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It is a great honor for me, and a great pleasure at the same time, having the
opportunity to give a talk at a conference dedicated to Richard and, in a wider
sense, to Jacques Tits as well. My personal acquaintance with Richard goes back
almost twenty years, and during this very long period, he has been, and continues
to be, a constant source of personal friendship and mathematical inspiration. For
both I am very grateful.

The background of my lecture today is dominated by the E8-lattice, this famous
indecomposable unimodular positive definite quadratic lattice of rank 8 over the
integers that has come to the fore again a few weeks ago when Maryna Viazovska
[9] proved that the densest sphere packing of eight-dimensional euclidean space is
the E8-lattice sphere packing having density π4/384. My aim today is much more
modest, focusing instead on a discovery made by Coxeter [1] in 1946, to the effect
that the E8-lattice carries the structure of an octonion algebra over the integers
whose generic fiber is the unique octonion division algebra over the rationals. To
put the historical record straight, I should add that Coxeter’s discovery had its
predecessors, most notably a similar construction due to Dickson [2] dating back
to 1923, and a result on the ideal structure of the Dickson octonions due to Mahler
[5] from 1942.

My principal objective in the present talk will be to provide you with an ele-
mentary purely algebraic formalism that collapses to Coxeter’s and Dickson’s con-
structions once the appropriate specifications have been made. This formalism
is based upon one of the most fruitful among the classical constructions in non-
associative algebra, namely, the Cayley-Dickson construction. The natural habitat
of the Cayley-Dickson construction are what I call

1. Conic algebras.

Working over an arbitrary commutative ring k remaining fixed throughout, conic
algebras, more commonly known under the name algebras of degree 2 (McCrimmon
[6]) or quadratic algebras (Osborn [7]), are defined as follows.

1.1. The notion of a conic algebra. By a conic algebra over k I mean a
non-associative k-algebra C satisfying the following four conditions.
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(i) C is unital, i.e., it contains an identity element.

(ii) C is finitely generated projective as a k-module.

(iii) The identity element of C is unimodular, so there exists a linear form λ : C →
k such that λ(1C) = 1.

(iv) There exists a quadratic form nC : C → k, necessarily unique and called the
norm of C, such that nC(1C) = 1 and

x2 − tC(x)x+ nC(x)1C = 0

for all x ∈ C.

Here tC : C → k is the trace of C defined as the linear form x 7→ (DnC)(1C , x),
where DnC stands for the bilinearized norm given by

(DnC)(x, y) := nC(x+ y)− nC(x)− nC(y)

for all x, y ∈ C.
We then define the conjugation of C as the map

ιC : C −→ C, x 7−→ x̄ := tC(x)1C − x,

which is linear of period 2 but will fail in general to be an (algebra) involution.

Before presenting some examples, it will be convenient to discuss two

1.2. Regularity conditions. A conic algebra C over k is said to be non-singular
if the natural map from the k-module C to its dual given by the bilinearized norm,
i.e.,

C −→ C∗, x 7−→ nC(x,−),

is a (linear) bijection. By contrast, C is said to be weakly non-singular if the
aforementioned map is (only) injective. Weak non-singularity is not nearly as
useful a notion as non-singularity since, for example, non-singularity is stable
under arbitrary base change while weak non-singularity is not.

1.3. Examples. (a) The most trivial example of a conic k-algebra is the base
ring itself, with norm, trace and conjugation respectively given by nk(α) = α2,
tk(α) = 2α and ᾱ = α. This conic algebra is non-singular if and only if 1

2 ∈ k.

(b) Let R be a quadratic algebra over k, so R is unital and finitely generated
projective of rank 2 as a k-module. Then R is a conic k-algebra, with norm, trace
given by nR(x) = det(Lx), tR(x) = trace(Lx), where Lx : R → R, y 7→ xy is the
left multiplication affected by x ∈ R. Recall that (i) R is commutative associative,
(ii) R is non-singular if and only if it is quadratic étale, and (iii) its conjugation is
an automorphism.

(c) Quaternion algebras over k are non-singular associative conic k-algebras that
have rank 4 as finitely generated projective k-modules.

(d) Octonion algebras C over k are non-singular alternative conic k-algebras that
have rank 8 as finitely generated projective k-modules. Their conjugation is an
involution, and their norm permits composition: nC(xy) = nC(x)nC(y). Here
alternativity of C means that the associator, i.e., the map

C × C × C −→ C, (x, y, z) 7−→ [x, y, z] := (xy)z − x(yz)

is an alternating (trilinear) function of its arguments.
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2. The Cayley-Dickson construction.

After this short digression into conic algebras, we will now be able to introduce
the Cayley-Dickson construction.

2.1. Defining the Cayley-Dickson construction. Its input consists of a conic
k-algebra B and a scalar µ ∈ k. Its output is a k-algebra C := Cay(B,µ) living
on the direct sum B ⊕ Bj of two copies of B as a k-module under a bilinear
multiplication uniquely determined by the condition that

(i) B (identified in C through the initial summand) is a subalgebra, and

(ii) the multiplication rules

u(vj) = (vu)j, (vj)u = (vū)j, (vj)(wj) = µw̄v

hold for all u, v, w ∈ B.

It is then straightforward to check that C is again a conic k-algebra, with identity
element, norm, trace and conjugation respectively given by

1C = 1B ,

nC(u+ vj) = nB(u)− µnB(v),

tC(u+ vj) = tB(u),

u+ vj = ū− vj

for all u, v ∈ B.

Properties of conic algebras preserved by the Cayley-Dickson construction are in
short supply. On the positive side, we can tell rather precisely to what extent cer-
tain properties get lost when performing the Cayley-Dickson construction. Calling
an algebra flexible if it satisfies the identity (xy)x = x(yx) =: xyx, the principal
result in this direction, basically well known, may be summarized as follows.

2.2. Theorem. Let B be a conic k-algebra, µ ∈ k and C := Cay(B,µ).

(i) ιC is an involution iff ιB is an involution.

(ii) C is flexible iff B is flexible.

(iii) C is commutative iff B is commutative and has trivial conjugation.

(iv) C is associative iff B is commutative associative.

(v) C is alternative iff B is associative.

(vi) C is weakly non-singular iff B is weakly non-singular and µ is not a zero
divisor in k.

(vii) C is non-singular iff B is non-singular and µ is invertible in k.

By Thm. 2.2 (vii), it is impossible to realize octonion algebras that are indecom-
posable as quadratic spaces, like the Coxeter (or Dixon) octonions or the examples
constructed by Knus-Parimala-Sridharan [4] and Thakur [8], by means of the Cay-
ley Dickson construction.

In order to find a way out of this impasse, we will therefore introduce a non-
orthogonal version of the Cayley-Dickson construction. This is best motivated by
first looking at a

3



October 4, 2016 E8-Cox.-Oct.tex

2.3. Motivation of the orthogonal Cayley-Dickson construction. The
best motivation for the orthogonal Cayley-Dickson construction is arguably the
following. Let C be an alternative conic algebra over k and suppose we are given
a unital subalgebra B ⊆ C as well as an element l ∈ C that is perpendicular to B
relative to the bilinearized norm. Then B + Bl ⊆ C is the subalgebra generated
by B and l, and the multiplication rules 2.1 (ii) hold with j replaced by l, and µ
replaced by −nC(l).

3. The non-orthogonal Cayley-Dickson construction.

The idea behind the non-orthogonal Cayley-Dickson construction consists in look-
ing at the motivation 2.3 but dropping the assumption that l be orthogonal to B
relative to the bilinearized norm of C. Then u 7→ (DnC)(u, l) defines a linear form
s on B that measures the deviation of l from being orthogonal to B, and arguing
as before, it follows that B+Bl ⊆ C continues to be the subalgebra generated by
B and l whose algebra structure can be described by explicit formulas involving
only B, s and µ := −nC(l). Ignoring the background of these formulas, we arrive
at the following definition.

3.1. Defining the non-orthogonal Cayley-Dickson construction. The in-
put of the non-orthogonal Cayley-Dickson construction consists of a conic k-
algebra B, a scalar µ ∈ k and a linear form s : B → k. Its output is a k-algebra
C := Cay(B;µ, s) living on the direct sum B⊕Bj of two copies of B as a k-module
under the unique bilinear multiplication that

(i) makes B (identified in C through the initial summand) a subalgebra, and

(ii) with λ := s(1B), obeys the multiplication rules

u(vj) =
[
− s(v̄u)1B + s(u)v + s(v̄)u− λvu

]
+
[
vu

]
j, (1)

(vj)u =
[
− s(u)v + λvu

]
+

[
vū

]
j, (2)

(vj)(wj) =
[
− λs(w̄v)1B + λs(v)w + λs(w̄)v − λ2wv + µw̄v

]
(3)

+
[
s(w̄v)1B − s(v)w + λwv

]
j

for all u, v, w ∈ B.

It follows that C is again a conic k-algebra whose identity element, norm, trace
and conjugation are respectively given by

1C = 1B ,

nC(u+ vj) = nB(u) + s(v̄u)− µnB(v),

tC(u+ vj) = tB(u) + s(v̄),

u+ vj = ū+ s(v̄)1B − vj

for all u, v ∈ B.

Our next aim is to derive an analogue of Thm. 2.2. This will be achieved by inclu-
ding conditions on the linear form s and by a horrendous amount of computations.

3.2. Theorem. Let B be a conic k-algebra, µ ∈ k, s : B → k a linear form,
λ := s(1B) and C := Cay(B;µ, s).

(i) ιC is an involution iff ιB is an involution.

(ii) C is flexible iff B is flexible and s is alternative, i.e., the expression
s([u, v, w]) ∈ k is alternating (trilinear) in u, v, w ∈ B.
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(iii) C is commutative iff B is commutative, has trivial conjugation and s(u)v =
s(v)u for all u, v ∈ B.

(iv) C is associative iff B is commutative associative and

s(uv)1B = s(u)v + s(v)ū− λūv

for all u, v ∈ B.

(v) C is alternative iff B is associative and HB,s = 0, where HB,s : B×B×B →
B is the trilinear map defined by

HB,s(u, v, w) := − s(uvw)1B + s(uv)w̄ + s(vw)ū− s(uw̄)v

+ s(u)vw − s(v)ūw̄ − s(w)ūv + λūvw̄

for all u, v, w ∈ B.

The condition on s in part (iv) of the theorem is easily verified if B is a quadratic
k-algebra. Hence we obtain

3.3. Corollary. If B is a quadratic k-algebra, then C is associative.

The condition on s in part (v) of the theorem looks particularly frightening but,
actually, it isn’t because a straightforward computation shows that, for any asso-
ciative conic algebra B,

• H := HB,s is alternating,

• H(u, v, 1B) = H(u, v, uv) = 0 for all u, v ∈ B.

This is easily seen to imply H = 0 if B is locally generated by two elements, e.g.,
a quaternion algebra. Hence we obtain

3.4. Corollary. If B as in Thm. 3.2 is associative and locally generated by two
elements, then C is alternative.

4. Towards non-singularity.

We now come to a property of the non-orthogonal Cayley-Dickson construction
that has no analogue in the orthogonal case. More specifically, we present two in-
stances of a rather general situation where the input algebra of the non-orthogonal
Cayley-Dickson construction is singular but the output algebra is not. Thus no
obvious analogue of Thm. 2.2 (vii) seems to exist in the non-orthogonal case.

4.1. Fields of characteristic 2 (Garibaldi-Petersson [3]). Let k be a field of
characteristic 2 and K/k a purely inseparable field extension of finite degree and
exponent at most 1. Then K is a conic k-algebra whose bilinearized norm is
identically zero; in particular, K is not even weakly non-singular. Let µ ∈ k and
s : K → k be a linear form normalized by the condition s(1K) = 1. Then C :=
Cay(K;µ, s) is a non-singular conic k-algebra whose norm is a Pfister (quadratic)
form over k; in fact, every anisotropic Pfister form over k can be written in this
manner. Moreover, if K has degree 4 over k, it is generated by two elements, so
Cor. 3.4 shows that C is alternative, hence an octonion algebra over k.
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4.2. Integral domains. We now assume that k is an integral domain and write
F := Quot(k) for its quotient field. We let B be an alternative conic k-algebra,
s : B → k a linear form and µ ∈ k a scalar.

Let us assume that B is weakly non-singular, so the natural map from the
k-module B to its dual determined by the bilinearized norm is injective. Since F
is a flat k-algebra, the scalar extension BF is weakly non-singular over F . But
it is also finite-dimensional, so in actual fact BF is an honest-to-goodness non-
singular composition algebra. Now consider the scalar extension sF : BF → F
of s from k to F . Since BF is non-singular, there is a unique a ∈ BF such that
sF = nBF

(a,−), and a moment’s reflection shows that a belongs to

B] := {u ∈ BF | (DnBF
)(u, v) ∈ k for all v ∈ B},

the dual module of B in BF . But B] ⊇ B is is a finitely generated projective
k-module, so there exists a non-zero element δ ∈ k satisfying B] ⊆ δ−1B. Hence
a = δ−1a0 for some a0 ∈ B, which implies ε := nB(a0) ∈ k.

4.3. Theorem. With the notation and assumptions of 4.2, for the conic algebra
C := Cay(B;µ, s) to be non-singular it is sufficient that ε+ δ2µ be invertible in k.

However, this condition is not necessary, even if we assume that δ−1B is minimal
among the principal “fractional” ideals of B containing B].

4.4. Application. Let B0 be the algebra of Hamiltonian quaternions over the
reals and 1, i, j,k the standard “Hamiltonian” basis of B0. Then

B := Z1⊕ Zi⊕ Zj⊕ Zk

is a weakly non-singular conic algebra over k = Z satisfying B] = 1
2B ⊆ BQ. Thus

we may choose δ = 2 in Thm. 4.3. We put µ := −1 and s := nBQ(a,−)|B where

a :=
1

2
a0 ∈ B], a0 := 1 + i + j ∈ B.

Then ε := nB(a0) = 3, hence ε+ δ2µ = 3− 4 = −1 ∈ Z×. Thus Thm. 4.3 implies
that C := Cay(B;−1, s) is an octonion algebra over Z. Moreover, one checks
easily that its generic fiber CQ is isomorphic to Cay(BQ,−1), i.e., to the unique
octonion division algebra over the rationals. Thus the quadratic lattice underlying
C is the E8-lattice, forcing C to be the algebra of Coxeter octonions. In fact, our
construction mimics almost verbatim Coxeter’s original description presented in
[1].

On the other hand, put

h :=
1

2
(1 + i + j + k).

Then
B′ := Z1⊕ Zi + Zj + Zh,

the algebra of Hurwitz quaternions, is weakly non-singular over Z such that B ⊆
B′, hence

B′] ⊆ B] =
1

2
B ⊆ 1

2
B′.

Thus again we may assume δ = 2. Again we put µ := −1; but now we deviate
from the preceding choices by setting s := nBQ(a,−)|B′ where

a :=
1

2
a0 ∈ B′], a0 := 1 + i ∈ B ⊆ B′.

Then ε = nB′(a0) = 2, hence ε + δ2µ = 2 − 4 = −2 /∈ Z×. And yet the non-
orthogonla Cayley-Dickson construction C ′ := Cay(B′;−1, s) turns out to be ex-
actly the octonion algebra over the integers exhibited by Dickson in [2].
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4.5. Open questions. (a) By 4.2, Thm. 4.3 also applies when B0 = O is the
algebra of Graves-Cayley octonions over the reals. Arguing as in 4.4, we find
unimodular positive definite quadratic lattices of rank 16 over Z carrying the
structure of a sedenion algebra over Z with generic fiber Cay(BQ,−1) over Q.
These sedenion algebras have zero divisors. Thanks to the work of Witt [10], their
underlying quadratic lattices are either indecomposable or the direct sum of two
copies of the E8-lattice. It is easy to see that the decomposable case of the direct
sum of two E8-lattices can be obtained from our construction. But is this true
also for the indecomposable case?

(b) Is it possible to realize the examples of Knus-Parimala-Sridharan [4] by means
of the non-orthogonal Cayley-Dickson construction? I suspect the answer is yes.
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