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ABSTRACT
We describe the establishment of a compound object model
for object recognition purposes which provides the frame
for the extraction of object structure from images degraded
by noise. Our vision system is inspired by cognitive prin-
ciples. From a set of sample views we automatically gen-
erate a sparse and view-based object representation, which
contains enough information to represent the object for all
poses. To verify this property we apply it in a pose es-
timation task with noisy and unfamiliar test views of the
object. With an appropriate number of views in the object
representation the proposed method shows a good selectiv-
ity and is able to distinguish views with a distance of only
3.6◦, even if they are degraded considerably by Gaussian
noise.
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1 Introduction

Each object in our environment can cause considerably dif-
ferent patterns of excitation in our retinae depending on
the observed viewpoint of the object. Despite this we are
able to perceive that the changing signals are produced by
the same object. It is a function of our brain to provide
this constant recognition from such inconstant input sig-
nals by establishing an internal representation of the object.
There are uncountable behavioral studies with primates that
support the model of a view-based description of three-
dimensional objects by our visual system. If a set of un-
familiar object views is presented to humans their response
time and error rates during recognition increase with in-
creasing angular distance between the learned (i.e., stored)
and the unfamiliar view [1]. This angle effect declines if
intermediate views are experienced and stored [2]. The per-
formance is not linearly dependent on the shortest angular
distance in three dimensions to the best-recognized view,
but it correlates with an “image-plane feature-by-feature
deformation distance” between the test view and the best-
recognized view [3]. Thus, measurement of image-plane
similarity to a few feature patterns seems to be an appropri-
ate model for human three-dimensional object recognition.

Experiments with monkeys show that familiarization with
a “limited number” of views of a novel object can provide
viewpoint-independent recognition [4]. In a psychophys-
ical experiment subjects were instructed to perform men-
tal rotation, but they switched spontaneously to “landmark-
based strategies”, which turned out to be more efficient [5].

Numerous physiological studies also give evidence
for a view-based processing of the brain during object
recognition. Results of recordings of single neurons in the
inferior temporal cortex (IT) of monkeys, which is known
to be concerned with object recognition, resemble those ob-
tained by the behavioral studies. Populations of IT neurons
have been found which respond selectively to only some
views of an object and their response declines as the object
is rotated away from the preferred view [6].

The capabilities of technical solutions for three-
dimensional object recognition still stay far behind the ef-
ficiency of biological systems. Summarizing, one can say
that for biological systems object representations in form
of single, but connected views seem to be sufficient for a
huge variety of situations and perception tasks.

2 Sparse Object Representation

In this section we introduce our approach of learning an ob-
ject representation which takes these results about primate
brain functions into account. We automatically generate
sparse representations for real-world objects, which satisfy
the following conditions:

a1 They are constituted fromtwo-dimensional views.

a2 They aresparse, i.e., they consist ofas few views as
possible.

a3 They are capable ofperforming perception tasks, es-
pecially pose estimation, even from degraded images.

Our system consists of aview representation builder
and anobject representation builder. They are shown, to-
gether with their input and output data, in the diagram in
figure 1, which depicts a one-directional flow of informa-
tion. Of course, feedback from higher levels of processing
to lower ones would allow for, e.g., unsupervised system
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Figure 1. The system for learning sparse object representations consists of a view and an object representation builder. The
resulting object representation consists of single but connected views. The numbers next to the resulting partitionings of the
viewing hemisphere are the numbers of view bubbles which constitute the representation.

tuning or an improved segmentation, but this is not sub-
ject of this contribution. We start with the recording of
a densely sampled set of views of the upper half of the
viewing sphere of a test object. In the following we aim
at choosing only such views for a representation which are
representative for an area of viewpoints as large as possible.

Each of the recorded views is preprocessed by aGa-
bor wavelet transform, which is biologically inspired be-
cause Gabor wavelets approximate response patterns of
neurons in the visual cortex of mammals [7, 8]. Aseg-
mentation based on gray level values [9] follows. It sep-
arates the object from the background. This results in a
representation of each view in form of agrid graph labeled
with Gabor wavelet responses. The graph covers the object
segment. Each vertex of such a graph is labeled with the

responses of a set of Gabor wavelets, which describe the
local surroundings of the vertex. Such a feature vector is
calledjet. To facilitate an advantageous selection of views
for the object representation a surrounding area of similar
views is determined for each view. This area is calledview
bubble. For a selected view it is defined as the largest possi-
ble surrounding area on the viewing hemisphere for which
two conditions hold:

b1 The views constituting the view bubble aresimilar to
the view in question.

b2 Corresponding object points are known or can be in-
ferred for each view of the view bubble.

The similarity mentioned inb1 is specified below. Condi-
tion b2 is important for a reconstruction of novel views as,
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Figure 2. This figure shows a graph of the center view of a
view bubble tracked to its east and north border views.

e.g., needed by our pose estimation algorithm. A view bub-
ble may have an irregular shape. To simplify its determina-
tion we approximate it by a rectangle with the selected view
in its center, which is determined in the following way.

The object representation builder starts bytracking lo-
cal object features. Jets can be tracked from a selected view
to neighboring views [10]. A similarity functionS(G,G′)
is defined between a selected view and a neighboring view,
whereG is the graph which represents the selected view
andG′ is a tracked graph which represents the neighbor-
ing view. Utilizing this similarity function we determine
a view bubble for a selected view by tracking its graphG
from view to view in both directions on the line of latitude
until the similarity between the selected view and either the
tested view to the west or to the east drops below a thresh-
old τ , i.e., until eitherS(G,Gw)< τ or S(G,Ge) <τ . The
same procedure is performed for the neighboring views on
the line of longitude, resulting in a rectangular area with
the selected view in its center. The representation of a view
bubble consists of the graphs of the center and four border
views

B := 〈G,Gw ,Ge,Gs,Gn〉 , (1)

with w, e, s, andn standing forwest, east, south, andnorth.
As this procedure is performed for each of the recorded
views, it results in view bubbles overlapping on a large
scale on the viewing hemisphere (see figures 1 and 2).

To meet the first conditiona1 of a sparse object rep-
resentation we aim at choosing single views (in the form of
labeled graphs) to constitute it. To meet the second condi-
tion a2 the idea is to reduce the large number of overlap-
ping view bubbles and to choose as few of them as possible

which nevertheless cover the whole hemisphere. For the se-
lection of the view bubbles we use thegreedy set cover al-
gorithm [11]. It provides a set of view bubbles which cov-
ers the whole viewing hemisphere. We define thesparse,
view-based object representation by

R := {〈Gi,G
w

i ,Ge

i ,Gs

i ,Gn

i 〉}i∈R
(2)

whereR is a cover of the hemisphere. Neighboring views
of the representation are “connected” by known corre-
sponding object points (the correspondences between cen-
ter and border views), which have been provided by the
tracking procedure. Figure 1 shows different covers of the
hemisphere for two test objects.

We suppose that this representation contains enough
information about the object to extract object structure
from unfamiliar views even if they are degraded by noise.
We varify this ability in a pose estimation task described in
the next section.

3 Pose Estimation from Noisy Images

We recorded views of toy objects as gray level images of
size128 × 128 pixels with 256 gray levels with a distance
of 3.6◦ on the upper viewing hemisphere. These images
are then degraded independently by adding Gaussian white
noise of zero mean and variance0.06. Examples for noisy
images are depicted in figure 3-2.

Given the sparse representation of the object in ques-
tion, which is generated from the original images as de-
scribed in section 2, and given a noisy test view of the ob-
ject, the aim is now the determination of the object’s pose
displayed in the noisy view, i.e., the assignment of the test
view to its correct position on the viewing hemisphere.

We extract a grid graphGT from the noisy image of
viewT (figure 3-2)). This means that no a priori knowledge
about the object is provided. Our pose estimation algorithm
proceeds in two steps.

First, we matchGT to the center image of each view
bubble using an elastic graph maching algorithm [12]. As
a rough estimate of the object’s pose we choose that view
bubble the center image of which provides the largest sim-
ilarity to GT .

In a second step we generate a virtual graphĜ for each
unfamiliar view inside the chosen view bubble by

(1) an interpolation of corresponding Gabor wavelet re-
sponses and

(2) a linear combination of corresponding vertex posi-
tions

of representing graphs of neighboring views in the sparse
object representation [13].

From each virtual grapĥG we reconstruct a virtual
view V̂ using an algorithm which reconstructs the infor-
mation contained in Gabor wavelet responses [14]. Ac-
cordingly, we reconstruct a virtual test vieŵVT from GT
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Figure 3. Original, Noisy, and Reconstructed Object Views.A) object “dwarf”. B) object “Tom”. 1) original image. 2) noisy
imageT with its representing graphGT . 3) imageV̂T reconstructed fromGT .

(figure 3-3)). The estimated pose of the test viewT is the
position on the viewing hemisphere of that virtual vieŵV

which provides the smallest errorǫ(V̂ , V̂T ) in a pixelwise
comparison between̂VT and eacĥV [13].

For the evaluation of the algorithm 30 test views have
been degraded by noise. The positions of some of them
on the viewing hemisphere are displayed in figure 4. For
two different toy objects and for five different partitionings
of the viewing hemisphere, which have been derived by
applying different tracking thresholdsτ , the poses of these
noisy test views have been estimated.

4 Results

The illustrations in figure 4 indicate that pose estimation
becomes more precise with an increasing number of sam-
ple views in the object representation. This result has been
expected and is confirmed by an inspection of the mean es-
timation errors taken over the 30 test views for each object
and each partitioning of the hemisphere separately. They
are summarized in table 1. The mean errors are decreas-
ing with an increasing value ofτ , i.e., with an increasing
number of views in the object representation. For individ-
ual samples the proposed estimation method is capable to
provide errors less than4◦ even if the used object represen-
tation contains only few sample views.

5 Discussion

Figure 3-3) can be regarded as visualization of the amount
of information on the object’s structure in a test image. It
reveals a small amount of information on details of the ob-

ject. Only this information is available in the representation
of a degraded image and thus can be utilized by our algo-
rithm. In view of this fact results such as that for object
“dwarf” depicted in figure 4 are remarkable, because in this
example the object representation contains 45 views only.
Also the mean estimation errors provide a satisfying result,
especially for object “dwarf”, for which the mean errors are
less than15◦ for a reasonable partitioning of the viewing
hemisphere (τ = 0.85), taking into account that humans
are hardly able to recognize a difference of10◦ between
two object poses from non-degraded images. In general,
the quality of the pose estimation from test views degraded
by Gaussian noise can be regarded as fairly good. It sup-
ports a good quality of our sparse object representation and
allows the conclusion that the view-based approach to ob-
ject perception with object representations that consist of
only single but connected views is suitable for performing
perception task.

The sparse object representations can be used for data
compression and they can be applied to object recognition
even under degraded conditions.
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