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Abstract. The task of recovering the three-dimensional structure of ascene by images of that scene
alone is known as the reconstruction problem. To solve this problem it is crucial to understand
the geometry of multiple views and to implement the related algorithms. In the past years, many
advanced algorithms were developed and published by the computer vision community. As a result,
understanding the whole topic well enough to implement the underlying algorithms may mean a
prohibitive, time consuming task. This is relevant especially for computer vision students, whose
primary research interestsbaseon projective or metric reconstruction. Those may want to use them
as mere utilities. So, as always in such a situation, it is time to provide a library, easy to use for
the beginner, but flexible enough for the expert. Moreover, such a library would provide a gentle
introduction to the computational aspects of the topic. This paper presents the design of such a
library, that mainly uses one central data structure and a collection of operators affecting it.
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1. INTRODUCTION

Papers covering fully automated processes of object reconstruction from images [2, 5,
11] and comprehensive books such as [7] show, that this problem has been solved in the
past years. The presented library implements the building blocks of such a reconstruction
process, allowing to combine them easily. Because the aspects of this process are
manifold, a very brief introduction to the most important ones is given. These aspects
are named and put in the correct context, and then the reader is referred to the literature.

The usual and widely used techniques to reconstruct objectsfrom their images, base
on the use of the fundamental matrixF and the trifocal tensorT. These two geometric
entities encode the epipolar geometry of the scene, based ona two-view relation in the
case ofF, on a three-view relation in the case ofT. The computation of these two multi-
view tensors is based on interest points or lines matched throughout a series of images.
Once these feature correspondences are known, it is possible to computeF andT using
these equations (given in tensor notation):

xix′ jFi j = 0

xix′ jx′′kε jqsεkrtT
qr
i = 0st (points)

lpl ′ql ′′r ε piwTqr
i = 0w (lines)

wherex, x′, andx′′ are interest points, andl , l ′, andl ′′ lines in the first, second, and third
image, respectively. The indicesi, j, k, p, q, r, s, t, andw all range from 1 to 3, because



we deal with homogeneous 2D entities (e.g.,xi is a 3-vector, 0st is a 3x3 array of zeros,
and the tensorTqr

i can be seen as a 3x3x3-array).
It can be seen, thatF relates only points, whileT can also make use of lines (in fact,

there are mixed equations of points and lines forT, that are omitted for brevity). Once
computed,F andT allow the extraction of generic cameras. After triangulation a projec-
tive reconstruction [7] is achieved. Because these reconstructions cover only image pairs
or triplets, a subsequent merging step combines them into larger sequences[5]. Then, the
projective reconstruction can be improved to be oriented [8, 20, 7] (basically meaning
all points are in front of all cameras) and metric [18, 12, 14]. After that it resembles the
structure of the observed object up to a similarity (translation, rotation, and scale).

So, the computation of the structure is based on features andtheir matches. Thus,
to get a successful reconstruction, a great effort has to be put in computing these initial
feature correspondences. While small baseline feature tracking can be considered solved
(e.g., using the common Kanade-Lucas tracker, as describedin [16]), wide baseline
matching is still a little fiddling. This is because it is not easily possible to limit the
search region, unless a good motion estimation has been achieved. As a consequence, a
large search region gives rise to potentially many false matches and increases the running
time.

The search region problem is often addressed by comparing a few points only, mostly
strong corners. Often a good matching is achieved by using affine invariant descriptors
and trying to make them as distinctive as possible [1, 9, 10].Another approach is to
use a modified Kanade-Lucas tracker [21] and initialize it with good initial guesses of
the affine distortion using local Hough transform [15]. Then, the features can be used to
vote for the most probable geometry using for example Hough transform [9], RANSAC
[7], or tensor voting [17]. This information is then used to eliminate most false matches.
At the end, a hopefully good estimation ofF or T is found and can be used in the
reconstruction process.

2. COVERED TERRAIN

The library addresses the hole process outlined in the last section. Most of the referred
papers where implemented and obvious weaknesses were refined. One of these obvious
weaknesses is the usage of gray-value image gradients, evenwhile processing multi-
channel images. Therefore, the note of Silvano Di Zenzo [22]was used in algorithms
using gradients such as Canny edge detection [3], Harris features [6], and SIFT [9]. This
gradient sure has an orientation, but lacks a direction. Therefore, the direction was added
by a simple convention: The direction is defined by the first channel for which holds true
that the two pixels closest to the edge have different values. The direction points then
from low to high.

However, while designing the library we focus on the reconstruction part. Therefore,
the feature matching is currently not quite sophisticated.In fact, only SIFT and a simple
cross-correlation tracker initialized with Harris corners are used. The voting for the most
probable geometry is carried out using RANSAC, improved by using a check on oriented
geometry [4].

The reconstruction part features robust computation of fundamental matrices and



trifocal tensors [7], polar rectification [13], a highly customizable version of Pollefeys’
auto-calibration [12], and a flexible implementation of bundle adjustment [19]. The
merging algorithm follows [5] and provides every option mentioned there (i.e. using
cameras, points or a combination of both to estimate the merging homography and
optionally improving the result non-linearly).

3. DESIGN

During reconstruction a very limited number of entities is important, namely

views These contain the images as received from the camera(s) and the interest points.
correspondencesThese are one to one mappings from views to features. If a correspon-

dence maps a view tonil, that view doesn’t contribute a feature.
camerasThey are associated with views. More than one camera can be associated with

a view because a view can be part of multiple reconstructions.
3D points Cameras and correspondences can be used to triangulate 3D points.
tensors These encode the epipolar geometry of a given subset of views. Currently only

the fundamental matrix and the trifocal tensor are supported.

One central data structure, calledNView, manages the correspondences, cameras, 3D
points, and the tensor of a subset of views. Because only the smallest building blocks of
the reconstruction contain one, a tensor is unique to an additional specialization called
NViewSet(from NViewand subSet). This data structure can be used to perform queries
such as: “What is the current camera matrix of the third view of the particular subset of
views that share a particular tensor?”

To address anNViewby the subset of views whose scene it represents, a class provid-
ing the mapping{viewi1,viewi2, . . . ,viewin}→ NViewk, with i j members of some index
set, is provided. This class is calledNViewMapand can be used to manage the views
as well. TheNViewis designed to support a hierarchical approach to the reconstruction
problem as stated in [5]. ThereforeNViewscan be organized as a tree and theNViewMap
provides additional queries such as “find all roots/leafs“.There are no more classes that
manage or reference the geometric data.

Beside theNView, the most important and largest group of classes consists ofso
called Operators. These are used to modify anNView, hence their common method
is modify(NView &nview). Currently, the followingOperatorsare available:

Autocalibrator Upgrades from projective to metric reconstruction
BundleAdjusterMetric Performs bundle adjustment using a metric parameterization

of the cameras.
BundleAdjusterProjective Performs bundle adjustment taking cameras as matrices.
CameraCalculator Calculates cameras from tensors or via resectioning.
Point2DCorrector Recalculates the 2D points from cameras and 3D points.
Point3DCalculator Calculates the 3D Points via triangulation.
Quasiaffinator Upgrades from projective to quasi-affine reconstruction.



FIGURE 1. The main building blocks of the library. These classes can affect NViews. TheOperators
feature a thick border.

TensorUpdater Calculates the tensor of anNViewSetfrom interest point correspon-
dences.

The relation of these operators to the reconstruction pipeline is visualized in Fig. 1.
So, in most cases it is sufficient to choose a type of reconstruction, parameterize the
appropriate Operators and call them in the correct order, e.g:

matcher.match(views, nview); (initialization by a matcher)
tensorCalculator.modify(nview);
projReconstructor.modify(nview);
metricReconstructor.modify(nview);

To useOperatorson multipleNViewsthere is a class calledModifier that will do this
for you. There are other classes that take anNViewas an argument and are notOpera-
tors. The most notable may be those for generating a synthetic reconstruction problem
(NViewCreator), loading and saving theNViewas an XML file (NViewPersistence), and
visualizing it via OpenGL (GLVisualizer). The latter classuses an OpenGL context as
provided by many GUI toolkits such as QT or WxWidgets, but it does not manage a
window itself (which would make it much less flexible).
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FIGURE 2. Re-projection error after the calculation of a projective reconstruction. The standard devia-
tion of the noise is given in pixels. The image size is 500x500. The result is nearly indistinguishable from
the theoretical optimum.

4. EVALUATION

After the 3D points and cameras are computed, the 2D points can be re-estimated by
projection. The distance between the original 2D points (x) and the re-projected ones ( ˆx)
is known as the re-projection error:

εrepro =
V

∑
v=0

P

∑
p=0

dist(xv
p, x̂

v
p)

whereV denotes the total number of views,P the number of interest point correspon-
dences and dist(·, ·) the (usually euclidean) distance.

This error is used to assess the quality of the implementation. The algorithms are
tested on synthetic data with Gaussian noise added to the interest point correspondences.
This allows us to compare the result to the theoretical optimum, that can be computed
from

εopt = σ ·sqrt((1−
d
N

)),

whereσ denotes the standard deviation of the added Gaussian noise,d the number of
degrees of freedom, andN the number of measurements. In the case of two views, using
the fundamental matrix (which has seven degrees of freedom), we have:

d = 7+2 ·number of correspondences
N = 4 ·number of correspondences

In the case of three views, using the trifocal tensor (which has 18 degrees of freedom),
we have:

d = 18+3 ·number of correspondences
N = 6 ·number of correspondences

Figure 2 shows the RMS-average of the re-projection error ata given noise level for
a two and three view reconstruction problem. The averaging was carried out over 100



runs. A comparison of the result to the theoretical optimum yields almost no difference
between them.

5. CONCLUSION

The design of a library addressing multiple view geometry was presented. It includes
state of the art algorithms that solve the reconstruction problem arising from images of
unknown cameras. Figure 3 shows the result of actually applying the library to images
taken of two objects. The 3D points computed from the found correspondences were
triangulated and the triangles were textured using parts ofthe images. The points are
superimposed as white dots.

So, once the interest point calculation was successful, thelibrary can easily be used as
a black box. Further improvements will mainly address the feature matching and outlier
rejection, because the current tracker needs many RANSAC iterations or finds only a few
correspondences when using SIFT. The approaches presentedin [21, 17] are promising
enough to evaluate them. The goal is to establish a collection of algorithms that allow a
fully automated reconstruction based on a set of images.

FIGURE 3. Corresponding features and their reconstruction
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