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ABSTRACT INTRODUCTION

In the study of human visual perception, &
well as in technical applications the probler
of recognizing the three-dimensional structu

In this review current theories of the visual
perception of three-dimensional form are intro-

:juccled.. St?rtmg with a brrlle_fr:)ver\?ggv ff :ovi[/r-] of the environment has become a major tor
evel visual processes, Which contribute 10 e, o can years. The fact that perceiving sy

recognition of 3D objects, such as the percep-.ms including our own brains, are able 1
tion of structure from shading or texture, this creat’e 4 three-dimensional notio’n of the en
article mainly concentrates on advanced the- ronment, although the source of information
ories, which try to explalr_l objec.t recognltlo_n two-dimensionatt and even without utilizing
from a more elaborate point of view. The dif- binocular disparity, is an inspiring field of in-

ferences be_tween object- and wewer-centerec\/estigation throughout the life sciences.
representations are treated, as well as the na- This survey introduces recent finding

ture of characteristic views. In addition, the .
n . . about the nature of representations of thre
recognition of novel views by view interpola- . : .
dimensional objects. The processes of &

tion and the importance of temporal context .. :
. g . ) quiring these are treated, as well as obje

while acquiring an object representation are recoanition and pose estimaticn

also dealt with. The described theories are as- g P '

sessed with respect to their biological plausi- ‘theimages on the retinae

. . . . ?Three-dimensional object perception is a big subje:
bility. Evidence from psychological studies is | have concentrated this review on thisual process-

given, which either supports or contradicts the ing of 3D information. But, without doubt, investiga-
different computational models. Besides this, tions should not be restricted to vision. Many studie
recent results from physiological studies reflect comPpine diverse stimulus variables, particularly acro

. . . . . modalities. For example, sound can alter the perceiv
the hierarchical processing of 3D information 3p path of ambigous 2D motion [1]. Even more impo

In the primate brain. tant for the acquisition of object representations seems




The history of exploring the mechanisms un- nation. Many mathematical models have be:
derlying the establishment of representations proposed, which provide very precise predi
of 3D structure from 2D features started with tions about the spatial layout of the enviror
analyzing low-level visual processes such asment, butthey suffer from implausible, implici
edge detection. In section “Low-Level Visual assumptions about biological principles. Fc
Processes”, which is based on [2], findings example, there is evidence from psycholoc
about these low-level processes from a biolog- cal experiments that humans perform poor
ical as well as a technical point of view are on estimating the precise distance between t
reviewed. For most of these theories are lim- points in the environment, whereas they a
ited either by their biological plausibility or by able to assess very well which point is clos
their technical applicability (often caused by to them [3]. More generally, the human pel
narrowly defined constraints) the majority of ception of Euclidean metric structures is vel
activities now has shifted the focus to high- limited, even though the performance is goc
level principles of cortical processing. Section on recognizing and interacting with objects i
“High-Level Theories of 3D Object Percep- the environment.
tion” gives an overview of these theories, most Nevertheless some important lessons ab
of which were derived from computer simula- the processing of 3D structure have be
tions, artificial systems and technical applica- learned from these low-level models, which al
tions. The results from psychological and phys- introduced now in more detail.
iological research, which either support or con-
tradict high-level models, are reviewed in sec-
tion “Behavioural and Physiological Evidence
for High-Level Theories”.

Structure from Shading
Artists have long known that it is possible t
give an impression of the 3D shape of an obje
by the gradation of its surface luminance, i.e
by its shading. But it still is not quite clear how
LOW-LEVEL VISUAL PROCESSES our visual system processes this informatio
The first attempts to calculate the orientation
Different types of optical information are a surface from its intensity were based on r
used in an early stage of visual processing tostrictions on the environment, like the smoott
infer the 3D shape of an object from its 2D fea- ness of the surface, uniform and known r
tures, like the shading of the object, the tex- flectance properties, and uniform and known |
ture of its surfaces, its contours or binocular |umination fields [4]. Subsequent analyses r
disparity. Almost all of these sources have laxed the restrictions and gained surface o
in common that the information they provide entation from the gradient of the image inter
may fundamentally differ depending on, e.g., sity. The magnitude and direction of the grz
the position and type of the source of illumi- dient can be used to estimate slant and t
nation or the relative position of observer and respectively. Almost all shape-from-shadin
object. That means, that the patterns of shad-methods require the prior knowledge about tt
ing or texture are not invariant over changes surface reflectance properties or the illumin
in the viewing position and direction of illumi-  tion pattern and thus are not biologically plat
be the interaction between vision and motor control, like Sibl€. Conditions that cause major difficultie
when grasping an object. include indirect illumination, shadows, trans




parency, and specular highlights, with which promised to provide metric surface propertie
humans can easily cope [5]. But some plausible But, while at close viewing distances (less the
neuronal mechanisms have also been proposed? m) the disparities are supposed to be prop:
e.g., for computing relative surface depth [6] tional to the viewing distance, the same do
and for obtaining isointensity contours at dif- not hold true for larger distances. Incorret
ferent spatial scales [7]. scaling between depth and disparity has be
discovered [11]. Within small objects at a dis
tance above 3 m our stereopsis is unable to
solve depth differences.

Structure from Texture

The size of the elements of a textured sur-
face and their spacings both decrease with in-
creasing distance from the observer. Moreover, Structure from Multiple Sources
the elements are compressed if the angle be- The relevance of different aspects of th
tween observer and surface decreases. Both efgp structure of the environment (like shading
fects can contribute to recover the 3D structure texture, and so on) may vary with the task to

of surfaces from texture. This was first dis- performed. Most researchers agree that mu
cussed in [8]. Most approaches for recovering ple sources of information are combined, b
shape from texture assume homogenously dist js not yet clear how different cues are con
tributed texture elements, but humans seem topined. Cue fusion seems to be a highly flexib
have few difficulties in perceiving shape from process depending on the task demands, s
texture with nonhomogenously distributed ele- cific stimulus configurations, and the amoul
ments [9]. of noise for each cue.

Structure from Contour One can distinguish betweeweak fusion
The Occ|uding contour of an Object iS con- mOdels, where each source of information

stituted by surface points with a surface nor- first interpreted independently and combine
mal perpendicular to the viewing direction. It Only afterwards, e.g., by linear combination
contains the silhouette and internal contours. If Multiple sources [12], andtrong fusionmod-
we move away from an occluding contour on els, which modulate non-linear interactions b
a surface, depth decreases monotonically untiltween different cues during the computation
a local depth minimum is reached. Thus con- the 3D structure, as in Bayesian models [13
tours provide a source of information about the and which are more likely to be realized in ht
3D structure of an object [10], and there is ev- Mans.

idence from psychophysical experiments that
humans make use of the regions near occlud-
ing contours to perceive 3D shape [3].

Structure from Motion

In contrast to sources of information like
shape and texture, which are contained in o
Structure from Binocular Disparity single, static image, motion provides informze

Binocular disparity denotes the fact that two tion about 3D structure by a sequence of in
slightly different images of the viewed scene ages, derived either from a movement of the o
are projected to both retinae. Since it has server or from a movement of the object. Tht
been thought of as a very powerful source motion constitutes a different quality of infor:
to recover 3D shape information many math- mation compared to the previously describe
ematical models have been proposed, whichsources. Much effort has been made to d



termine how many views or points or deriva- into volume-base@ndview-basedepresenta-
tives of flow fields are necessary to uniquely tions reflects the different nature of feature
reconstruct an objetc’s 3D structure, but there which constitute a representation. The conte
Is (again) evidence that human object recogni- in which different models and theories are di:
tion does not utilize such precise, mathematical cussed always depends on the aspects of vis
analysis. For example, it was shown [14] that to be explained. Table 1 shows a classificati
three views of four non-coplanar points are the scheme valid for this review.

minimum ne_eded to reconstruct the 3[_) st_ruc- Volume-Based versus View-Based

ture of an object under orthographic projection

. Representations
whereas humans are able to recover the afflnev :
: : ) olume-Based Representationslost of the
3D structure just from two views of a motion

objects in the visual world can be divided int
sequence [15]. . :
. . .. 0ne or more volumetric parts, thus it should k
Motion is a complex feature and it is of dif-

¢ ¢ litv than the oth finf possible to represent them by these constitu
erentquaity than the other sources otintorma- parts and their spatial relations. Represen
tion described in this section. It is not at all a

“Jow-level’ feat thouah oft tioned tions based on this principle are calleolume-
Jow-levelr Teature, atthougn otten Mentioned 1, » sedr model-basedMarr and Nishihara [16]
in this context. For this reason detailed infor-

, L were the first to propose recognition by recol
mation about it is given in “Temporal Context” prop 9 y

; tion “High-Level Theori £ 3D Obiect struction. According to their model the visue
of section “High-Level 1heories o jec input is totally reconstructed and matched to

Perception”. three-dimensional representation in memory.

Other approaches can be subdivided in
HIGH-LEVEL THEORIES parametricrepresentations, which need a larc
OF 3D OBJECT PERCEPTION number of quantitatively defined primitives

and vocabulary-basedepresentations, which
The above mentioned weaknesses underlineget by on only a few, but qualitatively define
the necessity to assume higher-level functionsparts, which constitute the object represent
underlying the perception of objects in our tion. An example for vocabulary-based rey
three-dimensional world. In this section | sum- resentations was provided by Biederman [1-
marize advanced theories and models, whichIn his model an object is representeddsons
contribute to explain the perception of 3D ob- (which are volumetric primitives like cylinders
jects. Their plausibility and limitations with re- or rectangular solids) and the spatially invar
spect to biology are discussed in the sectionant relations among them. Each object is cor
“Behavioural and Physiological Evidence for posed of several of these parts, thus thousal
High-Level Theories”. of objects can be represented by combinatio
Existing theories about the nature of 3D ob- of only a few (about 10) elementary, volume:
ject representations can be classified accordingric primitives. Our visual system then is sug
to many different aspects of vision. If the coor- ~=The termsviewer-centeredind object-centeredep-
dinate system the representation is based on igesentations are mostly used synonymously to the ¢
of interest, a possible classification is achieved Pressions2D- and 3D-representations, respectively.
e . will follow this terminology, although some authors refe
by the distinction betweeabject-centere@nd to volume-basebject-centered representations only ¢
viewer-centeredrepresentations. A division 3D.




object-centered viewer-centered
=3D =2D
volume-based Marr and Nishihara [16] —
Biederman [17]
Marr [18]
view-based Lowe [19] Koenderink [21]
Uliman [20] Poggio and Edelman [22]
Bulthoff and Edelman [23]
Uliman and Basri [24]

Tablel: Classification Scheme For Object Representations

posed to recognize an object by decomposingwould have to be stored.
it and comparing its parts to stored templates.
If a sufficient number of geons is identified the
object is recognized. According to this model,
viewpoint invariance can thus be derived from
a single view of the object.

An example for parametric representations
are thegeneralized cylindersntroduced by
Marr [18]. Generalized cylinders are con-
structed mathematically by sweeping a two-
dimensional cross section along an axis. A
large number of primitives can thus be gener-
ated by slight variations in, e.g., the size of the
Cross section.

A solution can be a representation of &
object in the form of a (smaller) collectior
of relevant views only and the spatial rele
tions among them. Recognition of intermed
ate views with such a representation could |
achieved, e.g., by interpolation or extrapol:
tion of stored views (see subsection “How t
Recognize Unfamiliar Views”). The relations
among stored views preserve the spatial infc
mation, which is lost in simpler view-base
approaches. A description of 3D objects &
aspect graphsproposed by Koenderink anc
van Doorn [26, 21], is one example for suc
View-Based Representationslany computa-  an advanced view-based representation. T
tional models have been proposed, e.g., byvertices of an aspect graph are constituted
von der Malsburg et. al. [25], which show yjews which can be imagined as special poir
that 2D ObjeCt views can be combined into the ona transparent Viewing Sphere with the Obje
equivalent of a 3D object representation. in its center. These stored views represent d

The simplest view-based description of an tinct aspects and the relations between ther
object is a densly sampled collection of views are expressed bgvents Events occur, when-
of it, which are treated independently. The ever changes in the viewpoint lead to qua
addition of new views would not increase the itative changes in the appearance of the c
complexity of the description, but only increase ject. Aspect graphs have been applied, e.
the size of the search space. Even for a suchby Seibert and Waxman. In [27] they descrik
a simple view-based representation the visualthe learning of representations for 3D objec
system would need the ability to transform from arbitrary sequences of the rotating ol
views to different viewing angles inside narrow ject. Based on an edge and corner detecti
ranges, otherwise an infinite number of views they cluster the views into different aspect




Each object is represented then by a “transi- Such single-description, object-centered re
tion matrix”, which contains a kind of proba- resentations seem to be very economical, |
bility for the transition from one aspect to an- they require the ability of the visual system t
other. Utilizing these transition matrices their boundlessly transform across views.
system is able to recognize objects, but pose esViewer-Centered Representationtthe parts
timation or the generation of intermediate (non- of an object are described relative to a coc
experienced) views is not possible. dinate system based on the observer, the r
Another view-based approach, which even resentation is callediewer-centered In this
allows pose estimation, is proposed by Murase case the description of the object depends
and Nayar [28]. They represent objects by athe viewing angle. The previously mentione
manifold in eigenspace. An input image of aspect graph approach by Koenderink [21]is
an object to be recognized is projected to the example for this category. Other approache
eigenspace of the learned objects. The ob-e.g., by Poggio and Edelman [22]iiBhoff and
ject is recognized based on the manifold it lies Edelman [23], and Uliman and Basri [24] ar
on. The exact position of the projection on the described in the subsection “How to Recogni:
manifold determines the object’s pose. Unfamiliar Views”.

Object-centered representations seem to
appropriate for recognition tasks, because t
recognition of an object should not depend c
the the viewing angle of the observer. Th

visual guidance of interactions with objects

Object-Centered versus Viewer-Centered
Representations

Object-Centered Representations: Object-
centeredrepresentations are characterized by
a description of the parts of the object relative _
to an object-centered coordinate system. For"OWEVer, requires the observer as frame of re
example, Marr specified the objects parts erence. That mean_s, for thI-S. task a V|ewe:
relatively to the object's main axis [18]. A centered, and thus view-specific representati
single description of the object is valid for all Wil bé more suitable.

possible viewpoints, i.e., the description of the characteristic Views

object is independent of the position of the  Across the different models for 3D objec

observer. Biedermans geon approach, reportegyerception, the notion aharacteristic viewss
previously, belongs to the object-centered 5 hrominent topic. Derived from experiment:
representations, too. research, characteristic views can be definec

But an object-centered representation is notyiews which are easier to recognize than oth
necessarily volume-based. The relations be-yjews of the same object. From a technic

tween object parts can also be expressed in twopgint of view, a characteristic view is a view
dimensional terms like relations between lines \yhich is useful for matching an objeét.

apd Cor.ners, as_ proposed by nge [19] \_N'th his Still open questions regarding characterist
viewpoint consistency constrainHe projects \:.\vs are the number of views necessary f
each 3D model stored in memory to a hypothe-

sized viewpoint and matches the resulting pro- *A term which should be mentioned in this context i

jected locations of the 2D features to the input ¢&nenical view which is defined in [29] as view "hu-
mans find easiest to recognize and regard as most t

?mage. Avery simi!a_tr appro"’_‘Ch by Uliman [20] cal”. Thus, the expressiaanonical views mostly used
Is known ageecognition by alignment synonymously ta@haracteristic view




different visual tasks and the manner in which Biederman [17]. In this scheme some parts
they are defined. Many explainations have beenan object are of particular salience and the
suggested, why some views are easy to recogwisibility facilitates recognition. Accordingly,
nize and others are not. Different features havecharacteristic views are not derived from a ge
been considered for this classification. One as-eral procedure, rather they highly depend
pect for defining characteristic views might be the specific object.

the constellation of visible corners and edges.
For example, Gray [30] clustered the view-

ing sphere of line drawings of geometrically teristic views play a dominant role in objec

facetted objects into regions of similar views . : )
recognition then the question arises how no

based on corners and edges. He obtained nine . . . .
. characteristic views, i.e., views which have ni

clusters, where each view of a cluster shared at :
been experienced before and are not storec

least 17 features with every other view of the : .
the representation, can be recognized. One

same cluster, thus he obtained nine characteris- : : ]
. . . the most supported idea is theerpolationof
tic views, which represent the whole object.

_ unfamiliar views. Novel views can be genel

In-another approach Koendgrlnk and yan alized from stored views by a view approxi

Doqrn [31]. applied a mathematlc_al extensm_m mation as described, e.g., by Poggio and Ed

of singularity theory to smooth objects. In this [22]. According to this theory humans an
context one type of singularities are contours

- other primates can achieve viewpoint-invaria
that sepa_rate visible from _occluded Surfacesrecognition of objects by a system that interp
(see section “Low-Level Visual Processes”).

lates between a small number of stored sam|

The shapes of these contours are classified inia\vs as shown by Bithoff and Edelman [23].
general. A classification of contour shapes of | ;¢omiliar views lying between stored view:

a special object results in clusters of vantage 4 the same rotation axis should be recogniz
points with unchanged singularities. At un- 0. easily, than those which are somewhe
stable vantage points the set of singularities ;\sa on the viewing sphere. In addition, reco
changes and the observer experiences an evengiion should deteriorate with an increasing di
Because this approach leads to a huge numbeg, .o of the novel view from a stored view.

of characteristic views, it is questionable if it Another theory about the recognition of ur
can account for human object perception. familiar views, which also belongs to the view
AIthOUgh characteristic views are more based approaches’ is the recognition |by
strongly connected with viewer-centered con- ear combination®f views. Ullman and Basti
cepts object-centered models also have to ex{24] showed mathematically that, under o
plain the phenomenon of characteristic views. thographic projection, the 2D-coordinates
Approaches utilizing the object’s principal axis an object point for a special view can be e
can define characteristic views by the projected pressed as a linear combination of the obje
length of this axis [16]. Views with a foreshort- point coordinates in a limited set of other view
ened main axis are supposed to be more diffi- points, provided the correspondence betwe
cult to recognize. points in all views is known. The numbe
Another idea is the concept sélientornon-  of required views depends on the complexi
accidentalfeatures used by, e.g., Lowe [19] or of the object and the allowed 3D transform:

How to Recognize Unfamiliar Views
If we start from the assumption that charas



tions. At most six images would need to be the temporal context and need not be deriv
stored to allow the reconstruction of an object from static sources of information, which i
from any viewpoint. In contrast to the inter- often misleading. It was shown, e.g., in [34
polation model, this model predicts an equally that better correspondences are derived frc
high recognition rate for unfamiliar views ly- the continuity of successive views than froi
ing in the space spanned by the stored views,(the same) disconnected, static views.

independent of the distance beween novel and
stored views. Among others, Beymer and Pog-
gio used a linear combination approach to ap-
ply prior knowledge of an object class (faces)
to generate virtual views for face recognition

[32]. visual tasks may require different types of re
The alignmentof 3D models, already men- . yreq yp : [
resentations. On the one hand, one can im:

tioned in the subsection “Object-Centered ver- . )
, . Ine that volume-based representations are es
sus Viewer-Centered Representations” is a

: . . cially useful for visual guidance of interaction:
third theory for generalizing from familiar to y g

L : with objects, like grasping them. For just rec
unfamiliar views. Itis strongly connected to the . T
. : : ognizing an object it seems to be not necess:
notion ofmental rotationdescribed by Shepard . : : : :
: to utilize the spatial relations of its constituer
and Cooper [33], which belongs to the class . :
. : parts. For recognition a view-based represe
of object-centered approaches. During recog-, .. .
" : tation may be sufficient. On the other han
nition by alignment each stored model under-

S . .. .. If object-centered versus viewer-centered re
goes an aligning transformation after which it : ) j
: : : : resentations are compared, then it would be ¢
Is compared to the input image. A visual sys-

. . . vantageous for interactions with objects, if th
tem, which utilizes aligned 3D models, can rec- g )

. frame of reference for the object is already tt
ognize perfectly, as long as all features used for : L :
: . same as for the interacting individuum, i.e.,
the transformation are visible.

the object is represented by a viewer-center
Temporal Context description.

Up to now | have focused this review on rep-  Another pair of terms, not mentioned s
resentations of three-dimensional objects andfar, is given by representations which facilitat
the recognition process utilizingtatic views,  viewpoint invariantperformance during recog-
only. But many studies have proved the impor- nizing an object and those which lead teiew-
tance of the temporal context during observa- point specifiqor viewpoint dependenbehav-
tion of asequencef a moving object, when ior. Viewpoint invariance of an object repre
either the object rotates or the observer movessentation can be discussed in two terms. Fir
(see “Structure from Motion” in the section in terms of error rates, i.e., how often woul
“Low-Level Visual Processes”). Additional in- a visual system misclassify a perceived obje
formation is provided to the visual system by depending on the view it is exposed to. Se
a sequence. The establishment of a represenend, viewpoint invariance can be refered to tl
tation is facilitated by tracking object features, time needed to recognize an objettin gen-

thus providing correspondences in neighbour- sObject-centered, volume-based representations
ing views. Corresponding points are given by refered to as viewpoint invariant in terms of error rate

Different Kinds of Representations
For Different Tasks

The utility of a representation has to be a
sessed with respect to the task, e.g., recog
tion, pose estimation, or interaction. Differer




eral, recognition requires viewpoint-invariant  a) First, viewpoint invariance for familiar ob-
performance. Imagine an animal which can- jects was confirmed by assessing naming late
not distinguish between a poisonous and a nu-cies, as long as the same geons were Vvisible
tricious plant independently of the view point. the training and in the test images of line drav
Viewpoint-specific behaviour can be advanta- ings of objects. This was independent of tr
geous if pose-estimation or interaction are de- viewpoint-specific appearence of single geon
manded. b) Second, subjects were able to distii
Another interesting point about learning ob- guish immediately between unfamiliar object
ject representations is described in [35]. If the if their constituting geons were distinguishabl
orientation of an object affects the recognition These results could not have been achieved
time, then practice greatly diminishes this ef- pure view-based coding is assumed.
fect. However, this effect of practice does not c¢) A third argument contradicts a pure view
transfer to new objects. Thus, what is learned isbased representation. As described, e.g.,
specific to a set of stimuli and is not a general- [38], humans can memorize the shape of a p
purpose procedure. This does not support atern even if they are not able to recall its lef
concept of a “frame-independent” representa- right orientation. In a view-based represent
tion, as proposed, e.g., in [36]. tion the left-right orientation would be storet
intrinsically with the shape.

BEHAVIOURAL AND PHYSIOLOGICAL Evidence for View-Based Representations

EVIDENCE FOR HIGH-LEVEL There are some arguments that support t
THEORIES model of an advanced view-based descripti

of 3D objects by our visual system. (Simpl
In this section | describe results of studies view-based representations in the form of a cc
with humans and monkeys which either sup- lection of independent views are unlikely t
port or contradict the theories of 3D object be realized in the human brain. Otherwise
recognition | introduced in the last section. The would be difficult to explain humans’ ability to
first subsections mainly summarize psycholog- recognize novel views of familiar objects [37].
ical (i.e., behavioural) studies, whereas phys- a) If a set of object views is presented t
iological results, mainly derived from single humans and their reaction time and their €
neuron recordings from monkeys, are reportedror rates during recognizing unfamiliar view
in the last subsection “Hierarchies in Higher- of the same object are measured, both, |
Order Visual Processes in the Brain”. action time and error rates increase with i
creasing angular distance between the learr
(i.e., stored) and the unfamiliar view [39]. Thi
decrease in recognition speed for unfamili
views was already reported in [40] and [41
For monkeys the ability to generalize fron
andresponse time. Viewer-centered, view-based repre- training views was also found to be worse ¢
sentations are defined as view specific, Wherea§ Obje,Ct'the rotation angle increases [42, 43]. These |
centered, view-based representations predict a viewpoint .
sults strongly support a view-based model.

invariant performance in terms of error rates, but not in _
terms of response times. b) This angle effect on the performance di

Evidencefor Volume-Based Representations

Two reasons, derived from psychological ex-
periments quoted in [37], support the plausibil-
ity of the geon theory.




clines, if intermediate views are experienced views there are hints that a non-foreshorten
and stored [44]. This would not be expected ei- principal axis of the object is not as importar
ther, if viewpoint invariance from a single view for recognition as the visibility of salient fea.
Is assumed, as done by geon theory, for exam-ures. In a study by Palmer et. al. [29] subjec
ple. had to choose characteristic views for sevel

c) Similar results have been derived from objects, and the views they selected often ha
recordings of single neurons in the inferior tem- viewing angle of about5° to the principal axis
poral cortex (IT) of monkeys by Logothetis et. of the object. That means, that the princip.
al. [45]. They found populations of IT neu- axis was foreshortened considerably.

rons, that responded selectively to only some d) Koenderink and van Doorn’s singularit
views of a previously unfamiliar object. The theory [31] is also unlikely to account for the
response declined gradually as the object wasnature of characteristic views. It predicts view
rotated away from this preferred view. to be characteristic which show only sligh

d) The object-centered representations pro-changes of their contours under slight rotatior
posed by Biederman [17] predict well the view- But, as Perrett and Harries [48] found out, ht
independent recognition ofamiliar objects.  mans prefer views with the principal axis o
However, it is difficult to distinguish whether the object either parallel or perpendicular to tt
the recognition can be put down to a three- |ine of sight - and these views provide stron
dimensional description or to the fact that the variations of their contours under slight rote

system has already been exposed to a sufficientions. Views with the principal axis of the ob
number of two-dimensional views. In addition, ject either para||e| or perpendicu|ar to the lin
there are some unanswered question in this apof sight are often “plan views”, equivalent tc
proach. How is view invariance achieved for those drawn by an architect to represent an «
the volumetric parts themselves, and how is in- ject. The benefit of such views is, according 1
variance achieved for objects that cannot be de-[49], the absence of perspective distortions

composed further? the third dimension.

Evidence for Characteristic Views e) An ever recurring question concerns tf

a) The fact that some views of an object are distribution of characteristic views, i.e., thei
better suitable for recognition than others was humber and distances. Experiments with
confimed early by observations of patients with monkeys were made by Logothetis et. &
right parietal cortex lesions [46]. They were [43] which showed that familiarization with
poorer than control subjects in recognizing ob- & “limited number” of views of a novel ob-
jects from “unusual” views, whereas “usual” J€ct can provide viewpoint-independent reco
views were not affected. nition. Three views of a wire-like object,

b) In experiments carried out by Edelman and 120° apart, often were sufficient for recogniz
Bulthoff [39, 47] naming was fastest if a stim- NG any view resulting from rotations aroun
ulus was in a characteristic view. And these the same axis. For the entire viewing sphe
views were established even if in the training about 10 views were sufficient to achieve viev
phase each view of an unfamiliar object ap- ‘The studies reported in this section do not provic

peared with _equal frequency. ~arguments for characteristic views only, but also strong
c) Regarding the nature of characteristic favour viewer-centered approaches.




independent performance. But the same studythe linear combination model, which predict
claimes that the number of required viewpoints the same good performance for thetween
may depend on the object class. It may reach aand beyondcondition and poor performance
minimum for a novel object of a familiar class, for the orthogonalcondition. The experiment
e.g., for a new individual face one view only also contradicts alignment models, which pri
may be sufficient. The unability of monkeys to dict uniformly good performance for all three
recognize objects rotated by more than approx-test conditions.

imately 40° from asinglefamiliar view is also b) Monkeys were trained with two views o
reported. a computer-rendered wire or spheroidal nov

f) A similar result for human object recogni- object, which were far apart, e.@-, and120°.
tion was published earlier by Rock and DiVita They could recognize all test views inside th
[50]. Subjects became very poor in recognizing interval, whereas the extrapolation along eith
wire-like objects for view distancies larger than the same or an orthogonal axis was limited |
approximately30°. They could not even imag- Logothetis et. al. found out [42]. This also suy
ine, how the objects would look when rotated ports the interpolation model.
further. c) The linear combination of views propose

_ _ _ by Ullman and Basri [24] is of theoretical inter
Evidencefor View Interpolation est, but its validity for human object perceptio
a) Bllthoff and Edelman [23] made psy- seems to be limited. First, it is applicable t

chophysical experiments to compare the three|jne drawings only, second, the viewing angle
theories about recognition of unfamiliar views, must be known for the calculations.

| described in section “High-Level Theories
of 3D Object Perception”: nonlinear view in- EVvidencefor the Importance of

terpolation, linear combination of views, and Temporal Context _
alignment of 3D models. Context in general (not necessarily tempore

Subjects were shown two training views of a €&Nn Improve the recognition of novel views

computer generated 3D wire-like object, which 11iS was shown by Christou et. al. [51]. How
were75° apart In the test phase a novel view Vel temporal context seems to be of spec

was presented, which was either on the same Mportance for the establishment of object re

rotation axisbetweerthe training views, or on resentatlong. This is .supported by a series
the same rotation axiseyondthem, or on an  PSychophysical experiments. _
axis orthogonalto the training axis. The er- & Niemann et. al. [52] report on experi
ror rates during recognition mostly fit the pre- MENtS with parts of statues of human figur
dictions of the interpolation model, i.e., the er- ON & turntable. The eye movements of subje

ror rates were lowest for tHeetweercondition, ~ Watching the rotating objects were recorde
medium for thebeyondcondition and highest 1 neY found that the eye movements were oft
for the orthogonalcondition. This contradicts dlrecteq to the game details from different vai
tage points. This also supports the relevance

‘In another experiment subjects were also shown two tracking of local features.

training views75° apart, oscillatingl5° around a fixed b) Another argument is furnished by Harma
axis, so they experienced small sequences. The results

of these experiments were similar to the ones | describe anq Humphrey [53_]- They claim that differen
Now. object representations are generated, depe




ing on the presentation of either regular or ran- ing objects, and they use only the latter to pe
dom sequences of views of the object. When ceive the unity of partly occluded objects [58].
a sequence of rotations is encoded, the associ- f) Spelke claims that one of the Gestalt princ
ated temporal context may lead to the construc-ple developed earliest in infants is motion [59
tion of a linked, higher-order system of repre- Their perception does not seem to attend

sentations for a given object. Without temporal nonaccidental geometric relations in visual a
context, a single representation of each objectrays. Rather they divide their visual input inti
rotation may be constructed. units that move as connected wholes and s

c) If an object in a 3D scene is rotated, its per- arately from another. This also supports tt
ceived depth increases, as described by Saue@reat significance of motion for object percej
et. al. [54]. Subjects had to jugde the shape oftion.
objects, and they perceived more acute angles 9) Also some physiological reasons suppc
with an increased rotation of the object. the importance of temporal context for three

d) If 3D objects are represented by a col- dimensional object perception. Miyashita [6(
lection of stored views, then this collection is trained monkeys to match complex fractal pz

structured in the sense that views belonging to- t€MS: Which were presented successively ir
gether because of their successive appearanched serles_of 100 items. After training cell
are more closely associated with each other in'" the anterior temporal cortex were found t
the representation. This is claimed by Edelman show selectivity for a small number of patterr

and Weinshall [55] as well as by Perrett et. al. W_hiCh h?‘d been presen.ted successively. T
56] gives evidence for learning based on tempol

. : ) associations rather than on pattern overlap.
e) That this result is not simply due to shared P P

structural information, is suggested by Kell- Evidence for the Coexistence of

man’s [57] research with infants. He found out Different Systems

that they have the ability to perceive the three- There is evidence for the coexistence of sef
dimensional form of an object if only informa- rate representation systems in the human br
tion about continuous optical transformations for identification (recognition) of objects on the
given by motion is available. They are not able one hand, and for visual guidance of intera
to apprehend the overall form of an object from tions with objects, on the other hand.

static views, even if they are multiple or se- The difference between patients which suff
quential. This holds true even for eight months from agnosia (unability to recognize an object
old infants. Adults, however, are able to per- identity) and those with apraxia (failing to in-
ceive 3D form from static views of objects. teract with objects) can make this clear. In [6:
The recognition from static views seems to lean an agnostic patient is described who cannot re
on extrapolations to the whole form based on ognize objects, but nonetheless she is able
simplicity or symmetry considerations, which interact with them, guiding her hand in the af
may be products of learning, whereas the otherpropriate shape for grasping. There are also |
mechanism is innate or develops early. tients who suffer from apraxia without agnosi:
(Sixteen-week-old human infants are able to

distinguish optical displacements given by their

own motion from displacements given by mov-



Hierarchiesin Higher-Order Visual tation® specific, to size and orientation tolerar
Processesin the Brain cells. Tanaka et. al. [65] suggest, that the co
Two major pathways project from the pri- ing of faces, hands and arbitrary objects she
mary visual cortex to higher parts of the pri- an early stage of analysis in IT.
mate brain. The dorsal pathway, which encodes There are also cells in STS which ex
the spatial layout of the environment, projects hibit object-centered coding, i.e., they respor
to the parietal cortex, which is known to control equally to all views of an object. This wa
motor action. The ventral projections mediate shown, e.qg., by Perrett et. al. [64] for the codin
object form and project to the temporal cortex. of heads and by Booth and Rolls [66] for th
Here especially cells in the superior temporal coding of small plastic objects [66] in macaqu
sulcus (STS) are concerned with object recog- brains. In [64] they found cells selective to a
nition. A fusion of this “What”- and “Where™-  views of one individual’s head, but unrespor
information is realized by direct axonal projec- sive to all views of a different individual. On
tions between the parietal and temporal cortexthe other hand, in [66] neurons are desrib
by indirect connections via the hippocampus, which were responsive to all views of one, &
where place cells can be found, which form well as, more objects.

cognitive maps. These results suggest that 3D object recc
Cells in STS of macaques have been found nition in the primate brain operates in a hie

which respond selectively to faces, hands, andarchical fashion with increasing levels of ak

other classes of biologically significant objects. straction. Starting with size-, orientation- an

The majority of these cells exhibits a viewer- viewpoint-specific representations, to size- al

centered response pattern, i.e., some of thenvrientation-invariant, but viewpoint-specific

respond selectively to face or profile views of codings, up to viewpoint-invariant represent:

heads, as described by Perrett et. al. [62], al-tions.

though at the same time they generalize across

image position, size, orientation in the im-

age plane, color, and lighting conditions [63]. SUMMARY AND CONCLUSIONS

There are more cells which are optimally tuned

to characteristic views (like full face or pro-

file) than to other views [64F. The tun-

Ing covers views between5° and 70° until

the response is reduced to half of its maxi-

mum. Maybe STS combines inputs from ear- " : _
view of computational models has to consid:

lier viewer-centered describtions in the inferior bl e :
temporal cortex (IT), which are size and orien- f[he realization oprinciplesof cortical process-

ing, rather than the exact mapping of biologic

sInterestingly, the same views seem to be important Or computational details.
physiologically and psychologically. Also the relative Taking this into account, | come to som

importance of views is comparable. Face and profile . lusi di h fth
views appear more important than half-profile views, and main conclusions regarding the nature of thre

all of these front views are more important than rear dimensional object perception:
views of a head, both in behavioural and physiological
studies, as reported in [49]. °orientation in the image plane

Most neuroscientists agree on the mutu
stimulation between brain research and neu
computation. Biological realism is crucial fo
a powerful artificial object recognition systen
if it claims to be comprehensive. Thus the re




e Most of the strongest arguments favour a Thus, the hierarchical cortical processing ¢
view-based approach to the perception of object form could not only reflect an evolutiol
3D form. of the frame of reference from retinotopic t

egocentric to allocentric [68], but could als

represent a scheme, which uses more elabol
computations with increasing degree of diff
culty of the task to perform.

e Objects seem to possess characteristic
views, which facilitate recognition, com-
pared to other views.

e It is likely that novel views can be recog-
nized by a kind of interpolation between

previously experienced views. ACKNOWLEDGEMENT
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