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In this lecture I would like to report on joint work with Bernhard Mühlherr from
the University of Giessen in Germany and Richard Weiss from Tufts University
in the United States. Let me begin by making a confession. I am now in the
business of doing mathematical research for almost fifty years, and yet, in spite
of this very long time, it is a completely new experience for me to be engaged in
a research project I know practically nothing about. As a matter of fact, there
are basically just two things I really know about this project: its name The local
structure of Bruhat-Tits buildings, and the fact that it is intimately tied up with
the algebraic theory of quadratic forms. More specifically, my own involvement
with the project started approximately three years ago (incidentally, while I was
staying near Malaga) when I received an Email from Richard Weiss asking me
a number of very specific questions about some rather outlandish properties of
anisotropic quadratic forms over local fields. After I had been able to answer
these questions affirmatively, the collaboration with him intensified, culminating
in yet another Email from Richard shortly before Christmas last year in which he
stated two propositions and asked me to prove them, adding that it shouldn’t be
too difficult for me to do so.

Well, I wouldn’t say that but still, eventually I succeeded. Moreover, in the pro-
cess of doing so, I arrived at a much better understanding of anisotropic quadratic
forms over local fields than I had before, and it is the purpose of my lecture today
to share this better understanding with you, although it may not be really new
for the experts.

In order to get the terminology straight, let me begin by reminding you of a
few standard facts about

1. Quadratic forms over arbitrary fields.

Let K be an arbitrary field.

1.1. The concept of a quadratic form. Recall that a quadratic form over K
is a map Q : W → K, where

• W is a finite-dimensional vector space over K,

• The map Q is homogeneous of degree 2 and canonically induces a symmetric
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bilinear form ∂Q on W defined by the formula

(∂Q)(x, y) = Q(x+ y)−Q(x)−Q(y). (1)

Note that (1) implies

(∂Q)(x, x) = 2Q(x). (2)

Morphisms of quadratic forms are linear maps of the underlying vector spaces
preserving the forms in the obvious sense. In this way, we obtain the category of
quadratic forms over K. Isomorphic quadratic forms are mostly called isometric.

1.2. Non-singular versus anisotropic quadratic forms. (a) A quadratic
form Q as in 1.1 is said to be non-singular if its induced symmetric bilinear form
∂Q is non-degenerate in the usual sense of linear algebra. For example, hyperbolic
quadratic forms are always non-singular, where Q is said to be hyperbolic if, for
some integer r ≥ 0, it is isometric to the quadratic form

Kr ⊕Kr −→ K, x⊕ y 7−→ xty. (3)

(b) On the other hand, we say our quadratic forms Q is anisotropic if Q(x) 6= 0
for all non-zero elements x ∈ W . From (2) we deduce that anisotropic quadratic
forms are automatically non-singular provided the base field has characteristic not
2. In characteristic 2, however, this conclusion does no longer hold. This may be
seen by looking at

1.3. Examples. (a) The non-zero one-dimensional quadratic forms over K have
the form 〈α〉 : K → K, x 7→ αx2, for some α ∈ K×. They are always anisotropic
and satisfy ∂〈α〉(x, y) = 2αxy, hence are non-singular if and only if K has char-
acteristic not 2.

(b) Let E be a quadratic étale K-algebra, so either E/K is a separable quadratic
field extension or E ∼= K ⊕K is split. Then nE , the norm of E in its capacity as
a two-dimensional composition algebra, is a non-singular binary quadratic form
which is anisotropic if and only if E/K is a field.

(c) The quadratic forms over K that are non-singular are precisely the ones that
are isometric to

α1nE1 ⊕ · · ·αmnEm ⊕ ϕ, (4)

with αi ∈ K×, Ei quadratic étale K-algebras for 1 ≤ i ≤ m and ϕ a non-singular
anisotropic quadratic form of dimension at most 1. Here by (a) the case dim(ϕ) = 1
can only occur if K has characteristic not 2.

2. Residue forms.

The whole point of my lecture will be to specify the base field as follows.

2.1. The concept of a local field. From now on, we will always assume that
K is a local field, so in addition to being a field, K is equipped with a complete
discrete valuation, i.e., a map ν : K → Z∞ that

• is surjective, definite, logarithmically multiplicative, and satisfies the addi-
tive version of the non-archimedian triangle inequality,

• makes K complete with respect to the valuation topology.
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Then

o := {α ∈ K | ν(α) ≥ 0} ⊆ K, (5)

is a subring, called the valuation ring of K. More precisely, o is a discrete valua-
tion ring, i.e., a principal ideal domain containing a unique non-zero prime ideal,
furnished by the valuation ideal

p := {α ∈ K | ν(α) > 0}. (6)

The quotient K̄ := o/p is a field, called the residue field of K. We always write
α 7→ ᾱ to indicate the natural map from o to K̄. We also fix a uniformaizer of K,
i.e., an element of π ∈ o that generates the valuation ideal p = oπ, equivalently,
that has value ν(π) = 1. There are many useful elementary properties enjoyed by
the discrete valuation of a local field, for example,

2.2. The principle of domination. This pompous name refers to the simple
observation that, given α1, . . . , αm ∈ K, the non-archimedian inequality can be
converted into an equality,

ν(
m∑
i=1

αi) = min {ν(αi) | 1 ≤ i ≤ m}, (7)

provided the minimum on the right of (7) is attained at a unique index j =
1, . . . ,m.

2.3. Examples of local fields. Examples of local fields are provided by

• the p-adics Qp, p a prime, with residue field Q̄p = Fp, the field with p
elements,

• the formal Laurent series field F ((t)), with resdue field F , for any field F .

More generally, a classical theorem of Teichmüller implies that, given any field F
of characteristic p > 0 and any positive integer r, there exists a local field K of
characteristic zero with residue field K̄ = F having absolute ramification index
eK := ν(p · 1K) = r. When trying to reduce properties of quadratic forms over
a local field K to its residue field (cf. 2.1), this means that you cannot avoid
difficulties in characteristic p = 2 even if you want to, e.g., by assuming that K
has characteristic zero.

2.4. The concept of residue forms. When dealing with algebraic properties
of a local field K, the idea is to reduce matters to the (presumably much simpler)
residue field K̄. The theory of quadratic forms is a case in point: let Q : W → K
be an anisotropic quadratic form. Then Hensel’s Lemma implies that

ν
(
Q(x+ y)

)
≥ min

{
ν
(
Q(x)

)
, ν
(
Q(y)

)}
, (8)

ν
(
(∂Q)(x, y)

)
≥ 1

2

(
ν
(
Q(x)

)
+ ν
(
Q(y)

))
. (9)

We therefore obtain a filtration

{0} ⊆ · · · ⊆Wi+1 ⊆Wi ⊆ · · · ⊆W, (i ∈ Z) (10)

consisting of full o-lattices

Wi :=
{
x ∈W | ν

(
Q(x)

)
≥ i
)}
⊆W (i ∈ Z), (11)
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i.e., of finitely generated o-submodules containing a vector space basis of W . In
particular, each Wi is torsion-free as an o-module. But since o is a PID, we
conclude that Wi is in fact a free o-module of finite rank equal to the dimension
of Q, forcing W̄i := Wi/Wi+1 to be a finite-dimensional vector space over K̄,
endowed with the natural map x 7→ x̄ from Wi to W̄i such that the relation

Q̄i(x̄) := π−iQ(x) (12)

determines a well defined anisotropic quadratic form Q̄i on W̄i over K̄, called the
i-th residue form of Q. Since Q is homegenous of degree 2, the assignment x 7→ πx
gives an isometry from Q̄i onto Q̄i+2, so it suffices to consider the residue forms
Q̄0, Q̄1. Note by (12) that Q̄1 depends on the choice of the uniformizer π but Q̄0

doesn’t.

2.5. Unramified and tame quadratic forms. Let Q be an anisotropic
quadratic form as in 2.4 and put W× := W \ {0}.
(a) One checks easily that Q satisfies the dimension formula

dimK(Q) = dimK̄(Q̄0) + dimK̄(Q̄1). (13)

Moreover, the following conditions are easily seen to be equivalent.

(i) Q̄1 = 0 (equivalently, W̄1 = {0}).

(ii) W1 = pW0.

(iii) ν(Q(W×)) = 2Z.

In this case, Q is said to be unramified. For example, If E/K is a separable
quadratic field extension, then its norm nE : E → K, which by 1.3 (b) is a non-
singular anisotropic quadratic form over K, is unramified if and only if the field
extension E/K has ramification index 1 in the sense of classical valuation theory.

(b) Q is said to be tame if both of its residue forms Q̄0, Q̄1 are non-singular. By
1.2 (b), this holds automatically if K̄ has characteristic not 2 but fails to do so in
general. In fact, most of the anisotropic quadratic forms over local fields arising
in the theory of Bruhat-Tits buildings are wild, i.e., not tame. On the positive
side, it is easily seen that tame anisotropic quadratic forms over K are always
non-singular.

3. Residue forms under scalar extensions.

Let Q : W → K be an anisotropic quadratic form over the local field K and
suppose F/K is a finite algebraic field extension, making F a local field in its
own right. One could ask naively what happens to the residue forms of Q when
extending scalars from K to F , bearing in mind that F̄ /K̄ may naturally be
viewed as a finite algebraic extension as well? Unfortunately, this question doesn’t
make too much sense since the base change of Q from K to F may loose the
property of being an anisotropic quadratic form (over F ). Therefore our naive
question should be phrased somewhat more carefully as follows: what happens to
an anisotropic quadratic form over a local field when extending scalars to a finite
algebraic extension and prescribing the behavior of its residue forms under base
change to the corresponding residue field?

The two propositions stated by Richard Weiss a couple of months ago provide
partial answers to this very general question and may be condensed into a single
statement as follows.
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3.1. Theorem. Let Q : W → K be an anisotropic quadratic form over K and
suppose F/K is a finite algebraic field extension such that the extended residue
forms (Q̄i)F̄ , i = 0, 1, are both hyperbolic (resp. anisotropic). Then the base
change QF of Q from K to F is hyperbolic (resp. anisotropic with residue forms
QF i

∼= (Q̄i)F̄ ).

I will spend the remaining time of my lecture to sketch a proof of this theorem.
One of its key technical ingredients is the possibility of

4. Gluing unramified forms.

4.1. The gluing process. (a) The simplest way of gluing unramified anisotropic
quadratic forms q : V → K, q′ : V ′ → K over our local field K consists in looking
at the (orthogonal) direct sum Q := q⊕πq′, which, by the principle of domination
2.2, is easily seen to be anisotropic with residue forms Q̄0

∼= q̄0, Q̄1
∼= q̄′0. However,

this procedure is not the most general and, in particular, turns out to be inadequate
when dealing with wild anisotropic quadratic forms.

(b) Suppose that, in addition to q, q′ as in (a), we are given a bilinear form σ : V ×
V ′ → K. Then we may consider the map

Q := q ⊕σ πq′ : V ⊕ V ′ → K, x⊕ x′ 7−→ q(x) + σ(x, x′) + πq′(x′), (14)

which is clearly a quadratic form over K. But is it anisotropic?

4.2. Proposition. With the notation and assumptions of 4.1, the following con-
ditions are equivalent.

(i) Q is anisotropic.

(ii) For all v ∈ V , v′ ∈ V ′ we have ν(σ(v, v′)) ≥ 1.

(iii) If (e1, . . . , em) (resp. (em+1, . . . er)) is an o-basis of V0 (resp. V ′0), then
ν(σ(ei, ej)) ≥ 1 for all 1 ≤ i ≤ m < j ≤ r.

In this case, we have Q̄0
∼= q̄0, Q̄1

∼= q̄′0.

Again this result follows from the principle of domination, but not quite so easily
as before. Its significance derives from the fact that every anisotropic quadratic
form over K allows a decomposition of type (14).

4.3. Proposition. Let Q : W → K be an anisotropic quadratic forms over K.
Then there are unramified anisotropic quadratic forms q, q′ as in 4.1 (a) and a
bilinear form σ as in 4.1 (b) such that Q ∼= q ⊕σ πq′.

Sketch of proof. By the Elementary Divisor Theorem, there exist an o-basis
(e1, . . . , er) of W0 and integers s1 ≥ · · · ≥ sr ≥ 0 making (s1e1, . . . , srer) an
o-basis of W1 ⊆ W0. Here πW0 ⊆ W1 forces 1 ≥ s1, and we find an integer m,
0 ≤ m ≤ r, such that si = 1 for 1 ≤ i ≤ m and sj = 0 for m < j ≤ r. Now
put V :=

∑m
i=1Kei, V

′ :=
∑r
j=m+1Kej and define q (resp. q′, resp. σ) as the

restriction of Q to V (resp. of π−1Q to V ′, resp. of ∂Q to V × V ′). �

4.4. Corollary. If Q as in 4.3 has Q̄0 non-singular, then Q ∼= q⊕πq′ as a direct
orthogonal sum, for some unramified anisotropic quadratic forms q, q′ over K.

Sketch of proof. By Prop. 4.3, there exists an unramified subform q ⊆ Q such
that q̄0

∼= Q̄0. In particular, q is tame, hence non-singular (2.5 (b)). We therefore
obtain a direct orthogonal decomposition Q = q⊕ϕ, for some anisotropic quadratic
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form ϕ over K. Viewing q̄0 and ϕ̄0 canonically as subforms of Q̄0, we conclude
that ϕ̄0 becomes orthogonal to q̄0 = Q̄0. But Q̄0 is non-singular by hypothesis,
forcing ϕ̄0 = 0. Applying Props. 4.3, 4.2 to ϕ in place of Q, we therefore deduce
ϕ = πq′, for some unramified anisotropic quadratic form q′ over K. �

Another application of Prop. 4.3 is addressed to the

4.5. Springer-Tietze Theorem. ([1, 2]) Suppose Q′0, Q
′
1 are non-singular

anisotropic quadratic forms over K̄. Then there exists an anisotropic quadratic
form Q over K uniquely determined up to isometry by the condition Q̄i ∼= Q′i for
i = 0, 1.

Sketch of proof. (a) Springer’s proof works only if K̄ has characteristic not 2
and makes use of the fact that, in this case, the (orthogonally) indecomposable
non-singular quadratic forms over K̄ are one-dimensional.

(b) Tietze’s proof works only if K̄ has characteristic equal to 2 and, in this case,
makes use of his own presentation [3] of the Witt group of K̄ by generators and
relations.

(c) My own proof works uniformly in all characteristics (of K̄) and makes use of
4.1 (a) combined with Cor. 4.4 and 1.3 (c). �

5. Towards the proof of Theorem 3.1.

In order to tackle the proof of Theorem 3.1, the following technical result will be
crucial.

5.1. Proposition. Let X be a free o-module of finite rank and consider the fol-
lowing conditions on a quadratic form ϕ : X → o.

(i) the quadratic form ϕ̄ := ϕ⊗o K̄ : X̄ := X ⊗o K̄ → K̄ is anisotropic.

(ii) ϕ(x) 6= 0 for all x ∈ X \ πX.

(iii) ϕ is anisotropic: ϕ(x) 6= 0 for all non-zero elements x ∈ X.

(iv) The quadratic form Q := ϕ⊗o K : W := X ⊗o K → K is anisotropic.

Then the following statements hold.

(a) We have the implications (i) =⇒ (ii) =⇒ (iii) =⇒ (iv).

(b) If (i) holds, then Q is unramified anisotropic with W0 = X and Q̄0 = ϕ̄.

(c) If ϕ̄ is non-singular, then conditions (i)−(iv) are all equivalent, and Q is tame.
�

5.2. Corollary. If ϕ̄ is hyperbolic, so is ϕ, hence Q.

Sketch of proof. By Prop. 5.1 (ii), some x ∈ X \ πX has ϕ(x) = 0. Hence
x̄ := x⊗o 1K̄ ∈ X̄ can be extended to a hyperbolic pair of X̄ relative to ϕ̄, which
by standard arguments lifts to an extension of x to a hyperbolic pair of X relative
to ϕ. We can thus split off a hyperbolic plane from X, and the result follows by
induction on the rank of X. �

5.3. Sketching the proof of Theorem 3.1. (a) Suppose first that (Q̄i)F̄ are
both hyperbolic for i = 0, 1. Then Q is tame, and by Cor. 4.4 we are reduced to
the case that Q : W → K is unramified. Put X := W0, write ϕ : X → o for the
restriction of Q to X, and ψ := ϕ⊗o oF : Y := X ⊗o oF → oF for the base change
of ϕ to the valuation ring of F . Then ψ̄ ∼= (Q̄0)F̄ is hyperbolic by hypothesis,
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forcing ψ and ψ ⊗oF
F ∼= QF to be hyperbolic by Cor. 5.2.

(b) Now assume that (Q̄i)F̄ are both anisotropic for i = 0, 1. Using Prop. 5.1, the
unramified case can be treated in pretty much the same way as before. But the
reduction of the general case to the unramified one is different. By Prop. 4.3, we
can write Q = q ⊕σ πq′ for some unramified anisotropic quadratic forms q, q′ and
some bilinear form σ satisfying the conditions of Prop. 4.2. The unramified case
now guarantees that qF , q

′
F are both anisotropic over F , and one checks, using

Prop. 5.1 again, that condition (iii) of Prop. 4.2 extends from σ to the base change
σF . Thus QF is anisotropic with QF i

∼= (Q̄i)F̄ for i = 0, 1. �
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