613	910	
9	0.8188	0.8328	927	0.7859	0.6279	0.7717	911	
14	0.7412	0.7462	595	0.8487	0.8180	0.8352	552	

\(T = 5000 \)	\(T = 5000 \)							
knots	\(\hat{\alpha}_1 \)	\(\hat{\beta}_1 \)	\(\delta_1 \)	\(\hat{M}_{nT} \)	\(\hat{\alpha}_1 \)	\(\hat{\beta}_1 \)	\(\delta_1 \)	\(\hat{M}_{nT} \)
-	0.9529	0.9478	977	0.2041	0.5411	0.1736	985	
1	0.2909	0.0771	983	0.5386	0.0996	0.6189	984	
4	0.3908	0.3467	975	0.5683	0.0758	0.5319	989	
9	0.8142	0.6858	974	0.7599	0.1801	0.6989	983	
14	0.6151	0.7708	938	0.9696	0.6182	0.9414	888	

\(T = 10000 \)	\(T = 10000 \)							
knots	\(\hat{\alpha}_1 \)	\(\hat{\beta}_1 \)	\(\delta_1 \)	\(\hat{M}_{nT} \)	\(\hat{\alpha}_1 \)	\(\hat{\beta}_1 \)	\(\delta_1 \)	\(\hat{M}_{nT} \)
-	0.9595	0.9466	992	0.1051	0.4838	0.0828	990	
1	0.2189	0.0432	996	0.5510	0.0757	0.5923	991	
4	0.2920	0.2566	990	0.5730	0.0906	0.5837	993	
9	0.8769	0.7475	983	0.7888	0.2030	0.7218	985	
14	0.4693	0.7566	978	0.7374	0.3069	0.6952	971	

\(T = 25000 \)	\(T = 25000 \)							
knots	\(\hat{\alpha}_1 \)	\(\hat{\beta}_1 \)	\(\delta_1 \)	\(\hat{M}_{nT} \)	\(\hat{\alpha}_1 \)	\(\hat{\beta}_1 \)	\(\delta_1 \)	\(\hat{M}_{nT} \)
-	0.9367	0.9317	995	0.1630	0.5260	0.1756	1000	
1	0.1361	0.0181	999	0.5241	0.0181	0.5241	996	
4	0.1580	0.1580	1000	0.5898	0.1772	0.7071	997	
9	0.7347	0.3920	995	0.6911	0.0543	0.6911	994	
14	0.3826	0.3826	990	0.9970	0.0482	0.9970	996	

Table 10: Coverage Probability. Coverage probability and the bernoulli standard errors (in parentheses) are computed as given in equations [37]–[39]. The red highlighted numbers indicate that some GJR-GARCH replications and related ML estimators result to some negative \(\delta_1 \).
Table 11: Kolmogorov-Smirnov-Test for GARCH (1,1).
\(p \)-Values of two-tailed Kolmogorov-Smirnov-Test with significance level \(\alpha = 0.05 \)

\[H_0 : F_0(\hat{\theta}) = F_{\hat{\theta}}(\hat{\theta}) \quad H_1 : F_0(\hat{\theta}) \neq F_{\hat{\theta}}(\hat{\theta}) \]

<table>
<thead>
<tr>
<th>knots</th>
<th>(T = 100)</th>
<th>(T = 500)</th>
<th>(T = 1000)</th>
<th>(T = 5000)</th>
<th>(T = 10000)</th>
<th>(T = 25000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha_{nT})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.001</td>
<td>0.004</td>
<td>0.545</td>
<td>0.346</td>
<td>0.485</td>
<td>0.924</td>
</tr>
<tr>
<td>1</td>
<td>0.000</td>
<td>0.025</td>
<td>0.336</td>
<td>0.887</td>
<td>0.406</td>
<td>0.356</td>
</tr>
<tr>
<td>4</td>
<td>0.000</td>
<td>0.000</td>
<td>0.414</td>
<td>0.287</td>
<td>0.503</td>
<td>0.439</td>
</tr>
<tr>
<td>9</td>
<td>0.000</td>
<td>0.007</td>
<td>0.213</td>
<td>0.752</td>
<td>0.928</td>
<td>0.833</td>
</tr>
<tr>
<td>14</td>
<td>0.000</td>
<td>0.002</td>
<td>0.758</td>
<td>0.480</td>
<td>0.554</td>
<td>0.775</td>
</tr>
</tbody>
</table>

\(\hat{\beta}_{nT} \)						
0	0.000	0.000	0.228	0.557	0.949	0.356
1	0.000	0.000	0.000	0.920	0.840	0.892
4	0.000	0.000	0.000	0.174	0.295	0.998
9	0.000	0.000	0.000	0.171	0.766	0.403
14	0.000	0.000	0.000	0.117	0.168	0.763

Table 12: Kolmogorov-Smirnov-Test for GJR-GARCH (1,1).
\(p \)-Values of two-tailed Kolmogorov-Smirnov-Test with significance level \(\alpha = 0.05 \)

\[H_0 : F_0(\hat{\theta}) = F_{\hat{\theta}}(\hat{\theta}) \quad H_1 : F_0(\hat{\theta}) \neq F_{\hat{\theta}}(\hat{\theta}) \]

The red highlighted numbers indicate, that some GJR-GARCH replications and related ML estimators result to some negative \(h_t \).
Figure 16: Bias $|\hat{\alpha}_1 - \tilde{\alpha}_1|$. GARCH(1,1) (top row) and GJR-GARCH(1,1) (bottom row). Small samples $T \in \{100, 500, 1000\}$ (left-hand side), large samples $T \in \{5000, 10000, 25000\}$ (right-hand side). Some GJR-GARCH replications and related ML estimators result to some negative h_t.
Figure 17: Bias $|\tilde{\beta}_1 - \tilde{\beta}_1|$. Garch(1,1)(top row) and GJR-Garch(1,1) (bottom row). Small samples $T \in \{100, 500, 1000\}$ (left-hand side), large samples $T \in \{5000, 10000, 25000\}$ (right-hand side). Some GJR-GARCH replications and related ML estimators result to some negative h_t.

Figure 18: Bias $|\tilde{\delta}_1 - \tilde{\delta}_1|$. GJR-Garch(1,1). Small samples $T \in \{100, 500, 1000\}$ (left-hand side), large samples $T \in \{5000, 10000, 25000\}$ (right-hand side). Some GJR-GARCH replications and related ML estimators result to some negative h_t.

41
Figure 19: Asymptotic Normality of $\hat{\alpha}_1$ in GJR-GARCH(1,1) case. The black curves represent the kernel density estimator for $\hat{\alpha}$, the red curve the related normal distribution. In the top row the spline(14)-GARCH(1,1) distribution for $T \in \{100, 1000, 5000, 25000\}$ is depicted. The subjacent rows are the spline(K)-GARCH(1,1) models with $K \in \{0, 1, 4, 9\}$ and the same time series lengths.
Figure 20: Asymptotic Normality of $\hat{\beta}_1$ in GJR-GARCH(1,1) case. The black curves represent the kernel density estimator for $\hat{\beta}_1$, the red curve the related normal distribution. In the top row the spline(14)-GARCH(1,1) distribution for $T \in \{100, 1000, 5000, 25000\}$ is depicted. The subjacent rows are the spline(K)-GARCH(1,1) models with $K \in \{0, 1, 4, 9\}$ and the same time series lengths.
Figure 21: Asymptotic Normality of $\hat{\delta}_1$ in GJR-GARCH(1,1) case. The black curves represent the kernel density estimator for $\hat{\delta}$, the red curve the related normal distribution. In the top row the spline(14)-GARCH(1,1) distribution for $T \in \{100, 1000, 5000, 25000\}$ is depicted. The subjacent rows are the spline(K)-GARCH(1,1) models with $K \in \{0, 1, 4, 9\}$ and the same time series lengths.

Ältere Diskussionspapiere selber erhalten Sie nur in den Bibliotheken.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Jahr</th>
<th>Titel</th>
<th>Autor/en</th>
</tr>
</thead>
<tbody>
<tr>
<td>420</td>
<td>2008</td>
<td>Stockkeeping and controlling under game theoretic aspects</td>
<td>Fandel, Günter</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Trockel, Jan</td>
</tr>
<tr>
<td>421</td>
<td>2008</td>
<td>On Overdissipation of Rents in Contests with Endogenous Intrinsic Motivation</td>
<td>Schlepütz, Volker</td>
</tr>
<tr>
<td>422</td>
<td>2008</td>
<td>Maximum Entropy Inference for Mixed Continuous-Discrete Variables</td>
<td>Singer, Hermann</td>
</tr>
<tr>
<td>423</td>
<td>2008</td>
<td>Eine Heuristik für das mehrdimensionale Bin Packing Problem</td>
<td>Mack, Daniel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bortfeldt, Andreas</td>
</tr>
<tr>
<td>424</td>
<td>2008</td>
<td>Expected A Posteriori Estimation in Financial Applications</td>
<td>Mazzoni, Thomas</td>
</tr>
<tr>
<td>425</td>
<td>2008</td>
<td>A Genetic Algorithm for the Two-Dimensional Knapsack Problem with Rectangular Pieces</td>
<td>Bortfeldt, Andreas</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Winter, Tobias</td>
</tr>
<tr>
<td>426</td>
<td>2008</td>
<td>A Tree Search Algorithm for Solving the Container Loading Problem</td>
<td>Fanslau, Tobias</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bortfeldt, Andreas</td>
</tr>
<tr>
<td>427</td>
<td>2008</td>
<td>Dynamic Effects of Offshoring</td>
<td>Stjepic, Denis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wagner, Helmut</td>
</tr>
<tr>
<td>428</td>
<td>2008</td>
<td>Der Einfluss von Kostenabweichungen auf das Nash-Gleichgewicht in einem nicht-kooperativen Disponenten-Controller-Spiel</td>
<td>Fandel, Günter</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Trockel, Jan</td>
</tr>
<tr>
<td>429</td>
<td>2008</td>
<td>Fast Analytic Option Valuation with GARCH</td>
<td>Mazzoni, Thomas</td>
</tr>
<tr>
<td>430</td>
<td>2008</td>
<td>Conditional Gauss-Hermite Filtering with Application to Volatility Estimation</td>
<td>Singer, Hermann</td>
</tr>
<tr>
<td>431</td>
<td>2008</td>
<td>Web 2.0 auf dem Prüfstand: Zur Bewertung von Internet-Unternehmen</td>
<td>Christian Maaß</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gotthard Pietsch</td>
</tr>
<tr>
<td>432</td>
<td>2008</td>
<td>Zentralbank-Kommunikation und Finanzstabilität – Eine Bestandsaufnahme</td>
<td>Knütter, Rolf</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mohr, Benjamin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wagner, Helmut</td>
</tr>
<tr>
<td>434</td>
<td>2008</td>
<td>International Policy Coordination and Simple Monetary Policy Rules</td>
<td>Berger, Wolfram</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wagner, Helmut</td>
</tr>
<tr>
<td>435</td>
<td>2009</td>
<td>Matchingprozesse auf beruflichen Teilarbeitsmärkten</td>
<td>Stops, Michael</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mazzoni, Thomas</td>
</tr>
<tr>
<td>436</td>
<td>2009</td>
<td>Wayfindingprozesse in Parksituationen - eine empirische Analyse</td>
<td>Fließ, Sabine</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tetzner, Stefan</td>
</tr>
<tr>
<td>437</td>
<td>2009</td>
<td>ENTROPY-DRIVEN PORTFOLIO SELECTION a downside and upside risk framework</td>
<td>Rödder, Wilhelm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gartner, Ivan Ricardo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rudolph, Sandra</td>
</tr>
<tr>
<td>438</td>
<td>2009</td>
<td>Consulting Incentives in Contests</td>
<td>Schlepütz, Volker</td>
</tr>
<tr>
<td>Page</td>
<td>Year</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>--</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>439</td>
<td>2009</td>
<td>A Genetic Algorithm for a Bi-Objective Winner-Determination Problem in a Transportation-Procurement Auction"</td>
<td>Buer, Tobias Pankratz, Giselher</td>
</tr>
<tr>
<td>440</td>
<td>2009</td>
<td>Parallel greedy algorithms for packing unequal spheres into a cuboidal strip or a cuboid</td>
<td>Kubach, Timo Bortfeldt, Andreas Tilli, Thomas Gehring, Hermann</td>
</tr>
<tr>
<td>441</td>
<td>2009</td>
<td>SEM modeling with singular moment matrices Part I: ML-Estimation of time series</td>
<td>Singer, Hermann</td>
</tr>
<tr>
<td>442</td>
<td>2009</td>
<td>SEM modeling with singular moment matrices Part II: ML-Estimation of sampled stochastic differential equations</td>
<td>Singer, Hermann</td>
</tr>
<tr>
<td>443</td>
<td>2009</td>
<td>Konsensuale Effizienzbewertung und -verbesserung – Untersuchungen mittels der Data Envelopment Analysis (DEA)</td>
<td>Rödder, Wilhelm Reucher, Elmar</td>
</tr>
<tr>
<td>444</td>
<td>2009</td>
<td>Legal Uncertainty – Is Hamonization of Law the Right Answer? A Short Overview</td>
<td>Wagner, Helmut</td>
</tr>
<tr>
<td>445</td>
<td>2009</td>
<td>Fast Continuous-Discrete DAF-Filters</td>
<td>Mazzoni, Thomas</td>
</tr>
<tr>
<td>446</td>
<td>2010</td>
<td>Quantitative Evaluierung von Multi-Level Marketingsystemen</td>
<td>Lorenz, Marina Mazzoni, Thomas</td>
</tr>
<tr>
<td>447</td>
<td>2010</td>
<td>Quasi-Continuous Maximum Entropy Distribution Approximation with Kernel Density</td>
<td>Mazzoni, Thomas Reucher, Elmar</td>
</tr>
<tr>
<td>448</td>
<td>2010</td>
<td>Solving a Bi-Objective Winner Determination Problem in a Transportation Procurement Auction</td>
<td>Buer, Tobias Pankratz, Giselher</td>
</tr>
<tr>
<td>449</td>
<td>2010</td>
<td>Are Short Term Stock Asset Returns Predictable? An Extended Empirical Analysis</td>
<td>Mazzoni, Thomas</td>
</tr>
<tr>
<td>450</td>
<td>2010</td>
<td>Europäische Gesundheitssysteme im Vergleich – Effizienzmessungen von Akutkrankenhäusern mit DEA –</td>
<td>Reucher, Elmar Sartorius, Frank</td>
</tr>
<tr>
<td>451</td>
<td>2010</td>
<td>Patterns in Object-Oriented Analysis</td>
<td>Blaimer, Nicolas Bortfeldt, Andreas Pankratz, Giselher</td>
</tr>
<tr>
<td>452</td>
<td>2010</td>
<td>The Kuznets-Kaldor-Puzzle and Neutral Cross-Capital-Intensity Structural Change</td>
<td>Stijepic, Denis Wagner, Helmut</td>
</tr>
<tr>
<td>453</td>
<td>2010</td>
<td>Monetary Policy and Boom-Bust Cycles: The Role of Communication</td>
<td>Knüttet, Rolf Wagner, Helmut</td>
</tr>
<tr>
<td>455</td>
<td>2010</td>
<td>Consistent Modeling of Risk Averse Behavior with Spectral Risk Measures</td>
<td>Wächter, Hans Peter Mazzoni, Thomas</td>
</tr>
<tr>
<td>Seite</td>
<td>Jahr</td>
<td>Title</td>
<td>Autor/innen</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>456</td>
<td>2010</td>
<td>Der virtuelle Peer – Eine Anwendung der DEA zur konsensualen Effizienzbewertung –</td>
<td>Reucher, Elmar</td>
</tr>
<tr>
<td>457</td>
<td>2010</td>
<td>A two-stage packing procedure for a Portuguese trading company</td>
<td>Moura, Ana Bortfeldt, Andreas</td>
</tr>
<tr>
<td>458</td>
<td>2010</td>
<td>A tree search algorithm for solving the multi-dimensional strip packing problem with guillotine cutting constraint</td>
<td>Bortfeldt, Andreas Jungmann, Sabine</td>
</tr>
<tr>
<td>459</td>
<td>2010</td>
<td>Equity and Efficiency in Regional Public Good Supply with Imperfect Labour Mobility – Horizontal versus Vertical Equalization</td>
<td>Arnold, Volker</td>
</tr>
<tr>
<td>460</td>
<td>2010</td>
<td>A hybrid algorithm for the capacitated vehicle routing problem with three-dimensional loading constraints</td>
<td>Bortfeldt, Andreas</td>
</tr>
<tr>
<td>461</td>
<td>2010</td>
<td>A tree search procedure for the container relocation problem</td>
<td>Forster, Florian Bortfeldt, Andreas</td>
</tr>
<tr>
<td>464</td>
<td>2011</td>
<td>Lösungskonzepte zur Allokation von Kooperationsvorteilen in der kooperativen Transportdisposition</td>
<td>Strangmeier, Reinhard Fiedler, Matthias</td>
</tr>
<tr>
<td>465</td>
<td>2011</td>
<td>Grenzen einer Legitimation staatlicher Maßnahmen gegenüber Kreditinstituten zur Verhinderung von Banken- und Wirtschaftskrisen</td>
<td>Merbecks, Ute</td>
</tr>
<tr>
<td>466</td>
<td>2011</td>
<td>Controlling im Stadtmarketing – Eine Analyse des Hagener Schaufensterwettbewerbs 2010</td>
<td>Fließ, Sabine Bauer, Katharina</td>
</tr>
<tr>
<td>467</td>
<td>2011</td>
<td>A Structural Approach to Financial Stability: On the Beneficial Role of Regulatory Governance</td>
<td>Mohr, Benjamin Wagner, Helmut</td>
</tr>
<tr>
<td>468</td>
<td>2011</td>
<td>Data Envelopment Analysis - Skaleneträge und Kreuzskalenerträge</td>
<td>Wilhelm Rödder Andreas Dellnitz</td>
</tr>
<tr>
<td>469</td>
<td>2011</td>
<td>Controlling organisatorischer Entscheidungen: Konzeptionelle Überlegungen</td>
<td>Lindner, Florian Scherm, Ewald</td>
</tr>
<tr>
<td>470</td>
<td>2011</td>
<td>Orientierung in Dienstleistungsumgebungen – eine explorative Studie am Beispiel des Flughafen Frankfurt am Main</td>
<td>Fließ, Sabine Colaci, Antje Nesper, Jens</td>
</tr>
<tr>
<td>Page</td>
<td>Year</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>471</td>
<td>2011</td>
<td>Inequality aversion, income skewness and the theory of the welfare state</td>
<td>Weinreich, Daniel</td>
</tr>
<tr>
<td>472</td>
<td>2011</td>
<td>A tree search procedure for the container retrieval problem</td>
<td>Forster, Florian Bortfeldt, Andreas</td>
</tr>
<tr>
<td>473</td>
<td>2011</td>
<td>A Functional Approach to Pricing Complex Barrier Options</td>
<td>Mazzoni, Thomas</td>
</tr>
<tr>
<td>474</td>
<td>2011</td>
<td>Bologna-Prozess und neues Steuerungsmodell – auf Konfrontationskurs mit universitären Identitäten</td>
<td>Jost, Tobias Scherm, Ewald</td>
</tr>
<tr>
<td>475</td>
<td>2011</td>
<td>A reduction approach for solving the rectangle packing area minimization problem</td>
<td>Bortfeldt, Andreas</td>
</tr>
<tr>
<td>476</td>
<td>2011</td>
<td>Trade and Unemployment with Heterogeneous Firms: How Good Jobs Are Lost</td>
<td>Altenburg, Lutz</td>
</tr>
<tr>
<td>477</td>
<td>2012</td>
<td>Structural Change Patterns and Development: China in Comparison</td>
<td>Wagner, Helmut</td>
</tr>
<tr>
<td>478</td>
<td>2012</td>
<td>Demografische Risiken – Herausforderungen für das finanzwirtschaftliche Risikomanagement im Rahmen der betrieblichen Altersversorgung</td>
<td>Merbecks, Ute</td>
</tr>
<tr>
<td>479</td>
<td>2012</td>
<td>“It’s all in the Mix!” – Internalizing Externalities with R&D Subsidies and Environmental Liability</td>
<td>Endres, Alfred Friehe, Tim Rundshagen, Bianca</td>
</tr>
<tr>
<td>480</td>
<td>2012</td>
<td>Ökonomische Interpretationen der Skalenvariablen u in der DEA</td>
<td>Dellnitz, Andreas Kleine, Andreas Rödder, Wilhelm</td>
</tr>
<tr>
<td>481</td>
<td>2012</td>
<td>Entropiebasierte Analyse von Interaktionen in Sozialen Netzwerken</td>
<td>Rödder, Wilhelm Brenner, Dominic Kulmann, Friedhelm</td>
</tr>
<tr>
<td>483</td>
<td>2013</td>
<td>Energy generation with Directed Technical Change</td>
<td>Kollenbach, Gilbert</td>
</tr>
<tr>
<td>484</td>
<td>2013</td>
<td>Monetary Policy and Asset Prices: When Cleaning Up Hits the Zero Lower Bound</td>
<td>Berger, Wolfram Kißmer, Friedrich</td>
</tr>
<tr>
<td>485</td>
<td>2013</td>
<td>Superknoten in Sozialen Netzwerken – eine entropieoptimale Analyse</td>
<td>Brenner, Dominic Rödder, Wilhelm Kulmann, Friedhelm</td>
</tr>
<tr>
<td>486</td>
<td>2013</td>
<td>Stimmigkeit von Situation, Organisation und Person: Gestaltungsüberlegungen auf Basis des Informationsverarbeitungsansatzes</td>
<td>Julmi, Christian Lindner, Florian Scherm, Ewald</td>
</tr>
<tr>
<td>487</td>
<td>2014</td>
<td>Incentives for Advanced Abatement Technology Under National and International Permit Trading</td>
<td>Endres, Alfred Rundshagen, Bianca</td>
</tr>
<tr>
<td>488</td>
<td>2014</td>
<td>Dynamische Effizienzbewertung öffentlicher Dreispartentheater mit der Data Envelopment Analysis</td>
<td>Kleine, Andreas Hoffmann, Steffen</td>
</tr>
<tr>
<td>Seite</td>
<td>Jahr</td>
<td>Titel</td>
<td>Autoren</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>489</td>
<td>2015</td>
<td>Konsensuale Peer-Wahl in der DEA -- Effizienz vs. Skalenertrag</td>
<td>Dellnitz, Andreas Reucher, Elmar</td>
</tr>
<tr>
<td>490</td>
<td>2015</td>
<td>Makroprudenziele Regulierung – eine kurze Einführung und ein Überblick</td>
<td>Velauthapillai, Jeyakrishna</td>
</tr>
<tr>
<td>491</td>
<td>2015</td>
<td>SEM modeling with singular moment matrices Part III: GLS estimation</td>
<td>Singer, Hermann</td>
</tr>
<tr>
<td>493</td>
<td>2016</td>
<td>Ungewissheit versus Unsicherheit in Sozialen Netzwerken</td>
<td>Rödder, Wilhelm Dellnitz, Andreas Gartner, Ivan</td>
</tr>
<tr>
<td>494</td>
<td>2016</td>
<td>Investments in supplier-specific economies of scope with two different services and different supplier characters: two specialists</td>
<td>Fandel, Günter Trockel, Jan</td>
</tr>
<tr>
<td>495</td>
<td>2016</td>
<td>An application of the put-call-parity to variance reduced Monte-Carlo option pricing</td>
<td>Müller, Armin</td>
</tr>
<tr>
<td>496</td>
<td>2016</td>
<td>A joint application of the put-call-parity and importance sampling to variance reduced option pricing</td>
<td>Müller, Armin</td>
</tr>
<tr>
<td>497</td>
<td>2016</td>
<td>Simulated Maximum Likelihood for Continuous-Discrete State Space Models using Langevin Importance Sampling</td>
<td>Singer, Hermann</td>
</tr>
<tr>
<td>498</td>
<td>2016</td>
<td>A Theory of Affective Communication</td>
<td>Julmi, Christian</td>
</tr>
<tr>
<td>499</td>
<td>2016</td>
<td>Approximations of option price elasticities for importance sampling</td>
<td>Müller, Armin</td>
</tr>
<tr>
<td>500</td>
<td>2016</td>
<td>Variance reduced Value at Risk Monte-Carlo simulations</td>
<td>Müller, Armin</td>
</tr>
<tr>
<td>502</td>
<td>2016</td>
<td>Measuring the domain-specificity of creativity</td>
<td>Julmi, Christian Scherm, Ewald</td>
</tr>
<tr>
<td>503</td>
<td>2017</td>
<td>Bipartite Strukturen in Sozialen Netzen – klassische versus MaxEnt-Analysen</td>
<td>Rödder, Wilhelm Dellnitz, Andreas Kulmann, Friedhelm Litzinger, Sebastian Reucher, Elmar</td>
</tr>
<tr>
<td>504</td>
<td>2017</td>
<td>Langevin and Kalman Importance Sampling for Nonlinear Continuous-Discrete State Space Models</td>
<td>Singer, Hermann</td>
</tr>
<tr>
<td>505</td>
<td>2017</td>
<td>Horizontal versus vertical fiscal Equalization</td>
<td>Anetsberger, Georg Arnold, Volker</td>
</tr>
<tr>
<td>506</td>
<td>2017</td>
<td>Formative and Reflective Measurement Models</td>
<td>Singer, Hermann</td>
</tr>
<tr>
<td>507</td>
<td>2017</td>
<td>Identifizierung von führenden Köpfen in terroristischen Netzwerken – ein entropiebasiertes Verfahren –</td>
<td>Dellnitz, Andreas Litzinger, Sebastian Rödder, Wilhelm</td>
</tr>
<tr>
<td>508</td>
<td>2017</td>
<td>Die Bedeutung der steuerlichen Norm § 5 Abs. 2 EStG für die handelsrechtliche Rechnungslegung</td>
<td>Meyering, Stephan</td>
</tr>
<tr>
<td>509</td>
<td>2018</td>
<td>Ein erweitertes Effizienzmaß für DMUs im BCC-Modell – eine ökonomiegerechte DEA-Anpassung –</td>
<td>Rödder, Wilhelm Dellnitz, Andreas Litzinger, Sebastian</td>
</tr>
<tr>
<td>Page</td>
<td>Year</td>
<td>Title</td>
<td>Author(s)</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>--</td>
<td>--------------------</td>
</tr>
<tr>
<td>510</td>
<td>2018</td>
<td>A concise proof of Gaussian smoothing</td>
<td>Singer, Hermann</td>
</tr>
<tr>
<td>511</td>
<td>2018</td>
<td>Empirical evidence on the topological properties of structural paths and some notes on its theoretical explanation</td>
<td>Stijepic, Denis</td>
</tr>
<tr>
<td>512</td>
<td>2018</td>
<td>On the predictability of economic structural change by the Poincaré-Bendixson theory</td>
<td>Stijepic, Denis</td>
</tr>
<tr>
<td>513</td>
<td>2018</td>
<td>On development paths minimizing the aggregate labor-reallocation costs in the three-sector framework and an application to structural policy</td>
<td>Stijepic, Denis</td>
</tr>
<tr>
<td>514</td>
<td>2018</td>
<td>Models of Continuous Dynamics on the 2-Simplex and Applications in Economics</td>
<td>Stijepic, Denis</td>
</tr>
<tr>
<td>515</td>
<td>2018</td>
<td>A Note on the Ideological Content of Modern Economic Dynamics Models and Ideology-Reducing Meta-Modeling</td>
<td>Stijepic, Denis</td>
</tr>
<tr>
<td>516</td>
<td>2018</td>
<td>Logistik für Versand von Studienmaterialien der FernUniversität in Hagen – Optimierte Bereitstellung bei der Kommissionierung</td>
<td>Brenner, Dominic Gädeke, Andre Kulmann, Friedhelm Kleine, Andreas</td>
</tr>
<tr>
<td>518</td>
<td>2019</td>
<td>Kolmogorov Backward Equations with Singular Diffusion Matrices</td>
<td>Singer, Hermann</td>
</tr>
<tr>
<td>519</td>
<td>2020</td>
<td>Finite-Sample Properties of GARCH Models in the Presence of Time-Varying Unconditional Variance. A Simulation Study</td>
<td>Old, Oliver</td>
</tr>
</tbody>
</table>