
Efficient Approximation of a Recursive
Growing Neural Gas

Jochen Kerdels and Gabriele Peters

Abstract The recursive growing neural gas algorithm (RGNG) is a variant of the
classic GNG that was specifically designed to model the response behavior of groups
of biological neurons. It was used successfully to describe the behavior of entorhinal
grid cells aswell as entorhinal cells that showgrid like activity in response to saccadic
eye movements. More recently, the RGNG algorithm was integrated into a model
of cortical column function as part of an autoassociative memory cell. To facilitate
future research involving the simulation of hundreds to thousands of neuron groups
we present an alternative algorithm to the RGNG as a drop-in replacement in the
context of neuron group modeling. The differential growing neural gas (DGNG) is
structurally less complex, more efficient to compute, and more robust in terms of
the input space representation that is learned while retaining most of the RGNG’s
important characteristics. We provide a formal definition of the DGNG algorithm
and demonstrate its characteristics with a first set of experiments.

Keywords Recursive growing neural gas · Differential growing neural gas ·
Representation learning · Modeling of neuron groups

1 Introduction

In a recent paper [12] we outlined a functional model of cortical columns [1, 18, 19]
that utilized a recursive growing neural gas (RGNG) as one of its core components.
More specifically, two reciprocally coupledRGNGswere used to describe twogroups
of neurons within a single cortical column that together form a local, autoassociative
memory cell (AMC). Originally, we introduced the RGNG algorithm [6, 8] to model

J. Kerdels (B) · G. Peters
FernUniversität in Hagen, University of Hagen, Human-Computer Interaction,
Faculty of Mathematics and Computer Science, Universitätsstrasse 1, 58097 Hagen, Germany
e-mail: jochen.kerdels@fernuni-hagen.de

G. Peters
e-mail: gabriele.peters@fernuni-hagen.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
C. Sabourin et al. (eds.), Computational Intelligence, Studies in Computational
Intelligence 893, https://doi.org/10.1007/978-3-030-64731-5_6

109

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64731-5_6&domain=pdf
mailto:jochen.kerdels@fernuni-hagen.de
mailto:gabriele.peters@fernuni-hagen.de
https://doi.org/10.1007/978-3-030-64731-5_6

110 J. Kerdels and G. Peters

the behavior of entorhinal grid cells [3, 4]. In this earlier model a single RGNG was
used to describe a single group of neurons, effectively modeling one half of the later
proposed cortical AMC.

Here we review the RGNG algorithm and introduce an algorithmic alternative
that is structurally less complex, more efficient to compute, and more robust in terms
of the input space representation that is learned by the algorithm. Given that our
future research on cortical column models aims at simulating networks of hundreds
to thousands of cortical columns it seems prudent to improve and optimize the model
used so far in light of this new field of application, i.e., when moving away from
simulating single groups of neurons towards simulating entire networks of neuron
groups.

The next two sections provides a recapitulation of the RGNG algorithm high-
lighting its core characteristics and its usage in the context of modeling the response
behavior of a group of neurons. Section3 introduces a novel algorithm, the differ-
ential growing neural gas, that addresses some of the shortcomings of the RGNG
while maintaining its main properties in the context of modeling neuron groups. In
Sect. 4 the behavior of the introduced algorithm is demonstrated and analyzed using
the well knownMNIST dataset [16]. Finally, Sect. 5 concludes the paper and outlines
aspects of future research.

2 RGNG Revisited

The recursive growing neural gas (RGNG) is an unsupervised learning algorithm
that learns a prototype-based representation of a given input space. Although the
RGNG is algorithmically similar to well known prototype-based methods of unsu-
pervised learning like the original growing neural gas (GNG) [2, 17] or self organiz-
ing maps [15], the resulting input space representation is significantly different from
common prototype-based approaches. While the latter use single prototype vectors
to represent local regions of input space that are pairwise disjoint, the RGNG uses
a sparse distributed representation where each point in input space is encoded by a
joint ensemble activity.

From a neurobiological perspective an RGNG can be interpreted as describing
the behavior of a group of neurons that receives signals from a common input space.
Each of the neurons in this group tries to learn a coarse representation of the entire
input space while being in competition with one another. This coarse representation
consists of a limited number of prototypical input patterns that are learned competi-
tively and stored on separate branches of the neuron’s dendritic tree. The competitive
character of the learning process ensures that the prototypical input patterns are dis-
tributed across the entire input space and thus form a coarse, pointwise representation
of it. In addition to these intra-neuronal processes the inter-neuronal competition on
the neuron group level influences the alignment of the individual neuron’s represen-
tations. More specifically, the competition between the neurons favors an alignment
of the individual representations in such a way that the different representations

Efficient Approximation of a Recursive Growing Neural Gas 111

become pairwise distinct. As a result, the neuron group as a whole forms a dense
representation of the input space consisting of the self-similar, coarse representations
of its group members. The activity of individual neurons in such a group in response
to a given input is ambiguous as it cannot be determined from the outside which of
the learned input patterns triggered the neuron’s response. However, the collective
activity of all neurons in response to a shared input creates an activity pattern that is
highly specific for the given input since it is unlikely that for two different inputs the
response of all neurons would be exactly the same.

A formal description of the RGNG algorithm is given in the next section. It was
adapted from [9]. The given description is independent of the RGNG’s application
in the aforementioned neurobiological context, which is described later in Sect. 2.2.

2.1 Formal Description

An RGNG g can be described by a tuple1:

g := (U,C, θ) ∈ G,

with a set U of units, a set C of edges, and a set θ of parameters.
Each unit u is described by a tuple:

u := (w, e) ∈ U, w ∈ W := R
n ∪ G, e ∈ R,

with the prototype w, and the accumulated error e. Note that the prototype w of an
RGNG unit can either be a n-dimensional vector or another RGNG.

Each edge c is described by a tuple:

c := (V, t) ∈ C, V ⊆ U ∧ |V | = 2, t ∈ N,

with the units v ∈ V connected by the edge and the age t of the edge. The direct
neighborhood Eu of a unit u ∈ U is defined as:

Eu := {k|∃ (V, t) ∈ C, V = {u, k} , t ∈ N} .

The set θ of parameters consists of:

θ := {εb, εn, εr , λ, τ, α, β, M} .

The behavior of an RGNG is defined by four functions. The distance function

D(x, y) : W × W → R

1The notation g�α is used to reference the element α within the tuple.

112 J. Kerdels and G. Peters

determines the distance either between two vectors, two RGNGs, or a vector and an
RGNG. The interpolation function

I (x, y) : (
R

n × R
n
) ∪ (G × G) → W

generates a new vector or new RGNG by interpolating between two vectors or two
RGNGs, respectively. The adaptation function

A(x, ξ, r) : W × R
n × R → W

adapts either a vector or RGNG towards the input vector ξ by a given fraction r .
Finally, the input function

F(g, ξ) : G × R
n → G × R

feeds an input vector ξ into the RGNG g and returns the modified RGNG as well
as the distance between ξ and the best matching unit s1 (BMU, see below) of g.
The input function F contains the core of the RGNG’s behavior and utilizes the
other three functions, but is also used, in turn, by those functions introducing several
recursive paths to the program flow.

F(g, ξ). The input function F is a generalized version of the original GNG
algorithm that facilitates the use of prototypes other than vectors. In particular, it
allows to use RGNGs themselves as prototypes resulting in a recursive structure. An
input ξ ∈ R

n to the RGNG g is processed by the input function F as follows:

– Find the two units s1 and s2 with the smallest distance to the input ξ according to
the distance function D:

s1 := argmin u∈g�U D(u�w, ξ) ,

s2 := argmin u∈g�U\{s1} D(u�w, ξ) .

– Increment the age of all edges connected to s1:

Δc�t = 1, c ∈ g�C ∧ s1 ∈ c�V .

– If no edge between s1 and s2 exists, create one:

g�C ⇐ g�C ∪ {({s1, s2} , 0)} .

– Reset the age of the edge between s1 and s2 to zero:

c�t ⇐ 0, c ∈ g�C ∧ s1, s2 ∈ c�V .

– Add the squared distance between ξ and the prototype of s1 to the accumulated
error of s1:

Efficient Approximation of a Recursive Growing Neural Gas 113

Δs1�e = D(s1�w, ξ)2 .

– Adapt the prototype of s1 and all prototypes of its direct neighbors:

s1�w ⇐ A(s1�w, ξ, g�θ �εb) ,

sn�w ⇐ A(sn�w, ξ, g�θ �εn) , ∀sn ∈ Es1 .

– Remove all edges with an age above a given threshold τ and remove all units that
no longer have any edges connected to them:

g�C ⇐ g�C \ {c|c ∈ g�C ∧ c�t > g�θ �τ } ,

g�U ⇐ g�U \ {u|u ∈ g�U ∧ Eu = ∅} .

– If an integer-multiple of g�θ �λ inputs was presented to the RGNG g and |g�U | <

g�θ �M , add a new unit u. The new unit is inserted “between” the unit j with the
largest accumulated error and the unit k with the largest accumulated error among
the direct neighbors of j . Thus, the prototype u�w of the new unit is initialized as:

u�w := I (j �w, k�w) , j = argmax l∈g�U (l�e) ,

k = argmax l∈E j
(l�e) .

The existing edge between units j and k is removed and edges between units j
and u as well as units u and k are added:

g�C ⇐ g�C \ {c|c ∈ g�C ∧ j, k ∈ c�V } ,

g�C ⇐ g�C ∪ {({ j, u} , 0) , ({u, k} , 0)} .

The accumulated errors of units j and k are decreased and the accumulated erroru�e
of the new unit is set to the decreased accumulated error of unit j :

Δ j �e = −g�θ �α · j �e, Δk�e = −g�θ �α · k�e,
u�e := j �e.

– Finally, decrease the accumulated error of all units:

Δu�e = −g�θ �β · u�e, ∀u ∈ g�U.

The function F returns the tuple (g, dmin) containing the now updated RGNG g and
the distance dmin := D(s1�w, ξ) between the prototype of unit s1 and input ξ . Note
that in contrast to the regular GNG there is no stopping criterion any more, i.e.,
the RGNG operates explicitly in an online fashion by continuously integrating new
inputs. To prevent unbounded growth of the RGNG the maximum number of units
θ �M was introduced to the set of parameters.

D(x, y). The distance function D determines the distance between two proto-
types x and y. The calculation of the actual distance depends on whether x and y are

114 J. Kerdels and G. Peters

both vectors, a combination of vector and RGNG, or both RGNGs:

D(x, y) :=

⎧
⎪⎪⎨

⎪⎪⎩

DRR(x, y) if x, y ∈ R
n,

DGR(x, y) if x ∈ G ∧ y ∈ R
n,

DRG(x, y) if x ∈ R
n ∧ y ∈ G,

DGG(x, y) if x, y ∈ G.

In case the arguments of D are both vectors, the Minkowski distance is used:

DRR(x, y) := (∑n
i=1 |xi − yi |p

) 1
p , x = (x1, . . . , xn) ,

y = (y1, . . . , yn) ,

p ∈ N.

Using the Minkowski distance instead of the Euclidean distance allows to adjust
the distance measure with respect to certain types of inputs via the parameter p.
For example, setting p to higher values results in an emphasis of large changes in
individual dimensions of the input vector versus changes that are distributed over
many dimensions [7]. However, in the common case the parameter is set to a fixed
value of 2 whichmakes theMinkowski distance equivalent to the Euclidean distance.

In case the arguments of D are a combination of vector and RGNG, the vector is
fed into the RGNG using function F and the returned minimum distance is taken as
distance value:

DGR(x, y) := F(x, y)�dmin,

DRG(x, y) := DGR(y, x) .

In case the arguments of D are both RGNGs, the distance is defined to be the pairwise
minimum distance between the prototypes of the RGNGs’ units, i.e., single linkage
distance between the sets of units is used:

DGG(x, y) := min
u∈x�U, k∈y�U D(u�w, k�w) .

The latter case is used by the interpolation function if the recursive depth of an
RGNG is at least 2. In a neurobiological context (see 2.2) an RGNG-based model
typically has only a recursive depth of 1. Hence, the case is considered for reasons of
completeness rather than necessity. Alternative measures to consider could be, e.g..,
average or complete linkage.

I(x, y). The interpolation function I returns a new prototype as a result from
interpolating between the prototypes x and y. The type of interpolation depends on
whether the arguments are both vectors or both RGNGs:

I (x, y) :=
{
IRR(x, y) if x, y ∈ R

n,

IGG(x, y) if x, y ∈ G.

Efficient Approximation of a Recursive Growing Neural Gas 115

In case the arguments of I are both vectors, the resulting prototype is the arithmetic
mean of the arguments:

IRR(x, y) := x + y

2
.

In case the arguments of I are bothRGNGs, the resulting prototype is a newRGNG a.
Assuming w.l.o.g. that |x �U | ≥ |y�U | the components of the interpolated RGNG a
are defined as follows:

a := I (x, y) ,

a�U :=

⎧
⎪⎨

⎪⎩
(w, 0)

∣∣∣∣
∣∣∣

w = I (u�w, k�w) ,

∀u ∈ x �U,

k = argmin
l∈y�U

D(u�w, l�w)

⎫
⎪⎬

⎪⎭
,

a�C :=

⎧
⎪⎪⎨

⎪⎪⎩
({l,m} , 0)

∣∣∣∣∣
∣∣∣

∃c ∈ x �C
∧ u, k ∈ c�V
∧ l�w = I (u�w, ·)
∧ m�w = I (k�w, ·)

⎫
⎪⎪⎬

⎪⎪⎭
,

a�θ := x �θ .

The resulting RGNG a has the same number of units as RGNG x . Each unit of a has
a prototype that was interpolated between the prototype of the corresponding unit
in x and the nearest prototype found in the units of y. The edges and parameters of a
correspond to the edges and parameters of x .

A(x, ξ, r). The adaptation function A adapts a prototype x towards a vector ξ by
a given fraction r . The type of adaptation depends on whether the given prototype is
a vector or an RGNG:

A(x, ξ, r) :=
{
AR(x, ξ, r) if x ∈ R

n,

AG(x, ξ, r) if x ∈ G.

In case prototype x is a vector, the adaptation is performed as linear interpolation:

AR(x, ξ, r) := (1 − r) x + r ξ.

In case prototype x is an RGNG, the adaptation is performed by feeding ξ into the
RGNG. Importantly, the parameters εb and εn of the RGNG are temporarily changed
to take the fraction r into account:

θ∗ := (r, r · x �θ �εr , x �θ �εr , x �θ �λ, x �θ �τ,
x �θ �α, x �θ �β, x �θ �M) ,

x∗ := (x �U, x �C, θ∗) ,

AG(x, ξ, r) := F(x∗, ξ)�x .

Note that in this case the new parameter θ �εr is used to derive a temporary εn from
the fraction r .

116 J. Kerdels and G. Peters

This concludes the formal definition of the RGNG algorithm.

2.2 RGNG-based Neuron Model

The RGNG algorithm as described above is used in the context of modeling a group
of neurons as follows: The recursive depth of the RGNG is limited to one, which
results in a two-layered structure with layers L1 and L2. The RGNG units of layer
L1 correspond to the individual neurons of the modeled group. Each RGNG unit
in L1 has a prototype that is a separate RGNG located in layer L2. This separate
RGNG represents the dendritic tree of the corresponding neuron.

The RGNG in layer L1 is parameterized by θ1. All RGNGs in layer L2 are
parameterized by θ2. Hence, the number of units (neurons) in L1 is set by θ1�M . The
number of units (prototypical input patterns in one dendritic tree) per L1 unit is set
by θ2�M . Therefore, the input space representation learned by the group of neurons
as a whole utilizes θ1�M × θ2�M prototypical input patterns located in layer L2.

Inputs ξ ∈ R
n to the neuron model are processed through the input function F of

theRGNG in L1. The resulting call graph is depicted in Fig. 1. Given that functions D
and A are linear in n, and function I is constant amortized the computational cost to
process a single, n-dimensional input by a two layer RGNG is O (n · θ1�M · θ2�M).

After an input ξ is processed the output of the modeled group of K := θ1�M neu-
rons is given as an ensemble activity a := (a0, . . . , aK−1) using a softmax function:

ai := eâi
∑K−1

j=0 eâ j
,

with

âi := γ

(
1 − ‖si1 − ξ‖2

‖si2 − ξ‖2
)

, i = 0, . . . , K − 1,

and si1, s
i
2 being the best and second best matching prototypical input patterns found

in the dendritic tree of neuron i , which are identified during the computation of
function F of the corresponding L2 RGNG. The factor γ is used to control the degree
with which the softmax function emphasizes the largest elements of the ensemble
activity a. From a neurobiological perspective the parameter γ can be interpreted as
the strength of local inhibition that the neurons with the highest activations exert on
the other neurons of the group.

The RGNG-based neuron group model was used successfully to describe the
response behavior of typical entorhinal grid cells [6] as well as entorhinal cells that
show grid like activity in response to saccadic eye movements [9, 14]. Furthermore,
the model was analyzed regarding its resilience to noise [10, 13], and its ability to
perform pattern separation [11]. Lastly, it was integrated into a model of cortical
column function as part of an autoassociative memory cell [12].

Efficient Approximation of a Recursive Growing Neural Gas 117

Fig. 1 Call graph for a single call to the input function F of an RGNG with two layers (L1, L2).
Executing F in layer L1 results in θ1�M (M1) calls to function D, a single call to function A with
learning rate θ1�εb (eb1), and O (θ1�M − 1) (M1’) calls to function Awith learning rate θ1�εn (en1),
where O (θ1�M − 1) is the potential size of the direct neighborhood of the corresponding BMU.
The calls to D and A result in recursive calls to F on the next lower layer L2. Note that functions A
temporarily change the learning rates for their calls to F . The recursion stops when a layer is reached
where the prototypes are vectors; here L2. Calls to function I while the RGNGs are still growing
are not shown since their computational cost is constant amortized. Figure adapted from [6]

The aforementioned use cases of the RGNG-based neuron model focused on
describing the response behavior of single neuron groups. Building on our latest
work in modeling a cortical column [12] we aim to model large networks of cortical
columns in our future research, i.e., tomodel hundreds or thousands of neuron groups.
To this end it seems prudent to attempt to optimize the RGNG-based model with
respect to its complexity, robustness, and computational requirements.

3 RGNG Approximation

The way the RGNG-based neuron group model forms a distributed, prototype-based
representation of the group’s input space is the key aspect of this neuron model.
Two main processes are involved in the formation of this representation. First, each
neuron has to learn a representation of the entire input space, i.e., it has to distribute
the prototypical input patterns it learns across the input space rather than specialize
in any one local region. Second, the representations of individual neurons have to be
aligned in such a way that they are pairwise distinct and enable a disambiguation of
inputs via the ensemble activity of the neuron group. In the RGNG-based model
these two processes depend both on the dynamics encoded in input function F
and are controlled by the learning rates θ1�εb/�εn and θ2�εb/�εn on layers L1 (group
level alignment) and L2 (per neuron learning), respectively. Although the underlying
growing neural gas algorithm is relatively robust regarding the choice of learning
rates, it can still be difficult to identify a set of learning rates that ensure both the
distribution of per-neuron prototypes across the input space and the alignment of the

118 J. Kerdels and G. Peters

resulting representations such that the overall group-level representation of the input
space settles into a stable configuration.

Another important aspect of the RGNG-based model is its computational com-
plexity. For every input the algorithm has to calculate the distance of that input to
each prototypical input pattern of every neuron. Since the distance calculation itself is
not computationally demanding the RGNG algorithm becomes effectively I/O bound
on typical, modern computer systems. When scaling a simulation from individual
neuron groups to networks of hundreds or thousands of groups, i.e., exceeding the
cache capacity of the system in use the I/O boundedness of the algorithm becomes
the main limiting factor of that simulation regarding computation time.

To address both of these issues we present a novel variation of the growing neural
gas algorithm, the differential growing neural gas (DGNG), and propose to use it as
an approximation of the RGNG algorithm in the context of neuron group modeling.
The main idea of the DGNG algorithm is to partition the input space into N regions,
where N corresponds to the number of prototypical input patterns that are learned by
each neuron. This partition is learned by a top layer growing neural gas with N units
representing each input space region by a single prototype vector located at the center
of that region. Each region is then partitioned by separate sub-DGNGs into K sub-
regions, where K corresponds to the number of neurons in themodeled neuron group.
The units of these sub-DGNGs contain prototype vectors that represent a position
relative to the center prototype of the corresponding region, i.e., the prototype vectors
encode the respective difference between input and center prototype for a given input
space sub-region.

Compared to the RGNG-based model the correspondence between L1 units and
the neurons of the modeled neuron group has been removed in the DGNG. Instead,
the representation of each neuron is now distributed among the different sub-DGNGs
of the top layer DGNG units. More precisely, the i-th unit of sub-DGNG j contains
the j-th prototype of neuron i .

Whereas the distribution and alignment of prototypes in the RGNG algorithm
depend on a suitable choice of four different learning rates, the distribution and
alignment of prototypes in the DGNG algorithm is directly enforced by its structure,
thereby reducing the dependence on suitable learning rates for a particular problem
instance. The partitioning of the input space in layer L1 ensures that the coarse input
space representations of all neurons always cover the entire input space, while the
competition in the L2 sub-DGNGs ensures that the representations learned by each
neuron are pairwise distinct. In addition, the partitioning of the input space allows
to reduce the number of distance calculations per input significantly (see Sect. 3.2).

Analogous to Sect. 2, the next section will introduce the DGNG algorithm inde-
pendent of its use for modeling a group of neurons. Subsequently, Sect. 3.2 will
describe in more detail how the DGNG is used to describe the response behavior of
a group of neurons.

Efficient Approximation of a Recursive Growing Neural Gas 119

3.1 DGNG Formal Description

Like an RGNG a DGNG g can be described by a tuple:

g := (U,C, θ) ∈ G,

with a set U of units, a set C of edges, and a set θ of parameters. Each unit u is
described by a tuple:

u := (w, e, s) ∈ U, w ∈ R
n, e ∈ R, s ∈ G ∪ ∅,

with the prototype w, the accumulated error e, and the sub-DGNG s. Note that in
contrast to the RGNG the prototype w of an DGNG unit is always a n-dimensional
vector, and the recursive structure is explicitly given by the sub-DGNG s, which is
empty at the lowest level.

Each edge c is described by a tuple:

c := (V, t) ∈ C, V ⊆ U ∧ |V | = 2, t ∈ N,

with the units v ∈ V connected by the edge and the age t of the edge. The direct
neighborhood Eu of a unit u ∈ U is defined as:

Eu := {k|∃ (V, t) ∈ C, V = {u, k} , t ∈ N} .

The set θ of parameters consists of:

θ := {εb, εn, λ, τ, α, β, M} .

In contrast to the RGNG the behavior of a DGNG can be described by a single
(recursive) input function F that feeds an input vector ξ into the DGNG g and
returns the modified DGNG as well as the prototype vector w∗of the best matching
unit:

F(g, ξ) : G × R
n → G × R

n .

Note the subtle difference that this input function does not return the minimum
distance to the input but rather the best matching prototype vector.

120 J. Kerdels and G. Peters

F(g, ξ). The input function F processes an input ξ ∈ R
n to the DGNG g as

follows:

– If g = ∅ return g and a zero vector 0 as best matching prototype,
else:

– Find the two units s1 and s2 with the smallest distance to the input ξ :

s1 := argmin u∈g�U‖u�w − ξ‖p,

s2 := argmin u∈g�U\{s1}‖u�w − ξ‖p.

– Increment the age of all edges connected to s1:

Δc�t = 1, c ∈ g�C ∧ s1 ∈ c�V .

– If no edge between s1 and s2 exists, create one:

g�C ⇐ g�C ∪ {({s1, s2} , 0)} .

– Reset the age of the edge between s1 and s2 to zero:

c�t ⇐ 0, c ∈ g�C ∧ s1, s2 ∈ c�V .

– Add the squared distance between ξ and the prototype of s1 to the accumulated
error of s1:

Δs1�e = ‖s1�w − ξ‖2p.

– Adapt the prototype of s1 and all prototypes of its direct neighbors:

Δs1�w = (ξ − (s1�w + F(s1�s, ξ − s1�w) �w∗)) g�θ �εb,
Δsn�w = (ξ − sn�w) g�θ �εn.

Note that in this step a recursion takes place. The sub-DGNG s of the bestmatching
unit s1 is fed with the difference between the input ξ and the prototypew of s1, and
the returned best matching prototype w∗ of the sub-DGNG s is used to augment
s1�w in the current adaptation step. Thus, the sub-DGNG s can be understood as
learning the details or different variations of the more coarse representation stored
in s1�w. The adaptation of the neighboring units is performed without recursion
to reduce computational cost.

– Next, remove all edges with an age above a given threshold τ and remove all units
that no longer have any edges connected to them:

g�C ⇐ g�C \ {c|c ∈ g�C ∧ c�t > g�θ �τ } ,

g�U ⇐ g�U \ {u|u ∈ g�U ∧ Eu = ∅} .

Efficient Approximation of a Recursive Growing Neural Gas 121

– If an integer-multiple of g�θ �λ inputs was presented to the RGNG g and |g�U | <

g�θ �M , add a new unit u. The new unit is inserted “between” the unit j with the
largest accumulated error and the unit k with the largest accumulated error among
the direct neighbors of j . Thus, the prototype u�w of the new unit is initialized as:

u�w := j �w + k�w
2

, j = argmax l∈g�U (l�e) ,

k = argmax l∈E j
(l�e) .

The existing edge between units j and k is removed and edges between units j
and u as well as units u and k are added:

g�C ⇐ g�C \ {c|c ∈ g�C ∧ j, k ∈ c�V } ,

g�C ⇐ g�C ∪ {({ j, u} , 0) , ({u, k} , 0)} .

The accumulated errors of units j and k are decreased and the accumulated erroru�e
of the new unit is set to the decreased accumulated error of unit j :

Δ j �e = −g�θ �α · j �e, Δk�e = −g�θ �α · k�e,
u�e := j �e.

– Finally, decrease the accumulated error of all units:

Δu�e = −g�θ �β · u�e, ∀u ∈ g�U.

The function F returns the tuple (g, w∗) containing the now updated DGNG g and
the prototype w∗ of the best matching unit s1 w.r.t. input ξ .

This concludes the formal definition of the DGNG algorithm.

3.2 DGNG-based Neuron Model

When modeling a group of neurons with the DGNG algorithm the recursive depth
of the DGNG is limited to one like it is the case when using an RGNG. However,
the resulting two-layered structure is interpreted differently. There exists no longer
a direct correspondence between certain DGNG units and neurons of the modeled
neuron group. Instead, the prototypical input patterns learned by an individual neu-
ron are distributed across the sub-DGNGs of all DGNG units of layer L1 and are
composed as summation of the respective L1 unit’s prototype vector and one proto-
type vector of the sub-DGNG’s L2 units. Hence, the number of DGNG units in L1
corresponds to the number of prototypical input patterns learned by one neuron in it’s
dendritic tree, and the number of DGNG units in each sub-DGNG, i.e., in layer L2
corresponds to the number of neurons in the neuron group.

122 J. Kerdels and G. Peters

More specifically, given a group of K neurons that each learn N prototypical input
patterns the set of prototypes Pi := {

pi0, . . . , p
i
N−1

}
of neuron i within a DGNG g

is defined as:

pij := u j �w + u j �s�vi , u j ∈ g�U, vi ∈ u j �s�U, j = 0, . . . , N − 1,

with g�θ �M = N and u�s�θ �M = K , ∀u ∈ g�U . The computational complexity of
processing an input ξ ∈ R

n with the DGNG-based model is significantly reduced
compared to using an RGNG. Instead of requiring O (n · K · N) operations the
DGNG-based solution requires only O (n (K + N)) operations.

The ensemble activity a := (a0, . . . , aK−1) of a DGNG-based neuron model is
based on the sub-DGNGs of the best and second best matching DGNG units s1 and
s2 in L1 and uses, like the RGNG-based model, a softmax function:

ai := eâi
∑K−1

j=0 eâ j
,

with

âi := γ

(
1 − ‖s1�s�ui �w − (ξ − s1�w)‖2

‖s2�s�ui �w − (ξ − s2�w)‖2
)

, i = 0, . . . , K − 1.

Aswith the RGNG-based model the factor γ is used to control the degree with which
the softmax function emphasizes the largest elements of the ensemble activity a.

4 Results

In order to perform a first characterization of a DGNG-based neuron group model
we set up a model with 100 neurons, each of which had the capacity of learning
16 prototypical input patterns. We trained the model with inputs from the well-
known MNIST dataset [16], which consists of 60000 grayscale images of handwrit-
ten digits with a resolution of 28 × 28 pixels. As parameters we used: θ �εb := 0.01,
θ �εb := 0.0001, θ �λ := 1000, θ �τ := 300, θ �α := 0.5, θ �β := 0.0005, θ �M :=
{16, 100}. We presented the MNIST training dataset repeatedly to the model until
10 million inputs were reached in total. After training the response of the modeled
neuron group to the MNIST test dataset (10000 handwritten digits that were not in
the training dataset) was stored as a set of ensemble activity vectors that were used in
the following analysis. The ensemble activity vectors were sampled multiple times
for varying values of output parameter γ (Sect. 3.2).

The 16 prototypical input patterns learned by the DGNG in L1 that partition the
input space are shown in Fig. 2a. As expected, the prototypes average over large
regions of input space and thus show only vague patterns of typical, handwritten dig-
its. Figure2b shows the relative prototypes of a single modeled neuron. Each of these
prototypes were learned by a different L2 DGNG associated with the corresponding

Efficient Approximation of a Recursive Growing Neural Gas 123

(a) (b) (c)

Fig. 2 Examples of learned prototypical input patterns. (a) Prototypes learned by the DGNG in
L1 that partition the input space. (b) Relative prototypes of a single modeled neuron learned by
different L2 DGNGs in the respective L1 input space regions. (c) Summation of the prototypes
shown in a and b resulting in the actual patterns that are compared with the particular inputs

L1 input space region and prototype. These relative L2 prototypes learn the differ-
ence between the average L1 prototype of their associated input space region and the
more local input space region they represent. Combined, the average L1 prototype
and the relative L2 prototype result in the patterns shown in Fig. 2c, which are those
that are effectively used to determine the particular distance to a given input pattern
and derive the activity of the particular neuron in response to that input. Figure2c
also illustrates that neurons in this neuron model do not specialize in a single type
of input pattern, e.g.., the digit 0, but respond to a variety of different input patterns
such that a disambiguation of different input patterns has to happen at the neuron
group level on the basis of the group’s ensemble activity.

In the outlined DGNG-based neuron group model the group’s ensemble activity
in response to an input is a vector a ∈ R

K with K being the number of neurons
in the modeled group. The output parameter γ (Sect. 3.2) controls the sparsity of
this activity vector a, which in turn determines the specificity of the neuron group’s
response to a given input. To analyze the effect the parameter γ has on the sparsity
of a we calculated the distribution of Gini Indices of the ensemble activity vectors
that were returned in response to the MNIST test dataset. The resulting distribution
as a function of γ is shown in Fig. 3. The Gini Index can be used as a measure for
the sparsity of a vector [5]. As an approximation, the value of the Gini Index can
be intuitively understood as the fraction of entries in a given vector that have low
values (compared to the other entries), i.e., a Gini Index of 0 corresponds to a vector
that has similar values in all of its entries whereas a Gini Index of 1 corresponds to
a vector that has one or only a few entries with values significantly higher than all
other entries of the vector.

The distribution shown in Fig. 3 illustrates that with increasing values of γ the
mean sparseness of the ensemble activity vectors steadily increases as well. Consid-
ering the interpretation of γ as the degree of local inhibition in the proposed neuron
model it becomes evident how important this local inhibition is to the formation
of a sparse ensemble code that represents a given input with a sufficient degree of

124 J. Kerdels and G. Peters

Fig. 3 Distribution of Gini Indices of the ensemble activity vectors of the modeled neuron group in
response to the MNIST test dataset as a function of output parameter gamma (Sect. 3.2). Whiskers
indicate upper and lower quartiles, circles and center horizontal lines indicate mean and median of
the distributions

specificity. The ability to perform such a pattern separation was already a key char-
acteristic of the RGNG-based neuron model [11]. To investigate the DGNG-based
model in that regard we compared the pairwise cosine similarities of the ensemble
activity vectors that were generated in response to the MNIST test dataset. Since the
dataset provides labels for the ten different digit classes it was possible to compare
the cosine similarities for intra- and inter-class inputs separately. Given that intra-
class samples are likely to be more similar to each other than inter-class samples this
distinction of cases allows to study the pattern separation abilities in more detail. In
general it is expected that the group of neurons is able to represent individual inputs
distinctively in both cases, although the task in the intra-class case is conceivably
harder.

Figure4 shows the resulting distributions of cosine similarities. In both cases the
ensemble activity vectors for values of γ below 5 are very similar to each other and do
not allow to distinguish the neuron group’s responses to different inputs very well—
again emphasizing the importance of local inhibition in this neuron model. However,
with increasing values of γ (≥ 5), i.e., increasing local inhibition, the ensemble
activity rapidly becomes very specific. Interestingly, the increase in specificity is not
monotonic. The distributions for both intra-class and inter-class samples exhibit a
minimum at γ ≈ 7 and γ ≈ 5 to 15, respectively. For these values of γ the response
of the neuron group to a given input ξ is such that very few to none of the other test
inputs have a cosine similarity close to one with respect to ξ while the spectrum of
occurring, lower cosine similarity values is wide. In contrast, for values of γ > 15 the
distinctionbetween similar or dissimilar inputs becomesmuchmore pronounced.The
vast majority of other test inputs (note the logarithmic scale) exhibit cosine similarity

Efficient Approximation of a Recursive Growing Neural Gas 125

Fig. 4 Histograms of pairwise cosine similarities between ensemble activity vectors of themodeled
neuron group in response to the MNIST test dataset. Figure (a) shows cosine similarities for intra-
class samples, while figure (b) shows the results for inter-class samples. In both cases, increasing
values of γ lead to stronger pattern separation. Note the logarithmic scale of the z-axis

126 J. Kerdels and G. Peters

values close to zero in that case, i.e., the corresponding ensemble activity vectors
become almost orthogonal to each other.

From a neurobiological perspective the putative ability to shape the characteristic
of the neuron group’s input space representation just by the degree of local inhibition
alone is a fascinating possibility. It would allow a group of neurons to dynamically
switch between fine grained representations that enable the differentiation of very
similar inputs and coarse grained, clear-cut representations suitable for fast classifi-
cation.

5 Conclusion

In this paperwe presented a novel variant of the growing neural gas algorithm: the dif-
ferential growing neural gas (DGNG). We designed this new algorithm as a drop-in
replacement of the recursive growing neural gas (RGNG) in the context of modeling
the response behavior of neuron groups. Compared to the old RGNG approach the
new DGNG algorithm is more robust regarding the formation of the group’s input
space representation, is structurally less complex, and is computationally more effi-
cient. In addition, the results of our first analysis of a DGNG-based neuron group
model indicate that the model is able to retain important characteristics of earlier
RGNG-based models.

Our future research will focus on investigating the characteristics of the DGNG
algorithm further especially regarding its temporal stability, its capacity, and its use
in our cortical column model.

References

1. Buxhoeveden, D.P., Casanova, M.F.: The minicolumn hypothesis in neuroscience. Brain
125(5), 935–951 (2002)

2. Fritzke,B.:Agrowingneural gas network learns topologies. In:Advances inNeural Information
Processing Systems 7. pp. 625–632. MIT Press (1995)

3. Fyhn, M., Molden, S., Witter, M.P., Moser, E.I., Moser, M.B.: Spatial representation in the
entorhinal cortex. Science 305(5688), 1258–1264 (2004)

4. Hafting, T., Fyhn, M., Molden, S., Moser, M.B., Moser, E.I.: Microstructure of a spatial map
in the entorhinal cortex. Nature 436(7052), 801–806 (2005)

5. Hurley, N.P., Rickard, S.T.: Comparing measures of sparsity. CoRR (2008)
6. Kerdels, J.: A computational model of grid cells based on a recursive growing neural gas. Ph.D.

thesis, FernUniversität in Hagen (2016)
7. Kerdels, J., Peters, G.: Analysis of high-dimensional data using local input space histograms.

Neurocomputing 169, 272–280 (2015)
8. Kerdels, J., Peters, G.: A new view on grid cells beyond the cognitive map hypothesis. In: 8th

Conference on Artificial General Intelligence (AGI 2015) (July 2015)
9. Kerdels, J., Peters, G.: Modelling the grid-like encoding of visual space in primates. In: Pro-

ceedings of the 8th International Joint Conference on Computational Intelligence, IJCCI 2016,
Volume 3: NCTA, Porto, Portugal, November 9–11, 2016, pp. 42–49 (2016)

Efficient Approximation of a Recursive Growing Neural Gas 127

10. Kerdels, J., Peters, G.: Noise resilience of an rgng-based grid cell model. In: Proceedings of
the 8th International Joint Conference on Computational Intelligence, IJCCI 2016, Volume 3:
NCTA, Porto, Portugal, November 9–11, 2016. pp. 33–41 (2016)

11. Kerdels, J., Peters, G.: Entorhinal grid cells may facilitate pattern separation in the hippocam-
pus. In: Proceedings of the 9th International Joint Conference on Computational Intelligence,
IJCCI 2017, Funchal, Madeira, Portugal, November 1–3, 2017. pp. 141–148 (2017)

12. Kerdels, J., Peters, G.: A grid cell inspiredmodel of cortical column function. In: Proceedings of
the 10th International Joint Conference onComputational Intelligence, pp. 204–210. INSTICC,
SciTePress (2018)

13. Kerdels, J., Peters, G.: A Noise Compensation Mechanism for an RGNG-Based Grid Cell
Model, pp. 263–276. Springer International Publishing (2019)

14. Kerdels, J., Peters, G.: A Possible Encoding of 3D Visual Space in Primates, pp. 277–295.
Springer International Publishing (2019)

15. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol. Cybern.
43(1), 59–69 (1982)

16. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document
recognition. Proc. IEEE 86(11), 2278–2324 (1998)

17. Martinetz, T.M., Schulten, K.: Topology representing networks. Neural Netw. 7, 507–522
(1994)

18. Mountcastle, V.B.: The columnar organization of the neocortex. Brain 120(4), 701–722 (1997)
19. Mountcastle, V.B.: An organizing principle for cerebral function: The unit model and the

distributed system. In: Edelman, G.M., Mountcastle, V.V. (eds.) The Mindful Brain, pp. 7–50.
MIT Press, Cambridge, MA (1978)

