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Abstract. We discuss the use of Ordinal Conditional Functions (OCF)
in the context of Reinforcement Learning while introducing a new revi-
sion operator for conditional information. The proposed method is com-
pared to the state-of-the-art method in a small Reinforcement Learning
application with added futile information, where generalization proves
to be advantageous.

1 Introduction

An autonomous learning system tries to figure out which actions are beneficial
and which have to be avoided. Starting with three system requirements we de-
veloped the work described in this paper. These requirements are the following.

First, an autonomous learning system should be able to learn from experience.
It should have some kind of memory that, e.g., enables it to decide not to fall over
a cliff again in case it proved harmful the last time. A widely adopted approach
to incorporate such a property is given by Reinforcement Learning (RL) [10].

Second, the system should generate a representation of its belief that allows
further reasoning. In this area Belief Revision (BR) techniques can be found.
We will examine the usefulness of Ordinal Conditional Functions (OCF) [4,7] in
this work.

Third, and most important, we want both mentioned approaches to benefit
from each other. This kind of mixture of low-level learning-by-doing and high
level deduction abilities is called a two-level learning approach. Psychological
findings [6] indicate that such two-level learning principles can explain some of
the human learning abilities. While humans are able to learn both, in a top-down
and bottom-up way[9], we will focus on the bottom-up part only.

A combination of RL and BR has been proposed recently [5], influenced by
[8] and [11]. In this work, we will shed light onto a rather small but important
detail of this approach.

2 Reinforcement Learning and OCF

In Reinforcement Learning, we have a set of states S, a set of actions A, a
transition function δ : S×A → S, and a reward function r : S×A → R. Belief
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about good and poor actions is learned by applying a learning scheme, in this
case we use Q-learning. The experience is captured in the Q(uality)-function,
that assigns an expected reward to each state-action-pair. One can interpret the
Q-function in such a way, that an action A is believed to be best, if it has the
highest Q(S, A) value for a given state S. This is where we establish a connection
to the high-level belief using BR.

BR is a theory of maintaining a belief base in such a way, that the current
belief is reflected in a consistent manner (cf. [2] and [1]). We model our belief
base κ as an OCF. This is a ranking function that maintains a list of all models,
which are propositional information in the form of conjunctions. The models the
system believes in are set to rank 0, while all ranks greater than 0 reflect an
increasing disbelief. We denote the rank an OCF κ assigns to a model M as
κ(M). By convention, contradictions shall have the rank ∞.

However, during the exploration the information gathered and the information
needed is in the form of conditionals, not conjunctions. To check, whether an
OCF believes a conditional, it is sufficient to compute the belief ranks r1 =
κ(SA) and r2 = κ(SA). If r1 < r2, the conditional is believed.

More difficult then querying the belief base, is its update, called revision. The
revision operator is “∗”.

Conditionals in BR are usually denoted as (A|S), where S is the antecedent
and A the consequent. The meaning of (A|S) is not exactly the same as S ⇒ A
[4]. The latter means that S implicates A irrespective of the values of other
variables. In contrast, (A|S) expresses that A is believed if κ is conditioned with
S and S alone. In contrast, a revision (κ ∗ (ST )) may not result in A being
believed.

The revision described in [5], conforms to (κ ∗ (A|S)). The new revision we
introduce is (κ ∗ (S ⇒ A)). It needs a new operator κ[A], which shall return the
highest disbelief among all models of A. (κ ∗ (S ⇒ A)) is defined as follows:

If κ(SA) < κ(SA), do nothing. If κ(SA) ≥ κ(SA), then the OCF κ′ derived
from κ by rearranging the models using

∀M ∈ M : κ′(M) := (κ ∗ (S ⇒ A))(M)

=

{
κ(M) − κ(S ⇒ A), if M is a model of S ⇒ A

κ[SA] + 1 − κ(S ⇒ A) + κ(M) − κ(SA), if M is a model of SA
(1)

will result in κ′(SA) < κ′(SA). Consequently, κ′ expresses the belief in S ⇒ A.
Concerning the insurance of actual belief, this method works just as good as

(κ ∗ (A|S)), but introduces greater changes. The justification for these changes
is its behavior toward sequences of belief changes, especially in the context of
multi-valued logic, where (κ ∗ (A|S)) fails to produce consistent results when
considering negation and generalization.

3 Application

We examine the effect of the proposed algorithm in a cliff-walk gridworld [10]
(Figure 2). For this application, three cases are examined, which are plain
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Fig. 1. OCF-augmented RL system. The
OCF acts as a filter that limits the choices
of the policy.
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Fig. 2. Cliff-walk gridworld. The goal of
a moving agent is to reach the green
square, starting from the red one. En-
tering the dark squares (representing a
cliff) results in a high negative reward. Su-
perimposed is the learned path after 100
episodes. The path color indicates the ex-
pected reward by displaying the value of
min(1, expected reward

goal reward
) using the displayed

color key.
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Fig. 3. Results. The diagrams show the
rewards over a series of 300 episodes. plain
shows the result of a plain Q-learner, old
shows the result of revisions with (κ ∗
(A|S)), and new shows the result of re-
visions with (κ ∗ (S ⇒ A)). The values
are averages of 1000 runs.

Q-learning, OCF-augmented Q-learning with application of (κ ∗ (A|S)), and
OCF-augmented Q-learning with application of (κ ∗ (S ⇒ A)). An OCF-
augmented Q-learner is a Q-learner that has conditionals extracted from its
Q-Table. These conditionals revise the learner’s OCF and this OCF acts as a
filter for the choice of actions afterwards. Figure 1 shows this architecture.

We add futile information to model the case where the agent perceives prop-
erties of its environment that are not helpful with regard to its goal. The OCF-
augmented Q-learners are expected to be able to generalize and therefore identify
the futile information. The generalization is performed in the same way as in [5]
by counting the pattern frequency. The general idea is to keep track of how often
sub-patterns of antecedents are used in the context of particular consequents. If
they occur frequently enough, we revise the OCF with the sub-pattern instead
of the complete state description. The state description is also adopted from [5],
where a qualitative description is used which consists of the relative position
of the agent towards the goal (north, south, east, west) and a distance (near,
middle, far) amended with information on adjacent obstacles. Reaching the goal
triggers a reward of 100, getting closer towards it is rewarded with 0.5. Stepping
into the chasm is punished by −10, every other step gets a −1. After 100 steps
the episode is forced to end. The results are depicted in Figure 3. It is evident
that a revision with (κ∗(S ⇒ A))clearly outperforms a revision with (κ∗(A|S)).
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The latter is worse than a plain Q-learner and even seems to deteriorate over
time. An explanation for this may lie in the fact that the OCF gets contaminated
by harmful conditionals. However, this has not been examined in this work.

4 Conclusion

There are some questions left open. Clearly, the use of an OCF speeds up the
learning process (measured in the number of episodes). However, the role of futile
information has to be examined in more detail. The performance of the proposed
method surpasses the plain Q-learner’s. Since off-policy learning usually shows a
worse performance than on-policy learning, OCF-augmentation could be a way
to ease this weakness. Finally, it may be interesting to examine the use of an
OCF directly as a Q-function to create a Relational Reinforcement Learning
system[3].
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