
WOS: an Internet Computing Environment

Peter Kropf
Informatique et de recherche opéprationelle

Université de Montréal
Montréal, Canada H3C 3J7

kropf@iro.umontreal.ca

Herwig Unger
Fachbereich Informatik

Universität Rostock
Rostock, Germany

hunger@informatik.uni-rostock.de

Gilbert Babin
Technologies de l’information

HEC – Montréal
Montréal, Canada H3T 2A7

Gilbert.Babin@hec.ca

Abstract

Given the current development of the Internet, the Web,
mobile communications and services, we are clearly head-
ing towards an era of widely integrated ubiquitous services
sharing some kind of global operating system. This arti-
cle describes the idea, the objectives and the current state
of the development of the WOS-project. The Web Operat-
ing System (WOSTM) consists of a series of versioned servers
where each one can offer different services, themselves ver-
sioned. Each node can act as a server or a client. A com-
mon protocol, itself versioned, is used for communication
among WOSNodes. Requests for services can be passed on
to other servers as appropriate. The WOS is defined by the
combined actions of different nodes.

1. Introduction

1.1. The Context

With the emergence of widespread computing and telecom-
munication networks, an explosion of networked and mo-
bile computing is taking place; in turn there is a permanent
growth in areas such as electronic-commerce, multimedia
applications, or large-scale high-performance scalable dis-
tributed computing. These developments lead to the con-
clusion that the global computing infrastructure is in a per-
manent process of evolution.

Because of the rapid changes in the underlying infras-
tructure, it is clear that component-based systems are best
suited for large-scale distributed systems, since, as needs
change, components can be replaced or adapted more eas-
ily than can entire systems. However, components can
themselves be programmed to act differently according
to the context in which they are immersed; we call this
versioned programming, and we assume that as a con-
text evolves, the collaboration between components may
change and evolve. We call these evolving contexts and
collaborating components – along with their interactions –

communities. Programming models and techniques based
on the above principles require an infrastructure that sup-
ports versioned, dynamic and adaptive resource manage-
ment. Communication between versioned components can
provide answers to these challenges. The goal of the pro-
posed Web Operating System (WOS) initiative is precisely
to create such an enabling infrastructure for distributed
applications. In a technical sense, this middleware can
be viewed as a Network Operating System for ubiquitous
computing that spans the higher layers on top of the en-
abling communication network infrastructure, to provide
applications and users with easier access to the advanced
network services.

Ubiquitous computing, information and multimedia ser-
vices, high performance large-scale cooperative distributed
computing, and electronic commerce are among today’s
most relevant wide-area distributed systems. Therefore,
the programming models and distributed computing infras-
tructure investigated should specifically target these appli-
cations.

1.2. The Web Operating System

The Web Operating System (WOS) approach for global
computing relies on the novel concept of dynamically de-
fined (or versioned) communities of components (software
and hardware). For example, a community of nodes acting
as a parallel computer may now be defined by searching
the node’s information warehouses (or catalogs) for the re-
sources necessary to define the virtual parallel computer.
This will thus define a new context of computation. To
deal with change, generalized software configuration tech-
niques, based on a demand-driven technique, called educ-
tion, are used for the WOS. The kernel of a WOSNode
is a general eductive engine, a reactive system responding
to requests from users or other eductive engines using the
warehouses’ information to provide the necessary compo-
nents for fulfilling service requests. This approach allows
interaction with many different warehouses, each offering
different versions of services, resource-management tech-

niques, applications, platforms, hardware, and so on. Un-
doubtedly this approach will help to overcome restrictions
of other middleware structures such as CORBA, Java/RMI
(and Jini), Globus or Legion, which require user config-
uration and complete resource catalogs, and therefore re-
strict change and dynamism to a controlled deployment of
changes in components’ functionalities.

The concept of the WOS calls for a generic commu-
nication framework as its central component instead of a
central server (or a fixed set of servers) on which clients
rely. Therefore a communication layer supporting ver-
sioned protocols was developed to support communica-
tions within a community considering the negotiation of
appropriate protocol selection, communication set-up, QoS
and security issues.

1.3. Communities in computing

Networked or distributed computing means that multiple
components, arising from several sources, will be put to-
gether in a single context; furthermore, objects will not
necessarily remain in a given context, and may migrate to
other contexts. Intuitively, these contexts may be under-
stood as supporting the creation of communities. Different
communities may agree to trade, meet, or discuss, depend-
ing on the communication protocols they can agree upon.
For instance, human or software agents trading and broker-
ing in electronic marketplaces may form communities of
common interests. Other examples of communities are In-
ternet chat-rooms or dynamic intra- and extranets of large
companies. We believe that this concept of evolutive com-
munities exhibits a potentially very rich model for ubiq-
uitous computing. The required infrastructure to support
communities, versioned resource management and com-
munication between versioned objects will be provided by
the WOS.

1.4. Related Work

There are several approaches to integrate the computational
resources available over the Internet into a global comput-
ing resource. The closest approach to the WOS is the Jini
architecture proposed by SUN Microsystems [9]. Jini al-
lows one to build federations of nodes or distributed ob-
jects offering different services each relying on its own ser-
vice protocol. Lookup services provide localization and
discovery functions. These lookup services, however, re-
quire the knowledge of all lookup attributes. Moreover,
what is looked for must be exactly specified, which means
that only attributes to be exactly matched may be speci-
fied. For example, a search for the nearest printer can-
not be realized. The WOS approach is qualitatively dif-
ferent and more general in that communities, i.e. subsets

of WOSNodes, defining a specific environment and con-
text are dynamically and autonomously created. This is
achieved with versioning and powerful lookup/discovery
protocols and generalized service communication proto-
cols. Every service is versioned in the WOS, and a suitable
version is selected according to a ’best fit’ strategy. This
allows the implementation of smart lookup services where
attributes need not be exactly matched.

Other efforts to exploit distributed resources for wide-
area computing include Linda, PVM, MPI, Netsolve [5],
Globe [11], WebOS [10], Legion [8] and Globus [7]. In
contrast to the WOS approach, most of these systems re-
quire login privileges on the participating machines, or re-
quire operating system or compiler modifications. Further-
more, they usually require architecture-specific binaries.
The use of Java addresses the latter issue in a number of
projects including Atlas [1], ParaWeb [3], Charlotte [2],
Javelin [6] and Popcorn [4]. Those projects aim mostly
to provide Java oriented programming models for Internet-
based parallel computing. Our approach is orthogonal to
these proposals in that Java oriented programming models
could be integrated into the WOS through gateway inter-
faces. But the WOS is different in that it does not require
any global centralized catalog of resources as it is, for ex-
ample, necessary in Javelin, ParaWeb, Atlas or Globus.

2. General Characteristics of a
WOSNode

The entire WOS is written in Java. This programming lan-
guage was chosen to achieve a highly portable system. Be-
cause the WOS makes heavy use of the communication ca-
pabilities of the operating systems, Java was the best choice
in view of its rich features for communication and security.

A WOS communication layer [14] was created to op-
timize the communication speed while saving resources,
e. g. bandwidth, at the same time. Each WOSNode oper-
ates as a server as well as a client. The WOSNet consists
of a series of versioned servers or nodes [15] which can
provide a set of services and resources. There are no cen-
tral catalogs of resources in the WOSNet. Each WOSNode
stores information about other nodes locally in its own re-
source warehouse [30]. In other words, no machine has
global information about all other nodes in the WOSNet.
The information stored in the warehouses is updated each
time the node finds other, previously unknown nodes. Us-
ing such decentralized resource warehouses, the system
achieves a high flexibility and avoids some of the bottle-
necks of systems with a central information management.

The structure of a WOSNode is shown in figure 1. The
left side of this figure shows the server, while the right side
represents the client features of each WOSNode.

Warehouse Warehouse

Local Host:

CPU Time
Memory Access

Services

Host Machine Manager User Manager

Network

Network

Li
st

 o
f S

ha
re

d
R

es
ou

rc
es

User Profiles

S
earch R

esults

U
ser Interface

A
pp

lic
at

io
n

P
ro

gr
am

m
in

g
In

te
rf

ac
e

Remote
Resource
Control

Execution
Control

User
Resource
Control

Search
Evaluation

Job
Control

W
O

S
P /

 W
O

S
R

P
W

O
S

P
/ W

O
S

R
P W

O
S

P / W
O

S
R

P
W

O
S

P / W
O

S
R

P

Eduction & Search Engine Eduction & Search Engine

(hardware and software)

Figure 1. Structure of a WOSNode

Services available on the WOSNode are described us-
ing profiles. Profiles describe resources with a list of key-
value pairs, each pair defining a special feature of a re-
source. For instance, a printer has a special type (inkjet,
laser etc.), is able to print black and white or color, and
may handle Postscript files. Each resource also has a cor-
responding access-object describing its methods; e.g., for a
printer, we might have self test, economy mode, etc. That
means that the user does not need to use the commandline
anymore. Restrictions on resource usage are described us-
ing the same data structure.

3. The WOS prototype

The WOS prototype consists of four major components:

the User Interface (UI),

the Resource Control Unit (RCU),

the Remote Resource Control Unit (RRCU),

the Communication Layer (WOSCL).

We describe these components it the following paragraphs.
The User Interface is subdivided in three parts, the pro-

file editor, the resource editor and the request menu. As
mentioned before, each resource is described through a
profile. The Profile Editor helps the user generate profiles
of resources he wants to make available for other users.
The user has to define descriptive features of these re-
sources, the object which the remote user needs to access
and the parameters for this object. All profiles are stored
in the local profile warehouse. The restrictions for each

profile are stored in the resource warehouse (see figure 2).
The user can assign more than one restriction set to one
resource. These restrictions will be checked before a user
can access the resources. The third part of the UI, the re-
quest menu, provides an easy-to-use interface to resources
of the WOSNet (figure 3). The user can access all resources
stored in the local warehouse and may also initiate a search
for new resources to update the warehouse.

The Resource Control Unit (RCU) accepts service re-
quests from the user interface and contacts several known
warehouses to find a WOSNode, where the requested ser-
vice can be executed. First, the local warehouse is con-
tacted, then other known warehouses in the WOSNet. If no
service was found, a search for the requested service will
be started. If an answer is found, the RCU asks for the
service execution and returns the results to the user. After
successful execution, the local warehouses are updated.

The Remote Resource Control Unit (RRCU) accepts
service requests from other WOSNodes and examines
whether the execution is allowed or not. Therefore, the
resource warehouse is accessed. The RRCU transmits the
answer to the client-side RCU. The service execution itself
is also managed by the RRCU, which contacts the resource
warehouse a second time to verify access rights. After that,
the service is executed and the results are passed to the
client-side RCU.

The WOS Communication Layer (WOSCL) uses a two-
level approach [14]. The first level, the WOS Protocol
(WOSP), allows WOSNode administrators to implement
a set of services, called a service class, dedicated to spe-
cific users’ needs. WOSP is in fact a generic protocol de-
fined through a generic grammar. A specific instance of
this generic grammar provides the communication support
for a service class of the WOS. This specific instance is
also referred to as a version of WOSP; its semantics de-
pends directly on the service class supported by that ver-
sion. Several versions of WOSP can cohabit on the same
WOSNode.

The WOSP is used to execute a service, to transmit the
results of the execution, and to search the WOSNet. It al-
lows three types of commands:

1. Query commands are used by a WOS client to inter-
rogate another WOSNode’s warehouse.

2. Setup commands are used to change the execution pa-
rameters of a WOSNode.

3. Execution commands allow a WOS client to use re-
sources from another node.

An example of the syntax of a WOSP version is given
in figure 9 and the API of the communication layer is de-
scribed in detail in [31].

Figure 2. GUI of WOS version 0.4: The warehouse editor, profiles and actions.

The second layer, the WOS Request Protocol (WOSRP),
support discovery/localization of service classes, imple-
mented by WOSP versions. The rationale behind WOSRP
is to provide mechanisms for WOSNodes to exchange in-
formation about WOSP versions they support. It is also
used to obtain information about other WOSNodes that un-
derstand specific WOSP versions.

A WOSNode may “speak” a certain version of the WOS
protocol, which means that it can interact with other nodes
using that version. A WOSNode may also “know” a ver-
sion of the WOS protocol. That means, that even if cannot
interact using that version, it can refer a WOSNode to other
WOSNodes which might have this capability.

WOSRP also serves to establish connections between
WOSNodes. A WOSP message may be encapsulated in a
WOSRP message. This way, a generic server may receive
all the requests and select the appropriate version to process
them.

4. WOS services

As described above, the system services of the WOS make
it possible to setup services and to make resources available
to a WOSNet through the profile editor. A number of ad-
ditional services and functions have been developed which

are briefly described in the following sections.

4.1. WOSForward service

The localization of services in a WOSNet is based on the
mechanism of multiple sequential chains [40]. Based on
the knowledge of the WOSNet, a node searching for a ser-
vice is building lists of nodes to be visited. These lists de-
fine sequences of nodes to visit along disjunct paths. The
search may thus be performed in parallel along these paths.
Theoretical as well as empirical investigations have shown
the efficiency of this mechanism [19]. The WOSForward
service exploits the principle of multiple search chains to
transfer data from a source node to a target node in the
WOSNet in parallel along disjunct paths as shown in fig-
ure 4.

The speedup achieved with this service depends on the
available bandwidth in the local area (near), the band-
width available on the Internet, and the amount of data
to be transfered. In general, we obtain a better speedup,
if the bandwidth in the local area is large and if the com-
bined bandwidth of all the disjunct paths in the Internet is
large as compared to one single transfer channel. The data

to be transfer is divided into chunks of data which
are transfer along the different paths. It is clear that those

Figure 3. GUI of WOS version 0.4: Accessing the WOSNet.

.........

N

N

N

N I n
 t

e
r

n
e

t

b

b

b

b

b

source node

b b

target nodeb

(standard path)

far near2

0

1

2

3

n
n

3

2

1

S T

near1

Figure 4. Communication along disjunct paths.

chunks may not become too small, otherwise the overhead
introduced by this method will neutralize the speedup. Fig-
ures 5 and 6 show premilinary results obtained with a data
transfer between two machines in Europe and North Amer-
ica respectively using two distinct paths.

4.2. CORBA – WOS integration

WOS and CORBA both achieve interoperability through a
well defined protocol. CORBA makes use of the Internet
Inter-ORB protocol (IIOP) to exchange General Inter-ORB

protocol (GIOP) messages over a TCP/IP network. The
GIOP then uses the Common Data Representation (CDR)
to map IDL types onto a raw, networked message represen-
tation. The WOS in turn uses the WOSRP/WOSP protocol
and the principle of warehouses to store information about
services. The profile warehouse stores service profiles con-
sisting of a name and an access object (i.e., the executable
invoking the service). The access object is identified by a
key and uses a set of input and output parameters for the
execution. The two systems may run simultaneously using
a (protocol)-bridge which has been developed and imple-
mented in Java [33]. The triplet [CORBA module, interface
name, parameters] is mapped onto [WOS profile name, ac-
cess object key, access object parameters] enabling access
to the service from within both systems.

A generic WOSAdapter as shown in figure 7 provides a
CORBA client with the usual view of an ordinary CORBA
service, when accessing a WOS-based service.

A specific version of the RRCU (Remote Resource Con-
trol Unit) of the WOS allows a WOSNode to directly ac-
cess a CORBA service through the CORBA API. The invo-
cation of a CORBA service (instead of a WOS resource) is
completely transparent for the client as it is the case for the
generic WOSAdapter. Figure 8 describes how a CORBA
service is invoked from within the WOS.

bfarbnear1

~~ bfarbnear

I n t e r n e t

bnear2

S

R

T

Rostock, Germany

WOS-repeater
Ilmenau, Germany

Quebec, Canada
Target node

Source node

188.1.166.5

15

Figure 5. Experimental setup for the communica-
tion with two disjunct paths.

800

600

T
im

e
(m

s)

10 20 30 40 50 60 70

File size (MB)

100

200

300

400

500

700

900

0
0

Two paths
One path

Figure 6. Transmission times for one path and two
disjunct paths.

4.3. WOS for HPC

Tools for wide area, high performance computing usually
require all the computing resources to be known in ad-
vance. Often, this information is even directly compiled
into the parallel applications. The computing resources
must therefore be exactly configured to match the appli-
cations’ requirements. This configuration task may involve
tedious setup procedures or scripts requiring login privi-
leges, exact knowledge of the resource locations etc.

A version of WOSP, called HPWOSP, has been defined
to ease this task [38]. It automatically configures and ex-
ecutes HPC applications in the WOS environment, i.e. on
resources of a WOSNet. Specifically, it supports the com-
munication requirements for HPC applications, which are:

Configuration stage: the localization of suitable
WOSNodes with the appropriate set of resources
(hardware and software) for an application and the
reservation of those resources.

Setup stage: the code distribution and launch of the appli-
cation.

Figure 9 shows the syntax of the HPWOSP protocol ver-
sion. The information about the properties of the resources

WOS

Adapter

IIOP

WOSP
IR

Network

CORBA
Client

WOS
Service

WOSP

IIOP

WOSP InterfaceORB Interface

Figure 7. WOSAdapter in CORBA - generic
server.

CORBA IRCORBA Adapter

CORBA Service ?

RRCU Warehouse
WOS

RCU

ORB

WOS Client Side WOS Server Side CORBA Server Side

WOSNet

Parameters

B
in

d

R
eq

ue
st

Resource Name

Interface Description

Interface Name

Resource Profile

WOS Client

CORBA Service

Figure 8. CORBA service invocation from within
the WOS.

and the requirements of the application are again specified
with the help of profiles and are kept in the correspond-
ing warehouses. The HPWOSP implementation has been
successfully tested for large MPI and PVM applications.

5. Conclusion and Future Work

At its current state of implementation, the Web Operating
System (WOS) is useful to demonstrate the possibilities of
this approach and to test its major functionality. The lack of
security mechanisms and clearly defined programming in-
terfaces foils an application of the WOS in a production en-
vironment. However, a security system based on automatic
trust evaluation has been designed [26, 36] and is currently
being implemented. The WOS version 1.0 is scheduled
to be released in the last quarter of the year 2000. It will
include the yet missing components such as the security
module, a complete API and a refined job control mod-
ule. The experience gained so far with the WOS system
and services clearly indicate its potential for future ubiq-
uitous computing, because any device can be a WOSNode
and any service can be implemented. The concept of ver-
sions applied throughout the entire WOS system allows for
the necessary flexibility required by ubiquitous computing.
The section WOS References gives an overview of WOS

reservation command @ s exec_Parallel s command_id CRLF s

/* WOS_params CRLF parameter = value
,

. CRLF */ s CRLF s

setup command ! s exec_Parallel s command_id CRLF s

/* WOS_params CRLF parameter = value
,

. CRLF */ s CRLF s

/* reservation_no CRLF reservation_id CRLF */ s CRLF s

query command ? s exec_Parallel s command_id CRLF s

/* to_visit CRLF site
,

. CRLF */ s CRLF s

/* visited CRLF site
,

. CRLF */ s CRLF s

/* WOS_params CRLF parameter = value
,

. CRLF */ s CRLF s

/* reply_to CRLF site CRLF */ s CRLF s

/* reply_to_msg CRLF reply_to_id CRLF */ s CRLF s

reply command $ s reply_to_id command_id CRLF s

/* WOS_params CRLF parameter = value
,

. CRLF */ s CRLF s

/* answer CRLF
reserved

rejected
CRLF */ s CRLF s

Figure 9. Syntax of the HPWOSP version

related publications.

References

[1] J. Baldeschwieler, R. Blumofe, and E. Brewe. AT-
LAS: An Infrastructure for Global Computing. In 7th
ACM SIGOPS European Workshop on System Sup-
port for Worldwide Applications, 1996.

[2] A. Baratloo, M. Karaul, Z. Kedem, and P. Wykoff.
Charlotte: Metacomputing on the Web. In 9th Con-
ference on Parallel and Distributed Systems, 1996.

[3] T. Brecht, H. Sandhu, M. Shan, and J. Talbot.
Towards World-Wide Supercomputing. In ACM
SIGOPS European Workshop on System Support for
Worldwide Applications, 1996.

[4] N. Camiel, S. London, N. Nisan, and O. Regev. The
POPCORN Project: Distributed Computing over the
Internet in Java. In 6th International World Wide Web
Conference, 1997.

[5] H. Casanova and J. Dongarra. NetSolve: A Network
Server for Solving Computational Science Problems.
International Journal of Supercomputer Applications
and High Performance Computing, 3(11):212–223,
1997.

[6] B. O. Christiansen, P. Cappello, M. F. Ionescu, M. O.
Neary, K. E. Schauser, and D. Wu. Javelin: Internet-
Based Parallel Computing Using Java. In ACM Work-
shop on Java for Science and Engineering Computa-
tion, 1997.

[7] I. Foster and C. Kesselman. Globus: A Metacomput-
ing Infrastructure Toolkit. Supercomputer Applica-
tions, 2(11):115–128, 1997.

[8] A. S. Grimshaw, W. A. Wulf, J. C. French, A. C.
Weaver, and P. F. Reynolds. A Synopsis of the Le-
gion Project. Technical Report CS-94-20, University
of Virginia, 1994.

[9] Sun Microsystems Inc. Jini Specification.
www.javasoft.com/products/jini/specs, 1999.

[10] A. Vahdat, T. Anderson, M. Dahlin, E. Belani,
D. Culler, P. Eastham, and C. Yoshikawa. WebOS:
Operating System Services for Wide Area Applica-
tions. In Seventh IEEE Symposium on High Perfor-
mance Distributed Systems, Chicago, IL., USA, 1998.

[11] M. van Steen, P. Homburg, and A. S. Tanenbaum. The
Architectural Design of Globe: A Wide-Area Dis-
tributed System. Technical Report IR-422, Vrije Uni-
versiteit, Amsterdam, 1997.

WOS References

[12] S. B. Lamine, J. Plaice, and P. Kropf. Problems of
Computing on the Web. In SCS A. Tentner, edi-
tor, High Performance Computing Symposium, pages
296–301, Atlanta, GA, 1997.

[13] P. Kropf, J. Plaice, and H. Unger. Towards a Web
Operating System. In WebNet ’97, Toronto, 1997.

[14] G. Babin, P. Kropf, and H. Unger. A Two-Level
Communication Protocol for a Web Operating Sys-
tem (WOS). In IEEE 24th Euromicro Workshop on
Network Computing, pages 934–944, Sweden, 1998.

[15] S. B. Lamine and J. Plaice. Simultaneous Multiple
Versions: The Key to the WOS. In Distributed Com-
puting on the Web (DCW’98), pages 122–128, Ros-
tock, Germany, 1998.

[16] G. Babin. Requirements for the Implementation of
the WOS. In Distributed Computing on the Web
(DCW’98), pages 129–133, Rostock, Germany, 1998.

[17] H. Unger and P. Kropf. An Approach for the Resource
Scheduling in the WOS . In Distributed Computing
on the Web (DCW’98), pages 134–140, Rostock, Ger-
many, 1998.

[18] M. Wulff, G. Babin, P. Kropf, and Q. Zhong. Com-
munication in the WOS . Technical report, PARADIS

Laboratory, Université Laval Canada, 1998.

[19] H. Unger, P. Kropf, G. Babin, and T. Böhme. Simu-
lation of Search and Distribution Methods for Jobs
in a Web Operating System (WOS). In SCS A.
Tentner, editor, High Performance Computing 1998
ASTC, pages 253–259, Boston, MA, 1998.

[20] T. Böhme and H. Unger. Search in the WOSNet. In
Distributed Computing on the Web (DCW’98), pages
141–142, Rostock, Germany, 1998.

[21] P. Kropf. Overview of the WOS Project. In SCS A.
Tentner, editor, High Performance Computing 1999
ASTC, San Diego, CA, 1999.

[22] J. Plaice and P. Kropf. WOS Communities – In-
teractions and Relations Between Entities in Dis-
tributed Systems. In Distributed Computing on the
Web (DCW’99), pages 163–167, Rostock, Germany,
1999.

[23] H. Coltzau, H. Unger, and D. Berg. Implementation
of a WOS-Prototype. In Distributed Computing on
the Web (DCW’99), Rostock, Germany, 1999.

[24] I. Banicescu and H. Unger. Running Scientific Com-
putations in a Web Operating System Environment.
In SCS A. Tentner, editor, High Performance Com-
puting 1999 (ASTC), San Diego, CA, 1999.

[25] M. Wulff. Implementation of the Service Search in
the WOSNet. In Distributed Computing on the Web
(DCW’99), Rostock, Germany, 1999.

[26] H. Unger. A New Security Mechanism for the Use in
Large Distributed Systems. In SCS A. Tentner, edi-
tor, High Performance Computing 1999 (ASTC), San
Diego, CA, 1999.

[27] S. A. Hopper, A. R. Mikler, P. Tarau, F. Chen, and
H. Unger. Mobile Agent Based File System for the
WOS: An Overview. In SCS A. Tentner, editor, High
Performance Computing 1999 (ASTC), San Diego,
CA, 1999.

[28] S. Schubiger, O. Krone, and B. Hirsbrunner. We-
bComs: Transactions as Object-Flow Networks for
the WOS. In Distributed Computing on the Web
(DCW’99), pages 31–38, Rostock, Germany, 1999.

[29] O. Krone and S. Schubiger. WebRes: Towards a Web
Operating System. In 11. Fachtagung Kommunika-
tion in Verteilten Systemen (KIVS ’99), Darmstadt,
Germany, 1999.

[30] H. Unger. The Adaptive Warehouse Concept for the
Resource Management in the WOS. In Distributed
Computing on the Web (DCW’99), Rostock, Ger-
many, 1999.

[31] G. Babin, H. Coltzau, M. Wulff, and S. Ruel. Ap-
plication Programming Interface for WOSP/WOSRP.
In P. Kropf et al., editor, Distributed Communities on
the Web 2000, LNCS 1830, pages 110–121. Springer,
2000.

[32] S.A. Hopper, A. Mikler, and J. Mayes. Design and
Implementation of a Distributed Agent Delivery Sys-
tem. In P. Kropf et al., editor, Distributed Commu-
nities on the Web 2000, LNCS 1830, pages 192–201.
Springer, 2000.

[33] O. Krone and A. Josef. Using Corba in the Web Op-
erating System. In P. Kropf et al., editor, Distributed
Communities on the Web 2000, LNCS 1830, pages
133–141. Springer, 2000.

[34] O. Krone and A. Josef. Integrating CORBA into
the Web Operating Systeem: First Experiences. In
SCS A. Tentner, editor, High Performance Comput-
ing 2000 (ASTC), pages 207–212, 2000.

[35] M. Wulff and H. Unger. Message Chains as a New
Form of Active Communication in the WOSNet. In
SCS A. Tentner, editor, High Performance Comput-
ing 2000 (ASTC), pages 219–224, 2000.

[36] H. Unger. Resource Managment in Large Distributed
Systems. Habilitation thesis, University of Rostock,
Germany, 2000. In German: Untersuchungen zum
Ressourcenmanagement in grossen verteilten Syste-
men.

[37] P. Kuonen, G. Babin, N. Abdennadher, and P-J.
Cagnard. Intensional High Performance Computing.
In P. Kropf et al., editor, Distributed Communities on
the Web 2000, LNCS 1830, pages 161–170. Springer,
2000.

[38] N. Abdennadher, G. Babin, P. Kropf, and P. Kuo-
nen. A Dynamically Configurable Environment for
High Performance Computing. In SCS A. Tentner,
editor, High Performance Computing 2000 (ASTC),
pages 236–241, 2000.

[39] J. Plaice and P. Kropf. Intensional Communities. In
Intensional Programming II, Singapore, 2000. World
Scientific Press.

[40] M. Wulff, P. Kropf, and H. Unger. Message Chains
and Disjunct Path for Increasing Communication Per-
formance in Large Networks. In P. Kropf et al., edi-
tor, Distributed Communities on the Web 2000, LNCS
1830, pages 123–132. Springer, 2000.

[41] N. Abdennadher, G. Babin, and P. Kuonen. Com-
bining Metacomputing and High Performance Com-
puting. In 2000 International Conference on Parallel
and Distributed Processing Techniques and Applica-
tions (PDPTA’2000), Las Vegas, Nevada, 2000.

[42] S. Schubiger. A Resource Classification System for
the WOS. In P. Kropf et al., editor, Distributed Com-
munities on the Web 2000, LNCS 1830, pages 74–81.
Springer, 2000.

[43] H. Unger. Distributed Resource Location Manage-
ment in the Web Operating System. In SCS A.
Tentner, editor, High Performance Computing 2000
(ASTC), pages 213–218, 2000.

