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Abstract In computer vision a reliable recognition and classification of objects is
an essential milestone on the way to autonomous scene understanding. In particular,
keypoint detection is an essential prerequisite towards its successful implementation.
The aim of keypoint algorithms is the identification of such areas within 2-D or 3-D
representations of objects which have a particularly high saliency and which are
as unambiguous as possible. While keypoints are widely used in the 2-D domain,
their 3-D counterparts are more rare in practice. One of the reasons often consists
in their long computation time. We present a highly parallelizable algorithm for 3-D
keypoint detection which can be implemented on modern GPUs for fast execution.
In addition to its speed, the algorithm is characterized by a high robustness against
rotations and translations of the objects and a moderate robustness against noise. We
evaluate our approach in a direct comparison with state-of-the-art keypoint detection
algorithms in terms of repeatability and computation time.

Keywords 3-D keypoint detection · 3-D object recognition · 3-D computer vision

1 Introduction

3-D object recognition and classification is a fundamental part of computer vision
research. Many of the existing recognition systems use local feature based methods
as they are more robust to occlusion and clutter. In those systems keypoint detection
should be the first major step to get distinctive local areas for discriminative local
feature descriptions. But a recent survey on feature based 3-D object recognition
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systems by Guo et al. [7] shows, that many major systems for local feature based
3-D object recognition use sparse sampling or mesh decimation methods to create a
set of points on which the feature descriptors will be computed. In terms of repeata-
bility and informativeness these methods do not result in qualified 3-D keypoints.

There are a variety of reasons why existing 3-D keypoint detection algorithms
are not used: Some of them are sensitive to noise and some are time consuming.
Furthermore, there is only a handful of methods, that work with unstructured 3-D
point clouds without a time consuming approximation of local surface patches or
normal vectors [5, 12–14, 20, 21].

This paper addresses the problems described above. The proposedmethod is a fast
and robust algorithm for automatic identification of 3-D keypoints in unstructured
3-D point clouds. We create a filled and watertight voxel representation (in terms of
a dense voxel connectivity) of a point cloud. This voxel representation is convolved
with a spherical convolution kernel. The sphere works as an integral operator on all
voxels containing points of the point cloud. The convolution gives the proportion
of voxels of the sphere which are inside the point cloud. The proportion values are
used to identify regions of interest, and from these robust keypoints are extracted.
All parts of the algorithm are highly parallelized and thus will be computed very
quickly. The size of the convolution kernel can be adopted to the size of the area
which is used by the local feature descriptor. Furthermore, we can easily simulate a
lower resolution point cloud by increasing the voxel size. Therefore, we can create
keypoints for multiple resolutions. Finally we will show, that our approach provides
robust keypoints, even if we add noise to the point cloud.

2 Related Work

There aremany 3-Dkeypoint detection algorithms thatwork onmeshes or use surface
reconstruction methods. A brief overview is given in a recent survey paper by Guo
et al. [7]. But there are only a few of them that work directly on unstructured 3-D
point cloud data. They have been compared multiple times, e.g., by Salti et al. [15],
Dutagaci et al. [3], and Filipe and Alexandre [4] and therefore, we will give just a
short overview of algorithms, which are designed to work with point clouds only.

Pauly et al. [14] use a principal component analysis to compute a covariancematrix
C for the local neighborhood of each point p. With the eigenvalues λ1, λ2 and λ3 they
introduce the surface variation σn(p) = λ1/(λ1 + λ2 + λ3), for a neighborhood of
size n, i.e., the n nearest neighbors to p. Within a smoothed map of surface variations
Pauly et al. do a local maxima search to find the keypoints. A major drawback of this
method is, that the surface variation is sensitive to noise (Guo et al. [7]).

Matei et al. [12] use a similar approach as Pauly et al., but they use only the smallest
eigenvalue λ3 of the covariance matrix C for a local neighborhood of a point p to
determine the surface variation. But in contrast to Pauly et al., the method fromMatei
et al. provides only a fixed-scale keypoint detection.
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The algorithmpresented by Flint et al. [5] is a 3-D extension of 2-D algorithms like
SIFT [11] and SURF [2] called THRIFT. They divide the spatial space by a uniform
voxel grid and calculate a normalized quantity D for each voxel. To construct a
density scale-space Flint et al. convolve D with a series of 3-D Gaussian kernels
g(σ ). This gives rise to a scale-space S(p, σ ) = (D ⊗ g(σ ))(p) for each 3-D point
p. Finally, they compute the determinant of Hessian matrix at each point of the scale
space.Within the resulting 3 × 3 × 3 × 3matrix, a nonmaximal suppression reduces
the entries to local maxima, which become interest points.

Unnikrishnan andHebert [20] introduce a 3-D keypoint detection algorithm based
on an integral operator for point clouds, which captures surface variations. The
surface variations are determined by an exponential damped displacement of the
points along the normal vectors weighted by the mean curvature. The difference
between the original points and the displaced points are the surface variations which
will be used to extract the 3-D keypoints, i.e., if a displacement is an extremumwithin
the geodesic neighborhood the corresponding 3-D point is used as keypoint.

Zhong [21] propose another surface variation method. In their work they use the
ratio of two successive eigenvalues to discard keypoint candidates. This is done,
because two of the eigenvalues can become equal and thus ambiguous, when the
corresponding local part of the point cloud is symmetric. Apart from this, they use
the smallest eigenvalue to extract 3-D keypoints, as proposed by Matei et al.

Finally, also Mian et al. [13] propose a surface variation method. For each point
p they rotate the local point cloud neighborhood in order to align its normal vector
np to the z-axis. To calculate the surface variation they apply a principal component
analysis to the oriented point cloud and use the ratio between the first two principal
axes of the local surface as measure to extract the 3-D keypoints.

3 Our Algorithm

The basic concept of our algorithms is adopted from a keypoint detection algorithm
for 3-D surfaces introduced by Gelfand et al. [6]. To be able to use an integral volume
to calculate the inner part of a spherewithout structural information of the point cloud,
we designed a volumetric convolution of a watertight voxel representation of the
point cloud and a spherical convolution kernel. This convolution calculates the ratio
between inner and outer voxels for all voxels that contain at least one point of the 3-D
point cloud. The convolution values of the point cloud get filled into a histogram.
Keypoint candidates are 3-D points with rare values, i.e., points corresponding to
histogram bins with a low level of filling.We cluster these candidates, find the nearest
neighbor of the centroid for each cluster, and use these points as 3-D keypoints.

Thus, our method for getting stable keypoints in an unstructured 3-D point cloud
primarily consists of the following steps:
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1. Estimate the point cloud resolution to get an appropriate size for the voxel grid.
2. Transfer the point cloud to a watertight voxel representation and fill all voxels

inside of this watertight voxel model with values of 1.
3. Calculate a convolution with a voxel representation of a spherical convolution

kernel.
4. For each 3-D point fill the convolution results of its corresponding voxel into a

histogram.
5. Cluster 3-D points with rare values, i.e., 3-D points of less filled histogram bins,

and use the centroid of each cluster to get the nearest 3-D point as stable keypoint.

The details of these steps are provided in the sections below.

3.1 Point Cloud Resolution

A common way to calculate a point cloud resolution is to calculate the mean distance
between each point and its nearest neighbor. Since we use the point cloud resolution
to get an appropriate size for the voxel grid (which is to be made watertight in the
following steps), we are looking for a voxel size which leads to a voxel representation
of the point cloud, where only a few voxels corresponding to the surface of the object
remain empty, while as much as possible of the structural information is preserved.

To get appropriate approximations of point cloud resolutions, we carried out an
experiment on datasets obtained from ‘The Stanford 3-D Scanning Repository’ [19].
We examined the mean Euclidean distances between n nearest neighbors of m ran-
domly selected 3-D points, with n ∈ [2, 10] andm ∈ [1, 100]. The relative difference
between the number of voxels based on the 3-D points to the number of voxels based
on the triangle mesh were filled into a separate histogram for each value of n. The
histogram of the ‘Stanford Bunny’ shown in Fig. 1 is illustrative for all results.

With n = 7 the absolute mean of the relative difference is at a minimum. Thus,
the experiments using different 3-D objects show that an approximated point cloud
resolution with the use of 7 nearest neighbors and with a sample size of 50 randomly
selected points is a good choice to get a densely filled initial voxel grid within a small
computation time.

3.2 Fast Creation of a Watertight 3-D Model

Initially we create a voxel grid of cubic voxels with an edge length of the point cloud
resolution as described above. Each voxel containing a 3-D point is initialized with
a value of 1.0. This creates an approximated voxel representation of the surface. The
voxels representing the point cloud are defined as watertight, if the voxels result in
a densely connected structure without gaps.
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Fig. 1 The quality of the voxel grid based on the point cloud resolution calculated by the mean
of n = 7 nearest neighbors. The x-axis shows the relative difference between the number of voxels
based on the 3-D points to the number of voxels based on the triangle mesh of ‘Stanford Bunny’.
The y-axis shows the number of randomly selected points which have been used to calculate the
values

To be able to fill inner values of objects, we assume that it is known whether the
point cloud represents a closed model or a depth scan, which has its depth direction
along the z-axis.

In case of a depth scan, which is very common in robotics, we take the maximum
depth value zmax and the radius of the convolution kernel rconv , and set the value
of all voxels along the z-axis beginning with the first voxel with a value of 1 (a
surface voxel) and ending with depth of at least zmax + rconv to a value of 1, too. An
illustration of this can be seen in Fig. 2.

In case we assume a closedmodel we have to fill all inner voxels. Due to variations
in density of the point cloud and the desire to keep the voxel size as small as possible,
it often occurs that the voxel surface is not watertight. For first tests we implemented
two different approaches to close holes in the voxel grid. The first implementation
was based on the method from Adamson and Alexa [1]. Their approach is in fact
intended to enable a ray tracing of a point cloud. They use spheres around all points
of the point cloud to dilate the points to a closed surface. Shooting rays through
this surface can be used to close holes. The second implementation was based on
a method by Hornung and Kobbelt [8]. Their method creates a watertight model
with a combination of adaptive voxel scales and local triangulations. Both methods
create watertight models without normal estimation. But the major drawback of both
methods consists in their long computation times.

Since themethodwe propose should be fast, these concepts were discarded for our
approach. Instead we use a straightforward solution, which appears to be sufficient
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Fig. 2 This is a voxel
representation of a view
dependent patch (depth scan)
from the ‘Bunny’. Blue dots
represent voxels
corresponding to 3-D points.
Red dots represent the filled
voxels below the surface

for good but fast results. The filling of the voxel grid is described exemplary for the
one direction. The calculation of the other directions is performed analogously.

Let u, v and w the indexes of the 3-D voxel grid in each dimension. For each pair
(u, v) we iterate along all voxels in w-direction. Beginning with the first occurrence
of a surface voxel (with a value of 1) we mark all inner voxels by adding −1 to the
subsequent voxels until we reach the next surface voxel. These steps are repeated
until we reach the w boundary of the voxel grid. If we added a value of−1 to the last
voxel, we must have passed a surface through a hole. In this case we need to reset
all values for (u, v) back to the previous values.

After we did this for each dimension, all voxels with a value ≤−2, i.e., all voxel
which have been marked as inner voxels by passes for at least two dimensions, will
be treated as inner voxels and their value will be set to a value of 1. All other voxels
will get a value of 0.

We already mentioned, that, if we pass the surface through a hole, we set back all
voxel values to previous values. This might result in tubes with a width of one voxel
(see Fig. 3a). Because of that, we fill these tubes iteratively in a post-processing step,
with the following rule.

If a voxel at position (u, v, w) has a value of 0 and at least each of the 26 neighbor
voxels except of one of the six direct neighbors (u ± 1 or v ± 1 orw ± 1) has a value
of 0, the voxel at (u, v, w) gets a value of 1, too. The result is shown in Fig. 3b.

3.3 Convolution

The convolution is done with a voxelized sphere of radius rconv . For a fast GPU
based implementation we use the NVIDIA FFT-implementation cuFFT. Figure4a, b
visualize the results showing those voxels which contain 3-D points from the initial
point cloud. The convolution values are in [0, 1]. While values near 0 are depicted
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Fig. 3 The lower part of this figure shows sliced versions of the filled voxel grid of the ‘Bunny’.
All inner voxels get filled after the surface is passed. This is done for each direction u, v and w. If
the surface gets missed through a hole, it might lead to tubes with a width of one voxel as shown in
(a). If we post-process this voxel grid, we can identify and fill those tubes. This is done as shown in
the upper part of this figure. The upper part of (a) shows a configuration, where a non-filled voxel
(tinted in brown) is bounded by at least 5 filled direct neighbor voxels (tinted in beige). In such a
case the voxel framed in green is filled as illustrated in the upper part of (b). This leads to a nearly
complete filled voxel grid as shown in the lower part of (b)

Fig. 4 The two figures show colored convolution results of the ‘Bunny’ in full resolution using a
convolution kernel of radius rconv = 10pcr (pcr = point cloud resolution). a Shows a depth scan
(pcr = 0.00167) with convolution values between 0.23 (red) and 0.79 (blue) while b shows the
closed point cloud (pcr = 0.00150) with values between 0.08 (red) and 0.83 (blue)
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red, values near 1 are depicted blue to purple, and values of about 0.5 are depicted
green.

3.4 Histograms

Following the computation of the convolution, we have to identify all convolution
values which are interesting, i.e., which are less frequent. To find those regions of
values which are less frequent, we fill the convolution values into a histogram. To
get an appropriate amount of bins we use Scott’s rule [16] to get a bin width b:

b = 3.49σ
3
√
N

, (1)

where σ is the standard deviation of N values. In case of the Stanford bunny the
value of b is:

b = 3.49 · 0.096
3
√
35947

≈ 0.01015 (2)

The corresponding histogram is shown in Fig. 5.
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Fig. 5 This histogram illustrates the distribution of convolution values for the Stanford Bunny.
The smallest convolution value is 0.12, while the largest convolution value is 0.85. With σ = 0.096
the interval [0, 1] is divided into 99 bins with a bin size of 0.0101. The red dotted line indicates the
1% limit. All 3-D points with a convolution value of bins colored in red will be used as keypoint
candidates
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In case of a depth scan we need to take into account that the convolution values
at outer margins do not show the correct values. Thus, we ignore all values of points
within an outer margin rconv .

3.5 Clustering

From the histogram we select all bins filled with values of at most 1% of all points
(see Fig. 5). It turned out that this is a good choice for an upper limit since higher
values lead to large clusters. On the other hand, a significant smaller limit leads to
fragmented and unstable clusters.

All points corresponding to the values in the selected bins will be used as keypoint
candidates for clustering. Figure6a shows all keypoint candidates for the ‘Bunny’.
We cluster these points using the Euclidean distance with a range limit of 3pcr .
This enables us to handle small primarily longish clusters, e.g., the region above the
bunny’s hind legs, as a single connected cluster. Figure6b illustrates the different
clusters with separate colors.

For each cluster we calculate the centroid. Each centroid is used to find its nearest
neighbor among the 3-D points of the corresponding cluster. This nearest neighbor
is used as 3-D keypoint. Figure6c, d show the results for the ‘Bunny’.

Additional examples of further objects from the Stanford 3-D Scanning Reposi-
tory are given in the Appendix.

4 Results

We evaluated our results with respect to the two main quality features repeatability
and computation time. To be comparable to other approaches we used the same
method of comparing different keypoint detection algorithms and the same dataset as
described by Filipe andAlexandre [4], i.e., we used the large-scale hierarchicalmulti-
view RGB-D object dataset from Lai et al. [9]. The dataset contains over 200000
point clouds from 300 distinct objects. The point clouds have been collected using
a turntable and an RGB-D camera. More details can be found in another article by
Lai et al. [10].

4.1 Repeatability Under Rotation

Filipe and Alexandre [4] use two different measures to compare the repeatability:
the relative and absolute repeatability. The relative repeatability is the proportion of
keypoints determined from the rotated point cloud, that fall into a neighborhood of
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Fig. 6 Thesefigures illustrate the process of obtaining clusters andkeypoints from the set of possible
candidates. a Shows all 3-D keypoint candidates (blue) for the ‘Bunny’. b Shows all clusters found
for an Euclidean distance with a range limit of 3pcr . c Shows a combination of colorized clusters
and the corresponding 3-D keypoints. Finally, d shows the isolated keypoints

a keypoint of the reference point cloud. The absolute repeatability is the absolute
number of keypoints determined in the same manner as the relative repeatability.

To compute the relative and absolute repeatability, we randomly selected five
object classes (‘cap’, ‘greens’, ‘kleenex’, ‘scissor’, and ‘stapler’) and picked 10
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Fig. 7 The five object classes obtained from ‘The Stanford 3-D Scanning Repository’ [19] are cap,
greens, kleenex, scissor, and stapler

point clouds within each object class randomly as well. A color image of one pose
and one point cloud from each of the used object classes is shown in Fig. 7.

Additionally, these 50 base point clouds were rotated around random axes at
angles of 5◦, 15◦, 25◦, and 35◦. Afterwards, we applied our algorithm on each of
these 250 point clouds. For neighborhood sizes n from 0.00 to 0.02 in steps of 0.001
the keypoints of the rotated point clouds were compared with the keypoints of the
base point clouds. If a keypoint of a rotated point cloud fell within a neighborhood n
of a keypoint of the base point cloud, the keypoint was counted. Finally, the absolute
repeatability was determined based on these counts for each n as an average of the
50 corresponding point clouds for each angle. The relative repeatability rates are
the relations between the absolute repeatabilities of the rotated point clouds and the
number of keypoints of the base point clouds.

Figure8 opposes relative repeatability rates of our approach (left hand side) to
the corresponding results of four state-of-the-art keypoint detection algorithms (right
hand side). Figure9 does the same for absolute repeatability rates. The approaches
evaluated by Filipe and Alexandre [4] are Harris3D [17], SIFT3D [5], ISS3D [21],
and SUSAN [18] which they extended to 3-D.

In more detail, the graphs on the left of both Figs. 8 and 9 show the average
relative, resp. absolute, repeatability of keypoints computed with our algorithm for
5 randomly selected objects over 10 iterations, i.e., with 10 different rotation axes.
The graphs on the right of both figures are taken from the evaluation done by Filipe
and Alexandre [4].

It is striking, that the relative repeatability rates of our approach are considerably
higher for large rotation angles than those of all other state-of-the-art approaches that
have been compared by Filipe and Alexandre. Only for an rotation angle of 5◦ one of
the other algorithms (ISS3D) is able to outperform our approach significantly in the
range of small neighborhood radii. On the other hand, the results of our algorithm in
terms of absolute repeatability of keypoints are in general less convincing, although
for all of the considered rotation angles it outperforms one of the other approaches
(Harris3D). For a rotation angle of 35◦ our algorithm outperformes even three of the
other approaches considered (Harris3D, SIFT3D, and ISS3D).
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Fig. 8 Relative repeatability. Left our approach. Right four state-of-the-art approaches, diagrams
taken from the evaluation done by Filipe and Alexandre [4]. a Relative repeatability of keypoints
at a rotation angle of 5◦, b Relative repeatability of keypoints at a rotation angle of 15◦. c Relative
repeatability of keypoints at a rotation angle of 25◦.dRelative repeatability of keypoints at a rotation
angle of 35◦
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Fig. 9 Absolute repeatability. Left our approach. Right four state-of-the-art approaches, diagrams
taken from the evaluation done by Filipe andAlexandre [4].Note the diagrams taken from Filipe and
Alexandre have wrong axis labels. However, they contain the absolute repeatability of keypoints. a
Absolute repeatability of keypoints at a rotation angle of 5◦. bAbsolute repeatability of keypoints at
a rotation angle of 15◦. c Absolute repeatability of keypoints at a rotation angle of 25◦. d Absolute
repeatability of keypoints at a rotation angle of 35◦
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4.2 Repeatability Under Noise

Furthermore, we have repeated the described simulations for point clouds with addi-
tional random noise at a level of 0.5 times of the point cloud resolution. The graphs
of Fig. 10 display the average repeatability rates (relative and absolute) for point
clouds with added noise. The differences between these curves and their correspond-
ing curves from the simulations without noise are negligible, which shows that our
approach is able to cope with a fair amount of noise, as well.

4.3 Computation Time

To calculate average computation times we computed the 3-D keypoints 10 times
for each point cloud. The system configuration we used for all experiments is given
in Table1.

The computation time of our algorithm correlates with the number of voxels, i.e.,
with the dimensions of the voxel grids, which must be powers of two. Measured
average computation times in dependence of voxel grid dimensions are given in
Table2.

Fig. 10 Our approach with additional noise. Left relative repeatability.Right absolute repeatability.
a Repeatability for a point cloud with 0.5pcr additional random noise at a rotation angle of 5◦.
b Repeatability for a point cloud with 0.5pcr additional random noise at a rotation angle of 15◦



Highly Parallelizable Algorithm for Keypoint Detection in 3-D Point Clouds 281

Table 1 System
configuration for experiments

System configuration

Processor Intel Xeon E5630 @2.53GHz

Memory 12GB

GPU NVIDIA GeForce GTX 670

GPU memory 2 GB GDDR5

OS Debian GNU/Linux

NVIDIA driver 340.32

Table 2 Average
computation times

Voxel grid Time (ms)

512 × 256 × 128 ≈1500

256 × 256 × 128 ≈700

256 × 256 × 64 ≈300

256 × 128 × 128 ≈350

256 × 128 × 64 ≈80

128 × 128 × 128 ≈200

128 × 128 × 64 ≈110

128 × 64 × 64 ≈60

64 × 64 × 64 ≈35

The computation time for most of the point clouds was below 1s. For many
of the point clouds the computation time fell within a range below 300ms. The
average computation time for all 250 point clouds which were used to compare the
repeatability rates was 457ms. This is considerably fast, especially in comparison to
the average computation times of Harris3D (1010ms) and ISS3D (1197ms), which
have been determined on the same system.

5 Conclusion

In this paper we have presented a fast and robust approach for extracting keypoints
from an unstructured 3-D point cloud. The algorithm is highly parallelizable and can
be implemented on modern GPUs.

We have analyzed the performance of our approach in comparison to four state-
of-the-art 3-D keypoint detection algorithms by comparing their results on a number
of 3-D objects from a large-scale hierarchical multi-view RGB-D object dataset.

Our approach has been proven to outperform other 3-D keypoint detection algo-
rithms in terms of relative repeatability of keypoints. Results in terms of absolute
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repeatability rates are less significant. An important advantage of our approach is its
speed. We are able to compute the 3-D keypoints within a time of 300ms for most
of the tested objects.

Furthermore, the results showa stable behavior of the keypoint detection algorithm
even on point clouds with added noise. Thus, our algorithm might be a fast and more
robust alternative for systems that use sparse sampling or mesh decimation methods
to create a set of 3-D keypoints. Additional examples can be found in the appendix.

Appendix—Additional Examples

Happy Buddha

This object is obtained from ‘The Stanford 3-D Scanning Repository’ [19] and is
characterized by the following properties:

• Points: 144647
• pcr = 0.00071
• Voxel grid: 135 × 299 × 135
• rconv = 10 · pcr
• σ = 0.124884
• Bins: 121
• Keypoints: 210

The histogram below illustrates the distribution of convolution values for the ‘Happy
Buddha’. To save space the labels are not included in the histogram. They correspond
to those shown in Fig. 5, i.e., the abscissa shows the bin number, while the ordinate
shows the number of elements per bin.

The 3-D point cloud of the ‘Happy Buddha’ shown right is a combination of two
types of figures which have already been used to illustrate the results of the ‘Stanford
Bunny’. The color gradient used to tint the point of the point cloud illustrates the
convolution values from the smallest value (red) to the largest value (blue). This was
already used in Fig. 4. The purple markers illustrate the final keypoints. This was
already used in Fig. 6d.
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Dragon

This object is obtained from ‘The Stanford 3-D Scanning Repository’ [19] and is
characterized by the following properties:

• Points: 100250
• pcr = 0.00097
• Voxel grid: 236 × 174 × 120
• rconv = 10 · pcr
• σ = 0.124507
• Bins: 107
• Keypoints: 92
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The histogram below illustrates the distribution of convolution values for the
‘Dragon’. To save space the labels are not included in the histogram. They correspond
to those shown in Fig. 5, i.e., the abscissa shows the bin number, while the ordinate
shows the number of elements per bin.

The 3-D point cloud of the ‘Dragon’ shown above is a combination of two types of
figures which have already been used to illustrate the results of the ‘Stanford Bunny’.
The color gradient used to tint the point of the point cloud illustrates the convolution
values from the smallest value (red) to the largest value (blue). This was already used
in Fig. 4. The purple markers illustrate the final keypoints. This was already used in
Fig. 6d.
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