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It is a great honor for me, and a great pleasure at the same time, having the
opportunity to give a talk at a conference dedicated to Richard and, in a wider
sense, to Jacques Tits as well. My personal acquaintance with Richard goes back
almost twenty years, and during this very long period, he has been, and continues
to be, a constant source of personal friendship and mathematical inspiration. For
both I am very grateful.

The background of my lecture today is dominated by the Fg-lattice, this famous
indecomposable unimodular positive definite quadratic lattice of rank 8 over the
integers that has come to the fore again a few weeks ago when Maryna Viazovska
[9] proved that the densest sphere packing of eight-dimensional euclidean space is
the Eg-lattice sphere packing having density 7*/384. My aim today is much more
modest, focusing instead on a discovery made by Coxeter [1] in 1946, to the effect
that the Fg-lattice carries the structure of an octonion algebra over the integers
whose generic fiber is the unique octonion division algebra over the rationals. To
put the historical record straight, I should add that Coxeter’s discovery had its
predecessors, most notably a similar construction due to Dickson [2] dating back
to 1923, and a result on the ideal structure of the Dickson octonions due to Mahler
[5] from 1942.

My principal objective in the present talk will be to provide you with an ele-
mentary purely algebraic formalism that collapses to Coxeter’s and Dickson’s con-
structions once the appropriate specifications have been made. This formalism
is based upon one of the most fruitful among the classical constructions in non-
associative algebra, namely, the Cayley-Dickson construction. The natural habitat
of the Cayley-Dickson construction are what I call

1. Conic algebras.

Working over an arbitrary commutative ring k£ remaining fixed throughout, conic
algebras, more commonly known under the name algebras of degree 2 (McCrimmon
[6]) or quadratic algebras (Osborn [7]), are defined as follows.

1.1. The notion of a conic algebra. By a conic algebra over k I mean a
non-associative k-algebra C satisfying the following four conditions.



October 4, 2016 E8-Cox.-0Oct.tex

(i) C is unital, i.e., it contains an identity element.
(ii) C is finitely generated projective as a k-module.

(iii) The identity element of C' is unimodular, so there exists a linear form A: C' —
k such that A(1¢) = 1.

(iv) There exists a quadratic form nc: C — k, necessarily unique and called the
norm of C, such that ne(1¢) =1 and

22 —to(x)r +no(z)le =0
for all z € C.

Here t¢: C — k is the trace of C defined as the linear form z — (Dn¢)(1¢, x),
where Dnc¢ stands for the bilinearized norm given by

(Dnc)(z,y) = nc(x +y) —nc(z) —nc(y)

for all z,y € C.
We then define the conjugation of C' as the map

to: C—C, zr—7T:=tc(x)lc —x,
which is linear of period 2 but will fail in general to be an (algebra) involution.

Before presenting some examples, it will be convenient to discuss two

1.2. Regularity conditions. A conic algebra C over k is said to be non-singular
if the natural map from the k-module C to its dual given by the bilinearized norm,
ie.,

cC—C*, zr—ncx,—),

is a (linear) bijection. By contrast, C is said to be weakly non-singular if the
aforementioned map is (only) injective. Weak non-singularity is not nearly as
useful a notion as non-singularity since, for example, non-singularity is stable
under arbitrary base change while weak non-singularity is not.

1.3. Examples. (a) The most trivial example of a conic k-algebra is the base
ring itself, with norm, trace and conjugation respectively given by ni(a) = o2,
tr(a) = 2a and & = . This conic algebra is non-singular if and only if % € k.
(b) Let R be a quadratic algebra over k, so R is unital and finitely generated
projective of rank 2 as a k-module. Then R is a conic k-algebra, with norm, trace
given by ng(x) = det(L,), tg(x) = trace(L,), where L,: R — R, y — zy is the
left multiplication affected by « € R. Recall that (i) R is commutative associative,
(ii) R is non-singular if and only if it is quadratic étale, and (iii) its conjugation is
an automorphism.

(¢) Quaternion algebras over k are non-singular associative conic k-algebras that
have rank 4 as finitely generated projective k-modules.

(d) Octonion algebras C over k are non-singular alternative conic k-algebras that
have rank 8 as finitely generated projective k-modules. Their conjugation is an
involution, and their norm permits composition: nc(zy) = nce(z)nc(y). Here
alternativity of C' means that the associator, i.e., the map

CxCOxC—C (2,y,2) — [1,y, 2] = (2y)z — 2(y2)

is an alternating (trilinear) function of its arguments.
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2. The Cayley-Dickson construction.

After this short digression into conic algebras, we will now be able to introduce
the Cayley-Dickson construction.

2.1. Defining the Cayley-Dickson construction. Itsinput consists of a conic
k-algebra B and a scalar pu € k. Its output is a k-algebra C' := Cay(B, p) living
on the direct sum B & Bj of two copies of B as a k-module under a bilinear
multiplication uniquely determined by the condition that

(i) B (identified in C through the initial summand) is a subalgebra, and

(ii) the multiplication rules

u(vj) = (vu)j, (vj)u=(vi)j, (vj)(wj)= pwv
hold for all u,v,w € B.

It is then straightforward to check that C is again a conic k-algebra, with identity
element, norm, trace and conjugation respectively given by

le = 1g,
ne(u+vj) = np(u) — pnp(v),
tc(u+1)j) = tB(u),

u+vj=u—vj
for all u,v € B.

Properties of conic algebras preserved by the Cayley-Dickson construction are in
short supply. On the positive side, we can tell rather precisely to what extent cer-
tain properties get lost when performing the Cayley-Dickson construction. Calling
an algebra flexible if it satisfies the identity (zy)xr = z(yx) =: zyz, the principal
result in this direction, basically well known, may be summarized as follows.

2.2. Theorem. Let B be a conic k-algebra, p € k and C := Cay(B, ).

(i) e is an involution iff tp is an involution.

(ii) C is flexible iff B is flexible.

(iv) C is associative iff B is commutative associative.

)
)
(iii) C is commutative iff B is commutative and has trivial conjugation.
)
(v) C is alternative iff B is associative.

)

(vi) C is weakly non-singular iff B is weakly non-singular and p is not a zero
divisor in k.

(vii) C is non-singular iff B is non-singular and p is invertible in k.

By Thm. 2.2 (vii), it is impossible to realize octonion algebras that are indecom-
posable as quadratic spaces, like the Coxeter (or Dixon) octonions or the examples
constructed by Knus-Parimala-Sridharan [4] and Thakur [8], by means of the Cay-
ley Dickson construction.

In order to find a way out of this impasse, we will therefore introduce a non-
orthogonal version of the Cayley-Dickson construction. This is best motivated by
first looking at a
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2.3. Motivation of the orthogonal Cayley-Dickson construction. The
best motivation for the orthogonal Cayley-Dickson construction is arguably the
following. Let C be an alternative conic algebra over k and suppose we are given
a unital subalgebra B C C as well as an element [ € C' that is perpendicular to B
relative to the bilinearized norm. Then B + Bl C C' is the subalgebra generated
by B and [, and the multiplication rules 2.1 (ii) hold with j replaced by I, and pu
replaced by —nga(1).

3. The non-orthogonal Cayley-Dickson construction.

The idea behind the non-orthogonal Cayley-Dickson construction consists in look-
ing at the motivation 2.3 but dropping the assumption that [ be orthogonal to B
relative to the bilinearized norm of C. Then u +— (Dn¢)(u,l) defines a linear form
s on B that measures the deviation of [ from being orthogonal to B, and arguing
as before, it follows that B + Bl C C continues to be the subalgebra generated by
B and [ whose algebra structure can be described by explicit formulas involving
only B, s and p := —n¢(l). Ignoring the background of these formulas, we arrive
at the following definition.

3.1. Defining the non-orthogonal Cayley-Dickson construction. The in-
put of the non-orthogonal Cayley-Dickson construction consists of a conic k-
algebra B, a scalar p € k and a linear form s: B — k. Its output is a k-algebra
C := Cay(B; p, s) living on the direct sum B@® Bj of two copies of B as a k-module
under the unique bilinear multiplication that

(i) makes B (identified in C' through the initial summand) a subalgebra, and
(if) with A := s(1p), obeys the multiplication rules
u(vj) = [ — s(vu)lp + s(u)v + s(v)u — Aou] + [vu]F, (1)
(vi)u = [ — s(w)v + Aou] + [va]j, (2)
(vj)(wj) = [ — As(wv)1p + As(v)w + As(@)v — Nwv + pwv] (3)
+ [s(wv)1p — s(v)w + Awv]j
for all u,v,w € B.

It follows that C is again a conic k-algebra whose identity element, norm, trace
and conjugation are respectively given by

le =1,
nou -+ vf) = np(u) + s(ou) — pmp(v),

for all u,v € B.
Our next aim is to derive an analogue of Thm. 2.2. This will be achieved by inclu-

ding conditions on the linear form s and by a horrendous amount of computations.

3.2. Theorem. Let B be a conic k-algebra, p € k, s: B — k a linear form,
A:=s(1p) and C := Cay(B; u,s).

(i) te is an involution iff tp is an involution.

(ii) C s flexible iff B is flexible and s is alternative, i.e., the expression
s([u, v, w]) € k is alternating (trilinear) in u,v,w € B.
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(iii) C is commutative iff B is commutative, has trivial conjugation and s(u)v =
s(v)u for all u,v € B.

(iv) C is associative iff B is commutative associative and
s(uv)lp = s(u)v + s(v)a — Aav
for all u,v € B.

(v) C is alternative iff B is associative and Hp s = 0, where Hp s: BxBxB —
B is the trilinear map defined by

Hp o(u,v,w) == — s(uvw)lp + s(uv)w + s(vw)a — s(uw)v

+ s(u)vw — s(v)uw — s(w)uv + Advw
for all u,v,w € B.

The condition on s in part (iv) of the theorem is easily verified if B is a quadratic
k-algebra. Hence we obtain

3.3. Corollary. If B is a quadratic k-algebra, then C is associative.

The condition on s in part (v) of the theorem looks particularly frightening but,
actually, it isn’t because a straightforward computation shows that, for any asso-
ciative conic algebra B,

e [ := Hp , is alternating,
e H(u,v,1p) = H(u,v,uv) =0 for all u,v € B.

This is easily seen to imply H = 0 if B is locally generated by two elements, e.g.,
a quaternion algebra. Hence we obtain

3.4. Corollary. If B as in Thm. 3.2 is associative and locally generated by two
elements, then C is alternative.

4. Towards non-singularity.

We now come to a property of the non-orthogonal Cayley-Dickson construction
that has no analogue in the orthogonal case. More specifically, we present two in-
stances of a rather general situation where the input algebra of the non-orthogonal
Cayley-Dickson construction is singular but the output algebra is not. Thus no
obvious analogue of Thm. 2.2 (vii) seems to exist in the non-orthogonal case.

4.1. Fields of characteristic 2 (Garibaldi-Petersson [3]). Let k be a field of
characteristic 2 and K/k a purely inseparable field extension of finite degree and
exponent at most 1. Then K is a conic k-algebra whose bilinearized norm is
identically zero; in particular, K is not even weakly non-singular. Let p € k and
s: K — k be a linear form normalized by the condition s(1x) = 1. Then C :=
Cay(K; i, s) is a non-singular conic k-algebra whose norm is a Pfister (quadratic)
form over k; in fact, every anisotropic Pfister form over k£ can be written in this
manner. Moreover, if K has degree 4 over k, it is generated by two elements, so
Cor. 3.4 shows that C' is alternative, hence an octonion algebra over k.
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4.2. Integral domains. We now assume that k is an integral domain and write
F := Quot(k) for its quotient field. We let B be an alternative conic k-algebra,
s: B — k a linear form and u € k a scalar.

Let us assume that B is weakly non-singular, so the natural map from the
k-module B to its dual determined by the bilinearized norm is injective. Since F'
is a flat k-algebra, the scalar extension Bp is weakly non-singular over F. But
it is also finite-dimensional, so in actual fact B is an honest-to-goodness non-
singular composition algebra. Now consider the scalar extension sp: Bp — F
of s from k to F. Since Bp is non-singular, there is a unique a € By such that
sF =npg(a,—), and a moment’s reflection shows that a belongs to

B* = {u € Br | (Dng,)(u,v) € k for all v € B},

the dual module of B in Br. But Bf D B is is a finitely generated projective
k-module, so there exists a non-zero element & € k satisfying B* C §~!B. Hence
a = 6 tag for some ag € B, which implies ¢ := ng(ag) € k.

4.3. Theorem. With the notation and assumptions of 4.2, for the conic algebra
C := Cay(B; u, s) to be non-singular it is sufficient that ¢ + 8% be invertible in k.

However, this condition is not necessary, even if we assume that !B is minimal
among the principal “fractional” ideals of B containing BY.

4.4. Application. Let By be the algebra of Hamiltonian quaternions over the
reals and 1,1, j, k the standard “Hamiltonian” basis of By. Then

B:=7107i®7Zjo 7k

is a weakly non-singular conic algebra over k = Z satisfying Bf = %B C Bgp. Thus
we may choose 0 = 2 in Thm. 4.3. We put p := —1 and s := np,(a, —)|p where

1
a:= gaoeBﬁ, a:=1+i+jeB.

Then € := np(ag) = 3, hence £ + 6?1 =3 —4 = —1 € Z*. Thus Thm. 4.3 implies
that C' := Cay(B;—1,s) is an octonion algebra over Z. Moreover, one checks
easily that its generic fiber Cg is isomorphic to Cay(Bg, —1), i.e., to the unique
octonion division algebra over the rationals. Thus the quadratic lattice underlying
C is the Eg-lattice, forcing C to be the algebra of Coxeter octonions. In fact, our
construction mimics almost verbatim Coxeter’s original description presented in
1]

On the other hand, put
1
hi=S(1+i+j+k).

Then
B’ :=7Z1®Zi+ Zj + Zh,

the algebra of Hurwitz quaternions, is weakly non-singular over Z such that B C
B’, hence

1 1
B*CB'=_-BC:B.
2 2
Thus again we may assume § = 2. Again we put p := —1; but now we deviate
from the preceding choices by setting s := np,(a, —)|p’ where

1
a:= 5aoeB’ﬁ, ap:=1+i€e BCB.
Then ¢ = np/(ag) = 2, hence ¢ + 6%y = 2 —4 = —2 ¢ Z*. And yet the non-
orthogonla Cayley-Dickson construction C’ := Cay(B’; —1, s) turns out to be ex-
actly the octonion algebra over the integers exhibited by Dickson in [2].
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4.5. Open questions. (a) By 4.2, Thm. 4.3 also applies when By = O is the
algebra of Graves-Cayley octonions over the reals. Arguing as in 4.4, we find
unimodular positive definite quadratic lattices of rank 16 over Z carrying the
structure of a sedenion algebra over Z with generic fiber Cay(Bg,—1) over Q.
These sedenion algebras have zero divisors. Thanks to the work of Witt [10], their
underlying quadratic lattices are either indecomposable or the direct sum of two
copies of the Fg-lattice. It is easy to see that the decomposable case of the direct
sum of two FEjg-lattices can be obtained from our construction. But is this true
also for the indecomposable case?

(b) Is it possible to realize the examples of Knus-Parimala-Sridharan [4] by means
of the non-orthogonal Cayley-Dickson construction? I suspect the answer is yes.
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