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Abstract

Ranking functions rank all possible instances of a world according to the disbe-
lief associated with each instance. Two problems follow from this simple premise.
The first is that all instances of a world can only be enumerated for very small
worlds. The second issue arises whenever ranking functionsare used to represent
the belief of an actual agent. Since the observations of thatagent are usually con-
taminated with noise, it is impossible to directly relate them to a particular world
instance. This work discusses how to cope with these difficulties. Additionally, the
proposed methods are assessed in a reinforcement learning application, where the
usage of a ranking functions enables an agent to learn where it would fail otherwise.
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1 Introduction

This work is about improving the capabilities of an autonomous agent to learn from
experience. The agent under consideration lives in an environment whose states it per-
ceives. For each state, it has to choose from a number of possible actions. The effect of
those actions are initially unknown to the agent, but yield areward once chosen.

A problem of this kind is usually approached by applying reinforcement learning [23].
In reinforcement learning, the agent incorporates its experience and observations into its
belief state in order to learn and solve its task successfully. The experience usually con-
sists of rewards which follow from certain actions. Traditionally, reinforcement learning



approaches work by building up a belief about the workings ofthe environment. This
belief is represented, for instance, by using aQ-function, which numerically represents
the expected benefit of the available actions in a given state.

This approach leads to the question of how to represent thisQ-function. Naturally, the
first constraint arises in real-world applications whose state spaces are usually described
by more than a few variables. Since a state space grows exponentially with the number
of variables, a representation of theQ-function is needed which can capture the experi-
ences in a compact manner. For this purpose any kind of supervised learning [4] may
be applied.

A second problem arises, when states are described symbolically. In this case, the
symbolic representation has to be mapped to a numerical one in order to match the
requirements of the traditional reinforcement learning framework. The mapped values
are henceforth combined into new values, thereby loosing their symbolical meaning
(depending on the mapping). Efforts to make reinforcement learning able to handle
symbolic representations can be found, e.g., in the contextof relational reinforcement
learning [7]. Approaches include a representation as decision trees [3], defining a dis-
tance function on predicates to allow nearest neighbor interpolation [6], and applying a
kernel approach [8].

A different approach combines two different representations. One representation thereof
is numerical, the other symbolical. This approach is inspired by psychological find-
ings [9, 16]. These findings suggest that there are essentially two kinds of learning,
a low-level implicit learning and a high-level explicit learning. In this area, the work
of Sun [21, 22], who encoded the symbolical representation in a neural network, is an
example.

We also follow the two-level-learning path. While the lower, still numerical level is
represented by aQ-function, we propose to use Spohn’s ranking functions as a natural
way to represent the symbolical level. Spohn’s ranking functions were introduced under
the term of ordinal conditional functions [17]. They were introduced to account for
the dynamics of belief revision [1, 5]. Traditionally, belief revision deals with belief
sets, which capture the current belief of an agent. A belief set changes whenever an
agent perceives new information it wants to include. A well accepted set of postulates
which constrain the possible change of a belief set is given by the AGM theory of
Alchourrón, Gärdenfors and Makinson [1]. Ranking functions are compliant with these
postulates [18], but they extend the belief set in a way that,additional to the actual
belief, the disbelieved facts are also included. This property allows ranking functions to
account effectively for changes in belief and also allows for an elegantincorporation of
conditional information. As Spohn discusses in [20], ranking functions are also closely
related to Bayesian inference [2].

Spohn’s ranking functions are not to be confused with ranking functions that aid a
search algorithms in a heuristic manner. An example for the latter kind of ranking



function is the well-known tf–idf weight [24] which is oftenused in text mining. These
ranking functions are a tool tocopewith large state spaces, as shown in, e.g., [25].
The ranking function we discuss in this work rank world models and hence will suffer
from large state spacesthemselves, if we do not take steps against it. In this work,
we investigate the applicability of ranking functions on problem domains which indeed
have a large state space. Additionally, we propose an approach for an agent who lives in
such a domain and whose observations are noisy or incomplete. Because the belief state
is represented as a ranking function, a large part of this work discusses ranking functions
and their problems with large state spaces independently from a concrete application.

The next section provides a brief review of Spohn’s ranking functions and the mechanics
of a revision with propositional information. The revisionwith conditional information
is discussed thereafter, followed by a discussion of the problems with large state spaces.
Then, after we present our proposal of how to handle these problems, we proceed to a
discussion of the problems noise and uncertainty pose for a belief representation. This
part is heavily biased towards our example application, which is introduced thereafter.
After that, a brief section with concluding remarks is given.

2 Ranking Functions

To define ranking functions, we need the notion of aworld model. Given the set of all
possible worldsW, a world modelM ∈ W describes exactly one instance. Therefore,
to apply ranking functions, the world an agent lives in must be completely describable.
Initially, we assume such a world.

A particular ranking functionκ : W → N assigns a non-negative integer value to each
of the world models. Theseranksreflect the amount ofdisbelief an agent shows for
each model. It is perfectly possible that rank 0 is assigned to both, a world modeland
its negation. Therefore we say that the agent believes in a model M, iff

κ(M) = 0∧ κ(M) > 0 . (1)

Besides querying the rank of a world model, we may ask for the rank of a more general
formula. For instance, in a world described by two variablesa andb, each from the
domain{1, 2, 3}, a formulaF may look like

F = ((a = 2)∨ (a = 3))∧ (b = 1). (2)

Since a modelM captures all aspects of the world the agent lives in,F partitionsW into
two sets:

1. {M|M |= F}

2. {M|M |= F}



This allows us to define the rankκ(F) of a formulaF as

κ(F) = min{κ(M)|M |= F}. (3)

So, if an agent believes in a particular world model which happens to entailF, it will
also believeF.

For example, consider Equation 1 again. There,M, the negation of world modelM is
used. This negation is a formula. Since a particular world model M is a conjunction of
an assignment of all available variables,M is entailed by all models that disagree with
M on at least one variable assignment. Obviously, these areall other models and hence
we can conclude that the agent believes in a particular worldmodelM iff M is the only
one which is mapped to rank 0.

Whenever the agent experiences new information about its world, new ranks are as-
signed to the world models to reflect the agent’s new belief state. This incorporation
of new information is calledrevision. In the context of revision, a peculiar property of
ranking functions is their ability to not only belief in a certain proposition, but to belief
in it with a given strengthβ ∈ N, which is enforced during revision. The strengthβ(F)
of the belief in a formulaF can be calculated as

β(F) = κ(F) − κ(F). (4)

Note that by using this formula it is possible—and probably more intuitive—to refor-
mulate ranking function in terms of belief instead of disbelief [19]. In this discussion,
however, we prefer a formulation in terms of disbelief.

We discuss two types of revision. First, the revision with propositional information,
and second the revision with conditional information. After each definition, a short
explanation of its meaning is given.

Definition 1 Given a proposition P and a strength parameterβ, the revisionκ ∗ (P, β)
is given by

κ ∗ (P, β)(M) =






κ(M) : κ(P) ≥ β

κ(M) − κ(P) : κ(P) < β ∧ M |= P

κ(M) + β − κ(P) : κ(P) < β ∧ M |= P

(5)

Essentially this definition states that

1. there is nothing to do, ifP is already believed with strengthβ

2. otherwise two subsets of the set of world models are relevant:

(a) the subset of those world models which agree onP, and whose ranks are
modified so that we assign rank 0 to the least disbelieved model.



(b) the subset of those world models which agree onP, and whose ranks are
modified so thatκ(P) ≥ β holds afterwards.

The rationale behind this partitioning is that the world models within {M|M |= P} are
independentconditionalon P and should therefore keep theirrelative ranks. Because
the only non-constant value in Equation 5 is the current rankκ(M) of a world modelM,
it is obvious that the relative ranks within the subsets are preserved. The same argument
is applicable to{M|M |= P} andP.

Because we know that within these two subsets the relative ranks are preserved, consid-
ering the lowest ranked world model suffices to understand Definition 1:

1. the rank of the lowest ranked world modelMP of {M|M |= P} is justκ(P), so that
κ ∗ (P, β)(MP) = κ(MP) − κ(P) = 0

2. the rank of the lowest ranked world modelMP of {M|M |= P} is justκ(P), so that
κ ∗ (P, β)(MP) = κ(MP) + β − κ(P) = β

In the following example, we use a table to depict a ranking function. In such a table,
the top row contains the models mapped to rank 0. Higher ranksfollow in order. The
models are included by writing the values of the variables down. The order of the
values matches a given order of the variables, which is usually lexicographical and
should otherwise be obvious from the respective context.

The table of Equation 6 shows the top three ranks before and after a revision takes place.
The ranking function contains world models of a world consisting of two variables.
These variables and their domains area ∈ {1, 2, 3} andb ∈ {1, 2}. After the revision, the
ranking function on the left shall believe in (a = 3) with strength 1:

κ
κ∗(a=3,1)
−−−−−−−→ κ′

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

2 1
1 2 2 2 3 2
3 1

...

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

→

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

3 2
2 1 3 1
1 2 2 2
...

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

(6)

It can be seen that the two world models which comply with (a = 3) are (a = 3)∧(b = 2)
and (a = 3) ∧ (b = 1). These are shifted such that (a = 3) is believed in terms of
Equation 1. The group of world models that does not comply with (a = 3) consists of
(a = 2)∧ (b = 1), (a = 1)∧ (b = 2), and (a = 2)∧ (b = 2). This group is shifted one
rank down. Note that at the same time the relative ranks are preserved within the two
groups of world models.



3 Revising Conditionals

After the gentle introduction to revising with a proposition, we now focus on revising
with a conditional (B|A) with A the antecedent andB the consequent. After such a
revision we expect an agent to show the following property: if it is subsequently revised
with A then it must also believe inB, because this is what the conditional states. We
may write this as

κ′(B) = 0∧ κ′(B) > 0 with κ′ = (κ ∗ (B|A)) ∗ A. (7)

At first sight, we may just apply Definition 1 using the formulaof material implication,
A ⇒ B, because this is the formula which represents a conditionaldependency. The
following example ranking function shows that this is not sufficient:

κ
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

2 2
1 2
1 3
...

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

(8)

Revisingκ of Equation 8 with the formulaF = (a = 1) ⇒ (b = 3) will not change
anything sinceF is already believed, because (a = 2)∧ (b = 2) |= (a = 1)∨ (b = 3). But
Equation 7 does not hold for this ranking function. Hence, weclearly need a different
approach.

In [14] a revision was proposed which does not share the weakness of the aforemen-
tioned simple approach. But is has problems with iterated revisions, which was shown
in [12]. There we proposed to use the additional operator

κ[F] := max{κ(M)|M |= F} (9)

to define the revision with a conditional as follows:

Definition 2 Given a conditional(B|A), the revisionκ ∗ (B|A, β) is given by

κ ∗ (B|A, β)(M) =





κ(M) : D ≥ β

κ(M) − κ(A⇒ B) : D < β ∧ M |= (A⇒ B)

κ(M) + (κ[AB] − κ(A⇒ B) + β)
︸                         ︷︷                         ︸

β′

−κ(AB) : D < β ∧ M |= (AB)
(10)

with D = κ(AB) − κ[AB] .

The general idea behind Definition 2 is the same as the one behind Definition 1: Par-
tition the models into two groups and shift the ranks up and down until the required
condition is reached!



The two definitions show even more striking similarities if we interpret the part above
the horizontal brace as a modified strength parameterβ′. To see what thisβ′ does,
imagine thatM is the lowest ranked world model which entailsκ(AB). Also, let MAB

be the world model responsible for the value ofκ[AB] beforethe revision. After the
revision, the rank ofMAB will be δ = κ[AB] − κ(A⇒ B).

Let κ′ denote the ranking function after the revision. Then,β′ = β + δ means that
κ′(AB) = κ′[AB] + β, because then we haveκ′(A⇒ B) = 0. Hence, we may understand
the application of Definition 2 by picturing the rank ofAB asβ below the rank ofAB
after the revision has affectedκ.

The following example clarifies the belief change in the presence of conditional in-
formation. Suppose our world is described by three variables a, b, c ∈ {1, 2}. Suppose
further that our current belief state represents a belief inM0 = (a = 2)∧(b = 1)∧(c = 1)
which is consequently mapped to rank 0. The left column of thefollowing table shows
this scenario. Again, the first row contains world models with rank 0, i.e., the believed
ones, which is in this example justM0. There are a few other models whose respective
ranks are 1, 2, and 3. The models are represented by the valuesof the variables in the
ordera, b, c. The models with higher ranks are omitted.

κ
κ∗((a=2)⇒(c=2),1)
−−−−−−−−−−−−−→ κ′

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

2 1 1
2 1 2
2 2 1
2 2 2

...

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

→

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

2 1 2

2 2 2
2 1 1

2 2 1
...

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

(11)

The right column of this example captures the belief afterκ has been revised with (a =
2) ⇒ (c = 2) using Definition 2 (with strengthβ = 1). As you can see, the models
have been partitioned into two groups ({2 1 2, 2 2 2} and{2 1 1, 2 2 1}), which have been
shifted such thatκ obeys the postconditionκ′(AB) − κ′[AB] = 1.

4 Large State Spaces

After the general mechanics of ranking functions have been described, we want to fo-
cus on the applicability of them on problems with a considerably large state space.
Assume, for example, that a world is described byn boolean variables which describe
binary properties of that world. A concatenation of these variables yields ann-digit
binary number. The number of possible world models is therefore 2n, which grows
dramatically asn grows.



Therefore, for a sufficiently complex world, we cannot expect to be able to store all its
possible models to representκ:

κ
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

M1 M2 M3 · · · E

M4 M5
...

E

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

We may try to circumvent this problem by modeling a skeptic agent, one that initially
disbelieves everything. We may also think that this means wecommit to a scenario, in
which initially all models have rank∞ and simply omit those from our representation.
That would mean our initial ranking function is empty and theproblem changes into
being careful in putting new world models into it.

But there is a difficulty. As Spohn has shown, for each modelM it must hold that

κ(M) = 0∨ κ(M) = 0 . (12)

If we are to put every single model initially to rank∞, this rule will be violated. Fortu-
nately, the actual rank is less important than the fact whether a model is believed or not.
Re-consider Equation 1. If neither a modelM nor M has been experienced, we are also
free to interpret this as

κ(M) = 0∧ κ(M) = 0 , (13)

which means that neitherM nor M is believed. And onceκ has been revised withM,
the missing modelM can be interpreted asκ(M) = ∞, because that will always fulfill
the postcondition of a belief strength larger than any givenβ. Hence, a skeptic agent
indeed allows us to omit not yet experienced world models.

Concerning revision in large state spaces, we also need to investigate whether thedy-
namicsinduced by Definition 1 and Definition 2 create additional problems. First,
revising with propositions is not problematic, as long as there are not too many models
which entail it. Revising with propositional information is also not the common case
for a learning agent, since the information is usually in conditional form as, e.g., in our
example application below.

A Revision with conditional information, however, createsmore serious problems. Let
us assume that an agent needs to believe the formulaA ⇒ B, therefore the models
{M|M |= A ∨ B} have to be shifted towards rank 0. If we re-consider the example of a
world described by binary variables, revising with a conditional which is currently not
believed and whose antecedent consists of just one variablemeans that at least half of
the models have to be shifted towards rank 0. Hence, a lot of models not yet present
in the (skeptic) ranking function have to be created in orderto maintain their relative
ranks. Furthermore, the operatorκ[AB] creates additional complications. Ifκ[AB] = ∞,
we will also have to create all{M|M |= AB ∧ κ(M) = ∞} regardless whether or not any
models ofABare already known to the agent.



5 Coping with Large State Spaces

If we want to use ranking functions in large state spaces, we will obviously need a
way around these issues—and we do have an option. The problemis caused by strictly
requiring that within each of the subsets ofW (which are induced by a revision) the
relative ranks stay the same. If we are allowed to bend this rule in order to instantiate
the least amount of models, then we can proceed using rankingfunctions without hitting
any serious computational barrier.

For a revision with propositional informationP, the postconditionκ(P) ≥ β must hold
afterwards. We can comply with this requirement by just taking those models ofP into
account that have been experienced so far. This is true, because after shifting them
towards rank 0, there either are models ofP in the ranking function or not. If there are
such models, the shifting of their ranks creates a ranking function as desired. If there
are no such models, there is nothing to do because the postcondition already holds.

Similarly, for a revision with conditional information, wewant the postconditionκ(AB)−
κ[AB] ≥ β to hold afterwards. So, ifκ is to be revised with the formulaA ⇒ B and
κ(A ∨ B) = ∞, then we may shift{M|M |= AB} towards rank 0, regardless of other
models in{M|M |= A∨ B}. We also need to adjust the ranks of{M|M |= AB}, of course,
but these retain their ranks or are shifted to higher ranks, therefore posing no additional
difficulties. We also modifyκ[AB] to take the form

κ[AB] = max{κ(M)|M |= AB∧ κ(M) < ∞} , (14)

i.e., it returns the highest rankedknownmodel of AB. Fortunately, this still leads to
revisions after which the formulaA⇒ B is believed, because this simply requires that
somemodel ofA∨B has rank 0. Of course, there still is the caseκ(AB) = ∞∧κ(A∨B) ≤
∞. In this case{M|M |= AB} is shifted towards the highest known rank incremented
by one. A drawback of this approach of considering only experienced world models,
especially the modification ofκ[M], is that the iterated application of Definition 2 may
lead to intuitively implausible results. These results arediscussed in [12], where the
choice ofκ[M] rather thanκ(M) is discussed.

An overview of the main properties of the proposed implementation concerning con-
ditionals in ranking functions is given in Table 1. The important cases and their effect
on a revision are listed. The left column contains properties of κ before and the right
column the important changes after a revision with (B|A). There “κ(M) < ∞” means
thatκ(M) is finite.



κ κ ∗ (B|A)

κ is empty
{M|M |= AB} are included
κ(AB) = κ[AB] = 0
κ(AB) = ∞

κ(A⇒ B) ≤ κ[AB] < κ(AB) = ∞ no changes

κ(A⇒ B) ≤ κ[AB] ≤ κ(AB) < ∞ κ(AB) may be increased depending onβ

κ(A⇒ B) < κ[AB] = κ(AB) = ∞
{M|M |= AB} are included
κ(AB) = κ[AB] = max

M
(κ(M)) + 1

κ(AB) < κ[AB] = κ(A⇒ B) = ∞
{M|M |= AB} are included
κ(AB) = κ[AB] = 0
κ(AB) may be increased depending onβ

κ(AB) < κ(A⇒ B) ≤ κ[AB] < ∞
κ(A⇒ B) = 0
κ(AB) will be increased

κ(AB) < κ(A⇒ B) < κ[AB] = ∞

{M|M |= AB} are included
κ(AB) = κ[AB] = max

M
(κ(M)) + 1

κ(AB) will be increased

Table 1: Effects of the proposed implementation.

6 Incomplete or Noisy Observations

Describing a world in terms of logical propositions leads toproblems once the world
starts to exhibit uncertainty. This section discusses a particular scenario in which this is
the case.

Assume that an agent’s state description consists of visualinformation. In particular,
assume the state description enumerates a number of visual featuresf1, f2, . . . , fn. This
scenario may happen in a computer vision application which uses a feature detector on
images.

The problem is that feature detection is not reliable. The image is a quantized and noisy
representation of the continuous world’s electromagneticsignals. Viewing a scene twice
from nearlyidentical positions may therefore yield slightly different descriptions of the



visual input.

Assume the state description takes the form

S = v1 ∧ v2 ∧ v3 ∧ v4 ∧ . . . vn , (15)

wherevi is either TRUE or FALSE depending on the visibility of the featurefi . If
the value of one of thesevi switches, the resulting state description will be completely
different in terms of ranking functions. There is no definition ofsimilarity.

Another problem is that it may be impossible to enumerate allmodels. Not because
the state space is so large, but because it is practically thecase that not all features are
known beforehand but added as they appear:

κ
∥
∥
∥
∥
∥
∥
∥

M1 = v1 ∧ v2 ∧ v3 ∧ v4 ∧ v5 ∧ · · ·?· · · E
...

∥
∥
∥
∥
∥
∥
∥

As a consequence, we cannot create the partitions ofW necessary for revision.

In this particular example of a features-perceiving agent,it is possible to use ranking
functions in spite of these issues. Both difficulties, the absence of a similarity definition
and the unknown set of features is addressed by a modified entailment operator.

Before we introduce this operator, we have to make sure that for a revision with a
conditional (B|A) using the formulaA ⇒ B we are able to partition the models of
W into the two subsets{M|M |= A ∨ B} and{M|M |= AB}. This is required to apply
Definition 2. To enforce this, we restrict the conditionals (B|A) such that their associated
formulaA⇒ B is an element of the following setC:

Definition 3 C := {A⇒ B|A ∈ P , ∅ ∧ B ∈ Q , ∅ ∧P ∩Q = ∅} withP andQ chosen
such that∀M ∈ W : ∃P ∈ P,Q ∈ Q : M = P∧ Q.

So, the antecedents and consequents of the allowed conditionals are taken from different
sets of variables which together contain all the world’s variables. This allows us to
handle the entailment differently for the antecedent and the consequent.

Back to our feature-based world, let us assume our models take the formM = P∧Q. P
shall contain the unreliable, feature-based information,while Q covers everything else.
Let us further assume that a functionF(P) exists which maps the feature-partP to all
the features visible inM. This can be used to relate the visible featuresF(P) andF(P′)
of two modelsM andM′ = P′ ∧ Q′ to define an entailment operatorM |=t M′ such as
in

Definition 4 M |=t M′ :⇔
(
|F(P)∩F(P′ )|
|F(P)∪F(P′ )| > t

)

∧ (Q∧ Q′)



the agent's

current position

the goal node

nodes-as-features

S

G

Figure 1: Simulated Features.

The left term thus defines a similarity on sets of visible features using the Jaccard in-
dex [13]. But how shouldt be chosen? This is assessed in the next section.

7 Example Application

To assess the applicability of the aforementioned ideas, weuse an experimental set-up
in which we present an environment to the agent that is perceived as a set of (unreliable)
features as introduced in Section 6.

In this environment, the agent needs to find a spot on a spherical grid. The agent’s state
consists of a subset of all nodes present in a spherical neighborhood around its current
locationS, includingS itself. Each of these nodes is classified as “visible” with a preset
probability. The purpose of this experiment is to mimic the situation in which an object
is perceived by a camera and represented by visual features.The visibility probability
models feature misses and occlusions. Another way to see this experiment is to assume
that the spherical grid itself is observed and the nodes are detected by an unreliable
“junction detector”.

In either case, the agent uses the information in its state signal about visible features
to determine its position “above” the object. Figure 1 showsa picture of this set-up.
We used a grid with 128 nodes placed on the surface of a unit sphere. The radius of the
sphere that defines the neighborhood has been set to 1.2, which results in approximately
50 enclosed “features” at each position. An action is represented by a number which is
associated with a grid node. One grid node is marked as being the goal node. Once the
agent has reached this node, an episode ends.
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We used the two-level-learning approach of [10] and [15], inwhich a ranking function
acts as a filter on the possible actions a reinforcement learning [23] agent may take.
The reinforcement learning approach we used isQ-learning, which has the appealing
property that it learns the optimal state-action-pairs regardless of the policy used for
exploration. Figure 2 clarifies the architecture. There,δ is a transition function andr
a reward function. The agent explores its environment, i.e.the nodes of the spherical
grid, through trial and error until the goal state is reached. The goal state is defined as
reaching the goal node, for which we choose the one farthest away from the starting
location.

The arrival at the goal state triggers a reward of 100. All other actions are neither
rewarded nor punished. In spite of this fact, the agent develops a preference for the
shortest paths. This is due to our use of the discount factorγ ∈]0; 1[ which is present in
the update equation

Qt+1(St,At) = r(St,At) + γmax
a

(Qt(δ(St,At),A)). (16)

This equation updates theQ-function of theQ-learning agent. There,St is the state at
time t andAt is the action chosen at that state. Because we only reward thefinal step
to the goal state, the effect of γ is that states closer to the goal state receive a larger
Q-value, thereby guiding the agent. We choseγ = 0.6.

The exploration policy is a modifiedǫ-greedy policy withǫ = 0.1. The modification
makes the policy aware of the filtering and gives it the optionto ignore it once in a while.
One may picture the policy as a cascadedǫ-greedy policy, where the first step decides
whether or not to accept the filtering and the second step decides on the greediness.

Figure 2 also shows the presence of a “decode” module. This module creates the sym-
bolical state description from the state signal the environment provides. In our case this
means essentially the enumeration of the visible features.TheQ-function is realized by
applying a hash function on the state description to create asuitable integer number. We
want to stress the point that if a single number representingthe node was used as the
state description for theQ-table the result would obviously be more efficient. However,
this would also remove the large state space and the noise in its description and would
therefore render the experiment inappropriate to model visual input.



The conditionals used for revision are created with the aid of the Q-function. In each
stateS a revision with the conditional (A|S) takes place, whenever a single best actionA
has been identified by theQ-function and the ranking function does not already believe
in the associated conditional.

Figures 4, 5, and 6 show the averaged cumulated rewards and the averaged episode
lengths for a number of experiments. Each figure captures theresults for a particular
value of the feature detection probability. The graphs show200 episodes averaged over
500 runs. Each episode had to end after 100 steps or when the goal had been found.
Depicted are the learning progresses for agents with differentt-values as well as for a
“plain” Q-learner. The latter declines the usage of a ranking function and hence the
usage of a second learning level.

Figure 4 shows the results of setting the feature detection probability to 0.5. The best
learning agent is the one witht = 0. Note that the large state space clearly hinders
the plainQ-learner to show any progress within the 200 episodes. Confirming these
observations, Figure 5 shows the results of setting the feature detection probability to
0.9. Despite the relatively high feature detection probability, the plainQ-learner is still
not able to succeed.

To validate that the plainQ-learner is in principle able to eventually learn a short path to
the goal state, we include Figure 6. In this experiment, all features are always observed.
Hence, every state now has a unique description. In this scenario, a plainQ-learner
shows improvements, but is still slower in reaching a high level than an agent augmented
with a ranking function.

So, the answer to the question asked in Section 6 about a good value fort in Equation 4
is t = 0. This can be interpreted in such a way that the agent is able to identify its
current state by recognizing one feature alone. This allowsus to simplify Definition 4
to

Definition 5 M |=t M′ :⇔ (|F(P) ∩ F(P′)| > 0) ∧ (Q∧ Q′)

Requiring it to recognize more features hinders the agent’slearning and therefore slows
down its progress.

A trained agent can use its experience to find its way towards the goal state. Some of
the possible results obtained in our experiments are shown for each discussed feature
detection probability in Figure 3. The paths were generatedby asking the agent’s rank-
ing function for directions and choosing a random directionwhenever the agent had no
preference. All of theses paths lead more or less directly from start to goal. The shortest
path was learned for the feature detection probability of 1.0, as one may expect. As in
the other experiments, it took 200 episodes to train the agent.



Figure 3: Learned paths for feature detection probabilities of 0.5, 0.9, and 1.0 (from left
to right).

8 Discussion and Conclusion

This work discusses the applicability of ranking functionsin two very important cases.
These two cases are

1. large state spaces

2. noisy or incomplete observations.

Judging by the requirement of ranking functions to enumerate all possible world mod-
els, their usage seems highly questionable at first sight. However, a careful modification
of the revision process to avoid an instantiation of a large number of models as well as
the introduction of a domain specific entailment operator led to a system that was able
to learn in a rather complex environment. In the same environment, an agent without a
supplementing ranking function had failed.

Guided by our intend to use ranking functions in a reinforcement learning context, em-
phasis was laid upon the revision with conditional information. This kind of information
occurs naturally in a context where observed states lead to actions. Therefore, our main
concern was the revisionκ ∗ (B|A). This includes alsoκ ∗ (B|A) andκ ∗ (B|A), because
changing the antecedent or consequent simply means a different set of agreeing world
models. Also, in the case where we want an agentnot to believe in a given conditional,
we may just revise it with the propositionAB.

Aside from philosophical discussions about belief revision and causation, ranking func-
tions seem to be used rather sparingly in computer science which we attribute to the dif-
ficulties that arise from the requirement of enumerating allworld models. By presenting
an example application which bypasses these difficulties we hope to encourage further
applications of ranking functions. Since the presented example is still rather artificial,
we nevertheless believe that it captures important difficulties present in any computer
vision problem. The obvious direction for future research is hence to actually develop



real computer vision applications in which a ranking function contributes significantly.
For instance, in the process of developing the presented work, we applied the two-level-
learning architecture to a (still simulated) task of objectrecognition, where an agent had
to distinguish between similar three-dimensional objects[11]. There, the ability to use
solely features in the state description also removed the need for establishing a global
co-ordinate system.
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Figure 4: Learning progress using a feature detection probability of 0.5.
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Figure 5: Learning progress using a feature detection probability of 0.9.
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