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Abstract We propose a combination of belief revision and reinforcement learning which
leads to a self-learning agent. The agent shows six qualities we deem necessary for a success-
ful and adaptive learner. This is achieved by representing the agent’s belief in two different
levels, one numerical and one symbolical. While the former is implemented using basic
reinforcement learning techniques, the latter is represented by Spohn’s ranking functions.
To make these ranking functions fit into a reinforcement learning framework, we studied the
revision process and identified key weaknesses of the to-date approach. Despite the fact that
the revision was modeled to support frequent updates, we propose and justify an alterna-
tive revision which leads to more plausible results. We show in an example application the
benefits of the new approach, including faster learning and the extraction of learned rules.

Keywords Hybrid learning system - Belief revision - Ranking functions -
Reinforcement learning

1 Introduction

This paper discusses an approach towards a system which represents a self-learning agent
that exhibits a number of important capabilities [14]. The list of these capabilities includes
perception, recognition, reasoning, planning, decision making, and goal oriented behavior
to name a few. There are six properties which in our opinion are necessary for an agent that
shows the aforementioned capabilities. In a nutshell, these are

1. hierarchical learning, to regard the differences between implicit and explicit learning

2. emerging mechanisms, especially the creation of symbolic representations from a numer-
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multi-directional transfer, i.e., the exchange of information between the learning levels
generalization, understood as the generation of abstractions from example

exploration, to allow the acquisition of belief from scratch

adaptivity, meaning the application of non-stationary belief models

Sk W

Some of these properties are already captured in reinforcement learning [22], an often applied
approach in learning from a series of perceptions. These properties are exploration, adaptivity
and, to some degree, emergent behavior, since a reinforcement learning agent has to learn
from experience alone while constantly updating a belief representation.

Because in its usual incarnation, reinforcement learning only numerically captures the
expected reward of available state transitions, it is practically impossible to allow further
reasoning on these numbers directly, neither for the agent, nor for a human being. We aim
to improve this and also include the other three properties by augmenting the reinforce-
ment learning agent with a second learning level. This is inspired by psychological find-
ings [2,8,15,20] which indicate that such a two-level learning architecture can explain some
of the human learning abilities. An earlier instance of such a two-level architecture is the
CLARION model [19] which encodes both, the numerical and the symbolical level in neural
networks.

However, to model the second learning level we adopt the more “natural” choice of employ-
ing a belief revision technique. Belief revision represents an agent’s belief symbolically and
hence facilitates further reasoning. Because the agent repeatedly revises its belief, we chose
Spohn’s ranking functions [12,18], which are designed to allow this. This combination has
been proposed before [13], influenced by [19,24], but this paper points out a major flaw in
the previously used revision, proposes a new one, and provides evidence for its superiority.

For the lower learning level, we use a basic Q-learning scheme. Since this work focuses
more on the higher learning level, we describe this only briefly. Also, while humans are able
to learn top-down or bottom-up [21], we focus on the bottom-up part, while the top-down
part is implemented rather implicitly though a restriction of the actions the agent may choose
from.

This work is also related to the topic of relational reinforcement learning [6]. Since it is
mainly concerned with representing relations in the Q-function, it also needs to include infor-
mation which is naturally described in symbolic form. Therefore, a number of approaches
such as defining a distance measure on the relations and applying a nearest-neighbor inter-
polation [5], using decision trees as Q-functions [3] or applying kernel methods have been
proposed [7].

While we have already described the general idea of our approach briefly in [9], we present
here the detailed formalism, extended examples, and give a theoretical justification.

2 Notes on Notation

This section briefly addresses the notations that will be used in later sections.

A variable a can represent a value from its domain ©,. Such a domain consists of discrete
values. One such realization of a variable is called a literal. We write literals by denoting the
variable as a subscript of its value (e.g., 3, or t,). A formula consists of literals and logical
operators such as A, Vv, =, etc. It is referred to by an uppercase letter, e.g., A := 0y V 15. A
negation of a literal refers to a formula. For example, if ©, := {1, 2, 3}, then

20 = (14 V3,) M
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and
and 15 A2, AT < 1y A1V 30) AT, (2)

By convention, the “A”-operator may be omitted.

The set of all variables is 2, while the set of variables that are realized in a formula A is
denoted by L 4.

A model is a conjunction in which exactly one literal exists for each variable. The set of
all models is referred to as 1. If we restrict the set of variables the models are derived from,
we write the variable set as a subscript, e.g. Ma;. Consequently, the set of models that are
derived from the variables present in a specific formula A is denoted by Mte;,. A model M
is said to be a model of a formula F, if F is true for the literals in M. We denote this as
M | F.If an agent believes in a formula A, which means A can be inferred from its belief
base «, we write & = A.

A conditional is denoted by A = B, where A is the antecedent and B is the consequent.
The set of conditionals we obtain when the antecedent A is replaced by a set of formulas §F,
is referred to as {§ = B} := {F = B|F € §}.

3 Linking Reinforcement Learning and Belief Revision

Let us assume an environment that is described as a set of states. State transitions are per-
formed depending on the current state and the current action carried out by the agent. The
transitions are rewarded. A goal of reinforcement learning consists in the identification of
beneficial actions, i.e., those actions that produce high rewards. More concisely, we have:

— A set of states &

— A setof actions 21

— A transition function§ : & x A - &
— Avreward functionr : & x A - R

Belief about good and poor actions is established by applying a learning technique. In our
approach we apply Q-learning. This technique has the convenient property of being policy-
free. This means that the result does not depend on the strategy with which the agent explores
the environment.

The agent’s experience is captured in the Q(uality)-function that assigns an expected
reward to each state-action-pair. The Q-function is updated after each state transition in the
following way:

0(S, A) =r+)/mjx Q(8', A) 3
with
§ = 8(S, A) )

One can interpret this formula in the way that the agent will believe an action A to be a
best action, if it has the highest Q(S, A) value for a given state S. This is the point where we
establish a connection to the high-level belief using belief revision in the following. Belief
revision is a theory of maintaining a belief base in such a way that the current belief is rep-
resented in a consistent manner [1,4]. We model our belief base « as an instance of Spohn’s
ranking function [17]. Such a ranking function maintains a list of all models. The models
the agent believes in are set to rank 0, while all ranks greater than O represent an increasing
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disbelief. We denote the rank a ranking function « assigns to a model M as « (M). By con-
vention, contradictions shall have the rank co. The operator “=" of Sect. 2 is defined for a
ranking function as

KEA:S AM, M EA: (M) =0
A (YMa, My E A : k(M) > 0) 3)

which requires a believed formula to have a model with rank 0 and its negation to have a
rank greater than 0.

In this work, the states and actions are described as formulas. Therefore it is possible to
store information on them in a suitable ranking function. For instance, let the state description
consist of n variables. Then, a complete state description has the form

S=SIASIA - ASy,
where each variable takes a value of its domain. An action is described by a single variable:
A=a
A formula composed of a conjunction of the state description and the action, such as
M=siAssAN---AS; ANa,

captures naturally the information of any state-action-pair. Since there are no other variables,
this formula is a model. Our ranking function « comprises exactly this kind of models. The
interplay between the ranking functions and the Q-function is described in the context of an
example application in Sect. 8.

4 The Revision of Ranking Functions

The current belief represented by the ranking functions consists of models, i.e., propositional
information in the form of conjunctions. However, during exploration the information gath-
ered and the information needed is in the form of conditionals. So, in a particular state § we
need to know if § = A, not SA.

To check, whether a ranking function believes in a conditional the agent can temporarily
believe its antecedent (known as conditioning) and check if the conjunction of the antecedent
and the consequent is also believed. At the same time, the conjunction of the antecedent and
the negation of the consequent must not be believed (that is, k(SA) > 0). Generally, we
do not have to condition « to find out whether a conditional is believed. It is sufficient to
compute the belief ranks r| = «(SA) and r, = «(SA). If r| < r», the conditional will be
believed. This comparison of ranks is done whenever the agent needs to decide what action
to take.

More difficult than querying the belief base is its update, called revision. The revision
operator is “x”. Conditionals in belief revision are usually denoted by (A|S), where S is
the antecedent and A the consequent. The meaning of (A|S) is not exactly the same as
S = A [12]. The latter means that S implies A irrespective of the values of other variables.
In contrast, (A]S) expresses that A will be believed if « is conditioned with § and S alone,
therefore a revision (x * (S7')) may not result in A being believed.

In our context of reinforcement learning, if S is a complete state description, it will cap-
ture all the available information. Then, an expression such as ST, 7T # S is necessarily a
contradiction and therefore not believed. In this case, the meaning of § = A and (A[S) is
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the same. Therefore, on a first attempt, we use (« * (A[S)) to revise ¥ with a conditional
analogous to [13]. Then, we examine the consequences of such a decision.
After a revision of « with the conditional § = A, we want

(1c % (A1) (SA) < (i * (A|$)(SA) ©)
to hold. If this is already the case, nothing has to be done. Otherwise the following holds:

Theorem 1 If i (SA) > «(SA), then the ranking function «' derived from « by rearranging
the models using

VM € M : i (M) = (i % (A|S) (M)

_[K(M)—K(S:>A) MES= A

a+b ‘M ESA @

with

a=«k(SA) —«k(§S=A)+1
b =k(M)—«(SA)

will result in K’ (SA) < k' (§A). Consequently, k' expresses the beliefin § = A.

Proof Let us partition the models in « into three disjoint sets:

M ={M|M =S},
My = {M|M £ SA}, and
M3 = {M|M = SA).

We address the first rule of Eq. 7 first. The purpose of it is to let «'(§ = A) = 0. The
models in Mi; UM, are those that model § = A. Therefore we reduce in rank all models in
Mty UM by «(S = A) which is the rank of the lowest ranked model in 27; U 901,. Hence,
k(S = A) = 0. We now consider term a of the second rule. We want «’(SA) < «’(SA)
to hold. That means, after revision, the lowest rank of the models in 9t; needs to be at least
«'(SA)+ 1. Since the models of S A are found in 91, and are therefore shifted by the first rule,
k' (SA) = k(SA) — k(S = A). Adding 1 is arbitrary but sufficient to meet the requirements.
Term a alone would shift the ranks of all models of 913 to the rank «’(SA) + 1. To preserve
the relative ranking of the models, we need to add term b to the second rule. Since k(SA)
is the rank of the lowest ranked model of 213, this very model is still shifted to the rank
«'(SA) + 1. The other models, however, now keep their distance. O

5 Negated Consequents

What will happen if « is revised with § = A? Then, an application of Eq. 7 will result in
(e % (AISN(SA) < (e x (AISH(SA).

This does not mean that all models of § A have a rank lower than «(SA). We show this in
the following example. Let us define two variables a and b with their domains ©, := {1, 2}
and ©, = {1,2, 3}. The current belief is represented by a ranking function, where the
first entry represents the current belief; that means its model has rank 0. Now, we want the
following ranking function ;. to believe 1, = 1p:
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21 21
i
22 || Kneg* (51120 , 22
Kneg = 12 7 Kpeg = 12 ¥
23 11 23
13 13

which beliefs 1, = 25, but not 1, = 3. This behavior is perfectly sane since (1, A 25) A
(14 A 3p) is a contradiction. But the belief in (1, A 1;) is stronger than the belief in (1, A 35).
If we revise « with 1, = 2, then the result will be

21

— 22
e = (Chog % (25110) = : ©)
11 23
13 12

This expresses a belief in 1, = 1, which is certainly not what we expect an agent to believe
if it has just been exposed to the information 1, = 15 and 1, = 2;. Instead, a belief in
1, = 3, seems reasonable.

6 Generalization

We examine a revision by Eq. 7 in the context of generalization by examining what effect
the omission of variables in a formula has. Let us partition the set of variables U into three
non-empty subsets:

U =X UY U3, with
XNY=0,XN3=0,andYN3=0 (10)

Next, take a model from each of the subsets, such as

X € My
Y € My (1)
Z € M3

The revision « * (Z|X) will lead to a belief base that believes a particular model M’ of
{Mx = Z} C {Mxuy = Z}.

Next, we consider the other models € := {Mxyuy = Z} \ M’. First, there is the obvious
restriction that C € € is not allowed to contradict Z. We already ruled this out in Eq. 10. Let
us look at the following sample ranking functions:

212 211
211 222

Kgen = | n) and kg = 212 (12)
222 221

We can easily see that kg, believes 2, = 2. since kgen (2, = 2.) = 0, but at the same time
Kgen (24 A2p) = 2.) = 1 > 0. A revision with 2, = 2, using Eq. 7 would not change k.,
at all.
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The same issue occurs considering a revision with a conditional that has a negated conse-
quent, such as 2, = 2.. We show this for kgew which believes in this conditional and would
not be changed by a revision with 2, = 2. using Eq. 7. Nevertheless it does not believe
(24 A 25) = 2.. We conclude that Eq. 7 does not produce a ranking function that is capable
of generalization.

7 An Alternative Revision

Because of the described drawbacks we suggest an alternative revision technique. The pro-
posed revision introduced in this section, («x x (A]S)), utilizes a new operator «[A] which
returns the highest disbelief among all models of A. After a revision of « with the conditional
S = A, we still want the equivalent of Eq. 6 to hold:

(k% (AI$)(SA) < (i % (A|S)(SA) (13)
This is investigated in the following

Theorem 2 Ifk(SA) > «(SA), then the ranking function «' derived from « by rearranging
the models using

VM € M : k' (M) := (i x (A|S) (M)

kM) —k(§=>A) MES=A (14)
e+ ‘M E SA
with

a =«k[SA]l—«k(S=A)+1
b’ = k(M) — k(SA)

will result in k' (SA) < «'(§A). Consequently, k' expresses the belief in S = A.

Proof Let iy := (k * (A]S)) and k3 := (k x (A|S)). Since «k[A] > «(A), by application of
Theorem 1 can be deduced that «» (SA) = k1 (SA) < k((SA) < k2 (SA). O

So, concerning the preservation of current belief, this method works just as good as Eq. 7,
but introduces greater changes. In the following discussion of the properties of (i x (A[S))
with respect to negation and generalization we justify these changes. First, we consider
negation.

Theorem 3 Let t € D, and ' := (i x (£,4]5)). Then
Ve e D\t 1’ (S = 1r,) <«'(S=ty). (15)
Proof By applying Eq. 14, we obtain «'(St,) > «’[St,]. This is equivalent to
Vr e D, \ t k' (Sry) < i/ (Sty).

Hence, if § is believed, the inequality of Eq. 15 will hold strictly. On the other hand, if § is
believed, then «'(§ = r,) = 0 as well as «'(S = t,) = 0. O

@ Springer



K. Haming, G. Peters

Theorem 3 induces that the observed inconsistency described in Sect. 5 does not appear after
the repeated application of Eq. 14. Indeed, a revision of «;.¢ with (15]1,) now results in

2
. 22
Kr/zeg = (KnEg * (1b|1a)) = 12 . (16)
23
13
11

Also,

22

eg = (Wheg * Gl12) = | g (17

13
11
12

which illustrates that 1, = 3, is now believed as expected.
We now consider generalization with our alternative revision technique. Again, Egs. 10
and 11 are given.

Theorem 4 Let X € My, Z € Mz, and &' := (« x (Z|X)). Then

VY e My i/ (X AY = Z) </ (X AY = 7). (18)

Proof The proof is an analog of the proof of Theorem 3. After applying Eq. 14, we obtain
«'(XZ) > «’[X Z]. This is equivalent to

VY eMy (k' (XAYAZ) <k (XANY ANZ)

Hence, if X A Y is believed, the inequality of Eq. 18 will hold strictly. On the other hand, if
X A Y isbelieved, then« (X AY = Z) =0aswellas« (X AY = Z) = 0. O

A similar theorem will hold, if the consequent is negated. To complete this section, we show
that the previous counter-examples can be resolved using Eq. 14. A revision of «,., with
(2:124) now yields

212 212
211
221 (ngn*(zclza))
Kgen = 500 | = gen = |2pn |- (19)
211
221

This Kém expresses a beliefin2, A 1, = 2, and 2, A 2, = 2.
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A revision of kgg; with 2, = 2, provides

211 211
223
212 | G Cel2e)
ke = | ooy | T = | 0o 20)
222
212

which now believes 2, A 1, = 2. as well as 2, A 2, = 2..

8 Application

We now examine the effect of the proposed algorithm in a gridword application. For this
application, six cases are examined.

plain Q-learning

ranking-function-augmented Q-learning with application of Eq. 7
ranking-function-augmented Q-learning with application of Eq. 14

plain Q-learning with futile information

ranking-function-augmented Q-learning with application of Eq. 7 and futile information
ranking-function-augmented Q-learning with application of Eq. 14 and futile information

SARSANE ol

Ranking-function-augmented Q-learning means Q-learning where conditionals are
extracted from the Q-Table. These conditionals revise the agent’s ranking function and this
ranking function acts as a filter for the actions afterward. This filter is implemented as a
two-stage e-greedy policy, in which the first stage decides whether or not the actions should
be filtered and the second stage decides on the greediness. In both stages, we set € = 0.1.
Figure 1 depicts this architecture.

We add futile information to model the case where the agent perceives properties of its
environment that are not helpful with regard to its actual goal. This enlarges the state space
and we therefore expect the plain Q-learner to perform worse in such an environment. The
ranking-function-augmented Q-learners should be able to generalize and therefore identify
the futile bits.

The generalization is performed in the same manner as in [13] by counting the pattern
frequency. The general idea is to keep track of how often sub-patterns of antecedents are used
in the context of particular consequents. If a sub-pattern occurs frequently enough, we revise
the ranking function with that sub-pattern instead of the complete state description. This is

Environment

4{ decode HRanking func.

e

. ]

— State signal ——> Reward signal
—=> Action signal —> Internal reasoning

Fig.1 Augmentation with a ranking function
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Fig. 2 The cliff-walk gridworld; superimposed the learned path after 100 episodes. The path color indicates

the expected reward by displaying the value of min(1, %) using the displayed color key

the point, where the behavior of the revision of ranking functions in the light of multi-valued
logic and generalization matters.
The state description is also taken form [13] and consists of the following variables.

target lies north/south: tyg € {neither, N-ahead, N-aside, S-ahead, S-aside}
target lies east/west: tgpw € {neither, E-ahead, E-aside, W-ahead, W-aside}
target distance: tp € {far (> 5), middle (< 5), close (< 2)}
obstacle north: oy € {true, false}
obstacle east: op € {true, false}
obstacle south: og € {true, false}
obstacle west: ow € {true, false}
color: ¢ € {black, white, red, green, blue, yellow}
action: a € {go-west, go-east, go-north, go-south}

The gridworld itself is the cliff-walker example from [22]. There it has been used to illus-
trate the difference between on- and off-policy learning. Figure 2 depicts the set-up. The goal
is to reach the green square, starting from the red one. Entering the black squares (chasm!)
results in a large negative reward. The main parameters in a nutshell are:

reward for reaching goal = 100
reward for a single step towards the goal = 0.5
reward for every other single step = -1 21
reward for stepping into the chasm =—-10

maximum number of steps in each episode = 100

Whether a step takes the agent towards the goal is measured by applying the Manhattan
metric. Recording the reward over 300 episodes, averaged several times, yields the results
depicted in Fig. 3.

It is evident that revising with Eq. 14 clearly surpasses revising with Eq. 7. The latter
is worse than a plain Q-learner and even seems to degrade in performance over time. An
explanation of this behavior may be that the ranking function gets contaminated by harmful
conditionals. However, this has not been examined further in this work.

Let us risk a peak into the rules the agent has established using Eq. 14 and discuss their
meaning. The most general rules learned are

S-ahead,, ; A neither,,,, = go-down, 22)
S-aside;, ¢ A E-ahead,,,, = go-right, (23)
neither,, ; A E-ahead,,, = go-right,. 24)
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Fig. 3 The diagrams show the rewards over the course of 300 episodes. The left diagrams show the averaged
results of 1000 runs for the ranking-function-augmented learners. Since the plain Q-learner exhibits a large
variation, its curve has been averaged 2000 times. Because of the still strong variations, the right diagrams have
been added that show a bezier-smoothed version of the left data. The new-curves are results of an application
of Eq. 14 with and without futile information, the old-curves show results of Eq. 7 with and without futile
information, and the plain-curves show results of a plain Q-learner with and without futile information

Equation 22 applies for the rightmost column of the gridworld and tells the agent to go down
towards the goal. Equation 23 tells the agent to go right if the goal is in the south-east direc-
tion. This applies for the most part of the gridworld above the chasm row, except for the upper
right triangle for which the description would be S-ahead,,; A E-aside,,, . Finally, Eq. 24
applies at the starting position and prevents the agent from falling into the chasm right away.

Note the complete absence of obstacle descriptions. The relative position to the goal seems
to be perfectly sufficient to determine the next best action.

The computational cost of the described improvement depends on the representation of
the ranking function. If the ranking function is implemented by creating every possible con-
junction beforehand, then Eqs. 7 and 14 will lead to roughly the same running time, because
«[A]is the rank of A in a reversed «. Unfortunately, the number of conjunctions has a com-
binatorial growth rate with regard to the number of variables in the state description. Our
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very small gridworld example already has 4800 possible conjunction without and 28800
conjunction with the futile information.

In a different approach we initialized the ranking function without any conjunctions
to be able to handle larger problems. Conjunctions not occurring in the ranking function
received a rank of infinity. Then the revision process generates conjunctions as needed.
Clearly, this breaks the symmetry between « (A) and «[A]. This approach is described in
more detail in [11]. Code is carried out to generate conjunctions that comply with a given
formula minus those that are already in the ranking function. When computing «[A] for
some A we have to scan the whole ranking function and count the number of compliant
conjunctions |[{M|M | A}| to find out if there are any left with rank infinity. The run-
time of this approach is about 1.5 times larger than the runtime of the previously described
approach.

9 Conclusion

We presented a self-learning agent which exhibits all the basic properties we consider neces-
sary for such a system [14]: hierarchical learning, emerging mechanisms, multi-directional
transfer, generalization, exploration, and adaptivity.

Exploration, adaptivity, and emerging mechanisms are already properties of reinforce-
ment learning agents. Since we build on reinforcement learning, our agent obviously exhibits
them. The architecture we chose creates a hierarchical learning system, where the levels of
the hierarchy communicate. The bottom-up communication is implemented via the creation
of conditionals from the numerical values of the Q-table. Hence, the lower level generates
the information which revises the higher level. The top-down direction, on the other hand,
is only given implicitly through a filtering of available actions by the higher level rules. The
presence of a higher symbolical level also allowed us to inspect and interpret the learned
rules.

The main improvements this particular agent exhibits were obtained by analyzing the
to-date revision operator of Spohn’s ranking functions. By investigating a number of impor-
tant cases which appear in a reinforcement learning agent concerning iterated belief revision,
we were able to identify an improved revision method. Some apparent implausibilities con-
cerning unobserved variables and negations were found to be resolved by our approach.

We did not discuss the application of different belief strength in this work. In general,
one may specify the strength with which a given conditional may be believed by a ranking
function as a second parameter of the revision operator. In this work, the belief strength is
implicitly set to one. However, one can imagine an agent which may revise a conditional
with a strength depending on its Q-value.

Because the agent is able to generate a symbolical belief representation from experience,
it lays a foundation on which more elaborate methods of reasoning and inference may be
applied. Since ranking functions are closely connected to Bayesian networks [18], recent
advances [23] in the field may be transferred to such agents. However one may also proceed
to apply long-studied techniques from the field of theorem proving [16].

In either case, how this can be used to further improve the agents performance needs
to be examined in future research. Also, the application of this approach to both, more
complex and more practical domains needs to be studied. We made a first step towards
a more real-world application by applying the two-level-learning architecture to a task of
object recognition, in which the agent had to distinguish between similar three-dimensional
objects [10].
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