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Adaptive Object Tracking in
Dynamic Environments with User Interaction

Gabriele Peters and Martin Kluger

Abstract—In this article an object tracking system is in- task is on hand, when also the background varies dynamically
troduced which iS_ capab_le to handle difficult situations in a Thus, robust object tracking in dynamic environments sthoul
dynamically changing environment. We evaluate the conceptof be by itself adaptive to changes in the environment.

the proposed system by means of the task of person tracking . . . . .
in crowded seminar rooms. The contributions are threefold.We In this article we introduce a tracking system which reacts

propose an expansion of the condensation algorithm which sailts dynamicqlly to recognized changes in _the en\/_ironment, (i.e.
in a more stable tracking in difficult situations such as sudén changes in the camera parameters and interaction by the user
camera movements. Secondly, a new way of particle diffusion As a result the acquired data depend on the environmental
ﬁog‘aﬁgdfocergo\"/‘;hggmz"%‘?’Sthfeorcgrfegdzgt'oggOfimicggc'é')’l‘q[hedynamics. These concepts of active, visual object acdprisit
user. These two contributions apply not on’Iy o berson trackg are applied to moving persons who |nt.eract in seminar rooms.
but to object tracking in general. The third contribution, w hich ~ The demands of such a person tracking sys_tem are manifold
applies to person tracking only, consists in a flexible way hwto and some of them are listed in the following. The person
represent a moving person. The proposed tracking module mée tracking system should be capable of:

demands such as real-time tracking of a target person who is 1) tracking a selected target person in real-time,

allowed to move freely within a group of other persons and ths 5 i ithi her i .
can be occluded. An interactive selection of new target peosis ) tracking a target person within other interacting pesson

is possible and also the challenge of a dynamically changing and in front of a dynamic background
background could be coped with. 3) adapting to changing camera parameters such as orienta-

Index Terms—person tracking, video surveillance, automatic tion and fpcal length, Where_ch_anges are induced either
video production, intelligent rooms by an active camera or are initiated by a user,
4) bridging occlusions of the target object,
5) allowing for an interactive selection of a new target
|. INTRODUCTION person during runtime.

Tracking objects in a dynamically changing environment The tracking system we present in this article is part of
belongs to one of the most difficult problems in computet larger project called/irtual Camera AssistantThe Virtual
vision. Solutions of this problem are crucial not only foffamera Assistant is a prototype of a semi-automatic system,
person tracking, which is the application on which we evuawhich supports documentary video recordings of indoor &sven
our proposed tracking method in this article, but also, f&ch as seminars. It combines an automatic person tracking
example, for dynamic object acquisition where sequencesSstem with a controllable pan-tilt-zoom camera. Depegdin
objects viewed from different view points are analysed. TH& the output of the tracking module the camera parameters
appearance of objects can change dramatically from frame(k®-, orientation and focal length) are determined autarably
frame in a video sequence due to changes in the environméhguch a way that the observer gets a natural impressioreof th
Intelligent systems should be able to react dynamically fecorded video (e.g., without jerky movements) and the whol
variations in the object's appearance. These variatioms d&0Vie appears pleasant to the eyes. In addition, (that is the
have many causes. If, for example, a camera moves aroGf@Mmi” in "semi-automatic”) the user of the Virtual Camera
an object the lighting conditions can change or parts of tHsistant is able, on the one hand, to control the camera
object can appear or disappear. In addition, the backgrouprfameters manually as well and, on the other hand, to select
can change which increases the degree of difficulty to assidj target person to be tracked interactively at any timéndur
corresponding landmarks from frame to frame, i.e., traek tfiecording.
object. On the other hand, not only the camera can move buf® distinctive feature in comparison to other systems for
the object can move by itself or, even worse, can change &dtomatic video production is the possible scenario ofquers
shape, which holds true for walking persons. The most difficiracking in highly cluttered scenes and within groups of

interacting persons.
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data, and in section IV the results, including weaknessés an 3) Person Tracking:As examples for the field of video
limitations, are summarized, after which we close in sectfo surveillance [10], [11], [12] and many approaches to the
with the conclusions. But still let us familiarize the readédth  problem of person tracking in general [13], [14], [15] weeaef

systems related to our approach. here to the works of Isard [16], Nummiaro et al. [17], and
Perez et al. [18] only, as the person tracking of the proposed
A. Related Systems system is based on their ideas (see also Fig. 2).

Direct comparisons of the proposed system are possible witBBy means of several examples of object tracking, mostly
approaches from automatic video production, approacbes frbased on edge filters, Isard introduces the condensation al-
intelligent rooms with active cameras, as well as appragctgorithm. It is a simple but effective particle filter algdmin
from person tracking in general, e.g., for surveillance. which works stable also under temporary occlusions and

1) Automatic Video ProductionA completely automatic disturbances. Our system is based on this algorithm. Bath th
system for the recording of presentation events is proposéifier approaches use particle filters as well, but utiliZereo
in [2]. It is able to track one or more persons on a stad¥@sed histograms as object features. Whereas in [17] a color
based on two cameras. The first one is static and monithistogram is adapted all along the video sequence to compen-
the whole stage to detect movements. The second camer&aie for illumination changes, two static color histograares
flexible and its parameters are controlled by the first onesed in [18] to improve the object hypothesis. Both concepts
thus, it is automatically oriented towards events. A simil&are applied in our approach as well.
automatic video production system is presented in [3]. Its
tracking component utilizes two cameras as well. Movementll. COMPONENTS OF THEOBJECT TRACKING SYSTEM

on a stage is detected via the difference of two successivgy, this section we introduce the methods and functioning
frames. In addition, the valid region for movements of thgs the proposed tracking system. In subsection II-A we first
speaker is strongly restricted to a small area at the podiugiye an overview of the object tracking as part of the Virtual
Summarizing, these systems concentrate on a composi®inera Assistant. In addition, we recall the condensation a
of several video sources and restrict the scenario of Pers@tithm our system is based on. In subsection 1I-B we describ
tracking much stronger than the system proposed in thisl@rti o, jmprovement of the condensation algorithm which cassis
where also interactions between the target person and Otﬁf%{inly in the reiteration of parts of the original algorithm
persons are allowed. Subsections II-C to II-G introduce concepts necessary to
2) Intelligent Rooms:Our system can also be compareggerstand the object tracking module, such as the definitio
to the person or head tracking modules iofelligent or ot the object state, the dynamic model, two different object

smart rooms(see Fig. 1). However, smart rooms usually arfyqfiles, the used distance functions, and the adaption of
equipped with a number of different cameras, such as st reference profile of the target object (i.e., the object

ones, 360 degree omnidirectional cameras [4], or SpEEBS! o resentation learned so far) to the current measuremiants

cameras [5]. With static and omnidirectional cameras it {fq |ast subsection we describe our approach, how the feartic

possible to remove static background of a scene with standgftsion in the condensation algorithm can be dynamically
methods [6]. Then further analysis for person tracking can By, nied to events in the environment, clarified by means of
confined to the foreground. The object position obtainedig t 1, example of camera movements.

way can be used to adjust the synchronized, active cameras
with the purpose of recording frames of higher resolutiamfr
the best view.

In scenes with dynamic background and without additional The Virtual Camera Assistant mentioned in the introduc-
information on the parameters of the active camera (astiitn consists of the module®bject Trackingand Camera
applies to our system) models can be generated only wiflontrol (see Fig. 3). The first module extracts the position
explicitly higher effort. In [7] the requirements are reéddoy and size of the currently selected target object from the
a restriction to pan and tilt movements of the camera only. iideo stream in real-time. The information obtained by this
addition, during camera movements the segmentation sesitocess is used by the second module to realize the desired
are improved by a template matching with the foregrourmimera adjustment. Short-term occlusions of the targefcobj
recognized in the last step. and other disturbances of the footage are mostly recognized

A different possibility is a static camera array which simand incorporated by the algorithms of both components and
ulates a single, virtual, active camera on the overlappitypassed if possible.
fields of view of all cameras [8]. One advantage is a large Here we will concentrate on th@bject Trackingmodule.
static image space with a higher resolution compared withFar the segmentation between foreground (which is the targe
wide angle camera, which can be segmented with standaifgject) and background one can follow a bottom-up or a
background models. top-down approach. In the bottom-up approach regions are

Alternatively, one can dispense with a background modebnstructed, starting from the image pixels, and assigoed t
completely when active cameras are used. Instead, pdtenfii@eground or background. In contrast to this, the top-down
candidates for the next object position can be predictedatrodapproach utilizes a priori knowledge on the object, e.gthn
based and verified afterwards. This is realized, e.g., iraf@ form of an object model, generates hypotheses and verifies
the references cited in subsection I-A3. them in the image. This is the way we proceed. Fig. 4

A. Overview
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Fig. 1. Examples for smart rooms. Left and middle image takem [4], right image taken from [5].

Fig. 2. Examples for person tracking with particle filter atifferent features. Left image taken from [16], middle imagken from [17], right image taken
from [18].
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Fig. 4. Object Tracking Module. Object tracking is realizdd a particle filter and operates in the four steps depict@.h

gives an idea of the information processing by the trackingofile is adapted via a new measurement in the current
module. Object tracking is realized via a particle filter efhi frame at the estimated position (not shown in this figureg (se
roughly speaking, propagates multiple weighted hypothesaibsection II-G). The particle filter is realized by an exgan
(called particle9 and operates in four steps. First, for eachf the condensation algorithm (see subsection 11-B).

particle theobject state(see subsection II-C) - here it is the | 5 nutshell, after a manual selection of the target objgct b
object's position and size in the current frame - is predictgne yser of the system, a number of features is initializethen
by means of alynamic mode{see subsection II-D). Secondly,nasis of which the hypotheses can be verified. From the curren
for each particle values of defined features are measuréein §iate of the object (e.g., her position and size) at timel

current frame. In theobject profile(see subsection II-E) We (j e in the current frame) a constant number of hypotheses
define which features are observed. Thirdly, the hypoth@ses for the state at time (i.e., in the next frame) is calculated in
compared with a reference profile via a similarity functiead 5 dynamic model. The validity of each hypothesis (i.e., each
subsections II-E and II-F). The results of the evaluatiod aparticle) is assessed in the following way. The features are
used for an update of the particle weights. Fourthly, fronol easured for each particle in the frame at tim&hen they are
those newly weighted hypotheses the pose and size esttmafigmpared with a reference profile (i.e., the descriptiorhef t

of the tracked object is calculated. After this, the referen object learned up to this time) resulting in probability wes,
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. . . . (i) _
Object N Camera in formula 1 F|.nza~ll(¥), these We.lghtmgst are normgl
Tracking Control ized (resulting inw, ’) and assigned to their associated
particles.
] The weighting wt(” for one particlemt” is calculated as
follows:
o__ 1 _L.[DN( “’)T S~ 1N
@Q W, \/% exp( 952 FAET ) A
@)
c It can be regarded asonfidence valuéor the corresponding
amera |

measurement. How the distance valldg; (a:ﬁ’))

regarding

Fig. 3. Virtual Camera Assistant. T@bject Trackingmodule recognizes a the reference profilgR is calculated is defined in subsec-

target object in a video frame, ti@amera Controimodule adjusts the camera tion |I-E. The Gaussian shape of formula 1 secures that with a

ﬁiﬁgeters in such a way that the object is shown in a favopaetlof the  o.y\ving match of the hypothesis with the measured reference
data the assigned weight increases as well. Throughout all

experiments we used a value of 0.13 far

. . . . From the new particles an estimation of the current position

which describe the validity of the hypotheses. (Particlgivs - § <i;e of the object is possible, for example, simply by

are initialized by a uniform distriution.) Thus, the set dif aaveraging We estimate the new object statdy a weighted
hypotheses can be regarded as a discret approximation ofg[]fan of thé particles:

probability distribution for the current state of the targbject.

The estimated expectation value of this probability distri . N _G) ()

tion, i.e., the weighted mean of all hypotheses, provides th Te = Zwt * Ty

new state of the target object at timeFinally, the reference =1

profile of the object is adapted by a second measurement af Ne first step (resampling) has the purpose to prevent the

the estimated position of the object in frame particle weights from becoming degenerated [19]. By drgwin
1) Condensation Algorithm:More formally spoken, the particles with replacement Ilght weighted particles teode

aim is the approximation of thiltering distributionp(z,|2,) €xcluded from further calculations.

of the internal stater; at timet on the basis of all previous

measurement&;. The hygqotheses are represented by a coB- Expansion of the Condensation Algorithm

stant numben of pointsz,”, i = 1,..., N, attimet towhich ~ The parameters of the dynamic model (described in subsec-

probabilities in form of normalized weightﬁgi) are assigned. tion 1I-D) have been determined on the basis of a "regular”,
The points are callegarticles The discrete approximation of not overly fast movement of the target person in the contéxt o

2

p(z¢| Z:) at timet is given by a seminar scene. In practice, however, it is possible, tiat t
N object movement - offset with the camera movement - is not
ﬁ($t|zt) ~ Z @”5(% _ ﬂfil)) always covered by the model. In _these part|01ﬂlar c”ases_t{mo fe
= of the propagated hypotheses still cover the "true” positd

) ) ) N the object, normally resulting in a tracking loss. An exaepl
with §(.) as Dirac impulse. At the transition from — 1 ¢y this is shown in the first row of Fig. 5.

to ¢ the particles (and thus the hypotheses) are distributedeqy his reason we improve the condensation algorithm by
anew via propagation through the dynamic model. Afterwargd$o measures.

they are reassessed by a new measurement. That means, th
new particles and Weightwgz),ﬁgz)) are calculated from
the old particles and Weight&f_)l,wt(z_)l). This calculation

is described by the condensation algorithm, as proposed by
Isard [16], which consist of three steps:

®We use a first threshold; for the confidence value of
the currently estimated object statg If this confidence
value falls belown;, a second iteration of steps (1) to (3)
of the condensation algorithm is carried out on the same
frame with Ny > N patrticles.

1) ResamplingA new sample[%ﬁ’ll,i =1,...,N} ofsize « In case the newly estimated object state in turn provides
N is drawn with replacement from the set of particles  a confidence value, which lies below a second threshold
{xi’_)l,z‘ = 1,...,N} at timet — 1. The weight of a ay < a1, we increase the number of particlesNg,q, >
particle defines its probability to be drawn. N in the resampling step from the next frame on. As

2) Prediction: Based on this new sample a prediction is  soon as the confidence value exceeds threshplid the
carried out via the dynamic model (described in subsec- further processing, the number of particles is reduced to
tion 11-D). Thus, the particles become representatives of N again.

a sample{xﬁ’),z‘ =1,...,N}. _ The first measure results in a noticeable improvement of the

3) MeasurementThe new particle Weightﬁgz) are calcu- tracking. The second resampling is based on the weights of
lated as follows. The consistency of té hypotheses the first run, and thus the strongest weighted particleauftho
(represented by th&/ particles) with the current frame not strongly weighted) can direct the second run into thetrig
is evaluated by means of the similarity function givedirection, while the object remains in place. This approach
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Fig. 5. Condensation algorithm with reiteration. For a digsion see subsection II-B.

resembles the annealed particle filter proposed by [20], whktate and later evaluate only those subsets of them whith sui
apply several iterations for one point in time with diffetenthe object profile considered. The completgect statdas thus
weighting functions which mature over the course of itenadi  defined by
This filter proved itself on person tracking under contrille x := (Dg, Py, P> Py» Gs T, o)’ 3)
conditions such as a neutral background. .

To evaluate the proposed expansion we udgdbetween Wit
10% and 20% andV,,.. between 50% and 75% larger than o (Poipy
N. Fora; andas the values 0.4 and 0.2 proved to be feasible,
respectively.

The first row of Fig. 5 shows frames 15, 20, 23, and 28 of
a sequence as an example for a tracking loss due to a sudden,
camera pan by the user. It results from an application of the
condensation algorithm withv = 75 particles as described by

)T the position of the target object (i.e.,
the center of the rectangle selected by
the user to mark the person)

(px,py)T the horizontal and vertical velocity of
the target object, respectively

width of the target object (in our ap-

plication the head or face of a person
is selected by the user)

Isard [16]. The gray rectangles mark the particle distrdout e ratio between width and height
the yellow (or red, depending on the success of the tracking) of the target object (i.e.,
ones tag the mean of them and thus the estimated position and r = height/width)

size of the tracked author. (The reason why there are always ¢ flexibility between two coupled re-
two yellow, or red respectively, rectangles becomes cléar a gions of interest (for object profiP,,
reading subsection II-E.) The second row shows the same see subsection II-E)

frames, this time tagged with the results of an applicatibn o With the exception of the last two parameters, units are
our expansion of the condensation algorithm with reiterati given as pixels or pixels per time interval for velocities,

The second iteration of steps (1) to (3) of the condensatié@spectively. The relation between width and height of the
algorithm with N = 50, N, = 75, anda; = 0.4 makes for a rectangle is restricted by a factor between 1.2 and 1.8 t@avo

successful tracking. extreme shapes of the rectangtez [1.2;1.8].

C. Object State D. Dynamic Model

As already mentioned above the current state of the object isthe dynamics of the system are defined by constant ve-
described by features of the object valid for the currenfza locities only. The size of the target object is neglectechial t
such as its position and size in the frame under consideratiynamic model, because size variations caused by movements
The object state is also the internal state € R™ of the of a person in our application are quite small and thus are
system for a discrete point in timte= N, which is propagated compensated for by the stochastic term of the model. Similar
in the dynamic model (see subsection II-D). (We omit th& design to the approach described in [17] we chose a simple
time index ¢ in this subsection for simplification.) As wemodel of first order:
will see in subsection II-E we will compare different object
profiles, which differ in the number and choice of the feasure
constituting them. For the sake of a uniform formalism wMatrix A represents the deterministic part of the model, the
include all possible features in the definition of the objeéhdependent random variable the stochastic part. For the

Ty = Az 1 + & 4)
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object stater;, which was specified in the last subsectidn,
is defined by

vV o
A (V0) ve

with E3 the identity of size3 x 3.

The elements of the stochastic terfp are independent
and normally distributed with expected values zero, buhwill
different standard deviations. Thus, the extent of thealmlity ]
of even the static elements of the object state (such as Hig 6. Two different types of object profiles. Left: profife, right: profile
width @) can be controlled. This enables the user to manipuldfe:
the adaptivity of the elements indirectly, without the nexd
additional variables for periodic changes. The followidues
have proven to be useful: 1) Profile P;: Restricted Ratio of Rectangle Width and
Height: This profile consists of one histograi only. If
the target object is a persaHr should cover the head of
T the person (see left image of Fig. 6). To prevent the rectangl

(3 2.2,1,1.5,0.2,9 - 2_77) (6) from degeneration we control the ratio of width and height by
] . s . . T
360 restrictingr of the state vector: := (py, py, Dus Dy, @, 7, P)

1) Start Parameter: The start parameters for the objects described in subsection II-G € [1.2;1.8]). FeaturesF
state depend on the pOSItIC(mx,py) and the selected ob-and reference proflla are then defined as follows:
ject size (a'',r'") at time ¢’ of the selection of a target F(z) == Hr(x) = Hps,py,a,a-7)
object. As the target object is chosen by manual selection R = Hp (#0) (8)
and interactively during the tracking of another objecte on
has to take into account that the target may have moved por the calculation of the similarity of a hypothesis= 2
already. For this reason the initial distribution of thetimdes with the reference profil&k the histogram distance function
{xé’),z =1...N} is modeled as normally distributed randon\ can be applied directly:
variable W|th a larger standard deviatiaty and with the ~
manuaIIy selected values for position and size as expected D (z) = A (HT(SE),R) 9)
values: :c ) ¢ N(©g,X0),

®)

o O O =
SO RO
O = O =
_— o = O

6= (apz,apy,am,aﬁy,Ua,ar,ap) =

2) Profile Py: Two RectanglesThis object profile is cus-

Oy = (NpmaMpy7ﬁ'1')m7ﬁ'1')yaua7ﬁ"f7ﬂp),r = tomized especially for the application of the tracking eyst
o T to moving persons. As a person’s front view does not only
(p; Py, 0,0,a" 7" ,0) (7) contain skin colors in the face area, but also, e.g., at thd$a

these areas can easily be confused with the face if only one

with o := & 3, & > 1. We chose = 5. color histogram is evaluated. To prevent confusion we irateg

E. Object Profiles a second rectangular area in proffig the histogramHp of
In this subsection we introduce two different so—calleﬁih[fg],ls evaluated. This approach is similar to that descfib

object profiles?; and P, we used for our tracking system. ' Hr(z)

The object profiles define which featuré¥z) describe an F(z) = < Hp(z) )

object stater. Due to these features a person is recognized 10
and tracked from frame to frame. Furthermore, for each ¢bjec 7 (2) (10)

' , . o N ~ R = T
profile we define a distance functidd (z) := D (R,]—'(a:)) ( Ro(z) )

which determines the similarity (or betteiissimilarity) be-
tween areference profiléR := F (&) characterizing the target Hg has a square shape with side lengthnd is (as in [18])
object and the feature&(x) of a current hypothesis. (The positioned below the region of the first histograffy (see
result of the distance functioR 5 is finally converted into the right image of Fig. 6). But in contrast to the approach
particle weight of the considered hypothesis.) described in [18] we employ a dynamic positioning of the
We use color histograms as features. Hep,;, py,a,a-r) second rectangle on a circular arc with centey, p,) and
be a color histogram of a rectangular area with cefggrp,), radiusb = 1.7a. These circumstances are depcited in Fig. 7.
width a, and heighta - . Furthermore, letA(H;, H2) be a The extent of the circular arc is determined by the parameter
distance function between two histograils and Hs. (It is  p € [—pmaz; Pmas] Which is the last component of the object
defined in formula (15).) The two used object profifesand state vector (see formula (3)). We obtained the best results
P» are illustrated in Fig. 6 and are defined now as follows.with p,,q. = 20 - 360 This flexible positioning of the second
rectangle should improve the tracking in situations whaee t
person displays a laterally crooked posture or when partial
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a of the histograms we use is based on those utilized in [17]
and [18] and is characterized by the color space and the
T number of the bins. To achieve a larger robustness of the
_,k a-r acquired color information against lightness variatioreswge
7N~ the HSL color space and partition it into 32 bins. 24 of them
1 |\ i are reserved for hue and saturatidd & S), 8 for lightness
- I) s (L). However, the lightness information is utilized only for
R p \ . those pixels that do not provide reliable color information
~ We threshold the minimal saturation with = 16 out of a
, maximum of 255, because below this threshold the signakstar
N | \ - ’ to become noisy. The assignment of a pixel to a bin of the
~ \S3e a histogram is described by the functidh: H x S x L —

B {1,...,32}:

B (u ) 0<us <y
- o (w S Us
B(uh;usvul) T { BHS(u}uus) X <ug < 255

E:?'al'ircOlge;rtcpmﬁ'e%' The second rectangle is positioned dynamicallyne case differentiation represents the separation of ihe b
! ' partitioning and5;, and Bys are the corresponding lookup
tables. We employ a uniform allocation of the pixels to the
bins. In Fig. 8 the described calculation of the histograms i
Wépicted.
Summarizing, we have the following formal description of

occlusions below the upper rectangle occur. The histogra
are calculated as follows:

Hr (z) = H (ps,py,a,a-7) a normalized histogranf on the rectangle image section
Hgp(z) = H(p,+1.7a- sin(p), py+ (11) denoted byl with center(p,., p,) and sizea x a - 7
+1.7a - cos(p),a,a)
. Lo : h(1,0)
For the evaluation of the similarity of a hypothesis a . 1 )
weighted mean of both histogram distancBg; (z) and H(pe,py,a,a-1) = —— :
Dz (z) is calculated: h(32,0)
Dy (x) = ~*(@)-[06-Dg, (2)+04-Dg_ (:C)} vatfr:)rhézl,nDZ) as function which counts the number of pixels in
D (@) = 7 (A HT<x>,7§T)) ML) = OB, i (leon32)
DﬁB (l‘) = v (A HB(I‘);RB)) uel

12 o
(12) The normalization by the factot/(a - ar) allows for the

The face region is weighted stronger whereas the rectangle . f hist derived f b £ Gift
the bottom can be regarded as an auxiliary region. In aqlitigOMpPartson ot histograms derived from base areas o ere

to this, increases and decreases of the different distaalues sizes. For the purpose of an efficient calculation of the
are carried out depending on heuristic measures governed
the following two rules:

1) Decrease of both single histogram distancesybyin
case they already fall below a threshold:

v (s) = {0.95 $<0.3 (13) A(Hy, Hy) := 172;1/H717i.]—[27i71'6{1,...,32}_

s otherwise
(15)

2) Increase of the total distance by in case both single \yhere 7, ; and H,, are thei-th bins in the corresponding
histogram distances still exceed a threshold after thgsiogram vectorA is the Bhattacharyya distance, which is

jsfograms we enhanced the conceptirdégral histograms
(121], [22]) for particle filters. This is described in ddta [1].

Finally we are able to define the distance between two
histogramsH; and H, as follows:

application of rule (1): used in [17] and [18] as well.
" (11 Dz () > 04 and Dz (x) > 0.4
otherwise (14) G. Adaption of the Reference Profile

These rules reinforce a positive as well as a negative bitieof 0T @ Static, color-based reference profl@s introduced in

distance values based on experimentally derived thresholdSubsection II-E, which is calculated only once, color vizores
due to changes in lightning or viewpoint pose a serious

) ) problem. For this reason we modeled the reference profile,
F. Histogram Distance similar to the approach described in [17], dynamically. #se
What remains now is the definition of the distancéhe particle weightingw; for the currently estimated object
A(Hy, Ho) between two histogramd; and H». The structure statez; (see formulas (1) and (2)) exceeds a minimum value
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Fig. 8. Calculation of the histograms. The image in the otteft shows the detailedH x S, L) histogram coding the pixel occurrences of the rectangle
displayed in the upper left image. In the bottom right imalge guantization int® - 3 hue and saturation bins and 8 lightness bins (left hand didki®
image) is depicted. This results in the used final histogrammfdisplayed in the upper right image.

wmin (We > win) the data of the estimated object state angarameter configurations we analyzed in the experiments the

integrated into the current reference profil: user has initialized for each sequence both reference gsofil
~ . always in the same frame. An example of a target object
R() = .7:(1‘())

~ - ~ R successfully tracked because of competing reference gsofil
Ri = KkRo+(1—k) [ARt—l + (1 =NF (xt)} is shown in Fig. 15.

R is updated componentwise, i.e., for object profiie both
histograms are refreshed separately. In contrast to theagip |
described in [17] the initial object profiRg remains in the
current profile with a fixed fractions. This prevents the As mentioned in the overview (subsection II-A) the com-
color histograms from beeing totally changed. We chose thtete Virtual Camera Assistent consists of the two modules
following values of the parametersy,,;, = 0.25,x = 0.15, Object TrackingandCamera Contral They interact with each

. Adaptive Particle Diffusion

and A = 0.15. other inter alia by an adaption of the tracking module to the
movements of the cameras. In doing so it does not matter
H. Competing Reference Profiles whether the camera movements have been induced by the

L~ : autonomous feedback loop between both modules as indicated
To prevent the reference profilR from beeing adapted . "_. :

) . in Fig. 3 or the camera - as part of the environment - has been
to wrongly tracked image parts the parameters mentioned in

subsection 1I-G should be chosen carefully. Neverthel'ﬂess,moved by the user. In any case a dynamic adaption of the

is necessary to incorporate different color distributidos particle diffusion to the recognized camera movement takes

one target object as exemplified in Fig. 9. For this reas(E’llnace‘ This means that the target o_bject Is acquired depgndi
on the recognized state of the environment.

we utilize, similar to the approach described in [9], selvera )
As each camera pan causes a shift of the current target

competing reference profilé8 /). The similarity of each hy-
pe ?‘) profilefs simrarty Y object in the image in the opposite direction, the basic wofea

othesisr;” is then calculated as maximum of the similaritie ) o ..
t
e camera movement-controlled particle diffusion cdesis

for each of the competing reference profiles: a coupling of the particle distribution to the movement o th
(mﬁ”) = max {Dﬁm (mﬁ”)} camera in such a way that the particles are placed smarter
J before they are weighted by formula 1. The velocity and
For best results the competing reference profiles should dkrection of the camera movement should affect the random
scribe clearly distinct representations of the target abjeparticle distribution in the dynamic model. For this purgos
such as front and side views. The competing profiles hawg decide for each particle with probability if, instead of
been arranged in a circular buffer which means that a nesw (see formula (4)), we use a different distributigh for the
initialization of the profile by the user overwrites an olderandom part of the dynamic model (as in subsection 1I-D we
reference profile in case all positions in the circular buffeagain omit index;, which indicates a single particle):
are allocated. In our experiments we provided two competing
reference profiles for each target object. For all different = Axi_1 + & (16)

Dg
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Fig. 9. Necessity for competing reference profiles. Différéiews of a target person imply different color distrilouts in the histograms.

As the camera parameters can be separated into horizothal standard deviation of the horizontal movement, namely
(pan) and vertical (tilt) movement and the variation of the, = 50. As probability+ for the choice of this modified
focal length, for each of these parameters an element of tfistribution we set) = 0.3 throughout all experiments. The
object state vector can be modified. According to this, thmodified particles are marked by a beige colored top bar.
random vector; differs from ¢, only in those three entries (Thus abou30% of the present particles are marked.) In the
which describe the random part of the positign.,p,) and left image one can recognize that during a camera pan to the

width a of the target object: left the modified particles have a stronger bias to diffuse to
the opposite direction. The unmodified particles realize th
—Sg | Pp. | movement only after their modification by the measurements
—Sg | Pp. | as can be seen in the right image. Second example: Here the
. ép, € N(0,0p,), same holds true only for the opposite direction of the camera
oF = . with ¢p, € N(0,0,,), pan to the right.
Da b0 € N (las0a)- We employ a value ofp = 0.3 for the probability of a
° modified distribution. Table 1 summarizes the used values of
° the parameters of formula (17). To allow for a more flexible

(17) differentiation of camera velocities we separate the camer
The used values far,,, 0, , 1a, ando, are listed at the end parameters (pan, tilt, and focal length) into three vejocit
of this section.s,,s, € [~1,1] refer to the current pan andcategories, namely slow, medium, and fast velocities. For
tilt direction, respectively. A change of the focal lengsually each of these categories we define separate parameters for th

causes only small changes in the projected width of the targ@derlying distribution. They are summarized in table 1eTh
object. This is the reason why changesaofre caused only

by noise. A slight shift of the expected value or a slight ioos H slow medium fast
. . . parameter velocity velocity velocity
of the standard deviation yields the desired effect. In i@t Tpe 10.0 20.0 50.0
to this, the shift of the position of the object is quite disitre Opy 8.0 15.0 30.0
in terms of the horizontal and vertical movements so thagonl e g-g ;-8 ég
Oa . . .

a wide particle distribution can cover the shift sufficignBut
on the other hand, a strongly shifted expectation valueslead
to an insufficient covering of the object at the old position, Tab. 1. Parameter values for different velacities of cameexements.
whereas a large standard deviation implies a wider pogitipn

also in the opposite dwecpon. Fgr this reason the al:)‘Q’Oluéle\’/ision of the velocities into slow, medium, and fast degen
values of the random variables in formula (17) ensure the

) L o . on the adjustments the used camera (here camera JVC TK-
necessary, unambiguous bias in the distribution of theqtest C655) allows for. For pan and tilt the camera provides 8 kvel
The negative sign secures the desired opposite directitmeof . P P

distribution. Summarizing, the additive noise of the dyimm! o 10c3 length 3. These levels are quantized heurisgidatb

. : the three categories. Details are described in [1].
model does not display an expectation value of zero anymore,

rather it takes a componentwise shift of the mean value into
the opposite direction of the camera movement into account. lll. EXPERIMENTS

In Fig. 10 two examples for the adaptive particle diffusion We analysed statistically different parameter configoredi
are shown. The combination of the first and second imagé the proposed tracking system. In particular, we examined
illustrates one example, the combination of the third andtfo the gain of the expansion of the condensation algorithm on
image a second example. First example: The left imageti® one hand and the account of the enhanced object profil
a snapshot from a sequence with a camera pan to the I#%.on the other hand. These issues represent two of the main
The right image displays the final frame of this sequence. Tontributions of this paper. The results of these expertmen
illustrate the effect of the modified distribution of the fidles are reported in subsections IV-A and IV-B. Furthermore, we
by the adaptive particle diffusion we used a large value foarried out several tracking experiments which reflect the
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Fig. 10. Adaptive particle diffusion. For an explanatiore sibsection II-1.

capacities of the person tracking system according to tharameters for the target person. For each frame the positio
demands pronounced in the introduction. In the remainiragnd size of the head of a tracked person was manually selected
subsections of section IV the results of those experimarts & define the ground truth for the experiments. Deviatioomfr
reproduced. For example, the adaption to changing caménase values by the autonomously tracked positions and size
parameters (third demand) is addressed in the exampleb-of sare for each frame of a sequence expressed bframe error
sections IV-D and IV-E, results for sequences with occludeg and summarized to totel error € of the whole sequence.
target persons are given in subsection IV-F (fourth demanéfpr frames in which the visible part of the head of the target
and the flexibility of the system in terms of user interactioperson is smaller than one third of its real size we evaluate
(fifth demand) is the subject of subsection IV-G. a positive recognition with a maximal erref,,, := 100. In

The experiments have been carried out on 3 GHz machireidition, we penalize a loss of the target person wijth, as
with image resolutions o852 x 288 pixels. Although we well. Summarizing, the total errar of a sequence with,,, ..
used 200 particles only, this ensured tracking with everD15@ames is the mean of all single frame errefs
particles at a frame rate of 25 fps without difficulty.

€ . { €max tracking failure
t = . ~ .
minqe Tt — gt otherwise
A. Test Sequences {emaa | gello}
We carried out our experiments on three sequences with 1 ‘Pmas
interacting persons in a seminar scene. The target person is c = g Z €
t=1

selected interactively by the user and tracked autonomousl
according to the methods described in the last section.&8te {| - ||, is the L,-norm, &, is the estimated object state as defined
sequences (TS) are characterized as follows with incrgasin formula (2), andg; denotes the ground truth for frame
degree of complexity: To recognize differences in terms efbetween different
(TS1) Mainly one slightly moving person only at a configurations of the system we carry out a comparison of
time, relatively static camera, (typical seminarmeans by a significance test (Duncan'’s test, significaneaniv
scene with moving instructor and relatively « = 0.01). For illustration the 99% confidence intervals of
static audience) single configurations are displayed in the figures of subsec-
(TS2) Mainly one moving person only at a time, but  tion IV-B.
additionally a zooming and panning camera
following the person’s movements (and thus a IV. RESULTS
dynamically changing background)

(TS3) Many simultaneously but non-uniformly moving In this section results from experiments with moving per-
persons with manycrossing roads and mutu§PnS in realistic seminar scenes are reported. These gesult

are obtained mainly by visual inspection of tracking exasspl
clusions; in addition, we have interaction by th@f subsequences of the test sequences TS1, TS2, and TS3.
But we also analyse tracking errors for different parameter

A subsequence of TS1 is shown in Fig. 14, subsequencesCBPf'gurat'ons of the proposed tracking system. In the image

TS2 are displayed in Fig. 15, Fig. 16, and Fig. 17, and Fig 1gxamples the current estimated position and size of thettarg
Fig. 19, and Fig. 20 shoW s[Jbse.que’nces of T83 " “pérson are marked by a yellow rectangle with a red cross in

its center. As soon as the rectangles are colored red thettarg

i person was lost (as, e.g., shown in Fig. 14). If the trackiag w

B. Error Calculation successful blue bars in the bottom left of the yellow reckasg
Besides the visual analysis of the results from test se@#eng@isualize the confidence value of the estimation.

we examine differences between single applied methods and

their variations to evaluate the quality of our tracking ap- . ) )

proach. As the particle filter is a randomized technique tie EXPansion of the Condensation Algorithm

comparisons reported in the next section are based on 100 inThe reiteration of the Condensation algorithm as described

dependent runs with identical adjustments and predefiret stn subsection II-B improves the tracking accuracy partcyl

ocC-

user,who selects different target persons
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Fig. 11. Gain of the expansion of the condensation algorittmthis diagram frame errors; are plotted against a series of framesf TS2. Four curves
are displayed: three for three different numbéfsof particels and one (the green one) for the configuratioh wéiteration. The chosen subsequence of TS2
contains a strong horizontal camera movement around frtamd075. As one can see, a sole increase of the number of particlemotanmpensate for the

camera pan, whereas the proposed expansion of the coridanalgforithm can cope with it.
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Significance test for the expansion of the condemsatgorithm.

Fig. 13.
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Significance test for object profiles. Total errerare plotted for

Total errorse are plotted for different parameter configuration for thee¢h the two object profiles?; andP- for the three test sequences TS1, TS2, and
test sequences TS1, TS2, and TS3. The errors are depict®¥esdhfidence TS3. The errors are depicted as 99% confidence intervals.
intervals.

B. Object Profiles in Comparison

in the case of intense camera pans, which, e.g., occur in T?{?I‘n subsection II-E we introduced two different object pro-

. . . S - es P; and P,. A significance test for both profiles is
In Fig. 11 a diagram is presented which illustrates thlswﬁedisplayed in Fig. 13. As expected, the tracking results are

In Fig. 12 results of significance tests for the three tebktter for profil P, because the additional color area can
sequences are displayed. A consideration of the results fesolve ambiguities in a more efficient way than profite.
different parameters suggests that the second iteratien (iThe examples reported in the remains of this section have bee
the first measure of improvement reported in subsection) llI-Bbtained with profileP,.
is crucial for an improvement of the tracking. Neither the
increase of the number of particles for the second iteratign i , i ,
nor the increase ofN,,., for the next step indicates aC. Lost and Found - Functionality of the Particel Filter
significant improvement. Summarizing, the second iteratio Fig. 14 illustrates the functionality of the particel filter
of the condensation algorithm is a reasonable alternativewhich is able to relocate a totally lost target object by
the increase of the number of particles. It can be applietnploying multiple hypotheses. In particular the thirdjrib,
selectively for problems such as camera pans by the adjastmaénd fifth image show the expansion of the particle cloud in
of the thresholdy; for its activation. the case of a loss of the target person. But the cloud is
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Fig. 14. Lost and found - functionality of the particel filtéirames of TS1 fot = 1309, 1324, 1337, 1383, 1384, and 1403 are displayed. (The additional
partitionings in the top of the upper rectangles in this dmel following figures belong to a third object profile not reedrin this article.)

attracted again by the correct target person as soon thet tafg Occlusions

is recognized again by at least one hypothesis. Occlusions belong to the most difficult challenges to deal
with in tracking systems. The number of occlusions in se-
guence TS3 is quite high. But the target persons are relbcate

D. Exposure to Changes in Camera Parameters - Pan  altogether after a short period of time while they were oc-

cluded, frequently only a few frames after they reappeaned i

Fig. 15 shows a scene from TS2 with a moving persqﬂe captured scene. Fig. 19 shows three example scenes from

and a continuously panning camera. The person tracklng_|1§3 which are effortlessly bridged by the tracking modute. |

stable and precise even if the background is partly clulterﬁ1 s )
X ' L e third image of the bottom row, for example, one can infer
with other persons, although the confidence values in |maq,(res

S . . m the length of the confidence bar the decreased weighting
6 and 7 decrease significantly as visualized by the shor? oY :
confidence bars. of the estimation for the tracked woman. Nevertheless, she i

. ) racked on robustly after her total occlusion.
Fig- 16 shows another example of a sequence with a pann}ng y

camera. Here the target person has a large velocity itself, a

in addition, also the focal length of the camera varies. HfenG. Interactive Selection of Another Target Object

the camera captures the target object only partly at thesedgeThe selection of a new target person is done by the user of

of a frame the estimations remain on the target. the system. She has to mark the head of the new target person.
In TS3 the user has changed the target person several times.
Fig. 20 shows an example where the system immediately takes

E. Exposure to Changes in Camera Parameters - Focal Lengtie control and tracks the newly selected person.

The other camera parameter that should be variable without
affecting the tracking module is the focal length. Fig. 13wk H. Weaknesses of the Proposed Tracking System
an example where the camera zooms into the scene. Th&ome weaknesses of the system striked during the experi-
person is tracked robustly across the different focal lkesgtments. One problem consists in the fact that the object profil
and with high confidence values. consists of color information only. Although the expansadn

In Fig. 18 another example for the exposure of the trackirgyofile P, by a second, dynamic color histogram area improves
system to varying focal lengths of the camera is displayeithe tracking significantly there still exist cases in whitke t
The camera zooms out of the scene and as soon as the pepsoticle cloud expands after an occlusion of the targetatpje
who disappeared in the previous frames reappears, itdgositand rearranges at a wrong image area with similar colors. It
and size are estimated correctly again, although now disgdla can happen that, even if the target object reappears in the
at a different focal length. scene, the particles remain at the wrong position until the
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Fig. 15. Exposure to changes in camera parameters - panctBépmre frames = 475, 500, 545, 580, 615, 655,675, and 700 of TS2 which render
shapshots of a smoothly panning camera. Two competingereferprofiles used as described in subsection II-H are tratithe successful tracking of this
sequence. The proposed system can keep track with the canogement.

Fig. 16. Exposure to changes in camera parameters - transadit frame edges. We see frames 1897, 1919, 1935, 1960, 1980, 2000, 2010, and 2020
of sequence TS2.

similarity drops below the threshold and some particlegctet V. CONCLUSIONS

the target again by chance. In this article we introduced an object tracking system

which is capable to handle difficult situations in a dynariyca

changing environment. We evaluated the concepts of the pro-

posed system (e.g., an improved version of the condensation

Another weakness is the strong dependence of the trackalgorithm or particle diffusion adaptive to variations inet

success on the initial selection of the target object by ger u environment) by applying it to the task of person tracking in
in form of a rectangle. Especially during camera movemertsowded seminar rooms. The demands made on the system
the marking of the target can be too unprecise, resultingeén tcomprise robust real-time tracking of a target person who
incorporation of wrong color information in the profil. Thisis allowed to move freely within a group of other persons
holds true as well for target persons who display a lateraldnd thus can be occluded. Furthermore, the background may
crooked posture when profiP, is employed. As the initial change from frame to frame, and the tracking method should
selection always places the bottom rectangle verticallpvbe cope with dynamically varying camera parameters as, for
the head region, in this case it is positioned partly on thexample, induced by a user. In addition, the user of the gyste
background, resulting in wrong color histograms in the objeshould be enabled to interactively select a new target perso
profil. during tracking of another person.
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Fig. 17. Exposure to changes in camera parameters - foaghlefihese are the frames= 2620, 2661, 2715, and2760 of sequence TS2. (The additional
red rectangles belong to the camera control module, whictotissubject of this article.)

Fig. 18. Exposure to changes in camera parameters - sugicessttation after zooming out. Frameés= 1350, 1375, 1400, 1425, 1450, 1475, 1502, and
1527 of sequence TS3 are shown.
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Fig. 20. Interactive selection of another target objecte Tlamest = 1815, 1845, 1870, and 1923 of TS3 are displayed. In the second image the man with
the white T-shirt is selected for tracking instead of thevimesly tracked man with the red T-shirt. He is successftdlgen over by the tracking module.
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