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Abstract

Ranking functions rank all possible instances of a worldading to the disbe-
lief associated with each instance. Two problems followfithis simple premise.
The first is that all instances of a world can only be enumdrébe very small
worlds. The second issue arises whenever ranking functionsised to represent
the belief of an actual agent. Since the observations ofahant are usually con-
taminated with noise, it is impossible to directly relaterthto a particular world
instance. This work discusses how to cope with thefieedities. Additionally, the
proposed methods are assessed in a reinforcement leappligagion, where the
usage of a ranking functions enables an agent to learn wheoelid fail otherwise.
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1 Introduction

This work is about improving the capabilities of an autonoagent to learn from
experience. The agent under consideration lives in an@mvient whose states it per-
ceives. For each state, it has to choose from a number ofifj@ssitions. Theféect of
those actions are initially unknown to the agent, but yietdwaard once chosen.

A problem of this kind is usually approached by applying feinement learning [23].
In reinforcement learning, the agent incorporates its Bgpee and observations into its
belief state in order to learn and solve its task succegsflile experience usually con-
sists of rewards which follow from certain actions. Traafiilly, reinforcement learning



approaches work by building up a belief about the workingthefenvironment. This
belief is represented, for instance, by usin@-&unction, which numerically represents
the expected benefit of the available actions in a given.state

This approach leads to the question of how to representtiisiction. Naturally, the
first constraint arises in real-world applications whos¢esspaces are usually described
by more than a few variables. Since a state space grows expiahewith the number

of variables, a representation of tQefunction is needed which can capture the experi-
ences in a compact manner. For this purpose any kind of sispdriearning [4] may
be applied.

A second problem arises, when states are described symlbolidn this case, the
symbolic representation has to be mapped to a humericalroneder to match the
requirements of the traditional reinforcement learniragrfework. The mapped values
are henceforth combined into new values, thereby loosieg 8ymbolical meaning
(depending on the mapping). ftBrts to make reinforcement learning able to handle
symbolic representations can be found, e.g., in the cooferdlational reinforcement
learning [7]. Approaches include a representation as ecisees [3], defining a dis-
tance function on predicates to allow nearest neighborpntation [6], and applying a
kernel approach [8].

A different approach combines twdigirent representations. One representation thereof
is numerical, the other symbolical. This approach is irexpioy psychological find-
ings [9, 16]. These findings suggest that there are esdgritia kinds of learning,

a low-level implicit learning and a high-level explicit ledng. In this area, the work

of Sun [21, 22], who encoded the symbolical representatianrieural network, is an
example.

We also follow the two-level-learning path. While the lowsitill numerical level is
represented by @-function, we propose to use Spohn’s ranking functions aataral
way to represent the symbolical level. Spohn’s ranking fioms were introduced under
the term of ordinal conditional functions [17]. They werdraduced to account for
the dynamics of belief revision [1, 5]. Traditionally, beflirevision deals with belief
sets, which capture the current belief of an agent. A bebéfthanges whenever an
agent perceives new information it wants to include. A wellepted set of postulates
which constrain the possible change of a belief set is giwethb AGM theory of
Alchourrén, Gardenfors and Makinson [1]. Ranking functi@ne compliant with these
postulates [18], but they extend the belief set in a way thdtlitional to the actual
belief, the disbelieved facts are also included. This priyilows ranking functions to
account &ectively for changes in belief and also allows for an elegrzetrporation of
conditional information. As Spohn discusses in [20], ragikiunctions are also closely
related to Bayesian inference [2].

Spohn’s ranking functions are not to be confused with ragKimctions that aid a
search algorithms in a heuristic manner. An example for #tier kind of ranking



function is the well-known tf—idf weight [24] which is oftarsed in text mining. These
ranking functions are a tool toopewith large state spaces, as shown in, e.g., [25].
The ranking function we discuss in this work rank world madeahd hence will sier
from large state spaceghemselvesif we do not take steps against it. In this work,
we investigate the applicability of ranking functions oolplem domains which indeed
have a large state space. Additionally, we propose an apipfoaan agent who lives in
such a domain and whose observations are noisy or incomgletause the belief state
is represented as a ranking function, a large part of thik discusses ranking functions
and their problems with large state spaces independently & concrete application.

The next section provides a brief review of Spohn’s rankingrtions and the mechanics
of a revision with propositional information. The revisiatith conditional information
is discussed thereafter, followed by a discussion of thblpros with large state spaces.
Then, after we present our proposal of how to handle thedalgorts, we proceed to a
discussion of the problems noise and uncertainty pose felieflvepresentation. This
part is heavily biased towards our example applicationctvig introduced thereafter.
After that, a brief section with concluding remarks is given

2 Ranking Functions

To define ranking functions, we need the notion e¥@ld model Given the set of all
possible worldgB, a world modelM € 2 describes exactly one instance. Therefore,
to apply ranking functions, the world an agent lives in mwestbmpletely describable.
Initially, we assume such a world.

A particular ranking function : W — N assigns a non-negative integer value to each
of the world models. Thesmanksreflect the amount adiisbelief an agent shows for
each model. It is perfectly possible that rank 0 is assigndubth, a world modehnd

its negation. Therefore we say that the agent believes indehhb, iff

k(M) =0A k(M) >0. Q)

Besides querying the rank of a world model, we may ask forainé of a more general
formula For instance, in a world described by two variatdesndb, each from the
domain{1, 2, 3}, a formulaF may look like

F=(@a=2)Vv@=3)A(b=1). 2)

Since a modeM captures all aspects of the world the agent live&ipartitions?3 into
two sets:

1. {M|M E F}
2. (MM E F}



This allows us to define the rarkF) of a formulaF as
k(F) = min{x(M)IM E F}. 3)

So, if an agent believes in a particular world model whichgeays to entaifF, it will
also believe~.

For example, consider Equation 1 again. Théfethe negation of world mode¥l is
used. This negation is a formula. Since a particular worldeh is a conjunction of
an assignment of all available variabld,is entailed by all models that disagree with
M on at least one variable assignment. Obviously, thesalbogher models and hence
we can conclude that the agent believes in a particular woddelM iff M is the only
one which is mapped to rank O.

Whenever the agent experiences new information about ittdywew ranks are as-
signed to the world models to reflect the agent’s new belestThis incorporation
of new information is calledevision In the context of revision, a peculiar property of
ranking functions is their ability to not only belief in a t&in proposition, but to belief
in it with a given strengtl® € N, which is enforced during revision. The strengtlk)

of the belief in a formuld can be calculated as

B(F) = (F) — «(F). (4)

Note that by using this formula it is possible—and probabbrenintuitive—to refor-
mulate ranking function in terms of belief instead of disgéi]19]. In this discussion,
however, we prefer a formulation in terms of disbelief.

We discuss two types of revision. First, the revision witlgwsitional information,
and second the revision with conditional information. Afeach definition, a short
explanation of its meaning is given.

Definition 1 Given a proposition P and a strength paramegethe revisiork = (P, 5)
is given by
(M) :k(P) >
& x (P,A)(M) = {k(M) - «(P) k(P)<BAMEP (5)
k(M) +B8—-«k(P) :xk(P)<BAMEP

Essentially this definition states that

1. there is nothing to do, P is already believed with strenggh

2. otherwise two subsets of the set of world models are reteva

(a) the subset of those world models which agred’pand whose ranks are
modified so that we assign rank 0 to the least disbelieved mode



(b) the subset of those world models which agreePpand whose ranks are
modified so thak(P) > g holds afterwards.

The rationale behind this partitioning is that the world ratlsdwithin {M|M E P} are
independentonditionalon P and should therefore keep the#lative ranks. Because
the only non-constant value in Equation 5 is the current k@WK of a world modeM,

it is obvious that the relative ranks within the subsets aesgrved. The same argument
is applicable tqM|M £ P} andP.

Because we know that within these two subsets the relatilesrare preserved, consid-
ering the lowest ranked world modelfSaes to understand Definition 1:

1. the rank of the lowest ranked world modép of {M|M k P} is just«(P), so that
k* (P,B)(Mp) = k(Mp) —k(P) =0

2. the rank of the lowest ranked world modé} of {M|M [ P} is just«(P), so that
k= (P,B)(Mg) = «(Mg) + 8 — k(P) =8

In the following example, we use a table to depict a rankingfion. In such a table,
the top row contains the models mapped to rank 0. Higher réolksv in order. The

models are included by writing the values of the variablesrdo The order of the
values matches a given order of the variables, which is lystedicographical and
should otherwise be obvious from the respective context.

The table of Equation 6 shows the top three ranks before aadaafevision takes place.
The ranking function contains world models of a world cofisgs of two variables.
These variables and their domains are{1, 2, 3} andb € {1, 2}. After the revision, the
ranking function on the left shall believe ia & 3) with strength 1:

x+(@=3,1) i
K _— K
21 32
12 22 32 21 31 6)
31 - 12 22

It can be seen that the two world models which comply wétk-(3) are & = 3)A(b = 2)
and @ = 3) A (b = 1). These are shifted such that € 3) is believed in terms of
Equation 1. The group of world models that does not complf {&t= 3) consists of
@=2)A(b=1),@=1)A(b=2),and & =2)A (b= 2). This group is shifted one
rank down. Note that at the same time the relative ranks asepved within the two
groups of world models.



3 Revising Conditionals

After the gentle introduction to revising with a propositjave now focus on revising
with a conditional B|A) with A the antecedent anBl the consequent. After such a
revision we expect an agent to show the following propeftiyis subsequently revised
with A then it must also believe iB, because this is what the conditional states. We
may write this as

K (B) = 0 A k' (B) > 0 with &’ = (x * (B|A)) = A. (7)

At first sight, we may just apply Definition 1 using the formofamaterial implication,
A = B, because this is the formula which represents a conditideyndency. The
following example ranking function shows that this is noffigient:

Kk
22

12
13 (8)

Revisingx of Equation 8 with the formul& = (a = 1) = (b = 3) will not change
anything sincéF is already believed, because£ 2)A (b = 2) E (a= 1)V (b = 3). But
Equation 7 does not hold for this ranking function. Hence clearly need a dierent
approach.

In [14] a revision was proposed which does not share the wesskaf the aforemen-
tioned simple approach. But is has problems with iteratewie@ns, which was shown
in [12]. There we proposed to use the additional operator

«[F] := max«(M)IM = F} (9)

to define the revision with a conditional as follows:

Definition 2 Given a conditiona(B|A), the revisiork = (B|A, 8) is given by

« = (BIA, B)(M) =
k(M) 'D>p
(M) — k(A = B) _ D<pAMEMAS=B) 0
(M) + ([AB] — k(A = B) + 8) —«(AB) :D <BAM E (AB)

ﬁ/
with D = «(AB) — <[AB] .
The general idea behind Definition 2 is the same as the onad&réfinition 1: Par-

tition the models into two groups and shift the ranks up angrdantil the required
condition is reached!



The two definitions show even more striking similarities & imterpret the part above
the horizontal brace as a modified strength parangtefTo see what thig’ does,
imagine thatV is the lowest ranked world model which enta{#\B). Also, let Mag
be the world model responsible for the valuexphAB] beforethe revision. After the
revision, the rank oMag will be § = x[AB] — (A = B).

Let « denote the ranking function after the revision. Thgh,= B + § means that
«’(AB) = «'[AB] + 3, because then we hax€A = B) = 0. Hence, we may understand
the application of Definition 2 by picturing the rank AB asp below the rank ofAB
after the revision hastiectedk.

The following example clarifies the belief change in the pree of conditional in-
formation. Suppose our world is described by three vargdlb, c € {1,2}. Suppose
further that our current belief state represents a belibfjr= (a = 2)A(b = 1)A(c=1)
which is consequently mapped to rank 0. The left column ofdllewing table shows
this scenario. Again, the first row contains world modeldwiénk 0, i.e., the believed
ones, which is in this example justy. There are a few other models whose respective
ranks are 1, 2, and 3. The models are represented by the \dlthesvariables in the
ordera, b, c. The models with higher ranks are omitted.

kx((@=2)=(c=2),1)

K/

211 212

712

221 222

222 . 211 (11)
221

The right column of this example captures the belief aftbas been revised witla (=

2) = (c = 2) using Definition 2 (with strengti = 1). As you can see, the models
have been partitioned into two groug@ (1 2 22 2 and{2 11,2 2 1}), which have been
shifted such that obeys the postconditiati(AB) — «'[AB] = 1.

4 Large State Spaces

After the general mechanics of ranking functions have bestribed, we want to fo-
cus on the applicability of them on problems with a consitirdarge state space.
Assume, for example, that a world is describeditiyoolean variables which describe
binary properties of that world. A concatenation of thesgaldes yields am-digit
binary number. The number of possible world models is tleeef’, which grows
dramatically as grows.



Therefore, for a dfliciently complex world, we cannot expect to be able to stdrisal
possible models to represent

K
[Mi M, Mz -7 |
Ms Ms
¢

We may try to circumvent this problem by modeling a skeptieragone that initially
disbelieves everything. We may also think that this meansavamit to a scenario, in
which initially all models have rank and simply omit those from our representation.
That would mean our initial ranking function is empty and greblem changes into
being careful in putting new world models into it.

But there is a dficulty. As Spohn has shown, for each mobielt must hold that
k(M)=0v«(M)=0. (12)

If we are to put every single model initially to rawk, this rule will be violated. Fortu-
nately, the actual rank is less important than the fact wdrethmodel is believed or not.
Re-consider Equation 1. If neither a modiéinor M has been experienced, we are also
free to interpret this as

k(M) =0Ax(M)=0, (13)

which means that neithévl nor M is believed. And once has been revised with,
the missing modeM can be interpreted a§M) = o, because that will always fulfill
the postcondition of a belief strength larger than any g@etdence, a skeptic agent
indeed allows us to omit not yet experienced world models.

Concerning revision in large state spaces, we also needégtigate whether thay-
namicsinduced by Definition 1 and Definition 2 create additionaltgeons. First,
revising with propositions is not problematic, as long as¢hare not too many models
which entail it. Revising with propositional informatios also not the common case
for a learning agent, since the information is usually indibanal form as, e.g., in our
example application below.

A Revision with conditional information, however, createere serious problems. Let
us assume that an agent needs to believe the forlua B, therefore the models
{M|M E AV B} have to be shifted towards rank 0. If we re-consider the exawipa
world described by binary variables, revising with a coiodial which is currently not
believed and whose antecedent consists of just one variaddes that at least half of
the models have to be shifted towards rank 0. Hence, a lot afeisanot yet present
in the (skeptic) ranking function have to be created in otdenaintain their relative
ranks. Furthermore, the operatAB] creates additional complications.<fAB] = o,
we will also have to create &M|M £ AB A k(M) = o} regardless whether or not any
models ofAB are already known to the agent.



5 Coping with Large State Spaces

If we want to use ranking functions in large state spaces, Vlleolwviously need a
way around these issues—and we do have an option. The prabtaused by strictly
requiring that within each of the subsets¥f (which are induced by a revision) the
relative ranks stay the same. If we are allowed to bend thésinuorder to instantiate
the least amount of models, then we can proceed using rafikictjons without hitting
any serious computational barrier.

For a revision with propositional informatid®, the postconditior(P) > 8 must hold
afterwards. We can comply with this requirement by justrigkhose models d® into
account that have been experienced so far. This is trueubecater shifting them
towards rank 0, there either are modelddh the ranking function or not. If there are
such models, the shifting of their ranks creates a rankingtfan as desired. If there
are no such models, there is nothing to do because the pdgioaralready holds.

Similarly, for a revision with conditional information, weant the postcondition(AB)—
k[AB] > B to hold afterwards. So, i is to be revised with the formulaA = B and
k(A V B) = oo, then we may shiffM|M [ AB} towards rank 0, regardless of other
models infM|M E AV B}. We also need to adjust the rankgbfiM [= AB}, of course,
but these retain their ranks or are shifted to higher rahiesefore posing no additional
difficulties. We also modify[ AB] to take the form

K AB] = max{x(M)IM E ABA k(M) < oo} , (14)

i.e., it returns the highest rankéshiownmodel of AB. Fortunately, this still leads to
revisions after which the formul& = B is believed, because this simply requires that
somemodel ofAv B has rank 0. Of course, there still is the cab&B) = co Ak(AV B) <

o0. In this casgM|M E AB} is shifted towards the highest known rank incremented
by one. A drawback of this approach of considering only eigmered world models,
especially the modification aff M], is that the iterated application of Definition 2 may
lead to intuitively implausible results. These results diseussed in [12], where the
choice of«[ M] rather than«(M) is discussed.

An overview of the main properties of the proposed impleragon concerning con-
ditionals in ranking functions is given in Table 1. The imamt cases and theiffect
on a revision are listed. The left column contains propsmiex before and the right
column the important changes after a revision wighd). There k(M) < «” means
that«(M) is finite.



K | K % (B|A)

{M|M E AB} are included
Kk is empty k(AB) = «[AB] = 0
k(AB) = o0

k(A = B) < k[AB] < x(AB) = c | no changes

k(A= B) < k[AB] < kx(AB) < co x(AB) may be increased depending®n

{M|M E AB} are included

k(A= B) < k[AB] = k(AB) = oo «(AB) = k[AB] = max(x(M)) + 1

_ {M|M E AB} are included
k(AB) < k[AB] = k(A= B) = 0o | x(AB) = «[AB] = 0
x(AB) may be increased depending®n

K(A= B)=0

«(AB) < k(A= B) < K{AB] < 0 x(AB) will be increased

{M|M E AB} are included
K(AB) < k(A = B) < K[AB] = co | K(AB) = k[AB] = maxx(M)) + 1
x(AB) will be increased

Table 1: Hfects of the proposed implementation.

6 Incomplete or Noisy Observations

Describing a world in terms of logical propositions leadgptoblems once the world
starts to exhibit uncertainty. This section discusses @iqodair scenario in which this is
the case.

Assume that an agent’s state description consists of viat@imation. In particular,
assume the state description enumerates a number of vésuatésf;, f,,. .., f,. This
scenario may happen in a computer vision application wheefs & feature detector on
images.

The problem is that feature detection is not reliable. Thagenis a quantized and noisy
representation of the continuous world’s electromagrsigicals. Viewing a scene twice
from nearlyidentical positions may therefore yield slighthfiigirent descriptions of the



visual input.

Assume the state description takes the form
S=VIAVOAVZAVLA ... Vp, (15)

wherey; is either TRUE or FALSE depending on the visibility of the featurfe If
the value of one of thesg switches, the resulting state description will be compjete
different in terms of ranking functions. There is no definitiosiofilarity.

Another problem is that it may be impossible to enumeratenaltlels. Not because
the state space is so large, but because it is practicallyabe that not all features are
known beforehand but added as they appear:

K
Mi=Vi AVLGAVZAVZAVEA---?--¢

As a consequence, we cannot create the partitio®8 nécessary for revision.

In this particular example of a features-perceiving agiens, possible to use ranking
functions in spite of these issues. Botlfidulties, the absence of a similarity definition
and the unknown set of features is addressed by a modifieitheaits operator.

Before we introduce this operator, we have to make sure titaa frevision with a
conditional B|A) using the formulaA = B we are able to partition the models of
W into the two subsetéM|M = A v B} and{M|M E AB}. This is required to apply
Definition 2. To enforce this, we restrict the conditiond§X) such that their associated
formulaA = B is an element of the following sét

Definition3 €. ={A=>BAc B #0ABecQ#0ABNQ=0}withP andQ chosen
suchthatyM e W: AP e P, Qe Q: M=PAQ.

So, the antecedents and consequents of the allowed covadgiare taken from ferent
sets of variables which together contain all the world'salsles. This allows us to
handle the entailment fierently for the antecedent and the consequent.

Back to our feature-based world, let us assume our modedgi@kformM = PA Q. P
shall contain the unreliable, feature-based informatidrile Q covers everything else.
Let us further assume that a functibi(P) exists which maps the feature-p&rto all
the features visible itV. This can be used to relate the visible featu¥éB) andF(P’)
of two modelsM andM’ = P’ A QY to define an entailment operatit =; M’ such as
in

Definition 4 M [ M’ :e (IEQ0EEN » 1) A (Q A Q)
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Figure 1: Simulated Features.

The left term thus defines a similarity on sets of visible dieae$ using the Jaccard in-
dex [13]. But how should be chosen? This is assessed in the next section.

7 Example Application

To assess the applicability of the aforementioned ideasjsgean experimental set-up
in which we present an environment to the agent that is perdeis a set of (unreliable)
features as introduced in Section 6.

In this environment, the agent needs to find a spot on a spthgrid. The agent's state
consists of a subset of all nodes present in a spherical beigbod around its current
locationsS, includingS itself. Each of these nodes is classified as “visible” withiespt
probability. The purpose of this experiment is to mimic theation in which an object
is perceived by a camera and represented by visual feaflinesvisibility probability
models feature misses and occlusions. Another way to seexperimentis to assume
that the spherical grid itself is observed and the nodes erecttd by an unreliable
“junction detector”.

In either case, the agent uses the information in its stgteabiabout visible features
to determine its position “above” the object. Figure 1 shawgicture of this set-up.
We used a grid with 128 nodes placed on the surface of a urérepihe radius of the
sphere that defines the neighborhood has been set to 1.2 kelidts in approximately
50 enclosed “features” at each position. An action is represd by a number which is
associated with a grid node. One grid node is marked as bieéngdal node. Once the
agent has reached this node, an episode ends.
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Figure 2: Two-level reinforcement learning set-up.

We used the two-level-learning approach of [10] and [15}viich a ranking function
acts as a filter on the possible actions a reinforcementileg{@3] agent may take.
The reinforcement learning approach we use@-earning, which has the appealing
property that it learns the optimal state-action-pairsardipss of the policy used for
exploration. Figure 2 clarifies the architecture. Théres a transition function and

a reward function. The agent explores its environmentttienodes of the spherical
grid, through trial and error until the goal state is reachHue goal state is defined as
reaching the goal node, for which we choose the one fartivesy from the starting
location.

The arrival at the goal state triggers a reward of 100. Alleotactions are neither
rewarded nor punished. In spite of this fact, the agent dgeeh preference for the
shortest paths. This is due to our use of the discount fac&®; 1[ which is present in
the update equation

Qtr1(Se A) = 1(Se, A) + ¥ Max(Q(S(Se, A, A))- (16)

This equation updates th@-function of theQ-learning agent. Theré&; is the state at
timet andA; is the action chosen at that state. Because we only rewarfthtlestep

to the goal state, theffiect of y is that states closer to the goal state receive a larger
Q-value, thereby guiding the agent. We chgse 0.6.

The exploration policy is a modifieelgreedy policy withe = 0.1. The modification
makes the policy aware of the filtering and gives it the optiignore it once in a while.
One may picture the policy as a cascadegteedy policy, where the first step decides
whether or not to accept the filtering and the second stedecin the greediness.

Figure 2 also shows the presence of a “decode” module. Thikilea@reates the sym-
bolical state description from the state signal the envirent provides. In our case this
means essentially the enumeration of the visible featesQ-function is realized by
applying a hash function on the state description to cresitgtable integer number. We
want to stress the point that if a single number represenitiagiode was used as the
state description for th@-table the result would obviously be mor@&eient. However,
this would also remove the large state space and the noitedescription and would
therefore render the experiment inappropriate to modekbisput.



The conditionals used for revision are created with the &ith®Q-function. In each
stateS a revision with the conditional{S) takes place, whenever a single best acfion
has been identified by th@-function and the ranking function does not already believe
in the associated conditional.

Figures 4, 5, and 6 show the averaged cumulated rewards aralvétaged episode
lengths for a number of experiments. Each figure capturessthdts for a particular
value of the feature detection probability. The graphs sko@episodes averaged over
500 runs. Each episode had to end after 100 steps or when sihéamb been found.
Depicted are the learning progresses for agents witkeréntt-values as well as for a
“plain” Q-learner. The latter declines the usage of a ranking functiod hence the
usage of a second learning level.

Figure 4 shows the results of setting the feature detectiobgbility to Q5. The best
learning agent is the one with= 0. Note that the large state space clearly hinders
the plainQ-learner to show any progress within the 200 episodes. Quoiniyy these
observations, Figure 5 shows the results of setting theifeatetection probability to
0.9. Despite the relatively high feature detection probghithe plainQ-learner is still

not able to succeed.

To validate that the plai@-learner is in principle able to eventually learn a shorhpat
the goal state, we include Figure 6. In this experimentgdtires are always observed.
Hence, every state now has a unique description. In thisasitera plainQ-learner
shows improvements, butis still slower in reaching a higkléhan an agent augmented
with a ranking function.

So, the answer to the question asked in Section 6 about a gheglfort in Equation 4
ist = 0. This can be interpreted in such a way that the agent is ahildgentify its
current state by recognizing one feature alone. This allesv® simplify Definition 4
to

Definition5 M M :e (IF(P)NF(P)| >0 A (QA Q)

Requiring it to recognize more features hinders the ag&dising and therefore slows
down its progress.

A trained agent can use its experience to find its way towdrelgbal state. Some of
the possible results obtained in our experiments are showeach discussed feature
detection probability in Figure 3. The paths were generhgeaisking the agent’s rank-
ing function for directions and choosing a random directidrenever the agent had no
preference. All of theses paths lead more or less direaly fstart to goal. The shortest
path was learned for the feature detection probability 0f &s one may expect. As in
the other experiments, it took 200 episodes to train thetagen



Figure 3: Learned paths for feature detection probakslaife.5, 0.9, and 1.0 (from left
to right).

8 Discussion and Conclusion

This work discusses the applicability of ranking functi@am$wo very important cases.
These two cases are

1. large state spaces

2. noisy or incomplete observations.

Judging by the requirement of ranking functions to enuneealitpossible world mod-

els, their usage seems highly questionable at first sightueer, a careful modification

of the revision process to avoid an instantiation of a lang@iper of models as well as
the introduction of a domain specific entailment operatdrttea system that was able
to learn in a rather complex environment. In the same enmient, an agent without a
supplementing ranking function had failed.

Guided by our intend to use ranking functions in a reinforeebfearning context, em-
phasis was laid upon the revision with conditional inforimat This kind of information

occurs naturally in a context where observed states leattiting. Therefore, our main
concern was the revision= (B|A). This includes alsa = (B|A) andx = (B|A), because
changing the antecedent or consequent simply mearn$eaatit set of agreeing world
models. Also, in the case where we want an agento believe in a given conditional,
we may just revise it with the propositiokB.

Aside from philosophical discussions about belief revisdaad causation, ranking func-
tions seem to be used rather sparingly in computer scienwdhwie attribute to the dif-
ficulties that arise from the requirement of enumeratingvalld models. By presenting
an example application which bypasses thesiécdities we hope to encourage further
applications of ranking functions. Since the presentedngta is still rather artificial,
we nevertheless believe that it captures importafiicdities present in any computer
vision problem. The obvious direction for future reseachénce to actually develop



real computer vision applications in which a ranking fuantcontributes significantly.
For instance, in the process of developing the presentekl werapplied the two-level-
learning architecture to a (still simulated) task of objeciognition, where an agent had
to distinguish between similar three-dimensional objgtt$. There, the ability to use
solely features in the state description also removed tkd far establishing a global
co-ordinate system.
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