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ABSTRACT

In this review current theories of the visual
perception of three-dimensional form are intro-
duced. Starting with a brief overview of low-
level visual processes, which contribute to the
recognition of 3D objects, such as the percep-
tion of structure from shading or texture, this
article mainly concentrates on advanced the-
ories, which try to explain object recognition
from a more elaborate point of view. The dif-
ferences between object- and viewer-centered
representations are treated, as well as the na-
ture of characteristic views. In addition, the
recognition of novel views by view interpola-
tion and the importance of temporal context
while acquiring an object representation are
also dealt with. The described theories are as-
sessed with respect to their biological plausi-
bility. Evidence from psychological studies is
given, which either supports or contradicts the
different computational models. Besides this,
recent results from physiological studies reflect
the hierarchical processing of 3D information
in the primate brain.

INTRODUCTION

In the study of human visual perception, as
well as in technical applications the problem
of recognizing the three-dimensional structure
of the environment has become a major topic
in recent years. The fact that perceiving sys-
tems, including our own brains, are able to
create a three-dimensional notion of the envi-
ronment, although the source of information is
two-dimensional1 and even without utilizing
binocular disparity, is an inspiring field of in-
vestigation throughout the life sciences.

This survey introduces recent findings
about the nature of representations of three-
dimensional objects. The processes of ac-
quiring these are treated, as well as object
recognition and pose estimation.2

1the images on the retinae
2Three-dimensional object perception is a big subject.

I have concentrated this review on thevisual process-
ing of 3D information. But, without doubt, investiga-
tions should not be restricted to vision. Many studies
combine diverse stimulus variables, particularly across
modalities. For example, sound can alter the perceived
3D path of ambigous 2D motion [1]. Even more impor-
tant for the acquisition of object representations seems to



The history of exploring the mechanisms un-
derlying the establishment of representations
of 3D structure from 2D features started with
analyzing low-level visual processes such as
edge detection. In section “Low-Level Visual
Processes”, which is based on [2], findings
about these low-level processes from a biolog-
ical as well as a technical point of view are
reviewed. For most of these theories are lim-
ited either by their biological plausibility or by
their technical applicability (often caused by
narrowly defined constraints) the majority of
activities now has shifted the focus to high-
level principles of cortical processing. Section
“High-Level Theories of 3D Object Percep-
tion” gives an overview of these theories, most
of which were derived from computer simula-
tions, artificial systems and technical applica-
tions. The results from psychological and phys-
iological research, which either support or con-
tradict high-level models, are reviewed in sec-
tion “Behavioural and Physiological Evidence
for High-Level Theories”.

LOW-LEVEL VISUAL PROCESSES

Different types of optical information are
used in an early stage of visual processing to
infer the 3D shape of an object from its 2D fea-
tures, like the shading of the object, the tex-
ture of its surfaces, its contours or binocular
disparity. Almost all of these sources have
in common that the information they provide
may fundamentally differ depending on, e.g.,
the position and type of the source of illumi-
nation or the relative position of observer and
object. That means, that the patterns of shad-
ing or texture are not invariant over changes
in the viewing position and direction of illumi-

be the interaction between vision and motor control, like
when grasping an object.

nation. Many mathematical models have been
proposed, which provide very precise predic-
tions about the spatial layout of the environ-
ment, but they suffer from implausible, implicit
assumptions about biological principles. For
example, there is evidence from psychologi-
cal experiments that humans perform poorly
on estimating the precise distance between two
points in the environment, whereas they are
able to assess very well which point is closer
to them [3]. More generally, the human per-
ception of Euclidean metric structures is very
limited, even though the performance is good
on recognizing and interacting with objects in
the environment.

Nevertheless some important lessons about
the processing of 3D structure have been
learned from these low-level models, which are
introduced now in more detail.

Structure from Shading
Artists have long known that it is possible to

give an impression of the 3D shape of an object
by the gradation of its surface luminance, i.e.,
by its shading. But it still is not quite clear how
our visual system processes this information.
The first attempts to calculate the orientation of
a surface from its intensity were based on re-
strictions on the environment, like the smooth-
ness of the surface, uniform and known re-
flectance properties, and uniform and known il-
lumination fields [4]. Subsequent analyses re-
laxed the restrictions and gained surface ori-
entation from the gradient of the image inten-
sity. The magnitude and direction of the gra-
dient can be used to estimate slant and tilt,
respectively. Almost all shape-from-shading
methods require the prior knowledge about the
surface reflectance properties or the illumina-
tion pattern and thus are not biologically plau-
sible. Conditions that cause major difficulties
include indirect illumination, shadows, trans-



parency, and specular highlights, with which
humans can easily cope [5]. But some plausible
neuronal mechanisms have also been proposed,
e.g., for computing relative surface depth [6]
and for obtaining isointensity contours at dif-
ferent spatial scales [7].

Structure from Texture
The size of the elements of a textured sur-

face and their spacings both decrease with in-
creasing distance from the observer. Moreover,
the elements are compressed if the angle be-
tween observer and surface decreases. Both ef-
fects can contribute to recover the 3D structure
of surfaces from texture. This was first dis-
cussed in [8]. Most approaches for recovering
shape from texture assume homogenously dis-
tributed texture elements, but humans seem to
have few difficulties in perceiving shape from
texture with nonhomogenously distributed ele-
ments [9].

Structure from Contour
The occluding contour of an object is con-

stituted by surface points with a surface nor-
mal perpendicular to the viewing direction. It
contains the silhouette and internal contours. If
we move away from an occluding contour on
a surface, depth decreases monotonically until
a local depth minimum is reached. Thus con-
tours provide a source of information about the
3D structure of an object [10], and there is ev-
idence from psychophysical experiments that
humans make use of the regions near occlud-
ing contours to perceive 3D shape [3].

Structure from Binocular Disparity
Binocular disparity denotes the fact that two

slightly different images of the viewed scene
are projected to both retinae. Since it has
been thought of as a very powerful source
to recover 3D shape information many math-
ematical models have been proposed, which

promised to provide metric surface properties.
But, while at close viewing distances (less than
2 m) the disparities are supposed to be propor-
tional to the viewing distance, the same does
not hold true for larger distances. Incorrect
scaling between depth and disparity has been
discovered [11]. Within small objects at a dis-
tance above 3 m our stereopsis is unable to re-
solve depth differences.

Structure from Multiple Sources
The relevance of different aspects of the

3D structure of the environment (like shading,
texture, and so on) may vary with the task to be
performed. Most researchers agree that multi-
ple sources of information are combined, but
it is not yet clear how different cues are com-
bined. Cue fusion seems to be a highly flexible
process depending on the task demands, spe-
cific stimulus configurations, and the amount
of noise for each cue.

One can distinguish betweenweak fusion
models, where each source of information is
first interpreted independently and combined
only afterwards, e.g., by linear combination of
multiple sources [12], andstrong fusionmod-
els, which modulate non-linear interactions be-
tween different cues during the computation of
the 3D structure, as in Bayesian models [13],
and which are more likely to be realized in hu-
mans.

Structure from Motion
In contrast to sources of information like

shape and texture, which are contained in one
single, static image, motion provides informa-
tion about 3D structure by a sequence of im-
ages, derived either from a movement of the ob-
server or from a movement of the object. Thus
motion constitutes a different quality of infor-
mation compared to the previously described
sources. Much effort has been made to de-



termine how many views or points or deriva-
tives of flow fields are necessary to uniquely
reconstruct an objetc’s 3D structure, but there
is (again) evidence that human object recogni-
tion does not utilize such precise, mathematical
analysis. For example, it was shown [14] that
three views of four non-coplanar points are the
minimum needed to reconstruct the 3D struc-
ture of an object under orthographic projection,
whereas humans are able to recover the affine
3D structure just from two views of a motion
sequence [15].

Motion is a complex feature and it is of dif-
ferent quality than the other sources of informa-
tion described in this section. It is not at all a
“low-level” feature, although often mentioned
in this context. For this reason detailed infor-
mation about it is given in “Temporal Context”
of section “High-Level Theories of 3D Object
Perception”.

HIGH-LEVEL THEORIES
OF 3D OBJECT PERCEPTION

The above mentioned weaknesses underline
the necessity to assume higher-level functions
underlying the perception of objects in our
three-dimensional world. In this section I sum-
marize advanced theories and models, which
contribute to explain the perception of 3D ob-
jects. Their plausibility and limitations with re-
spect to biology are discussed in the section
“Behavioural and Physiological Evidence for
High-Level Theories”.

Existing theories about the nature of 3D ob-
ject representations can be classified according
to many different aspects of vision. If the coor-
dinate system the representation is based on is
of interest, a possible classification is achieved
by the distinction betweenobject-centeredand
viewer-centeredrepresentations. A division

into volume-basedandview-basedrepresenta-
tions reflects the different nature of features
which constitute a representation. The context
in which different models and theories are dis-
cussed always depends on the aspects of vision
to be explained. Table 1 shows a classification
scheme valid for this review.3

Volume-Based versus View-Based
Representations
Volume-Based Representations:Most of the
objects in the visual world can be divided into
one or more volumetric parts, thus it should be
possible to represent them by these constituent
parts and their spatial relations. Representa-
tions based on this principle are calledvolume-
basedormodel-based. Marr and Nishihara [16]
were the first to propose recognition by recon-
struction. According to their model the visual
input is totally reconstructed and matched to a
three-dimensional representation in memory.

Other approaches can be subdivided into
parametricrepresentations, which need a large
number of quantitatively defined primitives,
and vocabulary-basedrepresentations, which
get by on only a few, but qualitatively defined
parts, which constitute the object representa-
tion. An example for vocabulary-based rep-
resentations was provided by Biederman [17].
In his model an object is represented bygeons
(which are volumetric primitives like cylinders
or rectangular solids) and the spatially invari-
ant relations among them. Each object is com-
posed of several of these parts, thus thousands
of objects can be represented by combinations
of only a few (about 10) elementary, volumet-
ric primitives. Our visual system then is sup-

3The termsviewer-centeredandobject-centeredrep-
resentations are mostly used synonymously to the ex-
pressions2D- and 3D-representations, respectively. I
will follow this terminology, although some authors refer
to volume-based, object-centered representations only as
3D.



object-centered
= 3D

viewer-centered
= 2D

volume-based Marr and Nishihara [16]
Biederman [17]
Marr [18]

–

view-based Lowe [19]
Ullman [20]

Koenderink [21]
Poggio and Edelman [22]
Bülthoff and Edelman [23]
Ullman and Basri [24]

Table1: Classification Scheme For Object Representations

posed to recognize an object by decomposing
it and comparing its parts to stored templates.
If a sufficient number of geons is identified the
object is recognized. According to this model,
viewpoint invariance can thus be derived from
a single view of the object.

An example for parametric representations
are the generalized cylindersintroduced by
Marr [18]. Generalized cylinders are con-
structed mathematically by sweeping a two-
dimensional cross section along an axis. A
large number of primitives can thus be gener-
ated by slight variations in, e.g., the size of the
cross section.

View-Based Representations:Many computa-
tional models have been proposed, e.g., by
von der Malsburg et. al. [25], which show
that 2D object views can be combined into the
equivalent of a 3D object representation.

The simplest view-based description of an
object is a densly sampled collection of views
of it, which are treated independently. The
addition of new views would not increase the
complexity of the description, but only increase
the size of the search space. Even for a such
a simple view-based representation the visual
system would need the ability to transform
views to different viewing angles inside narrow
ranges, otherwise an infinite number of views

would have to be stored.

A solution can be a representation of an
object in the form of a (smaller) collection
of relevant views only and the spatial rela-
tions among them. Recognition of intermedi-
ate views with such a representation could be
achieved, e.g., by interpolation or extrapola-
tion of stored views (see subsection “How to
Recognize Unfamiliar Views”). The relations
among stored views preserve the spatial infor-
mation, which is lost in simpler view-based
approaches. A description of 3D objects by
aspect graphs, proposed by Koenderink and
van Doorn [26, 21], is one example for such
an advanced view-based representation. The
vertices of an aspect graph are constituted by
views which can be imagined as special points
on a transparent viewing sphere with the object
in its center. These stored views represent dis-
tinct aspects, and the relations between them
are expressed byevents. Events occur, when-
ever changes in the viewpoint lead to qual-
itative changes in the appearance of the ob-
ject. Aspect graphs have been applied, e.g.,
by Seibert and Waxman. In [27] they describe
the learning of representations for 3D objects
from arbitrary sequences of the rotating ob-
ject. Based on an edge and corner detection,
they cluster the views into different aspects.



Each object is represented then by a “transi-
tion matrix”, which contains a kind of proba-
bility for the transition from one aspect to an-
other. Utilizing these transition matrices their
system is able to recognize objects, but pose es-
timation or the generation of intermediate (non-
experienced) views is not possible.

Another view-based approach, which even
allows pose estimation, is proposed by Murase
and Nayar [28]. They represent objects by a
manifold in eigenspace. An input image of
an object to be recognized is projected to the
eigenspace of the learned objects. The ob-
ject is recognized based on the manifold it lies
on. The exact position of the projection on the
manifold determines the object’s pose.

Object-Centered versus Viewer-Centered
Representations
Object-Centered Representations: Object-
centeredrepresentations are characterized by
a description of the parts of the object relative
to an object-centered coordinate system. For
example, Marr specified the object’s parts
relatively to the object’s main axis [18]. A
single description of the object is valid for all
possible viewpoints, i.e., the description of the
object is independent of the position of the
observer. Biedermans geon approach, reported
previously, belongs to the object-centered
representations, too.

But an object-centered representation is not
necessarily volume-based. The relations be-
tween object parts can also be expressed in two-
dimensional terms like relations between lines
and corners, as proposed by Lowe [19] with his
viewpoint consistency constraint. He projects
each 3D model stored in memory to a hypothe-
sized viewpoint and matches the resulting pro-
jected locations of the 2D features to the input
image. A very similar approach by Ullman [20]
is known asrecognition by alignment.

Such single-description, object-centered rep-
resentations seem to be very economical, but
they require the ability of the visual system to
boundlessly transform across views.
Viewer-Centered Representations:If the parts
of an object are described relative to a coor-
dinate system based on the observer, the rep-
resentation is calledviewer-centered. In this
case the description of the object depends on
the viewing angle. The previously mentioned
aspect graph approach by Koenderink [21] is an
example for this category. Other approaches,
e.g., by Poggio and Edelman [22], Bülthoff and
Edelman [23], and Ullman and Basri [24] are
described in the subsection “How to Recognize
Unfamiliar Views”.

Object-centered representations seem to be
appropriate for recognition tasks, because the
recognition of an object should not depend on
the the viewing angle of the observer. The
visual guidance of interactions with objects,
however, requires the observer as frame of ref-
erence. That means, for this task a viewer-
centered, and thus view-specific representation
will be more suitable.

Characteristic Views
Across the different models for 3D object

perception, the notion ofcharacteristic viewsis
a prominent topic. Derived from experimental
research, characteristic views can be defined as
views which are easier to recognize than other
views of the same object. From a technical
point of view, a characteristic view is a view
which is useful for matching an object.4

Still open questions regarding characteristic
views are the number of views necessary for

4A term which should be mentioned in this context is
canonical view, which is defined in [29] as view “hu-
mans find easiest to recognize and regard as most typi-
cal”. Thus, the expressioncanonical viewis mostly used
synonymously tocharacteristic view.



different visual tasks and the manner in which
they are defined. Many explainations have been
suggested, why some views are easy to recog-
nize and others are not. Different features have
been considered for this classification. One as-
pect for defining characteristic views might be
the constellation of visible corners and edges.
For example, Gray [30] clustered the view-
ing sphere of line drawings of geometrically
facetted objects into regions of similar views
based on corners and edges. He obtained nine
clusters, where each view of a cluster shared at
least 17 features with every other view of the
same cluster, thus he obtained nine characteris-
tic views, which represent the whole object.

In another approach Koenderink and van
Doorn [31] applied a mathematical extension
of singularity theory to smooth objects. In this
context one type of singularities are contours
that separate visible from occluded surfaces
(see section “Low-Level Visual Processes”).
The shapes of these contours are classified in
general. A classification of contour shapes of
a special object results in clusters of vantage
points with unchanged singularities. At un-
stable vantage points the set of singularities
changes and the observer experiences an event.
Because this approach leads to a huge number
of characteristic views, it is questionable if it
can account for human object perception.

Although characteristic views are more
strongly connected with viewer-centered con-
cepts object-centered models also have to ex-
plain the phenomenon of characteristic views.
Approaches utilizing the object’s principal axis
can define characteristic views by the projected
length of this axis [16]. Views with a foreshort-
ened main axis are supposed to be more diffi-
cult to recognize.

Another idea is the concept ofsalientor non-
accidentalfeatures used by, e.g., Lowe [19] or

Biederman [17]. In this scheme some parts of
an object are of particular salience and their
visibility facilitates recognition. Accordingly,
characteristic views are not derived from a gen-
eral procedure, rather they highly depend on
the specific object.

How to Recognize Unfamiliar Views
If we start from the assumption that charac-

teristic views play a dominant role in object
recognition then the question arises how non-
characteristic views, i.e., views which have not
been experienced before and are not stored in
the representation, can be recognized. One of
the most supported idea is theinterpolationof
unfamiliar views. Novel views can be gener-
alized from stored views by a view approxi-
mation as described, e.g., by Poggio and Edel-
man [22]. According to this theory humans and
other primates can achieve viewpoint-invariant
recognition of objects by a system that interpo-
lates between a small number of stored sample
views as shown by B̈ulthoff and Edelman [23].
Unfamiliar views lying between stored views
on the same rotation axis should be recognized
more easily, than those which are somewhere
else on the viewing sphere. In addition, recog-
nition should deteriorate with an increasing dis-
tance of the novel view from a stored view.

Another theory about the recognition of un-
familiar views, which also belongs to the view-
based approaches, is the recognition bylin-
ear combinationsof views. Ullman and Basri
[24] showed mathematically that, under or-
thographic projection, the 2D-coordinates of
an object point for a special view can be ex-
pressed as a linear combination of the object
point coordinates in a limited set of other view-
points, provided the correspondence between
points in all views is known. The number
of required views depends on the complexity
of the object and the allowed 3D transforma-



tions. At most six images would need to be
stored to allow the reconstruction of an object
from any viewpoint. In contrast to the inter-
polation model, this model predicts an equally
high recognition rate for unfamiliar views ly-
ing in the space spanned by the stored views,
independent of the distance beween novel and
stored views. Among others, Beymer and Pog-
gio used a linear combination approach to ap-
ply prior knowledge of an object class (faces)
to generate virtual views for face recognition
[32].

The alignmentof 3D models, already men-
tioned in the subsection “Object-Centered ver-
sus Viewer-Centered Representations” is a
third theory for generalizing from familiar to
unfamiliar views. It is strongly connected to the
notion ofmental rotationdescribed by Shepard
and Cooper [33], which belongs to the class
of object-centered approaches. During recog-
nition by alignment each stored model under-
goes an aligning transformation after which it
is compared to the input image. A visual sys-
tem, which utilizes aligned 3D models, can rec-
ognize perfectly, as long as all features used for
the transformation are visible.

Temporal Context
Up to now I have focused this review on rep-

resentations of three-dimensional objects and
the recognition process utilizingstatic views,
only. But many studies have proved the impor-
tance of the temporal context during observa-
tion of a sequenceof a moving object, when
either the object rotates or the observer moves
(see “Structure from Motion” in the section
“Low-Level Visual Processes”). Additional in-
formation is provided to the visual system by
a sequence. The establishment of a represen-
tation is facilitated by tracking object features,
thus providing correspondences in neighbour-
ing views. Corresponding points are given by

the temporal context and need not be derived
from static sources of information, which is
often misleading. It was shown, e.g., in [34]
that better correspondences are derived from
the continuity of successive views than from
(the same) disconnected, static views.

Different Kinds of Representations
For Different Tasks

The utility of a representation has to be as-
sessed with respect to the task, e.g., recogni-
tion, pose estimation, or interaction. Different
visual tasks may require different types of rep-
resentations. On the one hand, one can imag-
ine that volume-based representations are espe-
cially useful for visual guidance of interactions
with objects, like grasping them. For just rec-
ognizing an object it seems to be not necessary
to utilize the spatial relations of its constituent
parts. For recognition a view-based represen-
tation may be sufficient. On the other hand,
if object-centered versus viewer-centered rep-
resentations are compared, then it would be ad-
vantageous for interactions with objects, if the
frame of reference for the object is already the
same as for the interacting individuum, i.e., if
the object is represented by a viewer-centered
description.

Another pair of terms, not mentioned so
far, is given by representations which facilitate
viewpoint invariantperformance during recog-
nizing an object and those which lead to aview-
point specific(or viewpoint dependent) behav-
ior. Viewpoint invariance of an object repre-
sentation can be discussed in two terms. First,
in terms of error rates, i.e., how often would
a visual system misclassify a perceived object
depending on the view it is exposed to. Sec-
ond, viewpoint invariance can be refered to the
time needed to recognize an object.5 In gen-

5Object-centered, volume-based representations are
refered to as viewpoint invariant in terms of error rates



eral, recognition requires viewpoint-invariant
performance. Imagine an animal which can-
not distinguish between a poisonous and a nu-
tricious plant independently of the view point.
Viewpoint-specific behaviour can be advanta-
geous if pose-estimation or interaction are de-
manded.

Another interesting point about learning ob-
ject representations is described in [35]. If the
orientation of an object affects the recognition
time, then practice greatly diminishes this ef-
fect. However, this effect of practice does not
transfer to new objects. Thus, what is learned is
specific to a set of stimuli and is not a general-
purpose procedure. This does not support a
concept of a “frame-independent” representa-
tion, as proposed, e.g., in [36].

BEHAVIOURAL AND PHYSIOLOGICAL
EVIDENCE FOR HIGH-LEVEL
THEORIES

In this section I describe results of studies
with humans and monkeys which either sup-
port or contradict the theories of 3D object
recognition I introduced in the last section. The
first subsections mainly summarize psycholog-
ical (i.e., behavioural) studies, whereas phys-
iological results, mainly derived from single
neuron recordings from monkeys, are reported
in the last subsection “Hierarchies in Higher-
Order Visual Processes in the Brain”.

Evidence for Volume-Based Representations
Two reasons, derived from psychological ex-

periments quoted in [37], support the plausibil-
ity of the geon theory.

and response time. Viewer-centered, view-based repre-
sentations are defined as view specific, whereas object-
centered, view-based representations predict a viewpoint
invariant performance in terms of error rates, but not in
terms of response times.

a) First, viewpoint invariance for familiar ob-
jects was confirmed by assessing naming laten-
cies, as long as the same geons were visible in
the training and in the test images of line draw-
ings of objects. This was independent of the
viewpoint-specific appearence of single geons.

b) Second, subjects were able to distin-
guish immediately between unfamiliar objects,
if their constituting geons were distinguishable.
These results could not have been achieved, if
pure view-based coding is assumed.

c) A third argument contradicts a pure view-
based representation. As described, e.g., in
[38], humans can memorize the shape of a pat-
tern even if they are not able to recall its left-
right orientation. In a view-based representa-
tion the left-right orientation would be stored
intrinsically with the shape.

Evidence for View-Based Representations
There are some arguments that support the

model of an advanced view-based description
of 3D objects by our visual system. (Simple
view-based representations in the form of a col-
lection of independent views are unlikely to
be realized in the human brain. Otherwise it
would be difficult to explain humans’ ability to
recognize novel views of familiar objects [37].)

a) If a set of object views is presented to
humans and their reaction time and their er-
ror rates during recognizing unfamiliar views
of the same object are measured, both, re-
action time and error rates increase with in-
creasing angular distance between the learned
(i.e., stored) and the unfamiliar view [39]. The
decrease in recognition speed for unfamiliar
views was already reported in [40] and [41].
For monkeys the ability to generalize from
training views was also found to be worse as
the rotation angle increases [42, 43]. These re-
sults strongly support a view-based model.

b) This angle effect on the performance de-



clines, if intermediate views are experienced
and stored [44]. This would not be expected ei-
ther, if viewpoint invariance from a single view
is assumed, as done by geon theory, for exam-
ple.

c) Similar results have been derived from
recordings of single neurons in the inferior tem-
poral cortex (IT) of monkeys by Logothetis et.
al. [45]. They found populations of IT neu-
rons, that responded selectively to only some
views of a previously unfamiliar object. The
response declined gradually as the object was
rotated away from this preferred view.

d) The object-centered representations pro-
posed by Biederman [17] predict well the view-
independent recognition offamiliar objects.
However, it is difficult to distinguish whether
the recognition can be put down to a three-
dimensional description or to the fact that the
system has already been exposed to a sufficient
number of two-dimensional views. In addition,
there are some unanswered question in this ap-
proach. How is view invariance achieved for
the volumetric parts themselves, and how is in-
variance achieved for objects that cannot be de-
composed further?

Evidence for Characteristic Views
a) The fact that some views of an object are

better suitable for recognition than others was
confimed early by observations of patients with
right parietal cortex lesions [46]. They were
poorer than control subjects in recognizing ob-
jects from “unusual” views, whereas “usual”
views were not affected.

b) In experiments carried out by Edelman and
Bülthoff [39, 47] naming was fastest if a stim-
ulus was in a characteristic view. And these
views were established even if in the training
phase each view of an unfamiliar object ap-
peared with equal frequency.

c) Regarding the nature of characteristic

views there are hints that a non-foreshortened
principal axis of the object is not as important
for recognition as the visibility of salient fea-
tures. In a study by Palmer et. al. [29] subjects
had to choose characteristic views for several
objects, and the views they selected often had a
viewing angle of about45

◦ to the principal axis
of the object. That means, that the principal
axis was foreshortened considerably.

d) Koenderink and van Doorn’s singularity
theory [31] is also unlikely to account for the
nature of characteristic views. It predicts views
to be characteristic which show only slight
changes of their contours under slight rotations.
But, as Perrett and Harries [48] found out, hu-
mans prefer views with the principal axis of
the object either parallel or perpendicular to the
line of sight - and these views provide strong
variations of their contours under slight rota-
tions. Views with the principal axis of the ob-
ject either parallel or perpendicular to the line
of sight are often “plan views”, equivalent to
those drawn by an architect to represent an ob-
ject. The benefit of such views is, according to
[49], the absence of perspective distortions in
the third dimension.

e) An ever recurring question concerns the
distribution of characteristic views, i.e., their
number and distances.6 Experiments with
monkeys were made by Logothetis et. al.
[43] which showed that familiarization with
a “limited number” of views of a novel ob-
ject can provide viewpoint-independent recog-
nition. Three views of a wire-like object,
120

◦ apart, often were sufficient for recogniz-
ing any view resulting from rotations around
the same axis. For the entire viewing sphere
about 10 views were sufficient to achieve view-

6The studies reported in this section do not provide
arguments for characteristic views only, but also strongly
favour viewer-centered approaches.



independent performance. But the same study
claimes that the number of required viewpoints
may depend on the object class. It may reach a
minimum for a novel object of a familiar class,
e.g., for a new individual face one view only
may be sufficient. The unability of monkeys to
recognize objects rotated by more than approx-
imately40

◦ from asinglefamiliar view is also
reported.

f) A similar result for human object recogni-
tion was published earlier by Rock and DiVita
[50]. Subjects became very poor in recognizing
wire-like objects for view distancies larger than
approximately30

◦. They could not even imag-
ine, how the objects would look when rotated
further.

Evidence for View Interpolation
a) Bülthoff and Edelman [23] made psy-

chophysical experiments to compare the three
theories about recognition of unfamiliar views,
I described in section “High-Level Theories
of 3D Object Perception”: nonlinear view in-
terpolation, linear combination of views, and
alignment of 3D models.

Subjects were shown two training views of a
computer generated 3D wire-like object, which
were75

◦ apart.7 In the test phase a novel view
was presented, which was either on the same
rotation axisbetweenthe training views, or on
the same rotation axisbeyondthem, or on an
axis orthogonal to the training axis. The er-
ror rates during recognition mostly fit the pre-
dictions of the interpolation model, i.e., the er-
ror rates were lowest for thebetweencondition,
medium for thebeyondcondition and highest
for the orthogonalcondition. This contradicts

7In another experiment subjects were also shown two
training views75

◦ apart, oscillating15
◦ around a fixed

axis, so they experienced small sequences. The results
of these experiments were similar to the ones I describe
now.

the linear combination model, which predicts
the same good performance for thebetween
and beyondcondition and poor performance
for the orthogonalcondition. The experiment
also contradicts alignment models, which pre-
dict uniformly good performance for all three
test conditions.

b) Monkeys were trained with two views of
a computer-rendered wire or spheroidal novel
object, which were far apart, e.g.,0

◦ and120
◦.

They could recognize all test views inside this
interval, whereas the extrapolation along either
the same or an orthogonal axis was limited as
Logothetis et. al. found out [42]. This also sup-
ports the interpolation model.

c) The linear combination of views proposed
by Ullman and Basri [24] is of theoretical inter-
est, but its validity for human object perception
seems to be limited. First, it is applicable to
line drawings only, second, the viewing angles
must be known for the calculations.

Evidence for the Importance of
Temporal Context

Context in general (not necessarily temporal)
can improve the recognition of novel views.
This was shown by Christou et. al. [51]. How-
ever, temporal context seems to be of special
importance for the establishment of object rep-
resentations. This is supported by a series of
psychophysical experiments.

a) Niemann et. al. [52] report on experi-
ments with parts of statues of human figures
on a turntable. The eye movements of subjects
watching the rotating objects were recorded.
They found that the eye movements were often
directed to the same details from different van-
tage points. This also supports the relevance of
tracking of local features.

b) Another argument is furnished by Harman
and Humphrey [53]. They claim that different
object representations are generated, depend-



ing on the presentation of either regular or ran-
dom sequences of views of the object. When
a sequence of rotations is encoded, the associ-
ated temporal context may lead to the construc-
tion of a linked, higher-order system of repre-
sentations for a given object. Without temporal
context, a single representation of each object
rotation may be constructed.

c) If an object in a 3D scene is rotated, its per-
ceived depth increases, as described by Sauer
et. al. [54]. Subjects had to jugde the shape of
objects, and they perceived more acute angles
with an increased rotation of the object.

d) If 3D objects are represented by a col-
lection of stored views, then this collection is
structured in the sense that views belonging to-
gether because of their successive appearance
are more closely associated with each other in
the representation. This is claimed by Edelman
and Weinshall [55] as well as by Perrett et. al.
[56].

e) That this result is not simply due to shared
structural information, is suggested by Kell-
man’s [57] research with infants. He found out
that they have the ability to perceive the three-
dimensional form of an object if only informa-
tion about continuous optical transformations
given by motion is available. They are not able
to apprehend the overall form of an object from
static views, even if they are multiple or se-
quential. This holds true even for eight months
old infants. Adults, however, are able to per-
ceive 3D form from static views of objects.
The recognition from static views seems to lean
on extrapolations to the whole form based on
simplicity or symmetry considerations, which
may be products of learning, whereas the other
mechanism is innate or develops early.
(Sixteen-week-old human infants are able to
distinguish optical displacements given by their
own motion from displacements given by mov-

ing objects, and they use only the latter to per-
ceive the unity of partly occluded objects [58].)

f) Spelke claims that one of the Gestalt princi-
ple developed earliest in infants is motion [59].
Their perception does not seem to attend to
nonaccidental geometric relations in visual ar-
rays. Rather they divide their visual input into
units that move as connected wholes and sep-
arately from another. This also supports the
great significance of motion for object percep-
tion.

g) Also some physiological reasons support
the importance of temporal context for three-
dimensional object perception. Miyashita [60]
trained monkeys to match complex fractal pat-
terns, which were presented successively in a
fixed series of 100 items. After training cells
in the anterior temporal cortex were found to
show selectivity for a small number of patterns
which had been presented successively. This
gives evidence for learning based on temporal
associations rather than on pattern overlap.

Evidence for the Coexistence of
Different Systems

There is evidence for the coexistence of sepa-
rate representation systems in the human brain
for identification (recognition) of objects on the
one hand, and for visual guidance of interac-
tions with objects, on the other hand.

The difference between patients which suffer
from agnosia (unability to recognize an object’s
identity) and those with apraxia (failing to in-
teract with objects) can make this clear. In [61]
an agnostic patient is described who cannot rec-
ognize objects, but nonetheless she is able to
interact with them, guiding her hand in the ap-
propriate shape for grasping. There are also pa-
tients who suffer from apraxia without agnosia.



Hierarchies in Higher-Order Visual
Processes in the Brain

Two major pathways project from the pri-
mary visual cortex to higher parts of the pri-
mate brain. The dorsal pathway, which encodes
the spatial layout of the environment, projects
to the parietal cortex, which is known to control
motor action. The ventral projections mediate
object form and project to the temporal cortex.
Here especially cells in the superior temporal
sulcus (STS) are concerned with object recog-
nition. A fusion of this “What”- and “Where”-
information is realized by direct axonal projec-
tions between the parietal and temporal cortex
by indirect connections via the hippocampus,
where place cells can be found, which form
cognitive maps.

Cells in STS of macaques have been found
which respond selectively to faces, hands, and
other classes of biologically significant objects.
The majority of these cells exhibits a viewer-
centered response pattern, i.e., some of them
respond selectively to face or profile views of
heads, as described by Perrett et. al. [62], al-
though at the same time they generalize across
image position, size, orientation in the im-
age plane, color, and lighting conditions [63].
There are more cells which are optimally tuned
to characteristic views (like full face or pro-
file) than to other views [64]8. The tun-
ing covers views between45

◦ and 70
◦ until

the response is reduced to half of its maxi-
mum. Maybe STS combines inputs from ear-
lier viewer-centered describtions in the inferior
temporal cortex (IT), which are size and orien-

8Interestingly, the same views seem to be important
physiologically and psychologically. Also the relative
importance of views is comparable. Face and profile
views appear more important than half-profile views, and
all of these front views are more important than rear
views of a head, both in behavioural and physiological
studies, as reported in [49].

tation9 specific, to size and orientation tolerant
cells. Tanaka et. al. [65] suggest, that the cod-
ing of faces, hands and arbitrary objects share
an early stage of analysis in IT.

There are also cells in STS which ex-
hibit object-centered coding, i.e., they respond
equally to all views of an object. This was
shown, e.g., by Perrett et. al. [64] for the coding
of heads and by Booth and Rolls [66] for the
coding of small plastic objects [66] in macaque
brains. In [64] they found cells selective to all
views of one individual’s head, but unrespon-
sive to all views of a different individual. On
the other hand, in [66] neurons are desribed
which were responsive to all views of one, as
well as, more objects.

These results suggest that 3D object recog-
nition in the primate brain operates in a hier-
archical fashion with increasing levels of ab-
straction. Starting with size-, orientation- and
viewpoint-specific representations, to size- and
orientation-invariant, but viewpoint-specific
codings, up to viewpoint-invariant representa-
tions.

SUMMARY AND CONCLUSIONS

Most neuroscientists agree on the mutual
stimulation between brain research and neural
computation. Biological realism is crucial for
a powerful artificial object recognition system,
if it claims to be comprehensive. Thus the re-
view of computational models has to consider
the realization ofprinciplesof cortical process-
ing, rather than the exact mapping of biological
or computational details.

Taking this into account, I come to some
main conclusions regarding the nature of three-
dimensional object perception:

9orientation in the image plane



• Most of the strongest arguments favour a
view-based approach to the perception of
3D form.

• Objects seem to possess characteristic
views, which facilitate recognition, com-
pared to other views.

• It is likely that novel views can be recog-
nized by a kind of interpolation between
previously experienced views.

• For learning a new object representation the
experience of temporal context during ob-
ject (or observer) motion is of special im-
portance.

• There is strong evidence that cortical pro-
cessing of 3D object form operates in a
hierarchical way from viewer-centered to
object-centered representations.

In my view, neither the extreme of a pure
viewer-centered nor the extreme of a pure
object-centered way of representing 3D form
is realistic. Rather than this, different prin-
ciples of processing may be realized, the use
of which depends on the task to perform.
Typically viewer-centered information may be
stored, which is utilized in everyday situations
and processed in basic computations. But in
some circumstances object-centered informa-
tion may also be available. Kosslyn [35] sug-
gests that it may correspond to “routines”, that
can follow to locate distinguishing parts of an
object if it is in any orientation. Such routines
would require effort to be acquired, stored, and
executed. This is consistent with the finding
that object-centered information could be en-
coded only with additional effort, when sub-
jects knew it would be useful for a later task. In
addition, Perrett et. al. [67] report on longer la-
tencies for object-centered responses in IT than
for view-specific responses.

Thus, the hierarchical cortical processing of
object form could not only reflect an evolution
of the frame of reference from retinotopic to
egocentric to allocentric [68], but could also
represent a scheme, which uses more elaborate
computations with increasing degree of diffi-
culty of the task to perform.
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